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Preface

The idea for this book arose out of an introductory mathematics course,
“Mathematics in the Real World”, that the authors co-designed and have
taught at Yale and Stanford. The purpose of the course is to familiarize
students whose primary interests lie outside of the sciences with the power
and beauty of mathematics. In particular, we hope to show how simple
mathematical ideas can be applied to answer real-world questions.

Thus we see this as a college-level course book that can be used to teach
basic mathematics to students with varying skill levels. We discuss specific
and relevant real-life examples: population growth models, logarithmic
scales, personal finance, motion with constant speed or constant accelera-
tion, computer security, elements of probability, and statistics. Our goal
is to combine the right level of difficulty, pace of exposition, and scope of
applications for a curious liberal arts college student to study and enjoy.

Additionally, the book could find use by high school students and by
anyone wishing to study independently. The prerequisite is only a high
school course in algebra. We hope our book can help readers without
extensive mathematical training to analyze datasets and real-world phe-
nomena, and to distinguish statements that are mathematically reasonable
from those only pretending to be.

Philosophy and goals

Imagine the following dialog in a high school algebra class.
Teacher: “Find the sum of the geometric series 1 +5+5% 4 ...+
Student (looking out the window and thinking that life is so much
bigger than math, and wondering why the class has to suffer through this
tedious, long, and pointless computation): “Can’t we just type it into a
calculator?”

520 ”»
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Whatever the teacher’s answer, the student knows that he is right at
least on one count — life is indeed bigger than math. It is also bigger
than physics, history, and sociology. But for some reason the irrelevance
of mathematics is much easier to accept. It is not acceptable to say,
“I do not care who was the first president of the United States,” but it
seems just fine to say, “I do not care about the purpose of a geometric
series.” It is not acceptable to brag, “I'm illiterate!” But many people feel
justified telling friends that they cannot understand mathematics. Yet the
consequences of refusing to learn even the most basic mathematical ideas
are dire both for the individual and for society As a society, we need
to make collective decisions based on information provided by the media
and other sources of variable reliability — and the quality of such decisions
depends on our understanding of logic and statistics. As individuals, we
have to cope with personal finance and Internet security. We have to know
how to estimate the chances an event will occur, and how to interpret lots
of new information. From a less practical viewpoint, mathematics adds
another dimension (or two, or twenty-thre to the way we see the world,
which might be a source of inspiration for a person of any occupation.

The student we just encountered likely will come to college to major in
the humanities or social sciences, and is part of the target audience for this
book. Thus, our main goal is to convince our reader that mathematics can
be easy, its applications are real and widespread, and it can be amusing
and inspiring.

To illustrate, let us return to our geometric series example. Mathemat-
ics is known to have formulas for everything, so it is not surprising that it
has a formula for the sum 1 + 5 + 5% ... + 5" for any natural n. What
might be more surprising is that this formula requires no derivatives, inte-
erals, or trigonometric identities — and the computation (given in Chapter
Ep takes only one line.

Practical applications of this simple mathematical concept are every-
where: for instance, it governs the payment of mortgages and car loans for
millions of people. There is more! Everyone knows that % = 0.333333...,
but the fact that any repeating decimal, say, 0.765765765..., can be easily
written as a fraction of two integers follows from the formula for the geo-
metric series. The same formula lies in the foundation of Zeno’s paradox
of Achilles and a tortoise, covered in Chapter and two centuries later,
another Greek, Archimedes, used a geometric series to calculate the area

I'We will not elaborate on this here, referring the reader, for example, to Innumeracy
by J.A. Paulos, published by Hill and Wang, New York, 2001.
2 According to string theory, the world might have 26 dimensions.
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under a parabolic arc. Why should we care? If understanding history is
a good enough reason, we can recall that by some accounts, Archimedes
also took part in the defense of his town of Syracuse during the siege by
the Romans (214-212 BC), and might have used his computation to design
a parabolic mirror to set the enemy’s fleet on fire. Now, fast-forward to
the twentieth century. “How Long Is the Coast of Britain? Statistical
Self-Similarity and Fractional Dimension” was the title of the article, pub-
lished in Science in 1967 by the French-American mathematician Benoit
Mandelbrot, that opened a new area of study — fractal geometry. The
answer to the question in the title depends on how closely we look, and
the closer we look, the greater the coast’s length becomes. The same is
true for many fractal curves that are easy to describe in words but impos-
sible to draw precisely. One of the central tools used to understand these
objects is the geometric series.

This is just a glimpse of the scope of applications of one simple mathe-
matical idea — from personal finance, to philosophical puzzles, to fractals,
objects of such breathtaking beauty that they make the boundary between
art and science disappear.

This example encapsulates our philosophy for the book: we would like
to show that there is a lot of simple mathematics relevant to people’s
everyday lives and their creative aspirations.

There is a way to teach a future artist, and there is a way to teach a
layperson to appreciate art. In the latter case, the student is not required
to be able to draw and paint like a master, but only to see the beauty in
the works of others. Our intention for this book is more ambitious: we
hope that it can serve as a guide to the world of mathematics, and also
as an inspiration for readers to try their hand at developing and solving
mathematical models for their own needs. From there it is only one more
step to seeing the world from a mathematical point of view.

The book includes many examples and practice problems designed to
gradually build students’ proficiency and encourage their involvement with
the material. The ultimate goal is to make even the students who are “nu-
merically shy” at the start of a course comfortable applying their math-
ematical skills in a wide range of situations, from solving puzzles to ana-
lyzing statistical data.

We also hope that they become “math-friendly,” admitting that math-
ematics can be interesting and cool. We feel that such comfort levels are
indeed achieved when we teach this course at Yale and Stanford — based
on our discussions with students, their exams and homework, and their
feedback from the course.
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Contents and structure

Here are the most important features that distinguish our approach.

First, we neither discuss nor assume any knowledge of calculus or
trigonometry. There are quite a few simple concepts in mathematics that
do not depend on this particular knowledge but have enormous importance
in the real world, as a vast number of pertinent applications show.

Second, our preference is for a self-contained linear exposition, devoid
of digressions and asides. We also refrain from presenting an overload of
pictures, data analysis, or complicated examples. This book should be
viewed as supporting material for a first course in college-level mathemat-
ics; there is ample opportunity to analyze more complex examples and
phenomena in future studies.

The choice of topics in the book was governed by the following princi-
ples:

1. The mathematics involved should be simple, accessible to a student
with no experience beyond elementary high school algebra, and ex-
plainable within a couple of pages.

2. These simple mathematical concepts should generate a wide range
of practical, impressive, or amusing real-world applications.

Accordingly, each chapter of the boaok, starting with Chapter is divided
into two parts:

1. The first, shorter part contains the necessary mathematics: defini-
tions, statements, explanations, examples. This part is supposed to
be studied, or read slowly, with the reader occasionally doing sug-
gested computations. It can also play the role of lecture notes, if the
book is used in teaching a course. Finally, the clearly distinct math
section can be used as a reference when reading about applications.

2. The second part, which constitutes most of the chapter, is an explo-
ration of various real-world applications. It contains questions posed
and answered by means of the mathematical tools presented in the
first part. The second part has little or no mathematical argument
and is designed to be read leisurely.

The math sections are there for studying the necessary mathematics.
The applications sections are for reading about ways this math can be
used. By separating these two activities, we hope to promote learning;
instead of students half paying attention while reading fifty pages of a
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to complete their academic requirements, the book will also significantly
benefit them in their future careers.

When the course “Mathematics in the Real World” was introduced
at Yale University, it received twice as many applications as there was
room for, and the course remains quite popular. In course evaluations
and thank-you notes, students mention that the course has helped them
acquire basic mathematical literacy and confidence, and instead of being
scary, it was an enjoyable experience. We hope that this book will elicit
similar reactions from some of our readers.

The course has also been introduced at Stanford University. Our long-
term hope is that this book will contribute to the regular curriculum in
many colleges and universities.

We also hope that our book will be helpful for those who would like to
specialize in natural sciences or economics, but who lack some background
in pre-calculus and calculus. For them, the book might serve as a first step
on their way to more advanced mathematics.

The book might also be useful for advanced high-school students who
are interested in real-world applications of the concepts they learn at
school. We estimate that the level of exposition is suitable for most high
schools, and the book can be used either by teachers, to supplement the
standard program, or by students as extracurricular reading.

In addition, the universal appeal of the topics and the minimal math-
ematical prerequisites needed to understand this text make for a signifi-
cantly wider audience. This book should be usable for independent study
by busy adults who wish to improve their understanding of math (the book
is short!). It might also have some appeal for busy but more experienced
math fans, who could leisurely scan it for literary references and unusual
applications of math concepts.

Finally, we expect the book to be attractive to international audiences.
The authors are of Indian and Russian origin, and we tried to give the book
an international flavor. Our examples and cultural references are drawn
from all over the world.

In this book we tried to keep a balance between being instructional,
being entertaining, and being practical. We hope that this approach will
help us promote mathematics as an art, a skill, a language, a way of
thinking, a game of puzzles, and in general a worthy activity, to a wide
audience of readers.
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Chapter 1

Algebra: The art and
craft of computation

In this book, we hope to show you that a wide variety of real-world prob-
lems and applications can be tackled systematically, comprehensively, and
relatively simply by using just a few mathematical formulas and tech-
niques. In order to introduce the mathematics and then to apply it to the
real world, it is essential to be able to work with mathematical expres-
sions and quantities in a systematic manner. Thus, we first need to be
comfortable with basic operations like adding or multiplying polynomials;
solving equations and systems of (linear or other) equations; and choos-
ing an optimal way to simplify an algebraic expression. Developing these
techniques is the goal of this chapter.

Sometimes these techniques produce unexpected results which some of
you may have seen as “magic tricks.” For instance, you can check that
multiplying two consecutive odd numbers (or consecutive even numbers)
yields one less than a perfect square (e.g., 5-7+1 =36 =62, 10-12+1 =
121 = 112). Is this always the case, or can we find two consecutive odd or
even numbers for which this phenomenon does not occur? Note that it is
impossible — even for the biggest computer — to wverify this for all integers
in finite time, because there are infinitely many numbers. But, as we will
see, there is a simple way to perform just one calculation — and it will do
the job for every single case.

Similarly, multiplying three successive integers and adding the middle
integer to this product always vields a perfect cube!l Why? Once again,
we will see in the exercises in this chapter how one calculation reveals the
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distributive law again, we get

(@ =2)(z +2) =32 + 6= (2 = 2)(x +2) + (2° = 2) - (=3)
— (@ =2z +2-3)=(z"=2)(z - 1),

and so just like long expressions involving numbers (as in Example ,
variable expressions can also be simplified.

An advantage of using variables is that once verified, a statement in-
volving variables automatically holds for every real value assumed by these
variables. For instance, consider the following “magic trick.”

Example 1.2. Get your number back! Here’s a magic trick: start with
any number, add 2 to it, multiply the sum by 5, subtract 10 from the
product, and divide the difference by 5 — and lo and behold! You get your
original number back.

Is it possible to explain what is going on without having to verify
whether or not this works for every single starting number?

Solution: Indeed it is. Suppose we start with the number x — as opposed
to a specific value, we use a variable because it can be set equal to any
number. Then the effect of the given operations on the initial value can
be explicitly computed:

r—x+2, x+ 2 —= 5(x + 2) = 5z + 10,
5z + 10 — (bx + 10) — 10 = bz, ba — (bz)/b =z,

and indeed, we get the original number back as the trick claims. (Note that
the second operation uses the distributive law.) Thus we have explained
the magic trick for every starting number . Of course, if you want to re-
peat the calculations corresponding to a specific starting number z, simply
set @ everywhere above equal to that starting number. O

The above example shows that it is indeed possible to use variables
to explain general phenomena, or to solve “word problems” using simple
mathematics. We now mention an example which will help us answer the
question posed at the beginning of this chapter.

Example 1.3. The sum times the difference. One very useful identity
involves taking two numbers a, b, and multiplying their sum times their
difference. Let us compute the result using the distributive law:

(a+b)-(a—10b) = a® +ba—ab—b* = a* — b°.
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This means that the sum and the difference of any two real numbers a and
b multiply to yield the difference between their squares.

Conversely, this identity can help compute the product of any two
numbers: take the square of the number exactly in the middle, and sub-
tract the square of the half of the difference between them. Indeed, if the
numbers to multiply are (a+b) and (a—b), then the munber in the middle
is a, and half of the difference between them is b, and our statement reads

(a+b)-(a—0b)=a®—b?

which is the sum times the difference formula. It works especially well for
two integers that are equidistant from a number whose square is easy to
compute.

For instance, this identity enables us to compute 297 - 303 without too
much fuss (or a calculator):

297 - 303 = (300 — 3) - (300 + 3) = 300% — 32 = 90,000 — 9 — 89, 991.
O

Example 1.4. Multiplying consecutive odd or even numbers. We now
return to the example mentioned at the beginning of the chapter: multi-
plying two consecutive odd (or even) numbers always seems to yield one
less than a perfect square. To check this for every pair of consecutive
odd/even numbers at once, we replace these numbers by variables: denote
the number between the two consecutive odd/even numbers as n. Then
the two numbers that we are to multiply, are (n + 1) and (n — 1). Their
product, by the previous example, is

(n4+1)-(n—1)=n>—12=n?—1.

This is precisely one less than the square of the middle number n, as we
claimed. O

This general calculation also provides a method to compute such prod-
ucts: take the square of the number in between, and subtract 1. For
instance, if we want to compute the product of the two successive odd
numbers 101 - 99, then we simply use n = 100 in the above calculation, to
get 1002 — 12 = 9,999,

Solving equations

Often in the real world, we see that the same quantity can be expressed
in different ways using different physical units. For instance, the same
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distance can be given in yards, miles, or meters. Or, the same temperature
can be expressed in Celsius and in Fahrenheit (or even in Kelvin) degrees.
In solving questions involving such changes, a simple tool that is useful is
a linear equation. Here is an example.

Example 1.5. What temperature has the same numerical value when
measured in Fahrenheit and Celsius?

Solution: Denote the unknown temperature in Celsius, say, by 7. Then
this same temperature in Fahrenheit is given by: 32+ %T. The conditions
of the problem imply that we are to equate these two expressions. In
formulas, we have

T=32+2T = —32=2T—T= 9—1 T:ilT
5 5 5 5
5
= T =(-32)- 1= —40.
We conclude that —40°F = —40°C (and no other temperature has this
property). O

The above equation T = 32+ %T is an example of a linear equation. It
models a linear relationship, or dependency, between two varying quanti-
ties (in this case, the temperature in Celsius and in Fahrenheit). A linear
equation is characterized by the way the variable appears in it: it can
either stand alone, or be multiplied by a numeric coefficient. The variable
can be denoted by any letter, say, z, T, w,y, A, and so on. All other terms
of the equation are numbers.

Such dependencies are ubiquitous in the real world — for instance, one
can use linear equations to model production costs (involving an overhead
amount and manufacturing cost per unit), simple interest in banking, dis-
tance traveled by a vehicle or a jogger with constant velocity, or conversions
between different units of temperature, money, weight, distance, and so
on. For example, one can determine which temperature in Fahrenheit is
twice (and which is half) the number that it equals in Celsius. Here is
another real-world example which can be solved using linear equations.

Example 1.6. Taxicab fares. Suppose in a given city, cab drivers charge
an initial fare of $3, followed by an additional charge of $2 per mile. What
is the fare if the passenger travels for 10 miles? How many miles has the
passenger traveled if the fare is $117 Answer: $23 and 4 miles, respectively.
The linear equation here is: fare = 3 + 2 - miles. |
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Another class of equations that is easy to solve involves equating a
product to zero. For instance: find all possible values of the variables
a,b,c such that a -b- ¢ = 0. The answer is that if three numbers are
nonzero, their product cannot be zero; hence at least one of the variables
a,b, ¢ must equal zero in this case. Thus, the solution is that a = 0 and
b, ¢ are arbitrary real numbers; or b = 0 and a, ¢ are arbitrary; or ¢ = 0
and a, b are arbitrary.

Example 1.7. Using the above idea, find all solutions to the following
equations.

1. (z—1)(z+2) =0.
2. (z—1)*z+3)(y—2)=0.
3. y?—1=199.

Solution: The first two equations are easy to solve, using the previous
reasoning. Thus for the first equation, either x — 1 = 0 or z + 2 = 0,

whence x = 1, or x = —2. For the second equation, we write the equation
as (z—1)-(z—1) - (z+3)  (y —2) = 0. Hence at least one of the four
factors is zero, which leads to: x = 1, and y is any number, or z = —3

and y is any number, or y = 2 and zx is any number. (We allow for both
z =1 and y = 2 to occur simultaneously.)

Finally for the last equation, we add 1 to both sides to get: y* = 100,
Hence y = 10 or —10. The other way to see this is to use Example
To do so, subtract 99 from both sides to get:

¥y —100=0 —= 3*—-10°=0 = (y+10)(y—10)=0.

Hence we obtain the complete set of solutions: y = —10 or y = 10. For
convenience we write y = £10. O

Polynomials: Solving quadratic equations

Now we move from simple dependencies to more involved ones. Using
variables allows us to define a useful class of expressions called polynomials.
A polynomial is an expression in which several (finitely many) powers
of x can appear, either alone or multiplied by numbers. For instance,
f(z) = 322 — 1l is equal to f(z) = 3-22 + (=1) - 2°. The number next to
each power of z (or of the one variable that is used) is called its coefficient.
For instance, the coefficients of 2, 2!, 22, and z? in 32 — 1 are —1,0, 3,0,
respectively.



8 CHAPTER 1. ALGEBRA

The highest power of 2 whose coefficient in a polynomial p(z) is nonzero
is called the degree of the polynomial, and is denoted by deg(p). A polyno-
mial is said to be constant, linear, quadratic, cubic, quartic, and so on, if
its degree is, respectively, 0, 1,2, 3,4, and so on. A linear equation can be
expressed as the condition that a linear polynomial in the variable equals
zero: az +b = 0 for some real numbers a, b. In general, given a polynomial
p(x), one is often interested in determining the set of z such that p(z)
equals a given value — in other words, solving a polynomial equation.

In the remainder of this chapter, we will learn how to solve some poly-
nomial equations which are more involved than linear equations. For in-
stance, using the distributive law (or the FOIL method), you can check
that the first of the equations in Examplewas an example of a second-
degree polynomial equation in z — i.e., a quadratic equation: x> +2x—2 =0,
Other examples of quadratic equations are 2°—3z+2 = 0, or 22> — 8z +8 =
0, or more generally,

az? + bz +ec=0

for some real numbers a,b, ¢ with a # 0. (Note that if a = 0 then the
equation becomes a linear equation.)

All quadratic equations have two, one, or no real roots. Here is the
formula for the solutions to the general quadratic equation az®+bz+c = 0:

—b+ Vb2 — dac
P S —
2a

This rule provides the answer in all cases whenever a is nonzero. Re-
call that the square root can be taken only of nonnegative values. From
the formula, we see that there are three possible cases, depending on the
quantity under the square root b2 — 4ae, which is called the discriminant.

o If the discriminant b? — 4ac is positive, the quadratic equation has
two distinct real roots, mentioned in the above formula.

o If the discriminant is zero, i.e., b = 4ac, then the quadratic equation
has exactly one real (repeated) root: z = —b/2a.

o If the discriminant is negative (i.e., b> < 4ac), there are no real roots
of the equation.

Let us solve some quadratic equations to illustrate the above formula.

Example 1.8. Find all (real) roots of the following equations:
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Quadratic-type equations

In the previous section, we saw how to solve a quadratic equation in a
variable . We can apply the same technique to solve more complicated
equations that look similar to quadratic equations, by reducing them to
that form. For example, the equation * — 22? 4+ 1 = 0 is not quadratic,
but quartic, i.e., of degree 4. Or £2°% — 2219 | 1 = 0 is in fact an equation
of degree 200. However, they both look somewhat similar — and in fact,
they can both be solved using the formula for roots of quadratic equations.

Example 1.11. Solve the two equations in the previous paragraph.

Solution: Let us begin with the first equation, z* — 222 + 1 = 0. Note
that 2 is the square of 22, so if we denote z? by a new variable y, then
the equation changes to: y% — 2y + 1 = 0. Now apply the general formula
for the roots of a quadratic equation (or see Example 2)) to obtain:
y = 1. Substituting back for x, we obtain that z? = 1, and finally = = £1
are the roots of the equation.

For the second equation, z2%° — 221%° | 1 = 0, we again make a sub-
stitution: y = 2%, This leads us to the same quadratic equation in vy, as
in the preceding paragraph. Therefore y = 1, i.e., 21°° = 1. The only real
numbers whose 100th power is 1 are: @ = 1. (Thus there are only two
real roots to this equation of degree 200.) O

Here are some other equations that can be solved using the formula for
the roots of quadratic equations.

Practice problem 1.12. Solve the following equations.

1. y° — 4y* + 3y = 0. Solution: First take y* common, so either it
is zero or the remaining quadratic factor is zero. Solve it to get:
y=1,3,ory=0.

2. U—lg - %— 2 = 0. Solution: Set x = 1/y; then 22 —x — 2 = 0. Solving,

z = —1,2, whence y = 1/z=-1,1/2.

Number of real roots

Looking at the previous two examples, you might ask the following ques-
tion: how many real nth roots does a real number have? For instance, 8
has two square roots, while —8 has no square roots. On the other hand,
both 8 and —8 have exactly one cube root each: 2 and —2, respectively.
Here is the answer: if n is even (square root, fourth root, and so on),
a negative number has no real nth roots, while a positive number has
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exactly two real nth roots. (And 0 has exactly one nth root: itself.) On
the other hand, if n is odd, then every real number has a unique real nth
root.

Solving a quadratic equation by completing the square*®

We saw above that, given a quadratic equation ax? + bz + ¢ = 0 (with
a # 0), the two numbers

 —b+ Vb2 — dac

= 2a

indeed satisfy the equation whenever b > 4ac. Now we will show that x4
are the only two possible roots to the equation. Let us first demonstrate
how to do this in a special case.

Example 1.13. Solve the equation z? + gm — 6 = 0 without using the
general formula.

Solution: Recall that if we can rewrite the equation as a product of factors,
we will be able to find the roots by setting each of the factors equal to
zero (see Example. To factorize a general quadratic polynomial, there
is a useful trick called completing the square, which can be used to write
the quadratic polynomial as the sum of a real number and the square of a
linear polynomial. The trick relies on the following general formula (which
can be verified by using the distributive law): for any two real numbers
:‘L-‘, y’
(x+ )2 = 2% + 2wy + 2.

Now suppose we are given a quadratic polynomial like 2% + 22 — 6. We
first consider only the linear and quadratic terms, namely 3322 + %:{:, and
ask: what number should one add to this in order to obtain a square of
the form (x4 ¥)?7 We see that the term %x should correspond to the term
2yx, which means that y = %. In other words, y is half of the coefficient
for x, and we add »* to obtain (z+y)?. Thus if we add (3)? = 22, we will
get z? + %.’L‘ + %, and you should verify, using the distributive law (i.e.,
the FOIL method), that this equals ( + 3)%

Now we obtained a square of a linear polynomial, but we added f—g
to our original equation and dropped the last term —6. To recover the
original equation, we must compensate for this. Thus, we obtain:

2
0:$2+§176:$2+§m+§ fﬁ—ﬁz ZE+§ —E
2 2 16 16 4 16
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25 _ —96-25 _ —%. ‘We notice

In the last line we used the equality —6 — 17 = —z— =
that 2L is a complete square: 28 = (11)2,

The second step is to use the formula a? — b? = (a + b)(a — b) derived
in Example|1.3| to obtain:

() R ()
() () e ()

We conclude that the only possible solutions are = —4 and = = % You
can check that the general formula for the roots of a quadratic equation
gives the same two solutions. O

The above technique works when the coefficient of 2 is 1. What about
a general quadratic equation az? 4+ bx 4 ¢ with a # 07 Simply divide by a
first:

Example 1.14. Solve the general quadratic equation az? + bx 4 ¢ = 0,
by completing the square.

Solution: First divide both sides by a # 0 to obtain:

5 b c
-+ -+ —=0.
a a
As discussed in the previous example, we have to add and subtract the

square of the half of the coefficient in front of x, which equals (2%)2 We
obtain:

LN 2+b+b2 bg_'_c +b2b9+c
=x°+—-r+—-=x"+-=x — | - = -—=la+—| ——+-.
a a a 2a 2a a 2a 4a?  a
(Note here that (b/(2a))? = b*/(2a)? = b*/(4a*®).) Now we can combine
the last two terms by taking the common denominator:
2

b? ¢ =b+dac (b —dac) Vb — dac
102 @ 4a? N 4a? N '

2a

This yields:
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Note that this is a difference of squares if and only if the discriminant
(b* — 4ac) is a nonnegative number, so that we can take the square root.
If the discriminant is zero, we get a complete square equal to zero, and a
single solution x = — %. If it is negative, we have a complete square equal
to a negative number, which means that no real z satisfies the equation.
Finally, in case the discriminant is positive, we can apply the difference of
squares formula. Then we get

b Vb2 — 4ac b Vb2 — 4ac
r+————| "o+ —+———
2a 2a 2a 2a

( +b—\/b2—4ac) ( +b+\/b2—4ac)
2a 2a

and we conclude that the two roots to the quadratic equation are as
—b+ Vb2 — dac 0

claimed: x4 = 5
a

EXERCISES

Question 1.1. Expand or contract (factorize) the following expressions,
using the distributive law. All variables below denote real numbers.

1. (a—2)(b—2).
2. (z+1)(2z — 3).
3. (WD —1).

Question 1.2. Expand or contract the following expressions using the
distributive law.

L (14z+22429)(1-2).
2. T? — sT + 2T — 2s, where s is some fixed real number.
3. AB—BC+CD - DA.

Question 1.3. Suppose you consider any two consecutive integers. Then
the difference between their squares is always an odd number. Can you
prove this fact in general?
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Question 1.4. Suppose you multiply any three consecutive integers, and
add the middle integer to this product. Then you will always get a perfect
cube. Why is this? Denote the middle integer by n and carry out this
computation using n to show why this holds for every integer n, all at
once. Hint: Decide for yourself in which order you would like to multiply
the three integers.

Question 1.5. Solve the following equations for the unknown variables.
1. z* = 25.
2. (x— 1)}z —2)(xz+3) = 0.
3.y + 8y + 15 =0.
4. A2 -3A—4-=0.
Question 1.6. Solve the following equations for the unknown variables.
1. % =27
2. (2 —22)%(2z +27)(= + 3)'7 = 0.
3. s? 4+ 10s + 20 = 0.
4. ¢* + 3¢ — 4 = 0. Hint: Remember that squares are never negative.

Question 1.7. The quadratic equation y> = 6y can be solved directly
using the distributive law, and also using the general formula. Solve the
equation in both possible ways, and verify for vourself that the set of
solutions is the same regardless of how you solve the equation.

Question 1.8. For what value(s) of b does the equation #% = bz — 7 have
a unique solution?

Question 1.9. Solve the quadratic equations.
1. 232 + 228460 = 0,
2.y -3y +3=0.

Question 1.10. Solve the quadratic equations.
1. 22 — 4V/52 4+ 10 = 0.

2. 222 —qz+41=0.
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Chapter 2

Velocity: On the road

The simplest kind of motion is the motion of an object along a straight
line with a constant speed: a car moving along a road at sixty miles per
hour, a pedestrian walking at three miles per hour. However, if multiple
objects are moving with constant speeds along the same path, and they
are allowed to change direction, the mathematical situation becomes more
intricate. In this chapter, we consider a range of examples of systems of
moving objects drawn from everyday experience, our imagination, and, in
one case, literary fiction.

MATH

The mathematical model of the rectilinear constant speed motion of
one object can be formulated in one line:

s=uwv-t,

where s is the distance from the starting point covered by the object
moving along a straight line with speed v during the time ¢. The three
quantities should be measured in compatible units, meaning that if the
distance is in miles (mi), and the time in hours (h), then the speed should
be taken in miles per hour (mph). The same formula can be read in two
other ways: )

S
V= — and t=—.
[ v

In fact, this model describes a larger class of processes. If the speed of
an object is not constant, but the average speed is known to be v, then the

19
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distance covered in time ¢ is given by the same formula s = v-{. Moreover,
the path does not need to be straight. If v is the (average) speed of motion
along any given path, then ¢ = 2 is the time needed to cover the distance

s measured along the path

Example 2.1. How long does it take to get to a town 230 miles away along
a road, driving at an average speed of 60 miles per hour? We compute:

t= £=28 ~3833h
= 3h 50 min.

a

Now suppose there are two objects moving with the constant speeds
v1 and vy along the same path. Will they ever meet, and how soon?

To answer this question, it is convenient to introduce the notion of
relative speed, defined as the rate of change of the distance between the
two objects. Thus, if the two objects are moving along the same path in
the same direction, then the relative speed vi5 is the difference between
their speeds:

vy — V2, if v > wvo;
vy2 = |vg — o] = "
Vg — V1 I v < va.

If the faster moving object is behind, they are getting closer at the rate
v19, and if the slower one is behind, they are getting farther apart at the
same rate.

Figure 2.1: Moving in the same direction.

v Y ) vy

Getting closer Getting farther apart

Now, if the two objects are moving in opposite directions, then the relative
speed v75 is the sum of their speeds:

v12 = Vg + U1

IMotion along a curve requires an acceleration directed to the center of the curve.
But we are interested in the speed of motion along a path, and we assume it to be
constant.



Apoorva Khare and Anna Lachowska 21

Depending on the position of the objects, they are getting closer or farther
apart at the rate vys.

Figure 2.2: Moving in opposite directions.

vy Y vy vy

Getting closer Getting farther apart

The time needed for the distance between the two objects to decrease or
increase by s is given by the formula

t— —.

V12
In particular, if the objects are getting closer, and the initial distance
between them is s, then ¢ = % is the time before they meet.

Example 2.2. Suppose your friend is 30 miles ahead of you on a highway,
moving forward at a constant speed of 50 miles per hour. Can you catch up
with him before he gets to the next town, 120 miles ahead of you, without
breaking the speed limit of 65 miles per hour? Equivalently, assume you
are moving at a constant speed of 65 miles per hour. When will you catch
up with your friend: before or after he passes the town 120 miles ahead?

Solution: We have two objects moving in the same direction, with v; = 65
mph and vy = 50 mph, the faster object behind. The initial distance
between them is s = 30 mi. The time before they meet is

S s 30

v12 U1 — U2 65 — 50 !

In 2 hours, you will be 2 - 65 = 130 miles ahead, already past the town
situated 120 miles ahead. You cannot catch up with your friend before he
passes the town. O
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] APPLICATIONS |

Constant speed motion with a change of
direction

If the objects moving along the same path are allowed to change directions,
the model becomes more complicated and interesting patterns can emerge.
Here are a couple of examples.

Example 2.3. Two bees, Yolanda (Y) and Zoe (Z), fly non-stop between
two parallel walls 30 feet (ft) apart. Yolanda starts at 9:00:00 from the
western wall and flies with a constant speed of 2 feet per second (ft/sec).
Zoe starts at 9:00:10 from the eastern wall and flies with a constant speed
of 3 feet per second. When will Yolanda meet Zoe for the first, second,
and third time?

Solution: Let us find the time of the first meeting. At 9:00:00, only Yolanda
is moving:

Figure 2.3

9:00:00

At 9:00:10, when Yolanda is 2-10 = 20 feet from the western wall, Zoe
starts flying west at a speed of 3 feet per second from the eastern wall.

To meet, they have to cover the distance s = 30 — 20 = 10 ft, moving
with the relative speed vio = vy + vy = 2+ 3 = 5 ft/sec. This will take
t = L‘:) = % = 2 sec. Therefore, the first meeting will happen 2 seconds
after Zoe starts flying, or at 9:00:12.

Clearly, Yolanda and Zoe will meet again if they continue flying be-
tween the walls. To figure out the time of the next meeting, we have to

(1) find the moment of time when Zoe is at the western wall; (2) find the
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Figure 2.6: First six meetings

------------------------------------------------------- - s m e mmmmmmm..
1 zZ Y 6 ft
7 et - = m e e e e eemeesemeeeme—eaa-
Y 7 18 ft
--------------------------- - e eeeeeeeaaaas
3 7 Y 18 ft
A B L L LT T e = = = m
Y Z 6 ft
5 e crccrcciecssscesssssssssssesssssssssEsssssssssessssssssssssssssssssmene.
6 Y Z 30 ft
------------------------------------------------------- - e m e m e m e e m

so on, as long as the bees keep flying. The meetings will take place at 6,
18, or 30 feet from the eastern wall. |

Two trains and a bee

Now imagine that in the previous example the walls were allowed to move
as well. A well-known model with just one bee flying between two moving
obstacles is considered below.

Example 2.5. Two trains, A from the west and B from the east, are
approaching along the same straight train track, each moving at a constant
speed of 5 miles per hour. When the distance between the trains is 10
miles, a bee starts flying east from the head of train A. The bee moves
at a constant speed of 6 miles per hour until it hits train B, then it turns
around and flies west with the same constant speed until it hits train A,
and so on until the two trains meet and the bee gets smashed between
them (now we are in trouble with the animal rights activists). What is
the total distance covered by the bee until the crash?

Solution: We will start with a less ambitious question, namely, when and
where will the bee meet train B for the first time? The diagram above
shows the initial positions and speeds of the moving objects: the bee goes
east at v; = 6 mph, train B goes west at v = 5 mph, and the initial
distance between them is sp = 10 mi. They will meet in

10 mi 10

b=
! 54 6mph 11
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Figure 2.7
' 6 mph :
B e |
A + 5mph 10 mi 5mph: B

In this time, the bee will cover the distance

10 60
sy = 6mph - —h = — mi.
11 11
Now we know the position of the bee at the moment when it changes

direction and starts flying west. The diagram shows this moment.

Figure 2.8
S — IR ;
' A B :
R LR EE L L Y o )
: 60/11 mi 50/11 mi :

Next we can ask when and where the next meeting of the bee with train

A will occur. In 5{—0 of an hour, train A has moved 5 - % = % mi east, and
is situated % -3 = % mi west from the bee. The time to their meeting

18 10

5+ 6 mph 1111 121

In this time the bee will cover an additional distance

15

1
= 6mph - — h= — mi.
S9 mpn 121 1 121 1mi1

In the first two moves, the bee covered s; + 85 = % + % = 6610;160 = %
mi. To find the total distance covered by the bee until is gets smashed we
would have to compute and sum up infinitely many more such distances,
and the whole approach is starting to look somewhat hairy. For the mo-
ment we will drop the question, and return to it in Chapter where we

will learn how to compute such infinite sums.
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However, there is another, more efficient solution: the bee is flying
non-stop at a constant speed of 6 miles per hour until the trains meet.
The time before the meeting of the trains is

10

= —
545

1h.

Therefore, the total distance covered by the bee before the crash is

6mph - 1h = 6 mi.

A traveler and messengers

We know of at least one excellent example of an elaborate system of objects
moving at constant speed that appears in fiction. Here is a short synopsis
of the novella “The Seven Messengers” by an Italian writer, Dino Buzzati.

The prince, the narrator of the story, sets out to explore his father’s
kingdom, hoping to find its boundaries. He and his knights start from
the capital and move in one direction (due south, or so they hope) at a
constant speed of 40 leagues per day. After two days of travel, the prince
sends his first messenger — Alessandro — back to the capital. The next six
messengers, Bartolomeo, Caio, Domenico, Ettore, Federico, and Gregorio,
are sent back, respectively, after three, four, five, six, seven, and eight
days of travel. All messengers move at a constant speed of 60 leagues per
day. Having reached the capital, each messenger immediately starts back
along the same path to catch up with the prince. Having reached the
prince, the messenger immediately starts back for the capital, and so on.
Thus, the seven messengers oscillate between the capital and the prince,
while the prince is moving farther and farther away. The intervals between
the arrivals of the messengers grow, until one day the prince realizes that
the next return of a messenger will be the last one he will live to see. To
simplify the diagrams, we assume in Figures andthat the southern
direction is to the right.

In the course of the story, the narrator makes multiple numerical state-
ments, and a natural reaction for an inquisitive mind is to check whether
or not they make sense. Any mathematician would definitely have an itch
to do so; but even a reader with the sole interest in literature, presum-
ably, would like to know if the author is careful about all the details of his
creation, or neglectful, or intentionally misleading. On multiple occasions,
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the narrator mentions the number of days, months, and years that have
passed since the beginning of the journey and between the consecutive
returns of the messengers.

Figure 2.9: Messenger leaves for the capital.

60 leagues/day 40 leagues/day

Figure 2.10: Messenger starts back to catch up with the prince.

o
M P
................................ -
60 leagues/day 40 leagues/day

The interesting feature of this particular work of fiction is that all the
numerical statements in it are verifiable. We can figure out the position of
each of the messengers at any moment of time (in days since the start of the
expedition) and, in particular, check the numerical statements contained
in the story.

Let d be the number of days elapsed before a messenger (M) was first
sent back. Let ¢ denote the number of days M needs to catch up again
with the prince (P). Then we have the equation:

distance traveled by M = 2 distance to.the capital +
when M leaves

¥ distance traveled by P
since M left
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or, taking into account the given speeds of P and M,
60t = 2. 40d + 40t.

From this equation we find that ¢t = 4d is the time taken by M to catch up
with P. By the time he catches up, d + 4d = 5d days would have passed
since the start of the expedition. Now we only need to plug in d = 2 for
Alessandro, d = 3 for Bartolomeo, and so on, up to d = 8 for the last
messenger, Gregorio, to obtain the times of their return to the prince. We
find that they reunite with the prince after 10, 15, 20, 25, 30, 35, and 40
days, respectively.

A messenger is then immediately sent back to the capital; so, for in-
stance, Alessandro is sent back the second time after 10 days since the
start of the expedition. By the same argument as before, we see that
the second return of the messengers will occur after 5 - 5d = 25d since
the start of the expedition. Next, they will return after 5 - 25d = 125d,
5.125d = 625d, and so on. For example, Alessandro (d = 2) will return
to the camp after 2-5 = 10, 2-25 = 50, 2-125 = 250, 2- 625 = 1, 250, etc.,
days.

Here is the timetable (in days since the beginning of the journey) of
the first five consecutive returns of each messenger to the prince:

d | bd | 25d | 125d | 625d
Alessandro |2 | 10 | 50 | 250 | 1,250
Bartolomeo | 3 | 15| 75 375 | 1,875
Caio 4120 (100 | 500 |[2,500
Domenico 5125|125 | 625 | 3,125
Ettore 630|150 | 750 | 3,750
Federico 7135|175 | 875 | 4,375
Gregorio 8140 | 200 | 1,000 | 5,000

This table contains enough information to check the numerical claims
of the narrator. Let us consider each one of them:

1. “..it was sufficient to multiply by five the days elapsed so far to
know when the messenger would catch up with us.” This is exactly
the formula we derived above: if a messenger leaves the prince after
d days since the start of the expedition, he returns to the prince after
5d days.

2. After fifty days, the interval between the messenger’s consecutive
returns increases to twenty-five days. This is exactly the contents of
the second and the third columns of the table.
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A geographical explanation

Let us have a look at the distances implied by the story. How far can one
ride a horse on Earth without changing direction? In other words, what is
the longest distance on land along one direction? Here are some examples:

e Fast Coast—West Coast distance in the US is approximately 3,000
miles, or 4, 828 kilometers.

e Longest continuous distance on land along a longitude : 7,590 kilo-
meters (Northern Russia to Southern Thailand, 99° east).

e Longest continuous distance on land along a latitude: 10,726 kilo-
meters (Western France to Eastern China, 48° north.)

e Longest distance on land along any great circle: 13,573 kilometers

(Liberia to China).

To find the distance covered so far by the prince and his knights (sup-
posedly, they always move due south), we need to multiply 40 leagues by
3,120 (approximately) days of travel. A league is an ancient measure of
distance that varies from country to country, but is approximately equal
to the distance a person can walk in an hour. We suppose that Dino Buz-
zati, being an Italian writer, would use the Roman league, equal to 1.4
mi, or 2.2225 km. In this case, the distance traveled by the prince at the
time of the narration is 2.2225 - 40 - 3120 = 277,368 km. No distance on
land along one direction on Earth is that long, which suggests either a
fantastic setting, or that the expedition, despite the hopes of the narrator,
is not moving in the same direction. Let us choose middle ground: sup-
pose that the expedition is taking place on Earth, but the arrangement
of continents allows for an indefinite movement in one direction on land.
Then we can imagine the path of the expedition as a tight spiral as in
Figure m.‘atarting at the equator and circling around multiple times.

This model gives rise to another explanation for the discrepancy be-
tween the calculated time of Domenico’s return (3, 125 days) and the time
reported by the narrator (between 3,118 and 3,121 days). The concept
outlined below first came to the attention of astronomers in the Renais-
sance times, about the time the story of the seven messengers might be
imagined to have occurred.

International date line

Recall the history of the first world circumnavigation headed by Ferdi-
nand Magellan. He started to sail his five ships due west from the coast
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Figure 2.11: Circling around the globe

of Spain on September 20, 1519. Almost three years later, on September
6, 1522, the eighteen survivors of his original crew (Magellan himself was
killed in March 1521 in the Philippines) and his only surviving ship, Vic-
toria, returned to Spain. But the ship’s log had the arrival date marked as
September 5, 1522. The log was recorded with utmost care and accuracy;
in particular, the leap year 1520 was taken into account. The mystery of
a missing day was discussed by the leading scientists of the time, among
them the Venetian astronomer Gasparo Contarini, who suggested the cor-
rect explanation: moving westward, and sailing a whole circle around the
Earth, you gain one day; moving eastward, you lose it. It was not until
the nineteenth century when the International Date Line was established
in the sense and position it has now: an imaginary line between the north
and south poles at approximately 180° east separating Russia and Asia
from the Americas, and one calendar day on Earth from the next. Now
a person crossing the International Date Line traveling eastbound has to
subtract a day; when traveling westbound, add a day.

If we suppose for a moment that the expedition was moving west-west-
south instead of south (and was able to move continuously on land), the
missing days can be explained by the same effect. A Renaissance setting
of Buzzati’s story suggests that the narrator (just like Magellan’s crew)
might not have known about the necessity to add a day for each complete
circle when traveling westward on an Earth-like planet. Let us estimate the
distances. The radius of Earth Ry, is between 6, 353 and 6, 384 kilometers
(larger at the equator). Therefore, the circumference at the equator is
approximately 2w Rg ~ 40,090 km. By the time of the narration, prince’s
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expedition has covered 277, 368 kilometers. Dividing this distance by the
circumference of the equator, we get 277, 368/40, 090 ~ 6.9. Therefore, six
days (more than six if the narrator was moving along a higher latitude; less
than six if he was deviating from the straight westward direction) might
have to be added to the number of days in the narrator’s log to obtain the
actual number of days elapsed in the capital, or for a messenger who moves
east and west, back and forth. The date discrepancy between a round-the-
globe traveler and a stationary observer was one of the most remarkable
successfully resolved mysteries of its time. Even if this argument was not
intended by the author, it fits nicely with the story’s Renaissance setting
and its enigmatic character.

Messengers in space

With the advent of the Internet, the idea of sending a human messenger to
deliver a letter might have lost some of its practical value. Nevertheless,
there are real-world phenomena that essentially enact the story of the
traveler and his messengers.

Can you think of a real-world situation where an object is moving away
from an observer, and the messengers oscillate between them? A space
probe such as Voyager is an example. This is an instrument, roughly a
radio telescope, propelled by a rocket into deep outer space to send back
to Earth information about remote planets and stars. The messengers are
the photon particles that carry information between the space ship and
the command center on Earth. There are multitudes of them, and their
speed is the speed of light (in kilometers per second): 300,000 = 3. 103
km/sec. The gravitational and relativistic effects have to be taken into
account, which makes the trajectories curve and the time flow differently
for different moving objects. The distances are much bigger, too: the
probes Voyager 1 and Voyager 2, launched in 1977, are now exploring the
outermost layer of the heliosphere, the region of space dominated by the
Sun. To give a rough idea of the scale of the distances, the approximate
size of the Solar System is 4.5 billion kilometers (4.5-10” kilometers). But
the essence of the story of the messengers remains the same: as the probe
mowves farther away from us, the messages we get from it become more and
more outdated. For example, on August 27, 2003, Mars came closest to the
Earth in the previous 60,000 years. On that day a snapshot sent to Earth
from the orbit of Mars took about 186 seconds (or 3.1 minutes) to arrive,
while a snapshot sent from the edge of the Solar System communicates an
observation made by the probe about 14, 700 seconds (about 4 hours) ago.



Apoorva Khare and Anna Lachowska 35

In fact, because the universe is expanding, any star is an object moving
away from us, and its visible light is a messenger from it. Let us try to
estimate how outdated our picture of the stars might be. The approximate
diameter of our Galaxy is 100, 000 light-years, or 9.4-10'7 km, and we are
about 27,000 light-years away from the galactic center. This means that
we see the stars at the opposite edge of our Galaxy the way they looked
about 77,000 years ago. But we still receive their messengers, their beams
of light, and maybe in another hundred thousand years they might be able
to see the Solar System as it is now, and us in it.

EXERCISES

Question 2.1. James Bond is in Spyburg, 140 miles from an international
border, and a villain is in Villainburg, 20 miles closer to the border along
the same road. At noon, the villain starts driving toward the border at a
constant speed of 80 miles per hour.

1. If James Bond drives at 100 miles per hour, when is the latest he
should leave Spyburg to overtake the villain before he crosses the
border?

2. If James Bond leaves Spyburg at 12:30 pm, what is the minimum
average speed he has to maintain to overtake the villain before he
crosses the border?

Question 2.2. Liz and Pat, who live 33 miles apart, want to go biking
together. At 10 am they load their bikes in their cars and start driving
toward each other’s houses, Liz going at 50 miles per hour and Pat at 60
miles per hour. At the meeting point, they park their cars and immediately
start riding their bikes at 18 miles per hour in the direction of Liz’s house.

1. When will they arrive at Liz’s house?

2. After spending an hour at Liz’s house, they ride their bikes back to
the parked cars. If Liz immediately starts driving home at 50 miles
per hour, when will she arrive?

Question 2.3. Car A moves along a road at a constant speed of 60 miles
per hour. Five miles ahead of it, car B moves in the same direction at a
constant speed of 45 miles per hour. Thirty miles ahead of B, car C moves
in the opposite direction at a constant speed of 55 miles per hour.
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1. Which car will be first to meet B, A or C?

2. At the moment when B first meets with one of the cars, how far from
it is the remaining car?

3. How much time will elapse between the meeting of car B with the
first and the second cars?

Question 2.4. At 10 am car A starts moving east along a road at a
constant speed of 50 miles per hour. At the same time 55 miles to the
east of car A, car B starts moving west at 60 miles per hour, and car C
starts moving east at 48 miles per hour. The moment cars A and B meet,
B changes direction and starts moving east at 60 miles per hour.

1. When will cars B and C meet?
2. At the moment when B and C meet, how far behind is car A7

Question 2.5. In Exarnple suppose that Zoe starts from the eastern
wall at 9:00:00, and Yolanda starts at the western wall at 9:00:05. The
distance between the walls and the speeds of the bees are the same as
before. Find the times of their first, second, and third meetings.

Question 2.6. In Exarnple suppose that Zoe starts from the eastern
wall at 9:00:00, and Yolanda starts at the western wall at 9:00:05. The
distance between the walls and the speeds of the bees are the same as
before.

1. Determine where exactly between the walls the bees meet for the
first, second, and third times.

2. Assuming that the bees fly forever, find all possible positions of their
meetings.

Question 2.7. Starting from Pigeonville, a traveler walks at a constant
speed along a straight road. After 1 hour of walking, he sends a trained
pigeon with a letter back to Pigeonville. The pigeon flies at a constant
speed of 8/5 times the speed of the traveler. Upon reaching Pigeonville,
the pigeon immediately turns back to catch up with the traveler. When
does the pigeon catch up with the traveler?

Question 2.8. Starting from Pigeonville, a traveler walks at a constant
speed along a straight road. After 1 hour of walking, he sends a trained
pigeon with a letter back to Pigeonville. The pigeon flies at a constant



Chapter 3

Acceleration: After the
apple falls

While we can model constant speed motion by linear equations, we need
more complicated quadratic equations to describe motion involving a con-
stant acceleration — for example an apple falling from a tree. According
to legend, this was the sight that inspired Sir Isaac Newton to write down
his laws of motion and gravity, leading to the equations that govern the
behavior of objects in the presence of a constant force.

In this chapter we will use some of the basic algebraic methods devel-
oped in Chapterto describe accelerated motion of objects. The mathe-
matical tool we will need to describe the position of an object moving with
a constant acceleration is a quadratic equation. The acceleration may be
caused by a force such as gravity for falling objects, or by braking force
for vehicles slowing down on a road.

| MATH

In Chapter we considered objects moving at a constant speed along
a straight line. This applies reasonably well to the motion of a particle
(or an asteroid) in deep outer space, a ball rolling along a horizontal,
frictionless surface, or a car in cruise control mode on a level freeway.

Now suppose we want to study the motion of a rock falling vertically
downward. In this case, the velocity changes over time under the effect
of the Earth’s gravity. For the same reason, a rock thrown vertically

39
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upward begins to slow down until it reaches a maximum height, at which
point its velocity reverses in direction and it starts to fall down, slowly
increasing in speed as it accelerates to the ground. Some of the numerical
characteristics of this familiar process may seem surprising. For instance,
a rock thrown into the air with an initial velocity of 32 feet per second
reaches the maximum height of 16 feet. If we double the initial velocity
to 64 feet per second, the maximum height is 64 and not 32 feet, as one
might expect.

The crucial observation to understanding this kind of motion is New-
ton’s postulates that (1) the vertical velocity of a falling object changes
linearly with time, and (2) the coefficient of this change, called the grav-
itational acceleration, is universal for all objects near the surface of the
earth.

Let us write this statement in the form of an equation. Let vy be the
initial (upward) vertical velocity of an object (if the velocity is directed
downward, we will assume it is negative), and let v({) be its velocity at
time ¢. Then the postulates state that for an object moving near the
surface of the earth, the difference vy — v(t) is proportional to the time
interval ¢ with the coeflicient given by the gravitational acceleration.

Figure 3.1
v | v |
g g
v, v(?)
Upward initial velocity Downward initial velocity

We have
'U(t) — vy = —gt,
where
—g~ —9.8 m/sec” ~ —32 ft/sec’

is the (downward) gravitational acceleration on Earth.
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Equivalently, we have the following formula relating the vertical veloc-
ity of an object with time:

v(t) = vy — gt.

We would like to know the position of the object (along a vertical line)
whose velocity is given by this expression. We cannot multiply the velocity
v(t) by time as we did in Chapter because now the velocity is not
constant. However, we can find the average velocity over time t. Because
the velocity is changing linearly, the average velocity is half the sum of the
initial and the final velocities, as is shown in the diagram below. It also
equals the velocity at half-time %t.

Figure 3.2

— = = =7 vt v(f)
|

v _ (v, tv(t
average overt =

o
[ N1
~

~

1 1 gt
Vaverage over t — 5 ('UU + 'U(t)) = 5 (U(J + vg — gt) = vy — 5

Now we can compute the position of the object as it depends on time.
Let s¢ be the initial position (measured upward from a certain level, for
example, from the ground):

gt?
S(t) =50 + (vaverage over t)t = 80 + vot — 7

Along with the initial postulate that the acceleration a(t) is constant, we
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obtain a familiar set of equations, often called the equations of motion:

a(f) = -9
v(t) = vy — gt,

1
s(t) = s + vot — §gt2.

These equations allow us to find the position at any moment of time
of an object moving with constant acceleration, its initial velocity, or how
long it takes for the object to reach any given elevation. In the latter case,
we may need to solve a quadratic equation.

While working with these equations, we have to pay attention to the
physical dimensions of the acceleration a(t), velocity v(f), and displace-
ment s(¢). They should all be expressed either in the metric (m, m/sec,
m/sec?) or in the English (ft, ft/sec, ft/sec?) system of measure.

Example 3.1. A rock is thrown vertically upward from an initial elevation
of 1 meter with an initial velocity of 4 meters per second. How long will
it take before the rock falls on the ground?

Solution: Denote by tgna the moment of time when the rock hits the
ground. At this moment, the vertical position of the rock is s(tg,a1) = 0.
Therefore, we have an equation for tgpar:

1
0 =1+ 4tga — 598" th =  —49t3 . +4tga +1=0.

To solve this equation for ta,a1, we apply the formula for a general solution
of a quadratic equation derived in Chapter

—b£ Vb2 — dac
r=—" -

ar® + bzt c=0, a0 —
2a
Substituting a = —4.9, b = 4, and ¢ = 1, we obtain:
-4+ 42 —4.(-49)-1 —-4+6
tfinal = v ( ) o ~ 1 sec.

2. (—4.9) =

Here we have discarded the negative answer. It will take the rock about 1
second to fall to the ground. a

The equations of motion are applicable in a wide range of problems. For
instance, they describe the vertical motion of objects under the influence
of any gravitational force, with the value of the gravitational acceleration
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g determined according to the given situation (see Examples and
for the vertical motion of objects on the Moon).

More generally, the same equations describe the motion of an object
along a straight line with a constant acceleration caused by any external
force. In this case, we have to replace g by the acceleration a determined
by the given force.

APPLICATIONS

In the rest of this chapter, we will apply the equations of motion to
objects moving under some form of constant force.

Vertical motion near the surface of the Earth

The problems on the motion of objects influenced by the Earth’s gravity
may involve solving equations for the initial velocity, or some measure of
time, or the position of the object at a given moment of time. We start
with the example given at the beginning of the chapter.

Example 3.2. If you throw a rock upward from the ground with the
initial velocity 32 feet per second, it will reach a maximum height of 16
feet. What is the maximum height attained by a rock thrown upward with
an initial velocity 64 feet per second?

Solution: Contrary to a possible first guess, it is not 32 feet. Let us express
the maximum height reached by the rock in terms of its initial velocity.
At the instant when the rock is at its highest, its velocity is zero because
it has just finished traveling upward and is about to start falling under
gravity. Thus, we first solve for the time £,,.x at which the rock reaches
the maximum height given that v(¢ya) = 0:

Vo
U(tmax) = vy — Glmax = 0 - tmax = —
The elevation of the rock at .« is
2
1 vo 1 [ vi  lvg  1vg
5(tmax :(]_{_r‘)tmax__t2 =Up— — = — = ———— = =——,
(fmax) ! p¥tmax = 107 29(9) g 29 2y

We conclude that the highest elevation s, reached by an object thrown
from the ground with an initial velocity vq is

Smax — S(tmax) - 5 -



46 CHAPTER 3. ACCELERATION

Example 3.5. A cannonball is fired upward from a toy cannon on the
ground, and it reaches a height of 32 feet in 2 seconds. Find (a) the initial
velocity, and (b) the times at which it reaches 20 feet.

Solution: For this problem we have s; = 0 ft, while vy is unknown.
(a) We use the equation for the position s(t), with given time ¢t = 2sec
and position s(f) = s(2) = 32ft. Thus,

32=25(2)=0+uwvy-2—16-2°,

which simplifies to: 2vy = 32 + 64 = 96 ft/sec. Hence vy = 48 ft/sec.
(b) Having determined vy = 48 ft/sec, we now use the same equation to
solve for the unknown time(s) ¢ at which s(¢) = 20 ft. We compute:

20 = 0 + 48t — 1642 — 1682 — 48¢ + 20 = 0.

We can now solve for the roots of the quadratic equation, or first divide
all terms by 16 in order to work with smaller numbers. If we do so, the
equation reduces to: #* — 3t + % = 0. Now apply the formula for the roots,
with a =1,b= —-3,¢c = %, to obtain:

(=) V(3P4 1-(5/4)  3+V4
- ) i

t

= 0.5, 2.5sec.

Thus, the cannonball is 20 feet high at ¢ = 0.5 sec and ¢ = 2.5 sec. O

Bouncing balls

Suppose you drop a tennis ball from a certain height to the ground. How
high will it bounce? Let us consider a couple of cases.

Example 3.6. Imagine a rubber ball that bounces without any energy
loss, so that its velocity right after it hits the ground is the negative of
its velocity right before it hits the ground. If such a ball is dropped down
from height sg, how high will it bounce back?

Solution: First we have to find the time #iypace it takes for the ball to fall,
and its velocity at the impact vippact. With the initial velocity zero, the
position equation gives

1 2
S(timpact) = S0 — §gtimpact =0,
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Figure 3.3

T L

LTy TEETErEY

impact

because at time #y,pact the ball is on the ground. Then solving for vjmpact

gives
1 2 280
Egtimpact = S0, - thnal = {/ —»
g

where we have discarded the negative solution. Because the initial velocity
was zero, the velocity at time #iypact is

28(}
rUimpacts - v(timpact) =0- gtimpact - —g 7 - —V 2930-
By assumption, the velocity v, after the ball hits the ground is the negative
of Vjmpact. This is the initial velocity for the bounce:

V1 = —Vimpact = V/ 2gS0.

Now we can use the formula obtained in Example for the maximum
height attained by the ball with a given initial velocity:

1 v} 1 2gs
S = = — == — = 8n.
max 2 g 2 g 0
The ball will bounce back to the exact same height sg. O

This result may look surprising to you, and for a good reason: in reality
any rubber ball loses energy, and therefore velocity, as it hits the ground.
Here is a more realistic example.
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Example 3.7. A tennis ball is dropped from a height of 8 feet. Each time
it bounces off the ground, its vertical velocity reverses direction and loses
one quarter of its magnitude. Find the maximum height attained by the
ball on the first and the second bounce.

Figure 3.4

C o RS

e L

[ICI—

V.
impact

Solution: The downward velocity vimpact before the ball hits the ground
for the first time is determined by the same formula as in the previous
example, Vimpact = —v/2¢50. Then the upward velocity for the first bounce
vy is three quarters of it, taken with the positive sign:

3
v = Z\/2g30.

This is the initial velocity for the first bounce. The maximum height s,
attained at the first bounce with the initial velocity vy is

(3)2-2-g-so_(3

2
1 9
_— —_ 50:—8:45ft
29 2 q 1 16

To find the height attained on the second bounce, we have to repeat the
above computation with the initial height of the drop s; = 4.5 ft. We
can avoid going through the computation by noticing that the maximum
height of the first bounce s; is related to the initial height s by the formula

81 = Z S0.
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Because we are solving the exact same question with sy replaced by s,
the maximum height of the second bounce sy is given by the formula

3\ 2 3\% 73\ 3\* 81 81
S9 = — s 81 = — . — - — ‘30:—8:—2253&
1 4 1 4 256 32

Now we could easily compute the maximum height attained in any subse-
quent bounce of the ball: each time it decreases by a factor of (%)2. O

Practice problem 3.8. In the conditions of Example what is the
time interval between (a) the first and the second bounce of the ball, (b)
the second and the third bounce?

Answer: (a) t; = %\/%’_v 1.06sec, (b) ty = 3t; ~ 0.8sec.

Examples with more than one moving object

Systems with more than one object moving under the influence of gravity
lead to more complicated models. For example, you can consider two balls
launched from different heights with different initial velocities. Newton’s
equations of motion allow us to find moments of time and positions where
the balls might meet.

Example 3.9. A yellow tennis ball is dropped from a height of 5 meters,
and at the same moment of time a white tennis ball is thrown upward
from the ground. Find the initial upward velocity of the white ball if the
balls meet exactly halfway, at a height of 2.5 meters above the ground.

Solution: Let us denote by sy(t) and s (t) the position of the yellow and
the white balls, respectively, as they change with time. Then we have

1 1
sy(t) = so — =gt sy (t) = vot — —gt*,
2 2
where s; = 5 m is the initial height of the yellow ball, and vy is the
unknown initial velocity of the white one. At the moment fyee¢ of the
meeting the balls have the same vertical position:

1, 1 2
S0 — §gtmeet = Volmeet — §gtmeet.

Then we have s
0
50 = Vplmeet - tmeet = U_

0
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Figure 3.5

So " yellow

e

white

This formula is familiar from the constant speed motion model. It implies
that the time before the balls meet is the same as it would be in the
absence of gravity. This happens because gravity affects both balls in the
same way, so that their relative position is independent of it. But the
position of their meeting smeet With respect to the ground level, of course,
depends on g:

2
Lo g S0
Smeet — sy(tmeet) = S0 — ngmeet = S0 — 5 . (a .

We are given that this height is half of sy. Then

1 g S0 2 g S0 2 1 Sp 1
Smeatzisﬂzso_i'(%) > 5(%) :530 _— —2:—‘

This leads to
U(Q):s()-g =  vgp=+/50 9= V5 9.8=+V49 = Tm/sec,

where we have discarded the negative answer for the velocity. The white
ball was launched upward with a velocity of 7 m/sec. O

Example 3.10. A black rubber ball is thrown upward from the ground
with an initial velocity vy = 12 ft/sec. At the same time, a white rubber
ball is thrown upward from a height of 2 feet with an initial velocity
%1}0 = 6 ft/sec. When and at what height will the balls meet?
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Solving for vy, we obtain v} = 19.6 - 140 = 2,744. Therefore vy ~
52.4 m/sec. O

According to Wikipedia, the speed of water at the nozzle in the Jet d’Eau
is 200 kilometers per hour, which is approximately 55.6 meters per second.
Indeed, in reality the speed must be higher than our estimation because
of the air resistance to the motion of the water (which we had ignored).

Soccer on the Moon

The strength of Newton's law of gravitational attraction, and hence the
equations of motion, lies in their generality. In particular, any celestial
body exerts gravitational force, and an object placed at a given distance
from the source of gravity will experience a constant acceleration that is
the same for all objects and depends only on the mass of the source of
gravity. Here is an amusing, if not very realistic, example.

Example 3.12. In the animated film A Grand Day Out, Wallace and
Gromit are having a picnic on the Moon. Wallace kicks a soccer ball and
waits 7 seconds for it to fall. When the ball does not come back in 7
seconds, Wallace walks on. How long should he have waited for the ball
to return?

Solution: We need some additional input. First, we need to know the
value of the gravitational acceleration on the surface of the Moon. Online
sources provide the number gyoon = 1.6 m/secz. Second, we don’t know
exactly how hard Wallace kicked the ball. You can try emailing Wallace
or his creators, but we found it easier first to look for estimates of how
fast a soccer ball can be kicked in theory. We quickly found that Lisbon’s
left-back Ronny Heberson holds the record of nearly 132 miles per hour,
or 59 meters per second, and that the average for professionals is about
half as fast. Now, Wallace is no professional; in fact, we suspect him to
be more of a spectator than a participant when it comes to sports. We
won’t be too far off if we assume he kicked the ball at about 15 meters per
second. Now we have all the ingredients to estimate the time before the
ball should return to the surface (of the Moon!).

We can take the height of the kick to be the zero level, sy = 0. We want
to find the time t it takes the ball to return to the same level: s(t) = 0.
According to the equations of motion,

Ymoon t2

U:U-I-’Uof— > ,
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where vy = 15m/sec, and gmoon = 1.6 m/sec?. Solving for ¢, we have

IlDUlt 1 =0,
Uzt(’vo—g—lzl) - I:vo_;}_t_
5 =

The first solution, ¢t = 0, corresponds to the moment of the kick. We are
interested in the second solution given by the equation
o _‘;'mc:ron?f 27}0

vy = — 200 = Gmoont — — =1
2 -g[Il(JUIl

Plugging in the numbers, we get

2vy  2-15m/sec

t— —
Gmoon 1.6 m/sec?

= 19 sec.

Wallace should have waited for 19 seconds.

For comparison, let us see how long it would take for the ball kicked
with the same initial velocity to fall to Earth. The equation is the same;
the only difference is in the value of ¢ — on Earth it is 9.8 meters per
second squared. We have

. v 2- 15m/sec ~ 3 soc.
9.8 m/sec?

No wonder Wallace got impatient — he waited for more than twice the
time the ball would take to fall down to Earth! (Whereas he should have
waited for about siz times the time.) O

We can also compute the maximum height the soccer ball will reach
on the Moon.

Example 3.13. Wallace kicked a soccer ball from the surface of the Moon
upward with an initial velocity of 15 meters per second. What is the
maximum height it will reach? If Ronny Heberson kicked the ball instead,
how high would it go?

Solution: For any object under the influence of gravity that is thrown
upward with a given initial velocity, the formula for the maximum height
was derived in Example

Smax —

b =
@ S,
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On the Moon we have guoon = 1.6m/sec?, and the initial velocity is given
to be vy = 15m/sec. Then we have

1157
Smax — 5 186 ~ 70.3 m.

So Wallace kicked the ball to a height of about 70 meters.

Now, let us assume that Ronny Heberson would kick the ball at about
60 meters per second, which is four times the initial velocity of Wallace’s
kiCk, UHeberson — 47)0-

Because the maximum height given by the formula is proportional to
the square of the velocity, it will increase by a factor of 16:

1 (4wg)?
SHeberson = = =16 Spax =~ 16 - 70.3 ~ 1,125 m.
2 ngOIl
The ball would go upward more than one kilometer! O

Braking distance on a highway

The same laws and equations of motion that apply to objects falling under
gravity hold when you are driving on a freeway and apply the brakes in
order to stop. Namely, it is reasonable to assume that the action of the
brakes provides a constant negative acceleration a(t) = —a, which may
depend on the vehicle in question. If we denote the velocity at the instant
you start braking as vy, and measure time starting from that same instant,
then the equations describing the position and velocity of the vehicle are:

1
a(t) = —a, v(t) = vg — at, s(t) = so + vot — ﬁatz.

This allows us to perform similar calculations as in the above examples,
to model the motion of a car braking on a freeway.

Example 3.14 (Braking distance). Suppose that if you are driving at 30
miles per hour, and applying the brakes hard, your car comes to a stop in
500 feet. If instead the same car is speeding at 60 miles per hour, what is
the stopping distance upon applying the brakes?

Solution: To solve this problem, we need to carry out the same analysis as
in Example However, first we have to convert all quantities into the
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same physical units. There are 5,280 feet in a mile and 3, 600 seconds in
an hour. Then

5,280
30 mph = 30 - ——— ft/sec = 44 ft/sec.
3,600
Similarly, 60 mph = 88 ft/sec.
Now suppose SD(vy) denotes the stopping distance for the car, from
the point where the brakes were applied and the car had velocity vy ft/sec.

At the moment when the car stops, its velocity is zero:

Yo
V(tstop) = vo — atsrop = 0 = tstop = o

Plugging tstop in the equation for s(t), just like in Example we obtain
the stopping distance:

1 v}

SD(’U()) = =

: 3
2 Qcar

where —ac,, is the negative acceleration of the car in feet per second
squared, caused by braking. Given the stopping distance at the initial
velocity of 30 miles per hour, we can determine aca;:

44% 968

500 = SD(44) = = )

2acar Qear
This yields: acar = 968/500 = 1.936 ft/sec?. Now plugging in the initial
velocity 60 mph = 88 ft/sec, we compute:

88% 7,744
SD(88) = = ——— = 2,000 ft.
(88) 200,  3.782 ’
Thus, just like in Example the stopping distance quadruples when the
initial speed doubles. d

The conclusion we can draw from the previous example is: the faster
we are driving, the more distance we will need to brake to a complete stop.

EXERCISES |

Question 3.1. A passenger in a hot air balloon which is stationary at
a height of 80 feet above the ground drops a stone. Compute the time
and velocity at which (a) it is 40 feet above the ground, and (b) it hits
the ground. Is the time in part (b) twice of the time in part (a), or more
than twice, or less? Once you have computed the two times, how do you
explain the answer to the previous question?
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Question 3.2. A person shoots an arrow vertically up from the ground
with some initial velocity, and it reaches its maximum height in 3.5 sec-
onds. Compute (a) the initial velocity, (b) the maximum height attained,
and (c) the time(s) in which it reaches half of this height.

Question 3.3. A woman throws a tennis ball down from a height of 5
meters with an initial downward velocity of 5 meters per second. Each
time it bounces off the ground, its upward velocity is four-fifths of the
downward velocity at the moment of impact. Find the maximum height
attained by the ball on the first and the second bounce.

Question 3.4. Venus Williams drops a tennis ball from a height of 6
meters, and at the same time Serena Williams throws another tennis ball
upward from the ground with an initial velocity of 9 meters per second.
Where and when will the balls meet?

Question 3.5. Solve Example with the assumption that the balls
meet at seven-eighths of the initial height of the vellow ball.

Question 3.6. Anna throws a small snowball vertically upward from the
ground with an initial velocity vg. At the same time, Elsa throws another
snowball from a height sy = 4m above the ground with an upward initial
velocity %vo.

1. Find vy if the snowballs meet at the height sp = 4m.
2. Find the velocities of both snowballs at the time they meet.

Question 3.7. A British officer fires a cannonball vertically upward from
a cannon located on the ground. It subsequently bursts through a barrier
which is placed at a certain height sq above the ground. Upon bursting
through the barrier, the velocity of the cannonball slows down to 150
feet per second. Eight seconds after bursting through the barrier, the
cannonball is 226 feet high. Compute the height of the barrier above the
ground. Also compute all time(s) when the cannonball is 226 feet high,
and its velocities at those times.

Question 3.8. Suppose you are at a window located 70 feet above the
ground, and a pickup truck is coming along the street toward you at a
constant speed of 20 miles per hour. You want to drop a small object into
the trunk of the truck. At the moment when you drop it, how far should
the truck be from the point directly under your window?

Question 3.9. The height of Niagara Falls is about 165 feet. Estimate
the vertical velocity of the water stream at the bottom.
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Note that in the second case we are unable to express the answer without
using the square root sign. The number V5 is nothing but the name given
to the positive solution of this particular equation.

A real number that can be expressed as a quotient of two integers is
called rational. All other real numbers are called irrational. For example,
% is rational and v/5 is irrational. Another example of an irrational number
is m = 3.14159265 . ... The decimal portion of 7 is infinitely long and never
repeats itself. For the number to be irrational, its decimal expression needs
to be infinitely long and non-periodic. We will show in Chapterthat

any decimal number with a periodically repeating “tail” is rational.

Example* 4.3. How can we be sure that V5 is not a quotient of two
integers?

Solution: Let us suppose for a moment that there are integers p and g
such that /5 — ‘:}3, and the denominator ¢ is the smallest positive integer
with this property. (This means we use the fraction % instead of %)
Multiplying by ¢ and taking the square of both sides gives

Vig=p —  5¢°=p".

Because p and ¢ are integers, this means that p? is divisible by 5. But
then p itself is also divisible by 5. An example that satisfies this condition
is 100, which is divisible by 5, but then its square root 10 is also divisible
by 5. If we take 4 instead of 5, then 36 is a square and divisible by 4, but
6 is not. The reason is that 4 = 22 is a square of an integer, and 5 is not.
So, in our case, because p? is divisible by 5, we can always write p = 5k
for some new integer k. Now our equality reads

5¢° = (5k)? = 5¢*=25k* —= ¢*=5k%

where ¢ and k are integers. This is just like the equation we had before
for p and ¢q. By the same argument, ¢” is divisible by 5, and so is ¢. Let
¢ = 5m for an integer m. Then

p bk k
VE=% =" =2
q Sdm m
with m a positive integer smaller than ¢, which contradicts the assumption
that ¢ was the smallest positive denominator of a fraction equal to v/5.
Therefore, the number /5 is irrational. O

Examples of irrational numbers include square roots of integers that
are not complete squares, for instance v/2 or V12, cube roots of integers
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that are not cubes, like v/7, and so on. Multiplying an irrational number
by a rational coefficient or adding a rational number to it produces again
an irrational number, as the next example shows.

Example 4.4. Is the number 7‘/_ + 3 rational or irrational?

Solution: Suppose that a = ‘/_ +3is ratlonal and equals L where p and

q are integers. Then a — 3 = E — 3 = =34 g rational. So —(a —-3) =
170 =9 3‘7 = M is also rational. But 22 (a — 3) = V2, which we know
is irr atlonal a contradlctlon Therefore, a is irrational. O

The golden ratio

Here is a quadratic equation whose irrational solution is quite famous.
Suppose you want to divide a segment of a line into two parts, so that the
ratio of the larger part (a units long) to the smaller part (b units long) is
the same as the ratio of the whole (¢ units long) to the larger part. This
is expressed in the equation:

a a-t+b a 1+b
-_—— or —_ = -
b a ’ b a

a c
—=—, or
b a

bl

With the notation ¢ = ¢, the equation becomes: ¢ = 1 + % Multiplying
by &, we get the quadratic equation ¢?> = ¢ + 1, or

¢ —p—1=0, (4.1)
_ 145 15

whose solutions are ¢, = . g = 5

5 . We are interested in the
positive solution:

14+5
2

~ 1.6180339887.

a
T

The number ¢ is irrational by an argument similar to Example and
is called the golden ratio, or the golden mean. It exhibits many amazing
properties. We will start by pointing out its relation to the Fibonacci
sequence.

The Fibonacci sequence { f,} is the sequence of integers starting with 1,1,
and such that each next element of the sequence is the sum of two previous
elements, f,, = fn—1 + fn_o for all n > 3:

1,1,2,3,5,8,13,21, 34, 55, 89,
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Thus, fi=1,fa=1,fs=fitfa=2, ..., fe=[fe+fa=5+3=8...
Let us look at the sequence of ratios of consecutive Fibonacci numbers
n41,
fn "
1o 1, 2 —2 3 1.5, 2 1.667, 8 1.6, 8 1.625, 2L 1615,
1 1 2 3 5 8 13

As we go further along the Fibonacci sequence, the ratios become closer
to each other and seem to approach a certain limit number. This number
can only be the golden ratio. Here is why: consider three consecutive
numbers b, a, b + a far along in the Fibonacci sequence. Then the ratios
% and bfT“ should be very close to the limit number, and therefore almost
equal. But § = b'{'T"' is the equation for the golden ratio. Indeed, the

ratios of the form % provide a good approximation for ¢. For example,

n

;;L; = % ~ 1.6180339632. We will discuss other properties of ¢ in

Application 2.

APPLICATION 1

Do irrational numbers have any practical use? One unexpected appli-
cation is in paper manufacturing. Suppose you want to produce sheets
of paper in a variety of sizes (for posters, letters, memos). To minimize
production costs, it would be good if a large sheet of paper could be cut
up into a number of smaller sheets. Besides, you would like for all sizes to
have the same aspect ratio (length to width), for convenient enlargement
and reduction of pages. It turns out that the two requirements together
lead to a quadratic equation for the aspect ratio, whose solution is an
irrational number.

The Lichtenberg conditions

To be more specific, the international paper size standard ISO 216 defines
the series An for n = 0,1,2,...10 by the following requirements:

1. A landscape-oriented sheet of paper of size An, when cut in half|
produces two portrait-oriented sheets of paper of size A(n + 1) for
alln=20,1,2,...9.

2. The aspect ratio for all sizes is the same.
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3. The area of a sheet of paper of size A0 is 1 square meter.

The idea of introducing conditions (1) and (2) to ensure production effi-
ciency and convenient resizing goes back to the German scientist Georg
Christoph Lichtenberg, who proposed it at the end of the eighteenth cen-
tury.

Figure 4.1: The An paper sizes.

A5
A3
A4
Al Al Al
Ao
A2
A0 divided into two Als A0 to A5 paper sizes

First let us find the aspect ratio of the An sizes. Let a denote the length
and b the width of a size An. Then by (1), b and 5 are, respectively, the
length and width of the size A(n + 1). To have the same aspect ratio, the
parameters should satisfy the equation

b a/2
a b
Multiplying by b and a, we get
, a® . .
bz:5 — 2 =ad® =  a=+72h

Thus, v/2 is the aspect ratio common to all An sizes.

Example 4.5. What is the ratio between the length of the A4 size and
the length of the A0 size?

Solution: Let us denote by 10,11, 12,13, 14 the lengths of the A0, A1, A2, A3,
A4 sizes, respectively. Then [1 is the width of the A0 size, which equals
10/v/2. Similarly, 12 = 11/v/2, 13 = 12/V/2, and 14 = 13/1/2. Taking all
this into account, we get

B3 2 2 on 10 0
V2 V22 2 2.2 2.42.y2 47

14
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i1

Finally, = = O

1

n -1

Now let us find the dimensions of the A0 size. If a is the length and b
the width, then a - b = 1m? and a/b = V2. We have

a a?

ab = a—

N

Therefore, a®> = V2 and @ = v/v/2. What kind of a number is this?
Clearly, v/ V2V V2 = V2. Also, V242 = 2. Therefore, / V2 multiplied

by itself four times gives 2. This irrational number is called the 4th root of
2, and denoted by V2. Using your calculator, you can find V2 = \/_2 ~
1.189207. For the width b we find: b= L = \}5 ~ (1.840896. In fact, the
dimensions of the A0 size are, in millimeters, 1, 189 mm x 841 mm.

We will talk more about roots of various degrees in Chapter

Example 4.6. Find the length and the area of the A5 size.

Solution: Proceeding just as in Example we find that the ratio of the

length I5 of the size A5 to the length [0 of the size A0 is I5/10 = ﬁ?

Therefore, 15 = 10/(4V/2) = 44% ~ (.210224... In fact, ISO 216 lists the
length of A5 to be equal to 210 millimeters. To find the area, recall the
condition (1): each smaller size has half the area of a larger size. For the
area of the A5 size we have:

1

A5 = £A4 = EAS = 1A2 = iAl = iAO = —m®=10.03125m>.
2 4 8 16 32 32

Other standard paper sizes

In addition to the An sizes, there are two more series: Bn sizes and Cn
sizes. The Bn sizes are determined by the conditions:

(1b) The length of the Bn size is the geometric mean, or the square root,
of the product of the lengths of the A(n — 1) and An sizes:

I(Bn) = /I(A(n— 1)) - I(An),

and 1(B0) = v2-1(B1).
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Figure 4.2: Great Pyramid of Giza (photo by Jerome Bon).

Figure 4.3: Parthenon (left, photo by Tilemahos Efthimiadis), and Athena,
small replica of a statue by Phidias (right, photo by William Neuheisel).




68 CHAPTER 4. IRRATIONAL

regular pentagonal faces is the major element of the composition.
(For the relation of a regular pentagon and the golden ratio, see

Practice Problem )

Example 4.8. Find the height of a golden pyramid if its base has sides
2 inches long.

Figure 4.4: A golden pyramid with the (1, 1/, ¢) triangle.

Solution: If a side of the base is 2 inches (in) long, then half the base
is 1 inch long, and therefore the height of a triangular face is ¢ inches
long. This height is the hypotenuse of the right triangle formed by the
height of the pyramid (x) and half of its base (1 inch). Therefore, by the
Pythagorean theorem,

=2 12— ¢ — 1.

But according to the defining equation for ¢ (), we have ¢? — 1 = ¢.
Therefore,
T =+\/¢,

and because the height should be positive, we obtain z = /¢ ~ 1.272
in. |

Practice problem 4.9. What is the ratio of a diagonal of a regular
pentagon to its side? Answer: ¢.

Hint: Take any four of the five vertices of the regular pentagon and apply
Ptolemy’s theorem, which says: for any quadrilateral whose vertices lie on
a circle, the product of the two diagonals equals the sum of the products
of the opposite sides.

The first mathematical definition and study of the golden ratio can be
found in Elements by Euclid (c. 300 BC). However, the work that made
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Figure 4.5: A regular pentagon inscribed in a circle.

,

D NaY

¢ famous by emphasizing its aesthetic and even “divine” properties was
De Divina Proportione by the Italian mathematician and Franciscan friar
Luca Pacioli. Published in Venice in 1509 and illustrated by Leonardo
da Vinci, the book had a considerable influence on the aesthetics of the
Renaissance.

Although multiple references to the presence of the golden proportion
in nature and art exist, they should be taken with caution. Computing
the ratio of dimensions of an object includes measuring the dimensions
with a certain precision and then performing the division. If the rational
number thus obtained is more or less close to ¢, what error should be
admissible to claim that it is in fact the golden ratio? For example, it is
often claimed that a US drivers license or a credit card is designed as a
golden rectangle. If vou measure the dimensions, you get an aspect ratio
of approximately 1.585, which might or might not be an approximation of
¢. Similar overeagerness sometimes occurs in the analysis of works of art
and architecture. However, not all that glitters is gold.

Example 4.10. Does the right triangle with sides 3,4, and 5 units have
anything to do with the golden ratio?

Jon

Solution: Consider the ratios of the sides: % ~ 1.33333, % = 1.25, :
1.66667. The last ratio is within 3% of ¢. Of course, this is not surprising
because 3 and 5 are two consecutive Fibonacci numbers. However, the use
of a triangle with ratios close to (3,4,5) in architecture might originate in

its simple rational proportions rather than its relation with ¢. |

w w
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The golden ratio in plants

It is universally accepted that the golden ratio seems to be pleasing to the
human eye. The reasons for this must be found in nature, and indeed here
is one of the manifestations of ¢ in the real world that can be mathemat-
ically justified. Namely, the number ¢ appears to lie in the foundation of
phyllotazis, the arrangement of leaves, seeds, or florets in many plants.

A visible manifestation of the golden ratio in phyllotaxis is in the num-
ber of the clockwise and counterclockwise (right and left) spirals apparent
in the structure of composite flowers, leaf arrangements, and seed heads.
In about 85% of plants, these numbers are usually two consecutive Fi-
bonacci numbers: 5 and 8, 8 and 13, and so on. Most remarkably, this
fact is independent of the biological species (within the 85%; the remaining
15% of plants use entirely different structural arrangements), manifested
as well in a sunflower, as in a pineapple or a pine cone. Which pair of
Fibonacci numbers appears in a particular case depends on the relative
size of the seed with respect to the size of the seed head.

The same pattern can be obtained by numerical simulation, assuming
that the angle between the directions from the stem to any two consecu-
tively sprouting seeds (the divergence angle) is always the same and corre-
sponds to the splitting of the complete revolution in the golden ratio 1 to
¢. This golden angle equals ﬁ - 27, or approximately 137.5078 degrees.
As we saw earlier in this chapter, the ratios of consecutive Fibonacci num-
bers converge to the golden ratio. This implies that a Fibonacci number
of seeds arranged at the golden ratio divergence angle will wrap almost
precisely in several complete revolutions around the center, and thus pro-
vide starting points for the spirals. For example, ﬁ is approximated by
fg = 15—3 Therefore 13 seeds get arranged almost precisely in 5 complete
revolutions; the next 13 seeds will get pretty close to these; and so on,
forming the 13 spirals. The next best approximation of ﬁ is %, so the
21 seeds get wrapped around almost precisely in 8 revolutions, and can
serve as starting points for another family of spirals. The two families of

spirals are turning opposite ways because -% is greater, and % smaller,

than ﬁ (if the divergence angle was a fraégion of 27, we would get rays
instead of spirals). In fact, any Fibonacci number of seeds gives rise to a
family of spirals, but only two families are easy to discern, depending on
the size of the seeds with respect to the size of the seed head.

Thus it is apparent that most plants use the golden ratio to determine
their growth algorithm. The most prominent theory explaining this phe-

nomenon is quite sophisticated. It considers a plant as a growing system
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Figure 4.6: Numerical simulation with the golden angle: 13 right and 21 left
spirals.

where the seeds, leaves, or florets are mutually repelling: the second seed
appears as far as possible from the first seed and the stem, the third as
far as possible from the two existing seeds and the stem, and so on. The
development of such a system is determined by the postulate requiring it
to stabilize into a state with minimal energy. It can be shown, both the-
oretically and experimentally, that such a model achieves its stable state
as the divergence angle tends to ﬁ - 2m. An interested reader can find
an exposition of this theory in more advanced texts

We choose here to discuss another argument for the prevalence of the
golden ratio phyllotaxis, which is derived from the mathematical proper-
ties of ¢ as an irrational number. Plants that follow a simple rule to best
use available space for structural elements have an evolutionary advan-
tage, thus assuring the prevalence of a particular phyllotaxis in nature.
Therefore, a plant with multiple structural elements of similar size and
nature (for example, a pinecone comprising many relatively small seeds)
would benefit from a simple and universal algorithm that would allow it to
grow indefinitely in size while ensuring the hest packing of its structural
elements, and their equal exposure to sunlight, dew, and rainwater.

For example, let us consider a pinecone. The seeds originate at the
core axis of the pinecone, and grow away from it as the cone grows. To
minimize the complexity of the process, let us assume that the pinecone
adopts the following rules:

1. The divergence angle between each two consecutively sprouted seeds

For example, see M. Livio, The Golden Ratio: The Story of Phi, the World’s Most
Astonishing Number, Broadway Books, 2002.
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Figure 4.8: Sunflower: 34 left and 55 right spirals (photo by Chris Darling).

rational approximations is the universal solution to the problem (Figure
right, ratio 1 to ¢): it guarantees the optimal arrangement according
to the rules (1)-(4) across the different sizes of plants, their seeds, leafs,
or florets.

The appearance of two consecutive Fibonacci numbers as the numbers
of left and right spirals in plants confirms that the angle of divergence
constitutes the fraction of a complete circle corresponding to the 1 : ¢ ra-
tio. This particular seed, leaf, or floret arrangement in plants is called the
Fibonacei phyllotazis. Figureshows the advantages of the Fibonacci
phyllotaxis by numerical simulation: when the golden angle is used for
divergence, the packing of the seeds is the best, and alignment is suffi-
ciently random for good access to light. The 13 right and 21 left spirals
are prominent in the rightmost pattern.

Counting carefully, you can find exactly 34 left and 55 right spirals in
the photo of the sunflower in Figure

Practice problem 4.11. Show that ¢ equals the infinite continued frac-

tion: i
o=1+ = 5

1+ —L—

Solution: Denote the continued fraction (i.e., the second term on the right-
hand side) by x and notice that 1 4+ % = z. Multiplying by z, we get
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x+ 1 = 2%, the same equation that defines the golden ratio. Because the
continued fraction is clearly a positive number, it follows that x = ¢.

Practice problem 4.12.

1. Check that ¢ satisfies the recursive relation
qbn — ¢Tl—]. +¢'ﬂ,—2

for any positive integer n > 2.
Solution: Indeed, if we multiply (4.1) by ¢, we get ¢* = ¢* + ¢.
Multiplying by ¢ again gives ¢* = ¢° + ¢?, and so on.

2. Using the recurrence above, we can express ¢ in terms of the first

power of ¢ and integers. We know that ¢? = 1-¢ + 1 by , s0:
=" +o=(p+1)+o=20+1
Similarly, check that ¢* = 3¢+ 2. Now do the same for ¢°. (Answer:

¢® = 8¢+5.) In all these cases, note that the coefficients (1,1), (2,1),
(3,2), (8,5) are two consecutive Fibonacci numbers.

| EXERCISES \

Question 4.1. Which of the following numbers are irrational?

lsf—z

5
9
15}

Question 4.2. Which of the following numbers are irrational?

1. V27— V/27.

2. \/2+\/2+\/ﬁ.

Question 4.3. Let z and y be two distinct irrational numbers. Can their
product x - y be rational? If ves, give an example. If no, explain why.
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Question 4.4. A quadratic equation az? + bx + ¢ = 0 with a, b, ¢ rational
numbers, has only one real solution. Can this solution be irrational?

Question 4.5. 1. What is the length of the B2 size?
2. What is the area of the B3 size?

3. What is the reduction factor between the lengths of the A4 size and
the B6 size?

Question 4.6, Find the aspect ratio of an imaginary series of paper sizes,
say, X0, X1, X2,... such that

1. three portrait-oriented sheets of the X (n + 1) size, arranged side by
side next to each other, exactly cover two landscape-oriented sheets
of the X'n size, arranged one atop the other,

2. for each size, the aspect ratio is the same.

Question 4.7. Suppose we define, based on the An series of international
standard paper sizes, a new series of B'n paper sizes by the following
conditions:

(1b') The length of the B'n size is the arithmetic mean of the lengths of
the A(n — 1) and An sizes for alln =1,2,...,10:

I(A(n — 1)) + I(An)

I(B'n) = 5

The length of the B'0 size is YL . [(A0).

(2b') The aspect ratio for all B'n sizes, n = 0,1,...10, is V2.

1. Check that the new B’n paper sizes satisfy Lichtenberg conditions
(1) and (2).

2. Is the new paper size B’4 larger or smaller than the international
standard B4 size? Hint: express the length of the B’4 and B4 paper
sizes in terms of the length of the A4 size.

3. For two positive numbers a and b, which is bigger: GTH’ or Vab? Can
they be equal? Explain your answer.
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Question 4.8. Suppose an interval is divided into two parts, the larger
part a units long and the smaller part b units long. In the definition of
the golden ratio, we equate the ratio of the larger part to the smaller part
with the ratio of the whole to the larger part:

a+b a

a
— = _— — = .
b a b ¢

Let us tweak this definition to see what kind of answers we can obtain.

1. Suppose that the ratio § equals three halves of the ratio of the whole
(a + b) to the larger part a:

a—+b
—

Sl
B e

Find the ratio 3.

a

2. Now suppose that the ratio ; equals five-sixths of the ratio of the
whole (a + b) to the larger part a:

]
+
o

(=21

Sl
<Y

Find the ratio %

3. Can you guess how the answer for § depends on the positive coeffi-
cient p in the equation

Try to solve this equation for the ratio § in terms of p.

4. Give an example of a value of p in the equation above such that the

number % is rational.

Question 4.9. Show that ¢ = \/1 + vV 1+ +v1+ ... Hint: Check that
the infinitely embedded square root satisfies equation .

Question 4.10. Consider the partial fractions {¢, } of the continued frac-
tion
p=1+——,
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where ¢; = 1, ¢ = 1+ %, c3 =1+ ﬁ, and so on. The numbers {c¢,} are
called the convergents of ¢. Check that they are equal to the ratios of the
consecutive Fibonacci numbers, ¢, = 2. Can you explain why?
Remark: In general, the presentation of ‘an irrational number as a contin-
ued fraction gives its best rational approximations, and these are precisely
the convergents. In number theory, there is a way to make precise what
we mean by “best” here.

Question 4.11. Derive the recursive relation

G -G -6
¢ @ @ '
Hint: Derive the equation (%)2 =1- é from the defining equation (4.1)

for ¢, and use it to obtain the recursion.

Question* 4.12. Check that for any n > 2
qbn = fn¢ + f‘n,fla

where f, is the nth Fibonacci number.

Hint: Use the recursive relation in Practice problem to derive a pre-
sentation for ¢" as a sum of ¢ with an integer coefficient and another
integer. Then observe that these integers are constructed according to the
same recursive relation as the defining relation for the Fibonacci sequence.

Question* 4.13. 1. Using the recursion in Question |4.11} and pro-
ceeding as in Practice problem |4.12] obtain the following formula
(pay attention to the sign!):

(5) - (3)

2. From the previous part, derive the following equality:
1 f,q1 1 \"
6 I _E'(_E) ‘

n— : 1
! T L approximates 5?

Can you conclude that for large n,

Remark: This is equivalent to the statement we made in the be-
ginning of this chapter: the ratios fjr# approximate ¢, and the
approximation becomes better as n grows.

Question 4.14. Find a pine cone. Count its left and right spirals. If they
are not consecutive Fibonacci numbers, the cone must have experienced a
growth disruption. Find another one and repeat!
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It is very instructive to take each equality in the above calculation and see
why it is true — and whether you need to use one of the above properties
of exponents to justify it.

The next example shows that the exponents need not be concrete real
numbers — they can be variables as well.

Example 5.2. Simplify 9°4° — 62, Here, b is a fixed (unknown) real
number.
Answer: Using the properties of exponents, we compute:

O

Here is a third example. The general philosophy is to try to simplify
as much as you can. Do not be surprised if the overall answer is not as
simple an expression as “20” or “0” (as in the above examples).

Example 5.3. Simplify 295°/109, where a and b are real numbers.
Answer: Using the properties of exponents,

29 . 5b 24 . 5P 20 5b

10970 — 10-10°  10¢ 10°

= (2/10)" - (5/10)" = (1/5)" - (1/2)"
= (5 hHe @2 =27b1
O

Example 5.4 (Solving equations involving exponents). Solve the follow-
ing equations for the unknown real variable:

1. 5(1 +a)* = 40.

Solution: First divide both sides by 5 to get: (14 )% = 8, Now take
the cube root of both sides. The left-hand side can now be computed
using the properties of exponents, to equal:

(L2 = 1+ 2> =14,

while the right-hand side becomes 81/3 = 2. So we get: 1+ = 2,
orzx=1.

2. (3+2)° =322z +1)°.
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Solution: Take the fifth root of both sides — i.e., raise them to the
1/5th power. Using the properties of exponents (do the work!), we

can see that

B+z)=(2 - 2e+1))/"=2. 20 +1) =4z + 2.

This is a linear equation, so moving all terms involving x to the
right-hand side, we get:

3—2=4x —x = 3x.

Finally, z = 1/3. |

Practice problem 5.5. Simplify each of the following expressions using
the properties of exponents above:

3.

1. 126/6'2. Answer: 1/3°% = (1/3)°.

. (2535")% is what power of 57 Answer: 530

[N
19]w

VaV2VR, Answer: 25 .23 .81 = 2itat

(VRS)
R3S3

V27 /16

=237 = 2/2.

, where R and S are positive numbers. Answer: v RS.

Y Ve

Answer:

V27 V16 3
V62 27 .37 . 2%

Practice problem 5.6. Solve the equations:

1. 63 — 367. Answer: = — %.

2. (2y% +1)° = 243. Answer: y> = 1,50 y = £1.

APPLICATION 1

Computations with exponents are necessary in modeling quickly devel-

oping processes, such as chain reactions and avalanches.
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Example 5.7. High in the mountains, a comparatively small initial im-
pact (a snowball) can cause a larger snowslide and eventually lead to a
huge avalanche.

Suppose that during each second, the volume of the sliding snow grows
by a factor of 1/3. What is the volume of the snow in the avalanche after
10 seconds? After 30 seconds?

Solution: Denote the initial volume by V. Then after 1 second, we have
Vo + %VD = %Vg, after 2 seconds %Vg + %(%%) = %%(1 + %) = % . % Vo,
and so on. After 10 seconds, the volume is

4 10
V10=(§> Vo ~ 17.76 V.

After 30 seconds, we have
1\ 30
Va0 = (5) Vo =~ 5,600 V.

For example, if the initial volume Vj was 1 cubic foot (7.5 gallons), then
after 10 seconds we have 133 gallons, and after 30 seconds, almost 42, 000
gallons of sliding snow.

Now suppose we know that the volume of snow in an avalanche grows
in such a way that after 30 seconds, it is 100 times (1, 000 times) the initial
volume. How much does the volume grow per second?

Denote by r the factor of volume growth per second. Then we have an
equation:

(1 +7)* = 100.

This implies
14+7r= V100 ~ 1.1659,

and r ~ 0.1659. In the second case,
(1+7)3%° =1,000 = 1+r= %/1,000 =~ 1.2589,
and r ~ 0.2589. O
Another avalanche-type system is provided by a rumor spread.

Example 5.8. Suppose a person obtains some valuable trading informa-
tion. She probably will not share it massively, but she will tip off her five
closest friends. The next day, her friends do the same, and so on. How
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many more people will know the information each day during the next
week? We calculate:

day 1 1 person
day 2 5 more people

day 7 5% = 15,625 more people

At some point in this process saturation will be reached, where all inter-
ested people already know the news and others don’t care. Saturation
is the reason for failure of financial pyramids, which require exponential
increases in the number of participants to sustain them. O

Finally, here is an example of a different kind, where proficiency with
powers becomes useful.

Example 5.9. Suppose that a store allows three discounts to apply, con-
secutively:

10% membership discount,

10% seasonal sale discount, and

10% promotional discount.

Another store with the same merchandise offers a flat 28% discount on all
sales. Which deal is better?

Solution: Here the main point is that the three discounts in the first store
are applied consecutively (instead of sirnultaneously). The first discount
reduces the price of an item P to 0.9P, then the second discount reduces it
further to 0.9-0.9P = (0.9)2P, and the last discount results in a final price
of 0.9-(0.9)2P = (0.9)3P. Therefore, a customer would pay (0.9)*P =
0.729P in the first store, and only 0.72P in the second store. The second
deal is better. |

In contrast, if the first store allows the customer to add the discounts, then
the total discount comes to 30% of the sale price. In this case the first
store is clearly offering a better deal than the second.

APPLICATION 2

Raising positive numbers to powers is necessary in finance, in particular
in computing compound interest. If you take a loan of a thousand dollars
from a bank, or deposit a thousand dollars in it, then, after a couple of
yvears, you will either owe or own more than that amount. The original
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amount of money borrowed or deposited is the principal, and the extra
amount is called the interest.

Simple interest

Let us start with simple interest, which is, of course, quite simple. If you
deposit $1, 000 in a bank that has a 5% annual simple interest rate, then
the deposited money accumulates interest, $50 per year (which is 5% of
$1,000). Thus, after one year you have $1,050, after two years $1,100, and
SO Om.

Here is the “general formula” for simple interest: if we deposit an initial
sum of money A in a bank that offers an annual simple interest rate of
r%, then each year the principal accumulates the same amount of interest,
A - r/100. Thus, the interest that we would have accumulated on A after
t years is: A -r-¢/100. The total amount after ¢ years is given by:

A(t)zA(1+%>.

Example 5.10. A few years ago, I deposited $2,000 in a bank with a
simple interest scheme. The money in my account today is $2,500.

1. If T deposited the money ten years ago, what is the simple interest
rate in the bank?

2. If the rate of simple interest is 5%, then how long ago did I deposit
the money in the bank?

Solution: In both calculations, we set A = $2,000 and A(t) = $2, 500.

1. If the money was deposited ten years ago, then ¢t = 10 and r is
unknown, so compute:

- 10
2,500=2,000 14+ —— .
100

Solving for r, 500 = 20 - 7 - 10, whence r = 2.5%.

2. In this part, r = 5% and ¢ is unknown, so:

t-5
2,500 = 2,000 {1+ — | .
100

Solving for ¢, 500 = 20 - ¢ - 5, whence £ = 5 yr. O
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good an investment this was, let us compute the annual compound interest
rate that would produce the same growth. We will make a computation
for the initial capital investments of $24 and $1, 000 separately.

When this book was written, the time elapsed since 1626 was 2014 —
1626 = 388 years. Assuming the annual compounding model, and $24
initial capital, we have the following equation for the annual interest rate
r:

388
24 (1 n L) — 8.53-10',
100

Then

L 2 235100 14— 1.058 5.8%
— ~35-. — — ) ~1. — ~ 5.8%.
( + 100) ( + 100) " ¢

If we take $1,000 as the initial capital, the annual interest rate r is even
lower:

1000 (14 )" —g53. 101
: (*m) = 805 10

Then

1 )™ s g3 107 14— 1.048 4.8%
—_— ~ 8. . S — | ~ 1. ES ~ 4, .
( + 100) ( + 100) " v

In both cases, the interest rate is not much different from actual interest
rates offered by banks for long-term investments, and is compatible with
a realistic economy growth rate. If the people who sold the island had in-
stead invested in a bank offering an annual interest rate of about 5%, they
would have accumulated roughly the same amount of money as the value
of Manhattan land today. In this sense, the sale/acquisition of Manhattan
seems to be a reasonable deal.

Continuous compounding and the number e

What happens if the number of compounding periods per year is allowed
to grow indefinitely? To simplify our computations, suppose that the
principal A = $1, ¢ = 1, and r = 100%. In this case, the formula reads

A(1)_(1+%)n.
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Let us see how the result depends on n:

n=1 A =01+1Dt=2

n=2 A)=(1+31)3=5=225

n =4 A(l) = (1+ 1)t ~ 2441
n=12 A(L) = (1 + §5)" ~ 2,613

n = 365 A(L) = (14 355)%° ~ 2.714

n = 1,000 A1) = (1 + 35) """ = 2.717

It looks like the values of A(1) become closer together as the number
of compounding periods grows. In fact, when n grows indefinitely, this
sequence converges; that is, it becomes as close as we wish to a certain
number, namely to the constant e:

T n—0o0

1 n
(1 + —) — e = 2.718281828459045. ..

This number plays an important role in mathematics; for example, it
appears as the base of the natural logarithm In, which we will introduce
in Chapter@ One of the first definitions of e was given in the seventeenth
century by the Swiss mathematician Jacob Bernoulli. He defined e as
the annual growth factor with 100% compound interest rate compounded
continuously.

If the compound interest rate is 7%, the amount accumulated after ¢
years in the case of continuous compounding is

A(t) = Aetoo,

Example 5.13. With the initial capital A = $10,000, how much money
will accumulate in ¢ = 8 years if the bank compounds continuously with
the compound interest rate r = 3%?

Answer: Using the continuous compounding formula, we compute

A(8) = Aeivo = 10,000e%2* ~ $12, 712.49.

Strategy for problem solving

In questions involving compound interest, start with the equation for com-
pound interest (monthly, quarterly, n periods per year). Now plug in the
numbers that you are given and identify the unknown quantity. Then solve
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for the unknown quantity, as is done in the examples below. To make your
answer meaningful, vou should indicate the units of measurement. For in-
stance, if the amount of money is unknown, the answer should be given
in a unit of currency (for example, $). If the interest rate is unknown, the
answer should be given as a percentage (%).

When solving the equation, it is a good idea first to isolate the unknown
quantity on one side, writing it in terms of the known quantities, and
only then use your calculator to compute the answer. This way, even if
the numerical answer is wrong, you can get partial credit for the correct
expression, and for doing most of the work to solve the problem. If you
have to round your answer, then you should do so only at the end of your
computations, not in the middle. Here is why: compare 1.01%° rounded
to one decimal place (vou get 1.2) with 1.01 rounded to one decimal place
and then raised to the 20th power (you get 1.0%° = 1.0).

Example 5.14. How much should be deposited today in an account that
earns interest at an annual rate of 6%, compounded monthly, so that it
will accumulate to $20, 000 in 5 years?

Solution: We have r = 6, n = 12, t = 5, and A(¢) = 20,000. We need to
find A.

6 12:5
A(t) = 20,000 = A [ 1+ —— = A(1 + 0.005)°°.
(61=20,000= 4 (14 o) = AU +0009)
Solving for A, we get:
~ 20,000
~ (1.005)80°
Now use your calculator:
A~ 14, 827.44.
Thus, the amount that should be deposited today is $14, 827.44. O

Example 5.15. Suppose I borrow $10,000 from a bank that compounds
quarterly. Determine the annual compound interest rate (to four decimal
places) if after one year I owe $10, 824.32.

Solution: Suppose the annual compound interest rate is r%. Using the
formula for interest with quarterly compounding,

NS r 24
£) = 10,824.32 — 10,000 (1 + — ) = 10,000 (1 + —) .
A(t) = 10,824.32 — 10, (1+400) 10, (1+400)
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To solve for r, we need to divide both sides by 10,000 and then take the
fourth root - i.e., raise both sides to the 1/4th power. (Do you see why
taking the fourth root is the same as taking the square root of the square
root? Use properties of exponents.) Thus,

4.(1/4)
(1.082432)1/4 — (1 + L) —14

400 400°
In other words, 1 + (r/400) = 1.01999996. Solving for r, r = 7.999984 ~
8% is the annual compound interest rate (to four decimal places). O

Example 5.16. A bank uses a compound interest model, so that a de-
posited amount doubles in 18 years. How much should be deposited in the
bank today, to obtain $50,000 in 10 years?
Solution: We need to find the amount of money X such that

50,000
(1 + ogae)'

However, neither the interest rate r nor the period of compounding n is
given. All we have is the equation:

oA— A1+ —)"
N ( + n- 100)
for any deposit amount A. Dividing by A and taking the 18th power root,

we derive
(1+ r )1%—2 — (1+ ! )”—2%
n-100 B n-100/ 7

This is all we need to solve the problem. Using the properties of exponents,
we have:

T

n - 100

10n
50,000:X(1+ ) — X

50, 000 50, 000 50, 000

(14 )™ (28)10

Now, (21:)10 = 218 = 25. Finally,

50, 000
X = éé ~ 34,019.75.
The deposit has to be $34,019.75. O

Remark: The point to understand here is that the number of years enters
the compound interest formula as an exponent. Therefore, if a deposit
doubles in 18 years, we can tell right away that in one year, any deposit
will grow by a factor of 218 = /2. Then the growth factor over lO years
is computed by raising 275 to the 10th power, to obtain 218 = 2%,
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Effective annual rate

In dealing with banks, you may sometimes encounter the expression effec-
tive annual rate of compounding. Suppose I borrow $10, 000 from a bank
with an annual rate of 8%, compounded quarterly. After one year, if the
money was compounded only annually, then my loan would be $10, 800.
But because the compounding is done more frequently, my loan actually
increases. See Example above for the calculations: the loan is now
$10,824.32 — some twenty-four dollars more!

The effective annual rate essentially measures this discrepancy. It is
defined as the simple interest rate that produces the same amount of money
at the end of one year, as the stated compound annual rate, compounded
n times per year (quarterly, monthly, ...). Thus, if r% is the compound
annual rate, and it is compounded n times per year, then the effective
annual rate rog is computed according to the formula

Toff T n
14 =L (1 + ) .
100 n - 100
For instance, in the above example, the loan after one year is $10, 824.32.

Hence the effective annual rate is 8.2432%. (Note that the annual rate
was given to be 8%.)

Example 5.17. Find the effective annual rate for the compound annual
rate of 6% compounded monthly. Round off your answer to three decimal
places.

Answer: Using r = 6 and n = 12, we compute:

12

Teff 6 12

1 =14+ —— = (1+0.005)° ~ 1.0616778.
Jr100 ( Jr12-100) (1+ )

Solving this simple equation, we get rog ~ 6.168%. O

In case of the continuous compounding, the effective annual rate is
determined by the formula

Teff r
— e100
100

1+

Example 5.18. Let A = $5,000,r = 4%, compounded continuously.
1. How much money will accumulate in ¢ = 5 years?

2. Find the effective annual rate.
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Question 5.9. Suppose I have $15,000 to invest, and two banks are of-
fering competing models. Bank A has an annual interest rate of 6.4%,
compounded quarterly, while bank B has an annual interest rate of 6%,
compounded monthly. Which bank yields greater interest over one year?
In other words, which bank has a greater effective annual rate?

Now compute which bank yields greater interest over three years. In
fact, the answer remains the same no matter how much money is invested
or how many years of compounding one considers. Why is this so? The
answer is: compounding monthly or quarterly by a given interest rate is
the same as compounding annually by its effective rate. Hence to compute
the interest for both models, we are basically compounding annually by
their effective rates, in both cases. Thus, whichever effective interest rate
is greater will always yield a greater return.
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Chapter 6

Logarithms I:
Money grows on trees,
but it takes time

To determine the time it takes for an investment to grow to a certain
amount according to a compound interest model considered in Chapter
we need a new mathematical tool: the logarithm. In mathematics, taking
a logarithm is the inverse operation of taking an exponent. In this chapter
we will learn to work with the logarithms and discuss their applications,
most importantly in finance.

MATH

For positive numbers @ # 1 and B, the logarithm log, B is defined as
the unique solution to the equation:

a* =B <<— x=log,B.

By definition, the exponential function a* and the logarithmic function
log, x are inverse to each other. This means that if you apply one and
then another, you get the same number you started with. More precisely,
for any positive numbers a # 1 and B we have

alogu B _ B,

97
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and similarly, for any positive a # 1 and any real z we have
log, (a¥) = x.
The number a is the base of log,. We will denote
log = log,y, In=log,,
where the constant e = 2.71828 ... was introduced in Chapter

Example 6.1. We compute: log1,000 = log;,1,000 = 3, because in
order to obtain 1,000, you need to raise 10 to the third power. a

Here is a quick reminder of the laws of logarithms, algebraic rules of
dealing with the logarithms. Let a, B, C' be positive numbers, a # 1, and
r a real number. The main properties of the logarithms are the following:

B
log, B + log, C' = log,(BC), log, B — log, C' = log,, (5)

loga(B'") — rloga B’ loga B = @,
Ina
log, 1 =0, log, a = 1.

These properties follow from the laws of exponents listed in Chapter
and the definition of logarithms. Below we prove three of the equations.

Example 6.2. Let a, B, C be positive numbers, a # 1. Show that
log, B + log, C = log,(BC).

Solution: Let us introduce the notations: z = log, B, y = log, C, and
z = log,(BC). Then we have by the definition of the logarithm:

a* =B, a'=0C, a° = BC.
By the laws of exponents, this implies
a®* =d* - a¥ = a" Y,
Hence z = z+y. Substituting the values, log, B +log, C = log,(BC). O

Example 6.3. Let a and B be positive numbers, a # 1, and r a real

number. Show that
(B") =rlog, B.

log,



Apoorva Khare and Anna Lachowska 99

Solution: Let x = log, B. Then by the definition of the logarithm we have:
B =a".
Raising both sides to the power r, we get
B" = (a*)".
Taking the logarithm base a of both sides, we have
log,(B") = log,((a®)") = log, a*" = zr = rx.

Plugging in = = log, B, we get

log,(B") = rz = rlog, B. O

Example 6.4. The equality log, 1 = 0 for any positive a # 1 is equivalent
to the property of exponents: o = 1, which holds for any positive a. O

All remaining properties can be proven similarly. (Try it!)

EXAMPLES

In what follows, log = log,;, and In = log,. Each of the following
questions can be answered using the definition and laws of logarithms.

Example 6.5. Compute or simplify the following expressions:
(a) log 155, (b) (In9 +1In4)/In(6).

Solution: (a) This is the power you need to raise 10 to get 1(1)—0. We have
1072 = 1(1]—0. Therefore, log ﬁ = —-2.
(b) N9 +In4)/In6 =1n(9-4)/In6 = In(6%)/In6 = 2. O

Practice problem 6.6. Compute or simplify the following expressions:
1. log 10274, Answer: 2t + 4.
2. log of 1 million. Answer: 6.
3. logl. Answer: 0.
4. log 60 — log 6. Answer: log 60 — log 6 = log % =log10 = 1.

5. log(1 + t) + log(1 — t) — log(1 — #?). Answer: 0.
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(a)
Inl.5

= ——— ~ (.81 yr.
4-In(1+ 125)

100
t= o Inl.5~6.75 yr.

O

Example 6.10. How long does it take for your investment to grow from
A = $10,000 to A(t) = $12,000, if the annual interest rate is 4%, com-
pounded quarterly? Give your answer to the nearest quarter of a year.

Solution: We have r = 4%, n = 4, A = $10,000, A(¢) = $12, 000.

4 4t
A(t) = 12,000 = 10,000 | 1 + —— .
(t) : ; (+4_100)

Dividing both sides by 1,000 gives

6
12=10(1.01)*" = 5= (1.01)*,

Now is a good time to apply the logarithms. You can use the logarithm
with any base, because the answer is independent of the base. We choose
the natural logarithm because it is a one-touch operation on any calculator:

In1.2

6y at =
1n(5)1n(1-01) —4t-nl0L === e

Finally, use your calculator:

The time needed for the investment to grow to $12, 000 is more than 4 years
and 2 quarters, but less than 4 years and 3 quarters, because 4.6 > 4.5
and 4.6 < 4.75. Therefore, to obtain the desired amount, you will have to
wait for 4 years and 3 quarters. g

Strength of an encryption key

Here is an example from a completely different domain. An encryption
key, or a secret password used in computer security, can be thought of as
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a sequence of zeros and ones of a certain length. For example, a 56-bit key
is a sequence of 56 zeros and ones. It can start like this:

(0,0,0,1,0,0,1,1,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,1,0,1, ............ )

How many different 56-bit keys are there? There are 2 choices (0 or 1)
for the first entry. For each choice of the first entry, there are 2 choices
for the second, for each choice of the first and the second entry there are
2 choices for the third, and so on. If the key is 3 bits long, then we will
have 2 - 2.2 = 8 different sequences. You can easily list them:

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

Now suppose your encryption key is 56 bits long. Then you have two
independent choices for each of the 56 entries. Therefore you have 2°6
different possible keys.

Now suppose an imaginary intruder — a hacker or an agency — wants to
crack the key by brute force, trying all sequences of zeros and ones until
the right one is found. Suppose they have a cluster of 1,000 processors,
and each processor can make 10 billion tries per second. How long would
it take them to find the key?

With some luck, you don’t have to try all 2°¢ combinations before you
hit the right one. Let us assume that you have to try half of them. The
processor cluster makes 1,000 - 10 - 10 = 103 tries per second. Let ¢ be
the time in seconds required to find the key. Then we have the equation

55 42

(1013) . t = %-256 —_ t= % = % ~ 3,603 sec.
It would take the intruder only 3,603 seconds, or about 1 hour, to crack
the key. Even if we assume they need to try all possible sequences of
length 56, it will take them about 2 hours. If we do not want the keyv to
be vulnerable to brute-force attacks of this kind, we can try to make the
key longer. How long should it be to ensure that it takes an adversary
decades to crack?

Example 6.11. Assume an adversary has a cluster of 1,000 processors,
each capable of checking 10 billion keys per second. How long should
the encryption key be to ensure that it takes more than 30 years for the
adversary to crack the key by brute force?

Solution: Let k denote the length of the key. Assume as before that the
intruder will have to check half of all possible keys before they hit the right
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one (actually, taking half or 75% won’t make much of a difference for the
answer). Then they will have to check % -2F keys. The time we want them
to take is

t = 30 yr = 10,950 days — 262, 800 h — 94, 608 - 10* sec.

So if we want to be safe, we will require that it takes them 10° seconds.
The computer cluster can make 1,000 - 10 - 109 = 103 tries/sec. We have
the following equation for k:

1
1013 .10° = 5 2k — 10%2 =2k 1,

To solve for k, we need to take a logarithm. For example, we can take
log,:
logy(10%2) = log, (28 1) —  22log, 10 = k — 1.

Then we compute:
k=1+22log, 10 ~ 1+ 73.08 ~ 74.

A T4-bit key would suffice to withstand an attack by this adversary for
over 30 years. O

As technology progresses, the processing speed of the electronic devices
is likely to increase. We can make the model more realistic if we assume
that the adversary’s processor speed grows, say, by a factor of 2 every
two years (this growth is consistent with an observation of the hardware
development known as Moore’s law). This assumption will result in a
more complicated equation for the length of an encryption key, which will
involve a finite geometric series. This will be considered in Chapter@ (see
Example .

We will discuss other mathematical aspects of cryptography and com-
puter security in Chapter

\ EXERCISES |

Question 6.1. In what follows, log = log,,.
1. Simplify, then compute: log (llﬂ%%)

2. Compute log /1, 000.
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3. Solve for z: 107*+1) — /100.
Question 6.2. In what follows, log = logy,.
1. Simplify, then compute: log(15°) — log(3%) — log(5%).
2. Simplify, then compute: log 400 — log 5 — 3log 2.
3. Solve for #: v/30 - 100" = 143,
Question 6.3. Solve the equations:
1. et — 18,
2. (0.5)(107=8) _ 3,
Question 6.4. Solve the equations:
1. 1432 . 7(2=3) — 9. 2(3-2),
2. 502272 = 17. 25(722),
Question 6.5. In what follows, log = log,,. Solve the equations:
1. log(z? — 16) — log(z — 4) = 2.
2. log(z? + 5z +7) = 0.

Question 6.6. Suppose you borrow $4,000 from a bank at an annual
interest rate of 10%. Suppose the interest accumulated over a certain time
(which need not be an integer number of years) is $500. Find out how
long this takes if the bank compounds (a) monthly, (b) quarterly. Give
your answer up to the nearest month.

Question 6.7. How long will it take for an investment to triple at an
interest rate of 5% compounded

(a) monthly?

(b) continuously (to the nearest tenth of a year)?

Question 6.8. A bank compounds quarterly at an annual interest rate
of r%. With this compounding scheme, the amount of $1,000 grows to
$1,400 in 10 years.

1. Find the compound interest rate r up to two decimal digits of a
percent.
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2. With the same compounding scheme, how long will it take for a
deposit of $20,000 to grow to $25,0007 Give your answer to the
nearest quarter of a year.

Question 6.9. Suppose a bank compounds continuously at an annual
interest rate of 3.5%. How long will it take for an investment to grow by
$10, 000 if the initial amount is

1. $20,0007
2. $30,0007
3. $50,0007
Give your answers to the nearest month.

Question 6.10. Suppose a bank compounds monthly. How long will it
take for a deposit of $5,000 to grow to $8,000 if the annual compound
interest rate is

1. 3%7
2. 4.5%7
3. 5%?7?

Question 6.11. Suppose the adversary has a cluster of processors ca-
pable of making 10® tries per second. You consider an encryption key
sufficiently safe if it will take the adversary more than 3 years to crack by
brute force. How long should the sequence of zeros and ones be to make
a sufficiently safe encryption key? Assume that the adversary will have to
check approximately half of all possible sequences before hitting the right
one.

Question 6.12. You have received intelligence that currently the adver-
sary has a cluster of 10, 000 processors, each capable of making 5 billion
tries per second, and that after 5 years the cluster capability will increase
twenty-fold and will not change for the next 5 years. You consider an
encryption key sufficiently safe if it would take the adversary more than
10 years to crack by brute force. How long should the sequence of zeros
and ones be to make a sufficiently safe encryption key? Assume that the
adversary will have to check approximately half of all possible sequences
before hitting the right one.
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Taking a logarithm makes the difference between large numbers smaller
and between small numbers larger. If two positive numbers differ by a
factor of 10, their logs (base 10) differ by one unit, whether it is 0.0001
and 0.001, or 100,000 and 1, 000, 000:

log(10B) = log 10 4 log B = 1 + log B.

As a consequence, the logarithms provide a tool to deal with data of very
large range. For example, if the quantities B = 100 and C = 0.01 need to
be marked on the same scale, then visualizing them together on a linear
scale is problematic: the difference B — C' = 99.99 is too large compared
to C = 0.01. But on a logarithmic scale they become conveniently spaced:
instead of C, we mark logC' = —2; instead of B, log B = 2. Then the
difference between them is only 4 units.

Figure 7.1: Logarithmic versus linear scale.

1 10

0.01
0.1

log X

Tiny quantities become easier to discern, and large quantities can fit
into the picture. This makes logarithmic scales convenient in applications
with a wide range of data.

Practice problem 7.3. What is the difference between the quantities
A =1 and B = 100,000 on a logarithmic scale (a) base 10, (b) base 1007

Answer: (a) log(100,000) = 5, (b) logy(100,000) = 25L20200 — 2,

| APPLICATIONS \

Noise levels

Sounds are created by vibrating objects that generate sound waves trans-
porting the energy of the vibration through the medium (for example, air).
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In physics, the intensity of a sound is defined as the energy transported
by the sound wave past a unit of area per unit of time. It is measured
in joules per second per square meter (——), or watts per square meter
% . In practice the sounds accessible to detection by the human ear
range in intensity from 10*12% (the threshold of hearing) to 10% (pain
level). The measurement range of thirteen orders of magnitude suggests
the use of a logarithmic scale.
Indeed, the noise level of a sound is measured according to the decibel
scale, which is a logarithmic scale evaluating sound intensity with respect
to that of the threshold of hearing (TOH). Given a sound intensity P (in

watts per square meter), the decibel (dB) measure of the noise level is

given by
P
Lag = 10log | —
dB og (PO>’

where Py is the TOH intensity in watts per square meter.

The decibel scale is consistent with our perception of noise. For exam-
ple, the sound intensity of a whisper is about 100 times the sound intensity
of TOH: Pypisper = 100Fy, but we do not think of a whisper as being 100
times louder than the tiniest noise we can hear — it is perceived to be just
a little louder. Let us find the decibel level of a whisper:

Pw isper

Lyhisper = 101og (%) — 10log 100 = 10 - 2 = 20 dB,
0

Here is a table of common sounds together with their estimated decibel

levels:

Sound Noise level (dB)
TOH 0
whisper 20
library 40
normal voice 60
lively street 70
nightclub 100
live rock concert 110
pain level 130

The numbers agree with our intuitive perception of the relative intensity
of these sounds.

If we know the decibel level of a sound, we can find its intensity with
respect to Py

L =10log (;) - IL—O = log (;) - ; — 10519,
0 0 0
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Example 7.4. Given that the noise level at a nightclub is approximately
100 decibels and that of the normal voice about 60 decibels, find the
intensity ratio between the two noise levels.

Solution: Let L, = 100 dB and L, = 60 dB be the decibel noise levels
of nightclub music and normal voice, respectively, and P, and P, their
kilowatt intensities. Then

Bu_qorano _qoro; Bl qoreo e,
0 Py

Therefore,

P, 10'

— = —— = 10" ~ 10, 000.

P, 106 ’
The intensity of a nightclub noise is approximately 10, 000 times that of a
normal voice. O

Apparent magnitude of stars

A logarithmic scale of relative apparent magnitude of stars has its origins
in the work of an ancient Greek astronomer, Hipparchus (190-120 BC).
He suggested dividing the visible stars into six levels of magnitude: 1 (the
brightest) through 6 (the faintest), and postulated that the increase in
one level of magnitude should correspond to a decrease by half in visible
brightness. This way of describing the relative brightness of stars was
further popularized by Ptolemy (90-168 AD) in his influential treatise
Almagest. In the nineteenth century, British astronomer Norman Robert
Pogson formalized the system by requiring that the stars of magnitude 1
were 100 times as bright as the stars of magnitude 6. An improved and
extended version of this scale is used by astronomers today

Hipparchus’ suggestion that the stars of equidistant magnitudes differ
in brightness a certain number of times shows that human vision perceives
brightness logarithmically. The same assumption lies in the foundation of
the Pogson condition — that an increase in magnitude by 5 units should
result in a 100-fold decrease in brightness.

Example 7.5. Given that an increase in magnitude by 5 units corresponds

to the brightness ratio of lé—o, find the base of a logarithmic scale suitable

to describe the relative apparent magnitude of the stars.

IInterested readers can find more details in, for example, To Measure the Sky: An
Introduction to Observational Astronomy, by Frederick R. Chromey, Cambridge Uni-
versity Press, 2010.
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Answer: Let X be the base of the logarithm generating this scale. Then
we have:

1 1
5= logy — = X5 = —
100 100
/1 1 2
— X=3—= = 1075 ~ 0.398

100 /100
O

Indeed, according to the presently used scale, the apparent magnitude

of a star is defined as
— loo F
m=log _z )

where F is the observed flux (brightness) of the star. The flux is the
amount of electromagnetic energy reaching the observer on Earth in unit of
time per unit of area, measured in watts per square meter. The quantity Fy
is the flux (brightness) of the star Vega, which is taken as a reference point.
The electromagnetic energy comes to the observer in the form of waves
of various lengths: X-rays, ultraviolet, visible light, infrared, radio waves,
and so on. The ratio of brightness between the sources depends on the
wavelengths you take into account: star A can emit more energy in visible
light, and star B in the infrared wavelength interval. For the purpose
of apparent magnitude, to be consistent with the traditional definition,
brightness is understood as the optical broadband flux: the energy emitted
across the wavelengths of the visible spectrum.

Example 7.6. Reformulate the definition of the apparent magnitude of
stars in terms of log base 10.
Answer: By the base change formula (Example we have

| F
— =L = ——log|— .
Fo log 10~ 5 2 Fy

From now on, we will use the formula for m derived in Example
which is more convenient for computations.

The scale of apparent magnitude is extended to apply to stars visible
only by using a telescope, as well as to certain very bright objects like
the planets, the Moon, and the Sun. Because of the negative sign in front
of the log, this is an example of a reverse logarithmic scale: the brighter

m = log

e

10~

O
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the star, the smaller its magnitude. Very bright objects have negative
apparent magnitude. Some well-known celestial bodies and their apparent
magnitudes are given in Figure

Practice problem 7.7. Compute the apparent magnitude of Sirius, given
that its observed flux is 3.87 times that of Vega, and check your answer
against the value given in Figure

Answer: mgiyins = fglog (FbTU‘) = f% log 3.87 ~ —1.47.

Conversely, given the apparent magnitude of a celestial object, we can
find its brightness in the visible spectrum with respect to Vega:

5. (F 2 (F
mz——o — —-m=log(—
S\ R 5 S\ &

Practice problem 7.8. If the apparent magnitude of the faintest stars
visible in an urban neighborhood is m = 4, find their relative brightness
with respect to Vega. Answer: f =10 8™ = 10" % ~ 0.025. The bright-
ness of these stars is about 2.5% of the brightness of Vega.

Example 7.9. The mean apparent magnitude of the full Moon is my =
—12.74, and the apparent magnitude of Venus at its maximum brightness
is my = —4.89. What is the ratio of brightness between the Moon and
Venus?

Solution: We need to find F‘“ , where Fy; is the visible brightness of the
Moon, and Fy that of Venub The known apparent magnitudes my; and

my allow us to find the ratios FT];' and i%’
Fy -2 2.(—12.74
e [ RC U T )~ 124,738,
Fy
LA 10— 5mv — 10— 3 (=489 L g
Fy

Then we can find

Fy Py By 124,738

M ~ 1, 380.
N Ry F, 90

Another solution: We can use the properties of the logarithm to find the
required ratio without first computing the brightness of each object with
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Answer: By definition of the absolute magnitude, we have

d
Mgun = Mgun — blog o —26.74 — 51log(4.85-1077)
~ — 26.74 — 3.43 + 35 = 4.83.

If the Sun were placed at the “standard” distance of 10 parsecs from us,
it would be just barely visible to the naked eye! g

Even though the distance is factored out from the definition of the abso-
lute magnitude, this quantity describes only the intensity of light emission
by the star in the visible spectrum. It does not allow us to estimate other
physical parameters of a star, such as size, surface temperature, or total
energy emission. Some smaller stars emit more visible light than larger
stars.

Earthquake magnitude

A logarithmic scale to measure the relative magnitude of earthquakes was
suggested by the American scientist Charles F. Richter in 1934. An earth-
quake is a vibration of the ground, associated with seismic waves — elastic
waves caused by a sudden break or movement of the Earth’s crust. It can
be characterized by the maximum amplitude of such vibrations, which is
measured in units of length, and compared with the reference amplitude.
The rough idea behind the Richter scale is to calculate the ratio of the
amplitude of vibrations A measured at a distance 0 from the epicenter, to
a reference amplitude function Ag(d), and take the logarithm base 10:

A
i = 3 [

Mp = log (Ag(é)) .

The reference amplitude is chosen to be pretty small, so that an earth-
quake with maximal amplitude of vibrations A,(d) at distance § from the
epicenter is not felt and can be detected only by sensitive instruments. Ob-
servations from many seismic stations are combined to determine the posi-
tion of the epicenter and the distance & for each station. For convenience,
seismographs (instruments used to measure earthquake magnitudes) have
the reference amplitude function inbuilt.

In the 1970s the Richter scale was replaced by a more accurate moment
magnitude scale (MMS), but the principle of the computation remains the
same and the results agree whenever both scales are applicable, so that
the MMS magnitude is often referred to as the Richter magnitude.
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The use of a logarithm base 10 ensures that the increase by one unit
in magnitude corresponds to a tenfold increase of the amplitude of an
earthquake. Here is a comparative table of earthquake magnitudes

Magnitude | Effect Number/year | Notable
worldwide | earthquake
<2 1,000,000
2t02.9 Not felt 100, 000
3 to 3.9 Minor 12,000
4 to 4.9 Light damage 2,000
5to 5.9 Moderate damage 200 | Long Island,
NY, 1884 (5.5)
6 to 6.9 Strong damage; 20 | South Napa,
loss of life CA, 2014 (6.0)
7to 7.9 Major; severe damage 3 | San Francisco,
CA, 1906 (7.9)
> 8 Great; total destruction <1 | Japan,
and massive loss of life 2011 (9.0)
Chile,
1960 (9.5)

An empirical formula known in geophysics states that the energy of the
seismic wave is proportional to the % power of the amplitude: E ~ A3/2,
It follows that an increase by 1 unit in the magnitude corresponds to

10%/2 ~ 31.6 times the increase of energy released in the earthquake.

Example 7.11. A detonation of about 120 pounds of explosive produces
seismic waves of magnitude 2. The magnitude of the 1906 earthquake in
San Francisco was 7.9. What is the ratio of the energy released between
the San Francisco earthquake and a detonation of 120 pounds of explosive?

Solution: Let Agp and Esp denote the amplitude and energy of the earth-
quake and Agy, and FEoy, of the explosion. Then

Asr

log(Asr) — log(Aeyxp) = log ( ) =79-2=59.

exp

3/2
Ase _ 50— Bsr _ (ASF ) / — (10%9)3/2 ~ 7. 10,

exp EGXP Aexp
There was approximately 700 million times as much energy released in the
earthquake as in the explosion. O

2Source: US Geological Survey.
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Egocentric scales

In a lighter vein, we can say that logarithms were invented so that we can
keep pretending to be the center of the universe. In his famous illustration
for The New Yorker magazine titled A View of the World from 9th Avenue
(1976) Saul Steinberg showed a whimsical map of a large part of the
western hemisphere — from 9th Avenue in Manhattan all the way to Japan
— as seen by a self-absorbed New Yorker. In particular, the distance from
9th to 10th Avenue is about the same as the distance from 10th avenue to
the West Coast of the US. To a mathematician, this perception of distances
is clearly logarithmic. Let us compute the base of the logarithm a that
could have been used to produce such a scale.

Suppose that the distances are measured westward from a certain ref-
erence point, and let = denote the distance from this point to 9th Avenue
in Manhattan. Taking x to be the reference distance makes 9th Avenue
the zero point of our scale:

log,, o log, 1= 0.
T

Figure 7.3: Logarithmic scale of distances as viewed from 9th Avenue.

9™ Avenue 10" Avenue Pacific Ocean

Let Y and Z denote the distances from 9th Avenue to 10th Avenue and
the Pacific Ocean, respectively. These distances are known: Y ~ 875ft =
0.166 mi, and Z ~ 2,700 mi. Then our logarithmic scale should satisfy the
following conditions:

Y +x Z+x

log,, =1, log,, = 2.
x
Therefore,
Z+x Y+ Z+zx
log, - flogaT:logay—”:Zflzl.

3You can find the image, for example, at http://www.saulsteinbergfoundation.org/
gallery 24 _viewofworld.html
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From here we find:
Y +x Z+x 0.166 +x 2,700 + x
- = —uqa = =
x Y+ x 0.166 + x

The proportion leads to a quadratic equation for x. In fact, the equation
is linear because the 22 term cancels:

0.166% +2-0.166 - 2 + 2 = 2, 700z + 2*

0.0276
2,699.7

~ 0.00001 mi ~ 0.63in.

~

So our self-centered Manhattanite measures all distances from a point 0.63
inches to the east of 9th Avenue (we can assume that this is how close his
armchair is to the window). The base of the logarithm is

" 2,700 + 0.00001
~0.166 + 0.00001

To find where any given point is situated according to the 9th Avenue
worldview scale (dgyn Ave), take the distance d from it to the reference
point on 9th Avenue in miles, divide it by 0.00001 miles, and take the
logarithm base 16, 264.

~ 16, 264.

d
dotn Ave = 10816264 530007

Using the base change formula (see Example , the formula can be
rewritten as

log % _ b+tlogd

log16,264 — 4.21

where the distance d should be taken in miles.

thh Ave =

Example 7.12. How far is Japan from 9th Avenue in New York, according
to the 9th Avenue worldview scale?

Solution: The distance from New York to the east coast of Japan is ap-

proximately d = 6,730 miles. Therefore,

5+ log 6,730
4.21

Recall that the distance to the West Coast according to this scale is 2.

This is why the Pacific Ocean looks like a narrow strip of blue in Saul
Steinberg’s picture. O

dotn Ave(Japan) = ~ 2.,097.

The illustration, initially used as the cover for the March 29, 1976,
issue of The New Yorker, gave rise to multiple imitations and parodies.
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Equal temperament scale in music

In all examples we have encountered so far, logarithmic scales were used
mainly for the purpose of accommodating data with a very large range
on a single scale. Now we will discuss an application where a logarithmic
scale is used primarily for its multiplicative uniformaty:. the property of
transforming equal ratios into equal distances.

Traditional European music is based on a seven-pitch octave scale with
ratios between the frequencies of the pitches given by ratios of small in-
tegers. For example, the octave interval has the ratio of frequencies 2 : 1;
perfect fifth 3 : 2; perfect fourth 4 : 3; major third 5 : 4; minor third 6 : 5.
It is believed that our preference for such intervals originates from their
presence in nature, which can be explained by the physics of basic natu-
ral sounds. The simplest natural drums and whistles that ancient people
could have heard (a stick hitting on dry fallen wood, wind blowing in a
wooden pipe) produce exactly these kinds of intervals. As early as the
third millennium BC, the Babylonian lyre is believed to have had its first
seven strings tuned to represent some of the perfect intervals. In classical
antiquity there is evidence of the presence of a perfect fourth and major
third in the tuning of the strings of the Greek lyre. The heptatonic (seven-
pitch) major scale C — D — E—F — G — A — B — C? and various versions
of heptatonic minor scales gradually gained popularity in European music
mainly because of the richness of the harmonic intervals they included.

Figure 7.4: Heptatonic major scale and some of its perfect intervals.

C D E F G A B C?

i | t

— -t >

major third miror third minor third

Lt Lt —
perfect fourth majpr third

s o =

perfect fifth perfect fourth

Example 7.13. If the ratio of frequencies between the fourth and the
first pitch in the heptatonic major scale is a perfect fourth f—g = %, and

between the sixth and the fourth — a major third % = %, then what
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The ratio of frequencies between each two consecutive pitches is 217, Tak-
ing the logarithm base 2, we obtain a uniform logarithmic scale with step
%. O

Thus, the octave contains twelve equal intervals, and the ratio between
the first and the thirteenth pitch is exactly 2. Other perfect intervals suffer,
but not substantially. The heptatonic major scale pitches C-D-E-F-G-A-B
are approximated in the twelve-pitch scale by the first, third, fifth, sixth,
eighth, tenth, and twelfth pitch, respectively.

Figure 7.5: Twelve-tone equal temperament scale: the white keys correspond
to the pitches of the heptatonic major scale.

Example 7.16. Find the ratio of frequencies between the fifth and the
first pitch of the twelve-tone equal temperament scale. Which of the per-
fect intervals does it approximate?

Solution: The ratio of frequencies between the kth and the Ith pitch is

& _ ( 1\‘1/5)35:—!‘

fi

We compute:

Jstn _ (¢/3)1 — 9% ~ 1.2500.
fl.st
The closest perfect interval is the major third % = 1.25. The error of
approximation is relatively small:
1.2599 — 1.25
————— ~0.0079, or 0.79%.
1.25



