)

1
0 g 1TWISE

/—_-
1 /)
gy L1FE
1N (0DE

10

Copyright © 2018 by David Auerbach

All rights reserved. Published 1n the United States by Pantheon Books, a
division of Penguin Random House LLLC, New York, and distributed 1n
Canada by Random House of Canada, a division of Penguin Random
House Canada Limited, Toronto.

Pantheon Books and colophon are registered trademarks of Penguin
Random House LLC.

Grateful acknowledgment 1s made to Schocken Books, a division of
Penguin Random House LLC, for permission to reprint an excerpt of “In
the Penal Colony” from The Completed Stories by Franz Kafka, edited by
Nahum N. Glatzer, copyright © 1946, 1947, 1948, 1954, 1958, 1971 by

Penguin Random House LLC. Reprinted by permission of Schocken

Books, a division of Penguin Random House LLC. All rights reserved.

Some material in the chapters “Logo and Love™ and “Chat Wars” first
appeared, 1n a different form, in Slate and n + 1.

This page constitutes an extension of this copyright page.

Library of Congress Cataloging-in-Publication Data
Name: Auerbach, David (David B.), author.
Title: Bitwise : a life in code / David Auerbach.

Description: First edition. New York : Pantheon Books, 2018. Includes
bibliographical references and index.

[dentifiers: LCCN 2017055983. ISBN 9781101871294 (hardcover : alk.
paper). ISBN 9781101871300 (ebook).

Subjects: LCSH: Computer science—Philosophy. Computer science—
Social aspects. Auerbach, David (David B.)—Philosophy. Computer
scientists—United States—Biography.

Classification: LCC QA76.167 .A84 2018 | DDC 004—dc23 | LC record
available at Iccn.loc.gov/2017055983

Ebook ISBN 9781101871300
www.pantheonbooks.com

Cover design by Tyler Comrie

v).3.2

2

Contents

Cover

Title Page
Copyright
Dedication
Introduction

Part 1
Chapter 1: Logo and Love
Chapter 2: Chat Wars
Chapter 3: Binaries

Interlude: Foreign Tongues

Part 11
Chapter 4: Naming of Parts

Chapter 5: Self-Approximations

Chapter 6: Games Computers Play

Interlude: Adventures with Text

Part 111
Chapter 7: Big Data
Chapter 8: Programming My Child

Chapter 9: Big Human

Epilogue: The Reduction of Language, the Flattening ot Life

Acknowledgments
Notes

Further Reading
Works Cited

[lustration Credits
A Note About the Author

INTRODUCTION

Thoughtfulness means: not everything 1s as obvious as 1t used
to be.

—HANS BLUMENBERG

COMPUTERS always offered me a world that made sense. As a
child, I sought refuge 1n computers as a safe, contemplative
realm tar from the world. People confused me. Computers were
precise and comprehensible. On the one hand, the underspecitied
and elusive world of human beings; on the other, the regimented
world of code.

I had tried to make sense of the real world, but couldn’t. Many
programmers can. They navigate relationships, research politics,
and engage with works of art as analytically and surgically as they
do code. But I could not determine the algorithms that ran the
human world. Programming computers from a young age taught
me to organize thoughts, break down problems, and build
systems. But I couldn’t find any algorithms sutficient to capture
the complexities of human psychology and sociology.

Computer algorithms are sets of exact instructions. Imagine
describing how to perform a task precisely, whether 1t’s cooking
or dancing or assembling furniture, and you’ll quickly realize how
much 1s left implicit and how many details we all take for
granted without giving i1t a second thought. Computers don’t
possess that knowledge, yet computer systems today have
evolved impertect pictures of ourselves and our world. There 1s a
gap between those pictures and reality. The smaller the gap, the
more useful computers become to us. A self-driving car that can
only distinguish between empty space and solid objects operates
using a primitive image of the world. A car that can distinguish
between human and nonhuman objects possesses a more

sophisticated picture, which makes it better able to avoid deadly
errors. As the gap closes, we can better trust computers to know
our world. Computers can even trick us into thinking the gap 1s
smaller than 1t really 1s. This book 1s about that gap, how it 1s
closing, and how we are changing as it closes. Computers mark
the latest stage of the industrial revolution, the next relocation of
our experience from the natural world to an artificial and man-
made one. This computed world 1s as different from the “real”
world as the factory town 1s from the rural landscape.

Above all, this book 1s the story of my own attempt to close
that gap. I was born 1into a world where the personal computer did
not yet exist. By the time I was old enough to program, it did, and
[embraced technology. In college, I gained access to the internet
and the nascent “World Wide Web,” back 1n the days when AOL
was better known than the internet itself. I studied literature,
philosophy, and computer science, but only the latter field
offered a secure future. So after college 1 took a job as a
software engineer at Microsoft before moving to Google’s then-
tiny New York office. I took graduate classes in literature and
philosophy on the side, and I continued to write, even as the
internet ballooned and our lives gradually transitioned to being
online all the time. As a coder and a writer, I always kept a foot
in each world. For years, I did not understand how they could
possibly converge. But neither made sense 1n 1solation. 1 studied
the humanities to understand logic and programming, and I
studied the sciences to understand language and literature.

A “bitwise operator” 1s a computer 1nstruction that operates on
a sequence of bits (a sequence of 1s and Os, “bit” being short for
“binary digit”), manipulating the individual bits of data rather
than whatever those bits might represent (which could be
anything). To look at something bitwise 1s to say, “I don’t care
what 1t means, just crunch the data.” But I also think of it as
signifying an understanding of the hidden layers of data
structures and algorithms beneath the surface of the worldly data
that computers store. It's not enough to be worldwise 1f

computers are representing the world. We must be bitwise as well
—and be able to translate our 1deas between the two realms.

This book traces an outward path—outward from myself and
my own history, to the social realm of human psychology, and
then to human populations and their digital lives. Computers and
the internet have flattened our local, regional, and global
communities. Technology shapes our politics: in my lifetime, we
have gone from Ronald Reagan, the movie star president, to
Donald Trump, the tweeting president. We are bombarded with
worldwide news that informs our daily lives. We form virtual
groups with people haltway around the world, and these groups
coordinate and act 1n real time. Our mechanisms of reason and
emotion cannot process all this information 1in a systematic and
rational way. We evolved as mostly nomadic creatures living 1n
small communities, not urban-dwelling residents connected 1n a
loose but extensive mesh to every other being on the planet. It’s
nothing short of astounding that the human mind copes with this
drastic change in living. But we don’t think quite right for our
world today, and we are attempting to off-load that work to
computers, to mixed results.

Computers paradoxically both mitigate and amplify our own
limitations. They give us the tools to gain a greater perspective on
the world. Yet if we feed them our prejudices, computers will
happily recite those prejudices back to us 1n quantitative and
apparently objective form. Computers can’t know us—not yet,
anyway—but we think they do. We see ourselves differently in
their reflections.

We are also, in philosopher Hans Blumenberg's term,
“creatures of deficiency.” We are cursed to be aware of our
poverty of understanding and the gaps between our constructions
of the world and the world itself, but we can learn to constrain
and quantify our lack of understanding. Computers may either
help us understand the gaps in our knowledge of the world and
ourselves, or they may exacerbate those gaps so thoroughly that
we torget that they are even there. Today they do both.

LOGO AND LOVE

The Turtle

[found particular pleasure in such systems as the differential
gear....I fell in love with the gears.

—SEYMOUR PAPERT

WE ARE DRIVEN TO DISCOVER how things work, but I was often
disappointed to find out that one thing or another didn’t work
more neatly. The television, the automobile, and the human body
seemed like they could be more organized, more -elegant.
Computers, however, did not disappoint me.

Like so many software engineers, I was a shy and awkward
child, and I understood computers long before I understood
people. The precision, clarity, and rehability that computers
promised, particularly in the 1980s when they were so much
stmpler than they are today, provided a refuge for many children
who did not easily integrate into the social fabric of their peers.
But a computer was not merely something that 1 could play with;
it was something I could program and control, and with which I
could create a new world. Computers are now moving toward
virtual reality and photorealistic games, but back then computers
displayed only a screen of text and primitive monochrome
graphics, which were nonetheless enough to support something
that remains more fundamentally powerful than the sharpest
graphics: code.

My first computer language was Logo, a graphical language
developed 1n 1967 by Wally Feurzeig, Seymour Papert, and
Cynthia Solomon and intended as an educational tool. I learned 1t
at a computer class for kids at our local rec center 1n the suburbs
of Los Angeles when I was seven. Armed with Logo, I could
write 1nstructions (in the form of a program) for a triangular
“turtle” on the screen, which would then draw lines and shapes
based on those instructions. The screen was monochrome, green
text and lines on a black background.

The first “program” I wrote was a single line of code: drawing
a square.

th

repeat 4 [forward 50 right 90

That 1s, go forward 50 pixels, turn right by 90 degrees, and
then repeat those two steps a total of four times. At the end of it,
the turtle would be back where 1t started, having drawn out a
square. By changing the angle and the number of repeats, I could
draw a variety of polygons. A triangle:

repeat 3 [forward 50 right 120]

An octagon:

repeat 8 [forward 50 right 45]

A pentagram:

repeat S5 [forward 50 right 144]

I could not draw a pentagram by hand, at least not well. The
turtle drew 1t perfectly. The 144-degree angle felt like secret
knowledge to me. I hadn’t realized that the program did not need
to be any more complex than that for a square or an octagon.
Sometimes I boosted the number of repeats so that the turtle
would continue to zip along the pentagram’s lines like a bullet
train.

These single-line programs are all algorithms. The word
“algorithm™ 1s a derivation of the name of ninth-century Persian
mathematician Muhammad 1bn Miuisa al-Khwarizmi. An
algorithm 1s, informally speaking, the set of rules or instructions
specifying the path from a specified problem (“Draw a
pentagram with sides of length 507) to the solution to that
problem (the visual display of the pentagram itselt). Algorithms
can become increasingly general, specified with variables rather
than constants (“Draw a polygon with n sides of length m”).

Algorithms hooked me. My own experience suggests that some
people’s brains are more tuned 1n to this way of thinking, just as
some people are more attuned to mathematics or languages. 1 am
not a visual or a verbal person: I was rejected from kindergarten
because I couldn’t draw. But these kinds of assemblages of
instructions made 1ntuitive sense, and 1 thought they were
beautiful. Instead of just having the thing itself, I had the recipe

for the thing and, moreover, could make the recipe increasingly
general so that reams of problems could be solved by twiddling

the dials on a single recipe. That, 1n essence, 1S computer
programming.

Simple algorithms can produce beautifully complex results. Here
iIs a Logo program of half a dozen lines,
sierpinskiTriangle, which draws a fractal triangle.

to sierpinskiTriangle :length :depth
if :depth < 1 [stop]
repeat 3 |
sierpinskiTriangle :length/2 :depth-1
forward :length

right 120
]
end
Invoking the program with the command

sierpinskiTriangle 500 7 will cause the turtle to draw
the following graphic:

You can get this fractal pattern out of six lines of code because
sierpinskiTriangle 1s doing one thing over and over
again: drawing a triangle made out of three triangles. But every
time 1t draws one of those triangles, 1t first draws three smaller
triangles inside that triangle—in other words, 1t does the same
thing, just smaller. So the code calls 1tself, in a process called
recursion.

Here 1s another example of recursion, a program to draw a
tree:

to tree :level :size :scale :angle
1f :level > 0 [

fd :si1ize

1t :angle

tree :level - 2 :s1ze * :scale * :scale
:scale :angle

rt :angle

rt :angle

tree :level - 1 :size * :scale :scale
:angle

1t :rangle

bk :s1ze

]

end

Invoking this program with tree 18 100 .9 20 produces
this graphic:

This amazed me. It seemed impossible. How could a dozen
lines of code produce such a beautiful and complex pattern? How
had I 1nstructed this computer to draw more capably and more
beautifully than my hand could? I wanted to understand how such
a great effect could stem from such a small set of instructions,
and I wanted to author the programs that created such effects.
My confusion led to my desire to understand. My wonder led to
my desire to create.

Many people find their calling in a moment of sheer awe. The
awe stems from not just the beauty and elegance but the sheer
seeming impossibility of a past creation or discovery. For a writer,
this could occur on reading a particular line of Shakespeare or
Zhuangzi. For a mathematician, it may be found when studying

the proof of the irrationality of the square root of 2 or the
supremely elegant unity of Euler’s equation, which joins five
fundamental ~mathematical constants through addition,
multiplication, and exponentiation:

I was impressed and perplexed by this equation when I first
saw 1t. The relation of the constants isn’t obvious. I found it
beautiful, yet 1t did not impel me to devour books of
mathematics. I could appreciate the elegance of Euler’s equation
without wishing to dissolve my 1dentity in the world of
mathematics. Not so with the world of computers.

Plato believed that the core impulse to philosophizing lies 1n
aporia, the point at which, 1n struggling to understand a
phenomenon or answer a question, we come up against a
seemingly 1rresolvable contradiction. The force of this
contradiction can make us reassess the totality of what we
thought we knew and reformulate it in a revolutionary way—for
example, by saying, as Copernicus did 1n 1543, “Yet at rest in the
middle of all things 1s the Sun.”

Elsewhere, 1n the Theaetetus, Plato writes that philosophy
begins 1n wonder (thaumazein), the awe-inspiring excitement that
I felt on seeing the turtle-drawn tree. Aristotle, Plato’s stolid
successor, played down aporia. Perhaps this helped him to
generate answers far more readily than Plato did. Arnistotle
produced systems of earthly and celestial motion, attempts at
basic biology, and classifications of the various peoples and
humors of the world.”! Plato’s works, instead, tend to dwell more
on how easily our minds are misled, and ask how we can be
certain of anything. We care and work hard to understand and
master a discipline through a combination of wonder and
confusion. In his 1938 book Experience and Prediction, the
philosopher of science Hans Reichenbach described the human
condition as one not just of profound 1gnorance, but also 1llusion:

We walk through the world as the spectator walks
through a great factory: he does not see the details of
machines and working operations, or the
comprehensive connections between the different
departments which determine the working processes
on a large scale....We see the polished surtace of our
table as a smooth plane; but we know that 1t 1s a
network of atoms with interstices much larger than the
mass particles, and the microscope already shows not
the atoms but the fact that the apparent smoothness 1s
not better than the “smoothness” of the peel of a
shriveled apple. We see the 1ron stove before us as a
model of rigidity, solidity, immovability; but we know
that 1ts particles perform a violent dance, and that it
resembles a swarm of dancing gnats more than the
picture of solidity we attribute to it. We see the moon
as a silvery disk 1n the celestial vault, but we know it 1s
an enormous ball suspended 1n open space. We hear
the voice coming from the mouth of a singing girl as a
soft and continuous tone, but we know that this sound
1s composed of hundreds of 1mpacts a second
bombarding our ears like a machine gun....We do not
see the things, not even the concreta, as they are but 1n
a distorted form:; we see a substitute world—not the
world as 1t 18, objectively speaking.

This “substitute world” that we see 1s, 1n short, a lie. Our brains

take

sense data and inaccurately analogize it into forms that are

already familiar to us. But as children growing up, this substitute

worl

d works quite well. It 1s manageable and legible to us, since

we engage with the world 1n a functional and effective tashion.

The

world as 1t 1s only grants flashes of strangeness to a child to

suggest that reality might be quite different. What really goes on

1nsid

e our bodies? How did this world come to be? What is

deat

n? These questions don’t often present themselves, because

we know to be productive with our time rather than diving into

what David Hume called the “deepest darkness” of paralyzing
skepticism. Yet much joy and satisfaction can be found in
chasing after the secrets and puzzles of the world. I felt that joy
first with computers. In them I found a world strictly divided
between the program and the output. The instructions and the
execution. The simple code and the beautiful tree.

I remain a terrible artist, barely able to draw a human figure.
But I fell in love with the concepts of algorithmic programming:
instructions, branches, variables, functions. I saw how a program
could generate the simulated world of the output. Recursion was
too tricky tfor my seven-year-old self to wrap my head around,
but I wanted badly to understand it, and I was convinced that I
could. My wonder at the power of programming, the ability to
create merely through simple lines of text and numbers, drove
me.

The complexity of life 1s all around us, but we grow numb to
what we see of it, even while so much lies outside our immediate
experience: microworlds of cells, atoms, particles, as well as the
macrocosmos of our universe containing far more galaxies than
the Earth has people (approximately two trillion galaxies by
NASA’s 2016 estimate). Programming abstracted away the
uncertainty of the world and laid its principles out betore me.
Notions of elegance and beauty drive programmers just as much
as they do mathematicians and poets. What mattered 1s that I felt
the jump from the programmatically simple to the aesthetically
complex.

On a computer, that jump 1s clean, elegant, and definitive. One
popular philosophical table concerns the myth that the Earth 1s
supported on the shell of a gigantic turtle. > “What is supporting
the turtle?” asks the philosopher. It’s “turtles all the way down,”
comes the reply. There 1s no final answer available to us, only
more questions. Programming offered a stopping point with 1ts
artificial world, a final answer. In Logo, there was just the turtle,
just the one.

The first turtle I worked with was a simple triangle, not the

waddling shape you see 1n the pictures above. Later, the program
LogoWriter made an appearance at my school. It was a frillier
version of Logo, which replaced the triangle with a turtle shape
closer to what I've used here. 1 dishiked the turtle-shaped turtle
(and I stll do). LogoWriter added bells and whistles, but the
representation of the turtle as a turtle had no tfunctional impact
whatsoever on the workings of Logo. It was a supertluous
cosmetic change that drew attention away from what was truly
remarkable about Logo: the relationship between the program
and 1ts execution. The turtle, whether triangle-shaped or turtle-
shaped, was already abstracted away in my mind, just a point to
designate where drawing would next originate.

Even as I coded on Logo Writer, that tree still puzzled me. I
could not understand the concept behind recursion, the powertul
technique that allowed the tree program to draw such a
complicated pattern with so few lines of code. I wouldn’t figure it
out until my teens, when I would also learn what a powerful role
it played in all of computer science and indeed 1n conceptual
thinking 1n general. Recursion, 1in a nutshell, 1s use of a single
piece of code to tackle a problem by breaking it down i1nto
subproblems of the same form—Iike drawing a branch of a tree
that 1s 1tselt a smaller tree. It 1s envisioning the world as an ornate
yet fundamentally elegant fractal. Recursion reflects the
efficient, parsimonious instinct of computer programming, which
1s to get a lot out of a little.

The Assembly

Why would you want more than machine language?

—JOHN VON NEUMANN

Programming isn’t a wholly abstract exercise. Programming
requires hardware, which only became available to the average

home 1n the 1980s, and 1t had its own subculture too. In the pre-
internet days, there was a secret lore surrounding computers, and
much of 1t revolved around the Apple II.

My first computer was an Apple Ile. It was, by far, the most
popular home computer of its age, thanks not only to Apple’s
partnerships with educators but also to Apple’s focus on making a
general-purpose computer for consumers and hobbyists. Other
consumer-oriented computers, like the Commodore 64 or the
Atar1 400, were dedicated simply to running the primitive
software of the time. Apple’s computers used Chuck Peddle’s
ubiquitous (and cheap) 6502 processor and sat somewhere in
between those casual machines and professional PCs like IBMs.
This owes primarily to Apple creator Steve Wozniak’s
background i1n the hobbyist and computer club community and
his dedication to building a computer that could be both
accessible and powerful.”® Wozniak was not trained in academia
or research labs. He came out of vaguely countercultural groups
who got into PCs with the same fervency that others get into coin
collecting, cars, or Dungeons & Dragons. *

There was a totality to the Apple Ile that no longer exists on
computers today, or even mobile devices. It offered the sense of
being close to the fundamental machinery of the system. The
Apple Ile did not have a hard drive. Turn 1t on without a floppy
in the drive and you'd just see “Apple |[” frozen at the top of the
monitor. | had to boot a floppy disk containing Apple DOS, the
disk operating system, where I could program in Applesoft
BASIC, as did many others around that time.

I remember the first programs I tinkered with on the Apple
lIe. There was Lemonade Stand, a multiplayer accounting game
originally created by Bob Jamison back in 1973, then ported to
the Apple Ile in 1979 by Charlie Kellner. Playing 1t, I set prices
and budgeted for advertising, depending on the weather. It prices
were too high, people wouldn’t buy your lemonade. If prices were
too low, you wouldn’t make a profit. After a few days of play,
your mother stops giving you free sugar; a few days after that,

the price of lemonade mix goes up. If it rained, everything was
destroyed for that day and you took a total loss. If construction
crews were present on the street, they would pay any price for
your lemonade. I changed the code so everyone would pay
whatever price you set. I made a killing because I could change
the rules. Then I changed the code so that for the second player
only, people would never buy lemonade at any price, and I asked
my mother to play 1t against me. I won. She was baffled, then
simultaneously impressed and annoyed (a reaction that 1s every
child’s dream) when I told her I'd changed the code.

$¥F LEMONSUILLE DARILY FINANCIAL REFORT %

s TAND 1

INCOME %7 .¢

EAPENSES #$2.¢

PROFIT
ASSETS

SPRACE TO CONTINUE, ESC TO END. . =

Profiting from a heavy markup in Lemonade Stand

BASIC was a less elegant language next to Logo. But it was
native to the Apple Ile. With a few mysterious commands named
PEEK, POKE, and CALL, I could tinker directly with the guts of
the Apple lle. These commands let you access the physical
Random Access Memory (RAM) of the machine, the immediate,
transient short-term storage of the computer. PEEK (49200)
would make the speaker click, a thrilling sound when the single
loud beep was the only sound easily available to a BASIC
programmer. POKE (49384,0) would start the disk drive

motor spinning, good for scaring someone into thinking their
disk was being formatted. Other PEEKSs and POKEs allowed for
manipulation of text to make characters disappear and reappear
and move around—things that weren’t easy to do in BASIC
proper. You could also crash and reboot your machine, which
was otherwise nearly impossible in BASIC. POKEs and CALLS
were powertul stuft. PEEK was (mostly) safe.

Apple®Zero-Page

Display Switches

Mg CECAA, v e FLFYRRY L)
12 Tesd Window Latl-Bdge £ sawal sty ... 5] S v Grophbes ... SCDED
hudms lmil TE ¥ wwioE a ah 0 oo o ma N v Text | .. RS, * i 5 .Y
ey Do FEERI P FILROIH e e oo ma w0y - e el L wm L
33 Toul WINGBOW WK (1400 180 rorwad o &7 o 80§37 49034 ,-wace, Full-Cemphics 80062
e MM SIS wcn ke Relinge 1 Povetrem dnkrs. Bmcms: A0 1w Sglt-Sereen | .. SCO5S
H Texd 'Window Top-BEdge pai sevaw iy ... 02 Floe P, O SrTG4
35 Tewt ‘Window Befiom (134 rermwa 2. B8 gaese o P:mI*Tm """ $CTa5
'+ Horzores CUNSOr-Posioe oo e A _
- L!rriﬁjlmffm'!.w_:h:l:i-:gngj:1::d# 45'2351 sk L-Rad SI0ES
;| - [e A I3 i 1 ==
o Loty ooy e Al aaere swd o it V020w MR .ol a7
e WO TR — T T WY How Schvwe dupliy reict=e by Polerg sec oosion
17 Vprbesd B s Erppin POAEE SR vy 1 DrEctes Seeeey
Famorpis 1 PEEREET] Y, Wb W G o (s W e V1
4% Bool Shol b8 (afer pood) 58 Knmm!m.

44 Lo-Fer Uine Eng-Polrd L e YRGS
45 Lotes COLOR=1T | R —-
50 Tesd Cusipeirl Foirnad_ ha i bad A

IR A PATHS, Bl b, TP A
PEE B, RIS AT e ATEC T)

L
=L

W
beodg PRl 510 QDT el ol prwroperd o by "Ml [lem 4 o
e e ke e e erorecigen T sl searrnaer

S0 Ameddom-Fosher Pladd TdE4F

A0 faeri of Apsledch Program ..., .. - 807 &
Te Lossd @ i e erviaer] ey |-

FEE LD 0 POEE N L DN T, DA il

FONE W, WTILEG S Thpe | DED PRGN
e FF 0050 0 s |) =0 paogee ko i Sl R 1)

Wi LA .

s ol 1 E-.-'u-l-h:lul.il.-uu-j..d-- -....-ﬂ.l.-tl.:lil-:h:l-
B e Cmpyeers | e e e | el T | O o el

WO 1E Enent of Arrery-Speee SBBEC
WE-110 Oed of Arey-Specn . .. DAL
1'11 A1 Emer of Sring-Blewmge . . . _ﬁFZﬁ]-

=110 MMEM . T4

l-luh HILIE LA 1 1 s Pyt pcicepmn srumihaisies ke L - dpphomct
FoyeT By s crwsoed et Fu R oo g

1110 Lre-Number Bedng Esscates . $05 71
116812 Llee-Ma Where Progesm Blopesd 57774
TM-12 hokdress of Lire Exscuiing | SR 1
123124 Curmbnd OATA Uri-Mursber $TETC
-1 Mt DATA A . ETDTE
NET-120 IMPUT or DATA, Address . | . ETEM
1E8-750 Laat-{d Viarisbee Naim - ... »E1.52
TH-10 Last-Usec-Variablde dddras 0 5230
175778 End of Apslesch Program . . $aF Rl
214 RN Flag . R T

b am g PCHCE l1l. ﬂ -l_ -IT rr-r--r_l F:Illdnu-}rl
e OHERR Pesg . . #n
Eonrple mlll‘ll‘m h w.'rm'l
SRS Line—Rhamber of ONERR Eror . 30A L8

coo-ae | CNERR Evor Address SDC.0D
?ﬂ:‘: DH!M w m L EE BRI I ;m:
mﬂﬂm AFFLEROST
el B Al L Vsl W od b
J:l-'.‘r Flim o e T Ve RAC PP
T e D e I R e Ol
4 Py e] £ Tl o Tl
B Gl O ik Ry TR

B R O PR Pdad bymes]
" eyt Bl ok FE

Vet
FT e o Vewwmwp

N FIl Fim i T hrwlelc | Niebprap—
i [Pl EIT TR Gl
1 Wl | el 1T Voprkew'sl By

11 Bymige Fres! ma iregiie] Dol TR Vg iy D

17 e ey dapiahie W Ty Wprwach

Tk Pl Ty Bligergeci ITE: V3empg Ton Lowg

LE: Frreyepr: T Legn F . TWorrats T Do
For sk (D (e T oo Fecsor

T Depryoey ol B T Lrw

il il Py Ciperd B2 eyl ireemugd
fur Cheommcarmn Ml mdarad

ar T (e RS A S vy

B P Sl Oy O Dy

E2-22T0 X of Lawt HPLOT 2o SELED
2 Y ol Lossl HPLOT 2w 1=
ZAE HODOLUOR G] =

e, A, oL TRl G, | 70, Godel, B
T P S

S S A e g 1. ﬁ".llli.'r.l.-uhai'u.l
Al Do oo S I

cal BOALE e e SE7
e BCALE-E b mprvmers s g SO o Dl

I Shepe Table Slard Address |
ioH HFae Collisder-Ciasch, 5.

Eamrois oA @ Sps IF_;Hll—I-r.u.r-bi-.l‘-l
- AR R e
SF1

=41 SPEED .
o lei;lll-'l_l-u Fd rerar e ouvees SEILD

M} FLASH Mask | $F3
258 AOT:IF.'i!

Tl gt rnm el pewed ol B AT
BEADLE BROS M.
!I:.uﬁiﬂl'.':

IS0 (Wi Town Ay
San Do, Casomim

FEEHRLHT & Hela AT SFPRAY BFefd § fflafel dd

il

These numbers were arbitrary to outsiders, and they were not

TR

ok DAL ¢ R el vl Sy il B,

45152 v, e Kibyoooterd . $:0000
AL mva. Cloar s |

Fadrwde TEE PEERIIFRT 1Y SFYCI0E THEN 1
W FOEE JVME, 3
bl Dl

" R T

400 - ey Cheely ... 30000
Emprpie FOS &0 T 8 SUZDFEEKSRO0E FREVT

A0248 - weery Button B0, SO0ET
FaehTe § H h..--':_k-| |H'|:..i|'_‘* i-r =

48250 ey Bubion #1 20062
FIRICIN- 1 Tl 0o DM | P | = Jupuled Ny

49251 1 ems Bution w2, 3063
"Enperpiy F PN] g grese T [ZT, Fan
Faciclis B #on 6F i g owssed - T rol conmersed

DOS 3.3 Pokes

Ly 0 eaciad - 'I'-h'l_i'r

ﬁi-n.l'.mn, mﬁmmp-ltcquh-l
keras D05 saftars down hoee 058 brpsn

FOFE AiE - FOIRE aard N
Aibes M Fbi mares DeEloed SRlO] DR
Clasrm acmen bedces casing

PONE 84508 T POWE 44808
Ersrman Selatd S8 naomes on cetslog,

FOEE dabie s POEE sasy) Thi INIKE
HIM, BN Canemn raemED) pu

PORE 294 e POKE aiie . PO E
W, T Py Mg o Gaed iekoad

FOEE S804 0 SIops o e mcior,

FUOEE §RE2.D Sdark o msicr

Notes

Apes b et ¢ Habr e e el -l W U bpbes cw sl e
b b A By e Tl b el i WP i TR

Sy e Pl o @] g oplum i e = et] el
PRENT PMIEK

Fer ropwaed .
R O LA, PO T AR B E 3R- ET T
oy — Bl 0L
bl Py Wiy 2 sl e i mid ' B ¢ K arms.
i T vl N e i SR e B - —
FrosaT HLLe e P00s = o
i Ty Fepinp 5 g v ' B0 pemi orvie BT —
FOET B9, b -7 A T
mre PO IRL ATV R
Pl S il W VAL T e WOl Ry Ty e it
Freil P9y W bohda g S o il e sl St iy i
Fromid Sl el o'y i o P] ity e O i) e e
W el e i) = by ¢ T e Wikl e T e et B | el e
Dbl L oo e o = el vl e Sl
Lot A= PEFN A0S mres B~ PETRGEAAE]
o b B el B e B,

F el wre | BT #3407 hen Appk Tl
A0 Ban Appa T ar s,

Page-3 DOS Vectlors

FIIuA g

FESTE Ay -00O5 Vertor i:'-l:ﬂ-]-DE‘

!':JII}-IIHEHHH'_!':!:I----H-- .. BIFLEF
Erprple BOHTE WD D relies. Mokl Bl
FOEGE S M w rerr rarrs Mope Farmtan |

W15 Vierser SFEAFT
Frairwples FIFUE ETIE TE Pledd ik :rH F'-I--l-l l.‘l.n'-T
FOAE FTIE |0 Rl Tl e i L e TAL O
FOEF ETLE, 1B PO 1STH, M5 cslels 0l 15100

Wie-1l Conleal-Y Yelow. FEIFE3FA

DOS 3.3 Locations

TR faLe

i s ToC iy oo i e ey |

40N Calndog-Aouline ., .. . ROSHE
P vl SIALL LIS A N il

40018 Oreptin) Progras Run-Flag . -1 v

PR RS e THOT J sl vyl Piecl (LT e e e
%L Fw mm-l FEE R W e

430404 T Comresrads . : . SESE AT
43ITE-32 Ervoe hl-ll-'lq-l-l- :Ii.lﬂ:r?.u..iL
44T Lont Bnd L-ngh . !_l.l.#ﬁcl.l..ﬁ.a:.
4005440000 Lk Biodd Blart . AT ART]
A0S Divbep—Mupmitesr - S840

Eng=per FOEE O, EIII"-'IFﬂ:l. I-Fl.'lw.llll.l'-l- I

45001 Hot-Mamber . CERAES
Fedsrpe PO 130 *...u.?.'u.:l.l-m:lq_q:..l": .."'.h:-| s

L9020 Condrel-0 Cosmand Cramcter . . 32410
A0S AWISH Fle-Type Codes . . . SELAT ILIAL
ANFS-MEI N Disk Wolume Mesding SESAF BIBA
$B01T Deide Volume Nusbed | o FEIET
AESd SohTytve Walee . $8F30

B PEEIGRMALR, i graikis Wit 117 Pk [k 31, clrmsewstn Dress |

4TN34T4E Combninids SEaDS 2=k
ARl L Blped Lengri - FEECA BECE
AWM Lt BRoed Stert $3EEER BEBA
Useful Calis

[ofe d i e P WY i e el [
CALL-S0 150 Repprysadl DOHE 3] FDe=
CRALL-Z (0] Prvwsl brus g 0 =gt L
CALL-5%9 Oear i-mascreen o bllscde ="
CIALL=T000 o e b bk peber FFes

Fasewin FORS HOTUTM S HELOTT 00 CALL-D0RE

CALL 251 Hi-rea coomdinebe |o lero-Pega Lreicp
Fagrri Ton B ogrd ¥ geeing crorveraten o 8w BE0e o
DALMY oo NDFWW regp e oplgrwered wi § DALL-BS1]L Tres
W P] s (NN D 2 g e PR 20

CELL- 1456 Peaudc—Tmsat . § FAAY
CALL-TEM Bod GBFA&T
CAL L-135H I:I-H-Iﬁ l-lli-i-l-rl ¥Fany
CLl 11u-n-m-dpﬁ Jppl. . P
CALL-T000 Mows cumssr . Fror4
CBL |- 1008 Mol (ol sHC

Tl L 358 um-umm...Z'.j..ll.'j.j'.ﬁﬁ.!:rr:rﬁ.

Lol L-@tl (Chaar el Boim CLEE W B0ssim$n:-lz
CALL-557 Ml (LRl SOrat . BRI
Gl L- 966 h‘m-mmﬁm . HFGEC

CALL-F58 Wall for sy keypress 2 g

THLL TR WA for @ Fadiem e pTeiea FFCEA
= TEY 8 hﬂmMu . BF e
C T HARE A AHT, RERT] " DRI T
X djr !-I,.-I-ll:hT:l".,l'Il..‘I'F'l':l".-ill‘uv‘:-lil
THES LR ST FEER - 1 M RETT
CALL S5E NMemmory move ... - BFERC

L Phagn oy sy, D8, £, v Py Gy bcxpticon B |, Eved. el
HE o g Ao St TRV SO0 o s e S g —
MIE W O0 O JETAH D
F e LU Lk D TH R
B - R P T
ETE PR MBA. (R P WL 3 FOEE T TR
FOFE T77_ 4l PUEE T77, Fade AL 90 PRETTLNWNY
N ORI, A AT BT
PO L0, IMTIH M METLIAN

CALL-415 Dimsssschiser . - B
ﬂtIFm-lmumﬂ-ﬂutnl_-
CALL-F11 Fimg bell mngl privi “TRET | iz
E:.ILL--‘IE_EI Poloay il e REFAA
CALL-15T Erder mosder. . _................. tFrm
(AL 1 -14 Sean inpet bufle . |, ' e BFFTO

Mo B Vil | it CALL =18l My sty & Fedelre
Lo g s e o pc o b vw Flosms . forsll red s ot = 0w o e
T A" A T 2 70T W MO TR R
A0 CETE L AR
18 FOE M= T LR il p PO don =X
et o LTS, WY i
108 FOeE T = Call ~od4

e
He=n mabes csrbsl ared

Hangle
it el P, Glreds
a~d FPublcasoma Ior pll veruines
of Apnia 110 Compoas

T T Bty Drnebey llaprw o g o e

particularly publicized. Before the internet, programmers had to
learn this kind of esoteric knowledge haphazardly from books,
magazines, and other enthusiasts. There was a thrill of discovery
that can’t be re-created now that most information can be tound
with a simple web search.™ I would find a particular piece of
Apple lore, then think about 1t until the next time I got on the
computer to try 1t out. I discovered much, as many did then,
through the charts produced by Bert Kersey's Beagle Bros
software company. There 1s a certain set of people, myself
included, for whom this chart will spire an overpowering
nostalgia.

Part of this nostalgia owes to Kersey’s signature design and
clip art, which distinguished Beagle Bros from other vendors.
Part of 1t owes to the sheer intrigue around the secret details
contained on the chart: this was hidden knowledge! Kersey
captured the mystique:

Pokes are often used to write machine-language
routines that may be activated with the CALL
command—the possibilities are infinite.

Even novelties were fascinating because they revealed
unsuspected capabilities of the Apple lle. The program, which
appeared 1n a Beagle Bros catalogue, was pretty much impossible
to parse 1f read.

1 HOME: LIST: BUZZ=49200

2 AS="!/-"+CHRS$ (92): FOR A=1 TO 48:
B=PEEK (BUZZ) :FOR C=1 TO A: NEXT:
X$=MIDS (AS$,A-INT(A/4)*4+1,1): VTAB 3:
HTAB 10: PRINT XSXSX$: NEXT: GOTO 2

If typed in and executed, 1t would print itself and then make a
varispeed buzz as the characters 1n the first line appeared to spin
around 1n time with the buzzing. Who would think of such a
thing? My nostalgia for this ephemera also owes to the tangibility

into a language called 6502 assembly for Apple Ile CPUs. The
clock speed of a processor, given in cycles per second, or hertz,
dictates just how fast a CPU chip could execute individual
assembly instructions.”’ Vastly more daunting than BASIC, I
didn’t dare touch 6502 assembly as a kid. Assembly language
grants access to the physical memory of the computer and allows
one to specify numerical operation codes (opcodes) that are
actually understood by the hardware in the CPU. In assembly,
there 1s almost no distance between the programmer and the
hardware.

Here’s some assembly for a “Hello world!” program (one that
just displays “Hello world!” and exits) in Apple II 6502 assembly:

COUT gequ $FDED ;The Apple II character output func.
keep HelloWorld

main start

1dx #o ;0ffset to the first character
loop lda msg, X ;Get the next character
cmp #0 ;End of the string?
beq done ;=>Yes!
jsr couT ;Print it out
inx ;Move on to the next character
jmp loop ;And continue printing
done rts ;All finished!
msg dc € 'Hello world.’
dc h'ep’
dc h'ee’
end

And here 1t 1s 1n C:

int main () {
printf ("Hello world!\n");
return 0O;

And here 1t 1s in Applesoft BASIC:
10 PRINT "HELLO WORLD!"

In the eighties, many programmers coded directly in assembly.
Programs were simpler and performance was critical. But as
computers got larger and more complex, 1t became unfeasible to
code in assembly.”® Programmers need to learn a different
assembly language for different processors (as with the Apple II's
6502, the Macintosh’s 68000, and the PC’s 8086), which 1s
horrendously 1netticient. More etfficient was to use a CPU-
independent higher-level language. All the languages we hear
about today, from C++ to Java to Ruby to Python, are higher-
level languages. A compiler takes the code written in these
languages and translates it into the assembly code for a particular
processor.

Until I learned assembly i1n college, and how language
compiler programs translated higher-level programming
languages into assembly, computers remained partly opaque to
me. That gap in my knowledge bothered me, because even
though 1 had far more direct control over those lower layers, I
couldn’t understand them. When [took a compilers class in
college, the infrastructure of the computer opened up to me.
There was no longer a miracle in between my code and its
execution. I could see the whole picture, tinally, and 1t was
beautiful.

The Split

I renounce any systematic approach and the demand for exact
proof. I will only say what I think, and make clear why I think
it. I comfort myself with the thought that even significant
works of science were born of similar distress.

[want to develop an 1mage of the world, the real
background, 1in order to be able to unfold my unreality before

it.

—ROBERT MUSIL

When I was a teenager, programming lost 1ts allure. The “real
world,” such as 1t was, had drawn my attention away from what
now looked to be the sterile, hermetic world of computers. It was
the late eighties. The web did not exist in any accessible form,
nor were computers part of most people’s daily lives. 1 was part
of the very last generation to grow up 1n such a world. People
only a few years younger than me would have the nascent public
internet and the web to dig into and explore. I had online bulletin
board systems (BBSs) and such, but they were strictly cordoned
off from my everyday existence, the exclusive preserve of
hobbyists, eccentrics, and freaks. And I was miserable in my
small suburban enclave. For many programmers, computers held
the answer to such misery. They continue to provide the
mesmeric escape from the dreary everyday routines of teenage
and adult years. I don’t have a clear explanation as to why
computers failed to offer me solace as they did for many others.
Something kept me from locking in completely to the brain-
screen bond that kept many teen programmers up all night coding
games or hacking copy protection. Literature became my refuge
instead.

My parents had raised me on science fiction, the standard
literary junk tood of computer geeks, but 1 felt increasingly
drawn to explorations of human emotion and existential crisis. At
a point of typical thirteen-year-old despair, 1 devoured the
complete works of Kurt Vonnegut over the course of two weeks.
They touched me. Vonnegut led me to explore increasingly
“deep” fiction.™”

My high school physics teacher introduced my class to James
Joyce, whom he considered the greatest author of the twentieth
century. He told us that Ulysses was dauntingly complex and that
Finnegans Wake was simply incomprehensible. The difficulty
and obscurity of Ulysses intrigued me as a teenager much as that

Logo tree program had as a child. How could a book of fiction be
“difficult”? Did 1t too hold a kind of programmatic complexity to
it?

I had stumbled on the writers of the Oulipo, the French-
dominated group specializing in experimental works of “potential
literature,” after Martin Gardner, amateur mathematical
enthusiast, had published several articles on the group in his
column in Scientific American.” '’ Their most famous members—
Raymond Queneau, Georges Perec, Italo Calvino, and Harry
Mathews—specialized 1n the innovation of literature through the
use of formal constraints. One of the most infamous was Perec’s
novel La disparition (A Void 1n Gilbert Adair’s English
translation), which contains not a single e in its three hundred
pages. That kind of constraint—Ieaving out a letter or set of
letters—is called a lipogram. The poet Jean Lescure’s “S+7”
method replaces every noun in a text with the seventh noun
following 1t 1n the dictionary. “Lend me your ears” becomes
“Lend me your easels.” Raymond Queneau’s One Hundred
Thousand Billion Poems 1s a set of ten sonnets with the exact
same rhyme scheme and rhyme sounds. By mixing and matching
lines, there are ten possible first lines, ten possible second lines,
and so on, resulting in 10'* possible sonnets.

Georges Perec’s mighty Life: A User’s Manual describes the
inhabitants of the ninety-nine rooms of a 10x10 apartment
building (one corner i1s missing), where each successive room 1s a
chess knight’s move away from the current room, and each room
is visited only once.”'! The intricate structuring, I later
discovered, had close ties to computer science. Perec was
fascinated by a mathematical technique called the Graeco-Latin
square, a device that pairs up two sets of elements so that each
pair occurs only once. The pairs are distributed 1n a square so
that each element also occurs only once 1n every row and column.
Perec used (and abused) Graeco-Latin squares to structure his
works: the original plan for Life: A User's Manual was to utilize
over twenty squares to determine what objects, characters, times,

furniture, clothing, and music to place into each chapter. Finding
these squares was a devilish task: in the eighteenth century, Euler
thought no 10x10 Graeco-Latin squares existed, and one was
only found 1n 1959, with the assistance of a computer.

L

HE TT—— : . =S -
. ! & a’ J . AN z o -_‘&ﬁi{.
J | i} s i
N -
|
. @ i—h"':'l e -3
L Fi#in aiy 2) e e
e i L ,1 _‘ H Em a Trl - -
'l e - g e l:.;""{ ‘
1 o ‘ i TR i |
SRR, A | | -uiw-r" S £
- v, ' -
- Bl 4
’ Hek &Lt o
< T - oy w m— . =
' w o =& ‘5:‘" |
I E SOn z II’
| o .. ¢ h}% %S . .
8§ ot : l

¥
5. §
[l

Brecht Evens’s rendition of the 10x10 apartment building in Georges
Perec’s Life: A User’s Manual.

Perec, unable to construct squares of sufficient sizes himself,
wrote to Indra Chakravarti, one of the authors of the 1960 paper
“On Methods of Constructing Sets of Mutually Orthogonal Latin
Squares Using a Computer,” who provided Perec with two 12x12
squares. One of Chakravarti’s coauthors was computer scientist
Donald Knuth, who would go on to write the monumental bible

Inaccuracy and error.

These kinds of opposing tendencies have been noticed by
many. Neither side 1s specific to science or the humanities. Both
the analytic and the heuristic exist within any domain of study,
whether literature, logic, or sport. In 1905, mathematician,
astronomer, and writer Henr1 Poincaré distinguished two types of
mathematicians:

The one sort are above all preoccupied with logic; to
read their works, one 1s tempted to believe they have
advanced only step by step, after the manner of a
Vauban who pushes on his trenches against the place
besieged, leaving nothing to chance. The other sort are
ouided by intuition and at the first stroke make quick
but sometimes precarious conquests, like bold
cavalrymen of the advance guard....Logic, which alone
can give certainty, 1S the instrument of demonstration;
intuition 1s the instrument of ivention.

Intuition, Poincaré says, 1s both necessary and fallible. I call 1t
“heuristic” because i1t 1s the often-unconscious art of selecting
which facts are relevant, which phenomena are linked, and which
shortcuts to take. Seventy years later, mathematician Mark Kac
spoke of two species of genius, scientific and otherwise: the
“ordinary” and the “magician.” The difference, Kac says, 1s that
even after we understand what a magician like Richard Feynman
has done, we still have no 1dea how they got there.

Heuristics may seem like inferior mental shortcuts compared
to the exactness of an algorithm, but in the 1950s, Nobel
economic laureate and polymath Herbert Simon promoted
heuristics as a necessary tool for coping with a world too
complex to understand analytically. For Stmon, heuristics were a
necessary mechanism for dealing with the limitations we face in
solving any problem: limitations of time, of knowledge, of
brainpower. Psychologist Gerd Gigerenzer goes further,

emphasizing that a failed complex analysis often generates worse
results than a simple, heuristic decision. We bring our biases to
problems not because we are flawed but because we would be
utterly lost without them: “Without bias, a mind could not
function well 1n our uncertain world.”

Heuristics are indeed necessary for human functioning, but we
must be cautious in how we apply them and their biases. As we’ll
see later, when heuristics are carelessly translated to computers,
trouble follows.

Bits and pieces inevitably slip through the cracks of heuristics.
Those lost fragments, too complex to be captured by formal
analysis or heuristic shorthand, fascinated me as much as the
formal systems. When Oulipian writers wove formal abstractions
into human joy and grief, as Jacques Roubaud did in The Great
Fire of London and Perec did m W, or The Memory of
Childhood, they brought out the gaps between those abstractions
and the 1rreducible complexity of reality. The formal and the
analytic, 1n their hands, became a heuristic tool 1n 1tself. Oulipian
techniques offered me unorthodox tools for connecting with the
world of human will and emotion.

The Oulipians played great games as well, but sometimes the
game seemed to take precedence over the human significance of
the story. It one 1s going to generate stories out of an
arrangement of tarot cards, as Italo Calvino did in The Castle of
Crossed Destinies, will the results pierce the human heart? At
times yes, at ttmes no, and so I found myself increasingly drawn
to the less constrained writing of Virginia Woolf and Herman
Melville.

But 1t was at the station of James Joyce where I moored my
boat. I read Ulysses with a brilliant and sympathetic teacher. The
book was damnably hard, ' with incomprehensible passages of
Irish dialect, Catholic theology, and gutter obscenity. Joyce’s
1deas ranged from puerile to abstruse to protfound, freely mixed
together with no easily grasped logic. Joyce’s book was
meticulously written, yet his plan remained opaque to me. That

challenge kindled a similar curiosity in me as Logo had done
years prior. But while computational concepts, however difficult,
resolved themselves clearly, Joyce’s Ulysses opened itself up to a
myriad of interpretations. The characters of Ulysses—Stephen
Dedalus, Molly Bloom, and Leopold Bloom—possessed lives that
were laden with tragedy, loss, and pain. Stephen’s loss of his
mother, the Blooms™ loss of their son, and the wayward
wandering of their daughter—to me they were matters of the
highest importance.

Yet for all of Ulysses’s rich messiness, 1t had been rigorously
structured, even overstructured, by Joyce. Joyce distributed
several schemas purporting to lay out the plan of the book,
describing chapter-by-chapter parallels with episodes of the
Odyssey, as well as the symbols and organs of the body that
dominated each chapter. Yet Joyce’s own words make 1t clear
that the schema 1s not the be-all and end-all of the book. It was
only one way (or eight ways) of seeing the novel, and Joyce had
worked himself to exhaustion to ensure that no one interpretation
or analysis could be final. The overlaid structures contradicted
one another. A character could be a hero or a villain, or a success
or a failure, depending on what prismatic structure the reader
applied. No single one was correct. This was Joyce’s way of
drawing out what was lost 1n those gaps, by providing not one but
many conflicting heuristics for understanding the book. Joyce’s
goal, as I came to see it, was not just to leave in ambiguity but to
pile on contradiction upon contradiction. To enrich rather than
reduce.

The formal patterns of Ulysses were fascinating to me, but not
in and of themselves. Rather, they disguised and then revealed
clues to the deepest puzzles of existence, those half-shown to us
in dim light as the knotted tendrils of human feeling. Computers
could not compare.

The Join

It 1s only a frivolous love that cannot survive intellectual
definition; great love prospers with understanding.

—LEO SPITZER

[met my wife Nina when I was eighteen. We wouldn’t get
married for ten years, because who could possibly trust their
eighteen-year-old self to be competent at choosing a partner? Our
meeting had been a freak accident. I was visiting friends at
Harvard, who were hosting an end-of-Passover pizza dinner at
Pizzeria Uno. Seven or eight of us squeezed around a small table,
and the person next to me was Nina. Nina wanted to be a poet. I
wanted to be a novelist. We were both programmers. Nina and |
each decided that the other was more interesting than anyone else
at the table. I did not see her again for six months.

Over the summer, we exchanged emails daily while I did data
entry and programming for a factory that made self-locking
fasteners. We exchanged adolescent angst and book and movie
recommendations. She liked the Cocteau Twins. I liked the Gang
of Four. We made cassette mix tapes for each other. We
eventually met up again and got together. Both of us had grown
up as science and math geeks, yet both of us were enamored ot
literature and emotional quandries. She gave me James Agee and
Walker Evans’s Let Us Now Praise Famous Men. 1 gave her Jorge
Luis Borges’s Ficciones. We looked for the supposed plate
memorlalizing Willilam Faulkner’s Quentin Compson on the
Charles River Bridge in Cambridge. We never found it, though
we did nearly freeze.”'”> A friend told me she knew Nina was
special because she had convinced me to wear rainbow shoelaces.
She had a far better ear for language and music than me, and she
made me see beauty where 1 had only been looking for rigor and
strain.

TITLE SCENE “nis OFGAN ART oA SYMED TECHNK
L Telewacs U Ean L Theokigy Wk, ouid e Ax st [poag)
LB " St 11 & . MEEIy ke bt ary | et)
1 Frosc = irawd ILam 1 | Philokogy Lrem ‘ga Mrdgs [ra)
Loy = |k Ear it i Fmari: = Sk AT rose)
1 Lots ey w Eus Ham Cewi L Botwy Chernidry bucheny AN IS
Hi M b L2 eipa Hoat £ M gan Y e, Dlih T 2
b o P pet 12 man Ly) Pelax bz Livrme Erfpmre
I Ls=Tpre L JF ;- | pm | oo 1 AThiaaw Wy g5 & o o ol
i {:ji: W | bawy il o1, Py a i Lisgs= il Lordoe | Daoeck
il Nadvyg w Sl P : B = bt Ty
iL Svem W Carmir] dpm Ew 11 Earnmn s
| Loy w [11 P = 12 PFeile freee & v
11 aca T Parex rn Fre Wraw {1 Famay kg 2> AgT Taweyaree (b regeacs
4 0 te W Hoapd e ¥ 4 ed: M Vi
1L e T R 1l edugt Ladorwkd Lphodds Mg A H prdua

I Peralys
i

L

Tw Mot

T Pwi

et i

e T]

Nwralmm j2d|

Calechary | spEooea |

Nrckog @ | eras)

One version of the patterns of Ulysses, as set down by Joyce.

It there was an algorithm for our feelings, 1t had to be reverse
engineered. Our emotions and reactions often seize us with so
much force that they wipe away any possibility of detached
cognition. LLove 1s 1rrational, it 1s passionate, 1t 1s madness. When
[met Nina, I was scared. My previous relationship had ended
badly and left me shell-shocked. It took months, 1f not longer, for
me to separate Nina from my past.

There 1s a standard progression to many relationships: There 1s
the 1nitial crush, during which we are quick to overlook the flaws
of the other person. When the rush of hormones and infatuation
fades, we see what we previously couldn’t. The other person
reveals their flaws, their peccadilloes, and their small failures.
Then begins the real work of negotiating. We remember the
feeling of the mmitial crush. Maybe we wonder how things
changed and why 1t 1s that the other person can no longer
provoke that same level of positive joy. If we’re cynical, we see
that our minds become high on chemicals and gratifying
delusions—tiny and harmless perversions ot the true picture of

and 1nept judgments of our younger selves. We waited a decade
to get married, to accumulate enough evidence that the code was
now robust enough to keep the product running smoothly. But
even foundations do not last forever. Regular maintenance and
upgrades are crucial, lest a once-healthy system decline into a
creaky machine.

3. BUGS NEVER DISAPPEAR.

They only hibernate. Our worst fights, and in particular our most
trivial fights, always came after nine p.m., though 1t took us ages
to figure that out. One of us—and 1f I'm being honest, it was me
far more often than 1t was Nina—would get bent out of shape
over an unkind word, a logistical screwup, or some other
domestic misdemeanor. Some friend was annoying, some bill
needed paying, or one or the other of us had failed in one of
those very specific ways that only has meaning within the long-
established habits of a relationship. These fights, which always
began with some tiny offense and inflated into competing
indictments of how the original dispute stood tfor some bigger
problem, were dumb. Raw emotion kept the momentum going
past any sense of rationality and perspective. And they always
started after nine p.m., running on the fumes of fatigue and
confusion. After each one was settled, we bemoaned the waste of
our voices and our nerves. Nina figured out one solution, which
was just to walk out. Then I figured out the other, which was not
to discuss anything too heavy, or even make a pointed criticism,
after nine p.m. Over a decade down the line, that little discovery
has probably saved us hours of wear and tear on our cortisol
levels and amygdalae.

Bugs can seem evanescent. I saw server crashes that appear out
of nowhere and, just as mysteriously, seem to disappear. Bugs
never disappear. If you haven’t fixed it, 1t’s a dead certainty the
enigmatic bug will return. Bad fights may abruptly dissipate for
calmer times, but underlying issues fester, only to explode later 1f
they aren’t excavated.

