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Bl PREFACE

B WELCOME

Many explanations in science work by virtue of describing the world’s network
of causal relations. It is easy to find examples of “causal explanations.” We explain
the extinction of the dinosaurs by describing its various proximate causes, such
as climate change, and we also explain it by describing its more distant causes,
such as the terrestrial collision of one or more celestial bodies. According to
classical physics, we explain the planets” motions by describing the gravitational
influences causing those motions. In a more workaday example, we explain
why a certain car fails to start by describing some respect in which its internal
mechanism is malfunctioning, perhaps adding the causes of that malfunction.
In other examples, we explain laws of nature. For instance, we explain why it is
alaw of nature that a gas’s pressure climbs when it is compressed by a moveable
piston under constant temperature. Our explanation describes the causal pro-
cess underlying gas pressure: the collisions of gas molecules with the container’s
walls. Our explanation then gives certain of the laws governing that causal pro-
cess, according to which molecules must collide more frequently with the con-
tainer’s walls as the gas is compressed under constant temperature.

This book is about some explanations that do not derive their explanatory
power by virtue of describing the world’s network of causal relations. Some of
these explanations explain mathematical theorems; they are explanations in
mathematics. Presumably, all explanations in mathematics are non-causal. The
other non-causal explanations that this book will investigate are all scientific
explanations; although many scientific explanations are causal, I contend that
some are not. Non-causal explanations all involve “because without cause.”

Non-causal explanations in mathematics and science have generally been
underappreciated in the vast recent philosophical literature about explanation.
With regard to scientific explanation, causal explanation has received nearly all
of the attention in recent decades.” Some philosophers have even declared that
all scientific explanations are causal:

[A]n explanation, I think, is an account of etiology: it tells us something about how
an event was caused. Or it tells us something general about how some, or many, or
all events of a certain kind are caused. Or it explains an existential fact by telling us
something about how several events jointly make that fact true, and then perhaps
something about how those truthmaker events were caused (Lewis 1986a, 73-74).

xi
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Even philosophers who officially leave room for non-causal scientific explana-
tions, such as Woodward (2003, 221) and Strevens (2009, 5), devote scant
attention to them. These philosophers take any non-causal explanations there
may be as having to fit the models they have proposed of causal explanation—
except that some sort of non-causal dependence must take the place of causal
dependence. All told, then, non-causal scientific explanations have been largely
neglected by philosophy of science. Likewise, explanation in mathematics has
never been among the central topics in the philosophy of mathematics. Although
mathematical explanation has recently begun to receive increased scrutiny,
many philosophers still deny that there is any interesting sense in which certain
mathematical proofs differ from other proofs of the same theorems in being able
to explain why those theorems hold.

I will argue that non-causal explanations have long been recognized in both
mathematics and science. I will offer many examples to persuade you not only
that the task of giving explanations is an important part of mathematical prac-
tice, but also that non-causal scientific explanations play important roles that
could not be played (even in principle) by causal explanations. I will not try to
portray non-causal scientific explanations as working in roughly the same way as
causal scientific explanations do (except that some variety of non-causal depen-
dence appears in place of causal dependence). I will not even try to portray all
non-causal scientific explanations as working in the same way as one another.

Once upon a time, many philosophers failed to acknowledge explanation
over and above efficient description as a key aim of science.’ Similarly, many
philosophers today fail to see that some mathematics aims at explanation and
that some important scientific explanations are non-causal. Fortunately, math-
ematicians and scientists never stopped looking for non-causal explanations just
because some philosopher said that there is no such thing. In offering examples
of non-causal explanations in mathematics and science, I will avoid examples
that merely strike me (or some other philosopher) as explanatory. Rather, I will
focus on examples that mathematicians and scientists themselves have proffered
as explanatory. In many cases, I will look closely at their reasons for taking these
examples to be explanatory. My aim throughout will be to account for these fea-
tures of mathematical and scientific practice.

It would be of some value merely to have on hand a range of exemplary non-
causal explanations (just as philosophy of science has settled upon some canoni-
cal examples of causal scientific explanations). However, I will not be content
merely to offer some examples or even to classify them into natural kinds.
Rather, I'will try to elucidate how these various kinds of non-causal explanations
work. If their explanatory power does not derive from their describing relevant
features of the world’s network of causal relations, then what does make them
explanatory? To answer this question for various kinds of non-causal explana-
tions in math and science is the principal aim of this book.
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I'will examine closely a great many fascinating and instructive explanations in
math and science. For example, I will look at some “brute-force” mathematical
proofs and contrast them with proofs of the same theorems that exploit sym-
metries to explain why those theorems hold. I will examine why combinatorial
mathematicians regard simple bijective proofs of partition identities as explana-
tory, by contrast with non-explanatory proofs that appeal to generating func-
tions out of which the simple partition identities seem to emerge miraculously
from out of a welter of algebra. I will investigate proofs that explain theorems
concerning the real numbers by placing them in the broader context of the com-
plex numbers, and I will contrast these proofs with non-explanatory proofs of
the same theorems that stick purely to the real numbers. I will present scattered
theorems of Euclidean geometry that are explained by being unified under a
single proof that uses properties from projective geometry, and I will investigate
how these projective properties qualify as mathematically natural. I will present
mathematical facts that have no explanations at all as well as mathematical expla-
nations that are not proofs. I will identify mathematical explanations that reveal
further, formerly invisible aspects of the theorems being explained, thereby pro-
voking new questions about why those theorems hold. I will point out math-
ematical coincidences and specify the relation between being a mathematical
coincidence and having a certain sort of mathematical explanation.

Turning to scientific explanations, I will describe how the minimum number
of equilibrium points of any double pendulum is explained by the topology
of any double pendulum’s configuration space and how this explanation con-
trasts with a causal explanation of the same fact. This topological explanation
and other “distinctively mathematical” scientific explanations work by showing
how the fact being explained is inevitable considering the framework that any
system must inhabit (regardless of whether and how it is caught up in causal
relations) —where this variety of necessity transcends ordinary natural neces-
sity. I will argue that an explanation that appeals to regression toward the mean
works by depicting the phenomenon being explained as fallout from the mere
fact that certain factors are statistically correlated, whatever this correlation’s
causal basis (if any). I will argue that explanations in evolutionary population
biology that appeal to random drift are likewise “really statistical” explana-
tions. On this view, natural selection and random drift are not different kinds of
causal processes, but rather involve different kinds of explanations. In addition,
I'will distinguish several varieties of non-causal scientific explanation that work
by showing how the fact being explained follows merely from the dimensional
architecture. For instance, the reason why freely falling bodies obey Galileo’s
“odd number rule,” rather than various alternatives to it that were proposed in
Galileo’s time, is that those alternatives are dimensionally impossible whereas
Galileo’s rule is dimensionally possible. Furthermore, I will maintain that an
analogy between derivative laws of nature concerning physically dissimilar
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cases (such as cases in thermodynamics, electrostatics, and hydrodynamics)
is physically coincidental insofar as these laws have no important common
explainer among more fundamental laws. Yet this analogy between the vari-
ous derivative laws is nonetheless mathematically no coincidence if their simi-
larity arises from a similarity either in the cases’ dimensional architecture or
in the mathematical form of various, more fundamental laws. I will examine
what would make it no coincidence that both gravitational and electric forces
conserve energy, but instead for the law of energy conservation to explain this
similarity between the two kinds of forces. I will also elucidate what it would
take for a conservation law to be explained by a spacetime symmetry principle.
I will argue that these explanations work by supplying (contextually relevant)
information about the source of the especially strong necessity possessed by
the fact being explained. I will use this account to understand several other
non-causal scientific explanations, such as the way that the principle of relativ-
ity and other symmetry principles would explain the Lorentz transformations.
These are among the topics that I will be investigating in this book.

M WHAT THIS BOOK IS NOT ABOUT

Having sketched what this book will be about, I will now say a few words about
what this book will nof be about.

There are many non-causal explanations with which this book will not be
concerned. For instance, a given base runner in a baseball game was out because
he was beaten to first base by the thrown ball. Similarly, Carter can issue orders
to Pyle because Carter is a sergeant and Pyle is a private. The rules of chess and
the locations of various pieces on the chessboard explain non-causally why
Fisher cannot move his king. The rules of a given language’s grammar explain
non-causally why a certain sentence is (or is not) grammatical in that language.
Non-causal explanations can also be found in legal explanation. For instance, it
is illegal in the United States to burn currency because a certain law is in force,
and that law is a law; in turn, because certain legislative procedures were followed
in its passage. Non-causal explanations can also be found in moral explanations.
We might explain why a given character trait is a virtue (or a vice) or why a given
action would be good (or courageous or mendacious). For example, the rea-
son why it would be good for Alice to return the keys she borrowed is that she
promised to return them and the rule of promise-keeping would maximize hap-
piness/is a rule that no one could reasonably reject/is God’s command/is (fill
in your favorite moral theory here). Non-causal explanations can also be found
in epistemology. Jones would be justified in believing that there are three other
people joining him for dinner because of what he has been told and his back-
ground knowledge. In all of the explanations to which I have just referred, cer-
tain normative statuses are explained by other normative statuses or by certain



PREFACE B Xxv

non-normative facts together with certain norms. These diverse normative
explanations are non-causal but are neither mathematical nor scientific explana-
tions. They fall outside the scope of this book.

Likewise, some philosophers (e.g., Sturgeon 1985) have argued that a moral
fact can explain a non-moral fact, such as when the rightness of Alice’s return-
ing the car keys she borrowed explains why Alice believes that it would be right
for her to return them and ultimately why she returns them. I will not appeal
to putative explanations of this kind in order to argue for the existence of non-
causal scientific explanations. Likewise, suppose that Chris’s experiencing pain
is explained by his mental state’s physical ground. In such a case, the instantia-
tion of a supervening property is explained by the instantiation of a subvening
property. Some philosophers (e.g., Kim 1998, 44; Gibbons 2006, 89) have char-
acterized such an explanation as non-causal in that the subvening property’s
instantiation is not a cause of the supervening property’s instantiation.

That the connection between these property instantiations is not causal, how-
ever, is insufficient to show that this scientific explanation works differently from
standard examples of causal explanations. A “causal explanation” does not have
to cite causes of whatever is being explained. Rather (as I will argue in chapter 1),
an explanation that cites no causes of what it explains may deserve to be classi-
fied in the same category as an explanation that does cite causes of its explana-
tory target. They ought to be co-classified (as “causal explanations”) because
they work in the same way: each derives its power to explain by virtue of supply-
ing (contextually relevant) information about the world’s network of causal rela-
tions. This may well be precisely what happens in some cases where we explain
a supervening property’s instantiation by identifying the subvening property in
which its instantiation consists. The explanation may work not merely by virtue
of the supervenience relation (which could, unlike the explanatory relation, be
symmetric), but also by virtue of describing an important aspect of the superven-
ing property instantiation’s place in the world’s causal network. For example, by
so locating the supervening property instantiation, the explanation may inform
us that any cause of the supervening property instantiation operated ultimately
by causing—or by supervening on events causing—the instantiation of the sub-
vening property. For a similar reason, intentional explanations (e.g., by which an
action is explained by the actor’s beliefs and desires) may be causal explanations.
Accordingly, I will not appeal to explanations of these kinds in order to argue for
the existence of non-causal scientific explanations.

Furthermore, I will not make my case for non-causal scientific explana-
tion by appealing to the spooky “passion at a distance” exhibited by quantum-
mechanical systems. The specific peculiarities of quantum mechanics do not
bear on the operation of the broad varieties of non-causal scientific explanations
that I will study. Some philosophers believe that there are no causal relations
in fundamental physics; if these philosophers are correct, then presumably any
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explanations supplied by fundamental physics are non-causal. But I will not
use any argument along these lines to make the case for non-causal scientific
explanations.

In addition, it has sometimes been argued that certain scientific explanations
work by abstracting from, idealizing, mathematically massaging, or otherwise
departing from the causal details of the case at hand and that these explanations
therefore do not work by accurately describing the world’s network of causal rela-
tions. I will not be relying on any such argument to show that there are non-causal
scientific explanations. An explanation that works by giving an abstract descrip-
tion of the world’s causal network still derives its power to explain by virtue of
supplying information (of an abstract kind) about the world’s causal network and
so is (by my lights) a causal explanation. By contrast, I will look at many scien-
tific explanations that abstract from the petty causal details but (as I will show)
do not work by virtue of describing abstract features of the world’s causal net-
work. For instance, some non-causal scientific explanations work by identifying
certain constraints to which the world must conform. These constraints (such as
mathematical facts and symmetry principles) apply to causal processes, but not
in virtue of their being causal processes. Rather, they apply in the same way to all
aspects of the world, whether causal or not. Indeed, they would apply in the same
way even if the world contained no causal network at all.

By the same token, “non-causal dependency relations” (Kim 1974, 41) were
in play when Xanthippe became a widow as a result of Socrates’s death, when the
birth of my first child turned my father into a grandfather, and when my arrival in
Paris gave the Eiffel Tower the property of being within 10 miles of me. In these
cases, some A’s relational properties changed because of a change in some B’s
properties (where A is not B). However, explanations of these “mere Cambridge
changes” are not the kinds of non-causal explanations that I will be examining,

The same applies to many putative non-causal explanations involving meta-
physical “grounding”™—such as that the mereological sum of A and B exists
because A exists and B exists, or that the disjunctive fact that it is raining or [am
wearing a green shirt holds because it is raining, or that Jones and Smith have
a common acquaintance because they both know Brown. I will look neither at
“truthmaking” explanations (such as that p is true because p) nor at explanations
of narrowly logical truths (perhaps it is the case that (p + p) or g because it is
the case that (p » p)). Similarly, I will not be invoking explanations according
to which some relation holds between sentences (or propositions) by virtue of
their logical forms, such as that “The meeting is likely to start at noon” is logically
equivalent to “It is likely that the meeting will start at noon” because they have
the same logical form.

Of course, some “in virtue of” explanations (as Rosen (2010) calls them)
have tremendous scientific importance—such as that some fact about light
holds in virtue of some fact about electromagnetic waves. But once again, I will
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not use such an explanation to make the case for non-causal scientific explana-
tions because I suspect that this explanation works by describing features of the
world’s causal network—in particular, by tracing light’s causal powers to the
causal powers of electromagnetic fields. Likewise an explanation that reveals how
a cube’s water-solubility (or some other dispositional property instantiation) is
grounded in the cube’s molecular structure (or some other non-dispositional
property instantiation) is a causal explanation (by the lights of chapter 1) even
though the cube’s molecular structure does not cause the cube to be water-
soluble. The cube’s molecular structure explains the cube’s water-solubility by
virtue of the fact that any manifestation of the cube’s water-solubility (such as its
dissolving when immersed in water) would have the cube’s molecular structure
as a cause. The explanation of the disposition in terms of its non-dispositional
ground works by supplying information about the world’s causal network. It is
thus a causal explanation. Having given “causal explanation” such a broad scope,
I find it especially interesting to discover that certain scientific explanations are
non-causal.

There are scientific cases where facts of the form “There exists an F” are
explained non-causally. But if an “in virtue of” (or “truthmaker”) explanation of
“There exists an F” must appeal to a fact of the form “c is F” (as in the explana-
tion of Smith and Jones having a common acquaintance), then many non-causal
scientific explanations of “There exists an F” are not “in virtue of” (or “truth-
maker”) explanations. For instance, Kelvin's account of why there is a lowest
temperature (“absolute zero”) is not that minus 273.15°C is it. (In chapter 1,
I'will present another example: the reason why there exists at this moment a pair
of antipodal points on the Earth’s equator having the same temperature.)

There are some scientifically important “in virtue of” explanations that may
be non-causal but will not be examined in this book. A system may have a given
electric charge in virtue of the charges of its parts. How this explanation works
depends on why charges add. Although I will not look at this example, T will
look carefully (in chapter 4) at how the “composition law” for forces (the “par-
allelogram law”) is explained and what would make its explanation causal or
non-causal.

Consider how a net force is explained by its component forces. This explana-
tion might be termed a “constitutive explanation” in that the state of the whole
is being explained by the states of its parts (together with a composition law: the
parallelogram of forces). One might be tempted to characterize a constitutive
explanation as “non-causal” in that the states of the parts do not cause the state
of the whole; the whole’s being in a certain state is not an event distinct from the
parts’ being in certain states. However, [ will not appeal to “constitutive explana-
tions” to argue that some scientific explanations are non-causal. At least some
constitutive explanations work by supplying information about the world’s
causal network—as when we explain some capacity possessed by an intricate
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compound system (such as a machine or organism) by the diverse, simpler dis-
positions of its parts (together with the parts’ interrelations). Such an explana-
tion works by specifying an underlying causal mechanism. It works by telling us
that (for example) any outcome of the given capacity of the system would be a
manifestation of various dispositions of its parts—and thus by telling us about
the world’s causal network. Likewise, as I will show in chapter 4, the fact that the
relation between component and net forces is a part/whole relation rather than
a causal relation does not suffice to ensure that the explanation of the force com-
position law is non-causal. Although the net force is not distinct enough from
its components to be an effect of them, an explanation of the force composition
law will be a causal explanation if it works by tracing the individual effects of the
component forces.

Many philosophical explanations are non-causal—including philosophical
explanations of facts about the causal relation itself. For instance, a philosophical
account of what causal relations consist in should explain why itis the case (ifand
insofar as it is indeed the case) that all token-level causal relations are transitive
but some type-level causal relations are intransitive. Likewise, Kant proposed an
account of why appearances stand in causal relations. Such philosophical expla-
nations do not purport to be causal explanations; they do not work by virtue of
supplying information about the particular lines of causal influence that exist,
though they do purport to supply information about what causal relations are.
Such philosophical explanations are not part of mathematics or science and so
fall outside the purview of this book. Likewise, if God exists outside spacetime,
then presumably God’s properties do not cause whatever they explain, so such
theistic explanation is non-causal. I do not examine theistic explanation.

There are some varieties of explanation in mathematics and some varieties
of non-causal scientific explanation that I do not examine in this book (or that
I merely mention briefly). For instance, that Samuel Clemens and Mark Twain
are identical explains non-causally why they have the same height, weight, and
birth dates. Of course, the fact that Clemens and Twain are identical conveys
some information about the world’s network of causal relations: it tells us, for
instance, that any cause of Clemens’s height is a cause of Twain’s height. But
that Clemens and Twain are identical does not owe its explanatory power to
its supplying such information about the world’s causal relations. Even if there
were no causal relations at all, identities would explain in the same way. As Lycan
(1981, 10) says, “What better way to explain a . .. correlation between A’s and
B’s than by supposing . . . that in fact A’s are just B's.” This “identity explanation”
(Achinstein 1983) of the correlation reveals that causal relations have nothing
to do with why it holds.

That Clemens and Twain have the same height because Clemens is identical
to Twain is thus unlike the explanation of visible light's having a certain speed in
glass because visible light is identical to certain electromagnetic waves and those
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electromagnetic waves have that speed in glass. This explanation of light’s speed
is a causal explanation because it works by supplying the information that the
factors causally responsible for light’s speed are electromagnetic. Because this
explanation is causal, it is asymmetric in the same way as causal relations are: the
speed in glass of certain electromagnetic waves is not explained by the fact that
those waves are identical to visible light and that visible light has the given speed
in glass.

The Twain-Clemens non-causal explanation is like some purported expla-
nations from science—which also purport to be non-causal explanations. For
instance, when Wheeler proposed that an electron moving backward in time
would be indistinguishable from a positron moving forward in time, so that
a single electron might move both forward and backward in time, Feynman
(1998, 163) reports Wheeler to have said, “I know why all electrons have the
same charge and the same mass. . .. Because, they are all the same electron!”

In another kind of scientific explanation that I do not examine, we explain
why p is the case by appealing to the fact that p is a law and so had to be the
case; p was inevitable, unavoidable—necessary. For instance, the fact that every
actual long, linear charge distribution with static uniform charge density A has
an electric field strength at a distance r equal (in Gaussian CGS units) to 2\/r is
explained by the fact that as a matter of natural law, every such charge distribu-
tion must have such an electric field. Although in chapter 2 I offer an account of
what it would take for certain special kinds of laws (e.g., conservation laws) to
possess certain special powers to explain, I do not in this book offer an account
of what makes an ordinary law that p able to explain the fact that p. I have tried
to offer such an account elsewhere, most recently in Lange (2009a), and I touch
briefly upon that account in section 2.5. On my view, the power of p’s lawhood
to explain why p is the case arises from the connection between lawhood and
necessity: if it is a law that p, then p holds because p must hold. In Lange (2009a),
I offer an account of what this must-ness consists in. The law specifying the elec-
tric field of any static, uniform, long, linear charge distribution is explained, in
turn, by Coulomb’s law. This explanation is causal, on my view, because it works
by describing the field’s individual causes and how their separate effects com-
pose to give the charge distribution’s total electric field strength.

There are plenty of vexed questions about the role of non-causal explanation
in science that I will not address. I will not study whether so-called teleological
explanations in biology (e.g, mammals have hearts in order to circulate their
blood) are causal explanations. I will not examine whether the apparently non-
causal explanations given by extremal principles in physics (e.g., roughly speak-
ing, that light takes a certain path from here to there in order to minimize its
travel time in getting there) are actually parasitic on causal explanations (e.g.,
that light takes all possible paths from here to there, but the light waves taking
paths near to the least-time path interfere constructively, the others canceling
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out). In short, I will not aim to give an exhaustive survey of non-causal explana-
tions in science and mathematics. Rather, I will look at some varieties of non-
causal explanation that have generally been overlooked by philosophers, that
have significant connections with one another, and that have been especially
important in science and mathematics.

W COMING ATTRACTIONS

Although I have been describing the subject of this book as “non-causal expla-
nation in math and science,” this characterization is potentially misleading. My
main concern will not be to label certain explanations as “causal” and others as
“non-causal.” There may be several illuminating distinctions that merit this ter-
minology, and there may also be intermediate cases. My main concern will be
to understand how various (interrelated, important, and relatively neglected)
kinds of explanations in math and science work. That is, I want to understand
where their power to explain comes from.*

The 11 chapters that follow divide into four parts.

Part I (chapters 1, 2, 3, and 4) focuses on a single prominent type of non-
causal scientific explanation that I call “explanation by constraint.” In chapter 1,
I describe “distinctively mathematical” scientific explanations, offer an account
of how they work, and identify an important respect in which they qualify as
“non-causal.” In chapter 2, I argue that other “constraints” can play the same role
as mathematical facts do in “distinctively mathematical” explanations. Over the
course of chapters 2 and 3, I offer an account of how “explanations by constraint”
operate and what difference it would make that some law has such an explana-
tion. In chapter 2, I focus on conservation laws and symmetry principles as pos-
sible “constraints,” transcending the various force laws. In chapter 3, I look at
the coordinate transformations (whether Galilean or Lorentz) as constituting
possible constraints, and I identify what it would be for “top-down” explana-
tions supplied by (what Einstein called) “theories of principle” to be autono-
mous from the “bottom-up” explanations supplied by “constructive theories.”
In chapter 4, I investigate what it would be for the parallelogram of forces (and
other such composition laws) to transcend dynamics and how some scientists
argue that the parallelogram law is explained by statics rather than dynamics.

Non-causal scientific explanations as a category are set apart merely by what
they are not: causal explanations. Therefore, we should expect some non-causal
scientific explanations to work differently from others. In part 11 (chapters 5
and 6), I examine several varieties of non-causal scientific explanation that are
not “explanations by constraint.” In chapter 5, I investigate explanations that
reveal the fact being explained to be just a statistical “fact of life,” such as expla-
nations appealing to regression toward the mean. I call these “Really Statistical”
(RS) explanations and argue that they are “non-causal” explanations in the sense
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elaborated in chapter 1. I apply my account of how “RS explanations” work to
the case of explanations in population biology that appeal to random drift. In
chapter 6, I1ook at several kinds of “dimensional explanation” in physics; I argue
that they, too, are non-causal explanations by the lights of chapter 1. Some
dimensional explanations are “explanations by constraint,” whereas others are
not. A causal explanation of a given derivative law can explain certain features of
the law that a dimensional explanation cannot explain, but by the same token,
a dimensional explanation can sometimes explain features of the derivative law
that a causal explanation cannot explain. For instance, its dimensional explana-
tion may reveal that one of its features results entirely from certain dimensional
features of the more fundamental laws entailing it, so that other features of those
more fundamental laws are not responsible for that feature of the derivative law.

Part I1I (chapters 7, 8, and 9) concerns explanation in mathematics rather than
scientific explanations. In chapter 7, I give many examples (drawn from actual
mathematical practice) of proofs that explain the theorems they prove, as well as
proofs of those theorems that are not regarded in mathematical practice as explan-
atory. To capture these examples, I propose an account (the “big Lange theory”)
of what makes certain mathematical proofs not only prove their theorems, but
also explain why those theorems hold. I also briefly identify some other kinds of
explanation in mathematics, including explanations that do not explain theorems
and explanations that do not consist of proofs. In chapter 8, I use my account to
investigate explanations in mathematics that unify various mathematical facts. By
virtue of having such an explanation, a given mathematical fact is no “mathemati-
cal coincidence.” I also compare my account of explanation in mathematics to the
accounts that have been proposed by Steiner and Kitcher. In chapter 9, I apply my
account to the explanation of Desargues’s theorem in Euclidean and projective
geometry. I examine the status of mathematical properties such as the property of
being a point in projective geometry—that is, being a Euclidean point or a “point
at infinity.” I propose an account of what makes such a property mathematically
natural (that is, a genuine respect of mathematical similarity) rather than wildly
disjunctive. I also investigate what makes Desargues’s theorem in two-dimensional
Euclidean geometry capable of being properly understood only in a broader envi-
ronment: in three-dimensional projective geometry. The fact that projective geom-
etry is where Desargues’s theorem naturally belongs, the fact that the property of
being a projective point is mathematically natural, and the fact that Desargues’s
theorem in projective geometry is no mathematical coincidence are all facts bound
up with the mathematical explanation of Desargues’s theorem. In this way, we can
appreciate the significance of explanation in mathematics.

Finally, part IV (chapters 10 and 11) brings together ideas concerning both
explanation in mathematics and non-causal explanation in science. In chapter 10,
I examine scientific explanations that explain why certain physically unrelated
laws of nature are so similar. These explanations work by revealing the laws’
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similarity to be no mathematical coincidence. Some of these explanations are
dimensional explanations that account for dimensional similarities among oth-
erwise unrelated laws of nature. To understand how these scientific explanations
work, I will need to draw upon some of the ideas that I elaborated in connection
with explanation in mathematics. Chapter 11 highlights some of the themes that
ran through many of the earlier chapters, tying together different kinds of non-
causal explanation and even causal explanation. I do not argue in this book that
all explanations work in the same way; I do not give a single, general, abstract
model of explanation that all kinds of mathematical and scientific explana-
tions instantiate. However, it is also not the case that the explanations form an
arbitrary, gerrymandered class having little or nothing in common besides our
calling them “explanations.” Despite their diversity, all of the different kinds of
non-causal explanations deserve to be grouped with one another—and with the
causal explanations—as species of the same genus. There are important respects
in which they are all alike, especially in the ways that explanations can render
similarities non-coincidental and properties natural. Non-causal explanations
join causal explanations as all belonging to the same natural kind.

Scattered passages of this book draw on some of my previously published
articles and are reproduced here with the kind permission of the publish-
ers: “Dimensional Explanations,” Noiis 43 (2009), 742-775; “A Tale of Two
Vectors,” Dialectica 63 (2009), 397-431; “What Are Mathematical Coincidences
(and Why Does It Matter)?,” Mind 119 (2010), 307-340; “Conservation
Laws in Scientific Explanations: Constraints or Coincidences?,” Philosophy
of Science 78 (2011), 333-352; “Really Statistical Explanations and Genetic
Drift,” Philosophy of Science 80 (2013): 169-188; “What Makes a Scientific
Explanation Distinctively Mathematical?,” British Journal for the Philosophy of
Science 64 (2013), 485-511; “Aspects of Mathematical Explanation: Symmetry,
Unity, and Salience,” Philosophical Review 123.4 (2014), 485-531; “‘There
Sweep Great General Principles Which All the Laws Seem to Follow; ” in Oxford
Studies in Metaphysics, vol. 7, edited by Karen Bennett and Dean Zimmerman
(Oxford: Oxford University Press, 2012), 154-185; “How to Explain the Lorentz
Transformations,” in Metaphysics and Science (Mind Association Occasional Series),
edited by Stephen Mumford and Matthew Tugby (Oxford: Oxford University
Press, 2013), 73-98; “How the Explanations of Natural Laws Make Some
Reducible Physical Properties Natural and Explanatorily Potent,” in Laws of
Nature: Metaphysics and Philosophy of Science, edited by Walter Ott and Lydia
Patton (Oxford: Oxford University Press, forthcoming); “Because Without
Cause: Scientific Explanations by Constraint,” in Explanation beyond Causation,
edited by Juha Saatsi and Alexander Reutlinger (Oxford: Oxford University Press,
forthcoming); “Explanation, Existence, and Natural Properties in Mathematics—

A Case Study: Desargues’ Theorem,” Dialectica 69.4 (2015), 435-472.
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1 What Makes a Scientific

m== Explanation Distinctively
Mathematical?

M 1.1 DISTINCTIVELY MATHEMATICAL
EXPLANATIONS IN SCIENCE AS NON-CAUSAL
SCIENTIFIC EXPLANATIONS

Mathematics figures in many scientific explanations. But some scientific expla-
nations are distinctively mathematical: they are mathematical in a different way
from ordinary scientific explanations that employ mathematics. In this chapter,
I will argue that these “distinctively mathematical” scientific explanations are
non-causal explanations, unlike many other scientific explanations employing
mathematics. Because distinctively mathematical scientific explanations are
non-causal in an especially dramatic way, I will use them to argue that we must
recognize the existence of non-causal scientific explanations.

Of course, I must specify what it takes for a scientific explanation to qualify as
“causal™—and thus what it would be for a scientific explanations not to be causal
(i.e., to be non-causal). The distinction between “causal” and “non-causal” expla-
nations (as I will use these terms) lies in how they work—that is, in what gives
them explanatory power. A “non-causal” explanation may incidentally identify
(or, at least, supply information about) causes of what is being explained. But it
does not derive its explanatory power by virtue of doing so.

Having used distinctively mathematical scientific explanations as my point of
entry into non-causal scientific explanations, I will devote the rest of parts I and IT
of this book to examining non-causal scientific explanations more closely. I will
argue that different kinds of non-causal scientific explanations work in different
ways. “Distinctively mathematical” scientific explanations are our first example
of what I will call “explanations by constraint.” In the subsequent three chapters
(making up the rest of part I), I will give many more examples of explanations
by constraint and I will offer an account of how these non-causal explanations
work. I will argue that there are other “constraints” besides mathematical facts
and so there are “explanations by constraint” that are not “distinctively math-
ematical” explanations. I will specify what it is to be a “constraint” In part II
(chapters 5 and 6) and later in chapter 10, I will investigate several kinds of non-
causal scientific explanations that are not explanations by constraint. Ultimately,
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I'will try to understand how each of these kinds of non-causal scientific explana-
tion works—that is, how explanations of these various kinds acquire their power
to explain.

“Distinctively mathematical” explanations are scientific explanations, as dis-
tinct from explanations in mathematics—the subject of part III (chapters 7, 8,
and 9). That is, part III is concerned with explanations in which the facts being
explained (the “explananda”) are theorems of mathematics, whereas the explana-
tionswithwhichIwillbe concernedin this chapter (andinthe rest of partsIandII)
take as their targets various facts about the natural, spatiotemporal world.
However, occasionally in parts I and II it will be useful to cast an anticipatory
glance at explanation in mathematics. For instance, the notion of a “coincidence”
will arise in connection with both scientific explanations and explanations in
mathematics. In addition, Steiner’s (1978a, 1978¢) account of (what I call) dis-
tinctively mathematical scientific explanations appeals to the notion of explana-
tion in mathematics. In section 1.5, I will argue that explanations in mathematics
are not connected to distinctively mathematical scientific explanations in the
way that Steiner believes. I hope that these “spoiler alert” peeks at explanation in
mathematics will encourage you to read part I1I!

In trying to characterize distinctively mathematical scientific explanations,
I am not trying to explicate the meaning of the term “distinctively mathemati-
cal” so as to agree with some intuitions about its proper application. We may well
have no pretheoretic notions at all regarding what a “distinctively mathemati-
cal” scientific explanation would be. Furthermore, my aim is not to explicate the
meaning of “distinctively mathematical” so as to fit this term’s use in scientific
practice. No such term is commonly used in science. Nevertheless, the task of
characterizing “distinctively mathematical” scientific explanations does aim to
fit certain intuitions as well as certain features of scientific practice.

Shortly, I will present several examples of scientific explanations that are
mathematical in a manner that intuitively differs profoundly from many famil-
iar scientific explanations employing mathematics. One goal of this chapter is
to explore this apparent difference in order to see whether it withstands careful
scrutiny. I will use the term “distinctively mathematical” to mark this appar-
ent difference. Ultimately, I will suggest that there is a fundamental difference
between the explanations I will present and many familiar scientific explana-
tions employing mathematics. My account of what makes certain scientific
explanations but not others “distinctively mathematical” aims to accord with
our intuitions about which scientific explanations are alike and which funda-
mentally differ.

An account of “distinctively mathematical” explanations aims to fit scientific
practice by deeming to be explanatory only examples that would (if true) con-
stitute genuine scientific explanations. But it also has a more ambitious aim: to
reveal how “distinctively mathematical” explanations work.
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The modern study of scientific explanation began with Hempel’s and
Oppenheim’s 1948 proposal of the D-N model (Hempel 1965). Unfortunately,
notorious counterexamples such as the flagpole, the eclipse, and the barometer
(Salmon 1989, 46-50) demonstrated that the D-N model counts various non-
explanations as explanatory. To avoid these problems for the D-N model, many
philosophers have suggested that causal relations (which have no place in the
D-N model) play a central role in scientific explanations. Indeed, many philos-
ophers have gone on to suggest that all scientific explanations (or, at least, all
scientific explanations of particular events or singular facts) are “causal explana-
tions.” For example, Salmon has written:

To give scientific explanations is to show how events and statistical regularities fit
into the causal structure of the world. (Salmon 1977, 162)

Causal processes, causal interactions, and causal laws provide the mechanisms by
which the world works; to understand why certain things happen, we need to see
how they are produced by these mechanisms. (Salmon 1984, 132)!

The same note has been sounded by many other philosophers:

Here is my main thesis: to explain an event is to provide some information about its
causal history. (Lewis 1986b, 217; see Jackson and Pettit 1992, 12-13)?

Causal explanation is the unique mode of explanation in physics. (Elster 1983, 18)

The explanation of an event describes the “causal structure” in which it is embedded.

(Sober 1984, 96)°

An explanation is an adequate description of underlying causes helping to bring
about the phenomenon to be explained. (Miller 1987, 60)

Recent accounts of scientific explanation (e.g, Woodward 2003; Strevens
2008) have continued to emphasize that scientific explanations work by describ-
ing causal connections.

I will argue that this view of scientific explanation cannot do justice to “distinc-
tively mathematical” explanations. In arguing that these explanations are “non-
causal,” I am not appealing to some account of what makes an explanation “causal”
that aims to fit either some pretheoretic intuitions about which explanations are
“causal” or some scientific practice of labeling certain explanations “causal.” Rather,
I am trying to elaborate a notion of “causal” explanation that not only motivates
many philosophers to contend that all scientific explanations are causal, but also
helps us to understand how scientific explanations work. Distinctively mathemati-
cal explanations are “non-causal” because they do not work by supplying infor-
mation about a given event’s causal history or, more broadly, about the world’s
network of causal relations. A distinctively mathematical explanation works instead
(Iwill argue) roughly by showing how the fact to be explained could not have been
otherwise—indeed, was inevitable to a stronger degree than could result from the
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action of causal powers. If a fact has a distinctively mathematical explanation, then
the modal strength of the connection between causes and effects is insufficient to
account for that fact’s inevitability. Accordingly, distinctively mathematical expla-
nations do not qualify as “causal” even when the range of explanations that qualify
as “causal” is broad enough to include every explanation that explains by virtue of
describing the world’s causal structure.

Thus, the importance of understanding how distinctively mathematical
explanations work does not derive from the significance of any intuitions we
may have regarding what makes an explanation “distinctively mathematical” or
“causal” Rather, its importance lies in what it reveals about the kinds of scientific
explanations there are and the ways they work—and, in particular, about the
limits of philosophical accounts that place causal relations at the center of all
scientific explanations.

Enough with the preliminaries! The best way to approach our topic is to
give several examples of scientific explanations that intuitively are “distinctively
mathematical.” Here is a very simple example (inspired by Braine 1972, 144):

The fact that 23 cannot be divided evenly by 3 explains why Mother fails
every time she tries to distribute exactly 23 strawberries evenly among her 3
children without cutting any (strawberries—or children!).

The explanation seems no less distinctively mathematical when the “explanans”
(i.e., the collection of explainers) includes certain contingent facts:

That Mother has 3 children and 23 strawberries, and that 23 cannot be
divided evenly by 3, explains why Mother failed when she tried a moment ago
to distribute her strawberries evenly among her children without cutting any.

Notice that in the latter explanation, the explanandum (i.e., the fact being
explained) concerns Mother’s failure in a particular attempt, whereas in the for-
mer explanation, the explanandum is more general. In either case, the explana-
tion is distinctively mathematical.

Here is another example along roughly similar lines. Suppose we select three
jellybeans from a sample containing only red jellybeans and blue jellybeans. Why
is it that of the three jellybeans we select, two are the same color? The answer is
that with three objects but only two colors to distribute among them, two of the
objects must share a color. This is an instance of what mathematicians call the
“pigeonhole principle.” Lipton (2009a, 46-47) gives a similar example: “I came
to understand why my class had four students whose last birthdays fell on the
same day of the week when it was explained to me that since there are only seven
days in a week and twenty-two students in my class, there is no way to arrange
the birthdays to avoid this result.”
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Here is an example given originally by Colyvan (1998, 321-322; 2001,
49-50; 2007, 120). Consider the fact that at every moment that Earth exists,
on the equator (or on any other great circle) there exist two points having
the same temperature that are located antipodally (i.e., exactly opposite each
other in that the line between them passes through the Earth'’s center). Why
is that? An explanation begins with the fact that temperature is a continuous
function. That is, roughly speaking, as you move along the equator, tempera-
ture changes smoothly rather than jumping discontinuously. Now imagine
placing your two index fingers on a globe at two antipodal points on the equa-
tor. Take the temperature on Earth at the location x that your left index finger
is touching minus the temperature at the antipodal location that your right
index finger is touching. This difference function D(x) must change contin-
uously as you move your two fingers eastward, keeping them at antipodal
points on the equator (since a function is continuous if it is the difference
between two continuous functions). Suppose without loss of generality that
for the initial value of x, D(x) is greater than zero (i.e., the left-finger location
is warmer than the right). Then when you have moved your two fingers far
enough around the equator that your left finger is where your right finger
began (and vice versa), D must be less than zero. Hence, since D is continu-
ous, there must have been a moment as you were moving your fingers when
D went from positive to negative. That is, there must have been an x where
D(x) = 0. (This step uses the intermediate value theorem: if f is a real-valued,
continuous function on [a,b] and u is a real number between f(a) and f(b),
then thereisa ce [a,b] such that f(c) = u.) Thus, there must be antipodal equa-
torial points at the same temperature.*

This explanation seems distinctively mathematical. Colyvan emphasizes
that although it explains why there is always such a pair of points (rather than
no such pair), it does not explain why two particular antipodal equatorial
points are at the same temperature (rather than at different temperatures). To
explain that fact, we would have to invoke the meteorological conditions in
some neighborhoods of those points at some earlier moment. I will return to
the contrast between these two explanations: one distinctively mathematical,
the other not.

Pincock (2007) offers another example. Why has no one ever succeeded (or,
in particular, why did a given person on a given occasion not succeed) in cross-
ing all of the bridges of Kénigsberg exactly once (while remaining always on
land or on a bridge rather than in a boat, for instance, and while crossing any
bridge completely once having begun to cross it)? Here it is understood that the
problem concerns the town’s bridges as they were arranged when Euler consid-
ered this problem in 1735 (see fig. 1.1). A distinctively mathematical explana-
tion is that in the bridge arrangement considered as a network, it is not the case
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Figure 1.1 The bridges of Konigsberg

that either every vertex or every vertex but two is touched by an even number
of edges. (In fact, none is: one is touched by five edges, and each of the others
is touched by three edges.) Any successful bridge-crosser would have to enter a
given vertex exactly as many times as she leaves it unless the vertex is the start or
the end of her trip. So among the vertices, either none (if the trip starts and ends
at the same vertex) or two could touch an odd number of edges. Intuitively, this
explanation is distinctively mathematical. It would not have been a distinctively
mathematical explanation if it had instead been that no one ever tried turning
left rather than right after crossing a given bridge, or that the bridges were made
of a material that would immediately corrode anything in contact with them,
or that someone was poised to shoot anyone who tried to cross a given bridge.
By the same token, Lazare Carnot (1803, xxxvii) said: “If I propose to move
a knight in the game of chess over all the squares on the chessboard, without
passing twice over any given one, it doesn’t concern me at all what is the mass
of the knight and the force that I employ to move it.” Carnot held that there
is a separate science to cover such cases: “the theory of motion, considered in
abstraction from the forces that produce or transmit it.” This science supplies
distinctively mathematical explanations.

As another example, consider why a particular attempt—or every past
attempt, or every attempt ever—fails to unknot a given trefoil knot (see fig. 1.2)
without cutting it. A distinctively mathematical explanation is that in three
dimensions, the trefoil knot is distinct from the unknot. This explanation seems
sharply different from an appeal to the fact that the knot was too tight, or that the
rope was too hot to touch, or that all of those who tried to untie the knot gave up
before they tried twisting the rope in a certain subtle way—each of which might
explain why every attempt to disentangle some knot failed.®

Lipton gives the following example:

Suppose that a bunch of sticks are thrown into the air with a lot of spin so that
they twirl and tumble as they fall. We freeze the scene as the sticks are in free fall
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Figure 1.2 A trefoil knot

and find that appreciably more of them are near the horizontal than near the verti-
cal orientation. Why is this? The reason is that there are more ways for a stick to be
near the horizontal than near the vertical. To see this, consider a single stick with a
fixed midpoint position. There are many ways this stick could be horizontal (spin
it around in the horizontal plane), but only two ways it could be vertical (up or
down). This asymmetry remains for positions near horizontal and vertical, as you
can see if you think about the full shell traced out by the stick as it takes all pos-
sible orientations. (Lipton 2004a, 9-10; see Lipton 2004b, 31-32; 2009b, 622)

Mancosu (2008, 134) says that the mathematical explanation of physical phe-
nomena is “well illustrated” by Lipton’s example. (Shortly I will demur.)
Perhaps these few examples suffice to suggest that, as Steiner (1978b, 18)
says, ‘one senses a striking difference” between distinctively mathematical sci-
entific explanations and ordinary scientific explanations that use mathemat-
ics. In the following sections, I will examine various proposals for capturing
this difference and understanding how these explanations work. Ultimately,
I will argue that roughly speaking, these explanations explain not by describ-
ing the world’s causal structure, but rather by revealing that the explanandum is
necessary—in particular, more necessary than ordinary laws of nature are. The
Konigsberg bridges as so arranged were never crossed because they couldn’t be
crossed. Mother’s strawberries were not distributed evenly among her children
because they couldn’t be. The three jellybeans I selected were not all of differ-
ent colors because they couldn’t have been. Four students in Lipton’s class had
their last birthday on the same day of the week because this fact “could not have
been otherwise” (Lipton 2009a, 47). A trefoil knot was never untied because
it couldn’t be. While Earth exists, there are always antipodal equatorial points
at the same temperature because there must be. These necessities are stronger
than the variety of necessity possessed by ordinary laws of nature, setting expla-
nations like these apart from ordinary scientific explanations. Ultimately, I will
suggest that distinctively mathematical scientific explanations work by appeal-
ing only to facts (including but not always limited to mathematical facts) that are
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modally stronger than ordinary laws of nature, together with contingent condi-
tions that are contextually understood to be constitutive of the arrangement or
task at issue in the why question.

In this way, distinctively mathematical explanations are examples of what
I will dub “explanations by constraint,” a kind of scientific explanation that has
received scant attention from philosophers but that I will examine at length in
the next three chapters. Explanations by constraint work not by describing the
world’s causal relations, but rather by describing how the explanandum arises
from certain facts (“constraints”) possessing some variety of necessity stronger
than ordinary laws of nature possess. The mathematical facts figuring in distinc-
tively mathematical explanations possess one such stronger variety of neces-
sity: mathematical necessity. But (I will argue in subsequent chapters) science
has taken seriously the idea that there are other varieties of necessity that are
stronger than ordinary natural necessity and so that there are other “constraints”
besides mathematical facts.

Although it has sometimes been suggested that distinctively mathematical
scientific explanations are “non-causal,” this idea requires careful elaboration
(as I will show in the next section). Mancosu (2008, 135) tries to capture the
distinction between distinctively mathematical and ordinary scientific explana-
tions by saying that the former “is explanation in natural science that is carried
out by essential appeal to mathematical facts.”® But this criterion fails to exclude
many ordinary scientific explanations. For example, to explain why the electric
field strength at a distance r from a long, linear charge distribution with static
uniform charge density A is equal (in Gaussian CGS units) to 2)\/r, we can
integrate the contributions to the field (given by Coulomb’s law) from all seg-
ments of the line charge (Purcell 1965, 28). When the integral is simplified, it

/.
becomes(A / r)j_ ;cos 0d60. The explanation then makes essential appeal to the

/2
mathematical fact that I , 08 60d6=2. But intuitively this explanation is not
=

distinctively mathematical.

An account of the distinction between distinctively mathematical explana-
tions and ordinary scientific explanations that use mathematics should do jus-
tice to the conflicting ways in which we may find ourselves pulled in trying to
classify a given explanation. For example, we may not entirely share Mancosu’s
confidence that Lipton’s explanation of why more tossed sticks are nearly hori-
zontal than nearly vertical is distinctively mathematical. Perhaps what is doing
the explaining is a propensity of the stick-tossing mechanism (that it is equally
likely to produce a tossed stick having any initial orientation) together with
a propensity of the surrounding air molecules (that they are equally likely to
push a tossed stick in any direction). After all, if the tossed sticks were instead all
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spinning uniformly about axes in the horizontal plane, they would be as likely
at any moment to be vertical as horizontal, contrary to what we observe. If the
explanans in Lipton’s example includes the propensities of the stick-tossing
mechanism and air molecules, then Lipton’s example seems like the explanation
of a fair coin’s behavior in terms of the propensities of the chance setup (or the
explanation of a gas’s behavior in terms of the statistical-mechanical propensities
of its molecules) rather than like the other examples I have given of distinctively
mathematical explanations. An account of distinctively mathematical explana-
tions should shed some light on this example. (I will return to it at the end of
section 1.5.)

Most of the literature that I will cite concerning distinctively mathematical
explanations has been motivated largely by “indispensability arguments” for
the existence of mathematical entities. The basic thought behind these argu-
ments is that if scientific theories must quantity over numbers, functions, sets,
and other mathematical entities, then in accepting these theories, we are com-
mitted to the existence of these abstract entities just as we are committed to the
existence of the concrete unobservable entities that these theories posit (such
as electrons and the electromagnetic field). Some philosophers believe that
this argument is strengthened by the fact that some scientific explanations are
distinctively mathematical. Other philosophers believe that the mathematical
entities figuring in these explanations are not doing the same kind of explana-
tory work as concrete unobservables do or that we do not become commit-
ted to the existence of abstract entities in accepting theories that quantify over
them. In any case, this ontological debate in the philosophy of mathematics is
irrelevant to my discussion. Philosophers engaged in this debate have generally
paid relatively little attention to the questions I am pursuing: How do these
“distinctively mathematical” scientific explanations differ from ordinary scien-
tific explanations that use mathematics and how do they succeed in explaining?

Of course, we might say that a scientific explanation qualifies as “distinctively
mathematical” exactly when it uses mathematics in the manner that indispens-
ability arguments exploit—that is, exactly when the explanans must quantify
over mathematical entities. However, on this way of using the term “distinctively
mathematical,” the ordinary scientific explanation of the fact that an infinite
uniform line charge’s electric field strength is inversely proportional to r counts
as distinctively mathematical. This explanation quantifies over mathematical
entities: the explanans includes the fact that there exists a function in which r
appears solely as (1/r) and that solves the integral generated by summing the
contributions to the field from all segments of the line charge. Therefore, this
way of using the term “distinctively mathematical” does not help to capture the
intuitive difference between the various explanations that I have just given and
ordinary scientific explanations that use mathematics.
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In section 1.2, I will consider whether distinctively mathematical expla-
nations are set apart by their failure to cite causes. I will argue that on the
contrary, many ordinary scientific explanations fail to identify causes of the
explanandum and at least some distinctively mathematical explanations do
cite the explanandum’s causes. Having adopted a broad notion of what makes
an explanation “causal,” I will argue in section 1.3 that distinctively mathe-
matical explanations are non-causal. I will also argue that we must refine the
explanatory target very carefully before we can agree with those philosophers
who characterize certain explanations appealing to natural selection as dis-
tinctively mathematical. In sections 1.4 and 1.5, I will elaborate and defend
my account of how distinctively mathematical explanations work. I will argue
that even when such an explanation appeals to a contingent law of nature, it
works by showing the explanandum to be necessary in a stronger sense than
any causal explanation could.

W 1.2 ARE DISTINCTIVELY MATHEMATICAL
EXPLANATIONS SET APART BY THEIR FAILURE
TO CITE CAUSES?

Mancosu (2008, 135) regards distinctively mathematical explanations as
“counterexamples to the causal theory of explanation.” Lipton (2004a, 9-10;
2009a, 47) and Kitcher (1989, 426) agree. Their remarks suggest that distinc-
tively mathematical explanations are set apart from ordinary scientific explana-
tions by their failure to specify the explanandum’s causes. Writing about the
tossed sticks, Lipton apparently thinks that an explanation is “causal” if and
only if it cites causes of the explanandum: “The explanation why more sticks
are near the horizontal than near the vertical is that there are two horizontal
dimensions but only one vertical one. This is a lovely explanation, but appar-
ently not a causal one, since geometrical facts cannot be causes” (Lipton 2004b,
31-32). However, there are two problems with the suggestion that distinctively
mathematical explanations are non-causal by virtue of their failure to cite any
causes of the explanandum: (1) many ordinary, causal scientific explanations
fail to specify any causes of the explanandum, and (2) at least some distinc-
tively mathematical explanations do cite the explanandum’s causes. Although
I agree with Mancosu, Lipton, and Kitcher that distinctively mathematical
explanations are non-causal, we must be careful not to join Colyvan (1998,
324-325) in identifying an explanation as non-causal just when “it makes no
appeal to causally active entities.”

For example, as Beebee (2004, 301-304) emphasizes, a typical explanation
that appeals only to an omission or absence (along with laws of nature) is causal
even though strictly speaking (according to many philosophers), an omission
is not a cause since it is not even an event; it involves nothing happening. For



What Makes a Scientific Explanation Distinctively Mathematical? = 13

example, Brandon (2006, 321) says that when we explain (according to classical
physics) why a given body is moving uniformly (i.e., not accelerating) by citing
the absence of any forces on it, we give a causal explanation that cites no causes
since it cites no forces. Of course, on this view, the uniform motion of a body
feeling no forces has no causes, strictly speaking.” Nevertheless, it has a causal
explanation. The explanation works by citing a law that specifies how a body
must move in the absence of any cause influencing its motion.

There are also causal explanations that cite no causes of the explanandum
even though the explanandum has causes. For instance, many philosophers (e.g.,
Prior, Pargetter, and Jackson 1982) regard dispositions as causally impotent to
bring about their manifestations. That is because the connection between a dis-
position (e.g., being water-soluble), its trigger (being immersed in water), and
its manifestation (dissolving) is metaphysically necessary; the identities of these
properties are enough to connect them in this way. In contrast, the link between
causes and their effects is much weaker: mere natural necessity (that is, the kind
of necessity possessed by ordinary laws of nature). Nevertheless, many philoso-
phers (such as Lewis 1986b, 221; Jackson and Pettit 1992, 10) believe that a
body’s water-solubility, for example, causally explains why it dissolved when it
was immersed in water. Though this explanation does not specify the molec-
ular features of the body and water that caused the body to dissolve on being
immersed in water, it is still informative regarding the causes of the body’s dis-
solving. For instance, it rules out other possible causes of the body’s dissolving,
such as the body’s being installed in a contraption that replaces the water with a
different liquid—a powerful solvent—once the body is immersed in the water.

Instead of an explanation that uses a disposition to explain its manifesta-
tion, consider an explanation of the disposition itself. According to many phi-
losophers, the possession of various categorical properties by various entities
(together with some natural laws) explains why some entity possesses a given
disposition. Such an explanation may be causal (I will argue) even though the
disposition’s categorical base does not cause the disposition. For instance, the
categorical ground of a key’s power to open a distant lock resides in the key’s
structure and the lock’s structure, but the lock’s structure is not a cause of the
key’s power (on pain of action at a distance on the cheap).

Thus, many explanations that fail to cite the explanandum’s causes (even
when it has causes) are nevertheless causal explanations. Accordingly, I will
adopt a broad conception of what makes an explanation “causal”: that it explains
by virtue of describing contextually relevant features of the explanandum’s
causal history or, more broadly, of the world’s network of causal relations. To
do this, it does not need to specify any causes. When a body’s water-solubility
explains why it dissolved when it was immersed in water, the explanans explains
without identifying the particular causally efficacious properties possessed by
the immersed body and the water (having to do with various molecular forces
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and their causes). That the immersed body is water-soluble explains by supply-
ing information about the explanandum’s causal history. By the same token (as
Jackson and Pettit 1990 argue, and Colyvan 1998, 324 also maintains), when the
squareness of a rigid peg of side L explains its failure to fit through a round hole
of diameter L (made through a rigid board), the peg’s squareness is not itself a
cause of the failure to fit. Rather, it ensures that there are such causes—namely,
contact forces between the peg and the material surrounding the hole. Thus,
the peg’s squareness figures in a causal explanation despite not being causally
efficacious.

The peg’s squareness, though not itself a cause, ensures that the peg would
still have failed to fit though the hole in the board even if the peg had been
aligned differently with the hole so that the particular peg and board molecules
that actually strongly repelled one another remained too far apart to interact.
Other peg and board molecules would have strongly repelled one another
instead. The peg’s squareness explains not just by describing the actual causes of
the outcome, but also by telling us that had different initial conditions prevailed,
similar causes would have produced a failure to fit through the hole. As Jackson
and Pettit (1992) emphasize, many causal explanations derive their explanatory
power partly from describing what the world’s network of causal relations would
have been like under other conditions. Railton (1981, 251) nicely captures why
such explanations are best understood as importantly like explanations that
work by specifying the outcome’s actual causes:

this sort of causal process is such that its macroscopic outcomes are remarkably
insensitive (in the limit) to wide variations in initial microstates. The stability of an
outcome of a causal process in spite of significant variation in initial conditions can
be informative about an ideal causal explanatory text in the same way that it is infor-
mative to learn, regarding a given causal explanation of the First World War, that a
world war would have come about (according to this explanation) even if no bomb
had exploded in Sarajevo. This sort of robustness or resilience of a process is impor-

tant to grasp in coming to know explanations based upon it.

Similarly, the explanation of Mother’s failure to distribute her 23 strawber-
ries evenly (without cutting any) among her 3 children reveals that her failure is
insensitive to her precise technique for distributing strawberries. However, this
explanation does not work by describing the various causal relations that would
have obtained if she had tried other ways of distributing the strawberries, and
then showing that each of these causal processes would have failed to distrib-
ute the strawberries evenly. This explanation does not describe any technique
of strawberry distribution. It derives its explanatory power neither by virtue of
describing the actual causes nor by telling us about what the network of causal
relations would have been like under other initial conditions. Rather (I will
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argue), this explanation shows the outcome to be inevitable to a stronger extent
than facts merely about causal relations (actual and counterfactual) could make
it. This explanation is distinctively mathematical.

Sober (1983; 1984, 139-142) has characterized “equilibrium explanations”
that work by describing not only the actual causal relations, but also the causal
relations that would have obtained under other initial conditions. Sober’s chief
example is R. A. Fisher’s natural-selection explanation of the fact that the sex
ratio at reproductive age is 1:1 in many species. The gist of Fisher’s explanation
is that if a population contains more males than females, then individuals who
have a heritable tendency to produce more female than male offspring will tend
to have more grandchildren than individuals without this tendency, and so this
tendency will tend to spread and to restore the sex ratio to 1:1. If, on the other
hand, a population contains more females than males, then the heritable ten-
dency to produce more male than female offspring will be selectively advanta-
geous, tending to restore the 1:1 ratio. Sober correctly emphasizes that such an
equilibrium explanation of a population’s current 1:1 ratio does not describe
the particular causal path by which the population arrived at that ratio; it does
not specify the varying sex ratios or selection pressures at earlier moments.
Rather, the explanation works by showing how the tendency to return to a 1:1
ratio arises from various unchanging features of the population, including that
the only selection pressure on the sex ratio is selection for individuals who have
a tendency to overproduce the minority sex, that such a heritable tendency is
present among some members of the population, and that male and female oft-
spring require the same resources.

Sober (1983, 204) insists that a causal explanation of a population’s current
1:1 ratio would differ from an equilibrium explanation in describing the actual
history of the population’s sex ratio and selection pressures. Sober concludes
that an equilibrium explanation is not a causal explanation. But I see no reason
to regard explanations that work by specifying the actual causes as fundamen-
tally different from explanations that work by describing what the causes would
have been like under certain conditions that extend significantly beyond the
actual ones. Accordingly, unlike Sober in 1983, I take equilibrium explanations
to be causal explanation.’

Both equilibrium explanations and distinctively mathematical explanations
show the facts being explained to be inevitable. But equilibrium explanations
(unlike distinctively mathematical explanations) work by describing the world’s
causal structure and so (I will argue) cannot show the fact being explained to
be as inevitable as distinctively mathematical explanations do. Mother’s success
was mathematically impossible, not merely impossible by virtue of the world’s
causal structure. As Sober (1983, 207) remarks, an “equilibrium explanation
situates [the sex ratio’s] actual trajectory (whatever it may have been) in a more
encompassing structure.” That structure is a causal structure.'”
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Let’s see another sort of causal explanation that specifies no actual causes of
the fact being explained, but works by virtue of identifying the causal relations
that would obtain under various conditions. Consider the explanation (given in
section 1.1) of the derivative law concerning the strength of the electric field of
a uniform infinite line charge. This explanation works by deducing the explanan-
dum from Coulomb’s law. This is a causal explanation even though “the expla-
nation of a general law by deductive subsumption under theoretical principles
is clearly not an explanation by causes” (Hempel 1965, 352) since laws are not
causes. The explanandum is a law and so has no causes; its explainers are not
causes. Nevertheless, this explanation works by describing part of the world’s
network of causal relations—in particular, the causes of the electric fields of uni-
form infinite line charges (namely, line-charge segments) and how the contribu-
tions made by the various causes of a given infinite line charge’s field combine.
A general regularity (whether a law, correlation, or statistical-relevance relation)
is explained causally by relevant features of the causal mechanisms that produce
the events figuring in the regularity. As another example, take the explanation
of Kepler’s “laws” by Newton’s laws of motion and gravity (and some contin-
gent features of the solar system). Harman (1986, 73) calls this explanation
“non-causal” since it does not work by citing prior events that caused a given
event; neither the explanans nor the explanandum specifies events. By contrast,
I'would emphasize that this explanation of Kepler’s laws works by describing the
way planetary motion is caused. Therefore, I deem it to be a causal explanation."

Consider again the explanation of the derivative law concerning the strength
of the electric field of a uniform infinite line charge. Perhaps there happens never
to be a uniform infinite line charge. The explanation of the derivative law then
cannot work by describing the causal histories of the fields of actual uniform
infinite line charges. Nevertheless, the explanation remains causal. It works not
by describing any actual event’s causes, but rather by describing the world’s net-
work of causal relations—specifically, by describing what that network would
have been like, had there been an infinite line charge.'? In this respect, the expla-
nation is like Sober’s “equilibrium explanation™: it works by describing what
would cause what.

Likewise, to explain why neon is chemically inert, we could give the various
causal mechanisms behind the chemical activity of other atoms and then show
why atoms like neon (having filled outer electronic shells) are unable to form
chemical bonds in any of these ways. This is a causal explanation of neon’s inert-
ness even though (as Kitcher 1985, 637 says) it does not describe any causal
processes at work in neon. It explains by virtue of describing the world’s network
of causal relations (in particular, the causes of other atoms’ chemical activity).

Similarly, when a disposition is explained by its categorical base (and natural
laws), the categorical base does not cause the disposition (as Imentioned earlier).
Theexplanationdoesnotsupplyinformationaboutthe disposition’s causal history
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(since the disposition has none, strictly speaking). Lewis (1986b, 223-224)
says that no event is being explained. But, as Lewis also says, the explanation is
nevertheless causal in that it works by supplying relevant information about the
world’s network of causal relations. The categorical base explains the disposi-
tion by virtue of the base’s role as what would cause any manifestations of the
disposition.

By the same token, when we explain why some body is moving uniformly
(rather than nonuniformly) by noting that the body is experiencing no forces,
we are not giving the explanandum’s causes (since it has none). But we are
explaining by virtue of describing a relevant aspect of the world’s network of
causal relations. In particular, we are explaining by specifying the forces (the
acceleration-causers) that are acting on the body, namely, none. That there
are no forces acting on the body qualifies as explanatorily relevant by virtue
of the fact that forces cause accelerations. Likewise, the explanation cites a law
(Newtons first law of motion) that helps to explain by virtue of governing how
bodies behave in the absence of any causes of accelerations (that is, forces). We
have here a causal explanation because the facts that explain are explanatorily
relevant by virtue of their significance regarding the world’s network of causal
relations."

Likewise, we might explain why visible light has a given speed in a given
medium by the fact that electromagnetic waves within a certain range of fre-
quencies have that speed there together with the fact that visible light consists
of electromagnetic waves in that frequency range. Light’s speed is not caused by
the speed of electromagnetic waves since visible light and electromagnetic waves
of those frequencies are not distinct things; light is identical to electromagnetic
waves in that frequency range. Nevertheless, an explanation of light’s behavior
that appeals to some properties of electromagnetic waves is a causal explanation
because it works by supplying relevant information about the world’s network of
causal relations. For instance, an explanation of light’s speed in a given medium
that appeals to the speed of electromagnetic waves there works by telling us that
light’s speed in that medium is caused by whatever causes the speed of electro-
magnetic waves there—and that those factors cause light’s speed by virtue of
causing electromagnetic waves’ speed. The reverse is not true; although light is
an electromagnetic wave, light behaves as it does by virtue of being an electro-
magnetic wave, not the reverse. The laws of electromagnetism causally explain
the laws of light (just as the Coulomb’s law causally explains the laws giving the
electric field of a long linear uniform charge distribution). Just as a machine’s
capacity to do something is explained causally by some of the capacities that
its components possess (capacities that combine to form the capacity being
explained), so likewise light’s capacity to do something is explained causally by
the capacities of the electromagnetic waves that constitute it. These are all causal
explanations because they work by supplying information about the causes that
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some effects would have. For instance, light’s color and intensity acquire their
powers to affect the eye by virtue of being electromagnetic properties.'*

In short, then, what makes an explanation “causal” is not that it cites the
explanandum’s causes, since the explanandum in a causal explanation need
not have any causes, and even if it does, a causal explanation need not specify
them—and (as I will show shortly) even a non-causal explanation may specify
the explanandum’s causes. Rather, what makes an explanation “causal” is how it
works: that it derives its explanatory power by virtue of supplying relevant infor-
mation about the explanandum’s causes or, more broadly, about the world’s net-
work of causal relations. In other words, in a causal explanation, an explainer’s
explanatory credentials derive partly from the information it supplies regarding
the world’s network of causal relations. Any causes cited by a causal explanation
explain by virtue of being causes and thereby supplying information about the
network of causal relations—and since even non-causes can supply such infor-
mation, they can figure in causal explanations, too. As I will show, when causes
figure in non-causal explanations, the source of their explanatory power is not
their status as causes.

Of course, this is not to say that in a causal explanation, any information what-
ever about the world’s network of causal relations (or even about the explanan-
dum’s causes in particular) is explanatory. A principal aim of any account of
causal explanation is to specify what makes some such information explanatorily
relevant. The length of a building’s shadow and the sun’s angle of elevation in
the sky supply some information about the cause of the building’s height: that
it caused a building tall enough to cast a shadow of that length when the sun
is elevated to that angle. But the shadow’s length and the sun’s angle neverthe-
less do not help to explain the building’s height because they do not supply the
right sort of information about the world’s network of causal relations. A causal
explanation works by virtue of supplying the right sort of information about the
world’s causal nexus, and an account of causal explanation must say a good deal
about what determines “the right sort” in various cases.

This conception of what it is for an explanation to be “causal” is hardly origi-
nal. Lipton (2004b, 32), for example, writes that “causal explanations are explan-
atory because they are causal” (his emphasis). That is, what makes an explanation
causal is not that it cites causes or that it supplies information about causes, but
rather that it explains by virtue of doing so—that this is how the explanation
manages to explain. I take this notion of “causal explanation” to be what many
philosophers have had roughly in mind in holding that all scientific explanations
are causal. Of course, one could use the term “causal explanation” more nar-
rowly than I do, as when Sober (1983, 203) says “A causal explanation describes
what the cause is” and concludes that equilibrium explanations are non-causal.
As I mentioned earlier, I do not contend that my broader conception of “causal
explanation” fits better with firm pretheoretic intuitions about the term’s proper
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use (I doubt there are any) or with the term’s widespread use in scientific prac-
tice (I doubt it has any). Rather, my conception of “causal explanation” fits the
term’s use by those philosophers who contend that all scientific explanation is
causal and allows us to draw an important distinction between different ways
in which scientific explanations work. As I have just shown, some explanations
that do not “describe what the cause is” still work very much like explanations
that do work by specifying the explanandum’s cause. Therefore, it is illuminat-
ing to group these various explanations together—especially when we are try-
ing to understand explanations that appear to work in a radically different way."®
Although my conception of what it takes for an explanation to be “causal” is
sufficiently broad to allow non-causes (such as laws) to supply causal explana-
tions and even to admit causal explanations that cite no causes, it is not broad
enough to encompass all scientific explanations. Not all scientific explanations
derive their explanatory power from describing the world’s network of causal
relations.'®

If (as  believe) Mancosu, Lipton, and Kitcher are correct in deeming distinc-
tively mathematical scientific explanations to be non-causal, then those explana-
tions cannot work by describing the world’s network of causal relations. How,
then, do they work? In section 1.4, I will propose that they work by constraining
what there could be.

I have just argued that an explanation that fails to cite any causes nevertheless
qualifies as causal if it explains by virtue of describing the world’s network of
causal relations. By the same token, some distinctively mathematical explana-
tions, though non-causal, nevertheless happen to cite the explanandum’s causes.
Even so, they qualify as non-causal because they do not derive their explanatory
power from their success in describing the world’s network of causal relations
specifically.

For instance, that Mother had 3 children and 23 strawberries were causes of
her failure a moment ago when she tried to distribute her strawberries evenly
among her children. That these were causes of her failure is the common ver-
dict of many different accounts of causal relations. For instance, Lewis’s coun-
terfactual account says that C causes E exactly when there is a chain of stepwise
“influence” from C to E, where C “influences” E exactly when “there is a sub-
stantial range C,, C,, . . . of different not-too-distant alterations of C (including
the actual alteration of C) and there is a range E,, E,, . .. of alterations of E, at
least some of which differ, such that if C, had occurred, E, would have occurred,
and if C, had occurred, E, would have occurred, and so on” (Lewis 2007, 476).
Such a pattern of counterfactual dependence obtains in the strawberry exam-
ple: if Mother had had 24 strawberries (or 2 children and 22 strawberries),
for instance, then she would not have failed. Alternatively, a manipulability
account of causal relations (Gasking 1955; Woodward 2003) says roughly that
C is a cause of E exactly when systematic changes in E can be brought about by
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suitable interventions on C. Clearly, manipulation of the numbers of strawber-
ries or children would bring about corresponding changes in the outcome of
Mother’s attempt. Likewise, that there are 3 children and 23 strawberries raises
the probability of the outcome from what it otherwise would be (in accordance
with probabilistic accounts of causal relations), and there is a causal process of
“maternal strawberry distribution” connecting the outcome to the initial condi-
tions (in accordance with accounts inspired by Salmon 1984).

Nevertheless, I maintain that this explanation is non-causal because it does
not work by virtue of describing the outcome’s causes or, more broadly, the
world’s network of causal relations. The causal mechanism by which Mother
distributed her strawberries does not enter into it. The numbers of children and
strawberries do not figure in this explanation as causes of the outcome. A dis-
tinctively mathematical scientific explanation may happen to cite causes, but it
does not appeal to them as causes. It does not work by exploiting their causal
powers."”

That a distinctively mathematical explanation happens to cite facts about the
explanandum’s causes does not mean that it works by virtue of describing the
explanandum’s causes. In the distinctively mathematical explanation, Mother’s
having 3 children helps to explain her failure to distribute the strawberries evenly
not by virtue of being a cause of her failure, but rather by virtue of helping to
make her success mathematically impossible. By the same token, the fact that 23
cannot be divided evenly by 3 supplies information about the world’s network of
causal relations: it entails that there are no causal processes by which 23 things
are distributed evenly (without being cut) into 3 groups. But in the distinctively
mathematical explanation of Mother’s failure, the fact that 23 cannot be divided
evenly by 3 does not possess its power to explain by virtue of supplying this
information about causal processes in particular. The distinctively mathematical
explanation does not exploit what the world’s causal structure is like as a matter
of mathematical necessity. Rather, it exploits what the world is like as a matter of
mathematical necessity: the fact that 23 things cannot mathematically possibly
be divided evenly (while remaining uncut) into 3 groups explains why no col-
lection of 23 things is in fact ever so divided. The mathematical fact entails that
even a pseudoprocess rather than a causal process (and even a world without
causal processes) cannot involve such a division of 23 things. The mathematical
fact supplies information about the world’s network of causal relations (just as
any fact does: that the cat is on the mat tells us that the world’s network of causal
relations includes no events caused by the cat’s being off the mat). But its sup-
plying information about the world’s causal network per se is not responsible
for its explanatory power in the distinctively mathematical explanation. In con-
trast, in a causal explanation, a fact’s supplying (the right sort of) information
about the world’s causal network per se is responsible for the fact’s explanatory
significance.
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As I showed earlier, there is a non-causal explanation for the existence at a
given moment of antipodal equatorial points having the same temperature.
Perhaps this occurrence also has a causal explanation that appeals to whatever
prior meteorological conditions (and natural laws) explain why those particu-
lar antipodal equatorial points have the same temperature (rather than differ-
ent temperatures) at the given moment. Of course, the non-causal explanation
shows that even if meteorological conditions had been different so that the tem-
peratures at those particular antipodal points had been unequal, there would
still have been a pair of antipodal equatorial points at the same temperature.
Perhaps, then, prior meteorological conditions do not explain why a pair of
antipodal equatorial points having the same temperature exists, even though the
explanandum is entailed by a (contingent) fact that the meteorological condi-
tions do explain, namely, that these particular antipodal equatorial points have
the same temperature.” On the other hand, there are well-known examples
where C causally explains E even though E would still have occurred, had C not
occurred. (Standard examples include cases of preemption, as when Assassin
kills Victim, but had Assassin not pulled the trigger, Backup would have done
s0.) Whether or not the existence of a pair of antipodal equatorial points having
the same temperature has a causal explanation is a question about causal expla-
nation and overdetermination that I will put aside.

However, even if there is such a causal explanation for the existence at a given
moment of a pair of antipodal equatorial points having the same temperature,
I contend that if we take this causal explanation and combine it with another
causal explanation regarding another such pair of points at another moment,
then we do not thereby explain why it is that at both moments there are antipo-
dal equatorial points at the same temperature, That is because this pair of causal
explanations inaccurately depicts this similarity between the two moments as
utterly coincidental—as having no important common explainers—since the
earlier meteorological conditions relevant to one moment are largely disjoint
from those relevant to the other moment.

Let’s linger momentarily on this notion of being a “coincidence.” It is a coin-
cidence that President Kennedy and President Lincoln both had vice presi-
dents named Johnson. This fact is coincidental in virtue of its two components
having no common cause—or, at least, none of any interest; in a typical con-
text in which this Kennedy-Lincoln fact is entertained, the cosmological Big
Bang (for example) is not of any interest. We can explain why Kennedy and
Lincoln both had vice presidents named Johnson by causally explaining why
Kennedy had a vice president named Johnson and similarly explaining why
Lincoln did. These two causal explanations have nothing interesting in com-
mon, and the same goes for every explanation of the fact that Kennedy and
Lincoln both had vice presidents named Johnson. That is what makes this fact
coincidental.
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To understand what makes it no coincidence that at each of the two moments,
a pair of antipodal equatorial points having the same temperature exists, we
must recognize that for a fact to qualify as coincidental, it is not enough for its
components to have no interesting common cause. Rather, it is enough to make
a fact coincidental that its components have no interesting common because—
that is, no interesting common explainer. In fact, the similarity between the two
moments (in that at both, there is a pair of antipodal equatorial points having
the same temperature) is not coincidental. The two components of this fact have
interesting common explainers (e.g,, that temperature is a continuous function
of position)—indeed, enough common explainers to give these two compo-
nents a common explanation: the distinctively mathematical explanation.

Admittedly, then, there may be a causal explanation of the fact that at a
given moment, two antipodal equatorial points at the same temperature exist.
Nevertheless, there is no causal explanation of the fact that at every moment
(or: at two arbitrary moments) in Earth’s history, two such points exist.' This
fact is explained only by a non-causal, distinctively mathematical explanation.

If the similarity between the two moments had indeed been coincidental (like
the Kennedy-Lincoln fact), then their similarity would be explained by the com-
bination of the two separate causal explanations (one for each moment), if there
are such causal explanations. But since the similarity between the two moments
is in fact no coincidence, any genuine explanation must so characterize it.

B 1.3 MATHEMATICAL EXPLANATIONS DO
NOT EXPLOIT CAUSAL POWERS

I have just suggested that distinctively mathematical explanations are non-causal,
even if some of them appeal to causes of what they explain, because they do not
appeal to them as causes; they do not exploit their causal powers. In section 1.4,
I will suggest that if some association between a cause (in the explanans) and
its effect (the explanandum) is invoked by a distinctively mathematical expla-
nation, then that association holds not by virtue of an ordinary law of nature,
but by virtue of something modally stronger—typically, by mathematical neces-
sity.*” In this way, mathematics enters distinctively mathematical explanations.
It may be objected that although a distinctively mathematical explanation
appeals to mathematical facts, it also exploits the causal powers of some of the
explanandum’s causes. In the K6nigsberg bridge case, for example, the arrange-
ment of bridges and islands initially (i.e., at the start of some attempt to cross
them) helps to cause their arrangements later (while the attempt is under way),
and this fact is crucial to the distinctively mathematical explanation. (After all,
matters would be very different if it were a law of nature that whenever someone
starts to traverse a bridge, its beginning and ending points come to be touched by
an even number of bridges, perhaps by another bridge’s coming into existence.)
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Likewise, in the example involving Mother’s attempt to distribute strawber-
ries to her children, the numbers of children and strawberries initially (when
Mother begins her attempt) are causes of their numbers later. That bridges are
not brought into existence or caused to disappear by people traveling over other
bridges, that strawberries are not caused to replicate by being distributed, and
that (in the trefoil knot example) knotted ropes do not spontaneously break,
their ends then tending to reunite, all reflect the causal powers of various things
and are matters of contingent natural law, not mathematical necessity. These
facts underlie the distinctively mathematical explanations I have given.

Ireply that these distinctively mathematical explanations do not exploit these
causal powers. Rather, the fixity of the arrangement of bridges and islands, for
example, is presupposed by the why question that the explanation answers: Why
did this attempt (or every attempt) to cross this particular arrangement of
bridges (the bridges of Konigsberg in 1735) end in failure? The bridges’ arrange-
ment does not function in the distinctively mathematical explanation as an ini-
tial condition that in fact persists during all attempts to cross the bridges (partly
by virtue of various ordinary laws of nature describing various kinds of causal
interactions). Rather, the why question itself takes the arrangement as remain-
ing unchanged over the course of any eligible attempt. If, during the course of an
attempt to cross all of the bridges exactly once, one of the bridges happened to
collapse before it had been crossed, then the attempt in progress would simply
be disqualified from counting as having managed to cross the intended arrange-
ment of bridges. The laws determining the conditions under which the bridges’
arrangement would remain fixed thus do not figure in the explanans.

If every distinctively mathematical explanation used no contingent laws of
nature, then this feature would nicely distinguish these explanations from many
ordinary scientific explanations that use mathematics, such as the explanation
(described in section 1.1) of any infinite uniform line charge’s electric field
strength. However, it would not distinguish distinctively mathematical explana-
tions from all non-causal scientific explanations. For example, the non-causal
explanation of the fact that Mark Twain and Samuel Clemens have the same
height (namely, because Twain and Clemens are identical) appeals to no con-
tingent natural laws (see the preface). Furthermore, even if every distinctively
mathematical explanation used no contingent laws of nature, this feature would
not distinguish distinctively mathematical explanations from all causal explana-
tions; some causal explanations likewise appeal to no contingent natural laws.
For example, a given biological trait’s increasing frequency in some population
may be explained by the absence of mutations and migrations together with the
trait’s fitness exceeding the fitness of any alternative to it that was available to
the population. Such an explanation appeals to no contingent natural laws, but
rather to the principle of natural selection (PNS)—roughly speaking: that fit-
ter traits are more likely to increase in frequency in the absence of mutation or
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migration. The PNS is a broadly logical truth. ('That s, its modality belongs with
narrowly logical necessity, metaphysical necessity, mathematical necessity, con-
ceptual necessity, moral necessity, and so forth.) The PNS is not a contingent
natural law, but it is also not a mathematical fact.

That one trait is fitter than another entails that there is selection of the fitter
trait but not that there is selection for that trait (Sober 1984). That is, the fitter
trait might not make various creatures more likely to have a greater number of
viable offspring (so it might not be selected for), but might merely tend to be
associated with traits that do (so that there is selection of creatures with that
trait). A selectionist explanation of a trait’s increasing frequency (or its current
high frequency) might go beyond citing the trait’s greater fitness to identify the
particular selection pressures at work; it might specify whether or not the given
trait has been selected for and, if so, why. It might, for instance, explain how the
trait represents an optimal solution to some challenge that such a creature faces.
Baker (2005, 229-235; 2009b) characterizes one such selectionist explanation
as a distinctively mathematical explanation. Although Batterman (2010, 3) finds
Baker’s example “interesting and persuasive” and Leng (2005, 174) agrees that
it qualifies as a distinctively mathematical explanation, I think we must first
draw some distinctions before we can find here a distinctively mathematical
explanation.

The explanandum in Baker’s example is “that cicada life-cycle periods are
prime” rather than composite numbers of years (Baker 2009b, 624). One pos-
sible explanation that biologists have offered is that a species with a periodic
life-cycle maximizes its chance of avoiding predator species that also have peri-
odic life-cycles exactly when the species’ period in years is coprime to the most
numbers close to it (where natural numbers m and n are “coprime” exactly when
they have no common factors except 1). That is because if two species’ periods
m and n are coprime, then their coincidence is minimized (since mn is their low-
est common multiple). Since a prime number m is coprime to the most numbers
close to it (namely, to every number less than 2m), it is evolutionarily advanta-
geous for cicada life-cycle periods to be prime and so (if this is the only relevant
consideration) they are likely to be prime.

However, if this is the reason why cicada life-cycle periods are prime num-
bers of years, then (it seems to me) this explanation works by describing the
world’s network of causal relations—in particular, the natural history of cicadas.
Consider the explanation that cicadas have prime periods because prime peri-
ods have been selected for (and this is the only relevant selection pressure and
the PNS holds). This is a causal explanation, since “selection for is the causal
concept par excellence” (Sober 1984, 100). Suppose we add that prime cicada
periods have been selected for over composite periods because some of the
cicada’s predators also have periodic life-cycles, the avoidance of predation by
these predators is selectively advantageous to cicadas, and prime cicada periods
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tend to minimize this predation while bringing to cicadas no selective disad-
vantages that outweigh this advantage. This explanation is also just an ordinary
causal explanation. It uses a bit of mathematics in describing the explanandum’s
causal history, but it derives its explanatory power in the same way as any other
selectionist explanation. Taken as a whole, then, it is not a distinctively mathe-
matical explanation, though it appeals to some mathematics and to no contin-
gent natural laws.

But suppose we narrow the explanandum to the fact that in connection with
predators having periodic life-cycles, cicadas with prime periods tend to suf-
fer less from predation than cicadas with composite periods do. This fact has
a distinctively mathematical explanation (namely, the explanation given above
involving coprime numbers).”! Analogous remarks apply to the selection-
ist explanation that Lyon and Colyvan (2008, 228-229) characterize as dis-
tinctively mathematical: “What needs explaining here is why the honeycomb
is always divided up into hexagons and not some other polygons (such as tri-
angles or squares), or any combination of different (concave or convex) poly-
gons” (Lyon and Colyvan 2008, 228). The proposed explanation is that it is
selectively advantageous for honeybees to minimize the wax they use to build
their combs—together with the mathematical fact that a hexagonal grid uses the
least total perimeter in dividing a planar region into regions of equal area (the
“Honeycomb Conjecture” proved recently by Thomas Hales; see Hales 2001).
Again, this explanation works (purportedly) by describing the relevant features
of the selection pressures that honeybees have experienced, so it is an ordinary
causal explanation, not distinctively mathematical.”” But suppose we narrow the
explanandum to the fact that in any scheme to divide their combs into regions
of equal area, honeybees would use at least the amount of wax they would use in
dividing their combs into hexagons of equal area (assuming combs to be effec-
tively planar and the dividing walls’ thickness to be negligible). This fact has a
distinctively mathematical explanation: it is just an instance of the Honeycomb
Conjecture. By the same token, “word problems” in mathematics textbooks are
full of allusions to facts that have distinctively mathematical explanations—for
example, the fact that if Farmer Brown, with 50 feet of negligibly thin and infi-
nitely bendable fencing, uses his fencing to enclose the maximum area in a flat
field, then he makes his fencing into a circle.

B 1.4 HOW THESE DISTINCTIVELY
MATHEMATICAL EXPLANATIONS WORK

In the previous section, I suggested that if every distinctively mathematical
explanation used no contingent laws of nature, then this feature would nicely
distinguish distinctively mathematical explanations from many (though not
all) causal explanations that use mathematics, such as the explanation of an
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Figure 1.3 'The simple double pendulum (left) and its four equilibrium configurations
(right); only the first equilibrium configuration is stable.

infinite uniform line charge’s electric field strength. However, some distinc-
tively mathematical explanations appeal to contingent natural laws. Here is an
example.

Suppose we make a “simple double pendulum” by suspending a simple
pendulum from the bob of another simple pendulum and allowing both bobs
to move under the influence of gravity (which varies negligibly with height)
while confined to a single vertical plane (see fig. 1.3). (By definition, a “simple
pendulum” has an inextensible cord with negligible mass and encounters neg-
ligible friction and air resistance.) Any simple double pendulum has exactly
four equilibrium configurations (see fig. 1.3), where a “configuration” is fixed
by the angles a and p. (An “equilibrium configuration” is a configuration where
the two bobs, once placed there at rest, will remain there as long as the system
is undisturbed.)

One way to explain why a simple double pendulum has these four equilib-
rium configurations is to identify the particular forces on the two bobs (with
masses m and M, as shown in fig. 1.3) and then to determine the configurations
in which both bobs feel zero net force. By Newton’s second law of motion, they
will then undergo no acceleration and so will remain at rest once placed in that
configuration.” Equivalently, since the force on a system is the negation of its
potential energy’s gradient,> we can express the system’s potential energy U(a,B)
and then solve for the configurations where the energy’s gradient is zero, that is,

oU dU
where — = ——=0—that is to say, where U is “stationary” (i.e., at a maximum,

do. 0B

minimum, or saddle point):
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Hence, U’s gradient vanishes exactly when sin a = sin = 0,
which is exactly where (a,) = (0,0), (0,x), (m,0), or (z,1) —the

four equilibrium configurations shown in figure 1.3.

This is a causal explanation.

But there is a non-causal, distinctively mathematical explanation of the fact
that a simple double pendulum has at least four equilibrium configurations.
Since (a,p) and (a + 27n,p + 27tm) designate the same configuration (for any
integers n, m), the configuration space of any double pendulum can be repre-
sented as the points on a toroidal surface (see fig. 1.4). Since U(a,p) is every-
where finite and continuous, it can be represented by distorting the torus so that
each point (a,B)’s height equals U(a,B). Any such distortion remains a surface
of genus g = 1 (i.e., topologically equivalent to a torus, which is a sphere with
g = 1holes in it). For any surface (as long as it is smooth, compact, orientable,
etc.), the numbers of minima, maxima, and saddle points obey the equation
N = Nug + Ny = 2 = 2g, which equals zero for g = 1.2 By compactness,
there must be at least one maximum and one minimum, so by this equation,
there must be at least two saddle points—and so at least four stationary points
in total.

This is a non-causal explanation because it does not work by describing
some aspect of the world’s network of causal relations. No aspect of the partic-
ular forces operating on or within the system (which would make a difference
to U(a,B)) matters to this explanation. Rather, the explanation exploits merely
the fact that by virtue of the system’s being a double pendulum, its configura-
tion space is the surface of a torus—that is, that U is a function of a and p.
This topological explanation is similar to the distinctively mathematical expla-
nation of the fact that there are always antipodal equatorial points of the same
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Figure 1.4 The topology of the configuration space of a simple double pendulum.
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temperature—except that the relevant surface is in configuration space rather
than physical space.

Since the configuration space of any double pendulum is a torus, the same
explanation applies to any double pendulum, not just to a simple one. For
example, the same explanation applies to a compound square double pendulum
(see fig. 1.5). It also applies to a double pendulum where the two suspended
extended masses are not uniformly dense and to a complex double pendulum
under the influence of various springs forcing its oscillation. Each of these has at
least four equilibrium configurations, though the particular configurations (and
their precise number) differ for different types of double pendulums. Although
the causal explanation of the system'’s particular equilibrium configurations dif-
fers for each of these kinds of pendulum (since their potential energy functions
differ), the distinctively mathematical explanation of its having at least four equi-
librium configurations is the same in each case.

Perhaps there is a causal explanation of a given double pendulum’s having at
least four equilibrium configurations (namely, an explanation that first explains
why it has certain particular equilibrium configurations rather than different
ones, and then points out that those equilibrium configurations number at least
four). But even if there is such a causal explanation for a given double pendulum,
the combination of two such explanations (e.g., for a simple double pendulum
and a complex double pendulum) does not explain why the two pendulums are
alike in having at least four equilibrium configurations. That is because this com-
bination appeals to importantly different factors for the two pendulums and so
inaccurately depicts as coincidental their similarity in having at least four equi-
librium configurations.

The reason I have mentioned the distinctively mathematical explana-
tion of a double pendulum’s having at least four equilibrium configurations is
that although this explanation does not derive its explanatory power from its

Figure 1.5 A compound square double pendulum
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describing the causes operating on the system, it does appeal to a contingent
natural law: that a system is at equilibrium exactly when the net force on each
of its parts is zero (i.e., when its potential energy is stationary)—a particular
case of Newton’s second law. Why doesn’t this law make the explanation causal?
Because, I suggest, Newton’s second law describes merely the framework within
which any force must act; it does not describe (even abstractly) the particular
forces acting on a given situation. Any possible force accords with Newton’s sec-
ond law. For example, had gravity been an inverse-cube force, then it would still
have operated according to Newton’s second law. Had there been some other
(physically impossible) kind of forces in addition to the actual kinds, Newton’s
second law would still have held. Such counterlegals are sometimes invoked in
science, as when Ehrenfest (1917) famously showed that had gravity been an
inverse-cube force or fallen off with distance at any greater rate, then planets
would eventually have collided with the Sun or escaped from the Sun’s grav-
ity. Ehrenfest’s argument requires that Newton’s second law would still have
held, had gravity been an inverse-cube force or fallen off with distance at any
greater rate. As I will explain further in the next three chapters, Newton’s second
law—Tlike the conservation laws (to be discussed in chapter 2), the spacetime
coordinate transformation laws (in chapter 3), and the parallelogram law for
the composition of forces (in chapter 4)—according to many scientists “tran-
scends” (Wigner 1972, 13) the peculiarities of the various kinds of forces that
happen to exist (e.g.,, electromagnetic, gravitational) in that it would still have
held even if those forces had been different.

Indeed, even just to say “the peculiarities of the various kinds of forces that hap-
pen to exist” is to recognize that although these individual force laws are matters
of natural necessity, Newton’s second law is more necessary than they. Compared
with it, they happen to hold. In other words, although Newton’s second law is not
a mathematical, conceptual, metaphysical, or logical truth, it stands closer to them
modally than an ordinary law does. Thus, an explanation that shows the explanan-
dum to follow entirely from such laws thereby shows the explanandum to be nec-
essary in a way that no explanation that depends on a force law could show it to
be—or, more broadly, in a way that no causal explanation could show it to be.

Of course, Newton’s second law characterizes the causal relation between
force and motion: that the force experienced by a point particle (together with
its mass) causes it to undergo a certain acceleration. When Newton’s second
law (together with the force on and mass of a point body) explains the body’s
acceleration, it is figuring in a causal explanation. However, that is not what it is
doing in connection with the distinctively mathematical explanation of a double
pendulum’s having at least four equilibrium configurations. That Newton’s sec-
ond law describes a causal relation does not matter to that explanation. All that
matters is that there is a certain relation between the force (or energy) function
and equilibrium, regardless of whether and how one is causally related to the
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other—and that this relation is modally stronger than the causal details. Recall
that the number of Mother’s children helps to cause her to fail in her attempt to
distribute the strawberries evenly. But that causal role is not the role that the
number of Mother’s children plays in the distinctively mathematical explana-
tion. That role is to make Mother’s success impossible (in a stronger respect than
causal considerations underwrite). Likewise, the causal relation between force,
mass, and acceleration helps to causally explain many features of a double pen-
dulum’s behavior. But that is not its role in the distinctively mathematical expla-
nation of the existence of at least four equilibrium configurations. Its role there
is to make the existence of at least four equilibria inevitable (in a stronger respect
than causal considerations could). What matters to that explanation is the law’s
role in the framework that any possible double pendulum must inhabit. What
the law contributes to the explanation is its strong variety of necessity, which
helps to make it impossible (in that strong respect) for a double pendulum to
have fewer than four equilibrium configurations. This strong necessity makes
no contribution to a causal explanation of a body’s acceleration; as far as such
a causal explanation is concerned, Newton’s second law of motion might just as
well not transcend the various particular force laws.

Any causal explanation in terms of forces must go beyond Newton’s second
law to exploit the particular forces at work—if not specifying them fully, then
at least appealing to their relevant features (such as their proportionality to the
inverse-square of the distance). This is not done by the distinctively mathemati-
cal double-pendulum explanation (which is why it can apply to double pen-
dulums that differ in the particular forces at work). Therefore, this explanation
qualifies as non-causal despite including Newton’s second law. By contrast, even
an “equilibrium explanation” of why a given ball, released just inside the rim of
a concave bowl, ends up at the bowl’s bottom must appeal to something about
the particular forces acting, such as the existence of friction between the ball and
the bowl’s surface. So this explanation is causal despite abstracting from the ball’s
particular trajectory in the bowl.

Any natural laws in a distinctively mathematical explanation, I will suggest,
must transcend the laws describing the particular kinds of causes that exist. In
chapter 2, I will make this notion of “transcendence” precise. For now, I will
say merely that Newton’s second law transcends the particular force laws if it
is modally stronger than they. By the same token, mathematical truths (such as
those figuring in the various distinctively mathematical explanations that I have
examined) transcend the particular force laws in that mathematical necessity is a
stronger variety of necessity than natural necessity. A distinctively mathematical
explanation works (I propose) not by describing the world’s actual causal struc-
ture, but rather by showing how the explanandum arises from the framework
that any possible physical system (whether or not it figures in causal relations)
must inhabit, where the “possible” systems extend well beyond those that are
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logically consistent with all of the actual natural laws. Both mathematical truths
and contingent natural laws that transcend the force laws are therefore able to
figure in distinctively mathematical explanations.

For example, suppose we had two double pendulums: one simple, the
other with inhomogeneous, extended masses and oscillations driven by vari-
ous springs. Why do both of these pendulums have at least four equilibrium
configurations? We could specify the energy functions for both pendulums
and then derive separately the particular equilibrium configurations for each,
thereby showing that each has at least four of them. But this derivation would
portray the explanandum as a coincidence since this derivation would fail to
identify some important feature common to the two pendulums as responsible
for their both having at least four equilibrium configurations. Since there is such
a common feature, this derivation fails to explain why both pendulums have at
least four equilibrium configurations. The explanandum has only a distinctively
mathematical explanation. That these two double pendulums are alike in having
at least four equilibrium configurations is no coincidence because any double
pendulum, in virtue of being a double pendulum, must possess this property.
This must is stronger than the necessity possessed by the force laws, and so no
derivation using those laws could show that these two pendulums, just by virtue
of being double pendulums, must have this feature. (I made a similar point at
the end of section 1.2 regarding the fact that two moments in Earth’s history are
alike in that at each there exists two antipodal equatorial points having the same
temperature; the similarity between these moments also turns out to be no coin-
cidence by virtue of having a distinctively mathematical explanation.)

In like manner, the distinctively mathematical explanation of the repeated
failure to cross the Konigsberg bridges works not by describing the world’s
nexus of causal relations, but rather by showing that the task cannot be done—
where this impossibility is stronger than natural impossibility. The distinctively
mathematical explanation thereby reveals it to have been no coincidence that
all of the actual attempts failed. The explanans consists not just of various math-
ematically necessary facts, but also (as I showed in section 1.3) of various con-
tingent facts presupposed by the why question: that the arrangement of bridges
and islands is fixed, that any “crossing” consists of a continuous path over them,
and so forth. The distinctively mathematical explanation shows it to be neces-
sary (more strongly so than any particular force law) that under these contin-
gent conditions, the bridges are not crossed. By the same token, the distinctively
mathematical explanation in the double pendulum example shows it to be nec-
essary (and more than merely naturally necessary) for a given double pendulum
to have at least four equilibrium configurations under certain contingent condi-
tions that the why question presupposes (e.g., that the string does not lengthen,
the bob does not explode, the pendulum remains confined to a plane). These
contingent facts specify the double pendulum arrangement in question just as
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various contingent facts fixing the bridge arrangement are understood to be pre-
supposed by the task of crossing the Konigsberg bridges.

Under the contingent conditions fixing the bridge arrangement in question,
that arrangement functions as an abstract, ideal, “mathematical” object: a “graph”
(or “network”). Likewise, suppose we ask (in discussing a classic problem of
geometric construction) why no one has ever trisected a 60° angle using only a
compass and an unmarked straightedge. That such a construction is mathemati-
cally impossible explains why no one has ever done it. Once again, the task in
question is understood to involve an ideal compass and straightedge (or physical
instruments that are not exploiting their departures from the ideal).

MW 1.5 ELABORATING MY ACCOUNT
OF DISTINCTIVELY MATHEMATICAL
EXPLANATIONS

Let’s take stock of the foregoing proposal concerning the way that distinctively
mathematical explanations operate. I agree with Mancosu, Lipton, and Kitcher
(in the passages cited at the start of section 1.2) that distinctively mathematical
explanations are non-causal. But I do not accept Batterman’s (2010, 3) diagno-
sis that what makes them non-causal is that they involve a “systematic throw-
ing away of various causal and physical details.” Many causal explanations do
that, too—including explanations that appeal to one trait’s having greater fitness
than another (abstracting away from the detailed histories of individual mating,
reproduction, and predation events), explanations that appeal to a peg’s square-
ness and a hole’s circularity (abstracting away from the particular intermolecu-
lar forces at work), and (as Jackson and Pettit 1992 suggest) explanations of a
flask’s cracking that appeal to the temperature of the hot water in it (abstract-
ing away from the particular collisions between water and glass molecules that
caused the cracking). All of these are causal explanations because they work by
offering “information relevant to the causal history of the thing to be explained”
(Jackson and Pettit 1992, 11; see 3,9).

A computer program explains why a computer performs some behavior by
ensuring that some electronic event or other occurs to bring about that behav-
ior (without determining every detail of the electronic event). In like manner,
a “program explanation” of the flask’s cracking specifies a property (the water’s
temperature) that all but ensures that a molecular collision occurs that causes
the cracking, but without determining that collision’s every detail (Jackson
and Pettit 1990). I agree with Jackson and Pettit that such a “program explana-
tion” is causal. However, I suggest (contrary to Jackson and Pettit) that some
scientific explanations (such as distinctively mathematical explanations) are
non-causal. Like program explanations, distinctively mathematical explanations
supply modal information. But unlike distinctively mathematical explanations,



What Makes a Scientific Explanation Distinctively Mathematical? = 33

program explanations supply modal information by describing the world’s
causal structure—for instance, by revealing that even if the molecular collision
that actually cracked the flask had not occurred, some other molecular collision
would still have cracked the flask. A program explanation works by telling us that
something plays a certain causal role, without identifying the specific role-filler.
Distinctively mathematical explanations do not work in this way.

Likewise, I agree with Pincock’s characterization of the Konigsberg bridge
explanation as an “abstract explanation” in that it “appeals primarily to the for-
mal relational features of a physical system” (Pincock 2007, 257). But I do not
agree with Pincock (273) that “abstract explanations are a species of what are
sometimes called ‘structural explanations’ (McMullin 1978),” since McMullin
(1978, 139) regards structural explanations as causal: as working by describ-
ing the constituent entities or processes (and their arrangement) that cause
the feature being explained.’* On my view, the order of causal priority is not
responsible for the order of explanatory priority in distinctively mathemati-
cal scientific explanations. Rather, the facts doing the explaining are eligible to
explain by virtue of being modally more necessary than ordinary laws of nature
(as both mathematical facts and Newton’s second law are) or being understood
in the why question’s context as constitutive of the physical task or arrangement
at issue. The arrangement of bridges, the number of students in Lipton’s class,
the numbers of Mother’s strawberries and children, the numbers of jellybeans
and available colors, and so forth are explanatorily prior to the outcomes they
help to explain in the various distinctively mathematical explanations I have
examined—but not by virtue of their being causes of those outcomes. Rather, in
the contexts of the respective why questions, these facts are explanatorily prior
to the explanatory targets by virtue of being understood as constituting the situ-
ations at hand. They are the fixed parameters of the cases with which those why
questions are concerned.

Plenty of explanations abstract from petty causal influences, emphasizing
mathematical structure instead—but are nevertheless causal rather than dis-
tinctively mathematical explanations. For instance, let our explanandum be the
fact that when something diffuses through a homogeneous, boundless, two-
dimensional medium after having been released at the origin (0,0) at time t =0
(so the total finite quantity of the diffusing substance starts out infinitely con-
centrated),”” at every subsequent time t the concentration curve ®(xyt) is a
Gaussian (i.e., bell-shaped) curve—in other words, the concentration is propor-
tional to e”* "% for some constant c. Here is an explanation of this fact, follow-
ing an argument discovered by John Herschel (1850, 19-20):

The concentration function is proportional to the function giving the likelihood
of a diffusing parcel’s being at a given location. A parcel’s likelihood of having man-

aged to make its way to some point or other with a given x-coordinate is equal to its



