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Preface

WHEN WE WERE FIRST APPROACHED WITH THE IDEA OF A FOLLOW=-UP TO BEAUTIFUL CODE, THIS TIME
about data, we found the idea exciting and very ambitious. Collecting, visualizing, and
processing data now touches every professional field and so many aspects of daily life that
a great collection would have to be almost unreasonably broad in scope. So we contacted a
highly diverse group of people whose work we admired, and were thrilled that so many

agreed to contribute.

This book is the result, and we hope it captures just how wide-ranging (and beautiful)
working with data can be. In it you'll learn about everything from fighting with govern-
ments to working with the Mars lander; you’ll learn how to use statistics programs, make
visualizations, and remix a Radiohead video; you’ll see maps, DNA, and something we can
only really call “data philosophy.”

The royalties for this book are being donated to Creative Commons and the Sunlight
Foundation, two organizations dedicated to making the world better by freeing data. We

hope you’ll consider how your own encounters with data shape the world.



xii

How This Book Is Organized

The chapters in this book follow a loose arc from data collection through data storage,

organization, retrieval, visualization, and [inally, analysis.

Chapter 1, Seeing Your Life in Data, by Nathan Yau, looks at the motivations and challenges
behind two projects in the emerging ficld of personal data collection.

Chapter 2, The Beautifil People: Keeping Users in Mind When Designing Data Collection Methods,
by Jonathan Follett and Matthew Holm, discusses the importance of trust, persuasion, and

testing when collecting data from humans over the Web.

Chapter 3, Embedded Image Data Processing on Mars, by J. M. Hughes, discusses the chal-
lenges of designing a data processing system that has to work within the constraints of

space travel.

Chapter 4, Cloud Storage Design in a PNUTShell, by Brian F. Cooper, Raghu Ramakrishnan,
and Utkarsh Srivastava, describes the software Yahoo! has designed to turn its globally dis-
tributed data centers into a universal storage platform for powering modern web applications.

Chapter 5, Information Platforms and the Rise of the Data Scientist, by Jetf Hammerbacher,
traces the evolution of tools for information processing and the humans who power them,
using specific examples from the history of Facebook’s data team.

Chapter 6, The Geographic Beauty of a Photographic Archive, by Jason Dykes and Jo Wood, draws
attention to the ubiquity and power of colorfully visualized spatial data collected by a volun-
leer community.

Chapter 7, Data Finds Data, by Jetf Jonas and Lisa Sokol, explains a new approach to think-
ing about data that many may need to adopt in order to manage it all.

Chapter 8, Portable Data in Real Time, by Jud Valeski, dives into the current limitations of
distributing social and location data in real time across the Web, and discusses one poten-

tial solution to the problem.

Chapter 9, Surfacing the Deep Web, by Alon Halevy and Jayant Madhavan, describes the
tools developed by Google to make searchable the data currently trapped behind forms on
the Web.

Chapter 10, Building Radiohead’s House of Cards, by Aaron Koblin with Valdean Klump, is
an adventure story about lasers, programming, and riding on the back of a bus, and end-

ing with an award-winning music video.

Chapter 11, Visualizing Urban Data, by Michal Migurski, details the process of Ireeing and
beautifying some of the most important data about the world around us.

Chapter 12, The Design of Sense.us, by Jeffrey Heer, recasts data visualizations as social

spaces and uses this new perspective to explore 150 years of U.S. census data.
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Chapter 13, What Data Doesn’t Do, by Coco Krumme, looks at experimental work that

demonstrates the many ways people misunderstand and misuse data.

Chapter 14, Natural Language Corpus Data, by Peter Norvig, takes the reader through some
evocative exercises with a trillion-word corpus of natural language data pulled down from
across the Web.

Chapter 15, Life in Data: The Story of DNA, by Matt Wood and Ben Blackburne, describes
the beauty of the data that is DNA and the massive infrastructure required to create, cap-

ture, and process that data.

Chapter 16, Beautifying Data in the Real World, by Jean-Claude Bradley, Rajarshi Guha,
Andrew Lang, Pierre Lindenbaum, Cameron Neylon, Antony Williams, and Egon
Willighagen, shows how crowdsourcing and extreme transparency have combined to
advance the state of drug discovery rescarch.

Chapter 17, Superficial Data Analysis: Exploring Millions of Social Stereotypes, by Brendan
O’Connor and Lukas Biewald, shows the correlations and patterns that emerge when peo-

ple are asked to anonymously rate one another’s pictures.

Chapter 18, Bay Area Blues: The Effect of the Housing Crisis, by Hadley Wickham, Deborah F.
Swayne, and David Poole, guides the reader through a detailed examination of the recent
housing crisis in the Bay Area using open source soltware and publicly available data.

Chapter 19, Beautiful Political Data, by Andrew Gelman, Jonathan P. Kastellec, and Yair
Ghitza, shows how the tools of statistics and data visualization can help us gain insight

into the political process used to organize society.

Chapter 20, Connecting Data, by Toby Segaran, explores the difficulty and possibilities of

joining together the vast number of data sets the Web has made available.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables, state-
ments, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values determined
by context.
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Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for permission
unless you're reproducing a significant portion of the code. For example, writing a pro-
gram that uses several chunks of code from this book does not require permission. Selling
or distributing a CD-ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code does not require per-
mission. Incorporating a significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Beautifitl Data, edited by Toby Segaran and Jeff
Hammerbacher. Copyright 2009 O’Reilly Media, Inc., 978-0-596-15711-1."

If you feel your use of code examples falls outside fair use or the permission given here,

feel free to contact us at permissions@oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at:
hittp://oreilly.com/catalog/9780596157111

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly

Network, see our website at:

http://oreilly.com
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Safari Books Online

When you see a Safari® Books Online icon on the cover of your favorite

«ﬁ}
Sa fa rl technology book, that means the book is available online through the
Beoks Online O’Reilly Network Safari Booksheli.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters, and
find quick answers when you need the most accurate, current information. Try it for free

at hittp:/imy.safaribooksonline.com.
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CHAPTER ONE

Seeing Your Life in Data
Nathan Yau

IN THE NOT-TOO-DISTANT PAST, THE WEB WAS ABOUT SHARING, BROADCASTING, AND DISTRIBUTION.
But the tide is turning: the Web is moving toward the individual. Applications spring up
every month that let people track, monitor, and analyze their habits and behaviors in
hopes of gaining a better understanding about themselves and their surroundings. People
can track eating habits, exercise, time spent online, sexual activity, monthly cycles, sleep,
mood, and finances online. If you are interested in a certain aspect of your life, chances

are that an application exists to track it.

Personal data collection is of course nothing new. In the 1930s, Mass Observation, a social
research group in Britain, collected data on various aspects of everyday life—such as
beards and eyebrows, shouts and gestures of motorists, and behavior of people at war
memorials—to gain a better understanding about the country. However, data collection
methods have improved since 1930. It is no longer only a pencil and paper notepad or a
manual counter. Data can be collected automatically with mobile phones and handheld
computers such that constant flows of data and information upload to servers, databases,
and so-called data warehouses at all times of the day.

With these advances in data collection technologies, the data streams have also developed
into something much heftier than the tally counts reported by Mass Observation partici-

pants. Data can update in real-time, and as a result, people want up-to-date information.



It is not enough to simply supply people with gigabytes of data, though. Not everyone is a
statistician or computer scientist, and not everyone wants to sift through large data sets.

This is a challenge that we face frequently with personal data collection.

While the types of data collection and data returned might have changed over the years,
individuals’ needs have not. That is to say that individuals who collect data about them-
selves and their surroundings still do so to gain a better understanding of the information
that lies within the tlowing data. Most of the time we are not after the numbers them-
selves; we are interested in what the numbers mean. It is a subtle difference but an impor-
tant one. This need calls for systems that can handle personal data streams, process them
efficiently and accurately, and dispense information to nonprofessionals in a way that is
understandable and useful. We want something that is more than a spreadsheet of numbers.
We want the story in the data.

To construct such a system requires careful design considerations in both analysis and
aesthetics. This was important when we implemented the Personal Environmental
Impact Report (PEIR), a tool that allows people to see how they affect the environment
and how the environment affects them on a micro-level; and your.flowingdata (YFD),
an in-development project that enables users to collect data about themselves via Twitter, a

microblogging service.

For PEIR, I am the frontend developer, and I mostly work on the user interface and data
visualization. As for YFD, I am the only person who works on it, so my responsibilities are
a bit different, but my focus is still on the visualization side of things. Although PEIR and
YFD are fairly different in data type, collection, and processing, their goals are similar.
PEIR and YFD are built to provide information to the individual. Neither is meant as an
endpoint. Rather, they are meant to spur curiosity in how everyday decisions play a big
role in how we live and to start conversations on personal data. After a brief background
on PEIR and YFD, I discuss personal data collection, storage, and analysis with this idea in
mind. I then go into depth on the design process behind PEIR and YFD data visualizations,
which can be generalized to personal data visualization as a whole. Ultimately, we want to
show individuals the beauty in their personal data.

Personal Environmental Impact Report (PEIR)

PEIR is developed by the Center for Embedded Networked Sensing at the University ol
California at Los Angeles, or more specifically, the Urban Sensing group. We focus on
using everyday mobile technologies (e.g., cell phones) to collect data about our surround-
ings and ourselves so that people can gain a better understanding of how they interact
with what is around them. For example, DietSense is an online service that allows people
to self-monitor their food choices and further request comments from dietary specialists;
Family Dynamics helps families and life coaches document key features of a family’s daily
interactions, such as colocation and family meals; and Walkability helps residents and

pedestrian advocates make observations and voice their concerns about neighborhood
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walkability and connections to public transit.” All of these projects let people get involved in
their communities with just their mobile phones. We use a phone’s built-in sensors, such as

its camera, GPS, and accelerometer, to collect data, which we use to provide information.

PEIR applies similar principles. A person downloads a small piece of software called Cam-
paignr onto his phone, and it runs in the background. As he goes about his daily activi-
ties—jogging around the track, driving to and from work, or making a trip to the grocery
store, for example—the phone uploads GPS data to PEIR’s central servers every two min-
utes. This includes latitude, longitude, altitude, velocity, and time. We use this data to esti-
mate an individual’s impact on and exposure to the environment. Environmental
pollution sensors are not required. Instead, we use what is already available on many
mobile phones—GPS—and then pass this data with context, such as weather, into estab-
lished environmental models. Finally, we visualize the environmental impact and expo-
sure data. The challenge at this stage is to communicate meaning in data that is unfamiliar
to most. What does it mean to emit 1,000 kilograms of carbon in a week? Is that a lot or is
that a little? We have to keep the user and purpose in mind, as they drive the system

design from the visualization down to the data collection and storage.

your.flowingdata (YFD)

While PEIR uses a piece of custom software that runs in the background, YFD requires that
users actively enter data via Twitter. Twitter is a microblogging service that asks a very simple
question: what are you doing right now? People can post, or more appropriately, fweet, what
they are doing via desktop applications, email, instant messaging, and most importantly (as
far as YFD is concerned), SMS, which means people can tweet with their mobile phones.

YFD uses Twitter’s ubiquity so that people can tweet personal data from anywhere they
can send SMS messages. Users can currently track eating habits, weight, sleep, mood, and
when they go to the bathroom by simply posting tweets in a specific format. Like PEIR,
YFD shows users that it is the little things that can have a profound effect on our way of
life. During the design process, again, we keep the user in mind. What will keep users
motivated to manually enter data on a regular basis? How can we make data collection as
painless as possible? What should we communicate to the user once the data has been
logged? To this end, I start at the beginning with data collection.

Personal Data Collection

Personal data collection is somewhat different from scientific data gathering. Personal data
collection is usually less formal and does not happen in a laboratory under controlled condi-
tions. People collect data in the real world where there can be interruptions, bad network
connectivity, or limited access to a computer. Users are not necessarily data experts, so
when something goes wrong (as it inevitably will), they might not know how to adjust.

* CENS Urban Sensing, hftp://urban.cens.ucla.edu/
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Therefore, we have to make data collection as simple as possible for the user. It should be
unobtrusive, intuitive, and easy to access so that it is more likely that data collection

becomes a part of the daily routine.

Working Data Collection into Routine

This is one of the main reasons I chose Twitter as YFD's data proxy from phone or com-
puter to the database. Twitter allows users to post tweets via several outlets. The ability to
post tweets via mobile phone lets users log data from anywhere their phones can send
SMS messages, which means they can document something as it happens and do not have
to wait until they have access to a computer. A person will most likely forget if she has to
wait. Accessibility is key.

One could accomplish something similar with email instead of Twitter since most mobile
phones let people send SMS to an email address, and this was in fact the original imple-
mentation of YFD. However, we go back to data collection as a natural part of daily rou-
tine. Millions of people already use Twitter regularly, so part of the challenge is already
relieved. People do use email frequently as well, and it is possible they are more comfort-
able with it than Twitter, but the nature of the two is quite different. On Twitter, people
update several times a day to post what they are doing. Twitter was created for this single
purpose. Maybe a person is eating a sandwich, going out for a walk, or watching a movie.
Hundreds of thousands tweet this type of information every day. Email, on the other
hand, lends itself to messages that are more substantial. Most people would not email a
friend to tell them they are watching a television program—especially not every day or
every hour.

By using Twitter, we get this posting regularity that hopefully transfers to data collection. 1
tried to make data logging on YFD feel the same as using Twitter. For instance, if someone
eats a salami sandwich, he sends a message: “ate salami sandwich.” Data collection
becomes conversational in this way. Users do not have to learn a new language like SQL.
Instead, they only have to remember keywords followed by the value. In the previous
example, the keyword is ate and the value is salami sandwich. To track sleep, a user simply
sends a keyword: geednight when going to sleep and gmorning when waking.

In some ways, posting regularity with PEIR was less challenging than with YFD. Because
PEIR collects data automatically in the background, the user just has to start the software
on his phone with a few presses of a button. Development of that software came with its
own difficulties, but that story is really for a different article.

Asynchronous data collection

For both PEIR and YFD, we found that asynchronous data collection was actually neces-
sary. People wanted to enter and upload data after the event(s) of interest had occurred.
On YFD, people wanted to be able to add a timestamp to their tweets, and PEIR users
wanted to upload GPS data manually.

CHAPTER ONE



As said before, the original concept of YFD was that people would enter data only when
something occurred. That was the benefit and purpose of using Twitter. However, many
people did not use Twitter via their mobile phone, so they would have to wait until a com-
puter was available. Even those who did send SMS messages to Twitter often forgot to log
data; some people just wanted to enter all of their data at the end of the day.

Needless to say, YFD now supports timestamps. It was still important that data entry syn-
tax was as close to conversational as possible. To accommodate this, users can append the
time to any of their tweets. For example, “ate roast chicken and potatoes at 6:00pm” or
“goodnight at 23:00.” The timestamp syntax is to simply append “at hh:mm” to the end of
a tweet. I also found it useful to support both standard and military time formats. Finally,
when a user enters a timestamp, YFD will record the most recent occurrence of the time, so
in the previous “goodnight” example, YFD would enter the data point for the previous night.

PEIR was also originally designed only for “in the moment” data collection. As mentioned
before, Campaignr runs on a user’s mobile phone and uploads GPS data periodically (up to
every 20 seconds) to our central server. This adds up to hundreds of thousands of data
points for a single user who runs PEIR every day with very little effort from the user’s side.
Once the PEIR application is installed on a phone, a user simply starts the application with
a couple of button presses. However, almost right from the beginning, we found we could
not rely on having a network connection 100% of the time, since there are almost always
areas where there is no signal from the service carrier. The simplest, albeit naive, approach
would be to collect and upload data only when the phone has a connection, but we might
lose large chunks of data. Instead, we use a cache to store data on a phone’s local memory
until connectivity resumes. We also provide a second option to collect data without any

synchronous uploading at all.

The takeaway point is that it is unreasonable to expect people to collect data for events at
the time they happen. People forget or it is inconvenient at the time. In any case, it is
important that users are able to enter data later on, which in turn affects the design of the
next steps in the data flow.

Data Storage

For both YFD and PEIR, it was important to keep in mind what we were going to do with
the data once it was stored. Oftentimes, database mechanisms and schemas are decided on
a whim, and the researchers regret it further down the road, either because their choice
makes it hard to process the data or because the database is not extensible. The choice for
YFD was not particularly difficult. We use MySQL for other projects, and YFD involves mostly
uncomplicated insert and select statements, so it was easy to set up. Also, data is manually
entered—not continuously uploaded like PEIR—so the size of database tables is not an issue
in these early stages of development. The main concern was that I wanted to be able to
extend the schema when I added new trackers, so I created the schema with that in mind.

SEEING YOUR LIFE IN DATA
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PEIR, on the other hand, required more careful database development. We perform thou-
sands of geography-based computations every few minutes, so we used PostGIS to add
support for geographic objects to a PostgreSQL database. Although MySQL offers GIS and
spatial extensions, we decided that PostGIS with PosigreSQL was more robust for PEIR’s
needs.

This is perhaps oversimplifying our database design process, however. I should back up a
bit. We are a group of 10 or so graduate students with our own research interests, and as
expected, work on individual components of PEIR. This affected how we work a great
deal. PEIR data was very scattered to begin with. We did not use a unified database
schema; we created multiple databases as we needed them, and did not follow any spe-
cific design patterns. If anyone joined PEIR during this mid-early stage, he would have
been confused by where and what all the data was and who to contact to find out. I say
this because I joined the PEIR project midway. To alleviate this scattered problem, we
eventually froze all development, and one person who had his hand in all parts of PEIR
skillfully pieced everyone’s code and database tables together. It became quite clear that
this consolidation of code and schemas was necessary once user experience develop-
ment began. In retrospect, it would have been worth the extra effort to take a more cal-
culated approach to data storage in the early goings, but such is the nature of graduate
studies.

Coordination and code consolidation are not an issue with YFD, since there is only one
developer. I can change the database schema, user interface, and data collection mecha-
nism with little fuss. I also use Django, a Python web framework, which uses a model-
view-control approach and allows for rapid and etficient development. I do, however,
have to do everything myself. Because of the group’s diversity in statistics, computer sci-
ence, engineering, GIS, and environmental science, PEIR is able to accomplish more—
most notably in the area of data processing, as discussed in the next section. So there are

certainly advantages and disadvantages to developing with a large group.

Data Processing

Data processing is the important underpinning of the personal data collection system that

users almost never see and usually are not interested in. They tend to be more interested in
the results of the processing. This is the case for YFD. PEIR users, on the other hand, benefit
from seeing how their data is processed, and it in turn affects the way they interpret impact

and exposure.

The analytical component of PEIR consists of a series of server-side processing steps that
start with GPS data to estimate impact and exposure. To be precise, we can divide the pro-

cessing into four separate phases:”

* PEIR, htip://peir.cens.ucla.edu
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1. Trace correction and annotation: Where possible, the error-prone, undersampled
location traces are corrected and annotated using estimation techniques such as map
matching with road network and building parcel data. Because these corrections and

annotations are estimates, they do carry along uncertainties.

2. Activity and location classification: The corrected and annotated data is
automatically classified as traveling or stationary using web services to provide a first
level of refinement to the model output for a given person on a given day. The data is
also split into #rips based on dwell time.

3. Context estimation: The corrected and classified location data is used as input to
web-based information sources on weather, road conditions, and aggregated driver
behaviors.

4. Exposure and impact calculation: Finally, the fine-grained, classified data and
derived data is used as input to geospatial data sets and microenvironment models

that are in turn used to provide an individual’s personalized estimates.

While PEIR’s focus is still on the results of this four-step process, we eventually found that
users wanted to know more about how impact and exposure were estimated. So for each
chunk of data we provide details of the process, such as what percentage of time was spent
on a freeway and what the weather was like around where the user was traveling. We
also include a detailed explanation for every provided metric. In this case, transparency in
the estimation process allows users to see how their actions have an effect on impact and
exposure rather than just knowing how much or how little they are polluting their neigh-
borhood. There is, of course, such a thing as information overload, so we are careful in

how much (and how little) we show. We address much of these issues in the next section.

Data Visualization

Once data is collected, uploaded, and processed, users need to be able to access, evaluate,
and explore their data. The main design goal behind YFD and PEIR was to make personal
data understandable to nonprofessionals. Data has to be presented in a way that is relat-
able; it has to be humanized. Oftentimes we get caught up in statistical charts and graphs,
which are extremely useful, but at the same time we want to engage users so that they
stay interested, continue collecting data, and keep coming back to the site to gauge their
progress in whatever they are tracking. Users should understand that the data is about

them and reflect the choices they make in their daily lives.

[ like to think of data visualization as a story. The main character is the user, and we can go
two ways. A story of charts and graphs might read a lot like a textbook; however, a story
with context, relationships, interactions, patterns, and explanations reads like a novel. This
is not to say that one or the other is better. There are plenty of interesting textbooks, and
probably just as many—if not more—boring novels. We want something in between the
textbook and novel when we visualize personal data. We want to present the facts, but we
also want to provide context, like the who, what, when, where, and why of the numbers.

We are after emotion. Data often can be sterile, but only if we present it that way.
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PEIR

In the case of PEIR, we were met with the challenge of presenting scientific data—carbon
impact, exposure to high levels of particulate matter, and impact to sensitive sites such as
hospitals and schools. Impact and exposure are not a part of everyday conversation. Most
people do not know whether 1,000 kilograms of carbon emissions in a day is a lot or a lit-
tle. Is one hour of exposure to high levels of particulate matter normal? These types of
questions factor into PEIR’s visualization design. It is important to remember, however,
that even though the resulting data is not immediately understandable, it is all derived
from location data, which is extremely intuitive. There are perhaps few types of data that
are so immediately understandable as one’s place in physical space. Therefore, we use

maps as the visualization anchor point and work from there.

Mapping location-based data

Location-based data drives the PEIR system, so an interactive map is the core of the user
interface. We initially used the Google Maps AP, but quickly nixed it in the interest of
flexibility. Instead, we use Modest Maps. It is a display and interaction library for tile-
based maps in Flash and implemented in ActionScript 3.0. Modest Maps provides a core
set of features, such as panning and zooming, but allows designers and developers to eas-
ily customize displays. Modest Maps implementations can easily switch map tiles, whether
the choice is to use Microsoft’s map tiles, Google’s, custom-built ones, or all of the above.
We are free to adjust color, layout, and overall style, which lend themselves to good
design practice and useful visualization, and the flexibility allows us to incorporate our
own visualizations on the map or as a supplement. In the end, we do not want to limit

ourselves to just maps, and Modest Maps provides the flexibility we need to do this.

Experimenting with visual cues

We experimented with a number of different ways to represent PEIR data before deciding
on the final mapping scheme. During the design process, we considered several parameters:
« How can users interact with a lot of traces at once without cluttering the map?

e How can we represent both stationary (user is idle) and traveling (user is moving) data
chunks at the same time?

* How do we display values from all four microenvironment models?
¢ What colors should we use to represent GPS trace, impact, and exposure?

* How do we shift focus toward the actual data and away from the underlying map tiles?

Mapping multivariate location traces

In the early stages of the design process, we mapped GPS traces the way that users typically
see location tracks: simply a line that goes from point to point. This was before taking values

from the microenvironment models into account, so the map was a basic implementation
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using Modest Maps and tiles from OpenStreetMap. GPS traces were mono-colored and rep-
resented nothing but location; there was a circle at the end so that the user would know

where the trip began and ended.

This worked to a certain extent, but we soon had to visualize more data, so we changed
the format. We colored traces based on impact and exposure values. The color scheme
used five shades of red. Higher levels of, say, carbon impact were darker shades of red.

Similarly, trips that had lower carbon impact were lighter shades of red.

The running metaphor is that the more impact the user has on the environment, the more
the trip should stand out on the map. The problem with this implementation was that the
traces on the map did not stand out (Figure 1-1). We tried using brighter colors, but the
brightly colored trips clashed with the existing colors on the map. Although we want
traces to stand out, we do not want to strain the user’s eyes. To solve this problem we tried
a different mapping scheme that again made all trips on the map mono-color, but used cir-
cles to encode impact and exposure. All traces were colored white, and the model values
were visually represented with circles that varied in size at the end of each trip. Greater
values were displayed as circles larger in area while lesser values were smaller in area. This
design scheme was short-lived.

2=

FIGURE 1-1.We experimented with different visual cues on a map to best display location data with impact and
exposure values. The above shows three iterations during our preliminary design. The left map shows GPS traces color-
coded by carbon impact; in the center map, we encoded impact with uni-color area circles; on the right, we incorporated

GPS data showing when the user was idle and went back to using color-coding. (See Color Plate 1.)

One problem with representing values only at the end of a trace was that users thought the
circles indicated that something happened at the very end of each trip. However, this is not
the case. The map should show that something is happening during the entirety of a trip.
Carbon is emitted everywhere you travel, not collected and then released at a destination.

We switched back to color-coding trips and removed the scaled area circles representing
our models” values. At this point in the design process, we now had two types of GPS data:
traveling and stationary. Traveling trips meant that the user was moving, whether on foot
or in a vehicle; stationary chunks are times when the user is not moving. She might be sit-
ting at a desk or stuck in traffic. To display stationary chunks, we did not completely aban-
don the idea of using area circles on the map. Larger circles mean longer duration, and
smaller circles mean shorter duration. Similar to traveling trips, which are represented by
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lines, area circles are color-coded appropriately. For example, if the user chooses to color-
code by particulate matter exposure, a stationary chunk that was spent idle on the free-

way is shown as a brightly colored circle.

However, we are again faced with same problem as before: trying to make traces stand out
on the map without clashing with the map’s existing colors. We already tried different
color schemes for the traces, but had not yet tried changing the shades of the actual map.
Inspired by Trulia Snapshot, which maps real estate properties, we grayscaled map tiles
and inverted the color filters so that map items that were originally lightly colored turned
dark and vice versa. To be more specific, the terrain was originally lightly colored, so now
it is dark gray, and roads that were originally dark are now light gray. This darkened map
lets lightly colored traces stand out, and because the map is grayscale, there is less clashing
(Figure 1-2). Users do not have to try hard to distinguish their data from roads and terrain.
Modest Maps provided this flexibility.

Camarillo
a

34

indicate more time Impact or axposura. White

. Larger circles = Mors ysliow indicatss higher
apent stationary. Zero.

FIGURE 1-2.Inthecurreni mapping scheme, we use color filters to highlight the data. The map serves solely as contexi.
Linked histograms show impact and exposure distributions of mapped data. When the user scrolls over a histogram bar,

the corresponding GPS data is highlighted on the map. (See Color Plate 2.)

Choosing a colorscheme

Once we established map tiles as the dark background and represented trips in the light
foreground, we decided what colors to use. This is important because users recognize
some colors as specific types of events. For example, red often means to stop or that there
is danger ahead, whereas green means progress or growth, especially from an environ-
mental standpoint.

It is also important to not use too many contrasting colors. Using dissimilar colors without
any progression indicates categorical data. Model values, however, are on a continuous
scale. Therefore, we use colors with a subtle gradient. In the earlier versions we tried a
color scale that contained different shades of green. Users commented that because green
usually means good or environmentally friendly, it was strange to see high levels of
impact and exposure encoded with that color. Instead, we still use shades of green but also
incorporate yellows. From low to high values, we incrementally shift from green to yel-

low, respectively. Trips that have impact or exposure values of zero are white.
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Making trips interactive

Users can potentially map hundreds of trips at one time, providing an overview of travel-
ing habits, impact, and exposure, but the user also needs to read individual trip details.
Mapping a trip is not enough. Users have to be able to interact with trips so that they
know the context of their travels.

When the user scrolls over a trip on the PEIR map, that trip is highlighted, while all other
trips are made less prominent and blend in with the background without completely dis-
appearing. To be more specilic, transparency of the trip of interest is decreased while the
other trips are blurred by a lactor of five. Cabspotting, a visualization that maps cab activi-
ties in San Francisco, inspired this effect. When the user clicks on a trip on the map, the
trip log automatically scrolls to the trip of interest. Again, the goal is to provide users with

as much context as possible without confusing them or cluttering the screen.

These features, of course, handle multiple trips only to a certain extent. For example, if
there are hundreds of long trips in a condensed area, they can be difficult to navigate due
to clutter. This is an area we plan to improve as we incorporate user-contributed metadata
such as tags and classification.

Displaying distributions

PEIR provides histograms on the right side of the map to show distributions of impact and
exposure for selected trips. There are four histograms, one for each microenvironment
model. The histograms automatically update whenever the user selects a trip from the trip
log. 1f trips are mostly high in impact or exposure, the histograms are skewed to the right;
similarly, if trips are mostly low in impact or exposure, the histograms are skewed to the
left.

We originally thought the histograms would be useful since they are so widely used in sta-
tistics, but that proved not to be the case. The histograms actually confused more than
they provided insight. Although a small portion of the test group thought they were use-
ful, most expected the horizontal axis to be time and the vertical axis to be the amount of
impact or exposure. People seemed more interested in patterns over time than overall dis-
tributions. Therefore, we switched to time-based bar charts (Figure 1-3). Users are able to
see their impact and exposure over time and browse by week.

Carbon impact (kilograms) [?] Particulate matter exposure (hours) [?]

22 2.4
20

Fri  Sat Sun Mon Tue Wed Thu Fri  Sat Sun Mon Tue Wed Thu

FIGURE 1-3.Time series bar charts proved to be more effective than value-based histograms.
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Sharing personal data

PEIR lets users share their impact and exposure with Facebook friends as another way to
compare values. It is through sharing that we get around the absolute scale interpretation
of axes and shift emphasis onto relative numbers, which better helps users make infer-
ences. Although 1,000 kilograms of carbon might seem like a lot, a comparison against
other users could change that misconception. Our Facebook application shows aggregated
values in users” Facebook profiles compared against other Facebook friends who have
installed the PEIR Facebook application (Figure 1-4).

¥ Personal Environmental Impact Report
How | interact with the environment...

GPS data from a Nokia mobile phone is used to derive the following results.

Impact
Fank 2 of 4 friends

> M N o

Friends 46.30
Exposure
. Rank 1 of 4 friends
: L ve N 43
e Friends 20.18

Current as of: 06/24/2008 12:27:18

A CENS project powered by Nokia

FIGURE 1-4.PEIR’s Facebook application lets users share their impact and exposure findings as well as compare their

values with friends. (See Color Plate 3.)

The PEIR Facebook application shows bar graphs for the user’s impact and exposure and
the average of impact and exposure for his or her friends. The application also shows over-
all rank. Those who have less impact or exposure are higher in rank. Icons also provide
more context. If impact is high, an icon with a chimney spouting a lot of smoke appears. If
impact is low, a beach with clear skies appears.

Shifting attention back to the PEIR interface, users also have a network page in addition to
their personal profile. The network page again shows rankings for the last week of impact
and exposure, but also shows how the user’s friends rank. The goal is for users to try to
climb in the rankings for least impact and exposure while at the same time encouraging
their friends to try to improve. Although actual values in units of kilograms or hours for
impact or exposure might be unclear at first, rankings are immediately useful. When users
pursue higher ranking, values from PEIR microenvironment models mean more in the
same way that a score starts to mean something while playing a video game.

The reader should take notice that no GPS data is shared. We take data privacy very seri-
ously and make many etforts to keep certain data private, which is why only impact and
exposure aggregates are shown in the network pages.

12 CHAPTER ONE



YFD

Whereas PEIR deals with data that is not immediately relatable, YFD is on the opposite
side of the spectrum. YFD helps users track data that is a part of everyday conversation.
Like PEIR, though, YFD aims to make the little things in our lives more visible. It is the
aggregate of small choices that have a great effect. The visualization had to show this.

To begin, we go back to one of the challenges mentioned earlier. We want users to tweet
frequently and work personal data collection into their daily Twitter routine. What are the
motivations behind data collection? Why does a user track what he eats or his sleep hab-
its? Maybe someone wants to lose weight so that he feels more confident around the
opposite sex, or he wants to get more sleep so that he does not fall asleep at his desk.
Another user, however, might want to gain weight, because she lost weight when she was
sick, or maybe she sleeps too much and always feels groggy when she gets up. Others just
might be curious. Whatever the motivation, it is clear that everyone has his or her own
reasons for personal data collection. YFD highlights that motivation as a reminder to the
user, because no matter what diet system someone is on or sleep program he is trying,
people will not change unless they really want to. Notice the personal words of motivation
in large print in the middle of the screen in Figure 1-5.

YOURFLOWINGDATA ' FLOWINGOATA | EATING & WEIGHT

HOW TO MONITOR YOUR
WEIGHT, EATING, AND

Good work| You've lost B pounds so
1 l far. Whatever you're Soing - keep it
s Up, If's working

61b5 DRINKING
I want to fit into my pants - all 7507 .

of them.

FLOWINCGDATA — My Motivaban

EXAMPLE' d y#d weigh 190

What You Ate

TRACKING YOUR PROGRESS

START
1780

ate: Whatever you just finished enting,

EXAMPLE: d yfd ate an entire chicken

by Whiat You Drank
-_ drank: Whatever you just Bnished
160w | Novioe, 2008 dnn 2, 2008 drinking.
. EXAMPLE d yéd dhramk waler
T
Set 1 Waight Goal
: weight_goal: Weight in pounds.
WHAT YOU'VE o : EXAMPLE: d vid welght_goal 160
BEEN EATING =
LATELY over steak and toetilla dips,

218 oats and drinks reoorded
80 far.

ey and bagon sandwich,

JAN 72, 2000 1 & CONSUMPTIONS

What Motivazes You

welght_be What welll motivate you i
Tive heslthler?

FIGURE 1-5.Peopletrack their weight and what they eat for different reasons. YFD places motivation front and center.
(See Color Plate 4.)

It is also worth noting that each tracker’s page shows what has happened most recently at
the top. This serves a few purposes. First, it will update whenever the user tweets a data
point, so that the user can see his status whenever he logs in to YFD. Second, we do not
want to stray too far from the feel of Twitter, again to reinforce working YFD tweets into

SEEING YOUR LIFE IN DATA
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the Twitter routine. Finally, the design choice largely came out of the experience with

PEIR. Users seem to expect time-based visualization, so most YFD visualization is just that.

There is one exception, though—the feelings and emotions tracker (Figure 1-6). As any-
one can tell you, emotions are incredibly complicated. How do you quantily happiness or
sadness or nervousness? It did not seem right to break emotions down into graphs and
numbers, so a sorted tag cloud is used instead. It somehow feels more organic. Emotions
of higher frequency are larger than those that occur rarely. The YFD trackers are all mod-
ular at these early stages of development, but I do plan to eventually integrate all trackers
as if YFD were a dashboard into a user’s life. The feelings tracker will be in the center of it

all. In the end, everything we do is driven by how we teel or how we want to feel.

YOUR FLOWINGDATA | FLOWINGDATA | FLELING

RECENT FEELINGS HOW TO KEEP TRACK OF
HOW YOU FEEL
L J JAN 22, 2008/ 3 ENTRES
fittery,
antay,
hangry, How You Feal Now
LOUL . IANZY, 2008/ 1 ENTRIES feeling: How you foed right now
i thirsty, EXAMPLE: d yid fureling stupdersiou
. . SAN 20, 200 2ENTRY
tired hungry satisiea =
5 BIORAY,
antsy thirsty full sleepy content
AN 19, 2009/ 3 ENTRES
frustrated restless confused Cold productive thisty,
concerned hopeful groggy bored lazy drowsy concemmed
S0re lethargic sloth skilled cuinated spicy ready fine e
stuffy iritated momtonows nervous zoned pleased better strange e
ambiticus empty happy COLD go0d perpiesed energetic puzzled ==
invigoraled UNEASY salisifed AlONE soned vut ATY gassy depressed Pt
non-cager dejected entertained swvepimined jittery Welrd conflicted e g

annoyed

FIGURE 1-6.Userscan also keep track of how they feel. Unlike the other YFD trackers, the page of emotions does not

have any charts or graphs. A word cloud was chosen to provide more organic-feeling visualization.

The Point

Data visualization is often all about analytics and technical results, but it does not have to
be—especially with personal data collection. People who collect data about themselves are
not necessarily after the actual data. They are mostly interested in the resulting informa-
tion and how they can use their own data to improve themselves. For that to come
through, people have to see more than just data in the visualization. They have to see
themselves. Life is complex, data represents life, and users want to understand that com-
plexity somehow. That does not mean we should dumb down the data or the information.
Instead, we use the data visualization to teach and to draw interest. Once there is that
interest, we can provide users with a way to dig deeper and explore their data, or more
accurately, explore and understand their lives in that data. It is up to the statistician, com-

puter scientist, and designer to tell the stories properly.
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How to Participate

PEIR and YFD are currently by invitation only, but if you would like to participate, please
feel free to visit our sites at hittp://peir.cens.ucla.edu or hitp:/tfyour flowingdata.com, respec-

tively. Also, if you are interested in collaborating with the PEIR research group to incorpo-
rate new models, strategies, or visualization, or if you have ideas on how to improve YFD,

we would love to hear from you.
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CHAPTER TWO

The Beautiful People: Keeping Users in
Mind When Designing Data Collection
Methods

Jonathan Follett and Matthew Holm

Introduction: User Empathy Is the New Black

ALWAYS KEEP THE WANTS AND NEEDS OF YOUR AUDIENCE IN MIND. THIS PRINCIPLE, WHICH GUIDES THE FIELD
known as user experience (UX) design, seems painfully obvious—enough to elicit a roll of the
eyes from any professional creating new, innovative digital technologies or improving upon
already existing systems. “Yes! Of course there’s a person using the product!”

But, while the benefits of following a user-centered design process can be great—like
increased product usability and customer satisfaction, and reduced 800-number service
calls—this deceptively simple advice is not always followed, especially when it comes to

collecting data.

What Is UX?

UX is an emerging, multidisciplinary field focused on designing products and services that
people can easily understand and use. Its primary concern is making systems adapt to and
serve the user, rather than the other way around. (See Figure 2-1.) UX professionals can
include practitioners and researchers in visual design, interaction design, information
architecture, user interface design, and usability. And the field, which is strongly related to
human factors and computer-human interaction, draws upon ethnography and psychol-
ogy as well: UX professionals operate as user advocates. Generally, UX design techniques
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are applied to desktop and web-distributed software, although proponents may use the
term more broadly to describe the design of any complex experience—such as that of a

museum exhibit or retail store visit.

The Benefits of Applying UX Best Practices to Data Collection

When it comes to data collection, user experience design is more important than ever.
Data—that most valuable digital resource—comes from people and their actions, so
designers and developers need to be constantly thinking about those people, and not just
about the data they want to collect. The key method for collecting data from people online
is, of course, through the use of the dreaded form. There is no artifact potentially more

valuable to a business, or more boring and tedious to a participant.

As user experience practitioners, we regularly work with data collected from large audi-
ences through the use of web forms. And we’ve seen, time and again, that the elegant
visual design of forms can assist greatly in the collection of data from people. The chal-
lenge presented by any form design project is that, although it’s easy enough to collect
data from people, it can be exceptionally difficult to collect good data. Form design matters
(see Figure 2-1), and can directly affect the quality of the data that you receive: better-
designed forms gather more accurate and more relevant data.

Digital product development is often driven by
business or technology concerns

. e Build Eal product O

Businessrules Technology User needs
and objectives and motivations

UX design integrates the end user into the process

Digital product

User needs
and motivations

FIGURE 2-1.Ratherthan treating audience needs as an afterthought, the UX design process addresses audience needs,

business requirements, and technical feasibility during the desi¢n stage.

So, what is it that drives people to fill in forms and create the data we need? And how can
we, as designers and developers, encourage them to do it more efficiently, effectively, and

accurately?
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We’ll take a look at a case study here, showing an example of simple form design using UX

best practices and principles to increase the completion rate of unsolicited questionnaires.

The Project: Surveying Customers About a New Luxury Product

Our project was an online survey for a marketing consulting tirm, Urban Wallace Associ-
ates, that was trying to gauge consumer interest in a new luxury product. (To maintain
confidentiality, we’ve had to change some of the details throughout this chapter relating
to the content of the survey questions.) The survey audience was the same demographic as

the product’s eventual retail audience: wealthy individuals between the ages of 55 and 75.

An email survey was not our client’s first choice. Urban Wallace Associates had already
attempted a telephone survey of the target group. “Normally, we get about 35% answer-
ing machines,” says UWA President, Roger Urban. “In this group, we got more than 80%

answering machines. When someone did pick up, it was usually the housekeeper!”

Unable to get a satisfactory sample of the target audience on the phone, our client turned
to email. One of the reasons our client chose this communication method is because, for
this affluent group, email is a near-universal utility. And while email faces its own set of
gatekeepers—namely, automated junk mail filters—very few people, as of yet, hire others
to read it for them. Even the wealthy still open their own emails.

Urban Wallace Associates secured an email marketing firm to help generate and prequalify
the recipient list, and to deliver and track the outgoing messages. Our firm was brought in
to design and build the survey landing page, which would open in the recipient’s web
browser when he clicked a link in the body of the email, and to collect the results into a
database. Our primary focus in this task was maintaining an inviting atmosphere on the
questionnaire web page, so that respondents would be more willing to complete the form.
A secondary task was creating a simple interface for the client so that he could review live
reporting results as the data came in.

Specific Challenges to Data Collection

Data collection poses specific challenges, including accessibility, trust, and user motivation.
The following sections discuss how these issues affected our design.
Challenges of Accessibility

Advocates of web accessibility—designing so that pages and sites are still useful for people

also create a site that is more usable for everyone. This was not just a theoretical consider-
ation in our case, since, with a target audience whose members were approaching or past
retirement, age-related vision impairment was a real concern. Some 72% of Americans

report vision impairment by the time they are 45 years of age.

THE BEAUTIFUL PEOPLE
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The other side of the age issue—one rarely spoken of, for fears of appearing discrimina-
tory—is that older people use computers and the Internet in fewer numbers and with less
ease than younger people who grew up with computers in their lives. (Individuals with
higher incomes generally use computers and the Internet more, however, so those age-
related effects were mitigated in our sample group.) Respondents who are stymied by a
confusingly designed survey are less likely to give accurate information—or, indeed, to
complete the survey at all. In our case, as in all such projects, it pays to recall that essential
adage: know your audience.

Challenges of Perception

While accessibility is a functional issue—a respondent cannot complete a survey it she
can’t read it—our project faced other challenges that were more emotional in nature, and

depended on how the respondent perceived the questioner and the questions.

Building trust

Internet users are well aware that giving out information to people online can have seri-
ous consequences, ranging from increased spamming, phone solicitation, and junk mail all
the way up to fraud and identity theft. Therefore, for those looking to do market research
online, building trust is an important factor. Although the response to the product and our
survey was ultimately quite positive overall (as we’ll describe in more detail later on),
there were several participants who, when asked why they were not interested in the

product, responded with statements such as:

“Don’t trust your firm”

“Unknown Offeror”

“Don’t believe what [the product] claims to deliver”

“can’t atford it...don't trust it...too good to be true so it probably isn’t. PLEASE DO
NOT CONTACT ME ABOUT THIS PRODUCT ANY MORE”

These responses illustrate the lengths to which we must go in order to build trust online. It
was more important, in our case, because we were explicitly »ot selling anything—we
were conducting research. “I don’t want anything that sounds like a sales lead,” our client,
Roger Urban, told us at the outset. It would be necessary to provide clear links back to
information about Urban Wallace Associates, so people could see what kind of firm was
asking them questions, and to post clear verbiage that we were not collecting their per-
sonal data, and that we were not going to contact them again. The only wrinkle was that
our client’s research required knowing the U.S. state in which each respondent was living.
So we would have to figure out a way to capture that information without violating the

spirit of the trust we were trying to build.

Length of survey

Keeping the respondent from disengaging was one of our biggest concerns. The client and
we agreed early on to keep the survey to a single screen. Multiple screens would not only
require more patience from the respondent, but they might require additional action
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(such as clicking a “go on to the next question” button). Any time a survey requires an
action from the respondent, you’'re inviting him to decide that the extra effort is not worth
it, and to give up. Further, we wanted to avoid intimidating the respondent at any point
with the perceived length of the survey. Multiple screens, or the appearance of too many
questions on a single screen, increase the likelihood that a respondent will bail out.

Accurate data collection

One particularly important problem we considered during the design stage of this survey
was that the data we collected needed to be as accurate as possible—perhaps an obvious
statement, but difficult nonetheless. Our form design had to elicit responses from the par-
ticipants that were honest, and not influenced by, say, a subconscious desire to please the
questioner (a common pitfall for research of this type). The difference between collecting
opinion data and information that might be more administrative in nature, such as an
address for shipping, is that shipping data can be easily validated, whereas opinion data,
which is already subjective, has a way of being more slippery. And although the science of
designing opinion polls and measuring the resulting data is not something we’ll cover in
depth in this chapter, we will discuss some of the language and other choices our team

made to encourage accurate answers.

Motivation

Finally, although we’ve talked about concerns over how to make it possible for respon-
dents to use the form, as well as the problems of getting them to trust us enough to keep
participating, avoiding scaring them off with a lot of questions, and making sure we didn’t
subconsciously influence their answers, we haven’t mentioned perhaps the most impor-
tant part of any survey: why should the person want to participate at all? For this type of
research survey, there is no profit motive to participate, unlike online forums such as
Amazon’s Mechanical Turk, in which users complete tasks in their spare time for a few
dollars or cents per task. But when there is no explicit profit to be made, how do you convince a

person to take the time to answer your questions?

Designing Our Solution

We’ve talked about some of the pitfalls inherent in a data-collecting project; in the next
tew sections, we discuss the nuts and bolts of our design, including typography, web
browser compatibility, and dynamic form elements.

Desig¢n Philosophy

When we design to elicit a response, framing the problem from a user’s perspective is crit-
ical. It’s easy to get caught up in the technical constraints of a project and design for the

computer, rather than the person using it. But form data is actively generated by a person
(as opposed to being passively generated by a sensor or other input), and requires the par-
ticipant to make decisions about how and whether to answer your questions. So, the way

in which we collect a participant’s data matters a great deal.
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As we designed the web form for this project, we focused on balancing the motivations of
survey participants with the business objectives of the client. The client’s primary business
goal—to gather data determining whether the target audience would be interested in pur-
chasing a new luxury product—was in line with a user-centered design perspective. By

placing the person in the central role of being both advisor and potential future customer,
the business objectives provided strong justification for our user-centered design decisions.

Here are a couple of guidelines we used to frame our design decisions:

Respect the user
Making our design people-centered throughout the process required thinking about
our users’ emotional responses. In order to convince them to participate, we had to first
show them respect. They're not idiots; they're our potential customers. We all know
this instinctively, but it’s surprising how easily we can forget the principle. If we
approach our users with respect, we’ll naturally want the digital product we build for
them to be accessible, usable, and easily understood. This perspective influences the
choices we make for everything from language to layout to technology.

Make the person real

In projects with rapid timelines or constrained budgets, we don’t always have the
resources to sculpt a complete user profile or persona based on target market research,
or to observe users in their work environments. In these situations, a simple “guerilla”
UX technique to create empathy for the user and guide design decisions is to think of a
real person we know in the demographic, whom we’d legitimately like to help. We had
several such stand-in personas to guide our thinking, including our aging parents and
some former business mentors whom we know very well. Of course, imagining these
people using our digital product is only a first step. Since we knew them well, we were

also able to enlist some of them to help in preliminary testing of our design.

In the end, people will adapt their own behavior to work with just about any design, if they
have to. The purpose of UX is to optimize those designs so people will want to use a product

or service, and can use it more readily and easily, without having to adapt their behavior.

Designing the Form Layout

Generally, no matter how beautiful our form design, it’s unlikely that it will ever rise to
the level of delighting users. There is no designers” holy grail that can make people enthu-
siastic about filling out a form. However, [orm aesthetics do matter: clear information and
visual design can mitigate users” boredom by clearly guiding their eyes and encouraging
them to make it to the end, rather than abandoning the task halfway through. Good form
design doesn’t draw attention to itself and should be nearly invisible, always honoring its
primary purpose, which is to collect accurate information from people. While form design
needs to be both pleasing and professional in tone, in most cases, proper visual treatment
will seem reserved and utilitarian in comparison to most other kinds of web pages. Form
visual design can only be judged by how effectively it enables users to complete the task.
For this project, the areas where we focused our design efforts were in the typography,

page layout, and interaction design.
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Web form typodraphy and accessibility

In general, older readers have difficulty seeing small type. And survey participants are not
so generous that they're willing to strain their eyes to read a form. Because the target
audience for our survey project was older (55-75 years of age), we knew that overall legi-
bility would be an issue.

We chose the sans serif typeface Arial (a close cousin via Microsoft of the modern work-
horse Helvetica), which is standard-issue on nearly 100% of web browsers, and we set
headers and body copy large at 20 pixels and 14 pixels, respectively. Although larger type
caused the page to be slightly longer, the improvements in legibility were well worth it.
Line spacing was not too tight, and was left-justified with a rag right. Line length was
roughly 85 characters. And we set the majority of the text with the high contrast combi-
nation of black type on a white background, also for legibility considerations. While we
did use color strategically to brighten the page and emphasize the main headers, we did
not rely on it to provide any additional information to the user. We did this because, for
the male audience, roughly 7-8% has some type of color blindness.

Giving them some space

A densely designed form with no breathing room is guaranteed to intimidate the user. So,

leaving some open whitespace in a layout is key.

In our survey, the first section included a text description of the luxury product, which we
asked participants to read and evaluate. Web readers are notorious for their short atten-
tion spans and tendency to skim text rather than read it all the way through. So, following
web writing best practices, we separated the 250-word product description into subsec-
tions with headers, pulling out key bullet points and dividing it into easily digestible
chunks (see Figure 2-2).
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Take this one-page survey and let your opinion be heard
oo e e o 1 et v o e iy
For legibility,
headers were 1 Pleass roview this new product
|
set in Aria o
at 20 px Py s e
Body ccpy -lhm-lb-!l\.h-v::l-r::‘m
& N ean be EtemEed 16 s Suiet ipecicatons.
was also setin
Arial at 14 px. S AR
4 = »
Cumer Bpwerti Benefitn

 Toe procuct wd ba permd 1 o eereresy lemdess sobon
Oma,

Bullet points help break ; ]
up the text into egsily Whitespace is always

readable chunks appreciated and makes
' the page seem lighter

and less oppressive.

FIGURE 2-2.Designing for legibility. (See Color Plate 5.)
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Accommodating different browsers and testingd for compatibility

To make sure the form was usable by our audience, we designed the form page so it could be
viewed easily in a variety of screen sizes, from an 800-pixel width on up. To accomplish this,
we centered the form in the browser, using a neutral gray background on the right and left
margins to fill the remaining space of widescreen monitors and ensure that the form
wouldn’t appear to be disembodied and floating. We also tested in all major web browsers,
including the legacy IE6, to ensure that the dynamic form looked good and functioned well.

Interaction design considerations: Dynamic form length

Dynamic forms can “soften the blow” ol having many questions to answer. Using Java-
Script or other methods can create a soft reveal that allows the form to be subtly altered—
or lengthened—based on user input (see Figures 2-3 and 2-4). These techniques allowed
us to balance not scaring users off with a form that is too long on the one hand, and not
infuriating them because they had been “deceived” about the form length on the other.

ane What is yous opinion of this new product? =)
L ¢ A @ nes ) fresearch.uwa com w | (XJ° Cooge qQ

o

-) URBAN WALLACE ASSOCIATES

Take ihis one-page survey and let your opinion be heard,
F

ploane review the summary of this new product and then take our short survey. it's that
le. Rest assured that we do ot collect any personally identifiable information about you

Sisp1 Please review this new product

-
Luzury Product Summary
A major US manufacturer & considering affering & new haxury product that [detaks romoved],
= The price will be 15% lower than that of similar products.

= Each one is handorafied by workd-plass artisans.
® It can ba customized 10 your axact specifications.

Guaranteed Sstisfaction

& This produt! camas with a lifetime satiafaction guarantes.
» Qur customer servics reprasantaiives ae gurantend & bo on-cal & assist you, 24 hours o day

Qiher Secilic Benefits
= The product wil be offered in an exiremely msted edition.

@ Other products from s manufacturer have sppreciated more than 5% n value over Meir ifetime.
& Tne safoty features of Ihe product have been independantly raied as among !e highest In the workl.

Sisp2, Please answer a few survey questions

1, How interested would you be 1o purchase this kind of product?
Would you say that you:

1 Definfisly would purchase

© Probably would purchase

" Might or might nol purchase
™ Probably would nat purchase
" Definilely would not purchase

2. Do you cumently own a produci like this?
~ Yos
™

3. Do you cumently own a product manufactured by [competitors name|?
© Yos
“ no

neny  com

FIGURE 2-3.The survey starts with only three questions. (See Color Plate 6.)
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1, How interested would you be to purchase this kind of product?
Would you say that you:

T Maght or might nat purchise
7 Probably would not purchass
" Defintiely would not purchase

2. Which of the foliowing are extremely impartant to you?
(Check Lp 1o 3 resaonses)

= The price of the product

™ The products Metime guararise

' The quality of ihe crafismanship
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[~ The an-call cusiomer servics guaramee

3, Do cumently own a product like this?
w
~

you
Yos
No

4. i you could 1l out a simple form to exchange your current product for ours, would you?
 Yos
™ N

5, Do you cumently own a product manufactused by [competitors name]?
* Yas
L )

€, Woulkd you switch from [competitors name| te our brand?
= Yes
N

FIGURE 2-4. The survey may expand to up to six questions depending on user input. (See Color Plate 7.)

For our project, the readers, in effect, built the survey as they answered each question. We
used a very simple piece of JavaScript code to make sure each new question was condi-

tional upon an answer to previous questions. The idea for this solution came from another
website we were working on at the time. In that project—a portfolio site for a designer—
we used JavaScript to hide and reveal details about different projects, making it possible to
take in all of the designer’s work at a glance and then dive deeper into areas of interest, all
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without leaving the home page. This idea—not overwhelming the user with too much
information, yet making that information quickly accessible at the same time—was on our

minds when we approached the survey design. Here is the code we used:

¢script language="JavaScript"»

//This finds the word "Yes" in an input value and displays the designated hiddenElement

(or hides it if "Yes" is not found)

function switchem(switchElement,hiddenElement) {

if (switchElement.value.search("Yes") » -1)
document.getElementById(hiddenElement).style.display 2

else
document.getElementById(hiddenElement).style.display = 'none';

}

</script>

¢script language="JavaScript">

//This finds the word "No" in an input value and displays the designated hiddenElement

(or hides it if "No" is not found)

function switchem2(switchElement,hiddenElement) {

if (switchElement.value.search("No") » -1)
document.getElementById(hiddenElement).style.display -

else
document.getElementById(hiddenElement).style.display = ‘none';

}

¢/script>

<1li id="surveyl" class="surveynum">How interested would you be to purchase this kind of
product?

<p><b>Would you say that you:</b></p>

<ul class="nobullet">

<lir<input
onclick="switchem(this, 'survey2');switchem2(this,"'survey3');document.
getElementById('surveytextarea').value=""" type="radio" name="q1" value="Yes,
Definitely would purchase"> Definitely would purchase</1i>

<lir<input

onclick="switchem(this, 'survey2');switchem2(this,"'survey3');document.
getElementById('surveytextarea').value=""" type="radio" name="q1" value="Yes, Probably
would purchase"> Probably would purchase</li»

<li><input
onclick="switchem(this, ‘survey2');switchem2(this, 'survey3");document.
getElementById('surveytextarea').value=""" type="radio" name="ql1" value="Yes, Might or
might not purchase"> Might or might not purchase</li>

<lir<input
onclick="switchem(this, 'survey2');switchem2(this,'survey3"');document.
getElementById('qg2a").checked=false;document.getElementById('g2b').
checked=false;document.getElementById('q2c').checked=false;document.
getElementById('qg2d"').checked=false;document.getElementById('q2e').
checked=false; ;document.getElementById('q2f').checked=false;
document.getElementById('q2g').checked=false" type="radio" name="q1" value="No,
Probably would not purchase"”> Probably would not purchase</li»

26 CHAPTER TWO



<lir<input
onclick="switchem(this, 'survey2');switchem2(this,'survey3"');document.
getElementById('q2a’).checked=false;document.getElementById(‘q2b').
checked=false;document.getElementById('q2c').checked=false;document.
getElementById('qg2d").checked=false;document.getElementById('qg2e').
checked=false;;document.getElementById('q2f').checked=false;
document.getElementById('q2g').checked=false" type="radio" name="g1" value="No,
Definitely would not purchase"> Definitely would not purchase</li»
</ul>
</1i>
<1i id="survey2" style="display:none" class="surveynum">Which of the following are
extremely important to you?
<p>(Check up to 3 responses)</p>
<ul class="nobullet">
<li><input type="checkbox" name="q2" id="q2a" value="The price of the product">
The price of the product </li»
<li><input type="checkbox" name="q2" id="q2b" value="The product's
lifetime guarantee"> The product's lifetime guarantee</1i>
<li><input type="checkbox" name="q2" id="q2c" value="The quality of
the craftsmanship”> The quality of the craftsmanship </1i>
<li><input type="checkbox" name="q2" id="g2d" value="The fact that it can be
customized to my taste"> The fact that it can be customized to my taste </1i>
<lir<input type="checkbox" name="q2" id="q2e" value="The prestige of
owning the product"> The prestige of owning the product </1i>
<li><input type="checkbox" name="q2" id="q2f" value="The safety features"> The
safety features </li»
<li><input type="checkbox" name="g2" id="g2g" value="The on-call customer
service guarantee"> The on-call customer service guarantee¢/1i>
</ul>
</1i>
<li id="survey3" style="display:none" class="surveynum">Why are you not interested in
this product?
<ul class="nobullet">
<li><textarea id="surveytextarea" name="q3"></textarea></li»
</ul>
</1i>

The result is that selecting anv of the three positive responses on the 5-point scale in Ques-
tion 1 revealed a checklist that helped further identify what the respondent liked about
the product (Figure 2-5). Selecting either of the two negative responses revealed a text
area in which the respondent could explain, precisely, what he disliked about the product
(Figure 2-6).

As programming goes, this is child’s play and hardly worth mentioning. But the impact
from the user’s standpoint is subtle and powerful. It meant that we could “listen” and
“respond” to the user’s input in a very conversational manner. It also meant that the
psychological impact of the form length is much lower, as users are facing only a three-
question survey at the start. The survey potentially could expand to six questions, but all
of this happens without the user ever leaving the survey landing page, and without forc-
ing the user to actively click some sort of “Next page” button.
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Swp2 Please answer a few survey gquestions.
1. How interested would you be to purchase this kind of product?
Would you say that you:
" Definitely would purchase
= Probably would purchase
© Might or might not purchese

" Probably would not purchase
I Definitely would not purchase

2. Which of the following are extremely important to you?
(Check up 1o 3 responses)

[~ The price of the product

[” The product’s lifetime guarantee

[ The quality of the craftsmanship

™ The fact that it can be customized to my taste
I” The prestige of owning the product

™ The safety features

[ The on-call customer service guarantee

FIGURE 2-5. Detail of survey when the user answers “Yes" to Question 1. (See Color Plate 8.)

Swp2 Please answer a few survey questions,

-

1. How interested would you be to purchase this kind of product?
Would you say that you:

" Definitely would purchase

" Probably would purchase

" Might or might not purchase
" Probably would not purchase
* Definitely would not purchase

2. Why are you not interested in this product?

FIGURE 2-6. Detail of survey when the user answers “No" to Question 1. (See Color Plate 9.)

Designing trust

We did some concrete things to try to establish trust with the respondents and indicate
that this was a legitimate survey, not a phishing expedition. First, we prominently dis-
played the client’s company logo at the top of the web survey page. The logo itself linked
back to the “About Us” area on Urban Wallace Associates” main website, so survey partici-
pants could see who they were communicating with. Additionally, we hosted the survey

page on a subdomain of our client’s main site, not on some third-party host.

As previously mentioned, our client’s research needed the U.S. state of residence of each

respondent. But, since we told respondents, “we do not collect any personally identifiable
information about you,” it would have been awkward to then start asking questions about
where the person lived. Our solution was to record the visitor’s IP address automatically,
which would satisfy the U.S. state location requirement but not violate the respondent’s

privacy. After all, a user’s IP data is logged anytime he or she visits any website, and, at
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most, it can only be used to determine the city of that otherwise anonymous user’s Inter-

net Service Provider.

We then purchased an inexpensive data set of IP-to-State information. With it, we were
able to match each IP address collected with the U.S. state in which it resided. Although
we could have scripted our pages to access this database and match the numbers at the
time of data collection, we chose to do the matching semi-automatically after the fact. For
starters, the project budget and timeframe did not warrant purchasing the additional
server power to handle the task. But more important, from a user perspective, was the
delay this matching would have inevitably built into the survey completion process.
Although it might have been more convenient for us to receive finalized data at once, it
would have created an additional inconvenience for our user. When designing a data col-
lection experience, it’s important to think about what server tasks must take place during
the survey in order for the user’s needs to be met, and what tasks can be delayed until after

data collection. Don't ask the user to do what you can do—or discover—on your own.

All of this leads us back to the central point of this chapter, which is also the final, and
core, aspect of building trust: treat the respondent with respect. By demonstrating that
you value the respondent and her time and intelligence, by interacting with her in a con-
versational manner (despite the fact that all survey questions are being delivered by a pre-
programmed machine), and showing her that you’ve been “listening” to her answers
(don’t, for example, ask slight variations of the same question over and over again, which
makes it seem as though you didn’t pay attention to her original response), you’'ll increase
trust, encourage real answers, and keep the respondent from disengaging.

Designing for accurate data collection

This sort of talk can seem a little touchy-feely at times, especially to people who only work
with the hard numbers retrieved from data collection, and not the human beings who
generated that data. But all of this user-centered focus is not just a matter of politeness—
it’s also crucial for the reliability of the data that we actually get. “For a survey like this,”
says Roger Urban, whose firm specializes in measuring market interest and customer satis-
faction through face-to-lace, mailed, telephone, and email surveys just like this, “you’re
dealing with extremely thin data sets, so the quality of that data is really important.” In
other words, when important decisions are being based on the answers given by only a
tew hundred people, those answers had better be great.

But great answers do not mean positive answers. After all, this is research, and just like sci-
entists, we want to measure reality (Do customers care about price that much when it
comes to this product? Is safety really their top concern, or not? Are they, in fact, happy
with our service?), to see where our assumptions are wrong. “Techniques of persuasion
are a disaster when it comes to research,” says Roger Urban. People will, subconsciously,
try to please researchers by answering in the way that they feel they are supposed 1o answer.
Introducing persuasive techniques, whether implicit or explicit, will skew your research data.
“If you want an artificially high positive,” says Urban, “I can get it for you every time.” But if
you're making real business or policy decisions, what good is such data?
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Motivation

You can’t use persuasive techniques during the act of data collection, but you do need to
persuade your respondents to participate in the first place. With no money involved, what

is their motivation?

“There should always be some benefit,” says Roger Urban, “even if that benefit is just

ror

’voicing your opinion.”” Human beings are interesting creatures; where cold, hard cash

may not be able to compel us, far more nebulous benefits may do the trick—for example,
some well-placed flattery. We all like to be thought of as experts; validation that our opin-
ion is important may be enough to convince us to spend time talking to a stranger. So, too,
can the allure that we may be receiving “inside information” by participating, that we are
glimpsing what the future holds. For example, what techie wouldn’t be interested in par-

ticipating in a survey that allowed us to glimpse the design of Apple’s next i-gadget?

In our project’s case, we knew that we were dealing with an older audience. The language
in the initial email was important in terms of engaging the recipient, and our team went
with an appeal to the respondent’s expertise. In our first mailing, we tested two different
headlines on equal-sized groups of recipients:

“You can shape the face of [product information removed] for future generations.”

“We're seeking the voice of experience.”

As it turned out, the first headline, though otfering the respondent the power to steer the
very direction of the future, apparently proved slightly more ephemeral and altruistic
(after all, it implies that the benefit may be solely for future generations, not necessarily
for the respondent) than the ego-stroking one that turns their age into a positive (“experi-
ence”). For the first headline, 12.90% of those who opened the email clicked through, and
16.22% of those completed the survey. For the second headline, 14.04% of those who
opened the email clicked through, with 29.5% of those people completing the survey.
When the second mailing was conducted two weeks later, with the “voice of experience”
headline on all messages, it generated a click-through rate of 27.68% and a completion
rate of 33.16%. This second email went to people on the list who did not open the first
mailing. (One of the secrets of email surveys is that the second mailing to the same list
generally receives just as many responses as the first.)

This is another aspect of UX philosophy that’s worth remembering: test everything. In this
case, test even your testing methods! When you have the time and resources, test different
copy, test different layouts, and test different types of interaction design—all with actual

users.

Reporting the live data results

In our project, one special consideration was that the recipient of the final data, the client,
would also be a user of the system—with drastically different needs from those of the sur-

vey participants.
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Because the project was time sensitive, the client needed to see the survey results quickly
to determine whether the product was generally well received. For this use case scenario,
our solution was an HTML page, accessible to the client, which displayed the data, crudely
sorted with minimal formatting. The live, raw survey results were sorted first by mailing
(two mailings of each headline were sent to two age segments—>55 to 64 and 65 to 75) and
then by people’s Yes/No answers to the first question about their interest in the product.

Unlike the survey participants, who needed to be convinced to participate and encouraged
to complete the form, the client was motivated by a desire to see the data as quickly as it
was generated. For the client, speed and immediate access to the live results as they came
in were more important than any other factors. Thus, his user experience reflected those

priorities (see Figure 2-7).

ann Untied Page =)
[ - LT . L= a
# 1D Maling S Q| Qr Qi 04 108 06 Q7 TP Addrew. -~
- — — i
o o — i —
DA GA PO e e s YeYeNo 3411020818
T
Yo .
e o Probusly a2
obale  fva [t Yeu Yeu Yeu Yeu 24 710.16.161
Pumtase
Yo
u jya by Pme— No N SLIZI6D
P
Yeu, -
4 g Pl R No  YexNo 71849300
Funbme
T —— e
s osfi joa [robud —_———— YesYesNo 893100166
|
Ya.
® o3 jca ksl No Ve Yesd8129708

0 Ne Ne  TLII0203

Yo, Magit or .

s w0 €O might e YeNo ¥ 74171370
R ' -

- —

Yoo Maght of mmm  mee s =

5 2601 TN mlghin  —— - — No  Ne Temiads
P p—————
Yea_ Might or *

10 34 1 CA might et . . No Yo Ye )68 M0
e u

FIGURE 2-7.0n this live data reporting screen, the client was able to see the survey results as they came in.

The raw data display was not, of course, the final deliverable. Upon the project conclusion
we presented the client with fully sortable Excel spreadsheets of all the data we had col-
lected (from eight total mailings, sent in two batches), including the U.S. state data that
had not yet been generated at the time of the survey.

Results and Reflection

In the end, was all of this effort worth it? It's just a web form, right? People fill out mil-
lions of these things every day. Some might think that we don’t need to put any more
thought into how to design one—that the “problem” of creating a usable web form has
already been solved, once and for all. But you should never underestimate the lack of
effort that has been given to solving the most common design problems, particularly online.
Most forms today are not much ditferent than the ones that rolled out in the early 1990s.
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Moreover, if there’s one thing a good designer, especially one following UX principles,
should know, it’s that there is no such thing as a one-size-fits-all solution. Customization
for your user group will almost always improve the experience—and, in this type of exer-
cise, your data collection.

The results in our client’s case appear to have been well worth the effort. We learned that,
for this email marketing company’s previous campaigns, normal rates of opened emails
were in the 1-2% range; our mailing hit 4%. The normal click-through rate was 5-7% ot
opened emails; ours reached 21%. Most relevant, the normal rate of those who click
through to the web page and then take action (i.e., complete the form) is usually 2—-5%:;
for our design, that completion rate was 29%. (See Figure 2-8.)

40 —

20 —

Percent

10 —

Open Click through Take action

B Normal response rates
[ Our survery responses

FIGURE 2-8.The response rates for our survey were significantly higher than the norm, which could be attributed to a

better overall user experience.

There are, of course, other possible reasons why this survey performed so much better
than this company’s previous mailings. It’s possible that the product was simply far more
compelling than other products or topics on which the company had conducted surveys,
and that the excitement generated by this product carried more people through to the
end. It’s also possible that the recipient pre-screening was far more accurate than usual,
and this group was particularly well fitted to the product. There may even be an age bias at
work—are older computer users more likely to open emails, read them, click through, and
complete surveys than younger users, who may be more savvy and cautious about unso-
licited emails? We're not aware of any studies on the subject, but it is a possibility. Indeed,
although we can’t rule out any of these explanations completely, the email company does
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not appear to have been doing anything differently for our survey than it does for the
hundreds of other surveys it regularly sends out. It’s probably safe to conclude that our

form design had something to do with the project’s success.

Oh, and although it has no relevance to the survey design, we thought you might be inter-
ested to know that the reception of the product itself was extremely positive. While our
client tells us that the product would have been viable to launch with a 10% positive
response rate (answering “Yes” to the first survey question), it turned out that more than
16% of the respondents were interested in potentially buying it. What is the product?
Unfortunately, confidentiality agreements preclude us from saying anything more about it.

If you want a glimpse, you’ll just have to hope you’re part of the next email survey. Don’t
be so quick to throw those emails in the trash; at the very least, you might learn some-
thing new about good—or bad—form design.

THE BEAUTIFUL PEOPLE
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CHAPTER THREE

Embedded Image Data Processing

on Mars
J. M. Hughes

Abstract

SPACECRAFT ARE UNIQUE ENGINEERING PROJECTS, WITH CONSTRAINTS AND REQUIREMENTS NOT
found in earth-bound artifacts. They must be able to endure harsh temperature extremes,
the hard vacuum of space, and intense radiation, and still be lightweight enough for a
rocket to loft them into space and send them to their destination. A spacecraft is an exer-
cise in applied minimalism: just enough to do the job and no more. Everything that goes
into the design is examined in terms of necessity, weight, and cost, and everything is
tested, and then tested again, before launch day, including the embedded computer sys-
tem that is the “brains” of the spacecraft and the software that runs on it. This chapter is
an overview of how the image processing software on the Phoenix lander acquired and
stored image data, processed the data, and finally sent the images back to Earth.

Introduction

When designing and programming an embedded system, one is faced with a variety of
constraints. These include processor speed, execution deadlines, allowable interrupt
latency, and memory constraints, among others. With a space mission, the constraints can

be severe. Typically the computer onboard a space vehicle will have only enough expensive
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radiation-hardened memory to fulfill the mission objectives. Its central processing unit
(CPU) will typically be a custom-made device designed to withstand the damaging effects
ol high-energy cosmic rays. By commercial standards, the CPU isn’t fast, which is typical
of radiation-hardened electronics. The trade-off here is speed versus the ability to take a
direct hit from an interstellar particle and keep on running. The dual-core CPU in a typical
PC, for example, wouldn’t last long in space (nor would much of the rest of the PC’s elec-
tronics, for that matter).

Then there are the science objectives, which in turn drive the software requirements for
functionality and performance. All must be reconciled within the confines of the space-
craft’s computing environment, and after numerous trade-off decisions, the final product
must be able to operate without fatal errors for the duration of the mission. In the case of
a robotic spacecraft, any fault may be the end of the mission, so there are requirements for
getting things right before the rockets light up and everything heads off into the wild blue

yonder.

On May 25, 2008, the Phoenix Mars Lander touched down safely in the northern polar
region of Mars. Figure 3-1 shows an artist’s impression of what Phoenix might look like
after landing. Unlike the rovers that moved about in the relatively warm regions near the
Martian equator, Phoenix was a stationary lander sitting in a barren, frigid landscape where
the atmospheric pressure is equivalent to being at an altitude of about 100,000 feet on
Earth. The thin atmosphere on Mars is also mostly carbon dioxide. Not exactly an ideal
vacation spot, but a good place to look for ancient frozen water.

FIGURE 3-1.Artist's impression of Phoenix on Mars (Image credit: NASA/JPL). (See Color Plate 10.)
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The lander’s mission was to look for direct evidence of water, presumably in the form of
ice just below the surface (it found it, by the way), and possibly for indications that Mars
could have once provided a habitat suitable for life. Because of the location of its landing
site, the spacecraft had a limited lifespan; when the Martian winter set in, it would almost
certainly be the end of Phoenix. At the high latitude of the landing site, the odds of the
lander surviving a totally dark, frigid (-=90° C or colder) winter under a blanket of carbon
dioxide snow would be very, very slim, at best.

I was the principle software engineer for the imaging software on Ploenix, and in this
chapter I will attempt to share with you some of the thinking that went into the various
data-handling design decisions for the imaging flight software for the Phoenix Mars Lander.
In JPL/NASA jargon it is called the “imaging flight software” because it was responsible for
handling all the imaging chores on the surface of Mars, and it was qualified as “flight soft-
ware” for the mission.

With the Phoenix Mars Lander, the challenge was to capture and process data from any of
four different charge-coupled device (CCD) imagers (similar to what’s in a common digital
camera) simultaneously, and do it all in a very limited amount of pre-allocated memory in
the spacecraft’s main computer. Not only that, but the images might also need to be com-
pressed prior to transmission back to Earth using one or more of several different com-
pression methods. Just for good measure, some of the final data products (that is, the
images) had to be chopped up into small segments, each with its own sequentially num-
bered header, to allow for efficient storage in the spacecraft’s flash memory and reduce the
amount of lost data should something happen to a packet during its journey from Mars to
Earth. The resulting embedded code acquired and processed over 25,000 images during

the operational lifetime of the Ploenix lander.

Some Background

But before we delve into the data handling, it would be a good idea to briefly introduce
the main actors in the drama: the imagers (also referred to as the cameras) and the space-

craft’s computer.

The primary computer on Ploenix was built around a RAD6000 CPU running at a maximum
clock rate of 20 MHz, although it could also be operated at slower clock rates to conserve
battery power. No cutting-edge technology here; this was basically a radiation-hardened,
first-generation PowerPC with a mix of RAM and flash memory all crammed onto a set of
VME circuit boards. After dealing with the landing chores, its primary functions involved
handling communications with Earth (uplink and downlink in jargon-speak; see the side-
bar “Uplink and Downlink” on page 38), monitoring the spacecraft’s health, and coordi-
nating the activities of the various science instruments via commands sent up from the
ground. It used WindRiver’s VxWorks real-time operating system (RTOS) with numerous
extensions provided by the spacecraft contractor, Lockheed Martin. All of the flight software

was written in C in accordance with a set of specific coding rules.
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UPLINK AND DOWNLINK

Inthe jargon of space missicons, the terms uplink and downlink refer to the transfer of data or com-
mands to and from controllers on Earth to a spacecraft. Uplink refers to commands or data transferred

to the spacecraft. Downlink occurs when the spacecraft sends data back to Earth.

Like many things in life, it's almost never a straightforward matter of pointing an antenna on the roof
atthe spacecraftand pressing the “Push To Talk” button. Commands or data to be uplinked must first
pass through a review, and perhaps even some simulations, lo make sure that everything is correct.
Then, the commands and data are passed to mission controllers who will schedule when the uplink
occurs (oris “radiated,” in space-speak). And finally, it oes into NASA’s Deep Space Network (DSN)
communications system and gets radiated outinto space. But that wasn’t the final step, because in the
case of Phoenix it had to be relayed by one of the orbiters now circling Mars, since Phoenix did not
have the ability to talk to Earth directly. When the orbiter rose over the horizon on Mars, Phoenix

would listen for any new uplink data.

Downlink was just as convoluted. Again, the orbiter would act as a relay, receiving the data from Phoe-
nix and then passing it on to one of NASA’s DSN antennas back on Earth. Then, it would make its way
through various processing and relay steps until finally arriving at JPL. If it was image data, then the
Mission Image Processing Laboratory (MIPL) at JPL would reassemble the images and make them
available to the science teams eaderly awaiting the pictures at the science operations center at the
University of Arizona.

Phoenix carried three primary cameras for surface science imaging: the Stereo Surface
Imager (or SSI, with two CCDs), the Robotic Arm Camera (the RAC, with a single CCD),
and the MECA Optical Microscope (OM) camera (again, a single CCD identical to the one
used in the RAC). Figure 3-2 shows the flight model of the SSI, and Figure 3-3 shows the
RAC attached to the robotic arm. The OM was tucked away inside the enclosure of the
MECA instrument, which itself resembled a black box mounted on the upper deck surface
of the lander.

The challenge was to devise a way to download the image data from each of the cameras,
store the data in a pre-allocated memory location, process the data to remove known pixel
defects, crop and/or scale the images, perform any commanded compression, and then
slice-and-dice it all up into packets for hand-off to the main computer’s downlink man-

ager task for transmission back to Earth.

Each 1,024 x 1,024 pixel CCD in the SSI was capable of generating 2 megabytes of data, or
1 megapixel of 12-bit pixel values. Because it was a true stereo camera, the imagers in the

SSI were often referred to as “eyes.” Plus, it did look a bit like an old-fashioned robot’s
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FIGURE 3-2.The Stereo Surface Imager (Image credit: University of Arizona/NASA/JPL). (See Color Plate 11.)

head. The RAC and OM cameras ecach contained a single 512 x 256 pixel CCD imager, and
each generated 131,072 pixel values (or 262,144 bytes) of data (from now on I’ll refer to
both as the RAC/OM, because from the imaging software’s point of view, they were iden-
tical imagers). Only 12 bits were actually used for each pixel worth of data from the CCD
imagers, and what to do with the remaining 4 unused bits in a standard 16-bit “word” of
memory generated some interesting discussions during the design phase, which I'll
address in the next section. All of the images generated by SSI, RAC, and OM were mono-
chrome, not color. Color was synthesized during processing back on Earth using separate
images taken with either filters or special illumination.

I should note here that while the imaging software controlled the OM CCD to acquire
images, it had nothing to do with the control of the MECA instrument and the electro-
mechanical control of the optical microscope itself. That was handled by a separate real-

time task written by the MECA team at JPL.

EMBEDDED IMAGE DATA PROCESSING ON MARS

39



40

L 25! .

FIGURE 3-3.The Robotic Arm Camera (Image credit: University of Arizona/Max Planck/NASA/JPL).

Although 1 megapixel doesn’t sound like much by the standards of today’s consumer dig-
ital cameras, the CCD imagers used on Phoenix were custom-made for science imaging.
Each CCD in the cameras cost tens of thousands of dollars, and only a limited number
were ever made. They were reliable, robust, and precise, and each individual CCD was
exhaustively tested and characterized pixel-by-pixel for sensitivity, noise, and defects,
among other things. It is this level of characterization, and the reference data it generates,
that sets a scientific CCD apart from the devices used in consumer cameras. Accurate char-
acterization is what allows a researcher to have a high level of confidence that the image
data accurately represents the scene that the camera captured. It is also a major contribu-

tor to the cost.

To Pack or Not to Pack

As with any highly constrained embedded system, the software needed to meet both its
operational requirements and the constraints of its execution environment. As one might
expect, these were not always complementary conditions, so trade-off decisions had to be
made along the way. Both the SSI and the RAC/OM cameras utilized 12-bit conversion for
the pixel data, which led to the first major trade-off decision: data packing. For a general
high-level overview of binary data, see the sidebar “Binary Data” on page 41.

During the early design phase of the mission, the notion of packing the 12-bit pixel data
came up and generated some interesting discussions. Given that only a limited amount of
memory was available for image data storage, the concept of packing the 12-bit pixel data
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into 16-bit memory space was appealing. By packing, I'm referring to storing the 12-bit
pixel data contiguously, without any “wasted” bits in between—in effect ignoring 16-bit
memory boundaries. But more efficient data storage came at the cost of increased process-
ing time (unpacking, shifting, repacking). A digital image is an array (whether it’s treated
as a 1-D array or a 2-D array depends on what is being done to it), so any operation on an
image involved handling the image data utilizing one or more algorithmic loops working
through the array. The amount of data we were planning to push through the RAD6000
was significant, and even at the full-out clock rate of 20 MHz it was going to be painfully
slow, so every CPU cycle counted.

In the end it was decided to “waste” a bit of memory and store each 12-bit pixel in a 16-bit
memory location to keep things simple and avoid using any more CPU time than neces-
sary. This decision was also driven by the desire, established early on, to avoid the use of
multiple large processing buffers or result arrays by doing all image processing and com-
pression in-place. Data packing would have made this rather challenging, and the result-
ing code would have been overly complex and could have shot down the whole in-place

processing concept we wanted to implement.

BINARY DATA

Data is information. In computer systems it is represented numerically, since that it what the CPU in
a computer deals with. Data can represent text, wherein each character has a unique numeric value,
or it can represent images by encoding each pixel, or picture element, in an image with a numeric
value representing its intensity, its color, or a combination of both characteristics. Given an appropri-
ate numerical encoding scheme, a computer can process any type of data one might care to imagine,
including audio, electrical potentials, text, images, or even the set of characteristics that define the
differences between dogs and cats. But no matter what it represents, to the computerit’s all just num-
bers. We supply the rules for how it will be encoded, processed, displayed, and interpreted.

Data also comes inavariety of sizes,depending on what it represents. For example, a window or door
switch in a burglar alarm system needs only a single bit (or binary digit) to represent its two possible
states: open or closed, 0 or 1. To represent a character in the English alphabet and punctuation, one
needs about 100 numbers or so, each represented by 8 bits of data. Modern computers work in base
2,50 8 bits could represent any number from 0 to 255 (110010005 = 200;, for example). In many com-
puters there are preferred sizes for values expressed in base 2,typically in multiples of either 8 or 16
bits. In a 16- or 32-bit CPU, like the one used on Phoenix, memory can be efficiently accessed in
“words” of 16 bits. Trying to access fewer bits than this (such as 8 bits) may actually be inefficient, so
data that is greater than 8 bits in size but less than 16 bits is often stored in a 16-bit memory location
along with some unused bits. This is how the image data on Phoenix was handled, because the elec-
tronics for the CCD imagders produced 12-bit-per-pixel data, but the spacecraft’s memory was orda-
nized as either 16- or 32-bit storage locations.

EMBEDDED IMAGE DATA PROCESSING ON MARS
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The Three Tasks

In the VxWorks RTOS environment used for Phoenix, there really isn’t anything that is
synonymous to what a typical computer user might think of as individual programs. Noth-
ing is loaded from a disk (there are no disks), and everything the computer will ever do is
loaded into memory when the system first starts. It’s actually all just one big program
with a lot of smaller subprograms running more or less at the same time. These smaller
subprogram activities are referred to as fasks, or threads, and they execute based on the
availability of resources such as timed events or I/O (input/output) devices, and their
assigned priority in the greater scheme of things (high-priority tasks get the chance to run

more often than low-priority activities).

It was obvious from the outset that a minimum of two tasks would be needed for the sur-
face image processing, one for each of the cameras. The SSI and RAC/OM were very dif-
ferent beasts, with different command sets and different operating characteristics. The SSI
used all new controller hardware and incorporated CCD imagers identical to those used on
the Mars Rovers. The RAC and OM imagers were originally built by the Max Planck Insti-
tute in Germany, and had been around for a while (one of the original designs was tlown
on the Huygens probe that landed on Titan). The RAC/OM controller hardware was actu-
ally a flight spare unit from the ill-fated Mars ‘98 mission, which apparently met a tragic
end when its descent engines shut off prematurely a few hundred feet above the surface of
Mars. But the data from each camera still needed to be processed, compressed, and then
downlinked, and these operations weren’t dependent on the physical data source. The
image data was all 12 bits per pixel, and all that really varied was the geometry (height

and width), and consequently how much image data would need to be handled.

Although there was a desire on the part of the spacecraft integration team (Lockheed Mar-
tin) to try to keep the number of science instrument tasks to a minimum, it became obvi-
ous early on that it didn’t make much sense to duplicate the same image compression and
downlink functions in both camera tasks. This would be wasteful in terms of limited pro-
gram storage space, and it would effectively double the effort necessary to make changes
in the code and then verify those changes. Consequently, a decision was made to use
three tasks: one task would handle the SSI, one would deal with the RAC and OM cam-
eras (one or the other, but not both at the same time, because the interface hardware
wouldn't allow it), and a third would act as a shared resource to perform image compres-
sion and downlink processing using the data generated by the two camera control tasks,
and it would run asynchronously. So while the SSI and RAC/OM tasks interfaced with the
control electronics to acquire image data, control the internal temperature of the cameras,
and perform motion control, the third task would do nothing but image data processing

and downlink.

The image processing task was called the ICS, which stood for Image Compression Sub-
System, although it ended up doing more than just compressing image data. A block dia-

gram of the three tasks and the communications among them is shown in Figure 3-4.
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FIGURE 3-4.Imaging flight software tasks.

The decision to use three tasks did increase the level of complexity in the system, but it
also reduced the amount ol program storage space required. As an added bonus, having a
third independent task made it much easier to make a change to a particular ICS process-
ing function, and then test the functionality with data from either of the imaging tasks
using real camera hardware or from a simulated image data source. This turned out to be
a boon when doing extensive compression testing later on in the project, when over
15,000 test images were processed back-to-back through the ICS to verity its operation
using an automated test setup.

The ICS also included two source modules, which contained shared functions for static
memory management (known as the “slot manager”) and image manipulation (decima-
tion, subframing, pixel defect correction, and so on). These were not actually part of the
ICS task, but rather served as thread-safe pseudolibraries to support the two camera con-
trol tasks and the ICS task. The reality was that there really wasn’t any other convenient
place to put this code, given the architecture constraints imposed on the instrument soft-
ware, so it ended up with the ICS.

Slotting the Imagdes

I mentioned earlier that the amount of memory available to each of the various instru-
ment tasks was limited, but just how limited may be surprising to some, given that it is now
commonplace to find 500 megabytes or even a gigabyte (or more) in a desktop PC. The ini-
tial memory allocation to both the SST and RAC/OM tasks for image data storage was 230K
short of a full 10 megabytes (10,255,360 bytes, to be exact). There was discussion of
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increasing this after the spacecraft landed, which meant that any memory management
scheme had to be flexible, but this was the design baseline. The default storage scheme
needed to be able to handle at least four SST images (or two pairs, consisting of one image
for each “eye”) and at least four RAC/OM images, all in the same memory space. The odd
size meant that it wouldn’t be possible to squeeze in more than four full-size SSI images,
at least not initially.

In embedded systems, the use of dynamic memory allocation is usually considered to be a
Really Bad Idea. To avoid issues with fragmented memory, memory leaks, null pointers,
mystery crashes, and the possibility of losing the mission completely, the use of dynamic
memory allocation (C’s malloc function and its kin) was forbidden by the flight software cod-
ing rules. This meant that the imaging software had to manage the image data itself within
whatever amount of memory was assigned to it, and it had to be robust and reliable.

The solution was the use of a set of functions that acted as a memory manager for the pre-
allocated memory assigned to the ICS at boot-time. The memory manager was the key
component of the image data processing. To prevent collisions, blocking semaphores were
used to control shared access by each of the three imaging tasks (actually, any task in the
spacecraft software could have used the shared memory, but only the cameras did so).

The static memory allocation was divided up into “slots,” which could be either large
enough to hold a full-size SSI image, or a smaller size for RAC/OM images. Figure 3-5
shows the default organization of the ICS image storage space.

- 10
RAC/OM - "
slots

Memory
=5 (in
megabytes)

Default configuration:
4 SS1 size slots (2 MB each)
4 RAC/OM size slots (.25 MB each)

FIGURE 3-5. Defaull image slot assignments.

This is only one possible configuration, and the number of each type of slot could be
changed on the fly via commands uplinked from Earth.
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Each image also had an associated structure containing header data. The image header
recorded things such as a code defining the camera that generated the image, the exposure
time, the image processing options selected, the image dimensions, optical filters that may
have been used, and how the image was compressed (if compression was used). Part of
the header was filled in by the instrument task that generated the image, and the remain-
der was filled in by the ICS prior to sending the image data to the spacecraft downlink
handler. Because the header data was not image data per se, it was stored in a separate set
of slots until it was time to do the downlink operation. Each image slot and its associated
header data had to be tracked and processed in tandem.

The memory manager was basically just a set of functions that operated on a set of arrays
of structures, as shown in Figure 3-6. The current state of the memory slots was main-
tained by the arrays, which, in essence, constituted a dynamic model of the physical mem-
ory space and its contents.

Image data

Header data
Image data Header data
slots array slots array
SR
Image slot ID Head slot ID
and address and address

FIGURE 3-6.Memory slot manager arrays.

One of the arrays contained structures for image data, one per image slot. The C typedef

for the structure is:

typedef struct {

uint16_t slot_status; /**< Owned or unowned */
int16_t slot_owner; /**¢ -1 if slot is unowned */
int1e t slot size; /**¢ either RAC/OM or SSI sized */
uint16_t *slot_address; /**¢ address of data space of slot *f

} ics_img_slot_entry t;
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The second array contained structures pointing to header data entries, and its definition is:

typedef struct {

uint16_t slot_status; /**< Owned or unowned */
int16_t slot_owner; /**¢ -1 if unowned */
int16_t img_id; /**< associated image data slot number */
uint16_t  hdr_data[ICS_HDR_SLOT_SZ]; /**< array for header data L

} ics_hdr_slot_entry t;

Notice that the header structure contains an entry for the image 1D. This was essential,
since slots could be allocated and released in any order, and there was no guarantee that
the index of an image slot entry would be the same index for its associated header slot.
Rather than rely on the index oliset into the arrays always being in sync, the image ID was

used to bind image and header data entries together.

The ability to dynamically reconfigure the image slot assignments allowed the memory
manager to be tailored to specific mission activities. If the plan for a particular day on Mars
(or a Sol, as it was called) involved imaging with the SSI, then one could configure the
slots to minimize the number of RAC/MECA size allocations, which was the default con-
figuration. If, on the other hand, the plan involved a lot of RAC or OM images, the mem-

ory could be configured to handle no SSI images and up to 39 of the smaller image sizes.

Passing the Image: Communication Among the Three Tasks

Image data fresh from one of the cameras was written into a slot by one of the camera
tasks. After performing any required pixel correction or subframe operations, the camera
task notified the ICS that a new image was available for processing. The 1CS would then
perform any commanded compression (either lossy or lossless) in place on the image
within its slot, and then package and hand off the data for downlink. Only after the down-
link was complete would the slot be released and become available for a new image. The
sequence of events from exposure to image hand-off for the SSI camera is shown in

Figure 3-7.

The entire sequence of events shown in Figure 3-6 was contingent on the availability of
an image slot. If a slot was not available, the camera task would wait for a configurable
period of time to allow the ICS to finish compressing and downlinking an image, which
would result in a slot becoming available. If the ICS didn't release a slot within that period
of time, the instrument task would generate an error message for the operators back on
Earth and drop the image on the floor (there really wasn’t any place else to drop it).

Once one of the camera instrument tasks obtained a slot, it “owned” that slot until it was
handed off to the 1CS, which then became the owner. Ownership verification was based
on the slot ID (its number) assigned by the slot manager when the slot was initially allo-
cated, an image ID code, and the camera instrument task ID. When a hand-off was made
to the ICS, it verified that the ID codes presented matched those already recorded for that
particular image slot.
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FIGURE 3-7.Image acquisition and hand-off sequence.

As mentioned earlier, the ICS ran asynchronously and was not tightly bound to either of
the camera tasks. It was able to do this by leveraging the built-in message queue system in
VxWorks, and through the use of the shared functions in the memory slot manager.
Figure 3-8 shows a message sequence chart (MSC) type of representation of the steps

involved along the way in getting data from a camera to finally sending it to downlink.

The use of the internal message queue (the S/C FSW process line, which stands for space-
craft flight software) allowed either camera task to issue a command to the ICS using the
same mechanism as the commands uplinked from Earth. The command would sit in the
queue until the ICS was done with its current activity. The cameras could continue to
acquire images as long as there were slots available to store the image data, and the ICS
would retrieve and process the data in turn until the queue was empty, without regard for
what the cameras might be doing.

Note that Figure 3-8 doesn’t show the error checking that went on during imaging activi-
ties. All in all, the number of lines of code dedicated to error checking and fault handling
was roughly equal to the lines of code that actually processed or otherwise handled the
data. Failure Mode, Effects, and Criticality Analysis (FMECA) techniques were employed
early in the design life cycle and provided guidance during the implementation of the soft-
ware and its fault-handling capabilities.
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FIGURE 3-8.MSC representation of image acquisition, processing, and downlink activities.

The ICS serialized the data stream, but the use of the image slots and the command mes-
sage queue allowed sets of images to be acquired in rapid (relatively speaking) succession.
It also meant that there was some timing margin available for image acquisition that
reduced the chances of operations being suspended while waiting for an image to be
downlinked. Early test command sequences demonstrated that it was possible to do things
like creating short “movies” (well, sort of, since it took about six seconds to download each
image from one of the SSI cameras), or generate a large (30+ images) data set using the
RAC or OM at different focal lengths.

Getting the Picture: Image Download and Processing

A lot went on between the time an image exposure occurred and the eventual hand-off to
the ICS. Each camera in the system had its own control electronics to process com-
mands, convert the analog signals from a CCD into 12-bit digital values, and then store

the data in a hardware buffer until the flight software could download it into an image slot.
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All this occurred under the control of logic embedded in radiation-hardened programma-

ble gate array devices.

Once an image was acquired from a camera and written into an image slot, it was sub-
jected to various forms of processing, all of which occurred in-place within the confines of
an image slot. No additional large (image-sized) buffers were used for the processing or
the results thereof, and only a few small buffers were necessary to hold intermediate
results. The use of in-place processing was a key factor in the design of the imaging soft-
ware, and allowed the three tasks to maintain a small memory footprint in the overall sys-
tem. Figure 3-9 shows a comparison between a multiple-butfer approach and the single
buffer (i.e., slot) in-place design used for the Phoenix imaging flight software.

FIGURE 3-9.Multiple data buffers versus a single data buffer.

This was another design trade-olf that was made early on in order to meet the image pro-
cessing requirements and still stay within the amount of memory allocated to the cameras.
Although it did meet the memory requirements, the downside was that there would be no
“undo” operation. As shown in Figure 3-10, if an error occurred during image processing,
either the entire image would be lost or a partially garbled image might be returned.

Read
data

Write
data

Processed
data

FIGURE 3-10.In-place data processing.
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The processing algorithms walked through the data in an image slot, reading, processing,
and then writing the data back. Some of the algorithms, such as pixel corrections, didn’t
change the geometry of the image but instead simply modified a single pixel value based
on an uplinked table of known “bad” pixels (a pixel might be bad because it is not as sen-
sitive as its neighbors, or it might be too sensitive). In the environment of space, it was
expected that the odd cosmic ray could possibly blast through a pixel on a CCD and render
it defective. Other operations, such as subframing, extracted a region from the original
image, wrote it back into the slot, and adjusted the height and width parameters accord-
ingly. Decimation employed a mathematical averaging technique to reduce image size by
processing pixels in groups of 4, 9, or 16 to generate a single result pixel. The resulting
images were reduced by 1/2, 1/3, or 1/4 in size, respectively, while minimizing the “stair-
step” effect often seen with images that have been reduced using a subsampling technique
wherein every 2nd, 3rd, or 4th pixel is retained and the rest discarded. This operation also
wrote the modified data back into the image slot and adjusted the geometry parameters

accordingly.

After an imaging task had completed the commanded processing, it would then send a
message to the ICS (as described previously) and move on to the next command in the
message queue. If an image slot was available, this could result in acquiring yet another

image.

Image Compression

Just as the data produced by a robotic mission is precious, so is the communications band-
width needed to return that data. For smaller images, such as those reduced by subframe

or decimation operations, it could be acceptable to just downlink the image without com-
pression. Larger images, such as the full-size SSI images, would consume a lot of downlink

bandwidth, so compression was always considered as an option in such cases.

The ICS provided two forms of compression and two forms of size reduction using pixel
mapping and scaling. Which type of compression or reduction would be used for a partic-
ular image depended largely on the level of image fidelity deemed necessary for the object
of interest. In some cases, 8 bits per pixel would suffice; in other cases, the loss of fidelity
inherent with JPEG compression was acceptable; and for the cases where the image had to
retain as much fidelity as possible, there was a lossless compression method available.

In the ICS, a JPEG compressor, using all integer math and in-place operations, provided
so-called “lossy” compression. JPEG is considered lossy because it discards some of the
image data as a result of the compression process. It could compress image data to varying
degrees by command. The final code was loosely based on the JPEG compressor flown on
the Mars "98 mission, although only a part of that original code survived in the ICS for
Phoenix. The original JPEG compressor used [loating-point math, multiple full-size image
arrays as buffers, and dynamic memory allocation. How that ever managed to make it into

flight software is still a mystery to me, but it did. The use of floating-point values to represent
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pixel data in the compression code also meant that it consumed four times as much mem-

ory per image as the native 16-bit integer representation of the original image.

A second form of compression, known as Rice Lossless or just Rice compression, used an
algorithm developed by Robert Rice of the Jet Propulsion Laboratory. The Rice algorithm
could compress image data by almost 2:1 with no data loss, whereas the JPEG algorithm

discarded data during the compression. The Rice compression also operated on the image

in-place in the image slot.

The two noncompression reduction methods used either a lookup table to map 12-bit
pixel values to 8-bit values, or a bit reduction method that shifted the pixel data right by 4
bits to yield an 8-bit-per-pixel image. Both the JPEG and Rice compression functions
would accept either 12- or 8-bit image data.

The decision to use the lossy JPEG compression or not typically came down to weighing
various factors such as how accurate the data needed to be, how much bandwidth would
be available, how much downlink storage was available in the spacecraft’s main com-
puter, and how much time was available to perform the compression (recall that the
RAD6000 had a top speed of 20 MHz, so compressing a megapixel of image data could
take over a minute).

When using the JPEG compression, the amount of compression to be applied was deter-
mined by a command parameter that specified the worst-case reduction ratio for the final
data. In other words, instead of specifying a “quality” factor (which is typically how one
tells a JPEG compressor how hard to work on an image), the ICS used a scaling factor and
worked out the required compression level on its own. This was based on a quick-look
analysis of the overall image entropy. The image entropy was an estimate of how “busy”
the image was, and images with a higher level of entropy (lots of details and changes in
brightness, such as a pebble-strewn patch of ground with sharp shadows) would require a
higher compression setting to meet the final size goal. Images with low entropy, such as
the Martian sky with a few clouds drifting by, wouldn’t have a whole lot going on, and so
would require a lesser amount of compression to meet the size target.

The scaling factor for JPEG compression was also used to divide the original image into
segments. These segments were then fed into the JPEG compressor one at a time, and the
output was written back into the image slot. The final result in the image slot prior to
downlink was a set of small, self-contained JPEG images, the total size of which was equal
to or less than the commanded size reduction ratio for the original image.

The Rice compressor included its own embedded method of segmentation, and it was
downlinked by simply reading out the compressed data in the form of small packets sized
to fit neatly into the flash memory in the spacecraft’s main computer. The output of the
lookup table and bit-reduction methods was also simply read out in flash-sized packets for
downlink.

EMBEDDED IMAGE DATA PROCESSING ON MARS

51



52

Downlink, or, It’s All Downhill from Here

The last step in the process was the hand-off to the downlink manager in the spacecraft
flight software. Some science instruments could simply pass their data to downlink and be
done with it, but because of the large amount of data and the use ot packetization, the ICS

ended up deing a lot of downlink preprocessing on its own.

For the JPEG data, this meant handling each of the compressed segments individually. The
first and last segments in a sequence always included a full-sized image data header. The
intermediate segments got a smaller form of the header data, which included an image ID
code and a sequence number. As each segment was read from the image slot, the header
data was applied. The use of a sliding window form of readout allowed the segments to be
packed end-to-end while assembling a flash-sized packet. This in turm allowed the down-
link handler to maximize the use of the temporary flash storage space, because some of
the compressed segments could be smaller than others if the part of the image correspond-
ing to a segment had a low entropy. In fact, it was common to see compressed segment
sizes vary widely, so packing them end-to-end avoided wasting any of the on-board flash

memory.

Because the data consisted of uniquely identilied segments, the loss of a downlink packet
wouldn’t consign the entire image to the garbage. The reconstruction and decompression
software back on the ground at JPL could figure out what segments were missing and sim-
ply fill in the missing part of the image with black zero-value pixel data. If the missing data
showed up later (which was possible, considering the rather torturous route the data took

on its way down), then it could be placed into the image to fill in the missing pixels.

Once the data was passed to the downlink handler, the ICS was done, and it would release
the image data slot. The entire process—f{rom image exposure to completion of downlink
hand-off—took between 3 to 10 minutes, depending on the CPU speed and what other
additional imaging activities where slated to occur, such as auto-exposure and sun-finding
(which are complex topics in their own right, so I haven’t discussed them here).

Conclusion

The instrument software did much more than just take pictures and process image data. It
also managed motion control with three degrees of freedom lor the SSI, and the focus and
viewport cover motors in the RAC. The RAC also supported multiple banks of red, blue,
and green LEDs to illuminate whatever might be in the robotic arm scoop and create color
images. Both the SSI and the RAC incorporated active thermal control, achieved either
through the use of special heaters or by intentionally stalling a stepper motor to achieve
self-heating. On top of all this, there was the error-checking and fault-recovery code. All
in all, it was very busy software.
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If T had it to do all over again, I suppose the main thing I would want to see changed
would be that the cameras use their own embedded processors rather than rely on the
spacecraft CPU. This would have made things much easier all around for everyone. Apart
from that, I always felt that there was too much crammed into each of the instrument tasks.
In other words, the thermal control should have been a separate task for each camera. This
would have greatly reduced the complexity of each of the tasks, albeit at the expense of
increasing the overall complexity of the intertask communications. At the outset, how-
ever, there wasn’t enough evidence to build a compelling case for this, so the design was
already firm (not really frozen, just very inflexible) by the time some new thermal
requirements popped up that needed to be accommodated.

And, finally, I really had issues with the method chosen for performing a “heartbeat”
check. Ididn’t know going in that the command message queue was going to be used for
this purpose. What this did was impose a requirement on the instrument tasks to be able
to drop whatever they were doing in order to check the command message queue on a
regular basis for a “ping” message. I believe that a much better approach would have been
for the instrument to register a callback function with the spacecraft flight software that
could be used to check the value of a continuously updated counter variable on an asyn-
chronous basis. If the value didn’t change after some amount of time, the instrument task
was probably hung. There was indeed a rather big squabble over this, but in the end the
ping message was used simply because that’s what had always been done and that’s what
the existing test systems were designed to handle. So even though the system wasn’t
designed to deal with tasks that could take minutes to process large amounts of image
data, it wasn’t going to be changed.

The Phoenix SSI and RAC/OM imaging soltware was a lot of work to design, implement,
and test, and in the end it did what it was supposed to do for the entire life of the mission.
Figure 3-11 is one of the first images (SSO01EDN896308958_10D28R1M1) returned from
the SSI on Sol 1, the spacecraft’s first full day on Mars.

FIGURE 3-11.Image returned from the 551 on 5ol I (Image credit: NASA/JPL/University of Arizona).
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LEARNING MORE ABOUT PHOENIX

If you would like to know about the Phoenix mission, these are the primary places to start:

* Phoenix website at the University of Arizona: http://phoenix.lpl.arizona.edu

* Phoenix website at the Jet Propulsion Laboratory: http://www.jpl.nasa.gov/news/phoenix/
main.php

* NASA’s Phoenix website: http://www.nasa.gov/mission_pages/phoenix/main/index.htmi

AtJPL, the MIPL folks do a lot of image processing for a variety of missions. You can learn more about

what they do here:
* JPL’s Mission Image Processing Laboratory: http://www-mipl.jpl.nasa.gov/

And if you would like to learn more about the RAD6000 CPU, imagde processing, or embedded sys-
tems, be sure to check out Wikipedia at http://www.wikipedia.org.
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CHAPTER FOUR

Cloud Storage Design in a PNUTShell

Brian F. Cooper, Raghu Ramakrishnan, and Utkarsh Srivastava

Introduction

YAHOO! RUNS SOME OF THE WORLD'S MOST POPULAR WEBSITES, AND EVERY MONTH OVER HALF A BILLION
people visit those sites. These websites are powered by database infrastructures that store
user profiles, photos, restaurant reviews, blog posts, and a remarkable array of other kinds
of data. Yahoo! has developed and deployed mature, stable database architectures to sup-
port its sites, and to provide low-latency access to data so that pages load quickly.

Unfortunately, these systems suffer from some important limitations. First, adding system
capacity is often difficult, requiring months of planning and data reorganization, and
impacting the quality of service experienced by applications during the transition. Some
systems have a hard upper limit on the scale they can support, even if sufficient hardware
were to be added. Second, many systems were designed a long time ago, with a single
datacenter in mind. Since then, Yahoo! has grown to a global brand with a large user base
spread all over the world. To provide these users with a good experience, we have to rep-
licate data to be close to them so that their pages load quickly. Since the database systems
did not provide global replication as a built-in feature, applications had to build it them-
selves, resulting in complex application logic and brittle infrastructure. Because of all the
effort required to deploy a large-scale, geographically replicated database architecture, it
was hard to quickly roll out new applications or new features of existing applications that
depended on that architecture.
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PNUTS is a system that aims to support Yahoo!’s websites and application platforms and
address these limitations (Cooper et al. 2008). It is designed to be operated as a storage
cloud that efficiently handles mixed read and write workloads from tenant applications
and supports global data replication natively. Like many other distributed systems, PNUTS
achieves high performance and scalability by horizontally partitioning the data across an
array of storage servers. Complex analysis or decision-support workloads are not our
focus. Our system makes two properties first-class features, baked in from the start:

Scale-out
Data is partitioned across servers, and adding capacity is as easy as adding new servers.
The system smoothly transfers load to the new servers.

Geo-replication
Data is automatically replicated around the world. Once the developer tells the system
at which colos” to replicate the data, the system takes care of the details of making it
happen, including the details of handling failures (of machines, links, and even entire
colos).

We also set several other goals for the system. In particular, we want application develop-
ers to be able to focus on the logic of their application, not on the nuts and bolts of operat-
ing the database. So we decided to make the database hosted, and to provide a simple,
clean API to allow a developer to store and access data without having to tune a large
number of parameters. Because the system is to be hosted, we wanted to make it as self-
maintainable as possible.

While all of these goals are important to us, building a database system that could both
scale-out and globally replicate data was the most compelling and immediate value propo-
sition for the company. And as we began to design the system, it became clear that this
required us to rethink many well-understood and long-used mechanisms in database sys-
tems (Ramakrishnan and Gehrke 2002).

The key idea we use to achieve both scale-out and geo-replication is to carry out only sim-
ple, cheap operations synchronously, and to do all the expensive heavy lifting asynchro-
nously in the background. For example, when a user in California is trying to tag a photo
with a keyword, she definitely does not want to wait for the system to commit that tag to
the Singapore replica of the tag database (the network latency from California to Sin-
gapore can be as high as a second). However, she still wants her friend in Singapore to be
able to see the tag, so the Singapore replica must be updated asynchronously in the back-
ground, quickly (in seconds or less) and reliably.

As another example of how we leverage asynchrony, consider queries such as aggrega-
tions and joins that typically require examining data on many different servers. As we
scale out, the probability that some of these servers are slow or down increases, thereby

adversely affecting request latency. To remedy this problem, we can maintain materialized

* Colocation facility, or data center. Yahoo! operates a large number of these, spread across the world.
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views that reorganize the base data so that (a predetermined set of) complex queries can
be answered by accessing a single server. Similar to database replicas, updating each view
synchronously would be prohibitively slow on writes. Hence, our approach is to update
views asynchronously.

In the rest of this chapter, we explore the implications of focusing on scale-out and geo-
replication as first-class features. We illustrate the main issues with an example, explain
our basic approach, and discuss several issues and extensions. We then compare PNUTS
with alternative approaches. Our discussion concentrates on the design philosophy, rather
than the details of system architecture or implementation, and covers some features that
are not in the current production version of the system in order to highlight the choices

made in the overall approach.

Updating Data

As users interact with websites, their actions constantly result in database updates. The
first challenge we examine is how to support this massive stream of updates while provid-

ing good performance and consistency for each update.

The Challenge

Imagine that we want to build a social networking site. Each user in our system will have
a profile record, listing the user’s name, hobbies, and so on. A user “Alice” might have
friends all over the world who want to view her profile, and read requests must be served
with stringent low-latency requirements. For this, we must ensure that Alice’s profile
record (and similarly, everyone else’s) is globally replicated so those friends can access a
local copy of the profile. Now say that one feature of our social network is that users can
update their status by specifying free text. For example, Alice might change her status to
“Busy on the phone,” and then later change it to “Off the phone, anybody wanna chat?”
When Alice changes her status, we write it into her profile record so that her friends can
see it. The profile table might look like Table 4-1. Notice that to support evolving web
applications, we must allow for a flexible schema and sparse data; not every record will
have a value for every lield, and adding new lields must be cheap.

TABLE 4-1. User profile table

Username | FullName Location Status IM BlogID | Photo
Alice Alice Smith Sunnyvale, CA Off the phone, anybody | Alice345

wanna chat?
Bob Bob Jones Singapore Eating dinner 3411 me.jpg
Charles Charles Adams | New York, New York | Sleeping 5539

How should we update her profile record? A standard database answer is to make the
update atomic by opening a transaction, writing all the replicas, and then closing the trans-

action by sending a commit message to all of the replicas. This approach, in line with the
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standard ACID" model of database transactions, ensures that all replicas are properly
updated to a new status. Even non-ACID databases, such as Google’s BigTable (Chang et al.
2006), use a similar approach to synchronously update all copies of the data. Unfortu-
nately, this approach works very poorly if we have geo-replication. Once Alice enters her
status and clicks “OK,” she may potentially wait a long time for her response page to load,
as we wait for far-flung datacenters to commit the transaction. Moreover, to guarantee
true atomicity, we would have to exclusive-lock Alice’s status while the transaction is in
progress, which means that other users will potentially be unable to see her status for a
long time.

Because of the expense of atomic transactions in geographically separated replicas, many
web databases take a best-effort approach: the update is written to one copy and then asyn-
chronously propagated to the rest of the replicas. No locks are taken or validation per-
formed to simulate a transaction. As the name “best-effort” implies, this approach is
fraught with difficulty. Even if we can guarantee that the update is applied at all replicas,
we cannot guarantee that the database ends in a consistent state. Consider a situation
where Alice first updates her status to “Busy,” which results in a write to a colo on the

west coast of the U.S., as shown in Table 4-2.

TABLE %-2. An update has been applied to the west coast replica

West coast East coast
Username Status Username Status
Alice Busy Alice -

She then updates her status to “Off the phone,” but due to a network disruption, her
update is directed to an east coast replica, as shown in Table 4-3.

TABLE %-3. Asecond update has been applied to the east coast replica

West coast East coast
Username Status Username Status
Alice Busy Alice Off the phone

Since update propagation is asynchronous, a possible sequence of events is as follows: “Off
the phone” is written at the east coast before the “Busy” update reaches the east coast.
Then, the propagated updates cross over the wire, as shown in Table 4-4.

* A transaction’s changes are Atomic, Consistent, Isolated from the effects of other concurrent trans-
actions, and Durable.
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TABLE 4-4. The two updates cross during propagation

West coast East coast
Username Status Username Status
Alice Busy “Busy” Alice Off the phone

The “Busy” status overwrites the “Off the phone” status on the east coast, while the “Off

the phone” status overwrites the “Busy” status on the west coast, resulting in the state

shown in Table 4-5.

TABLE 4-5. Inconsistent replicas

West coast East coast
Username Status Username Status
Alice Off the phone Alice Busy

Depending on which replica her friends look at, Alice’s status will be different, and this
anomaly will persist until Alice changes her status again.

To deal with this problem, some web-scale data stores implement eventual consistency: while
anomalies like that described earlier may happen temporarily, eventually the database will
resolve inconsistency and ensure that all replicas have the same value. This approach is at
the heart of systems such as S3 in Amazon’s Web Services. Eventual consistency is often
achieved using techniques such as gossip and anti-entropy. Unfortunately, although the
database will eventually converge, it is difficult to predict which value it will converge to.
Since there is no global clock serializing all updates, the database cannot easily know if
Alice’s last status update was “Busy” or “Off the phone,” and thus may end up converging
the record to “Busy.” Just when Alice is ready to chat with her friends, all of them think
that she is busy, and this anomaly persists until Alice changes her status again.

Our Approach

We have struck a middle ground between strong consistency (such as ACID transactions)
with its scalability limitations, and weaker forms of consistency (such as best effort or
eventual consistency) with their anomalies. Our approach is timeline consistency: all rep-
licas will go through the same timeline of updates, and the order of updates is equivalent
to the order in which they were made to the database. This timeline is shown in

Figure 4-1. Thus, the database will converge to the same value at all replicas, and that

value will be the latest update made by the application.

Status: none Status: busy

—@ @

Status: off the phone

@ ——— Record timeline

FIGURE 4-1. Timeline of updates to Alice’s status.
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Timeline consistency is implemented by having a master copy where all the updates are
made, with the changes later propagated to other copies asynchronously. This master copy
serializes the updates and ensures that each update is assigned a sequence number. The
order of sequence numbers is the order in which updates should be applied at all replicas,
even if there are transient failures or misorderings in the asynchronous propagation of
updates. We have chosen to have a master copy per record since many Yahoo! applica-
tions rely on a single table in which different records correspond to different users, each
with distinct usage patterns. It is possible, of course, to choose other granularities for mas-
tership, such as a master per partition (e.g., based on a key) of records.

Even in a single table, different records may have master copies located in different servers. In
our example, Alice, who lives on the west coast, has a record that is mastered there, whereas
her friend Bob, who lives in Singapore, has his record mastered in the Asian replica. The mas-

tership of the record is stored as a metadata lield in the record itsell, as shown in Table 4-6.

TABLE 4%-6. Profile table with mastership and version metadata

Username _MASTER _VERSION FullName
Alice West 32 Alice Smith
Bob Asia 18 Bob Jones
Charles East 15 Charles Adams

Of course, a master copy seems at odds with our principle that only cheap operations
should be done synchronously. If Alice travels to New York and updates her status from
there, she must wait for her update operation to be forwarded to the west coast, since her
profile record is mastered there; such high-latency cross-continental operations are what
we are trying to minimize. Such cross-colo writes do occur occasionally, because of shift-
ing usage patterns (e.g., Alice’s travel), but they are rare. We analyzed updates to Yahoo!’s
user database and found that 85% of the time, record updates were made to the colo con-
taining the master copy. Of course, Alice may move to the east coast or to Europe, and
then her writes will no longer be local, as the master copy for her record is still on the west
coast. Our system tracks where the updates for a record are originating, and moves mas-
tership to reflect such long-standing shifts in access patterns, in order to ensure that most

writes continue to be local. (We discuss mastership in more detail in the next section.)

When an application reads a record, it typically reads the local replica. Unless that replica
is marked as the master copy, it may be stale. The application knows that the record
instance is some consistent version from the timeline, but there is no way for the applica-
tion to know from the record itself whether it is the most recent version. If the application
absolutely must have the most recent version, we allow it to request an up-to-date read; this
request is forwarded to the master to get the latest copy of the record. An up-to-date read
is expensive, but the common case of reading the local (possibly stale) replica is cheap,
again in line with our design principles. Luckily, web applications are often tolerant of
stale data. If Alice updates her status and her friend Bob does not see the new status right

away, it is acceptable, as long as Bob sees the new status shortly thereafter.
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Another kind of read that the application can perform is a critical read, to make sure that
data only moves forward in time from the user’s perspective. Consider a case where Alice
changes her avatar (a picture representing the user). Bob may look at Alice’s profile page
(resulting in a read from the database) and see the new avatar. Then, Bob may refresh the
page, and due to a network problem, be redirected to a replica that has not yet seen Alice’s
avatar update. The result is that Bob will see an older version of the data than the version
he just saw. To avoid these anomalies for applications that want to do so, the database
returns a version number along with the record for a read call. This version number can be
stored in Bob’s session state or in a cookie in his browser. If he refreshes Alice’s profile
page, the previously read version number can be sent along with his request, and the
database will ensure that a record that is no older than that version is returned. This may
require forwarding to the master copy. A read that specifies the version number is called a
“critical read,” and any replica with that version, or a newer version, is an acceptable
result. This technique is especially helpful for users that update and then read the data-
base. Consider Alice herself: after she updates her avatar, she will become confused if we
show her any page with her old avatar. Therefore, when she takes an action that updates
the database (like changing her avatar), the application can use the critical read mecha-

nism to ensure that we never show her older data.

We also support a fest-and-set operation that makes a write conditional upon the read ver-
sion being the same as some previously seen version (whose version number is passed in
as a parameter to the test-and-set request). In terms of conventional database systems, this
provides a special case of ACID transactions, limited to a single record, using optimistic
concurrency control.

More on mastership

We employ various techniques to ensure that read and write operations go on smoothly
and with low latency, even in the presence of workload changes and failures.

For example, as we mentioned earlier, the system implements record-level mastership. If
too many writes to the record are originating from a data center other than the current
master, the mastership of the record is promptly transferred to that data center, and sub-
sequent writes are done locally there. Moreover, transferring mastership is a cheap opera-
tion and happens automatically, thereby allowing the system to adapt quickly to workload
changes.

We also implement a mechanism that allows reads and writes to continue without inter-
ruption, even during storage unit failures. When a storage unit fails, an override is issued
(manually or automatically) for that storage unit, signifying that another data center can
now accept writes on behalf of the failed storage unit (for records previously mastered at
the failed storage unit). We take steps (details omitted here) to ensure that this override is
properly sequenced with respect to the updates done at the failed storage unit. This is
done to guarantee that timeline consistency is still preserved when the other data center
starts accepting updates on behalf of the failed storage unit.
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In PNUTS, all read and write requests go through a routing layer that directs them to the
appropriate copy (possibly the master) of the record. This level of indirection is a key to
how we provide uninterrupted system availability. Even when a storage unit has failed
and its data is recovered on to another storage unit, or record masters are moved to reflect
usage patterns, these changes are transparent to applications, which still continue to con-
nect to routers and enjoy uninterrupted system availability, with requests seamlessly
routed to the appropriate location.

Supporting ordered data

Our system is architected to support both hash-partitioned and range-partitioned data. We
call the hash version of our database YDHT, for Yahoo! Distributed Hash Table, and the
ordered version is called ¥YDOT, for Yahoo! Distributed Ordered Table. Most of the system
is agnostic to how the data is organized. However, there is one important issue that is sen-
sitive to physical data organization. In particular, hash-organized data tends to spread load
out among servers very evenly. If data is ordered, portions of the key space that are more
popular will cause hotspots. For example, if status updates are ordered by time, the most
recent updates will be of most interest to users, and the server with the data partition at
the end of the time range will be the most loaded. We cannot allow hotspots to persist
without compromising system scale-out.

Logically ordered data is actually stored in partitions of physically contiguous records, but
with partitions arranged without regard to order, possibly across physical servers. We can
address the hotspot issue by moving partitions dynamically in response to load. If a few
hot partitions are on the same server, we can move them to servers that are less loaded.
Moreover, we can also dynamically split partitions, so that the load on a particularly hot
single partition can be divided amongst several servers.” This movement and splitting of
partitions across storage units is distinct from the mechanism mentioned previously for
changing the location of the master copy of a record: in this case, changing the record
master affects the latency of updates that originate at a server, but does not in general
reduce the cumulative read and write workload on a given partition of records. A particu-
lar special case that requires splitting and moving partitions is when we want to update or
insert a large number of records. In that case, if we are not careful we can create a sever
load imbalance by sending large batches of updates to the same few servers. Thus, it is
necessary to understand something about how the updates are distributed in the key
space, and if necessary, preemptively split and move partitions to prepare for the upcom-
ing onslaught of updates (Silberstein et al. 2008).

We insulate applications from the details of the physical data organization. For single record
reads and writes, the use of a routing layer shields applications from the effects of partition
movement and splitting. For range scans, we need to provide a further abstraction: imagine

* The observant reader may have noticed that if all updates atfect the partition containing the end of
the time range, splitting this partition will not solve the problem, and some measure such as sorting
by a composite key, e.g., user and time, is required.
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that we want to scan all registered users whose age is between 21 and 30. Answering this
query may mean scanning a partition with several thousand records on one server, then a
second partition on another server, and so on. Each partition of several thousand records
can be scanned quickly, since they are sequentially ordered on disk. We do not want the

application to know that we might be moving or splitting partitions behind the scenes. A

good way to do this is to extend the iterator concept: when an application is scanning, we
return a group of records, and then allow the application to come back when it is ready to
ask for the next group. Thus, when the application has completed one batch and has asked
for more, we can switch them to a new storage server that has the partition with the next
group of records.

Trading off consistency for availability

Timeline consistency handles the common case elficiently and with clean semantics, but it
is not perfect. Occasionally, an entire datacenter will go down (e.g., if the power is cut) or
become unreachable (e.g., if the network cable is cut), and then any records mastered in
that datacenter will become unwriteable. This scenario exposes the known trade-off
between consistency, availability, and partition tolerance: only two of those three proper-
ties can be guaranteed at all times. Since our database is global, partitions will happen and
cannot cause an outage, and thus in reality we only have a choice between consistency
and availability. If a datacenter goes offline, possibly with some new updates that have not
yet been propagated to other replicas, we can either preserve consistency by disallowing
updates until the datacenter comes back, or we can preserve availability by violating time-
line consistency and allowing some updates to be applied to a nonmaster record.

Our system gives the application the ability to make this choice on a per-table basis. If the
application has chosen availability over consistency for a particular table, and a datacenter
goes offline, the system temporarily transfers mastership of any unreachable records in
that table. This decision effectively forks the timeline to favor availability. An example is
shown in Figure 4-2. After the lost colo is restored, the system automatically reconciles
any records that have had conflicting updates, and notifies the application of these con-
flicts. The reconciliation ensures that the database converges to the same value every-
where, even if the timeline is not preserved. On the other hand, if the application has
chosen consistency over availability, mastership is not transferred and the timeline is pre-

served, but some writes will fail.

Status: off the phone
West replica

Status: none Status: busy

—@ O

Eastreplica

Status: asleep Status: good
morning

FIGURE 4-2.The west datacenter is offline, so the update timeline forks.
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For certain operations, this trade-off between consistency and availability can be easier to
manage. For example, imagine that an application wants to include polls, where users
vote on various questions (like “What is your favorite color?”) and the poll results are
stored as counters in our database. Counter operations (like increment) are commutative,
and can therefore be applied even to the nonmaster copy without breaking timeline con-
sistency. Normally our replication mechanism transfers the new version of the record
between replicas, but for commutative operations we would actually have to transmit the
operation (e.g., increment). Then, whenever the master received the operation (either
during normal operation or after a datacenter failure), it could apply it without worrying
about whether it is out of order. The one restriction in this scheme is that we cannot mix
commutative and noncommutative operations: setting the value of the counter at any
time after the record inserted is forbidden, since we do not know how to properly order an

increment and an overwrite of the value.

Another extension to our approach is to allow updates to multiple records. Many web
workloads involve updates to a single record at a time, which is why we focused on time-
line consistency at a per-record basis. However, it is occasionally desirable to update mul-
tiple records. For example, in our social networking application we might have binary
friend links: if Alice and Bob are friends, then Alice appears in Bob’s friend list and Bob
appears in Alice’s. When Alice and Bob become friends, we thus need to update two
records. Because we do not provide ACID transactions, we cannot guarantee this update is
atomic. However, we can provide bundled writes: with one call to the database, the applica-
tion can request both writes, and the database will ensure that both writes eventually
occur. To accomplish this, we log the requested writes, and the system retries the writes
until they succeed. This approach preserves per-record timeline consistency, and since the
retries can be asynchronous, preserves our performance goals.

[n summary, timeline consistency provides a simple semantics for how record updates are
propagated, and flexibility in how applications can trade-off read latency for currency.
However, it does not support general ACID transactions—in particular, transactions that

read and write multiple records.

Complex Queries

As web applications become more complex and interesting, they need to retrieve and
combine information from the database in new and different ways. Next, we examine

how to support those queries at a massive scale.

The Challenge

Our system is optimized for queries that touch one or just a few records. In particular, we
can look up records by primary key; once we know Alice’s username, it is straightforward
to determine which partition contains her profile record and read it while loading her

page. Also, our system can store data as hash-partitioned or range-partitioned tables. For
range-partitioned tables, we can conduct range scans over ordered ranges of primary keys.
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For example, we might store Alice’s friends list by having one record per connection, where

the primary key of each connection is the pair of user IDs for Alice and the friend (Table 4-7).

TABLE 4-7. Friends table

Userl User2
Alice Bob
Alice Charles
Alice Dave

In a range-partitioned table, all of the records prefixed with “Alice” will be clustered, and a

short-range scan will be able to pick them up.

Now imagine that we want to add another [eature to our social network site. Users can
post photos and then comment on one another’s photos. Alice might comment on Bob’s
photo, Charles’s photo, and Dave’s photo. When we display a photo, we want to show the
set of comments associated with that photo. We also want to show Alice the set of com-
ments she has made on other people’s photos. We specify the primary key of the com-
ments table as (PhotoID,CommentID) and store it as an ordered YDOT table (Table 4-8), so
that all comments for the same photo are clustered and can be retrieved by a range query.

TABLE %-8. Photo comments table

PhotolD CommentID Comment Commenter
Photol23 18 Cool Mary
Photol23 22 Pretty Alice
Photol23 29 Interesting Charles

How can we collect the set of comments that Alice has made? We have to perform a join
between Alice’s profile record (which contains her username as a key) and the comment
records (which have Alice’s username as a foreign key). Because of our scale-out architec-
ture, data is partitioned across many servers, so computing the join can require accessing
many servers. This expensive operation drives up the latency of requests, both because
multiple servers must be contacted and because a single query generates a great deal of

server load (which slows down other requests).

Another type of query that can be expensive to compute in a scale-out system is group-by-
aggregate queries. Imagine that users specify hobbies, and we want to count the number of
users who have each hobby so that we can show Alice which hobbies are most popular. Such
a query requires scanning all of the data and maintaining counts. The table scan will place
prohibitive load on the system and certainly cannot be done synchronously, as Alice’s page

will take forever to load.

These examples show that while point lookups and range scans can be executed quickly,
more expensive join and aggregation queries cannot be executed synchronously.
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Our Approach

Our key principle for handling expensive operations is to do them asynchronously, but
expensive queries cannot really be handled this way; we do not want to make Alice come
back repeatedly to check whether the asynchronous query collecting all of her comments
has completed.

Materialized views (Agarawal et al. 2009) can, however, be maintained asynchronously,
and when Alice logs in she can quickly (and synchronously) query the view.” Although an
asynchronously maintained view can be stale compared to the base data, the application
already must be built to cope with stale replicas, so dealing with stale view data is usually
acceptable. In fact, we treat a materialized view as a special kind of replica that both repli-
cates and transforms data. By using the same mechanism that updates replicas to also
update views, we ensure that views have similar reliability and consistency guarantees as

replicated base data, without having to design and implement a second mechanism.

Even though view maintenance is done in the background, we still want to make it cheap.
If view maintenance takes too many system resources, it will either disrupt synchronous
read and write requests (adding latency to every query), or we will have to throttle it to
run slowly, at which point the view will be so stale as to possibly be unusable. Thus, we
have to find ways to make view maintenance efficient. Consider the earlier example
where we want to show Alice all of the comments she has made on other people’s photos.
We will create a materialized view where comment data is reorganized to be clustered by
the foreign key (username of the commenter) rather than the primary key. Then, all of
the comments made by Alice will be clustered together. We can also place Alice’s profile
record in the view, keyed by her username, so that her profile and her comments are clus-
tered. Computing the key/foreign key join is as easy as scanning the set of view records

prefixed with “Alice”, and then joining them. The result is shown in Table 4-9.

TABLE 4-9. Co-clustering joining profile and comment records

Alice West 32 Alice Smith « Profile record
Alice Photol23 22 Pretty ¢« Commentrecords
Alice Pholo203 43 | Nice e |[E

Alice Photo418 33 OK

Note that we do not prejoin the profile and comment records in the view. By merely co-
locating records that would join, we make join maintenance cheap: whenever there is an
update to a base record, we only have to update a single view record, even if that view

record would join with multiple other records.

* Materialized views are not currently in the production version of the system.
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How can we store profile and comment records in the same table? In a traditional database
it would be difficult, since the two records have different schemas. However, a core fea-
ture of PNUTS is its ability to represent flexible schemas. Different records in the same
table can have different sets of attributes. This feature is very useful in web applications since
web data is often sparse; a database of items for sale will have different attributes (e.g., color,
weight, RAM, flavor) depending on what kind of item it is. It turns out that flexible sche-
mas are also key to implementing materialized join views so that we can colocate joining
records from different tables.

The asynchronous view approach is useful for helping to answer other kinds of queries as
well. A group-by-aggregation query can be effectively answered by a materialized view
that has pregrouped, and maybe even preaggregated, the data. There are even “simple”
queries, such as a selection over a nonprimary key attribute, that can be most effectively
answered by a materialized view. Consider a query for users who live in Sunnyvale, Cali-
fornia. Since our user table is keyed by username, this query normally requires an expen-
sive table scan. However, we can use the materialized view mechanism to build a
secondary index over the “location” field of the table, store the index in an ordered YDOT
table, and then conduct a range scan over the “Sunnyvale, California” index records to
answer our query (Table 4-10).

TABLE %4-10. Location index

Location Username
Sunnyvale, CA Alice
Sunnyvale, CA Mary
Sunnyvale, CA Steve
Sunnyvale, CA Zach

As with materialized views in other systems, we can create them effectively only if we know
in advance what kinds of queries to expect. Luckily, in web-serving workloads, the queries
are usually templates known in advance with specilic parameters (such as the location or
username) bound at runtime. As such, application developers know in advance which que-
ries are complex enough to require materializing a view. To ask ad hoc queries over data
stored in PNUTS, developers have to use our plug-ins to pull data out of our system into a
compute grid running Hadoop, the open source implementation of MapReduce.

Once we have a few different mechanisms for handling complex queries, it will be useful
to implement a query planner to help execute queries effectively. A planner helps remove
some of the burden from the application developer, who can write declarative queries
without worrying too much about how they will be executed. However, an effective
query planner at our scale will require sophisticated statistics collection, load monitoring,
network monitoring, and a variety of other mechanisms to make sure the planner has
enough information about all the possible bottlenecks in the system to make the most
effective query plan.
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Comparison with Other Systems

When we began thinking about PNUTS, two other massive scale database systems from
Google and Amazon had recently been announced, and a third from Microsoft would later
be made public. As we developed our designs, we examined these other systems carefully
to see whether some or all of their ideas could be useful to us. Some of the ideas from
these systems influenced us, but we decided to build a new system with an architecture
that was different in many ways. We now look at each of these systems and discuss why
we decided to depart from their design principles.

Google’s BigTable

BigTable (Chang et al. 2006) is a system designed to support many of Google’s web appli-
cations. The system is based on horizontally partitioning a “big table” into many smaller
tablets, and scattering those tablets across servers. This basic approach to scalability, as
well as features such as tlexible schema and ordered storage, are similar to the approach
we took. However, there were several design decisions where we diverged from BigTable.

The first major difference was in our approach to replication. BigTable is built on top of the
Google File System (GFS; Ghemawat et al. 2003), and GFS handles the replication of data
by synchronously updating three copies of the data on three different servers. This
approach works well in a single colo, where interserver latencies are low. However, syn-
chronously updating servers in three different, widely dispersed colos is too expensive;
Alice might wait a long time lor her status to be updated, especially if her friends access a
datacenter with a poor connection to the Internet backbone. To support cross-colo replica-
tion, we developed the timeline consistency model, and the associated mechanisms for
mastership, load balancing, and failure handling.

We also decided not to enforce the separation between database server and filesystem that
is enforced between BigTable and GFS. GFS was originally designed and optimized for
scan-oriented workloads of large files (for example, for MapReduce). BigTable uses GFS by
keeping a version history of each record, compacted into a file format called SSTables to
save space. This means that on record reads and updates, the data must be decoded and
encoded into this compressed format. Moreover, the scan-oriented nature of GFS makes
BigTable useful for column-oriented scans (such as “retrieve all the locations of all the
users”). In contrast, our primary workload is to read or update a single version ol a single
record or a small range of records. Thus, we store data on disk as complete records orga-
nized into a B-tree. This approach is optimized for quickly locating, and updating in-place,
individual records identitied by primary key.

PNUTS differs from BigTable in other ways as well. For example, we support multiple
tables for an application, instead of one large table, and we support hash as well as ordered
tables. A follow on to BigTable, called MegaStore (Furman et al. 2008), adds transactions,

indexes, and a richer API, but still follows the basic architectural tenets of BigTable.
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Amazon'’s Dynamo

Dynamo (DeCandia et al. 2007) is one of the systems Amazon has built recently for large-
scale data workloads, and is the one most closely aligned with our goals of a highly avail-
able, massive scale structured record store. (Records in Dynamo are referred to as objects.)
Dynamo provides write availability by allowing applications to write to any replica, and

lazily propagating those updates to other replicas via a gossip protocol (explained next).

The decision to lazily propagate updates to deal with slow and failure-prone networks
matches our own; however, our mechanism for replication is quite different. In a gossip
protocol, an update is propagated to randomly chosen replicas, which in turn propagates it
to other randomly chosen replicas. This randomness is essential to the probabilistic guar-
antees offered by the protocol, which ensures that most replicas are updated relatively
quickly. In our setting, however, randomness is decidedly suboptimal. Consider an update
Alice makes to her status in a colo on the west coast of the U.S. Under gossip, this update
may be randomly propagated to a replica in Singapore, which then randomly propagates
the update to a replica in Texas, which then randomly propagates the update to a replica
in Tokyo. The update has crossed the Pacific Ocean three times, whereas a more determin-
istic approach could conserve scarce trans-Pacific backbone bandwidth and transfer it (and
other updates) only once. Moreover, gossip requires the replica propagating the update to
know which servers in which other colos have replicas, which makes it hard to move data
between servers for load balancing or recovery.

Another key difference with Dynamo is the consistency protocol. Gossip lends itself to an
eventual consistency model: all data replicas will eventually match, but in the interim, while
updates are propagating, replicas can be inconsistent. In particular, replicas can have a state
that is later deemed “invalid.” Consider, for example, Alice, who updates her status from
“Sleeping” to “Busy” and then updates her location from “Home” to “Work.” Because of the
order of updates, the only valid states of the record (from Alice’s perspective, which is what
matters) are (Sleeping,Home), (Busy,Home), and (Busy,Work). Under eventual consistency, if the
two updates are made at different replicas, some replicas might receive the update to “Work”
first, meaning that those replicas show a state of (Sleeping,Work) temporarily. If Alice’s boss
sees this status, Alice might be in trouble! Applications that rely on the application of multiple
updates to a record in the proper order need a stronger guarantee than eventual consistency.
Although our timeline consistency model allows replicas to be stale, even stale replicas have a
consistent version that reflects the proper update ordering.

There are various other differences with Dynamo: Dynamo provides only a hash table and
not an ordered table, and we have opted for a more flexible mapping of data to servers in
order to improve load balancing and recovery (especially for ordered tables, which might
have unpredictable hot spots). Amazon also provides other storage systems besides
Dynamo: S3 for storing blobs of data, and SimpleDB for executing queries over structured,
indexed data. Although SimpleDB provides a richer APJ, it requires that the application
come up with a partitioning of the data such that each partition is within a fixed size limit.

Thus, data growth within a partition is restricted.
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Microsoft Azure SDS

Microsoft has built a massive scale version of SQL Server (called SQL Data Services or
SDS) as part of its Azure services offering (/http://hadoop.apache.org). Again, the focus is on
scalability through horizontal partitioning. A nice feature of SDS is the enhanced query
capabilities made available by extensively indexing data and providing SQL Server as the
query-processing engine. However, SDS achieves this query expressiveness by rigidly
enforcing partitioning: applications create their own partitions and cannot easily reparti-
tion data. Thus, although you can ask expressive queries over a partition, if a partition
grows or becomes hot, the system cannot easily or automatically relieve the hotspot by
splitting the partition. Our decision to hide partitioning behind the abstraction of a table
allows us to make and change partitioning decisions for load and recovery reasons. While
this means that our query model is less expressive (since we do not support complex que-
ries which cross partitions), we are continuing to look at ways to enhance our query func-

tionality (for example, through views, as described earlier).

Another difference with SDS is that PNUTS has geographic replication built in as a first-
class feature of the system. In at least the first release of SDS, the workload is expected to
live within a single datacenter, and remote copies are only used in case of a total failure of
the primary replica. We want Alice’s friends in Singapore, Berlin, and Rio de Janeiro to

have their own local, first-class copies of Alice’s updates.

Other Related Systems

A variety of other systems have been built by companies who have scalability and flexibil-
ity needs similar to ours. Facebook has built Cassandra (Lakshman et al. 2008), a peer-to-
peer data store with a BigTable-like data model but built on a Dynamo-like infrastructure.
Consequently, Cassandra provides only eventual consistency.

Sharded databases (such as the MySQL sharding approach used by Flickr [Pattishall] and
Facebook [Sobel 2008]) provide scalability by partitioning the data across many servers;
however, sharding systems do not typically provide as much tlexibility for scaling or glo-
bally replicating data as we desire. Data must be prepartitioned, just like in SimpleDB.
Also, only one of the replicas can be the master and accept writes. In PNUTS, all replicas in

different data centers can accept writes (although for different records).

Other Systems at Yahoo!

PNUTS is one of several cloud systems that are being built at Yahoo!. Two other compo-
nents of the cloud are also targeted at data management, although they focus on a differ-
ent set of problems than PNUTS. Hadoop (/ittp://hadoop.apache.org), an open source
implementation of the MapReduce framework (Dean and Ghemawat 2007), provides
massively parallel analytical processing over large datafiles. Hadoop includes a filesystem,
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HDFS, which is optimized for scans, since MapReduce jobs are primarily scan-oriented
workloads. In contrast, PNUTS is focused on reads and writes of individual records.
Another system is MObStor, which is designed to store and serve massive objects such as
images or video. MObStor’s goal is to provide low-latency retrieval and inexpensive stor-
age for objects that do not change. Since many applications need a combination of record
storage, data analysis, and object retrieval, we are working on ways to seamlessly integrate
the three systems. A survey of our efforts to integrate these systems into a comprehensive
cloud is at (Cooper et al. 2009).

Conclusion

When we embarked on the PNUTS project, we had in mind a system that could seamlessly
scale to thousands of servers and multiple continents. Building such a system required
more than clever engineering; it required us to reopen many settled debates in the data-
base field. Although it was a relatively easy decision to jettison ACID, we soon realized we
had to develop something to replace it, and thus developed the timeline consistency
model. Although the model is relatively simple by design, handling complex corner cases,
developing an efticient implementation mechanism, and mapping application use cases to
the model required deep thinking and many iterations. Another point to note is that at
first our customers and we were relatively blasé about restricting ourselves to a simple
query language. However, as developers began trying to build real applications on top of
PNUTS, we realized that the small fraction of the query workload that was more complex
than we could handle would be a major stumbling block to the system’s adoption. If we
did not develop a mechanism to handle these queries, developers would have to resort to
complicated workarounds, either implementing expensive operations (such as nested loop
joins) in their application logic or frequently exporting data to external indexes to support
their workload.

The field is in the early stages of cloud data management, and this is reflected in the many
alternative system designs being built and deployed. We hope the ideas embodied in the

PNUTS system can help us get closer to the goal of easily manageable, broadly applicable,
multitenanted cloud database systems that provide applications with elastic, efficient, glo-

bally available, and extremely robust data backends.
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CHAPTER FIVE

Information Platforms and the Rise of
the Data Scientist

Jeff Hammerbacher

Libraries and Brains

AT THE AGE OF 17, | WAS FIRED FROM MY JOB AS A CASHIER AT SCOTT’S GROCERY STORE IN FORT
Wayne, Indiana. With only two months remaining before my freshman year of college, I
saw in my unemployment an opportunity. Instead of telling my parents that I had been
fired, I continued to leave the house every afternoon in my cashier’s outfit: black pants,
black shoes, white shirt, and smock. To my parents, I looked ready for some serious cou-

pon scanning; in reality, 1 was pulling 10-hour shifts reading at the public library.

All reasonably curious people wonder how their brain works. At 17, [ was unreasonably
curious. I used my time at the library to learn about how brains work, how they break,
and how they are rebuilt. In addition to keeping us balanced, regulating our body temper-
ature, and making sure we blink our eyelids together every now and again, our brains
ingest, process, and generate massive amounts of information. We construct unconscious
responses to our immediate environment, short-term plans for locution and limb place-
ment, and long-term plans for mate selection and education. What makes brains interest-
ing is not just their ability to generate reactions to sensory data, but their role as repository
ol information for both plan generation and the creation ol new information. I wanted to
learn how that worked.
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One thing about brains, though: they remain stubbornly housed within a single body. To
collect information from many brains, we build libraries. The field of library science has
evolved numerous techniques for herding the information stored in libraries to enable
future consumption; a fun read on the topic is Alex Wright's Glut (Joseph Henry Press). In
addition to housing information for future retrieval, libraries play a critical role in the cre-
ation of new information. As philosopher Daniel Dennett puts it, “a scholar is just a
library’s way of making another library.”

Libraries and brains are two examples of Information Platforms. They are the locus of their
organization’s efforts to ingest, process, and generate information, and they serve to accel-
erate the process of learning from empirical data. When 1 joined Facebook in 2006, I natu-
rally started to build an Information Platform. Because of the tremendous growth in the
number of users on Facebook, the system our team built ended up managing several
petabytes of data. In this chapter, I'll recount the challenges faced in building out Face-
book’s Information Platform and the lessons learned while constructing our solution from
open source software. I'll also try to outline the critical role of the Data Scientist in using
that information to build data-intensive products and services and helping the organiza-
tion formulate and accomplish goals. Along the way, I'll recount how some other busi-
nesses have approached the problem of building Information Platforms over the decades.

Before we get started, I should point out that my clever plan to visit the library instead of
the grocery store did not work out as intended. After a few blissful days of reading, I came
out of the library one evening and couldn’t locate my car. It was not uncommon for me to
lose my car at the time, but the lot was empty, so 1 knew something was up. It turns out
that my mom had figured out my scheme and gotten my car towed. During the long walk
home, Tinternalized an important lesson: regard your own solutions with skepticism.

Also, don’t try to outsmart your mother.

Facebook Becomes Self-Aware

In September 2005, Facebook opened to non-college students for the first time and
allowed high school students to register for accounts. Loyal users were outraged, but the
Facebook team felt that it was the right direction for the site. How could it produce evi-
dence to justify its position?

In addition, Facebook had saturated the student population at nearly all of the colleges
where it was available, but there were still some colleges where the product had never
taken off. What distinguished these laggard networks from their more successtul peers,
and what could be done to stimulate their success?

When I interviewed at Facebook in February 2006, they were actively looking to answer
these questions. I studied mathematics in college and had been working for a nearly a year on
Wall Street, building models to forecast interest rates, price complex derivatives, and hedge

pools of mortgages; I had some experience coding and a dismal GPA. Despite my potentially

suboptimal background, Facebook made me an offer to join as a Research Scientist.
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Around the same time, Facebook hired a Director of Reporting and Analytics. The director
had far more experience in the problem domain than me; together with a third engineer,
we set about building an infrastructure for data collection and storage that would allow us

to answer these questions about our product.

Our first attempt at an offline repository of information involved a Python script for farm-
ing queries out to Facebook’s tier of MySQL servers and a daemon process, written in
C++, for processing our event logs in real time. When the scripts worked as planned, we
collected about 10 gigabytes a day. I later learned that this aspect of our system is com-
monly termed the “ETL” process, for “Extract, Transform, and Load.”

Once our Python scripts and C++ daemon had siphoned the data from Facebook’s source
systems, we stuffed the data into a MySQL database for offline querying. We also had
some scripts and queries that ran over the data once it landed in MySQL to aggregate it
into more uselul representations. It turns out that this offline database for decision support
is better known as a “Data Warchouse.”

Finally, we had a simple PHP script to pull data from the offline MySQL database and dis-
play summaries of the information we had collected to internal users. For the first time,
we were able to answer some important questions about the impact of certain site features
on user activity. Early analyses looked at maximizing growth through several channels:
the layout of the default page for logged-out users, the source of invitations, and the
design of the email contact importer. In addition to analyses, we started to build simple
products using historical data, including an internal project to aggregate features of spon-

sored group members that proved popular with brand advertisers.

I didn‘t realize it at the time, but with our ETL framework, Data Warehouse, and internal

dashboard, we had built a simple “Business Intelligence” system.

A Business Intelligence System

In a 1958 paper in the IBM Systems Journal, Hans Peter Luhn describes a system for “selec-
tive dissemination” of documents to “action points” based on the “interest profiles” of the
individual action points. The author demonstrates shocking prescience. The title of the
paper is “A Business Intelligence System,” and it appears to be the first use of the term

“Business Intelligence” in its modern context.

In addition to the dissemination of information in real time, the system was to allow for
“information retrieval”—search—to be conducted over the entire document collection.
Luhn’s emphasis on action points focuses the role of information processing on goal com-
pletion. In other words, it’s not enough to just collect and aggregate data; an organization
must improve its capacity to complete critical tasks because of the insights gleaned from
the data. He also proposes “reporters” to periodically sift the data and selectively move
information to action points as needed.
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The field of Business Intelligence has evolved over the five decades since Luhn’s paper was
published, and the term has come to be more closely associated with the management of
structured data. Today, a typical business intelligence system consists of an ETL framework
pulling data on a regular basis from an array of data sources into a Data Warehouse, on
top of which sits a Business Intelligence tool used by business analysts to generate reports
for internal consumption. How did we go from Luhn’s vision to the current state of
affairs?

E. F. Codd first proposed the relational model for data in 1970, and IBM had a working
prototype of a relational database management system (RDBMS) by the mid-1970s. Build-
ing user-facing applications was greatly facilitated by the RDBMS, and by the early 1980s,

their use was proliferating.

In 1983, Teradata sold the first relational database designed specifically for decision sup-
port to Wells Fargo. A few years later, in 1986, Ralph Kimball founded Red Brick Systems
to build databases for the same market. Solutions were developed using Teradata and Red
Brick’s offerings, but it was not until 1991 that the first canonical text on data warehous-
ing was published.

Bill Inmon’s Building the Data Warehouse (Wiley) is a coherent treatise on data warehouse
design and includes detailed recipes and best practices for building data warehouses.
Inmon advocates constructing an enterprise data model after careful study of existing data

sources and business goals.

In 1995, as Inmon’s book grew in popularity and data warehouses proliferated inside
enterprise data centers, The Data Warehouse Institute (TDWI) was formed. TDWI holds
conferences and seminars and remains a critical force in articulating and spreading knowl-
edge about data warchousing. That same year, data warchousing gained currency in aca-
demic circles when Stanford University launched its WHIPS research initiative.

A challenge to the Inmon orthodoxy came in 1996 when Ralph Kimball published The
Data Warehouse Toolkit (Wiley). Kimball advocated a different route to data warehouse nir-
vana, beginning by throwing out the enterprise data model. Instead, Kimball argued that
different business units should build their own data “marts,” which could then be con-
nected with a “bus.” Further, instead of using a normalized data model, Kimball advocated
the use of dimensional modeling, in which the relational data model was manhandled a

bit to fit the particular workload seen by many data warehouse implementations.

As data warehouses grow over time, it is often the case that business analysts would like to
manipulate a small subset of data quickly. Often this subset of data is parameterized by a

few “dimensions.” Building on these observations, the CUBE operator was introduced in

1997 by a group of Microsoft researchers, including Jim Gray. The new operator enabled

fast querying of small, multidimensional data sets.

Both dimensional modeling and the CUBE operator were indications that, despite its suc-
cess for building user-facing applications, the relational model might not be best for con-
structing an Information Platform. Further, the document and the action point, not the
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table, were at the core of Luhn’s proposal for a business intelligence system. On the other
hand, an entire generation of engineers had significant expertise in building systems for

relational data processing.

With a bit of history at our back, let’s return to the challenges at Facebook.

The Death and Rebirth of a Data Warehouse

At Facebook, we were constantly loading more data into, and running more queries over,
our MySQL data warechouse. Having only run queries over the databases that served the
live site, we were all surprised at how long a query could run in our data warehouse. After
some discussion with seasoned data warehousing veterans, 1 realized that it was normal to
have queries running for hours and sometimes days, due to query complexity, massive

data volumes, or both.

One day, as our database was nearing a terabyte in size, the mysqld daemon process came
to a sudden halt. After some time spent on diagnostics, we tried to restart the database.

Upon initiating the restart operation, we went home for the day.

When I returned to work the next morning, the database was still recovering. To get a
consistent view of data that’s being modified by many clients, a database server maintains
a persistent list of all edits called the “redo log” or the “write-ahead log.” If the database
server is unceremoniously killed and restarted, it will reread the recent edits from the redo
log to get back up to speed. Given the size of our data warehouse, the MySQL database
had quite a bit of recovery to catch up on. It was three days before we had a working data

warehouse again.

We made the decision at that point to move our data warehouse to Oracle, whose database
software had better support for managing large data sets. We also purchased some expensive
high-density storage and a powerlul Sun server to run the new data warehouse.

During the transfer of our processes from MySQL to Oracle, I came to appreciate the dif-
ferences between supposedly standard relational database implementations. The bulk
import and export facilities of each database used completely different mechanisms. Fur-
ther, the dialect of SQL supported by each was ditferent enough to force us to rewrite
many of our queries. Even worse, the Python client library for Oracle was unofticial and a
bit buggy, so we had to contact the developer directly.

Alter a few weeks of elbow grease, we had the scripts rewritten to work on the new Oracle
platform. Our nightly processes were running without problems, and we were excited to
try out some of the tools from the Oracle ecosystem. In particular, Oracle had an ETL tool
called Oracle Warehouse Builder (OWB) that we hoped could replace our handwritten
Python scripts. Unfortunately, the software did not expect the sheer number of data
sources we had to support: at the time, Facebook had tens of thousands of MySQL data-
bases from which we collected data each night. Not even Oracle could help us tackle our
scaling challenges on the ETL side, but we were happy to have a running data warehouse

with a few terabytes of data.
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And then we turned on clickstream logging: our first full day sent 400 gigabytes of
unstructured data rushing over the bow of our Oracle database. Once again, we cast a

skeptical eye on our data warchouse.

Beyond the Data Warehouse

According to IDC, the digital universe will expand to 1,800 exabytes by 2011. The vast
majority of that data will not be managed by relational databases. There’s an urgent need
for data management systems that can extract information from unstructured data in con-

cert with structured data, but there is little consensus on the way forward.

Natural language data in particular is abundant, rich with information, and poorly man-
aged by a data warehouse. To manage natural language and other unstructured data,
often captured in document repositories and voice recordings, organizations have looked
beyond the offerings of data warehouse vendors to various new fields, including one
known as enterprise search.

While most search companies built tools for navigating the collection of hyperlinked docu-
ments known as the World Wide Web, a few enterprise search companies chose to focus on
managing internal document collections. Autonomy Corporation, founded in 1996 by
Cambridge University researchers, leveraged Bayesian inference algorithms to facilitate the
location of important documents. Fast Search and Transfer (FAST) was founded in 1997 in
Norway with more straightforward keyword search and ranking at the heart of its technol-
ogy. Two years later, Endeca was founded with a focus on navigating document collections
using structured metadata, a technique known as “faceted search.” Google, seeing an
opportunity to leverage its expertise in the search domain, introduced an enterprise search

appliance in 2000.

In a few short years, enterprise search has grown into a multibillion-dollar market seg-
ment that is almost totally separate from the data warehouse market. Endeca has some
tools for more traditional business intelligence, and some database vendors have worked
to introduce text mining capabilities into their systems, but a complete, integrated solution
for structured and unstructured enterprise data management remains unrealized.

Both enterprise search and data warehousing are technical solutions to the larger problem
of leveraging the information resources of an organization to improve performance. As far
back as 1944, MIT professor Kurt Lewin proposed “action research” as a framework that
uses “a spiral of steps, each of which is composed of a circle of planning, action, and fact-
finding about the result of the action.” A more modern approach to the same problem can
be found in Peter Senge’s “Learning Organization” concept, detailed in his book The Fifth
Discipline (Broadway Business). Both management theories rely heavily upon an organiza-
tion’s ability to adapt its actions after reflecting upon information collected from previous
actions. From this perspective, an Information Platform is the infrastructure required by a
Learning Organization to ingest, process, and generate the information necessary for

implementing the action research spiral.
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