/THEORY/IN/PRACY

_"Archl ecture

Leading Thinkers 'Reveal the Hidden Bea in Software Design

Edi_te-- ' "i_Qmidis Spinellis & Georgios Gousios

. St W
A ' - -- 4
o L

/ Beautiful
/ Architecture

Leading Thinker§Reveal the Hidden Beallly in Software Design

»- -

i ™ ¥

OREILLY* Edited BigDiomidis Spinellis & Georgios Gousios

Beautiful Architecture
Edited by Diomidis Spinellis and Georgios Gousios

Copyright © 2009 O'Reilly Media. All rights reserved.

Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472,

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (htip://safari.oreilly.com). For more information, contact our corporate/institutional

sales department: 800-998-9938 or corporate@oreilly.coin.

Editor: Mary Treseler Indexer: Fred Brown

Production Editor: Sarah Schneider Cover Designer: Karen Montgomery
Copyeditor: Genevieve d’Entremont Interior Designer: David Futato
Proofreader: Nancy Reinhardt IHlustrator: Robert Romano

Printing History:
January 2009: First Edition,

O'Reilly and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc. Beauriful Architecture and

related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark

claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assuime no
responsibility for errors or omissions, or for damages resulting from the use of the information contained

herein.

ISBN: 978-0-596-51798-4
[M]

1231531335

CONTENTS

FOREWORD ix
by Stephen J. Mellor

PREFACE xiii

Part One ON ARCHITECTURE

1 WHAT IS ARCHITECTURE? 3
by John Klein and David Weiss
Introduction 3
Creating a Software Architecture 10
Architectural Structures 14
Good Architectures 19
Beautiful Architectures 20
Acknowledgments 23
References 23
2 A TALE OF TWO SYSTEMS: AMODERN-DAY SOFTWARE FABLE 25
by Pete Goodliffe
The Messy Metropolis 26
Design Town 33
So What? 41
Your Turn 41
References 42

Part Two ENTERPRISE APPLICATION ARCHITECTURE

3 ARCHITECTING FOR SCALE 45
by Jim Waldo
Introduction 45
Context 47
The Architecture 51
Thoughts on the Architecture 57
b] MAKING MEMORIES 63
by Michael Nygard
Capabilities and Constraints 64
Workflow 65
Architecture Facets 66

User Response 87

Conclusion 88

References 88
5 RESOURCE-ORIENTED ARCHITECTURES: BEING “IN THE WEB” 89
by Brian Sletten
Introduction 89
Conventional Web Services 90
The Web 92
Resource-Oriented Architectures 98
Data-Driven Applications 102
Applied Resource-Oriented Architecture 103
Conclusion 109
6 DATA GROWS UP: THE ARCHITECTURE OF THE FACEBOOK PLATFORM 111
by Dave Fetterman
Introduction 111
Creating a Social Web Service 117
Creating a Social Data Query Service 124
Creating a Social Web Portal: FBML 133
Supporting Functionality for the System 146
Summation 151

Part Three SYSTEMS ARCHITECTURE

7 XEN AND THE BEAUTY OF VIRTUALIZATION 155
by Derek Murray and Keir Fraser
Introduction 155
Xenoservers 156
The Challenges of Virtualization 159
Paravirtualization 159
The Changing Shape of Xen 163
Changing Hardware, Changing Xen 169
Lessons Learned 172
Further Reading 173
8 GUARDIAN: A FAULT-TOLERANT OPERATING SYSTEM ENVIRONMENT 175
by Greg Lehey
Tandem/16: Some Day All Computers Will Be Built Like This 176
Hardware 176
Mechanical Layout 178
Processor Architecture 179
The Interprocessor Bus 184
Input/Output 184
Process Structure 185
Message System 186
File System 190
Folklore 195
The Downside 195

vi CONTENTS

CONTENTS

Posterity 197
Further Reading 198
9 JPC: AN X86 PCEMULATOR IN PURE JAVA 199
by Rhys Newman and Christopher Dennis
Introduction 200
Proof of Concept 202
The PC Architecture 205
Java Performance Tips 206
Fourin Four: It Just Won’t Go 207
The Perils of Protected Mode 210
Fighting A Losing Battle 214
Hijacking the JVM 217
Ultimate Flexibility 229
Ultimate Security 231
It Feels Better the Second Time Around 232
10 THE STRENGTH OF METACIRCULAR VIRTUAL MACHINES: JIKES RVM 235
by lan Rogers and Dave Grove
Background 236
Myths Surrounding Runtime Environments 237
A Brief History of Jikes RVM 240
Bootstrapping a Self-Hosting Runtime 241
Runtime Components 246
Lessons Learned 259
References 259
Part Four END-USER APPLICATION ARCHITECTURES
11 GNU EMACS: CREEPING FEATURISM IS A STRENGTH 263
by Jim Blandy
Emacsin Use 264
Emacs’s Architecture 266
Creeping Featurism 272
Two Other Architectures 275
12 WHEN THE BAZAAR SETS OUT TO BUILD CATHEDRALS 279
by Till Adam and Mirko Boehm
Introduction 279
History and Structure of the KDE Project 282
Akonadi 287
ThreadWeaver 303
Part Five LANGUAGES AND ARCHITECTURE
13 SOFTWARE ARCHITECTURE: OBJECT-ORIENTED VERSUS FUNCTIONAL 315
by Bertrand Meyer
Overview 315

vii

The Functional Examples 318

Assessing the Modularity of Functional Solutions 321
An Object-Oriented View 330
Assessing and Improving OO Modularity 336
Agents: Wrapping Operations into Objects 341
Acknowledgments 345
References 346
14 REREADING THE CLASSICS 349
by Panagiotis Louridas
Everything Is an Object 353
Types Are Defined Implicitly 361
Problems 367
Brick and Mortar Architecture 372
References 380
AFTERWORD 383

by William J. Mitchell
CONTRIBUTORS 387

INDEX 393

viii£k CONTENTS

Foreword

Stephen J. Mellor

THE CHALLENGES OF DEVELOPING HIGH-PERFORMANCE, HIGH-RELIABILITY, and high-quality
software systems are too much for ad hoc and informal engineering techniques that might
have worked in the past on less demanding systems. The complexity of our systems has risen
to the point where we can no longer cope without developing and maintaining a single
overarching architecture that ties the system into a coherent whole and avoids piecemeal

implementation, which causes testing and integration failures.

But building an architecture is a complex task. Examples are hard to come by, due to ecither
proprietary concerns or the opposite, a need to “sell” a particular architectural style into a wide
range of environments, some of which are inappropriate. And architectures are big, which
makes them difficult to capture and describe without overwhelming the reader.

Yet beautiful architectures exhibit a few universal principles, some of which I outline here:

One fact in one place
Duplication leads to error, so it should be avoided. Each fact must be a single,
nondecomposable unit, and each fact must be independent of all other facts. When change
occurs, as itinevitably does, only one place need be modified. This principle is well known
to database designers, and it has been formalized under the name of normalization. The
principle also applies less formally to behavior, under the name factoring, such that

common functionality is factored out into separate modules.

Beautiful architectures find ways to localize information and behavior. At runtime, this
manifests as /ayering, the notion that a system may be factored into layers, each
representing a layer of abstraction or domain.

Automatic propagation

One factin one place sounds good, but for efficiency’s sake, some data or behavior is often
duplicated. To maintain consistency and correctness, propagation of these facts must be
carried out automatically at construction time.

Beautiful architectures are supported by construction tools that effect meta-
programming, propagating one factin one place into many places where they may be used

efficiently.

Architecture includes construction

An architecture must include not only the runtime system, but also how it is constructed.
A focus solely on the runtime code is a recipe for deterioration of the architecture over
time.

Beautiful architectures are reflective. Not only are they beautiful at runtime, but they are
also beautiful at construction time, using the same data, functions, and techniques to build
the system as those that are used at runtime.

Minimize mechanisms

The best way to implement a given function varies case by case, but a beautiful architecture
will not strive for “the best.” There are, for example, many ways of storing data and
searching it, but if the system can meet its performance requirements using one
mechanism, there is less code to write, verify, maintain, and occupy memory.

Beautiful architectures employ a minimal set of mechanisms that satisfy the requirements
of the whole. Finding “the best” in each case leads to proliferation of error-prone
mechanisms, whereas adding mechanisms parsimoniously leads to smaller, faster, and
more robust systems.

Construct engines

If you wish to build brittle systems, follow Ivar Jacobson’s advice and base your
architecture on use cases and one function at a time (i.e., use “controller” objects).
Extensible systems, on the other hand, rely on the construction of virtual machines—
engines that are “programmed” by data provided by higher layers, and that implement
multiple application functions at a time.

This principle appears in many guises. “Layering” of virtual machines goes back to Edsger
Dijkstra. “Data-driven systems” provide engines that rely on coding invariants in the
system, letting the data define the specific functionality in a particular case. These engines
are highly reusable—and beautiful.

FOREWORD

O(G), the order of growth
Back in the day, we thought about the “order” of algorithms, analyzing the performance
of sorting, say, in terms of the time it takes to sort a set of a certain number of elements.
Whole books have been written on the subject.
The same applies for architecture. Polling, for example, works well for a small number of
elements, but is a response-time disaster as the number of items increases. Organizing
everything around interrupts or events works well until they all go off at once. Beautiful
architectures consider the direction of likely growth and account for it.

Resist entropy
Beautiful architectures establish a path of least resistance for maintenance that preserves
the architecture over time and so slows the effects of the Law of System Entropy, which
states that systems become more disorganized over time. Maintainers must internalize the
architecture so that changes will be consistent with it and not increase system entropy.
One approach is the Agile concept of the Metaphor, which is a simple way to represent
what the architecture is “like.” Another is extensive documentation and threats of
unemployment, though that seldom works for long. Usually, however, it generally means
tools, especially for generating the system. A beautiful architecture must remain beautiful.

These principles are highly interrelated. One fact in one place can work only if you have
automatic propagation, which in turn is effective when the architecture takes construction into
account. Similarly, constructing engines and minimizing mechanisms support one factin one
place. Resisting entropy is a requirement for maintaining an architecture over time, and it relies
on the architecture including construction and support for propagation. Moreover, a failure to
consider the way in which a system will likely grow will cause the architecture to become
unstable, and eventually fail under extreme but predictable circumstances. And combining
minimal mechanisms with the notion of constructing engines means that beautiful
architectures usually feature a limited set of patterns that enable construction of arbitrary
system extensions, a kind of “expansion by pattern.”

In short, beautiful architectures do more with less.

As you read this book, ably assembled and introduced by Diomidis Spinellis and Georgios
Gousios, you might look for these principles and consider their implications, using the specific
examples presented in each chapter. You might also look for violations of these principles and

ask whether the architecture is thus ugly or whether some higher principle is involved.

During the development of this Foreword, your authors asked me if [might say a few words
about how someone becomes a good architect. I laughed. If we only knew that.... But then I

recalled from my own experience that there is a powerful, if nonanalytic, way of becoming a

FOREWORD xi

beautiful architect. That way" is never to believe that the last system you built is the only way
to build systems, and to seek out many examples of different ways of solving the same type of
problem. The example beautiful architectures presented in this book are a step forward in
helping you meet that goal.

* Or exercise more and eat less.

xii FOREWORD

Preface

THEIDEA FOR THE BOOK YOU'RE READING WAS CONCEIVED IN 2007 as a successor to the award-
winning, best-selling Beautiful Code: a collection of essays about innovative and sometimes
surprising solutions to programming problems. In Beautiful Architecture, the scope and
purpose is different, but similarly focused: to get leading software designers and architects to
describe a software architecture of their choice, peeling back the layers of their creations to
show how they developed software that is functional, reliable, usable, efficient, maintainable,

portable, and, yes, elegant.

To put together this book, we contacted leading architects of well-known or less-well-known
but highly innovative software projects. Many of them replied promptly and came back to us
with thought-provoking ideas. Some of the contributors even caught us by surprise by
proposing not to write about a specific system, but instead investigating the depth and the

extent of architectural aspects in software engineering.

All chapter authors were glad to hear that the work they put in their chapters is also helping
a good cause, as the royalties of this book are donated to Medécins Sans Frontiéres (Doctors
Without Borders), an international humanitarian aid organization that provides emergency

medical assistance to suffering people.

xiii

How This Book Is Organized

We have organized the contents of this book around five thematic areas: overviews, enterprise
applications, systems, end-user applications, and programming languages. There is an obvious,
but not deliberate, lack of chapters on desktop software architectures. Having approached more
than 50 software architects, this result was another surprise for us. Are there really no shining
examples of beautiful desktop software architectures? Or are talented architects shying away
from an area often driven by a quest to continuously pile ever more features on an application?

We are really looking forward to hearing from you on these issues.

Part I;: On Architecture

Part I of this book examines the breadth and scope of software architecture and its implications

for software development and evolution.

Chapter 1, What Is Architecture? by John Klein and David Weiss, defines software architecture
by examining the subject through the perspectives of quality concerns and architectural
structures.

Chapter 2, A Tale of Two Systems: A Modern-Day Software Fable, by Pete Goodliffe, provides
an allegory on how software architectures can affect system evolution and developer

engagement with a project.

Part Il: Enterprise Application Architecture

Enterprise systems, the IT backbone of many organizations, are large and often tailor-made
conglomerates of software usually built from diverse components. They serve large,
transactional workloads and must scale along with the enterprise they support, readily
adapting to changing business realities. Scalability, correctness, stability, and extensibility are
the mostimportant concerns when architecting such systems. Part 11 of this book includes some
exemplar cases of enterprise software architectures.

Chapter 3, Architecting for Scale, by Jim Waldo, demonstrates the architectural prowess
required to build servers for massive multiplayer online games.

Chapter 4, Making Memories, by Michael Nygard, goes through the architecture of a
multistage, multisite data processing system and presents the compromises that must be made
to make it work.

Chapter 5, Resource-Oriented Architectures: Being “In the Web”, by Brian Sletten, discusses
the power of resource mapping when constructing data-driven applications and provides an

clegant example of a purely resource-oriented architecture.

Xiv PREFACE

Chapter 6, Data Grows Up: The Architecture of the Facebook Platform, by Dave Fetterman,
advocates data-centric systems, explaining how a good architecture can create and support an

application ecosystem.

Part I11: Systems Architecture

Systems software is arguably the most demanding type of software to design, partly because
efficient use of hardware is a black art mastered by a selected few, and partly because many
consider systems software as infrastructure that is “simply there.” Seldom are great systems
architectures designed on a blank sheet; most systems that we use today are based on ideas
first conceived in the 1960s. The chapters in Part I1T walk you through four innovative systems
software architectures, discussing the complexities behind the architectural decisions that

made them beautiful.

Chapter 7, Xen and the Beauty of Virtualization, by Derek Murray and Keir Fraser, gives an
example of how a well-thought-out architecture can change the way operating systems evolve.

Chapter 8, Guardian: A Fault-Tolerant Operating System Environment, by Greg Lehey,
presents a retrospective on the architectural choices and building blocks (both software and
hardware) that made Tandem the platform of choice in high-availability environments for

nearly two decades.

Chapter 9, JPC: An x86 PC Emulator in Pure Java, by Rhys Newman and Christopher Dennis,
describes how carefully designed software and a good understanding of domain requirements

can overcome the perceived deficiencies of a programming system.

Chapter 10, The Strength of Metacircular Virtual Machines: Jikes RVM, by lan Rogers and Dave
Grove, walks us through the architectural choices required for creating a self-optimizable, self-

hosting runtime for a high-level language.

Part IV: End-User Application Architectures

End-user applications are those that we interact with in our everyday computing lives, and the
software that our CPUs burn the most cycles to execute. This kind of software normally does
not need to carefully manage resources or serve large transaction volumes. However, it does
need to be usable, secure, customizable, and extensible. These properties can lead to popularity
and widespread use and, in the case of free and open source software, to an army of volunteers
willing to improve it. In Part 1V, the authors dissect the architectures and the community
processes required to evolve two very popular desktop software packages.

Chapter 11, GNU Emacs: Creeping Featurism Is a Strength, by Jim Blandy, explains how a set
of very simple components and an extension language can turn the humble text editor into
an-operatingsysterr’ the Swiss army knife of a programmer’s toolchest.

* As some die-hard users say, “Emacs is my operating system; Linux just provides the device drivers.”

PREFACE Xv

Chapter 12, When the Bazaar Sets Out to Build Cathedrals, by Till Adam and Mirko Boehm,
demonstrates how community processes such as sprints and peer-reviews can help software

architectures evolve from rough sketches into beautiful systems.

Part V: Languages and Architecture

As many people have pointed out in their works, the programming language we use affects
the way we solve a problem. But can a programming language also affect a system’s
architecture and, if so, how? In the architecture of buildings, new materials and the adoption
of CAD systems allowed the expression of more sophisticated and sometimes strikingly
beautiful designs; does the same also apply to computer programs? Part V, which contains the
last two chapters, investigates the relationship between the tools we use and the designs we

produce.

Chapter 13, Software Architecture: Object-Oriented Versus Functional by Bertrand Meyer,
compares the affordances of object-oriented and functional architectural styles.

Chapter 14, Rereading the Classics, by Panagiotis Louridas, surveys the architectural choices
behind the building blocks of modern and classical object-oriented software languages.

Finally, in the thought-provoking Afterword, william J. Mitchell, an MIT Professor of
Architecture and Media Arts and Sciences, ties the concept of beauty between the building

architectures we encounter in the real world and the software architectures residing on silicon.

Principles, Properties, and Structures

Late in this book’s review process, one of the reviewers asked us to provide our personal
opinion, in the form of commentary, on what a reader could learn from each chapter. The idea
was intriguing, but we did not like the fact that we would have to second-guess the chapter
authors. Asking the authors themselves to provide a meta-analysis of their writings would lead
to a Babel tower of definitions, terms, and architectural constructs guaranteed to confuse
readers. What was needed was a common vocabulary of architectural terms; thankfully, we

realized we already had that in our hands.

In the Foreword, Stephen Mellor discusses seven principles upon which all beautiful
architectures are based. In Chapter 1, John Klein and David Weiss present four architecture
building blocks and six properties that beautiful architectures exhibit. A careful reader will
notice that Mellor’s principles and Klein’s and Weiss’s properties are not independent of each
other. In fact, they mostly coincide; this happens because great minds think alike. All three,
being very experienced architects, have seen many times in action the importance of the

concepts they describe.

xvi PREFACE

We merged Mellor’s architectural principles with the definitions of Klein and Weiss into two
lists: one containing principles and properties (Table P-1), and one containing structures
(Table P-2). We then asked the chapter authors to mark the terms they thought applied to their
chapters, and produced a corresponding legend for each chapter. In these tables, you can see
the definition of each principle, property, or architectural construct that appears in the chapter
legend. We hope the legends will guide your reading of this book by giving you a clean
overview of the contents of each chapter, but we urge you to delve into a chapter’s text rather
than simply stay with the legend.

TABLE P-1. Architectural principles and properties

Principle or property The ability of an architeciure fo...

Versatility ...offer “good enough” mechanisms to address a variety of problems with an economy of
expression.

Conceptual infegrity ...offer a sindle, oplimal, nonredundant way for expressing the solution of a set of similar
problems.

Independently ..keep its elements isolaled so as o minimize the number of changes required to

changeable
accommodale changes.

Aulomalic propagalion ..maintain consistency and correctness, by propagating changes in data or behavior across
modules

Buildability ..guide the sofiware’s consisteni and correct consiruction.

Growth accommodation ..cater for likely growth.

Entropy resistance ..maintain order by accommodalting, constraining, and isolating the effects of changes.

TABLE P-2. Architectural structures

Structure Astructure that...

Module ..hides design or implementation decisions behind a stable interface
Dependency organizes components along the way where one uses functionality of another.
Process ..encapsulales and isolates the runtime slate of a module.

Data access ..compartmentalizes dala, selling access righis to it.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

PREFACE xvil

Constant width
Used for program listings, as well as within paragraphs to refer to program elements such
as variable or function names, databases, data types, environment variables, statements,
and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values determined by

context.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you're reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a
CD-ROM of examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s documentation does

require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “Beautiful Architecture, edited by Diomidis Spinellis and
Georgios Gousios. Copyright 2009 O’Reilly Media, Inc., 978-0-596-51798-4.”

If you feel your use of code examples falls outside fair use or the permission given here, feel

free to contact us at permissions@oreilly.com.

Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite
Satgn!:ﬂ! technology book, that means the book is available online through the O’Reilly
Network Safari Bookshelf.
Safari offers a solution that’s better than e-books. 1t’s a virtual library that lets you casily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at hitp://satari

.oreilly.com

xviii PREFACE

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at:
http.://www.oreilly.com/catalog/978059651 7984

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly
Network, see our website at:

http.://www.oreilly.com

Acknowledgments

The publication of a book is a team effort, and an edited collection even more so. Many people
deserve our thanks. First of all, we thank the book’s contributors for submitting outstanding
material in a timely manner, and then putting up with our requests for various changes and
revisions. The book’s reviewers, Robert A. Maksimchuk, Gary Pollice, David West, Greg
wilson, and Bobbi Young, gave us many excellent comments for improving each chapter and
the book as a whole. At O’Reilly, our editor, Mary Treseler, helped us locate contributors,
organized the review process, and oversaw the book’s production with remarkable efficiency.
Later, Sarah Schneider worked with us as the book’s production editor, adroitly handling a
pressing schedule and often conflicting requirements. The copyeditor, Genevieve d’Entremont,
and the indexer, Fred Brown, deftly massaged material coming from authors around the world
to form a book that flows as easily as if it was written by a single pen. The illustrator, Robert
Romano, managed to convert the disparate variety of the graphics formats we submitted
(including some hand-drawn sketches) into the professional diagrams you’ll find in the book.
The cover designer, Karen Montgomery, produced a beautiful and inspiring cover to maich
the book’s contents, and the interior designer, David Futato, came up with a creative and
functional scheme for integrating the chapter legends into the book’s design. Finally, we wish
to thank our families and friends for standing by us while we diverted to this book attention
that should have belonged to them.

PREFACE xix

Caopyrighted material

PART |

On Architecture

Chapter 1, What Is Architecture?
Chapter 2, A Tale of Two Systems: A Modern-Day Software Fable

Caopyrighted material

CHAPTER ONE

What Is Architecture?

John Klein
David Weiss

Introduction

BUII.DERS, MUSICIANS, WRITERS, COMPUTER DESIGNERS, NETWORK DESIGNERS, and software
developers all use the term architecture, as do others (ever hear of a food architect?), yet each
produces different results. A building is very different from a symphony, but both have
architectures. Further, all architects talk about beauty in their work and its results. A building
architect might say that a building should provide an environment suitable for working or
living, and that it should be beautiful to behold; a musician that the music should be playable,
with a discernible theme, and that it should be beautiful to the ear; a software architect that
the system should be friendly and responsive to the user, maintainable, [ree of critical errors,
easy to install, reliable, that it should communicate in standard ways with other systems, and
that it, too, should be beautiful.

This book provides you with detailed examples of beautiful architectures drawn from the fields
of computerized systems, a relatively young discipline. Because we are young, we have fewer
examples to emulate than fields such as building, music, or writing, and therefore we need

them even more. This book intends to help fill that need.

Before you proceed to the examples, we would like you to consider what an architecture is
and what the attributes of a beautiful architecture might be. As you will see from the different
definitions of architecture in this chapter, each discipline hasits own definition, so we will first
explore what is common among architectures in different disciplines and what problems one
tries to solve with an architecture. Particularly, an architecture can help assure that the system
satisfies the concerns of its stakeholders, and it can help deal with the complexity of conceiving,
planning, building, and maintaining the system.

We then proceed to a definition of architecture and show how we can apply that definition to
software architecture, since software is central to many of the later examples. Key to the
definition is that an architecture consists of a set of structures designed to let the architects,

builders, and other stakeholders see how their concerns are satisfied.

We end this chapter with a discussion of the attributes of beautiful architectures and cite a few
examples. Central to beauty is conceptual integrity—that is, a set of abstractions and the rules
for using them throughout the system as simply as possible.

In our discussion we will use “architecture” as a noun to denote a set of artifacts, including
documentation such as blueprints and building specifications that describe the object to be
built, wherein the object is viewed as a set of structures. The term is also used by some as a
verb to describe the process of creating the artifacts, including the resulting work. As Jim Waldo
and others have pointed out, however, there is no process that you can learn that guarantees
you will produce a good system architecture, let alone a beautiful one (Waldo 2006), so we
will focus more on artifacts than process.

Architecture: “The art or science of building; esp. the art or
practice of designing and building edifices forhuman use,taking

both aesthetic and practical factors into account.”

—The Shorter Oxford English Dictionary, Fifth Edition, 2002

In all disciplines, architecture provides a means for solving a common problem: assuring that
a building, or bridge, or composition, or book, or computer, or network, or system has certain
properties and behaviors when it has been built. Put another way, the architecture is both a
plan for the system so that the result can have the desired properties and a description of the
built system. Wikipedia says: “According to the earliest surviving work on the subject,
Vitruvius’ ‘On Architecture,” good building should have Beauty (Venustas), Firmness
(Firmitas), and Utility (Utilitas); architecture can be said to be a balance and coordination

among these three elements, with no one overpowering the others.”

We speak of the “architecture” of a symphony, and call

architecture, in its turn, “frozen music.”

—nDeryck Cooke, The Language of Music

L] CHAPTER ONE

A good system architecture exhibits conceptual integrity; that is, it comes equipped with a set
of design rules that aid in reducing complexity and that can be used as guidance in detailed
design and in system verification. Design rules may incorporate certain abstractions that are
always used in the same way, such as virtual devices. The rules may be represented as a pattern,
such as pipes and filters. In the best case there are verifiable rules, such as “any virtual device
of the same type may replace any other virtual device of the same type in the event of device
failure,” or “all processes contending for the same resource must have the same scheduling
priority.”
A contemporary architect might say that the object or system under construction must have
the following characteristics.

e It has the functionality required by the customer.

e Itis safely buildable on the required schedule.

s It performs adequately.

¢ Itis reliable.

s Itis usable and safe to use.

e [tis secure.

e Itis affordable.

e It conforms to legal standards.

e It will outlast its predecessors and its competitors.

The architecture of a computer system we define as the minimal

sefofpropertiesthatdetermine what programs willrun andwhat

results they will produce.

—Gerrit Blaauw & Frederick Brooks, Computer Architecture

We’ve never seen a complex system that perfectly satisfies all of the preceding characteristics.
Architecture is a game of trade-offs—a decision thatimproves one of these characteristics often
diminishes another. The architect must determine what is sufficient to satisfy, by discovering
the important concerns for a particular system and the conditions for satisfying them

sufficiently.

Common among the notions of architecture is the idea of structures, each defined by
components of various sorts and their relations: how they fit together, invoke each other,
communicate, synchronize, and otherwise interact. Components could be support beams or
internal rooms in a building, individual instruments or melodies in a symphony, book chapters
or characters in a story, CPUs and memory chips in a computer, layers in a communications
stack or processors connected to a network, cooperating sequential processes, objects,
collections of compile-time macros, or build-time scripts. Each discipline has its own sets of

components and its own relationships among them.

WHAT IS ARCHITECTURE? 5

Inwideruse,theterm“architecture” always means "unchanging

deep structure.”

—Stewart Brand, How Buildings Learn

In the face of increasing complexity of systems and their interactions, both internally and with
each other, an architecture comprising a set of structures provides the primary means for
dealing with complexity in order to ensure that the resulting system has the required

properties. Structures provide ways to understand the system as sets of interacting components.

Bach structure is intended to help the architect understand how to satisfy particular concerns,
such as changeability or performance. The job of demonstrating that particular concerns are

satisfied may fall to others, but the architect must be able to demonstrate that a//concerns have

been met.
Network architecture: the communication equipment, protocols,
and transmission links that constitute a network, and the
methods by which they are arranged.
—http://www.wtcs.org/snmp4tpc/jton.htm
The Role of Architect

When buildings are designed, constructed, or renovated, we designate key designers as
“architects” and give them a broad range of responsibilities. An architect prepares initial
sketches of the building, showing both external appearance and internal layout, and discusses
these sketches with clients until all concermed have agreed that what is shown is what they
want. The sketches are abstractions: they focus attention on the pertinent details of a particular
aspect of the building, omitting other concerns.

After the clients and architects agree on these abstractions, the architects prepare, or supervise
the preparation of, much more detailed drawings, as well as associated textual specifications.
These drawings and specifications describe many “nitty-gritty” details of a building, such as

plumbing, siding materials, window glazing, and electrical wiring.

On rare occasions, an architect simply hands the detailed plans to a builder who completes the
project in accordance with the plans. For more important projects, the architect remains
involved, regularly inspects the work, and may propose changes or accept suggestions for
change from both the builder and customer. When the architect supervises the project, it is
not considered complete until he certifies that it is in substantial compliance with the plans

and specifications.

We employ an architect to assure that the design (1) meets the needs of the client, including
the characteristics previously noted; (2) has conceptual integrity by using the same design rules
throughout; and (3) meets legal and safety requirements. An important part of the architect’s

role is to ensure that the design concepts are consistently realized during the implementation.

6 CHAPTER ONE

Sometimes the architect also acts as a mediator between builder and client. There is often some
disagreement about which decisions are in the realm of the architect and which are left to
others, butitis always clear that the architect makes the major decisions, including all that can

affect the usability, safety, and maintainability of the structure.

MUSIC COMPOSITION AND SOFTWARE ARCHITECTURE

Whereas building architecture is often used as an analogy for software architecture, music
composition may be a better analogy. A building architect creates a static description (blueprints
and other drawings) of a relatively static structure (the architecture must account for movement of
peopleand services withinthe buildingas well as the load-bearing structure). In music composition
and software design, the composer (software architect) creates a static description of a piece of
music (architecture description and code) that is later performed (executed) many times. In both
musicand softwarethe design can accountfor many components interactingto producethe desired
result,andthe result varies depending on the performers, the environmentin which itis performed,
and the interpretation imposed by the performers.

The Role of the Software Architect

Software development projects need people who play the same role for software construction
that traditional architects play when buildings are constructed or renovated. For software
systems, however, it has never been clear exactly which decisions are the purview of the
architect and which can be left to the implementers. The definition of what an architect does
in a software project is more difficult than the analogous definition for building architects
because of three factors: lack of tradition, the intangible nature of the product, and the
complexity of the system. (See Grinter [1999] for a portrayal of how a software architect carries
out her role within a large software development organization.)

In particular:

s Building architects can look back at thousands of years of history to see what architects
have done in the past; they can visit and study buildings that have been standing for
hundreds, and sometimes a thousand years or more, and that are still in use. In software
we have only a few decades of history and our designs are often not public. Furthermore,
building architects have and use standards for describing the drawings and specifications
that the architects produce, allowing present architects to take advantage of the recorded
history of architecture.

¢ Buildings are physical products; there is a clear distinction between the plans produced by
the architects and the building produced by the workers.

WHAT IS ARCHITECTURE? 7

ARCHITECTURAL REUSE

The Hagia Sophia (top), built in Istanbul in the sixth century, pioneered the use of structures called

pendentives to support its enormous dome, and is an example of beauty in Byzantine architecture.
Christopher Wren, 1,100 years later, used the same design for the dome of St. Paul’s cathedral
(bottom), a London landmark. Both still stand and are used today.

On major software projects, there are often many architects. Some architects are quite
specialized in disciplines, such as databases and networks, and usually work as part of a team,

but for now we will write as if there were only one.

What Constitutes a Software Architecture?

It is a mistake to think of “an architecture” as if it were a simple entity that could be described
by a single document or drawing. Architects must make many design decisions. To be useful,

these decisions must be documented so that they can be reviewed, discussed, modified, and

8 CHAPTER ONE

approved, and then serve to constrain subsequent decision making and construction. For

software systems, these design decisions are behavioral and structural.

External behavioral descriptions show how the product will interface with its users, other
systems, and external devices, and should take the form of requirements. Structural
descriptions show how the product is divided into parts and the relations between those parts.
Internal behavioral descriptions are needed to describe the interfaces between components.
Structural descriptions often show several distinct views of the same part because it is
impossible to put all the information in one drawing or document in a meaningful way. A

component in one view may be a part of a component in another.

Software architectures are often presented as layered hierarchies that tend to commingle
several different structures in one diagram. In the 1970s Parnas pointed out that the term
“hierarchy” had become a buzzword, and then precisely defined the term and gave several
different examples of structures used for different purposes in the design of different systems
{Parnas 1974). Describing the structures of an architecture as a set of views, each of which
addresses different concerns, is now accepted as a standard architecture practice (Clements et
al. 2003; IEEE 2000). We will use the word “architecture” to refer to a set of annotated diagrams
and functional descriptions that specify the structures used to design and construct a system.
In the software development community there are many different forms used, and proposed,
for such diagrams and descriptions. See Hoffman and Weiss (2000, chaps. 14 and 16) for some
examples.

The software architecture of a program or computing system is
the structure or structures of the system, which comprise
software elements, the externally visible properties of those

elements, and the relationships among them.

“Externally visible” properties are those assumptions other
elements can make of an element, such as its provided services,
performance characteristics, fault handling, shared resource

usage, and so on.

—Len Bass, Paul Clements, and Rick Kazman, Software Architecture
in Practice, Second Edition

Architecture Versus Design

Architecture is a part of the design of the system; it highlights some details by abstracting away
from others. Architecture is thus a subset of design. A developer focused on implementing a
component of the system may not be very aware of how all the components fit together, but
rather is primarily concerned with the design and development of a small number of
component(s), including the architectural constraints that they must obey and the rules they
can use. As such, the developer is working on a different aspect of the system design than the

architect.

WHAT IS ARCHITECTURE? 9

If architecture is concerned with the relationships among components and the externally
visible properties of system components, then design will additionally be concerned with the
internal structure of those components. For example, if one set of components consists of
information-hiding modules, then the externally visible properties form the interfaces to those
components, and the internal structure is concerned with the data structures and flow of

control within a module (Hoffman and Weiss 2000, chaps. 7 and 16).

Creating a Software Architecture

So far, we have considered architecture in general and looked at how software architecture is
both similar to and different from architecture in other domains. We now turn our attention
to the “how” of software architecture. Where should the architect focus her attention when

she is creating the architecture for a software system?
The first concern of a software architect is not the functionality of the system.
That’s right—the first concern of a software architect is not the functionality of the system.
For example, if we offer to hire you to develop the architecture for a “web-based application,”
would you start by asking us about page layouts and navigation trees, or would you ask us
questions such as:
¢ Who will host it? Are there technology restrictions in the hosting environment?
e Do you want to run on a Windows Server or on a LAMP stack?
s How many simultaneous users do you want to support?
* How secure does the application need to be? Is there data that we need to protect? Will
the application be used on the public Internet or a private intranet?
e Can you prioritize these answers for me? For example, is number of users more important
than response time?

Depending on our answers to these and a few other questions, you can begin sketching out an
architecture for the system. And we still haven’t talked about the functionality of the

application.

Now, admittedly, we cheated a bit here because we asked for a “web-based application,” which
is a well-understood domain, so you already knew what decisions would have the most
influence on your architecture. Similarly, if we had asked for a telecommunications system or
an avionics system, an architect experienced in one of those domains would have some notion
of required functionality in mind. But still, you were able to begin creating the architecture
without worrying too much about the functionality. You did this by focusing on quality
concerns that needed to be satisfied.

Quality concerns specify the way in which the functionality must be delivered in order to be

acceptable to the system’s stakeholders, the people with a vested interest in the outcome of

10 CHAPTER ONE

the system. Stakeholders have certain concerns that the architect must address. Later, we will
discuss concerns that are typically raised when trying to assure that the system has the required
qualities. As we said carlier, one role of the architect is to ensure that the design of the system
will meet the needs of the client, and we use quality concerns to help us understand those

needs.

This example highlights two key practices of successful architects: stakeholder involvement
and a focus on both quality concerns and functionality. As the architect, you began by asking
us what we wanted from the system, and in what priority. In a real project, you would have
sought out other stakeholders. Typical stakeholders and their concerns include:

¢ Funders, who want to know if the project can be completed within resource and schedule
constraints

o Architects, developers, and testers, who are first concerned with initial construction and
later with maintenance and evolution

* Project managers, who need to organize teams and plan iterations

= Marketers, who may want to use quality concerns to differentiate the system from

competitors

¢ Users, including end users, system administrators, and the people who do installation,
deployment, provisioning, and configuration

¢ Technical support staff, who are concerned with the number and complexity of Help Desk

calls

Every system has its own set of quality concerns. Some, such as performance, security, and
scalability, may be well-specified, but other, often equally important concerns, such as
changeability, maintainability, and usability, may not be defined with enough detail to be
useful. Odd, isn’tit, that stakeholders want to put functions in software and not hardware so
that they can be easily and quickly modified, and then often give short shrift to changeability
when stating their quality concerns? Architecture decisions will have an impact on what kinds
of changes can be done easily and quickly and what changes will take time and be hard to do.
So shouldn’t an architect understand his stakeholders’ expectations for qualities such as

“changeability” as well as he understands the functional requirements?

Once the architect understands the stakeholders” quality concerns, what does she do next?
Consider the trade-offs. For example, encrypting messages improves security but hurts
performance. Using configuration files may increase changeability but could decrease usability
unless we can verify that the configuration is valid. Should we use a standard representation
for these files, such as XML, orinvent our own? Creating the architecture for a system involves

making many such difficult trade-offs.

The first task of the architect, then, is to work with stakeholders to understand and prioritize
quality concerns and constraints. Why not start with functional requirements? Because there

are usually many possible system decompositions. For example, starting with a data model

WHAT IS ARCHITECTURE? 11

would lead to one architecture, whereas starting with a business process model might lead to
a different architecture. In the extreme case, there is no decomposition, and the system is
developed as a monolithic block of software. This might satisly all functional requirements, but
it probably will not satisfy quality concerns such as changeability, maintainability, or scalability.
Architects often must do architecture-level refactoring of a system, for example to move from
simplex to distributed deployment, or from single-threaded to multithreaded in order to meet
scalability or performance requirements, or hardcoded parameters to external configuration

files because parameters that were never going to change now need to be modified.

Although there are many architectures that can meet functional requirements, only a subset
of these will also satisfy quality requirements. Let’s go back to the web application example.
Think of the many ways to serve up web pages—Apache with static pages, CGI, servlets, JSP,
JSF, PHP, Ruby on Rails, or ASP.NET, to name just a few. Choosing one of these technologies
is an architecture decision that will have significant impact on your ability to meet certain
quality requirements. For example, an approach such as Ruby on Rails might provide the fast
time-to-market benefit, but could be harder to maintain as both the Ruby language and the
Rails framework continue to evolve rapidly. Or perhaps our application is a web-based
telephone and we need to make the phone “ring.” If you need to send true asynchronous
events from the server to the web page to satisfy performance requirements, an architecture

based on servlets might be more testable and modifiable.

In real-world projects, satisfying stakeholder concerns requires many more decisions than
simply selecting a web framework. Do you really need an “architecture,” and do you need an
“architect” to make the decisions? Who should make them? Is it the coder, who may make
many of them unintentionally and implicitly, or is it the architect, who makes them explicitly
with a view in mind of the entire system, its stakeholders, and its evolution? Either way, you
will have an architecture. Should it be explicitly developed and documented, or should it be
implicit and require reading of the code to discover?

Often, of course, the choice is not so stark. As the size of the system, its complexity, and the
number of people who work on it increase, however, those early decisions and the way that

they are documented will have greater and greater impact.

We hope you understand by now that architecture decisions are important if your system is
going to meet its quality requirements, and that you want to pay attention to the architecture

and make these decisions intentionally rather than just “letting the architecture emerge.”

What happens when the system is very large? One of the reasons that we apply architecture
principles such as “divide and conquer” is to reduce complexity and enable work to proceed
in parallel. This allows us to create larger and larger systems. Can the architecture itself be
decomposed into parts, and those parts worked on by different people in parallel? In

considering computer architecture, Gerrit Blaauw and Fred Brooks asserted:

...if, after all techniques to make the task manageable by a single mind have been applied, the

architectural task is still so large and complex that it cannot be done in that way, the product

12 CHAPTER ONE

conceived is too complex to be usable and should not be built. In other words, the mind of a
single user must comprehend a computer architecture. If a planned architecture cannot be

designed by a single mind, it cannot be comprehended by one. (1997)

Do you need to understand all aspects of an architecture in order to use it? An architecture
separates concerns so, for the most part, the developer or tester using the architecture to build
or maintain a system does not need to deal with the entire architecture at once, but can interact
with only the necessary parts to perform a given function. This allows us to create systems
larger than a single mind can comprehend. But, before we completely ignore the advice of the
people who built the IBM System/360, one of the longest-lived computer architectures, let’s

look at what prompted them to make this statement.

Fred Brooks said that conceptual integrity is the most important attribute of an architecture:
“It is better to have a system...reflect one set of design ideas, than to have one that contains
many good but independent and uncoordinated ideas” (1995). It is this conceptual integrity
that allows a developer who already knows about one part of a system to quickly understand
another part. Conceptual integrity comes from consistency in things such as decomposition
criteria, application of design patterns, and data formats. This allows a developer to apply
experience gained working in one part of the system to developing and maintaining other parts
of the system. The same rules apply throughout the system. As we move from system to
“system-of-systems,” the conceptual integrity must also be maintained in the architecture that
integrates the systems, for example by selecting an architecture style such as publish/subscribe
message bus and then applying this style uniformly to all system integrations in the system-
of-systems.

The challenge for an architecture team is to maintain a single-mindedness and a single
philosophy as they go about creating the architecture. Keep the team as small as possible, work
in a highly collaborative environment with frequent communication, and have one or two
“chiefs” act as benevolent dictators with the final say on all decisions. This organizational
pattern is commonly seen in successful systems, whether corporate or open source, and results
in the conceptual integrity that is one of the attributes of a beautiful architecture.
Good architects are often formed by having better architects mentor them (Waldo 2006). One
reason may be that there are certain concerns that are common to nearly all projects. We have
already alluded to some of them, but here is a more complete list, with each concern phrased
as a question that the architect may need to consider during the course of a project. Of course,
individual systems will have additional critical concerns.
Functionality

What functionality does the product offer to its users?
Changeability

What changes may be needed in the software in the future, and what changes are unlikely

and need not be especially easy to make in the future?

WHAT IS ARCHITECTURE? 13

Performance
What will the performance of the product be?
Capacity
How many users will use the system simultaneously? How much data will the system need

to store for its users?

Fcosystem
What interactions will the system have with other systems in the ecosystem in which it
will be deployed?

Modularity
How is the task of writing the software organized into work assignments (modules),
particularly modules that can be developed independently and that suit each other’s needs
precisely and casily?

RBuildability
How can the software be built as a set of components that can be independently
implemented and verified? What components should be reused from other products and
which should be acquired from external suppliers?

Producibility
If the product will exist in several variations, how can it be developed as a product line,
taking advantage of the commonality among the versions, and what are the steps by which
the products in the product line can be developed (Weiss and Lai 1999)? What investment
should be made in creating a software product line? What is the expected return from
creating the options to develop different members of the product line?
In particular, is it possible to develop the smallest minimally useful product first and then
develop additional members of the product line by adding (and subtracting) components
without having to change the code that was written previously?

Security
If the product requires authorization for its use or must restrict access to data, how can

security of data be ensured? How can “denial of service” and other attacks be withstood?

Finally, a good architect realizes that the architecture affects the organization. Conway noted
that the structure of a system reflects the structure of the organization that built it (1968). The
architect may realize that Conway’s Law can be used in reverse. In other words, a good
architecture may influence an organization to change so as to be more efficient in building

systems derived from the architecture.

Architectural Structures

How, then, does a good architect deal with these concerns? We have already mentioned the
need to organize the system into structures, each defining specific relationships among certain

types of components. The architect’s chief focus is to organize the system so that each structure

1% CHAPTER ONE

helps answer the defining questions for one of the concerns. Key structural decisions divide
the product into components and define the relationships among those components (Bass,
Clements, and Kazman 2003; Booch, Rumbaugh, and Jacobson 1999; IEEE 2000; Garlan and
Perry 1995). For any given product, there are many structures that need to be designed. Each
must be designed separately so that it is viewed as a separate concern. In the next few sections
we discuss some structures that you can use to address the concerns on our list. For example,
the Information Hiding Structures show how the system is organized into work assignments.
They can also be used as a roadmap for change, showing for proposed changes which modules
accommodate those changes. For each structure we describe the components and the relations
among them that define the structure. Given the concerns on our list, we consider the following

structures to be of primary importance.

The Information Hiding Structures

COMPONENTS AND RELATIONS: The primary components are Information Hiding Modules,
where each module is a work assignment for a group of developers, and each module embodies
a design decision. We say that a design decision is the secret of a module if the decision can be
changed without affecting any other module (Hotfman and Weiss 2000, chaps. 7 and 16). The
most basic relation between the modules is “part of.” Information Hiding Module A is part of
Information Hiding Module B if A’s secret is a part of B’s secret. Note that it must be possible
to change A’s secret without changing any other part of B; otherwise, A is not a submodule
according to our definition. For example, many architectures have virtual device modules,
whose secret is how to communicate with certain physical devices. If virtual devices are
organized into types, then each type might form a submodule of the virtual device module,
where the secret of each virtual device type would be how to communicate with devices of

that type.

Each module is a work assignment that includes a set of programs to be written. Depending
on language, platform, and environment, a “program” could be a method, a procedure, a
function, a subroutine, a script, a macro, or other sequence of instructions that can be made
to execute on a computer. A second Information Hiding Module Structure is based on the
relation “contained in” between programs and modules. A program P is contained in a module
M if part of the work assignment M is to write P. Note that every program is contained in a
module because every program must be part of some developer’s work assignment.

Some of these programs are accessible on the module’s interface, whereas others are internal.
Modules may also be related through interfaces. A module’s interface is a set of assumptions
that programs outside of the module may make about the module and the set of assumptions
that the module’s programs make about programs and data structures of other modules. A is
said to “depend on” B’s interface if a change to B’s interface might require a change in A.

The “part of” structure is a hierarchy. At the leaf nodes of the hierarchy are modules that

contain no identified submodules. The “contained in” structure is also a hierarchy, since each

WHAT IS ARCHITECTURE? 15

program is contained in only one module. The “depends on” relation does not necessarily
define a hierarchy, as two modules may depend on each other either directly or through a
longer loop in the “depends on” relation. Note that “depends on” should not be confused with

“uses” as defined in a later section.

Information Hiding Structures are the foundation of the object-oriented design paradigm. If
an Information Hiding Module is implemented as a class, the public methods of the class belong

to the interface for the module.

CONCERNS SATISFIED: The Information Hiding Structures should be designed so that they satisfy
changeability, modularity, and buildability.

The Uses Structures

COMPONENTS AND RELATION: As defined previously, Information Hiding Modules contain one
or more programs (as defined in the previous section). Two programs are included in the same
module if and only if they share a secret. The components of the Uses Structure are programs
that may be independently invoked. Note that programs may be invoked by each other or by
the hardware (for example, by an interrupt routine), and the invocation may come from a

program in a different namespace, such as an operating system routine or a remote procedure.
Furthermore, the time at which an invocation may occur could be any time from compile time

through runtime.

We will consider forming a Uses Structure only among programs that operate at the same
binding time. It is probably easiest first just to think about programs that operate at runtime.
Later, we may also think about the uses relation among programs that operate at compile time

or load time.

We say that program A uses program B if B must be present and satisfy its specification for A
to satisfy its specification. In other words, B must be present and operate correctly for A to
operate correctly. The Uses Relation is sometimes known as “requires the presence of a correct
version of.” For a further explanation and example, see Chapter 14 of Hoffman and Weiss
(2000).

The Uses Structure determines what working subsets can be built and tested. A desirable
property in the Uses Relation for a software system is that it defines a hierarchy, meaning that
there are no loops in it. When there is a loop in the Uses Relation, all programs in the loop
must be present and working in the system for any of them to work. Since it may not be possible
to construct a completely loop-free Uses Relation, an architect may treat all of the programs
in a Uses loop as a single program for the purpose of creating subsets. A subset must include

either the whole program or none of it.

When there are no loops in the Uses Relation, a levels structure is imposed on the software.
At the bottom level, level 0, are all programs that use no other programs. Level n consists of

all programs that use programs in level n—1 or below. The levels are often depicted as a series

16 CHAPTER ONE

of layers, with each layer representing one or several levels in the Uses Relation. Grouping
adjacent levels in Uses helps to simplify the representation and allows for cases where there
are small loops in the relation. One guideline in performing such a grouping is that programs
at one layer should execute approximately 10 times as quickly and 10 times as often as

programs in the next layer above it (Courtois 1977).

A system that has a hierarchical Uses Structure can be built one or a few layers at a time. These
layers are sometimes known as “levels of abstraction,” but this is a misnomer. Because the
components are individual programs, not whole modules, they do not necessarily abstract from
(hide) anything.

Often a large software system has too many programs to make the description of the Uses
Relation among programs easily understandable. In such cases, the Uses Relation may be
formed on aggregations of programs, such as modules, classes, or packages. Such aggregated
descriptions lose important information but help to present the “big picture.” For example, one
can sometimes form a Uses Relation on Information Hiding Modules, but unless all programs
in a module are on the same level of the programmatic Uses hierarchy, important information

is lost.

In some projects, the Uses Relation for a system is not fully determined until the system is
implemented, because the developers determine what programs they will use as the
implementation proceeds. The architects of the system may, however, create an “Allowed-to-
Use” Relation at design time that constrains the developers’ choices. Henceforth, we will not
distinguish between “Uses” and “Allowed-to-Use.”

A well-defined Uses Structure will create proper subsets of the system and can be used to drive

iterative or incremental development cycles.

COMNCERNS SATISFIED: Producibility and ecosystem.

The Process Structures

COMPOMNENTS AND RELATION: The Information Hiding Module Structures and the Uses
Structures are static structures that exist at design and code time. We now turn to a runtime
structure. The components that participate in the Process Structure are Processes. Processes
are runtime sequences of events that are controlled by programs (Dijkstra 1968). Each program
executes as part of one or many Processes. The sequence of events in one Process proceed
independently of the sequence of events in another Process, except where the Processes
synchronize with each other, such as when one Process waits for a signal or a message from
the other. Processes are allocated resources, including memory and processor time, by support
systems. A system may contain a fixed number of Processes, or it may create and destroy
Processes while running. Note that rhreadsimplemented in operating systems such as Linux
and Windows fall under this definition of Processes. Processes are the components of several
distinct relations. Some examples follow.

WHAT IS ARCHITECTURE? 17

Process gives work to
One Process may create work that must be completed by other Processes. This structure is
essential in determining whether a system can get into a deadlock.

CONCERNS SATISFIED: Performance and capacity.

Process gets resources from

In systems with dynamic resource allocation, one Process may control the resources used by
another, where the second must request and return those resources. Because a requesting
Process may request resources from several controllers, each resource may have a distinct

controlling Process.

CONCERNS SATISFIED: Performance and capacity.

Process shares resources with

Two Processes may share resources such as printers, memory, or ports. If two Processes share
a resource, synchronization is necessary to prevent usage conflicts, There may be distinct

relations for each resource.

CONCERNS SATISFIED: Performance and capacity.

Process contained in module

Bvery Process is controlled by a program and, as noted earlier, every program is contained in

a module. Consequently, we can consider each Process to be contained in a module.

CONCERNS SATISFIED: Changeability.

Access Structures

The data in a system may be divided into segments with the property so that if a program has
access to any data in a segment, it has access to all data in that segment. Note that to simplify
the description, the decomposition should use maximally sized segments by adding the
condition that if two segments are accessed by the same set of programs, those two segments
should be combined. The data access structure has two kinds of components, programs and
segments. This relation is entitled “has access to,” and is a relation between programs and
segments. A system is thought to be more secure if this structure minimizes the access rights

of programs and is tightly enforced.

CONCERNS SATISFIED: Security.

18 CHAPTER ONE

Summary of Structures

Table 1-1 summarizes the preceding software structures, how they are defined, and the

concerns that they satisfy.

TABLE 1-1. Structure summary

Structure Componenis Relations Concerns
Information Hiding | Information Hiding Modules s a part of Changeability
Is contained in Modularity
Buildability
Uses Programs Uses Producibility
Ecosystem
Process Processes (lasks, threads) Gives work to Performance
Gels resources from Changeability

Shares resources with ~ Capacily

Contained in

Data Access Programs and Segments Has access to Security

Ecosystem

Good Architectures

Recall that architects play a game of trade-offs. For a given set of functional and quality
requirements, there is no single correct architecture and no single “right answer.” We know
from experience that we should evaluate an architecture to determine whether it will meet its
requirements before spending money to build, test, and deploy the system. Evaluation attempts
to answer one or more of the concerns discussed in previous sections, or concerns specific to

a particular system.

There are two common approaches to architecture evaluation (Clements, Kazman, and Klein
2002). The first class of evaluation methods determines properties of the architecture, often by
modeling or simulation of one or more aspects of the system. For example, performance
modeling is carried out to assess throughput and scalability, and fault tree models can be used
to estimate reliability and availability. Other types of models include using complexity and

coupling metrics to assess changeability and maintainability.

The second, and broadest, class of evaluation methods is based on questioning the architects

to assess the architecture. There are many structured questioning methods. For example, the

WHAT IS ARCHITECTURE? 19

Software Architecture Review Board (SARB) process developed at Bell Labs uses experts from
within the organization and leverages their deep domain expertise in telecommunications and

related applications (Maranzano et al. 2005).

Another variation of the questioning approach is the Architecture Trade-off Analysis Method
(ATAM) (Clements, Kazman, and Klein 2002), which looks for risks that the architecture will
not satisfy quality concerns. ATAM uses scenarios, each describing a particular stakeholder’s

quality concern for the system. The architects then explain how the architecture supports each

of the scenarios.

Active reviews are another type of questioning approach that turns the process on its head,
requiring the architects to provide the reviewers with the questions that the architects think
are important to answer (Hoffman and Weiss 2000, chap. 17). The reviewers then use the
existing architecture documents and descriptions to answer the questions. Finally, searching
the Web for “software architecture review checklist” returns dozens of checklists, some very

general and some specific to an application domain or technology framework.

Beautiful Architectures

All of the preceding methods help to evaluate whether an architecture is “good enough”—that
is, whether it is likely to guide the developer and testers to produce a system that will satisfy
the functional and quality concerns of the system’s stakeholders. There are many good
architectures in systems that we use every day.

But what about architectures that are more than good enough? What if there were a “Software
Architecture Hall of Fame”? Which architectures would line the walls of that gallery? The idea
is not as far-fetched as you might think—in the field of software product lines, just such a Hall
of Fame exists.” The criteria for induction into the Software Product Line Hall of Fame include
commercial success, influence on other product line architectures (others have “borrowed,
copied, or stolen” from the architecture), and sufficient documentation that others can
understand the architecture “without resorting to hearsay.”

What criteria would we add to these for nominees for a more general “Architecture Hall of
Fame,” or perhaps a “Gallery of Beautiful Architectures”?

First, we should recognize that this is a gallery of software systems, not art, and our systems
are built to be used. So, perhaps we should begin by looking at the Utility of the architecture:
it should be used every day by many people.

But before an architecture can be used, it must be built, and so we should look at the
Buildability of the architecture. We would look for architectures with a well-defined Uses

Structure that would supportincremental construction, so that at each iteration of construction

we would have a useful, testable system. We would also look for architectures that have
“ See hup://www.sei.cmu.edu/productlines/plp_hof html.

20 CHAPTER ONE

well-defined module interfaces and that are inherently testable, so that the construction
progress is transparent and visible.

Next, we want architectures that demonstrate Persistence—that is, architectures that have
stood the test of time. We work in an era when the technical environment is changing at an
ever-increasing rate. A beautiful architecture should anticipate the need for change, and allow
expected changes to be made easily and efficiently. We want to find architectures that have
avoided the “aging horizon” (Klein 2005) beyond which maintenance becomes prohibitively

expensive.

Finally, we would want to include architectures that have features that delight the developers
and testers who use the architecture and build it and maintain it, as well as the users of the
system(s) built from it. Why delight developers? It makes their job easier and is more likely to
result in a high-quality system. Why delight testers? They are the ones who have to attempt
to emulate what the users will do as part of the testing process. If they are delighted, it is likely
that the users will be, too. Think of the chef who is unhappy with his culinary creations. His

customers, who consume those creations, are likely to be unhappy, too.

Different systems and application domains offer opportunities for architectures to exhibit
specific delightful features, but Conceptual Integrity is a feature that cuts across all domains
and that always delights. A consistent architecture is easier and faster to learn, and once you
know a little, you can begin to predict the rest. Without the need to remember and handle
special cases, code is cleaner and test sets are smaller. A consistent architecture does not offer
two (or more) ways to do the same thing, forcing the user to waste time choosing. As Ludwig
Mies van der Rohe said of good design, “Less is more,” and Albert Einstein might say that
beautiful architectures are as simple as possible, but no simpler.

Given these criteria, we propose some initial candidates for our “Gallery of Beautiful

Architectures.”

The first entry is the architecture for the A-7E Onboard Flight Processor (OFP), developed at
the Naval Research Laboratory (NRL) in the late 1970s, and described in Bass, Clements, and
Kazman (2003). Although this particular system never went into production, it meets every
other criterion for inclusion. This architecture has had tremendous influence on the practice
of software architecture by demonstrating in a real-world system the separation of a design-
time Information Hiding Module and Uses structures from the runtime Process Structures. It
showed that information hiding could be used as a primary decomposition principle for a
complex system. Since the U.S. government funded and developed the architecture, all project
documentation is available in the public domain.t The architecture had a well-defined Uses
structure that facilitated incremental construction of the system. Finally, the Information

Hiding Module structure provided clear and consistent criteria for decomposing the system,

I See, for example, Chapters 6, 15, and 16 in Hoffman and Weiss (2000), or conduct a search for “A-7H"
in the NRL Digital Archives (http.//torpedo.nrl navy. mil/tu/ps).

WHAT IS ARCHITECTURE? 21

resulting in strong Conceptual Integrity. As an exemplar of embedded system software
architecture, the A-7E OFP certainly belongs in our gallery.

Another architecture that we would want to include in our gallery is the software architecture
for the Lucent 5ESS telephone switch (Carney et al. 1985). The 5ESS has been a global
commercial success, providing core telephone network switching for networks in countries
around the world. It has set the standard for performance and availability, with each unit
capable of handling over one million call connections per hour with less than 10 seconds of
unplanned downtime per year (Alcatel-Lucent 1999). The architecture’s unifying concepts,
such as the “half call model” for managing telephone connections, have become standard
patterns in the domains of telephony and network protocols (Hanmer 2001). In addition to
keeping the number of call types that must be handled to 2n, where nis the number of call
protocols, the half call pattern links the operating system concept of process to the telephony
concept of call type, thereby providing a simple design rule and introducing a beautiful
Conceptual Integrity. A development team of up to 3,000 people has evolved and enhanced
the system over the past 25 years. Based on success, persistence, and influence, the 5ESS

architecture is a fine addition to our gallery.

Another system to consider for inclusion in our Gallery of Beautiful Architectures is the
architecture of the World wWide Web (WWW), created by Tim Berners-Lee at CERN, and
described in Bass, Clements, and Kazman (2003). The WWW has certainly been commercially
successful, transforming the way that people use the Internet. The architecture has remained
intact, even as new applications are created and new capabilities introduced. The overall
simplicity of the architecture contributes to its Conceptual Integrity, but decisions such as using
a single library for both clients and servers and creating a layered architecture to separate
concerns have ensured that the integrity of the architecture remains intact. The persistence of
the core WWW architecture and its ability to continue to support new extensions and features
certainly qualify it for inclusion in our gallery.

Our last example is the Unix system, which exhibits conceptual integrity, is widely used, and
has had great influence. The pipe and filters design is a lovely abstraction that permits rapid

construction of new applications.

WHAT’'S AN ARCHITECT?

A stranger is traveling down a road on a hot summer day. As he progresses, he comes upon a man
working by the side of the road breaking rocks.

“What are you doing?” he asks the man.

The man looks up at him. “I'm breaking rocks. What does it look like I'm doing? Now get out of my

way and let me get back to it.”

The stranger continues down the road and soon comes upon a second man breaking rocks in the
hot sun. The man is working hard and sweating freely.

22 CHAPTER ONE

“What are you doing?” asks the stranger.
The man looks up and smiles.
“I'm working for a living,” he says. “But it's hard work. Maybe you have a better job for me?”

The stranger shakes his head and moves on. Pretty soon he comes on a third man breaking rocks.
The sunis atits zenith now, the man is straining, and sweat is pouring off him.

“What are you doing?” asks the stranger. The man pauses, takes a drink of water, smiles, and raises

his arms to the sky.
“I'm building a cathedral,” he breathes.

The stranger looks at him for a moment and says, “We're starting a new company. How would you

like to be our chief architect?”

We have gone to considerable length to describe architectures, the role of architects, and
considerations that go into creating architectures, and we have offered several brief examples
of beautiful architectures. We invite you now to read more detailed examples from
accomplished architects in the following chapters as they describe the beautiful architectures
that they have created and used.

Acknowledgments

David Parnas defined many of the structures we described in several papers, including his
“Buzzword” paper (Parnas 1974). Jon Bentley was an inspiration in this work and he, Deborah
Hill, and Mark Klein made many useful suggestions on earlier drafts.

References

Alcatel-Lucent. 1999. “Lucent’s record-breaking reliability continues to lead the industry
according to latest quality report.” Alcatel-Lucent Press Releases. June 2. http://www.alcatel
-lucent.com/wps/portal/NewsReleases/DetailLucent?LMSG_CABINET=Docs_and_Resource
_Ctr&LMSG_CONTENT FILE=News_Releases_ LU _1999/LU_News_Article_007318.xm/
(accessed May 15, 2008).

Bass, L., P. Clements, and R. Kazman. 2003. Software Architecture in Practice, Second Edition.
Boston, MA: Addison-Wesley.

Blaauw, G., and F. Brooks. 1997. Computer Architecture: Concepts and Evolution. Boston,
MA: Addison-Wesley.

Booch, G., J. Rumbaugh, and I. Jacobson. 1999. The UML Modeling Language User Guide.
Boston, MA: Addison-Wesley.

WHAT IS ARCHITECTURE? 23

Brooks, F. 1995. The Mythical Man-Month. Boston, MA: Addison-Wesley.

Carney, D. L., et al. 1985. “The 5ESS switching system: Architectural overview.” AT&T
Technical Journal, vol. 64, no. 6, p. 1339.

Clements, P., et al. 2003. Documenting Software Architectures: Views and Beyond. Boston,
MA: Addison-Wesley.

Clements, P., R. Kazman, and M. Klein. 2002. Evaluating Software Architectures. Boston:
Addison-Wesley.

Conway, M. 1968. “How do committees invent.” Datamation, vol. 14, no. 4.

Courtois, P. J. 1977. Decomposability: Queuing and Computer Systems. New York, NY:
Academic Press.

Dijkstra, B. W. 1968. “Co-operating sequential processes.” Programming Languages. Bd. F.
Genuys. New York, NY: Academic Press.

Garlan, D., and D. Perry. 1995. “Introduction to the special issue on software architecture.”
[EEF Transactions on Software Engineering, vol. 21, no. 4.

Grinter, R. E. 1999. “Systems architecture: Product designing and social engineering.”
Proceedings of ACM Conference on Work Activities Coordination and Collaboration
(WACC "99). 11-18. San Francisco, CA.

Hanmer, R. 2001. “Call processing.” Pattern Languages of Programming (PLoP). Monticello,
IL. http://hillside.net/plop/plop2001 /accepted_submissions/PLoP2001 /rhanmer0O/PLoP2001
_rhanmero_I1.pdf.

Hoffman, D., and D. Weiss. 2000. Software Fundamentals: Collected Papers by David L.
Parnas. Boston, MA: Addison-Wesley.

IEEE. 2000. “Recommended practice for architectural description of software intensive
systems.” Std 1471. Los Alamitos, CA: IEEE.

Klein, John. 2005. “How does the architect’s role change as the software ages?” Proceedings
of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA). Washington,
DC: IEEE Computer Society.

Maranzano, J., et al. 2005. “Architecture reviews: Practice and experience.” IEEF Software,
March/April 2005.

Parnas, David L. 1974. “On a buzzword: Hierarchical structure.” Proceedings of IFIP
Congress. Amsterdam, North Holland. [Reprinted as Chapter 9 in Hoffman and Weiss (2000).]

Waldo, J. 2006. “On system design.” OOPLSA ‘06. October 22-26. Portland, OR.

Weiss, D., and C. T. R. Lai. 1999. Software Product Line Engineering. Boston, MA: Addison-
Wesley.

24 CHAPTER ONE

CHAPTER TWO

A Tale of Two Systems: A Modern-Day
Software Fable

Pete Goodliffe

Architecture is the art of how to waste space.

—Philip Johnson

A software system is like a city—an intricate network of highways and hostelries, of back roads
and buildings. There’s a lot going on in a busy city; flows of control are continually being born,
weaving their life through it, and dying. A wealth of data is amassed, stored, and destroyed.
There are a range of buildings: some tall and beautiful, some squat and functional, others
dilapidated and falling into disrepair. As data flows around them there are traffic jams and
tailbacks, rush hours and road works. The quality of your software city is directly related to

how much town planning went into it.

Some software systems are lucky, created through thoughtful design from experienced
architects. They are structured with a sense of elegance and balance. They are well-mapped
and easy to navigate. Others are not so lucky, and are essentially software settlements that
grew up around the accidental gathering of some code. The transport infrastructure is
inadequate, and the buildings are drab and uninspiring. Placed in the middle of it, you’d get

completely lost trying to find a route out.

Where would your code rather live? What kind of software city would you rather construct?

25

In this chapter, I tell the story of two such software cities. It’s a true story and, like all good
stories, this one has a moral at the end. They say experience is a great teacher, but other people’s
experience is even better—il you can learn from these projects” mistakes and successes, you
might save yourself (and your software) a lot of pain.

The two systems in this chapter are particularly interesting because they turned out very

differently, despite being superficially very similar:
s They were of similar size (around 500,000 lines of code).
e They were both “embedded” consumer audio appliances.
* Each software ecosystem was mature and had gone through many product releases.
¢ Both solutions were Linux-based.
e The code was written in C++.

e They were both developed by “experienced” programmers (who, in some cases, should
have known better).

e The programmers themselves were the architects.

In this story, names have been changed to protect the innocent (and the guilty).

The Messy Metropolis

Build up, build up, prepare the road! Remove the obstacles out

of the way of my people.

—lIsaiah 57:14

The first software system we’ll look at is known as the Messy Metropolis. It's one I look back
on fondly—not because it was good or because it was enjoyable to work with, but because it

taught me a valuable lesson about software development when 1 first came across it.

My first contact with the Messy Metropolis was when 1 joined the company that created it. It
initially looked like a promising job. T was to join a team working on a Linux-based, “modern”
C++ codebase that had been in development for a number of years. Exciting stuff, if you have
the same peculiar fetishes as me.

The work wasn’t smooth sailing at first, but you never expect an easy ride when you start to
work in a new team on a new codebase. However, it didn’t get any better as the days (and
weeks) rolled by. The code took a fantastically long time to learn, and there were no obvious
routes into the system. That was a warning sign. At the microlevel, looking at individual lines,
methods, and components, the code was messy and badly put together. There was no
consistency, no style, and no unifying concepts drawing the separate parts together. That was
another warning sign. Control flew around the system in unfathomable and unpredictable

ways. That was yet another warning sign. There were so many bad “code smells” (Fowler 1999)

26 CHAPTER TWO

that the codebase was not just putrid, it was a pungent landfill site on a hot summer’s day. A
clear warning sign. The data was rarely kept near where it was used. Often extra baroque
caching layers were introduced to try to persuade it to hang around in more convenient places.

Again, a warning sign.

As I tried to build a mental picture of the Metropolis, no one was able to explain the structure;
no one knew all of its layers, tendrils, and dark, secluded corners. In fact, no one actually knew
how any of it really worked (it was actually by a combination of luck and heroic maintenance
programmers). People knew the small areas they had worked on, but no one had an overall
comprehension of the system. And, naturally, there was no documentation. That was a
warning sign. What I needed was a map.

This was the sad story I had become a part of: the Metropolis was a town planning disaster.
Before you can improve a mess, you need to understand that mess, so with much effort and
perseverance we pulled together a map of the “architecture.” We charted every highway, all
the arterial roads, the uncharted back roads, and all of the dimly lit side passages, and placed
them on one master diagram. For the first time we could see what the software looked like.
Not a pretty sight. It was a tangle of blobs and lines. In an effort to make it more
comprehensible, we color-coded the control paths to signify their type. Then we stood back.

It was stunning. It was psychedelic. It was as if a drunk spider had stumbled into a few pots of
poster paint and then spun a chromatic web across a piece of paper. It looked something like
Figure 2-1 (it’s a simplified version, with details changed to protect the guilty). Then it became
clear. We had all but drawn a map of the London Underground. It even had the circle line.

FIGURE 2-1. The Messy Metropolis “architecture”

A TALE OF TWO SYSTEMS: A MODERN-DAY SOFTWARE FABLE 27

This was the kind of system that would vex a traveling salesman. In fact, the architectural
similarity to the London Underground was remarkable: there were many routes to get from
one end of the system to the other, and it was rarely obvious how best to do so. Often a
destination was geographically nearby but not accessible, and you wished you could bore a
new tunnel between two points. Sometimes it would have actually have been better to get out

and take a bus. Or walk.

That’s not a “good” architecture by any metric. The Metropolis’s problems went beyond the
design, right up to the development process and company culture. These problems had actually
caused a lot of the architectural rot. The code had grown “organically” over a period of years,
which is a polite way to say that no one had performed any architectural design of note, and
that various bits had been bolted on over time without much thought. No one had ever stopped
to impose a sane structure on the code. It had grown by accretion, and was a classic example
of a system that had received absolutely no architectural design. But a codebase never has

no architecture. This just had a very poor one.

The Metropolis’s state of affairs was understandable (but not condonable) when you looked
at the history of the company that built it: it was a startup with heavy pressure to get many
new releases out rapidly. Delays were not tolerable—they would spell financial ruin. The
software engineers were driven to get code shipping as quickly as humanly possible (if not
sooner). And so the code had been thrown together in a series of mad dashes.

NOTE

Poor company structure and unhealthy development processes will be reflected in a poor
software architecture.

Down the Tubes

The Metropolis’s lack of town planning had many consequences, which we’ll see here. These
ramifications were severe and went far beyond what you might naively expect of a bad design.

The underground train had turned into a roller coaster, headed rapidly downward.

Incomprehensibility

As you can already see, the Metropolis’s architecture and its lack of imposed structure had led
to a software system that was remarkably tricky to comprehend, and practically impossible to
modify. New recruits coming into the project (like myself) were stunned by the complexity

and unable to come to grips with what was going on.

The bad design actually encouraged further bad design to be bolted onto it—in fact, it literally
forced you to do so—as there was no way to extend the design in a sane way. The path of least
resistance for the job in hand was always taken; there was no obvious way to fix the structural
problems, and so new functionality was thrown in wherever it would cause less hassle.

28 CHAPTER TWO

NOTE

It’s important to maintain the quality of a software design. Bad architectural design leads to
further bad architectural design.

Lack of cohesion
The system’s components were not at all cohesive. Where each one should have had a single,
well-defined role, instead each component contained a grab bag of functionality that wasn’t

necessarily related. This made it hard to determine why a component existed at all, and hard

to work out where a particular piece of functionality had been implemented in the system.

Naturally, this made bug fixing a nightmare, which seriously affected the quality and reliability
of the software.

Both functionality and data were located in the wrong place in the system. Many things you'd
consider “core services” were not implemented in the hub of the system, but were simulated

by the outlying modules (at great pain and expense).

Further software archacology showed why: there had been personality struggles in the original
team, and so a few key programmers had begun to build their own little software empires.
They’d grab the functionality they thought was cool and plonk it into their module, even if it
didn’t belong there. To deal with this, they would then make ever more baroque
communication mechanisms to stitch the control back to the correct place.

NOTE

The health of the working relationships in your development team will feed directly into the
software design. Unhealthy relationships and inflated egos lead to unhealthy software.

COHESION AND COUPLING

Key qualities of software design are cohesion and coupling. These are not newfangled “object-
oriented” concepts; developers have been talking about them for many years, since the emergence
of structured design in the early 1970s. We aim to design systems with components that have:

Strong cohesion
Cohesion isa measure of how related functionality is gathered together and how well the parts

inside a module work as a whole. Cohesion is the ¢glue holding a module together.

Weakly cohesive modules are a sign of bad decomposition. Each module must have a clearly
defined role, and not be a grab bag of unrelated functionality.

Low coupling
Couplingisa measureofthe interdependency between modules—the amount of wiringtoand
from them. In the simplest designs, modules have little coupling and so are less reliant on one

A TALE OF TWO SYSTEMS: A MODERN-DAY SOFTWARE FABLE 29

another. Obviously, modules can’t be totally decoupled, or they wouldn’t be working together
atall!

Modules interconnect in many ways, some direct, some indirect. A module can call functions
on other modules or be called by other modules. It may use web services or facilities published
by another module. It may use another module’s data types or share some data (perhaps

variables or files).

Good software design limits the lines of communication to only those that are absolutely

necessary. These communication lines are part of what determines the architecture.

Unnecessary coupling

The Metropolis had no clear layering. Dependencies between modules were not unidirectional,
and coupling was often bidirectional. Component A would hackily reach into the innards of
component B to get its work done for one task. Elsewhere, component B had hardcoded calls
onto component A. There was no bottom layer or central hub to the system. It was one

monolithic blob of software.

This meant that the individual parts of the system were so tightly coupled that you couldn’t
bring up a skeletal system without creating every single component. Any change in a single
component rippled out, requiring changes in many dependent components. The code

components did not make sense in isolation.

This made low-level testing impossible. Not only were code-level unit tests impossible to write,
but component-level integration tests could not be constructed, as every component depended
on almost every other component. Of course, testing had never been a particularly high priority
in the company (we didn’t have anywhere near enough time to do that), so this “wasn’t a

problem.” Needless to say, the software was not very reliable.

NOTE

Good design takes into account connection mechanisms and the number (and nature) of
inter-component connections. The individual parts of a system should be able to stand alone.
Tight coupling leads to untestable code.

Code problems

The problems with bad top-level design had wormed their way down to the code level.
Problems beget problems (see the discussion of broken windows in Hunt and Davis [1999]).
Since there was no common design and no overall project “style,” no one bothered with
common coding standards, using common libraries, or employing common idioms. There were
no naming conventions for components, classes, or files. There was not even a common build
system; duct tape, shell scripts, and Perl glue nestled alongside makefiles and Visual Studio

project files. Compiling this monster was considered a rite of passage!

30 CHAPTER TWO

One of the most subtle yet serious Metropolis problems was duplication. Without a clear design
and a clear place for functionality to live, wheels had been reinvented across the entire
codebase. Simple things like common algorithms and data structures were repeated across
many modules, each implementation with its own set of obscure bugs and quirky behavioral
traits. Larger-scale concerns such as external communication and data caching were also

implemented multiple times.

More software archaeology showed why: the Metropolis started out as a series of separate
prototypes that got tacked together when they should have been thrown away. The Metropolis
was actually an accidental conurbation. When stitched together, the code components had
never really fit together properly. Over time, the careless stitches began to tear, so the
components pulled against one another and caused friction in the codebase, rather than

working in harmony.

NOTE

A lax and fuzzy architecture leads to individual code components that are badly written and
don’t fit well together. It also leads to duplication of code and effort.

Problems outside the code

The problems within the Metropolis spilled out from the codebase to cause havoc elsewhere
in the company. There were problems in the development team, but the architectural rot also
affected the people supporting and using the product.

The development team
New recruits coming into the project (like myself) were stunned by the complexity and
were unable to come to grips with what was going on. This partially explains why very
few new recruits stayed at the company for any length of time—staff turnover was very
high.
Those who remained had to work very hard, and stress levels on the project were high.
Planning new features instilled a dread fear.

Slow development cycle
Since maintaining the Metropolis was a frightful task, even simple changes or “small” bug
fixes took an unpredictable length of time. Managing the software development cycle was
difficult, timescales were hard to plan, and the release cycle was cumbersome and slow.
Customers were left waiting for important features, and management got increasingly
frustrated at the development team’s inability to meet business requirements.

Support engineers
The product support engineers had an awful time trying to support a flaky product while
working out the intricate behavioral differences between relatively minor software

releases.

A TALE OF TWO SYSTEMS: A MODERN-DAY SOFTWARE FABLE 31

Third-paity support
An external control protocol had been developed, enabling other devices to control the
Metropolis remotely. Since it was a thin veneer over the guts of the software, it reflected
the Metropolis’s architecture, which means that it was baroque, hard to understand, prone
to fail randomly, and impossible to use. Third-party engineers’ lives were also made
miserable by the poor structure of the Metropolis.

Intra-company politics
The development problems led to friction between different “tribes” in the company. The
development team had strained relations with the marketing and sales guys, and the
manufacturing department was permanently stressed every time a release loomed on the

horizon. The managers despaired.

NOTE

The consequence of a bad architecture is not constrained within the code. It spills outside to
affect people, teams, processes, and timescales.

Clear requirements

Software archaeology highlighted an important reason that the Messy Metropolis turned out
so messy: at the very beginning of the project the feam did not know what it was building.

The parent startup company had an idea of which marketit wanted to capture, but didn‘t know
which kind of product to capture it with. So they hedged their bets and asked for a software
platform that could do many things. Oh, and we wanted it yesterday. So the programmers
rushed to create a hopelessly general infrastructure that could potentially do many things
(badly), rather than craft an architecture that supported one thing well and could be extended
to do more in the future.

NOTE

It's important to know what you're designing before you start designing it. If you don’t know
what it is and what it’s supposed to do, don’t design it yet. Only design what you know you
need.

At the earliest stages of Metropolis planning there were far too many architects. With woolly
requirements, they all took a disjoint piece of the puzzle and tried to work on it individually.
They didn’t keep the entire project in sight as they worked, so when they tried to put the puzzle
pieces back together, they simply didn’t fit. Without time to work on the architecture further,
the parts of the software design were left overlapping slightly, and thus began the Metropolis

town planning disaster.

3z CHAPTER TWO

Where Is It Now?

The Metropolis’s design was almost completely irredeemable—believe me, over time we tried
to fix it. The amount of effort required to rework, refactor, and correct the problems with the
code structure had become prohibitive. A rewrite wasn’t a cheap option, as support for the old,
baroque control protocol was a requirement.

As you can see, the consequence of the Metropolis’s “design” was a diabolical situation that
was inexorably getting worse. It was so hard to add new features that people were just applying
more kludges, Band-Aids, and calculated fudges. No one enjoyed working with the code, and
the project was heading in a downward spiral. The lack of design had led to bad code, which
led to bad team morale and increasingly lengthy development cycles. This eventually led to
severe financial problems for the company.

Bventually, management acknowledged that the Messy Metropolis had become uneconomical,
and it was thrown away. This is a brave step for any organization, especially one that is
constantly running 10 paces ahead of itself while trying to tread water. With all of the C++ and
Linux experience the team had gained form the previous version, the system was rewritten in
C# on Windows. Go figure.

A Postcard from the Metropolis

So what have we learned? Bad architecture can have a profound effect and severe
repercussions. The lack of foresight and architectural design in the Messy Metropolis led to:

e A low-quality product with infrequent releases

¢ An inflexible system that couldn’t accommodate change or the addition of new

functionality

e Pervasive code problems

s Stalfing problems (stress, low morale, turnover, etc.)

¢ A lot of messy internal company politics

e Lack of success for the company

¢ Many painful headaches and late nights working on the code

Design Town

Form ever follows function.

—~Louis Henry Sullivan

The Design Town software project was superficially very similar to the Messy Metropolis. It
too was a consumer audio product written in C++, running on a Linux operating system.

A TALE OF TWO SYSTEMS: A MODERN-DAY SOFTWARE FABLE 33

However, it was built in a very different way, and so the internal structure worked out very

differently.

I was involved with the Design Town project from the very start. A brand-new team of capable
developers had been assembled to build it from scratch. The team was small (initially four
programmers) and, like the Metropolis, the team structure was flat. Fortunately, there was
none of the interpersonal rivalry apparent in the Metropolis project, or any vying for positions
of power in the team. The members didn’t know each other well beforehand and didn’t know
how well we'd work together, but we were all enthused about the project and relished the

challenge.
So far, so good.

Linux and C++ were early decisions for the project, and that shaped the team that had been
assembled. From the outset the project had clearly defined goals: a particular first product and
a roadmap of future functionality that the codebase had to accommodate. This was to be a

general-purpose codebase that would be applied in a number of product configurations.

The development process employed was eXireme Programming (or XP) (Beck and Andres
2004), which many believe eschews design: code from the hip, and don’t think too far
ahead. In fact, some observers were shocked at our choice and predicted that it would all end
in tears, just like the Metropolis. But this is a common misconception. XP does not discourage
design; it discourages work that isn’t necessary (this is the YAGNI, or You Aren’t Going To
Need It, principle). However, where upfront design is required, XP requires you to do that. It
also encourages rapid prototypes (known as spikes) to flesh out and prove the validity of
designs. Both of these were very useful and contributed greatly to the final software design.

First Steps into Design Town

Early in the design process, we established the main areas of functionality (these included the
core audio path, content management, and user control/interface). We considered where they
each fitin the system, and an initial architecture was fleshed out, including the core threading

models that were necessary to achieve performance requirements.

The relative positions of the separate parts of the system was established in a conventional
layer diagram, a simplified part of which is shown in Figure 2-2. Notice that this was not a big
upfront design. It was an intentionally simple conceptual model of the Design Town: just some
blobs on a diagram, a basic system design that could grow easily as pieces of functionality were
added. Although basic, this initial architecture proved a solid basis for growth. Whereas the
Metropolis had no overall picture and saw functionality grafted (or bodged) in wherever was

“convenient,” this system had a clear model of what belonged where.

Extra design time was spent on the heart of the system: the audio path. It was essentially an
internal subarchitecture of the entire system. To define this, we considered the flow of data

through a series of components and arrived at a filter-and-pipeline audio architecture, similar

kL CHAPTER TWO

to Figure 2-3. The products involved a number of these pipelines, depending on their physical
configuration. Again, at first this pipeline was nothing more than a concept—more blobs on a
diagram. We hadn’t decided how it would all be stitched together.

User Interface

Control Components

Audio Path

05/Audio Codecs

FIGURE 2-2. The Design Town initial architecture

Audio file Audio hardware

FIGURE 2-3. The Design Town audio pipeline

We also made an early choice of supporting libraries the project would employ (for example,
the Boost C++ libraries available at Attp.//www.boost.org and a set of database libraries).
Decisions about some of the basic concerns were made at this point to ensure that the code
would grow easily and cohesively, including:

s The top-level file structure

¢ How we would name things

* A “house” presentation style

¢ Common coding idioms

s The choice of unit test framework

¢ The supporting infrastructure (e.g., source control, a suitable build system, and continuous

integration)

These “fine detail” factors were very important: they allied closely with the software

architecture and, in turn, influenced many later design decisions.

A TALE OF TWO SYSTEMS: A MODERN-DAY SOFTWARE FABLE 35

The Story Unfolds

Once the initial design had been established by the team, the Design Town project proceeded
following the XP process. Design and code construction was either done in pairs or carefully

reviewed to ensure that work was correct.

The design and the code developed and matured over time, and as the story of Design Town

unfolded, there were the following consequences.

Locating functionality

With a clear overview of the system structure in place from the very beginning, new units of
functionality were consistently added to the correct functional areas of the codebase. There
was never a question about where code belonged. It was also easy to find the implementation

of existing functionality in order to extend it or to fix problems.

Now, sometimes putting new code in the “right” place was harder than simply bodging it into
a more convenient, but less tasteful, place. So the existence of an architectural plan sometimes
made the developers work harder. The payoff for this extra effort was a much easier life later

on, when maintaining or extending the system—there was very little cruft to trip over.

NOTE

An architecture helps you to locate functionality: to add it, to modify it, or to fix it. It provides
a template for you to slot work into and a map to navigate the system.

Consistency

The entire system was consistent. Bvery decision at every level was taken in the context of the
whole design. The developers did this intentionally from the outset so all the code produced
matched the design fully, and matched all the other code written.

Over the project’s history, despite many changes ranging across the entire scope of the
codebase—{rom individual lines of code to the system structure—everything followed the

original design template.

NOTE

A dear architectural design leads to a consistent system. All decisions should be made in the
context of the architectural design.

The good taste and elegance of the top-level design naturally fed down to the lower levels.
Even at the lowest levels, the code was uniform and neat. A clearly defined software design
ensured that there was no duplication, that familiar design patterns were used throughout,
familiar interface idioms were adopted, and that there were no unusual object lifetimes or odd

resource management issues. Lines of code were written in the context of the town plan.

36 CHAPTER TWO

NOTE

Clear architecture helps reduce duplication of functionality.

Growing the architecture

Some entirely new functional areas appeared in the “big picture” design—storage management
and an external control facility, for example. In the Metropolis project, this was a crushing
blow and incredibly hard to do. But in Design Town, things worked differently.

The system design, like the code, was considered malleable and refactorable. One of the
development team’s core principles was to stay nimble—that nothing should be set in stone—
and so the architecture could be changed when necessary. This encouraged us to keep our
designs simple and easy to change. Consequently, the code could grow rapidly and maintain
a good internal structure. Accommodating new functional blocks was not a problem.

NOTE

Software architecture is not set in stone. Change it if you need to. To be changeable, the
architecture must remain simple. Resist changes that compromise simplicity.

Deferring design decisions

One of the XP principles that really enhanced the quality of the Design Town architecture was
YAGNI (don’t do anything if you aren’t going fo need ir). 1t encouraged us to design only the
important stuff early on, and to defer all remaining decisions until later, when we had a clearer
picture of the actual requirements and how best to fit them into the system. This is an

immensely powerful design approach, and quite liberating.
¢ One of the worst things you can do is design something you don’t yet understand. YAGNI
forces you to wait until you know what the problem really is and how it should be

accommodated by the design. It eliminates guesswork and ensures the design will be

correct.

s Itisdangerousto add everything you mighrneed (including the kitchen sink) to a software
design when you first create it. Most of your design work will be wasted effort, and produce
extra baggage that you'll need to support over the entire changing life of the software. It

costs more at first, and continues to cost over the life of the project.

NOTE

Defer design decisions until you Aave to make them. Don’t make architectural decisions
when you don’t know the requirements yet. Don’t guess.

Maintaining quality
From the outset, the Design Town project put a number of quality control processes in place:

e Pair programming

A TALE OF TWO SYSTEMS: A MODERN-DAY SOFTWARE FABLE 37

s Code/design reviews for anything not pair-programmed
e Unit tests for every piece of code

These processes ensured that the system never had an incorrect, badly fitting change applied.
Anything that didn’t mesh with the software design was rejected. This might sound draconian,
but they were processes that the developers bought into.

This buy-in highlights an important attitude: the developers believed in the design, and
considered itimportant enough to protect. They took ownership of, and personal responsibility
for, the design.

NOTE

Architectural quality must be maintained. This can happen only when the developers are
given and take responsibility for it.

Managing technical debt

Despite these quality control measures, Design Town development was fairly pragmatic. As
deadlines approached, a number of corners were cut to allow projects to ship on time. Small
code “sins” or design warts were allowed to enter the codebase, either to get functionality

working quickly or to avoid high-risk changes near a release.

However, unlike the Messy Metropolis project, these fudges were marked as rechnical debt
and scheduled for later revision. These warts stood out clearly, and the developers were not
happy about them until they were dealt with. Again, we see the developers taking
responsibility for the quality of the design.

Unit tests shape design

One of the core decisions about the codebase (which is also mandated by XP development)
was that everything should be unit tested. Unit testing brings many advantages, one of which
is the ability to change sections of the software without worrying about destroying everything
else in the process. Some areas of the Design Town internal structure received quite radical
rework, and the unit tests gave us confidence that the rest of the system had not been broken.
For example, the thread model and interconnection interface of the audio pipeline was
changed fundamentally. This was a serious design change relatively late in the development
of that subsystem, but the rest of the code interfacing with the audio path continued executing

perfectly. The unit tests enabled us to change the design.

This kind of “major” design change slowed down as Design Town matured. After an amount
of design rework, things settled down, and subsequently there were only minor design
changes. The system developed quickly, in an iterative manner, with each step improving the
design, until it reached a relatively stable plateau.

s CHAPTER TWO

NOTE

Having a good set of automated tests for your system allows you to make fundamental
architectural changes with minimal risk. It gives you space in which to work.

Another major benefit of the unit tests was their remarkable shaping of the code design: they
practically enforced good structure. Each small code component was crafted as a well-defined
entity that could stand alone, as it had to be constructible in a unit test without requiring the
rest of the system to be built up around it. Writing unit tests ensured that each module of code
was internally cohesive and loosely coupled from the rest of the system. The unit tests forced
careful thought about each unit’s interface, and ensured that the unit’s API was meaningful
and internally consistent.

NOTE

Unit testing your code leads to better software designs, so design for testability.

Time for design

One of the contributing factors to Design Town’s success was the allotted development
timescale, which was neither too long nor too short (just like Goldilocks’s porridge). A project
needs a conducive environment in which to thrive.

Given too much time, programmers often want to create their magnum opus (the kind of thing
that will always be almost ready, but never quite materializes). A little pressure is a wonderful
thing, and a sense of urgency helps to get things done. However, given too little time, it simply
isn’t possible to achieve any worthwhile design, and you’ll get only a half-baked solution
rushed out—just like the Metropolis.

NOTE

Good project planning leads to superior designs. Allot sufficient time to create an
architectural masterpiece—they don’t appear instantly.

Working with the design

Although the codebase was large, it was coherent and easily understood. New programmers
could pick it up and work with it relatively easily. There were no unnecessarily complex
interconnections to understand, or weird legacy code to work around.

Since the code has generated relatively few problems and is still enjoyable to work with, there
has been very, very low turnover of team members. Thisis due in part to the developers taking
ownership of the design and continually wanting to improve it.

It was interesting to observe how the development team dynamics followed the architecture.

Design Town project principles mandated that no one “owned” any area of the design, meaning
that any developer could work anywhere in the system. Everyone was expected to write

A TALE OF TWO SYSTEMS: A MODERN-DAY SOFTWARE FABLE 39

high-quality code. Whereas the Metropolis was a sprawling mess created by many
uncoordinated, fighting programmers, Design Town was clean and cohesive, closely
cooperaling software components created by closely cooperating colleagues. In many ways,
Conway’s Law" worked in reverse, and the team gelled together as the software did.

NOTE

A team’s organization has an inevitable affect on the code it produces. Over time, the
architecture also affects how well the team works together. When teams separate, the code
interacts clumsily. When they work together, the architecture integrates well.

Where Is It Now?

After some time, the Design Town architecture looked like Figure 2-4. That is, it was
remarkably similar to the original design, with a few notable changes—and a lot more
experience to prove the design was right. A healthy development process, a smaller, more
thoughtful development team, and an appropriate focus on ensuring consistency led to an
incredibly simple, clear, and consistent design. This simplicity worked to the advantage of the
Design Town, leading to malleable code and rapidly developed products.

User Interface

controllers

P
Control é < __D External

Storage

{ managemen Audlo path

05/Audio codecs

FIGURE 2-4. The Desi¢n Town final architecture

Atthe time of this writing, the Design Town project has been alive for three years. The codebase
is still in production use and has spawned a number of successful products. It is still being
developed, still growing, still being extended, and still being changed daily. Its design next
month might be quite different from how it looks this month, but it probably won’t.

Let me make this clear: the code is by no means perfect. It has areas of technical debt that need
work, but they stick out against the backdrop of neatness and will be addressed in the future.
Nothing is set in stone, and thanks to the adaptable architecture and flexible code structure,

“ Conway's Law states that code structure follows team structure. Simply stated, it says, “If you have four
groups working on a compiler, you’ll get a four-pass compiler.”

%0 CHAPTER TWO

these things can be fixed. Almost everything is in the right place, because the architecture is

sound.

So What?

When perfection comes, the imperfect disappears.

—1 Corinthians 13:10

This simple story about two software systems is certainly not an exhaustive treatise on software
architecture, but I have shown how architecture profoundly affects a software project. An
architecture influences almost everything that comes into contact with it, determining the
health of the codebase and also the health of the surrounding areas. Just as a thriving city can
bring prosperity and renown to its local area, a good software architecture will help its project
to flourish and bring success to those depending on it.

Good architecture is the product of many factors, including (but not limited to):

s Actually doing intentional upfront design. (Many projects fail in this way belore they even
start.)

s The quality and experience of the designers. (It helps to have made a few mistakes
beforehand to point you in the right direction next time! The Metropolis project certainly
taught me a thing or two.)

¢ Keeping the design clearly in view as development progresses.

e The team being given and taking responsibility for the overall design of the software.

s Never being afraid of changing the design: nothing is set in stone.

¢ Having the right people on the team, including designers, programmers, and managers,
and ensuring the development team is the right size. Ensure they have healthy working
relationships, as these relationship will inevitably feed into the structure of the code.

¢ Making design decisions at the appropriate time, when you know all the information

necessary to make them. Defer design decisions you cannot yet make.

* Good project management, with the right kind of deadlines.

Your Turn

Never lose a holy curiosity.

—Albert Einstein

You are reading this book right now because you care about software architecture, and you
care about improving your own software. So here’s an excellent opportunity. Consider these

simple questions about your software experience to date:

A TALE OF TWO SYSTEMS: A MODERN-DAY SOFTWARE FABLE H1

1. What’s the best system architecture you’ve ever seen?
s How did you recognize it as good?
¢ What were the consequences of this architecture, both inside and outside the codebase?
* What have you learned from it?
2. What’s the worst architecture system you’ve ever seen?
* How did you recognize it as bad?
e What were the consequences of this architecture, both inside and outside the codebase?

¢ What have you learned from it?

References

Beck, Kent, with Cynthia Andres. 2004. Extreme Programming Explained, Second Edition.
Boston, MA: Addison-Wesley Professional.

Fowler, Martin. 1999. Refactoring: Improving the Design of Existing Code. Boston, MA:
Addison-Wesley Professional.

Hunt, Andrew, and David Thomas. 1999. The Pragmatic Programmer. Boston, MA: Addison-
Wesley Professional.

2 CHAPTER TWO

PART II

Enterprise Application Architecture

Chapter 3, Architecting for Scale

Chapter 4, Making Memories

Chapter 5, Resource-Oriented Architectures: Being “In the Web”
Chapter 6, Data Grows Up: The Architecture of the Facebook Platform

Caopyrighted material

Principles and properlies Struclures

v Versalility Module

v Conceplual integrity v Dependency C HAPTER THREE
Independenilychangeable Process
Automatic propagation v Dalaaccess
Buildability

v Growth accommodation

Entropy resistance

Architecting for Scale

Jim Waldo

Introduction

OMNE OF THE MORE INTERESTING PROBLEMS IN DESIGNING AN ARCHITECTURE for a system is
ensuring flexibility in the scale of that system. Scaling is becoming increasingly important, as
more of our systems are run on networks or are available on the Web. For such systems, the
idea of capacity planningis absurd if you want a margin of error thatis under a couple of orders
of magnitude. If you put up a site and it becomes popular, you might suddenly find that there
are millions of users accessing your site. Just as casily (and just as much of a disaster), you can
put up a site and find that no one is particularly interested, and all of the equipment in which
you invested now lies idle, soaking up money in energy costs and administrative effort. In the
networked world, a site can transition from one of these states to the other in a matter of
minutes.

The scaling problem is faced by anyone who attaches a system to a network, butitis particularly
interesting in the case of massively multiplayer online games (MMOs) and virtual worlds.
These systems must be capable of scaling to large numbers of users. Unlike web servers,
however, where the users are requesting fairly staticinformation and are not interacting with
each other, players in an MMO or residents in a virtual world are there to interact with both
the world (changing the underlying information in the world) and each other. These interplays

complicate the scaling of the infrastructures for such systems, as the user interactions with the

45

system are mostly independent (except when they aren’t) and don’t change much state in the
world. Given any two participants in such a world, the likelihood that they are interacting at
any given time is vanishingly small. But nearly every player will be interacting with someone
nearly all the time. The result is a kind of system that is embarrassingly parallel but

interdependent in a small number of interactions.

Scaling of MMOs and virtual worlds is further complicated by the culture that has grown up
around these systems. Both MMOs and virtual worlds trace their descent from the production
of video games. This is a design culture that grew up in the PC and console game tradition, a
tradition in which the programmer could assume that the game ran on a standalone machine
or game console. In such an environment, all of the resources of the machine are at the
command of the game program, and problems with the program are confined to the single
user playing the game (and, in fact, bugs or odd behavior could often be taken as part of the
logic of the game itself).

These games, and the companies that write, produce, and enhance them, are part of the
entertainment industry. Teams writing a game are led by a producer, and there are scripts and
back stories. The goal of a game is to be immersive, persuasive, and most of all, fun. Reliability
is nice, but hardly required. Extensibility is a property of the game, allowing new plot lines and
themes to be released as upgrades to the game, rather than a property of the code that allows
the code to be used in new and different ways.

The rise of online games and virtual worlds brings this culture into an environment where the
requirements are much more like those that are faced by the enterprise developer. With
multiple players interacting on a server over the network, the crash of a server brought about
by the unexpected actions of a player will affect many other players. As these worlds develop
economies (some of which interact with the economy of the real world), the stability and
consistency of the online world becomes more than just a game. And as the number of players
or inhabitants in these worlds reaches the millions, the ability to scale becomes a primary

requirement of any architecture.

Project Darkstar (referred to in the rest of this chapter as simply Darkstar) is a response to these
changing needs of the builders of games and virtual worlds. The project, undertaken by a
research group inside of Sun Microsystems Laboratories, is an ongoing exploration in the
architecture of scale. What makes the project particularly interesting is that it is targeted to the
MMO and virtual-world builder, a group of programmers who have very different needs from
those that we (as system designers) have been used to. The resulting architecture has much
that seems familiar until you look at it closely, at which point you can see why it differs from
what your experience told you it must be. The result is an architecture with its own sort of
beauty, and an object lesson in how different requirements can change the way you have to

think about building a system.

46 CHAPTER THREE

Context

Like the physical architecture of a building or a city, the architecture of a system has to be
adapted to the context in which the artifact built using the architecture will reside. In physical
architecture, this contextincludes the historical surroundings of the work, the climate in which
it will exist, the ability of the local artisans and the available building materials, and the
intended use of the building. For a software architecture, the context includes not only the
applications that will use the architecture, but also the programmers who will build within that

architecture and the constraints on the systems that will result.

In building the Darkstar architecture, the first thing we® realized is that any architecture for
scaling would need to involve multiple machines. It is not clear that even the largest of
mainframes could scale to meet the demands of some of today’s online games (World of
Warcraft, for example, is reported to have five million current subscribers, with hundreds of
thousands of them active at any one time). Bven if there were a single machine that could
handle this load, it would be economically impossible to assume that a game would be so
successful that it would require such a hardware investment at the beginning. This kind of
application needs to be able to start small and then increase capacity as the user base increases,
and then decrease capacity as interest in the game wanes. This maps well to a distributed
system, where (reasonably small) machines can be added as demand increases and taken away
when demand decreases. Thus we knew at the beginning that the overall architecture would
need to be a distributed system.

We also knew that the system would need to exploit the current trends in chip architectures.
MMOs and (to a lesser extent) virtual worlds have historically exploited Moore’s law for

scaling. As a processor doubles in speed, the world that can be created doubles in complexity,
richness, and interactivity. No other area of computing has exploited the benefits of increased
processor speed in quite the way the game world has. Personal computers designed for games
are always pushing the limits of CPU speed, memory, and graphics capabilities. Game consoles
push these limits even more aggressively, containing graphics systems far beyond those found
in high-end workstations and building the entire machine around the specialized needs of the

game player.

The recent change in chip evolution, from the constant increase in clock speeds to the
construction of multicore processors, has changed the dynamic of what can be done in games.
Rather than doing one thing faster, new chips are being designed to do multiple things at the
same time. The introduction of concurrent execution at the chip level will give better total

performance if the tasks being run by the chip canin fact be executed at the same time. Without

* In talking about the development of the Project Darkstar architecture, 1 will generally refer to what “we”
did rather than speak about what “1” did. This is more than the use of the editorial “we.” The design of
the architecture was very much a collaborative project, started by Jeffrey Kesselman, Seth Proctor, and
James Megquier, and put into its current form by Seth, James, Tim Blackman, Ann Wollrath, Jane
Loizeaux, and me.

ARCHITECTING FOR SCALE 47

a change in clock speed, a chip with four cores ought to be able to do four times as much as a
chip with a single core. In fact, the speed-up will not be quite linear, as there are other parts
of the system that are not made concurrent in the same way. But increases in the overall

performance of the system can be obtained by the use of concurrency, and building chips for

such concurrent use is far simpler than building chips in which the clock speed is increased.

On the face of it, MMOs and virtual worlds ought to be reasonable candidates for multicore
chips and distributed systems. Most of what goes on in an MMO or virtual world, like most of
what goes on in the real world, is independent of the other things that are happening in that
world. Players go on their own quests or decorate their own rooms. They battle monsters or
design clothes. Even when they are engaged with another player or occupant of the world,
they are interacting with only a very small percentage of the occupants of the world. This is
the characterization of an embarrassingly parallel computational task, and that is just the sort
of thing that multiple cores and multiple machines ought to be good at doing.

Although the tasks in these systems may be embarrassingly parallel, the programmers who
work on such systems are not trained or experienced in the techniques of either distributed
computing or concurrent programming. These are exceptionally subtle fields, difficult even for
those who have been trained in them and who have considerable experience in using these
techniques. To ask most game programmers to develop a highly concurrent, distributed game
server would be asking them to go well outside of their area of expertise or experience.

The First Goal

This context gave us our first goal for the architecture. The requirements for scaling dictated
that the system be distributed and concurrent, but we needed to present a much simpler
programming model to the game developer. The simple statement of the goal is that the game
developer should see the system as a single machine running a single thread, and all of the
mechanisms that would allow deployment on multiple threads and multiple machines should
be taken care of by the Project Darkstar infrastructure.

In the general case, hiding either distribution or concurrency from the application is not
possible. But MMOs and virtual worlds are not the general case. The kind of hiding that we
are trying to accomplish comes at the price of requiring a very specific and restricted
programming model. Fortunately, it is just the sort of model that lends itself to the kind of

programming already used in the server-side components of games and virtual worlds.

The general programming model that Project Darkstar requires is a reactive one, in which the
server side of the game is written as a listener for events generated by the clients (that is, the
machines being used by the game players, generally either a PC or a game console). When an
event is detected, the game server should generate a task, which is a short-lived sequence of
computations that includes manipulation of information in the virtual world and
communication with the client that generated the original event and possibly with other
clients. Tasks can also be generated by the game server itself, either as a response to some

48 CHAPTER THREE

internal change or on a periodic, timed basis. In this way, the game server can generate

characters in the game or world that aren’t controlled by some outside player.

This sort of programming model fits well with games and virtual worlds, but is also used in a
number of enterprise-level architectures, such as J2EE and web services. The need to build an
architecture different from those enterprise mechanisms was dictated by the very different
environment in which MMOs and virtual worlds exist. This environment is nearly a mirror
image of the classic enterprise environments, which means that if you have been trained in
the enterprise environment, almost everything you know is going to be wrong in this new

world.

The classic enterprise environment is envisioned as a thin client connected to a thick server
(which isitself often connected to an even thicker database server). The server will hold most
of the information needed by the clients, and will act as a [ilter to the backend database. Very
little state is held at the client; in the best case, the client has very little memory, no disk of its
own, and is a highly competent display device for the server, which is where most of the real
work occurs.

The Game World

The MMO and virtual world environment starts with a very thick client—typically a top-of-
the-line PC with the most powerful CPU available, lots of memory, and a graphics card that is
itself computationally excellent, or a game console that is specially designed for graphics-
intensive, highly interactive tasks. As much as possible, data is pushed out to these clients,
especially data that is unchanging, such as geographicinformation, texture maps, and rule sets.
The server is kept as simple as possible, generally holding a very abstract representation of the
world and the entities within that world. Further, the server is designed to do as little
computation as possible. Most of the computation goes on at the client. The real job of the
server is to hold the shared truth of the state of the world, ensuring that any variation in the
view of the world held at the various clients can be corrected as needed. The truth needs to be
held by the server, since those who control the clients have a vested interest in maximizing
their own performance, and thus might be tempted to change the shared truth (if they could)
in their favor. Put more directly, players will cheatif they can, so the server must be the ultimate
source of shared truth.

The data access patterns of MMOs and virtual worlds are also quite different from those that
are seen in enterprise situations. The usual rule of thumb within the enterprise is that 90% of
data accesses will be read-only, and most tasks read a large amount of data before altering a

small amount. In the MMO and virtual world environment, most tasks access only a very small
amount of the state on the server, but of the data that they access, about half of it will be altered.

ARCHITECTING FOR SCALE 49

Latency Is the Enemy

But the biggest difference in the two environments traces back to the differences in what the
users are doing. In an enterprise environment, the goal is to conduct business, and some lags
in processing are acceptable if the overall throughput is improved. In the MMO and virtual
world environment, the goal is to have fun, and latency is the enemy of fun. So the
infrastructure for an MMO or virtual world needs to be designed around the requirement of

bounding latency whenever possible, even at the cost of throughput.

Online games and virtual worlds have clearly found ways to scale to large numbers of users.
The current mechanisms fall into two groups. The first of these is geographic in nature. The
game is designed as a group of different areas, with cach arca designed to be run on a single
server. It might be an island or room in a virtual world or a town or valley in an online game,
The design of the game tries to make each geographic area independent, and scale the
geographic area in such a way that the server will not be overwhelmed by too many users
occupying the area. In practice, such areas are often self-limiting, as when the server is being
overwhelmed, the play becomes less responsive and less interesting. As a result, players leave
for more interesting areas, which makes the formerly overwhelmed area less occupied and

improves response time.

The problem with scaling by assigning geographic areas to different servers is that the decision
of what areas scale to a server must be made when the game is being written. Although new
areas might be able to be added to a game or world fairly easily, changing the area that is
assigned to a server is something that requires changing the code. The decision of what arcas
are the unit of scale has to be made as part of development.

A second way of dealing with areas that are overcrowded in a game or world is known as
sharding. A shard is a copy of the area, run on its own server and independent of other shards,
that presents the same portion of the game as the original area. Thus, a shard might present a
different copy of a particular room or village, allowing twice as many players to occupy that
part of the world. The drawback of shards is that they do not allow players in different shards
to interact with each other. As games and worlds become more social experiences than simple
game play, this disadvantage can be major. The goal of players is not only to be in the virtual
world, but to occupy it with their (real or virtual) [riends. Sharding interferes with that goal.
Thus, another major goal of the Darkstar architecture is to allow on-the-fly scaling in a way
that does not require the game logic to become involved in the scaling. The infrastructure
should allow the game to dynamically react to the load rather than make such reaction part
of the design of the game.

50 CHAPTER THREE

The Architecture

Darkstar is built as a set of separate services available in the address space of the server side of
a game or virtual world. Bach service is defined by a small programming interface. Although
not the original intention, the basic services provided by Project Darkstar are much like those
of a classic operating system, allowing the server side of the game or virtual world to access

persistent storage, schedule and run tasks, and perform communication with the client side of

the game or virtual world.

Structuring the system as an interconnected set of services is an obvious way to begin the
process of divide and conquer that is basic to the design of any large computer system. Each
service can be characterized by an interface that protects those using the service from changes
in the underlying implementation, and allows those implementations to be undertaken
independently. Changes in the implementation of one service ought not affect the
implementation of another, even if that other service makes use of the implementation being

changed (assuming the interface and the semantics of the interface don’t change).

We had other reasons to adopt the service decomposition approach. From the very beginning,
Project Darkstar was envisioned as an open source project, with the hope that we could
leverage the work of the core team by allowing other members of the community to build
additional services that could enrich the functionality of the core. Running an open source
community is complicated under any circumstance, and we believed that having the greatest
level of isolation between the services that make up the infrastructure would allow a higher
level of isolation between different service implementation levels. Additionally, it was not clear
that there was a single set of services that would be just right for all MMOs and virtual worlds.
By structuring the infrastructure as a set of independent services, different sets of those services
could be used in different circumstances dictated by the needs of the particular project using
the infrastructure. The services included in any particular Darkstar stack can be set by a

configuration file.

The Macro Structure

Figure 3-1 shows the basic structure of a game or virtual world based on the Project Darkstar
infrastructure. There will be some number of servers that form the backend of the game or
virtual world. Each of these servers runs a copy of the selected set of services (labeled the
Darkstar stack) and a copy of the game logic. Clients will connect to one of these servers to

interact with the abstract representation of the world held by the server.

ARCHITECTING FOR SCALE 51

Client Client

Client Client Client

Game Game Game Game
Server | | i Server Server | i i | Server
Project Project Project Project
i | Darkstar | i i | Darkstar Darkstar | ¢ :| Darkstar | !
Stack i Stack Stack Stack

=

Darkstar
meta
service

Darkstar
meta
service

FIGURE 3-1. Project Darkstar high-level architecture

Unlike most replication schemes, the different copies of the game logic are not meant to process
the same events. Instead, each copy can independently interact with the clients. Replication
in this design is used primarily to allow scale rather than to ensure fault tolerance (although,
as we will see later, fault tolerance is also achieved). Further, the game logic itself does not
know or need to know that there are other copies of the server operating on other machines.
The code written by the game programmer runs as if it were on a single machine, with
coordination of the different copies done by the Project Darkstar infrastructure. Indeed, it is
possible to run a Darkstar-based game on a single server if that is all the capacity the game

needs.

Clients connect to the game logic using communication mechanisms that are part of the
infrastructure. These mechanisms allow either direct client-to-server communication or a form
of publish-subscribe channel, where any message sent on a channel is delivered to all of those

subscribed to the channel.

The Darkstar stacks are coordinated by a set of meta-services—network-accessible services that
are hidden from the game or virtual world programmer. These meta-services allow the various
copies of the stack to coordinate the overall operation of the game. These meta-services will,
for example, make sure that all of the separate copies continue to run and initiate failure
recovery if some copy fails; keep track of the load on the copies and redistribute that load when
needed; or allow new servers to be added at any time to increase the capacity of the whole.
Since these services are completely hidden from the users of Project Darkstar, they can be
changed or removed, or new ones can be added at any time without changing the code of the
game or virtual world.

52 CHAPTER THREE

For the programmer building a game or virtual world in the Project Darkstar environment, the
visible architecture is the set of services contained in the stack. The overall set of services is
both changeable and configurable, but four basic services will always be present and form the

core of the operating environment, as shown in Figure 3-2.

Other Services

Channel Service

Client Session Service

Data Service

Task Service

FIGURE 3-2. Darkstar stack

The Basic Services

The most basic of these stack-level services is the Data Service, which is used to store, retrieve,
and manipulate all persistent data in the game or virtual world. The notion of persistence here
is somewhat broader than might be found in other systems. In games or virtual worlds written
in the Project Darkstar environment, any data that lasts longer than a single task is considered
persistent and must be stored in the Data Service. Remember that we assume (and require) a
programming model in which tasks are short-lived, so almost all of the data used to represent
the server-side representation of the game or world will be persistent. The Data Service also
knits together the separate copies of the game or world that are running on different servers,
as all of these copies will share a single (conceptual) instance of the Data Service. All of the
copies will have access to the same data, and all of the copies can read or change data stored
in that service as needed.

Although the Data Store looks like a natural place for using a database, the requirements on
the store are in fact very different from those that usually condition standard databases. There
are very few static relations between the objectsin the store, and there is no requirement within
the game for any type of complex queries over the contents of the store. Instead, a simple
naming scheme suffices, along with program-language-level references to the objects. The Data
Store also has to be optimized for latency rather than throughput. The number of objects
accessed by any particular task tends to be small (our preliminary measurements based on
some prototype games and worlds suggest about a dozen objects per task), and about half of
those objects that are accessed by any task are altered in the course of the task.

ARCHITECTING FOR SCALE 53

The second stack-level service is the Task Service, which is used to schedule and perform the
tasks that are generated either in response to some event received from the clients or by the
internal logic of the game or world server itsell. Most tasks are one-time affairs, generated
because of some action on the client, that read some data from the Data Service, manipulate
that data, perhaps perform some communication, and then end. Tasks can also generate other
tasks, or they can be generated as periodic tasks that will be run at particular times or intervals.
All tasks must be short-lived; the maximal time for a task is a configured value, but the default
is 100 milliseconds.

The game or world programmer sees a single task being generated either by an event or by the
server logic itself, but under the covers the Darkstar infrastructure is scheduling as many
simultaneous tasks asit can. In particular, tasks generated by the server logic will run in parallel
with tasks generated in response to a client-initiated event, as will events generated in response
to different clients.

Such concurrent execution leads to the possibility of data contention. To deal with such
contention requires that the Task Service and the Data Service conspire. Under the covers and
invisible to the server programmer, cach task scheduled by the Task Service is wrapped in a
transaction. This transaction ensures that either all of the operations in the task complete or
none of them do. In addition, any attempts to alter values of objects held in the Data Service
are mediated by that service. If more than one task attempts to alter the same data object, all
but one of those tasks will be aborted and rescheduled to be performed later. The remaining

task will run to completion. Once the running task has been completed, the other tasks can be

will be modified, this is not required. If a data object is simply read and then later modified,

the modification will be detected by the Data Service before the task is committed. Indicating
that modification is intended at the time of read is an optimization that allows early detection
of conflicts, but the failure to indicate the intent to modify does not affect the correctness of a

program.

Wrapping the tasks in a transaction means that the communication mechanisms must also be
transactional, with messages sent only when the transaction wrapping the task that sends the
messages commits. This is accomplished through the two remaining core services of the
Darkstar stack.

Communication Services

The first of these is the Session Service, which mediates communication between a client and
the game or world server. Upon login and authentication, a session is established between the
client and the server. Servers listen for messages sent by the client on the session, parsing the
contents of the message to determine what task to generate in response to the message. Clients
listen on the channel to receive any responses from the server. These sessions mask the actual

endpoints to both the client and the server, a factor that is important in the multimachine

54 CHAPTER THREE

scaling strategy of Darkstar. The session is also responsible for ensuring that the order of
messages is maintained. A message from a given client will not be delivered if the tasks that
resulted from previous message deliveries have not completed. Having the session service order
tasks in this way significantly simplifies the Task Service, which can assume that all of the tasks
that it has at any time are essentially concurrent. The ordering of messages from a particular
client is the only message-ordering guarantee made within the Darkstar framework; external
observers might see an ordering of messages from multiple clients that is very different from

that seen within the game or virtual world.

The second communication service that is always available in the Darkstar stack is the Channel
Service. Channels are a form of one-to-many communication. Conceptually, channels can be
joined by any number of clients, and any message that is sent on the channel will be delivered
to all of the clients that have been associated with the channel. This might seem to be a perfect
place to utilize peer-to-peer technologies, allowing clients to directly communicate with other
clients without adding any load to the server. However, these sorts of communications need
to be monitored by some code that is trusted to ensure that neither inappropriate messages
nor cheating can take place by utilizing different client implementations. Since the client is
assumed to be under the control of the user or player, the code that is on that client cannot be
trusted, because it is easy to swap out the original client code for some other, “customized”
version of the client. So, in fact, all channel messages have to go through the server, after being
(possibly) vetted by the server logic.

One of the complexities of both Sessions and Channels is that they must obey the transactional
semantics of tasks. Thus the actual transmission of a message on cither a Session link or a
Channel cannot happen when the call is made to the appropriate send() method; it can happen

only when the task in which that method occurs commits.

Supplying these communication mechanisms gives us some of the pieces that are needed for
the second part of our scaling mechanism. Since all communication must go through the
Darkstar Session or Channel abstractions, and since those abstractions do not reveal the actual
endpoints of the communication to the client or the server, there is a layer of abstraction
between the entities communicating and the actual locations that are the start and end to that
communication. This means that we can move the endpoint of the server communication from
one machine in the Darkstar system to another without changing the way the client views the
communication. From the client’s point of view, all communication happens on a particular
session or channel. From the point of view of the game or virtual world logic, communication
is also through a single session or channel. But the underlying infrastructure can move the
session or channel from one machine to another as needed to balance load as that load changes

over time.

ARCHITECTING FOR SCALE 55

Task Portability

The core of the ability to balance load is that, given the programming model we require and
the basic stack services that must be used, tasks that are performed in response to a client-
generated or game-internal event are portable from any of the machines running a copy of the
game or world logic on a Darkstar stack to any other machine running such a copy. The tasks
themselves are written in Java,t which means that they can be run on any of the other
machines as long as those (physical) machines have the same Java Virtual Machine as part of
the runtime stack. All data read and manipulated by the task must be obtained from the Data
Service, which is shared by all of the instances of the game or virtual world and the Darkstar
stack on all of the machines. Communication is mediated by the Session Service or by
Channels, which abstract the actual endpoints of the communication and allow any particular
session or channel to be moved from one server to another. Thus, any task can be run on any

of the instances of the game server without changing the semantics of the task.

This makes the basic scaling mechanism of Darkstar seemingly simple. If there is a machine
that is being overloaded, simply move some of the tasks from that machine to one that is less
loaded. If all of the machines are being overloaded, add a new machine to the group running
a copy of the game or virtual world server logic on top of a Darkstar stack, and the underlying
load-balancing software will start distributing load to that new machine.

The monitoring of the load on the individual machines and the redistribution of the load when
needed is the job of the meta-services. These are network-level services that are not visible to
the game or virtual world programmer, but are seen by and can themselves observe the services
in the Darkstar stack. These meta-services observe, for example, which machines are currently
running (and if any of those machines fail), what users are associated with the tasks on a
particular machine, and the current load on the different machines. Since the meta-services
are not visible to the game or virtual world programmer, they can be changed at any time
without having an impact on the correctness of the game logic. This allows us to experiment
with different strategies and approaches to dynamically load balance the system, and allows
us to enrich the set of meta-services as required by the infrastructure.

The same mechanism that we have used for scaling over multiple machines is used to obtain
a high degree of fault-tolerance in the system. Given the machine-independent nature of the
data thatis used by a task and the communication mechanisms, it may be clear thatitis possible
to move a task from one machine to another. But if a machine fails, how can we recover the
tasks that were on that machine? The answer is that the tasks themselves are persistent objects,
stored in the Data Service for the overall system. Thus, if a machine fails, any of the tasks that

were being performed by that machine will be treated as aborted transactions, and will be

—+

More precisely, all of the tasks consist of sequences of bytecodes that can be executed on the Java Virtual
Machine. We don’t care what the source-level language is; all we care about is that the compiled form
of that source language can be run on any of the environments that make up the distributed set of
machines running the game or virtual world.

56 CHAPTER THREE

rescheduled on different machines. Although the latency of such rescheduling may be greater
than the rescheduling of an aborted transaction that stays on the same machine, the correctness
of the system will be the same. At most, the user of the system (the game player or virtual
world inhabitant) will notice a momentary lag in response time. Such a lag may be irritating,
but it is far less extreme than the current impact of a server crash in game or virtual world
environments, where the crash at least results in logging out the player, with the possibility of
losing a considerable amount of game play state.

Thoughts on the Architecture

Perhaps the first question anyone asks of an architecture and its implementation is how well
it performs. Although optimizing an architecture prematurely is the source of a multitude of
sins, it is also possible to design an architecture that cannot be implemented in a way that

performs well. Due to one of the basic choices in the Darkstar architecture, this worry is quite
real. And because of the nature of the game industry, determining the performance of a server

infrastructure is difficult to do.

The difficulty in determining the performance of a game or world server infrastructure is an
outgrowth of the simple fact that there are no benchmarks or commonly accepted examples
for a large-scale MMO or virtual world. The lack of benchmarks is not surprising, given that
the server components of most games or virtual worlds are built from the ground up for a
particular instance of the game or virtual world. There are only a few general infrastructures
that are offered as reusable building blocks, and these are generally extracted from a particular
game or world after the fact and offered to others who are building similar games. Whether it
is the relative youth of the game industry or an accident of the historical emergence of the
technology from the entertainmentindustry, no commonly accepted benchmarks are available
to test a new infrastructure or to allow the comparison of different infrastructures.

There is also little or no information available concerning the expected computation, data
manipulation, and communication loads for a game or virtual world server that would allow
for the construction of benchmarks or performance tests. This is partly an outgrowth of the
custom nature of the servers that have been produced. Each of these is built for a particular
game or virtual world and thus is specialized for the particular workload characteristics of that
game or world. Even more, it is an outgrowth of the intensely secretive nature of the game
industry, in which any information about a game in development is jealously guarded, and
information about the way in which a released game was implemented is both tightly guarded
and, to many in the industry, considered uninteresting. Much more thought and discussion is
given to the artwork, the storyline, or the player interaction patterns that make a new game
interesting or fun than is given to the way in which the server for the game was designed or
to the mechanisms used to scale the game to its current population of players (a statistic that
is also closely guarded). So just getting information about the kinds of loads that current games

or virtual worlds place on a server is difficult.

ARCHITECTING FOR SCALE 57

In our experience, even when we can get developers to talk about the loads placed on the
server by their game or virtual world, they are often incorrect in their reports. This is not
because they are attempting to maintain some commercial advantage by misreporting what
their server actually does, but because they genuinely don’t know themselves. There is very
little instrumentation placed in game servers that would allow them to gather information on
how the server is actually performing or what it is doing. The analysis of such servers is
generally experiential at best. Programmers work on the server until it allows game play to be
fun, which is achieved in an iterative manner rather than by doing careful measurements of

the code itself. There is far more craft than science in these systems.

This is not to say that the servers backing such games and virtual worlds are shoddily
constructed pieces of code or that they are badly built. Indeed, many of them are marvels of
efficiency that demonstrate clever programming techniques and the advantages of one-time,
special-purpose servers for highly demanding applications. However, the custom of building a
new server for each game or world means that little knowledge of what is needed for those
servers has developed, and there is no commonly accepted mechanism for comparing one

infrastructure to another.

Parallelism and Latency

This lack of information about what is needed for acceptable performance in the server is of
particular concern to the Darkstar team, as some of the core decisions that we have made fly
in the face of the lore that has developed around how to get good performance from a game
or virtual world server. Perhaps the most radical difference between the Darkstar architecture
and common practice is the refusal in the Darkstar architecture to keep any significant
information in the main memory of the server machine. The requirement that all data that
lasts longer than a particular task be stored persistently in the Data Store is central to the
functionality of the Darkstar infrastructure. It allows the infrastructure to detect concurrency
problems, which in turn allows the system to hide those problems from the programmer while
still allowing the server to exploit multicore architectures. It is also a key component to the
overall scaling story, as it allows tasks to be moved from one machine to another to balance

the load over a set of machines.

Storing the game state persistently at all times is heresy in the world of game and virtual world
servers, where the worry over latency is paramount. The received wisdom when writing such
servers is that only by keeping all of the information in main memory will the latency be kept
small enough to allow the required response times. Snapshots of that state may be taken on
occasion, but the need for interactive speeds means that such long-term operations must be
done rarely and in the background. So it appears on the face of it that we have based our
architecture on a premise that will keep that architecture from ever performing well enough

to serve the needs of its intended audience.

58 CHAPTER THREE

Although it is certainly true that requiring data to be persistent is a major difference in the
architecture, and that accessing data through the Data Store will introduce considerable
latencies into the architecture, we believe that the approach we have taken will be more than
competitive for a number of reasons. First, we believe that we can make the difference between
accessing data in main memory and accessing it through the data store much smaller than is
generally believed. Although conceptually every object that lasts longer than a single task needs
to be read from and written to persistent storage, the implementation of such a store can utilize
the years of research in database caching and coherence to minimize the data access latencies

incurred by the approach.

This is especially true if we can localize the access to particular sets of objects on a particular
server. If the only tasks that are making use of a particular set of objects are run on a single
server, then the cache on that server can be used to give near main-memory access and write
times for the objects (subject to whatever durability constraints need to be met). Tasks can be
identified with particular players or users in the virtual world. And here we can utilize the
requirement that data access and communications go through services provided by the
infrastructure to gather information about the data access patterns and the communication
patterns taking place in the game or world at a particular time. Given this information, we
believe that we can make very accurate estimations of which players should be co-located with
other players. Since we can move players to any server that we wish, we can maximize the
co-location of players in an active fashion, based upon the runtime behavior that we observe.
This should allow us to make use of standard caching techniques that are well-known in the

database world to minimize the latencies of accessing and storing the persistent information.

This sounds very much like the geographic decomposition that is currently used in large-scale
games and virtual worlds to allow scaling. There, the server developers decompose the world
into areas that are assigned to servers, and the various areas act as localization devices for the
players. Players in the same area are more likely to interact than those in other areas, and so
co-location on a server is enhanced. The difference is that current geographic decompositions
occur as part of the development of the game and are reified in the source code to the server.
Our co-location is based on runtime information, and can be dynamically tuned to the actual
patterns of play or interaction that are occurring at the time of placement. This is analogous to
the difference between compile-time optimization and just-in-time optimization. The former
secks to optimize for all possible runs of a program, whereas the latter attempts to optimize for
the current run.

We don't believe that we can make the difference between main-memory access and persistent
access disappear, but we also don’t think that this is necessary in order to end up with
performance that is better than that of infrastructures that make use of main memory.
Remember that by making all of the data persistent, we are enabling the use of multiple threads
(and therefore the multiple cores) within the server. Although we don’t believe that the
concurrency will be perfect (that is, that for each additional core we will get complete use of

that core), we do believe (and preliminary results encourage this belief) that there is a

ARCHITECTING FOR SCALE 59

significant amount of parallelism that can be exploited in games and virtual worlds. If the
amount of concurrency that we can exploitis greater than the amount of latency that we might

introduce, the overall performance of the game or virtual world will be better.

Betting on the Future

Our reliance on multithreading from multiple cores is essentially a bet on the way processors
will evolve in the future. Currently servers are built with processors offering between 2 and
32 cores; we believe that the future of chip design will center around even more cores rather
than on making any existing core run at a higher clock rate. When we began this project some
years ago, this bet seemed far more speculative than it now appears. At that time, we often
presented our designs as an exercise in “what if,” saying that we were experimenting with an
architecture that would be viable if the performance of chips became more a function of the
number of threads supported than the clock speed of a single thread. This is one of the
advantages of doing such a project in a research lab, where it is acceptable to take a much
higher risk in your approach to a design as a way of exploring an area that might turn out to
be commercially viable. Current trends in chip design make the decision to build an
architecture centered on multithreading look far more prescient than it appeared at the time
the decision was made.*

Even if we can get only 50% of perfect concurrency, we could hit a performance break-even
point if we can reduce the penalty of using persistent storage to between 2 and 16 times that
of main memory. We believe we can do better in both the dimension of concurrency and in
the dimension of reducing the difference between accessing the persistent state and keeping
everything in memory. But much will depend on the usage patterns of those building upon

the infrastructure (which, as we noted earlier, are difficult to discover).

Nor should we think of minimizing latency as the only goal of the infrastructure. By keeping
all the server game or world objects in the Data Store, we minimize the amount of data that
would be lost in the event of a server failure. Indeed, in most cases a server failure will be
noticed only as a shortincrease in latency as the tasks (which are themselves persistent objects)
are moved from the server that failed to an alternate server; no data should be lost. Some
caching schemes might resultin the loss of a few seconds of play, but even this case is far better
than the current schemes used by online games and virtual worlds, where occasional snapshots
are the main form of persistence. In such infrastructures, hours of game play might be lost if
a server crashes atjust the wrong time. As long as latencies are acceptable, the greater reliability
of the persistence mechanism used by Darkstar can be an advantage for both the developers

of the system built on the infrastructure and the users of that system.

t Showing, once again, that very little is as important as luck in the early stages of a design.

60 CHAPTER THREE

Simplifying the Programmer’s Job

Indeed, if minimizing latency while allowing scale were the only goal of the server developer,
that developer would be best served by writing his own distributed and multithreaded
infrastructure customized for the particular game. But this would require that the server
developer deal with the complexities of distributed and concurrent programming. Belore
getting too obsessed with the need for speed, we should remember that a second, but equally
important, goal of Darkstar is to allow the production of multithreaded, distributed games
while providing the programmer a model of writing on a single machine in a single thread.

To a considerable extent, we have succeeded in this goal. By wrapping all tasks in transactions
and detecting data conflicts within the Data Service, programmers get the benefits of multiple
threads without needing to introduce locking protocols, synchronization, or semaphores into
their code. Programmers do not have to worry about how to move a player from one server
to another, since Darkstar handles the load balancing transparently for them. The
programming model, although stylized and restrictive, has been found by early members of
the community to be natural for the kinds of games and virtual worlds that they are building.

Unfortunately, we have found that we can’t hide everything from the programmer. This

became apparent when the very first game to be written on top of Darkstar showed very little
parallelism (and exceptionally poor performance). On examination of the source code, it did
not take us long to find the explanation. The data structures in the game had been written in
such a way that any change of state in the game involved a single object, which was used as a
coordinator for everything. The use of this single object effectively serialized all of the actions
within the game, making itimpossible for the infrastructure to find or exploit any concurrency.

Once we saw this, we had a long discussion with the game developers about the need to design
their objects with concurrent access in mind. An audit of the data objects in the game showed
anumber of similar cases where concurrency was (unintentionally) precluded by choices made
in the data design. Once these objects were redesigned, the performance of the overall system

increased by multiple orders of magnitude.

This taught us thatitis not possible for the developers using Darkstar to be completely ignorant
of the underlying concurrent and distributed nature of the system. However, their knowledge
of these properties of the system need not include the usual problems of concurrency control,
locking, and dealing with communication between the distributed parts of the system. Instead,
they are confined to the design activity of ensuring that their data objects are defined in such
a way that concurrency can be maximized. Such design usually takes the more general form

of ensuring that the objects defined are self-contained and do not depend on the state of other
objects for their own operations, which is not a bad design principle in any system.

ARCHITECTING FOR SCALE 61

There is still much about the Darkstar architecture that we have not tested or that we don’t
fully understand. Although we have produced a system that allows multiple machines to run
a game or virtual world utilizing multiple threads in a way that is (mostly) transparent to the
server programmer, we have not yet tested the ability of the architecture to add other services
beyond the core. Given the transactional nature of Darkstar tasks, this may turn out to be more
complex than we first imagined, and our hope is that the additional services will not need to
be participants in the core service transactions. We have also just begun to experiment with
various ways of gathering information about the load on the system and balancing that load.
Fortunately, since the mechanisms that do this balancing are completely hidden from the
programmers using the system, we can pull out old approaches and introduce new ones

without affecting those using Darkstar.

As an architecture, Darkstar presents a number of novel approaches that make it interesting.
It is one of the few attempts to build a game or virtual world infrastructure with the same
reliability and dependability properties as enterprise software while also meeting the latency,
communication, and scaling requirements of the game industry. By trying to gain efficiency
by using more machines and more threads, we hope to offset the increases in latency we
introduce by the use of a persistent storage mechanism. Finally, the very different world of
games and virtual environments, in which the clients are thick and the servers are thin,
presents a contrast to the usual environment in which highly concurrent, distributed systems
are generally built. It is too early to tell whether the architecture is going to be successful, but

we believe that it is already interesting.

62 CHAPTER THREE

Principles and properlies Struclures

Versalility v Module
v Conceplual integrity v Dependency C HAPTER F O UR
v Independentlychandeable Process
v Automatic propagation Data access
v Buildability

Growth accommodation

Entropy resistance

Making Memories

Michael Nygard

SINCE THE EARLIEST TINTYPES AND DAGUERREOTYPES, we have always seen photographs as

special, sometimes even magical. A photograph captures a fleeting moment in time, in a way
that our fallible memories cannot. But the best portraits do more than just preserve a moment;
they illuminate it. They catch a certain glance or expression, a characteristic pose that lets the

subject’s personality shine through.

If you’ve had children in a U.S. school, you probably already know the name Lifetouch.
Lifetouch photographs most elementary school, middle school, and high school studentsin the
United States every single year. What you may not know is that Lifetouch also runs high-
quality portrait studios. Lifetouch Portrait Studios (LPS) operates in major retail stores across
the country, along with the “Flash!” chain of studios in shopping malls. In these studios, LPS’s

photographers take portraits that last a lifetime.

Digital photography has transformed the entire photography industry, and LPS is no exception.
Giant rolls of film and frame-mounted cameras are disappearing, replaced with professional-
grade DSLRs and flash memory cards. Unfettered photographers can move around, try
different angles, and get closer than ever to their subjects. In short, they have more freedom
to take those great portraits. The photographer works with the camera to turn photons into
electrons, but somehow, somewhere, some system has to turn those electrons into atoms of

ink and paper.

63

In 2005, my colleagues and I from Advanced Technologies Integration (ATI) in Minneapolis
worked together with developers from LPS to roll out a new system to do exactly that.

Capabilities and Constraints

Two dynamics drive a system’s architecture: What must it do? What boundaries must it work

within? These define the problem space.

We create, and simultaneously explore, the solution space by resolving these forces, navigating
the positive pole of required behavior and the negative one of limitations. Sometimes we can
create clegance, and even beauty, when the answers to individual constraints mesh together
into a coherent whole. I'm happy to say that the Creation Center project did just that.

On this project, we faced several incontrovertible facts. Some are just the nature of the business;
others could change, but not within our scope. Either way, we regarded these as immutable.

These facts make up the left column in Figure 4-1.

Uland Ul Model
Several Brands Support Product Family |—v|ModuIes and Launcher'

Kiosk-Style GUI

| Minimize Cost of Support

Associales Are Pholographers,
Not Graphic Artists

Networks Are Fallible
T Interchangeable
Workstations
Studios Are Remote Minimize Risk of Downtime r/~

3 Ubiquitous GUIDs
| Customers Expect Own Products |—'| Decentralize Rollout
| Production Is Centralized I»—-| Apply Conway’s Law l Immutable Data

I Production Throughput Is Important H Scale Production Horizontally '_:Im,

Facts » Forces » Facets

Minimize Cost of Deployments Database Migrations

J Minimize Training Need

FIGURE 4-1. Facts, forces, and facets of Creation Center's architecture

Several brands
LPS supports multiple brands today and could add more in the future. At a minimum,
Creation Center would have two visually distinct skins, and adding skins should not

require extensive effort.

64 CHAPTER FOUR

Associates are photographers, not graphic artists
Photographers are trained to use the camera, not Photoshop. When an inexperienced user
sits down at Photoshop, the most likely result is a lousy image. It’s a power tool for power
users, and there should be no need for a photographer in a portrait studio to get up the
Photoshop learning curve. Photoshop and its cousins would also slow down studio
workflow. Instead, studio associates need to create beautiful images rapidly.

Studios are remote
Studios are geographically dispersed, with little to no local technical support. Hardware
deliveries or replacements require shipping components back and forth.

Networks are fallible
Some studios have no network connections. Even for the ones that do, it’s not acceptable
to halt the studio if the connection goes down.

Customers expect their own products
Customers should receive their photos with their designs and text.
Production is centralized
High-quality photographic printers are becoming more common, but making products
that can last for decades requires much more expensive equipment.
Production throughput is important
The same printers are also the constraint in the production process. Therefore, every other

step in the process must be subordinated to the constraint.

These facts lead to several forces that we must balance. It's common to perceive the forces as
fundamental, but they aren’t. Instead, they emerge from the context in which the system

exists. If the context changes, then the forces might be nullified or even negated.

We chose a handful of constructs to resolve these forces. The rightmost column of Figure 4-1
shows these facets of the architecture. Of course, these aren’t the only Creation Center features
worth discussing, but these facets of the architecture are of general interest. 1 also think they
simultaneously illustrate a nice separation of concerns and mutually supporting structures.
Before digging into the specific features, we need to fill in one more piece of context: the

system’s workflow.

Workflow

The typical studio has two to four camera rooms, stocked with professional lighting, backdrops,
and props. The photographers take pictures—each picture is called a “pose”—in the camera
room. Outside of the camera room, photographers also handle customer service, scheduling,

and customer pickups.

When the photographer finishes taking the pictures for a session, she sits down at any of several
workstations to load the photographs from the camera’s memory card.

MAKING MEMORIES 65

After loading a session, the photographer deletes any obviously bad photographs: ones with
closed eyes, sour expressions, babies looking away, and so on. After deleting the bad ones, the
rest become “base images.” She then creates a number of enhancements from those base
images. Enhancements range from simple tonal applications, such as black and white or sepia,
to elaborate compositions of multiple photos. For example, a photographer might take a group
portrait of three children and embed it in a design with three “slots” for individual portraits of
the children.

After creating these enhancements, the photographer helps the customer order various sizes
and combinations of prints. These include everything from 8” x 107 portraits to “sheets” of
smaller sizes: 57 x 7", 3” x 5", or wallet sizes. Then there are the large formats. Customers can

order portraits in sizes up to 24" x 30”7, made for framing and hanging on the wall.
After completing the customer’s order, the photographer moves on to the next session.

At the end of each day, the studio manager creates a DVD of the day’s orders, which she sends
to the printing facility.

In the printing facility, hundreds of DVDs arrive cach day. (I'll talk about the contents of the
DVDs later.) The DVDs contain orders and photographs that need to be printed and shipped
back to the studio, so the customer can pick them up. Before they can be printed, however,
the final print-resolution photographs must be rendered as images. These print-ready images
are immense. A 24” x 30”7 portrait rendered for high-quality printing, has over 100 million
pixels, each in 32-bit color. Every single pixel is composited according to the design the
photographer created in the studio. Depending on the composition, the rendering pipeline can
be anywhere from 6 to 10 steps long. A simple rendering takes two to five minutes, but complex
compositions for large formats churn for ten minutes or more.

At the same time, the printers spit out several finished prints per minute. Keeping the printers
busy is the duty of the Production Control System (PCS), a complex system that handles job
scheduling and orchestrates the render farm, manages image storage, and feeds the print

queues.

When the finished order reaches the studio, the manager lets the customer know that she can

come in to pick it up.

This workflow partly came from LPS’s business context and partly from our choices about how

to partition the system. Now let’s look at the different facets from Figure 4-1.

Architecture Facets

Reducing the structure of a multidimensional, dynamic system into a linear narrative form is
always a challenge, whether we are communicating our vision of a system that doesn’t exist
or trying to explain the interacting parts of one that we’ve already built. Hypertext might make

66 CHAPTER FOUR

it easier to approach the elephant from several perspectives, but paper doesn’t yet support
hyperlinks very well.

As we look at each of these facets, keep in mind that they are different ways of looking at the
overall system. For instance, we used a modular architecture to support different deployment
scenarios. At the same time, each moduleisbuiltin a layered architecture. These are orthogonal
but intersecting concerns. Each set of modules follows the same layering, and each layer is

found across all the modules.

Indeed, we all felt deeply gratified that we were able to keep these concerns separated while
still making them mutually supportive.

Modules and Launcher

All along, we were thinking “product family” rather than “application” because we had to
support several different deployment scenarios with the same underlying code. In particular,

we knew from the beginning that we would have the following configurations:

Studio Client
A studio has between two and four of these workstations. The photographers use them

for the entire workflow, from loading images through to creating the orders.

Studio Server
The central server inside each studio runs MySQL for structured data such as customers
and orders. The server also has much more robust storage than the workstations, using
RAID for resiliency. The studio server also burns the day’s orders to DVD.

Render Engine
Once in production, we decided to build our own render engine. By using the same code
for rendering to the screen in the studio and to the print-ready images in production, we

could be absolutely certain that the customer would get what they expected.

At first, we thought these different deployment configurations would just be different
collections of .jarfiles. We created a handful of top-level directories to hold the code for each
deployment, plus one “Common” folder. Each top-level folder has its own source, test, and
bin directories.

It didn’t take long for us to become frustrated with this structure. For one thing, we had one
giant /lib directory that started to accumulate a mixture of build-time and runtime libraries.
We also struggled with where to put noncode assets, such as images, color profiles, Hibernate
configurations, test images, and so on. Several of us also felt a nagging itch over the fact that
we had to manage .jarfile dependencies by hand. In those early days, it was common to find
entire packages in the wrong directory. At runtime, though, some class would fail to load

because it depended on classes packaged into a different jarfile.

MAKING MEMORIES 67

The breaking point came when we introduced Spring” about three iterations into the project.
We were following an “agile architecture” approach: keep it minimal and commit to new
architecture features only when the cost of avoiding them exceeds the cost of implementing
them. That’s what Lean Software Development calls “the last responsible moment.” Early on,
we had only a casual knowledge of Spring, so we chose not to depend on it, though we all

expected to need it later.

When we added Spring, the .jarfile dependency problems were multiplied by configuration
file problems. Bach deployment configuration needs its own beans.xml file, but well over half
of the beans would be duplicated between files—a clear violation of the “don’t repeat yourself”
principlet—and a sure-fire source of defects. Nobody should have to manually synchronize
bean definitions in thousand-line XML files. And, besides, isn’t a multi-thousand-line XML file

a code smell in its own right?

We needed a solution that would let us modularize Spring beans files, manage .jarfile
dependencies, keep libraries close to the code that uses them, and manage the classpath at

build time and at runtime.

ApplicationContext
Learning Spring is like exploring a vast, unfamiliar territory. It's the NetHack of frameworks;
they thought of everything. Wandering through the javadoc often yields great rewards, and in

this case we hit pay dirt when I stumbled across the “application context” class.

The heart of any Spring application is a “bean factory.” A bean factory allows objects to be
looked up by name, creates them as needed, and injects configurations and references to other
beans. In short, it manages Java objects and their configurations. The most commonly used
bean factory implementation reads XML files.

An application context extends the bean factory with the crucial ability to make a chain of
nested contexts, as in the “Chain of Responsibility” pattern from Design Patterns (Gamma et
al. 1994).

The ApplicationContext object gave us exactly what we needed: a way to break up our beans
into multiple files, loading cach file into its own application context.

Then we needed a way to set up a chain of application contexts, preferably without using some

giant shell script.

* http.//www.springframework. org/

T See The Pragmatic Programmerby Andrew Hunt and David Thomas (Addison-Wesley Professional).

68 CHAPTER FOUR

Module dependencies

Thinking of each top-level directory as a module, I thought it would be natural to have each
module contain its own metadata. That way the module could just declare the classpath and

configuration files it contributes, along with a declaration of which other modules it needs.

I gave each module its own manifest file. For example, here is the manifest file for the
StudioClient module:

Required-Components: Common StudioCommon

Class-Path: bin/classes/ lib/StudioClient.jar

Spring-Config: config/beans.xml config/screens.xml config/forms.xml

config/navigation.xml

Purpose: Selling station. Workflow. User Interface. Load images. Burn DVDs.
This format clearly derives from _jarfile manifests. 1 found it useful to align the mental function
“manifest file” with a familiar format.

Notice that this module uses four separate bean files. Separating the bean definitions by
function was an added bonus. It reduced churn and contention on the main configuration files,

and it provided a nice separation of concerns.

Our team strongly favored automatic documentation, so we built several reporting steps into
the build process. With all the module dependencies explicitly written in the manifest files, it
was trivial to add a reporting step to our automated build. Just a bit of text parsing and a quick
feed to Graphviz generated the dependency diagram in Figure 4-2.

i DwvdLoader
i Load order DVDs
into PCS.]

ProductionToolbox !
Utilities needed in |
production.

Common
Domain Layer.
Ul Framework. |
Invoke Renderinterface. : : Rendering Core. !

RenderEngine
i Poll PCS for render jobs.

Persistence. !
XML Framework. :

StudioClient
Selling station.

Workflow,
User Interface. —,! StudioCommon :
Load images. i Sharedcode.

Burn DVDs. / ,,,,,,,,,,,,,,,,,,,,,,,,, 4

StudioServer
i Image file server.
Extract high-res
JPEGs.

FIGURE 4-2. Modules and dependencies

MAKING MEMORIES 69

With these manifest files, we just needed a way to parse them and do something useful. I wrote
a launcher program, imaginatively called “Launcher,” to do just that.

Launcher

I've seen many desktop Java applications that come with huge shell or batch scripts to locate

the JRE, set up environment variables, build the classpath, and so on. Ugh.

Given a module name, Launcher parses the manifest files, building the transitive closure of
that module’s dependencies. Launcher is careful not to add a module twice, and it resolves the
set of partial orderings into a complete ordering. Figure 4-3 shows the fully resolved
dependencies for StudioClient. StudioClient declares both StudioCommon and Common as

dependencies, but Launcher gives it only one copy of each.

StudioClient StudioCommon Common
Classpath Classpath Classpath
bin/classes - bin/classes
lib/StudioClient.jar Configpath lib/Common.jar

Ny config/beans.xml lib/cglib-full-2.0.jar
Configpath lib/commons-collections.jar

config/beans.xml
config/screens.xml
config/forms.xml
config/navigation.xml

lib/hibemate2.jar
lib/spring-1.1.5.jar
Configpath

config/beans.xml
config/studio.xml

FIGURE 4-3. Resolved dependencies for StudioClient

To avoid classpath “pollution” from the host environment—ANT on a build box, or the JRE
classpath on a workstation—Launcher builds its own class loader from the combined
classpaths. All application classes get loaded inside that class loader, so Launcher uses that class
loader to instantiate an initializer. Launcher passes the configuration path into the initializer,
which creates all the application context objects. Once the application contexts are constructed,

we're up and running.

Throughout the project, we refactored the module structure several times. The manifest files
and Launcher held up with only minor changes throughout. We eventually arrived at six very

different deployment configurations, all supported by the same structure.

The modules all share a similar structure, but they don’t have to be identical. That was one of
the side benefits of this approach. Each module can squirrel away stuff that other modules
don’t care about.

70 CHAPTER FOUR

WHAT ABOUT OSGI?

When we started this project in late 2004, the OSGi framework was just beginning to gain broader
visibility—thanks largely to Eclipse’s adoption of it. We looked at it briefly, but were put off by the
lack of widely available knowledge, expertise, and guidance.

OSGi's purpose, though, is a perfect fit for the problems we faced. Supporting multiple deployment
configurations with a common codebase, managing the dependencies among modules, activating

them in the correct sequence...clearly solving the same problem.

| suppose thefactthat we didn’t use OSGi was partly a quirk of timing and partly our own reluctance
to take on what we perceived as more technical risk. | usually come down on the side of “acquire
and integrate” rather than “roll your own,” but there seems to be a tipping point: lightly supported
open source projects with weak communities are more of a risk than well-understood, widely
adopted ones. Likewise, | tend to avoid quasi-open frameworks that are actually vendor consortia.

The community they serve is usually the community of vendors, not the community of users.

It wasn't clear to us which camp OSGi would fall into. If we were doing the project today, | think we

probably would use OSGi instead of rolling our own.

Kiosk-Style GUI

Studio associates are hired for their ability to work well with the camera and the families,

especially children, not for their computer skills. At home, they might be Photoshop gurus, but
in the studio, nobody expects them to become power users. In fact, during the busy season, a
studio might bring on a number of seasonal associates. Consequently, fast ramp-up is critical.

One of the architects also served as our Ul designer. He always had a clear vision of the
interface, even if we didn’t always agree on how much was feasible to implement. He wanted
the user interface to be friendly and visible. There would be no menus. Users would interact
with images through direct manipulation. Large, candy-coated buttons made all options visible.
In short, the workstation should look like a kiosk.

That left the decision about what technology to use for the display itself.

One of our team made a survey ol the Java rich UI technologies available, mainstream and
fringe. We hoped to find a good declarative Ul framework, something to help us avoid an

endless slog through Swing tweaks. The results shocked us all.

In 2005, even after a decade of Java, two basic choices dominated the mainstream: XML hell
or GUI builder spaghetti. The XML variants map more or less directly from Swing components
to XML entities and attributes. This made no sense to us. GUI changes require a code release,
whether the changes are implemented in straight Java code or in XML files. Why keep two

MAKING MEMORIES 71

languagesin your head—Java plus the XML schema—instead of just Java? Besides, XML makes

a clumsy programming language.

GUI builders had burned all of us before. Nobody wanted to end up with business logic woven
into action listeners embedded in JPanels.

Reluctantly, we settled on a pure Swing GUI, but with some ground rules. Over a series of
lunches at our local Applebee’s, we hashed out a novel way of using Swing without getting

mired in it.

Ul and Ul Model

The typical layered architecture goes “Presentation,” “Domain,” and “Persistence.” In practice,
the balance of code ends up in the presentation layer, the domain layer turns into anemic data

containers, and the persistence layer devolves to calls into a framework.

Atthe same time, though, some importantinformation gets duplicated up and down the layers.
For instance, the maximum length of a last name will show up as a column width in the
database, possibly a validation rule in the domain, and as a property setting on a JTextField in
the UL

At the same time, the presentation embeds logic such as “if this checkbox is selected, then
enable thesefour other text fields.” It sounds like a statement about the U, butit really captures
a bit of business logic: when the customer is a member of the Portrait Club, the application

needs to capture their club number and expiration date.

So within the typical three-layer architecture, one type of information is spread out across

layers, whereas another type of important information is stuck inside GUI control logic.

Ultimately, the answer is to invert the GUI's normal relationship to the domain layer. We put
the domain in charge by separating the visual appearance of a screen from the logical

manipulation of its values and properties.

Forms

In this model, a form object presents one or more domain objects’ attributes as typed properties.
The form manages the domain objects’ lifecycles as well as calling down to the facades for
transactions and persistence. Each form represents a complete screen full of interacting objects,
though there are some limited cases where we use subforms.

The trick, though, is that a form is completely nonvisual. It doesn’t deal with Ul widgetry, only
with objects, properties, and interactions among those properties. The UI can bind a Boolean
property to any kind of Ul representation and control gesture: checkbox, toggle button, text
entry, or toggle switch. The form doesn’t care. All it knows is that it has a property that can

take a true/false value.

72 CHAPTER FOUR

Forms never directly call screens. In fact, most of them don’t even know the concrete class of
their screens. All communication between forms and screens happens via properties and
bindings.

Properties

Unlike typical form-based applications, the properties that a Form exposes are not just Java
primitives or basic types like java.lang.Integer. Instead, a Property contains a value together
with metadata about the value. A Property can answer whether it is single-valued or
multivalued, whether it allows null values, and whether it is enabled. It also allows listeners
to register for changes.

The combination of Forms and their Property objects gave us a clean model of the user interface
without yet dealing with the actual GUI widgetry. We called this layer the “Ul Model” layer,
as shown in Figure 4-4,

Swing
DisplayServer |4+——»
Screens ul
Bindings
Properties
Navigation - Forms Ul Model

Application facade | Facade

Startup beans Domain objects | Domain Model

Hibernate

I

MySQL

FIGURE 4-4. Layered architecture

Each subclass of Property works for a different type of value. Concrete subclasses have their
own methods for accessing the value. For instance, StringProperty has getStringvalue() and
setStringValue(String). Property values are always object types, not Java primitives, because

primitives do not allow null values.

It might seem that property classes could proliferate endlessly. They certainly would if we
created a property class for each domain object class. Most of the time, instead of exposing the
domain object directly, the Form would expose multiple properties representing different

MAKING MEMORIES 73

aspects of the domain object. For example, the customer form exposes StringProperty objects
for the customer’s first name, last name, street address, city, and zip code. It exposes a
DateProperty for the customer’s club membership expiration date.

Some domain objects would be awkward to expose this way. Connecting a slider that controls
dilation of the image or embedded image in a design to the underlying geometry would have
required more than half a dozen properties. Having the Form juggle this many properties just
to drag a slider seemed like a pretty clear code smell. On the other hand, adding another type
of property seemed like the path to wild type proliferation.

Instead, we compromised and introduced an object property to hold arbitrary Java objects. The
animated discussion before that class appeared included the phrases “slippery slope” and
“dumping ground.” Fortunately, we kept that impulse in check—one of the perils of a type-

checked language, I suppose.

We handled actions by creating a “command property,” which encapsulates command objects
but also indicates enablement. Therefore, we can bind command property objects to GUI
buttons, using changes in the property’s enablement to enable or disable the button.

The UI Model allowed us to keep Swing contained within the Ul layer itsell. It also provided
huge benefits in unit testing. Our unit tests could drive the UI Model through its properties
and make assertions about the property changes resulting from those actions.

So, forms are not visual themselves, but they expose named, strongly typed properties.
Somewhere, those properties must get connected to visible controls. That’s the job of the
bindings layer.

Bindings

Whereas properties are specific to the types of their values, bindings are specific to individual
Swing components. Screens create their own components, and then register bindings to
connect those components to the properties of the underlying Form objects. An individual
screen does not know the concrete type of form it works with, any more than a form knows
the concrete type of the screen that attaches to it.

Most of our bindings would update their properties on every GUI change. Text fields would
update on cach keystroke, for instance. We used that for on-the-fly validation to provide
constant, subtle feedback, rather than letting the user enter a bunch of bad data and then

yelling at them with a dialog box.

Bindings also handle conversion from the property’s object type to a sensible visual
representation for their widgets. So, the text field binding knows how to convert integers,
Booleans, and dates into text (and back again). Not every binding can handle every value type,
though. There’s no sensible conversion from an image property to a text field, for example.

We made sure that any mismatch would be caught at application startup time.

T4 CHAPTER FOUR

An interesting wrinkle developed after we had built the first iteration of this property-binding
framework. The first screen we tried it out on was the customer registration form. Customer
registration is fairly straightforward, just a bunch of text fields, one checkbox, and a few
buttons. The second screen, the album screen, is much more visual and interactive. It uses
numerous GUI widgets: two proof sheets, a large image editor, a slider, and several command
buttons. Even here, the form makes all the real decisions about selections, visibility, and
enablement entirely through its properties. So the album form knows that the proof sheets’
selections affect the central image editor, but the screen is oblivious. Keeping the screens

“dumb” helped us eliminate GUI synchronization bugs and enabled much stronger unit testing.

IS ONE ENOUGH?

On some screens, proof sheets allow multiple selections; on others, only single selection. Worse yet,
some actions are allowed only when exactly one thumbnail is selected. What component would
decide which selection model to apply or when to enable other commands based on the selection?
That's clearly logic about the Ul, so it belongs in the Ul Model layer. That is, it belongs in a form. The
Ul Model should never import a Swing class, so how can forms express their intentions about

selection models without getting tangled up in Swing code?

Wedecided thatthere was noreasontorestricta GUl componenttojustone binding. In other words,
we could make bindings that were specifictoan aspect of the component, and those bindings could
attach to different form properties.

Forinstance, we often had separate bindings torepresentthe content of a widget versus its selection
state. The selection bindings would configure the widget for single- or multiselect, depending on

the cardinality of its bound property.

Although it takes a long time to explain the property-binding architecture, I still regard it as
one of the most elegant parts of Creation Center. By its nature, Creation Center is a highly
visual application with rich user interaction. It’s all about creating and manipulating
photographs, so this is no gray, forms-based business application! Yet, from a small set of
straightforward objects, each defined by a single behavior, we composed a very dynamic

interface.

The client application eventually supported drag-and-drop, subselections inside an image, on-
the-fly resizing, master-detail lists, tables, and double-click activation. And we never had to
break out of the property-binding architecture.

MAKING MEMORIES 75

Application facade

There's a classic pitfall in building a strong domain model. The presentation layer—or in this
case, the Ul Model—often gets too intimate with the domain model. If the presentation
traverses relationships in the domain, then it becomes difficult to change the domain model.
Like any agile team, we needed to stay flexible, and there was no way we would make design
choices that would lead to less flexibility over time.

Martin Fowler’s “Application Facade” pattern fit the bill (see the “References” section at the
end of this chapter). An application facade presents only a portion of the domain model to the
presentation layer. Instead of walking through graphs of domain objects, the presentation asks

the application facade to assist with traversal, life cycle, activation, and so on.

Each form defined a corresponding facade interface. In fact, following the dictum that
consumers—rather than their providers—should define interfaces we put the facade interface
in the form’s package. The form asks the facade to look up domain objects, relate them, and
persist them. In fact, the facades managed all database transactions, so the forms were never

aware of transaction boundaries.

The interfaces at this boundary, between forms and facades, also became an ideal place to
isolate objects for unit testing. To test a particular form, the unit test creates a mock object that
implements the facade’s interface. The test trains the mock object to feed the form with some
set of expected results, including error conditions that would be very difficult to reproduce
with the real facade. I think we all regarded mock objects as a two-sided compromise: although
they made unit tests possible, something still felt wrong about tying the tests so closely to the
forms” implementations. For example, mock objects have to be trained with the exact sequence
of method calls to expect, and the exact parameters. (Newer mock object frameworks are more
flexible.) As a result, changes in the internal structure of the forms would cause tests to fail,
even though no externally visible behavior changed. To a certain extent, this is just the price

you pay for using mock objects.

All the Creation Center applications, both in the studio and in the printing facility, used the
same stack of layers. Removing the GUI from the driver’s seat kept the team from spending
endless cycles in Swing tweaking. This inversion of control also provided a uniform structure
that every application, and every pair, could follow. Even though we created more than the
usual “three-layer cake,” our stack was quite effective at separating concerns: Swing was
limited to the Ul, domain interaction in the forms, and persistence in the facades.

Interchangeable Workstations

When a photographer finishes a session, she grabs any open workstation. Depending on how
busy the studio is, she’ll usually finish with the customer at that time. It’s common, though,
for customers to come back later, maybe even on a different day. It would be ridiculous to
permanently attach a customer to a single workstation—not just unworkable for scheduling,

but also risky. Workstations break!

76 CHAPTER FOUR

So any workstation in the studio must be interchangeable, but “interchangeable” presents
some problems. The images for a single session can consume close to a gigabyte.

We briefly contemplated building the workstations as a peer-to-peer network with distributed
replication. Ultimately, we opted for a more traditional client-server model, as shown in
Figure 4-5.

StudioClient

StudioServer

StudioClient

Image MySQL
Storage

FIGURE 4-5. Studio deployment

The server is equipped with larger disks than the clients, and they are RAIDed for resilience.
The server runs a MySQL database to hold structured data about customers, sessions, and
orders. Most of the space, however, is devoted to storing the customers’ photographs.

Because the studios are remote and the associates are not technically adept, we knew it would
be important to make the “plumbing” invisible. Associates should never have to look at
filesystems, investigate failures, or restart jobs. They should certainly never log into the
database server! At worst, if a network cable should be bumped loose, once it is plugged back
in, everything should work as normal and also should automatically recover from that

temporary problem.

With that end in mind, we approached the system and application architecture.

Image repositories

To make the workstations interchangeable, the most essential feature would be automatic
transfer of images, both from the workstation where the photographer loaded them to the

server and Irom the server to another workstation.

The studio client and studio server both use a central component called an image repository.
It deals with all aspects of storing, loading, and recording images, including their metadata. On

MAKING MEMORIES 77

the client side, we built a local, caching, write-behind proxy. When a caller asks for an image,
this client image repository either returns it directly from local cache or downloads the file into

local cache, and then returns it. Bither way, callers remain blissfully ignorant.

Likewise, when adding images on the client, the clientimage repository uploads it to the server.
We use a pool of threads to run background transfers so the user doesn’t have to wait on

uploads.

Both the client and server repositories are heavily multithreaded. We created a system of
locking called “reservations.” Reservations are a soft form of collaborative locking. When a
client wants to add an image to the repository, it must first request and hold a “write
reservation.” This way, we can be sure that no other thread is reading the image file when we

"

issue the reservation. Readers have to acquire a “read reservation,” naturally.

Although we did not implement distributed transactions or two-phase commit, in practice
there is only a small window between when the client image repository grants a write
reservation and when the server side grants a corresponding write reservation. When that
second reservation is granted, we can be confident that we will avoid file corruption.

In practice, even lock contention is rare. It requires two photographers at two different
workstations to access exactly the same customer’s session. Still, there are several workstations

in every studio, and each workstation has many threads, so it pays to be careful.

NIO image transfer

Obviously, that leaves the problem of getting the images from the client to the server. One

option we considered and rejected early was CIFS—Windows shared drives. Our main concern
here was fault-tolerance, but transfer speed also worried us. These machines needed to move
a lot of data back and forth, while photographers and customers were sitting around waiting.

In our matrix of off-the-shell options, nothing had the right mix of speed, parallelism, fault-
tolerance, and information hiding. Reluctantly, we decided to build our own file transfer
protocol, which led us into one of the most complex areas of Creation Center. Image transfer
became a severe trial, but we emerged, at last, with one of the most robust features of the
whole system.

I had some prior experience with Java NIO, so I knew we could use it to build a blazing-fast
image transfer mechanism. Building the NIO data transfer itself wasn’t particularly difficult.
We used the common leader-follower pattern to provide concurrency while still keeping NIO
selector operations on a single thread.
Although the protocol wasn’t difficult to implement, there were a number of nuances to deal
with:

s Either end can close a socket, particularly if the client crashes. Sample code never deals

with this properly.

78 CHAPTER FOUR

* While handling an 10 event, the Selectionkey will still signal that it’s ready. This can result
in multiple threads calling into the same handler if you don’t clear that operation from
the key’s interest set.

¢ The leader must perform all changes to a SelectionKey's interest set or else you get race
conditions with the Selector, so we had to build a queue of pending SelectionKey changes
that the leader thread would execute before calling select.

Handling these tricky details led to quite a bit more coupling between the various objects than
Iinitially expected. If we had been building a framework, this whole area would have needed
much more attention to loose coupling. For an application, however, we felt it was acceptable

to regard the collection of collaborating objects in the server as a cohesive unit.

One particularly interesting effect showed up only when we ran a packet sniffer to see if we
were really getting the maximum possible throughput. We weren’t. At first, when the reactor
read from a socket that had data available, it would read one buffer full and then return. we
figured that it wouldn’t take very long to get back around the loop if more than 8,192 bytes
were available. It turns out that the studio network is fast enough to fill the server’s TCP
window before the next thread could get back into the handler, so virtually every transfer
would stall for about half of the total transfer time. We added a loop inside the reactor, so it
would keep reading until the buffer was drained. That cut the transfer time by nearly half, and
reduced the amount of overhead in threading and dispatching. 1 found this particularly
interesting because it works only for fast networks with low latency and only if the total
number of clients is small. With higher network latency or more clients, looping that way

would risk starving some clients. Again, it was a trade-off that made sense in our context.

UNIT TESTING AND CODE REVIEW

This NIO file server was the one time that | found it helpful to do a large group review, even on an
agile project with complete pairing.

My pair and | worked on the threading, locking, and NIO mechanisms over most of an iteration. We
unit tested what we could, but between the threading and low-level socket |10, we found it difficult
to gain confidence in the code. So we did the next best thing: we got more eyes on it. I'd call that a

special case, though. We were compensating for our inability to write sufficient unit tests.

In general, having two sets of eyes on the code all the time provides all the benefits of a code review.
Combine that with automatic formatting and style checking, and there’s just not enough remaining
advantage of a code review to offset its cost. And if you can get the benefits without the cost, then

why bother with the code review?

We kepta projectorinour lab, connected totwo machines through an A/B switch. Whenever we had
atechniquetoillustrate or a design pattern to share, we'd take a few minutes after lunch to fire up

the projectorand walkthrough some code. This was particularly handy duringthe early stages, when

MAKING MEMORIES 79

the architecture and design were more fluid, and we were learning how to deal with Spring and
Hibernate. It helped homogenize Eclipse practices and tricks, too.

The projector was also handy for iteration demos. We could have all the stakeholders in the room,
without crowding around a single screen.

(Not to mention how helpful it was for projecting funny YouTube clips up on the wall.)

I knew it wouldn’t be hard at all to build something fast but fragile. The real challenge would
be making it robust, especially when the whole network would exist in a studio hundreds of
miles away. One with no ability to log in remotely to debug problems or clean up after failures.
One with small children, distracted parents, and servers sitting at toddlers” eye level. Talk about
a hostile environment! Moving bits across the wire would not be enough; we needed atomic

file transfer with guaranteed delivery.

The first layer of defense was the protocol itself. For a “put” operation—uploading a file from
client to server—the first packet of the request includes the file’s MD5 checksum. Once the
client sends the last packet, it waits for a response from the server. The server responds with
one of several codes: 0K, TIMEOUT, FAILED_CHECKSUM, or UNKNOWN_ERROR. On anything but an ok, the
client resends the entire file in what we call a “fast retry.” The client gets three fast retries before

the transfer fails.

Problems with file transfer will come in two varieties. One type is the “fast transient,” a quick
problem that will clear itself up, such as network errors. The other type requires human
intervention. That means problems will either be cleared up in a few milliseconds, or they will
take minutes to hours to correct. There’s no point in retrying a fast file transfer over and over
again. If it didn’t work after the first few attempts, it’s not likely to work for quite a while.
Therefore, if the client exhausts all the fast retries, it puts the file transfer job in a queue. A
background job wakes up every 20 minutes looking for pending file transfer jobs. It tries each
job again, and if it fails again, it goes right back into the queue. Using Spring’s scheduling
support made this “slow retry” almost trivial to implement.

This mix of fast and slow retries lets us decouple maintenance and support on the server from

the clients. There’s no need to “cold boot” an entire studio for upgrades or replacements.

Fastand robust

The local and remote image repository and their associated file transfer mechanics became a
seriously tough slog. Once it was done, though, the whole thing could upload images to the
server faster than they could be read from the memory card. Downloading them on another
machine was fast enough that users never perceived any activity at all. The client would
download all the thumbnails for an album during the transition from one screen to the next.
Downloading the screen-sized images for full-size display could be done during a mouse click.
This speed let us avoid the user frustration of “loading” dialogs.

80 CHAPTER FOUR

Database Migrations

Imagine operating 600 remote database servers across four time zones. They might as well be
on a desertisland, and digitally speaking, they are. If a database administrator needed to apply
changes by hand, he would have to travel to hundreds of locations.

In such circumstances, one option would be to get the database design exactly right before the
first release, and then never change it again. There may still be a few people who think that’s
possible, but certainly none of them were on my team. We expected and even counted on

change at every level, including the database.

Another option would be to send release notes out to the field. The studio managers always
called the service desk for a verbal walkthrough when they executed the installs. Perhaps we
could include SQL scripts in documents on the release CDs for them to type in or copy-and-
paste. The prospect of dictating any command that starts with, “Now type mysqladmin -u root

-p...” gives me cold sweats.

Instead, we decided to automate database updates. Ruby on Rails calls these “database

migrations,” but in 2005 it wasn’t a common technique.

Updates as objects

The studio server defines a bean called a database updater. It keeps a list of database update
objects, each representing an atomic change to the database. Each database update knows its

own version and how to apply itself to the database.

At startup time, the database updater checks a table for the current version of the database. If
it doesn’t find the table, it assumes that no updates exist or have been applied. Accordingly,
the very first update bootstraps the version table and populates it with one row. That single
row contains a version number and a lock field. To avoid concurrent updates, the database
updater first updates this row to set the lock field. If it cannot, then it assumes some other

machine on the network is already applying updates.

We used this migration ability to apply some simple changes and some sophisticated ones. One
of the simple ones just added indexes to a couple of columns that were affecting performance.
One of the updates that made us really nervous changed all the table types from MyISAM to
InnoDB. (MyISAM, the default MySQL table type, does not support transactions or referential
integrity. InnoDB does. If we had known that before our first release, we could have just used
InnoDB in the first place.) Given that we had deployed databases with production data, we

had to use a sequence of “alter table” statements. It worked beautifully.

After a few releases had gone out to the field, we had about 10 updates. None of them failed.

Regular exercise

Every time we run a build, we reset the local development database to version zero and roll
forward. That means we exercise the update mechanism dozens of times every day.

MAKING MEMORIES 81

We also unit test every database update. Each test case makes some assertions about the state
of the database prior to the update. It applies the update and then makes some assertions about
the resulting state.

still, these tests all work with “well-behaved” data. Weird things happen out in the field,
though, and real data is always messier than any test data set. Our updates create tables, add
indices, populate rows, and create new columns. Some of these changes can break badly if the
data isn’t what we expect. We worried about the risky time during the updates and looked for
ways to make the process more resilient.

Safety features

Suppose something goes wrong with one of the updates. A studio could be shut down until

Operations found a way to restore the database, and if the update really goes wrong, it might
leave the database corrupted or in some intermediate state. Then the studio wouldn’t even be
able to roll back to the previous version of the application. To avoid that disaster scenario, the
database updater makes a backup copy of the database before it starts applying the updates. If

it can’t make the backup copy, then it halts the update process.

If errors occur during the updates, the updater automatically attempts to reload from that
backup copy. If even that step fails, well, at least there’s a copy onsite so a support technician
can talk the studio manager through a manual restore.

In fact, in the absolute worst case, the printing facility always has a copy of the database that’s
no more than one day old. We used some of the extra space on the daily DVD to send a complete
copy of the database every day. There’s something to be said for a small database and a lot of

storage space.

Field results

The time we invested in automated database updates paid off in several ways. First, we
improved performance and reliability through some early updates. Feedback from the user
community was immediate and positive after that release. Second, the operations group greatly
appreciated the easy deployment of new releases. Previous systems had required the studios
to ship removable hard drives back and forth, with all the attendant logistics problems. Finally,
having the update mechanism allowed us to focus on “just sufficient” database design. We did
not peer into the crystal ball or overengineer the database schema. Instead, we just designed

enough of the schema to support the current iteration.

Immutable Data and Ubiquitous GUIDs

In working with customers, the studio associate creates some compositions that use multiple
photographs, inset into a design. These designs come from a design group at company

headquarters. Some designs are perennial, others are secasonal. Christmas cards in a wide

8z CHAPTER FOUR

variety of designs are a big seller, at least in the weeks before Christmas. Not surprisingly,
demand drops precipitously after that.

A particular design includes some imagery for the background and a description of how many
openings there are for base images, and the geometry of those openings. The associate can be

very creative in filling those openings with photographs and with other compositions.

We found some interesting challenges dealing with these designs and the base images that go
in them. For instance, what happens when a customer places an order, but then a new version
of the design gets rolled out to the studio? At a smaller scale, what do you do if the associate
nested one design within another—such as a sepia-tinted photograph inside a border—and
then changes or deletes the original design?

At first, this looked like a nightmare of reference counting and hidden linkages. Every scheme
we considered created a web of object references that could lead to gaps, missing images, or

surprising changes. As a team, we all believed in “The Rule of Least Surprise,” so hidden

linkages causing changes to ripple from one product to another just wasn’t going to work.

When our lead visionary came up with a simple, clear answer, it didn’t take more than 30
seconds to sell the rest of us on it. The solution incorporated two rules:

1. Don't change anything after creating it. Designs and compositions would be immutable.

2. Copy, don’t reference, the original.

Taken together, this means that selecting a design actually copies that design into the working
space. If the associate adds the resulting composition to the album, it’s actually a complete and
self-contained copy of the design that gets added. Likewise, nesting one enhanced image into
another makes a copy of the original and graftsitinto the new composition. From the moment
that graft happens, the original composition and the new one are completely independent of
each other.

These copies are not just a trick of object references in memory. The actual XML description
of the composition contains a complete copy of the design or the embedded compositions. This
description lives in the studio’s database, and it's the same description that gets sent on the
DVD. When the studio manager burns the day’s orders to DVD, the StudioServer packs in
everything needed to create the final render: source images, backgrounds, alpha masks, and

the instructions about how to combine them into the final image.

Having the complete description of the whole composition—including the design itself—on

DVD became a huge advantage for production.

Previous systems kept the designs in a library, and orders just referenced them by ID. That
meant the designers had to coordinate design IDs between the studios and the centralized
printing facility. Therefore, designs had to be “registered” in production before they could be
rolled out to the field. Should the IDs get out of sync, as sometimes happened, the wrong design
would be produced and customers would not get the products they expected. Likewise,

MAKING MEMORIES 83

whenever the designers updated a design, there would be a few days” worth of DVDs in the
pipeline made with the old version of the design. Sometimes it would come out OK, and

sometimes it wouldn't.

Under the new system, designs never have to be registered. Whatever comes through in the
XML is what gets produced, which frees the designers to make much more frequent changes
and roll them out however they want. New revisions of designs don’t affect orders in the
pipeline, because each order is self-contained. Once the new revision gets out to the studios,
then it starts showing up in the order stream.

The only parts that weren’t copied were the image files themselves. They're too large to copy,
and so instead we assign every image—whether part of a design or taken in the studio—its
own GUID. As a rule, once something gets a GUID, it is officially immutable. When it’s getting
ready to burn orders to DVD, the StudioServer walks through the orders collecting GUIDs
(using the controversial Visitor pattern). It adds every image it finds to the DVD, including both
the customers’ photographs and the design backgrounds.

Render Farm

The StudioClient helps associates create enhanced portraits from the basic images. Those
enhanced portraits can be as simple as a sepia or black and white effect to make the portrait
look more dramatic, or they can be as complex as a multilayered structure with alpha-
composited backgrounds, text, and soft focus. Whatever the effect, the workstations in the
studio do not produce the final rendered image. The printing facility has a variety of printers,
supporting different sizes and resolutions. They're free to change printers or move jobs between

printers at any time. The studios just don’t know enough to produce the print-ready images.

When those daily DVDs arrive, they get loaded into the production control system (PCS). PCS
makes all the decisions about when to render the images for an order, when to print them,
and what printers to send them to. A separate team, in a separate location and in a separate
time zone, develops PCS. Previous projects had run into tremendous friction when trying to
integrate too closely with PCS. All parties worked with good intentions, but the communication
difficulty slowed both teams down. We needed to avoid that friction, and so we decided to
apply Conway’s Law (defined in the next section) proactively, by explicitly creating an

interface in the software where we knew the team boundary would be.

Conway's Law, applied

Conway’s Law is often invoked after the fact, to explain what might otherwise appear to be
arbitrary divisions within a product. It speaks to a fundamental truth about development
teams: anywhere there is a team boundary, you will find a software boundary. This emerges
from the need to communicate about interfaces.

We felt it was important enough to keep the DVD format and layout under complete control
of Creation Center that we added a program to our own scope: the DvdLoader. DvdLoader

84 CHAPTER FOUR

runs in the production facility, reading DVDs and calling various stored procedures within PCS
to add orders, compositions, and images. PCS treats the composition instructions as an opaque
string, and we were careful to avoid any decisions that would have PCS “opening up” the XML
in that string. That sometimes means we duplicate information, such as dependencies on the

base images themselves, but that is an acceptable trade-off for maintaining a clear boundary.

Similarly, we defined an interface that let the RenderEngine pull render jobs from PCS while
keeping the XML description of the rendering itself under Creation Center’s control.

We worked out written specifications of those interfaces, and then used FIT running on our
development server to “nail down” the precise meaning. In effect, we used FIT as an executable
specification of the interfaces. That turned out to be vital because even the people who
negotiated the interface still found discrepancies between what they thought they agreed to
and what they actually built. FIT let us eliminate those discrepancies during development

rather than during integration testing, or worse, in production.

INCREMENTAL ARCHITECTURE

Oneoftherecurring questionsintheagile community is, “How much architecture should you create
up front?” Some of the leading agile thinkers will tell you, “None. Refactor mercilessly and the

architecture will emerge.” I've never been in that camp.

Refactoring improves the design of code without changing its functionality. But, to refactor your way
to better design, you must first be able to recognize good and bad design. We have a good catalog
of “code smells” to guide us there, but I don’t know of any equivalent for “architecture smells.”
Second, it must be possible to change things continuously even across interface boundaries. This
has always led me to believe that a system’s fundamental architecture must be in place at the start

of development.

Now, after the Creation Center project, I'm much less confident in that answer. We added major
pieces of the architecture relatively late in the project. Here are some examples:
- Hibernate: Added after two or three iterations. We didn’t need the database before this.

- Spring: Added nearly one-third of the way to release 1.0. It quickly became central to our

architecture. | don't remember how we got along without it, but we did.
- FIT:Added halfway to release 1.0.
- DVD-burning software: Purchased and added near the end of initial development.

« Support for windowed Uls: Added in the final two iterations before launch.

MAKING MEMORIES 85

In each case, we took the approach of exploring options thoroughly before making decisions. We
would make a decision at the “last responsible moment,” that point where the cost of not deciding
outweighed the cost of implementing the feature. Although there were a few things that we might
have done differently if Spring had been there from the start, we were not harmed by adding it later.
In those early iterations, we focused on uncovering what the application wanted to be rather than

how Spring wants us to build applications.

DVD loading

The DvdLoader program, which runs in the printing facility, is really a batch processor that reads
orders from DVDs and loads them into PCS. As with everything else, we focused on robustness.
DvdLoader reads an entire order, verifying that the DVD includes all the constituent elements,
before it adds the order to PCS. That way it doesn’t leave partial or corrupted orders in the

database.

Because images can appear on many DVDs, the loader checks to see whether there’s already
an image loaded with that GUID. If not, the loader adds it. Orders can therefore be resent from
the studio whenever necessary, even if PCS has already purged the order and its underlying

images. This also means that the background images used in a design get loaded the first time

an order for that design arrives.

The DVDs are therefore self-contained and idempotent.

Render pipeline

For the render engine itself, we drew on the classic pipes and filters architecture. “Pipeline” is
a natural metaphor for rendering images, and separating the complex sequence of actions into

discrete steps also made unit testing simple.

On pulling a job from PCS, the render engine creates a RenderRequest. It passes the

RenderRequest into the rendering pipeline, where each stage operates on the request itsell. One
of the final stages in the pipeline saves the rendered image to the path specified by PCS. By the
time the request exits the pipeline, it holds only a result object with a success indicator and an

optional collection of problems.

Each step in the pipeline hasits own opportunity to report problems by adding an error message
to the result. If any step reports errors, the pipeline aborts and the engine reports the problem
back to PCS.

Fail fast

Every system has failure modes; the only question is whether you design them in or just let
them happen. We took care to design in “safe” failures, particularly in the production process.

There was no way we wanted our software to be responsible for stopping the production line.

86 CHAPTER FOUR

There’s another aspect, too. When the customer picks up his order, it should be the right one!
That is, the product we deliver really needs to match the product the customer ordered. It

seems like a trivial statement, but it is very important to render the production scale images in
the same way that the on-screen image was rendered. We worked hard to ensure that exactly
the same rendering code would be used in production as in the studio. We also made sure that

the rendering engine would use the same fonts and backgrounds in production.

In our render engine, we adopted a philosophy of “Fail Fast, Fail Loudly.” As soon as the render
engine pulls a job from PCS, it checks through all the instructions, validating that all the
resources the job requires are actually available. I the job includes text, the render engine
loads the font right away. If the job includes some background images or an alpha mask, the
render engine loads the underlying images right away. If anything is missing, it immediately
notifies PCS of the error and aborts that job. Out of the 16 steps in the rendering pipeline, the

first 5 all deal with validation.

After several months in production, we finally found one error that the render engine didn’t
detect early: it didn’t reserve disk space for the rendered image up front. One day when PCS
filled its storage volumes, render jobs started to fail late instead of failing early. In all the

preceding time, there were no remakes due to bad renders.

Scale out

Each render engine operates independently. PCS doesn’t keep a roster of the render engines
that exist; each engine just pulls jobs from PCS. In fact, engines can be added or removed as
needed. Because each engine looks for a new job as soon as it finishes the previous one, we

automatically get load balancing, scaled to the horsepower of the individual engines. Faster

render engines just consume jobs at a higher rate. Heterogeneous render engines are no

problem.

The only bottleneck would be PCS itself. Because the render engines call stored procedures to
pull jobs and update status, each render engine generates two transactions every three to five
minutes. PCS runs on a decent-sized cluster of Microsoft SQL Server hosts, so itisin no danger

of limiting throughput anytime soon.

User Response

Our first release was installed at two local studios, both within easy “drive-and-debug” distance.
The associates’ feedback was immediate and very positive. One studio manager estimated that
the new system was so much faster and easier to use that she would be able to handle 50%

more customers during the holiday season. One customer was reported to ask where she could
buy a copy of the software. We commonly heard reports of customers taking the mouse directly
and making their own enhancements. You can imagine that customers are much more likely

to order products they’ve created themselves.

MAKING MEMORIES 87

We had a few kinks in the production process, but those were corrected very quickly. Thanks
to the resilience we built into the loader and render farm, the printing facility has been able to
scale up to handle the volume from many more studios than originally expected, while also

enjoying higher production quality.

Conclusion

I could spend much more time and space with fond descriptions of every class, interaction, or
design decision, with the devotion of a new parent describing his infant’s every burp and
wobble. Instead, this chapter condenses a year's worth of effort, exploration, blood, and sweat.
[tillustrates how the structure and dynamics of the Creation Center architecture emerged from
fundamental forces about the business and its context. By keeping concerns well separated and
guiding the incremental design and development, Creation Center balanced those forcesin a
pleasing way.

References

Buschmann, Frank, Kevlin Henney, and Douglas C. Schmidt. 2007. Pattern-Oriented Software
Architecture: A FPattern for Distributed Computing, vol. 4. Hoboken, NJ: Wiley.

Fowler, Martin. 1996. Analysis Patterns: Reusable Object Models. Boston, MA: Addison-
Wesley.

Fowler, Martin. “Application facades.” htip://martinfowler.com/apsupp/applacades. pdf.

Gamma, Erich, et al. 1994. Design Patterns: Elements of Reusable Object-Oriented Software.
Boston, MA: Addison-Wesley.

Hunt, Andrew, and David Thomas. 1999. The Pragmatic Programmer. Boston, MA: Addison-
Wesley.

Lea, Doug. 2000. Concurrent Programming in Java, Second Edition. Boston, MA: Addison-

Wesley.

Martin, Robert C. 2002. Agile Software Development, Principles, Patterns, and Practices. Upper
Saddle River, NJ: Prentice-Hall.

88 CHAPTER FOUR

