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Preface and
acknowledgements

in Nature went out of print, I'd often be contacted by would-be

readers asking where they could get hold of a copy. That was
how I discovered that copies were changing hands in the used-book
market for considerably more than the original cover price. While that
was gratifying in its way, I would far rather see the material accessible to
anyone who wanted it. So I approached Latha Menon at Oxford Uni-
versity Press to ask about a reprinting. But Latha had something more
substantial in mind, and that is how this new trilogy came into being.
Quite rightly, Latha perceived that the original Tapestry was neither
conceived nor packaged to the best advantage of the material. I hope
this format does it more justice.

The suggestion of partitioning the material between three volumes
sounded challenging at first, but once I saw how it might be done,
I realized that this offered a structure that could bring more thematic
organization to the topic. Each volume is self-contained and does not
depend on one having read the others, although there is inevitably
some cross-referencing. Anyone who has seen The Self-Made Tapestry
will find some familiar things here, but also plenty that is new. In
adding that material, I have benefited from the great generosity of
many scientists who have given images, reprints and suggestions.
I am particularly grateful to Sean Carroll, Tain Couzin, and Andrea
Rinaldo for critical readings of some of the new text. Latha set me
more work than I'd perhaps anticipated, but I remain deeply indebted
to her for her vision of what these books might become, and her
encouragement in making that happen.

A FTER My 1999 book The Self-Made Tapestry: Pattern Formation

Philip Ball
London, October 2007
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A Winter’s Tale
The Six-Pointed Snowflake

them that one should not eat beans or break bread, should not

pluck a garland and should not allow swallows to land on one’s
roof. They sound like a bunch of crackpot mystics, but in fact Pytha-
goreanism has, through its influence on Plato, provided a recurrent
theme in Western rationalist thought: the idea that the universe is
fundamentally geometric, so that all natural phenomena display a
harmony based on number and regularity. Pythagoras is said to have
discovered the relationship between proportion and musical harmony,
reflected in the way that a plucked string divided by simple length ratios
produces pleasing musical intervals. The ‘music of the spheres’'—
celestial harmonies generated by the heavenly bodies according to
the sizes of their orbits—is ultimately a Pythagorean concept.

‘All things are numbers’, said Pythagoras, but it is not easy now to
comprehend what he meant by this statement. In some fashion, he
believed that integers were building blocks from which the world was
constructed. Bertrand Russell is probably imposing too modern a per-
spective when he interprets the phrase as saying that the world is ‘built
up of molecules composed of atoms arranged in various shapes’, even
if, for Plato, those atoms themselves were geometric: cubes, tetrahedra,
and other regular shapes that, he said, account for the empirical prop-
erties of the corresponding classical elements. All the same, it seems
fair to suppose that a Pythagorean would have been less surprised than
we are to find spontaneous regularity of pattern and form in the
world—five-petalled flowers, faceted crystals—because he would have
envisaged this orderliness to be engraved in the very fabric of creation.

The ancient Greeks were not alone in thinking this way. Chinese
scholars of long ago were as devoted to the study of nature and

T et followers of Pythagoras believed many strange things, among
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mathematics as any of their Western counterparts, and by all appear-
ances they were rather more observant. It was not until the European
Middle Ages that the Aristotelian tradition of studying specific natural
phenomena for their own sake began to permeate the Western world,
prompting the thirteenth-century Bavarian proto-scientist Albertus
Magnus to record the ‘star-shaped form’ of snowflakes, which can be
seen with the naked eye. But the Chinese anticipated him by more than
a millennium. Around 135 Bc, the philosopher Han Ying wrote in his
treatise Moral Discourses Illustrating the Han Text of the ‘Book of Songs’
that ‘Flowers of plants and trees are generally five-pointed, but those of
snow, which are called ying, are always six-pointed.’ It is a casual
reference, as though he is mentioning something that everyone already
knew.

Chinese poets and writers in the subsequent centuries took this fact
for granted. In the sixth century ap, Hsiao T'ung wrote:

The ruddy clouds float in the four quarters of the caerulean sky
And the white snowflakes show forth their six-petalled flowers.

By the seventeenth century, Chinese scholars had become more sys-
tematic and scientific in their approach. ‘Every year at the end of winter
and the beginning of spring I used to collect snow crystals myself and
carefully examined them’, wrote Hsien Tsai-hang in his Five Assorted
Offering Trays (c.1600). He may have used a magnifying glass for this
work, which led him to conclude that ‘all were six-pointed’.

It was no surprise to the Chinese sages that snow crystals were six-
pointed, because many of them held a view of nature that was every bit
as numerological as that of the Pythagoreans. Still today, numerical
schemes provide a central ordering principle in Chinese thought,
from the Eightfold Way of Daoism to the ‘Four Greats’ of Mao'’s person-
ality cult. In a system of ‘correspondences’ analogous to that of the
Western mystical tradition, the elements were deemed to have num-
bers associated with them, and as the great philosopher Chu Hsi wrote
in the twelfth century, ‘Six generated from Earth is the perfected num-
ber of Water.” Thus, according to the scholar T’ang Chin, ‘when water
congeals into flowers they must be six-pointed’, because ‘six is the true
number of Water’.

The problem with this scheme is that it stifles further enquiry: given
such an ‘explanation’ (which we now see as little more than a tautol-
ogy), there is nothing more to be said. A profound mystery is reduced to
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a commonplace fact. And so, in the words of sinologist Joseph
Needham, ‘the Chinese, having found the hexagonal symmetry [of
snowflakes], were content to accept it as a fact of nature’.

Here, then, is a rejoinder to the accusation that a scientific attitude is
prone to blunt our wonderment at the world. In the mystic’s teleo-
logical universe, order and pattern are only to be expected: they are part
of the Grand Design. There is nevertheless value in such an outlook,
which can help to bring to our notice the regularities that exist in
nature—we may not see them at all if we do not expect them. In fact,
mysticism in all its guises can lead us to perceive too much order,
making us prone to seeing significance where there is only the play of
chance. The human mind seems to be predisposed to this error, for
pattern recognition is an essential survival tool and it seems we must
resign ourselves to living with its tiresome side-effects, from numer-
ology to ‘faces’ on the surface of Mars.

But although the mystical Platonic vision of a geometric, ordered
universe helped prepare the ground for early Western science, it needed

Fig. 1.1: The snowflake displays an urge for branching growth played
out with exquisite hexagonal symmetry. (Photo: Ken Libbrecht,
California Institute of Technology.)
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to be replaced by something more empirical, more discerning and scep-
tical, before we could truly begin to understand how the world works.
The snowflake offers a delightful illustration of that process. For it is only
when we start to regard these ice crystals as things in themselves, and not
as symbols of some deeper principle of nature, that we can truly appre-
ciate how astonishing they are. Their elegance and beauty is, I believe,
unrivalled in the natural world, and even Bach would have been silenced
by the invention with which they play variations on a simple theme,
this interplay of ‘sixness’ and ‘branchingness’ in which symmetry seems
to be taken about as far as it can tolerate (Fig. 1.1 and Plate 1). They are
formed from chaos, from the random swirling of water vapour that
condenses molecule by molecule, with no template to guide them.
Whence this branchingness? Wherefore this sixness?

Kepler’'s balls

In the mechanistic worldview that emerged in the West during the wane
of the Renaissance, an appeal to numerology could not suffice to ac-
count for the remarkable symmetry of the snowflake. The spirit of the
age insisted on causative forces that dictated how things happened in
their own terms. One could concede that God set the forces at play while
insisting that, on a day-to-day basis, they were all He had to work with.

Snowflakes interested the Englishman Thomas Hariot, who noted in
his private manuscripts in 1591 that they have six points. Hariot was a
masterful mathematician, noted for his contributions to algebra, but
his enthusiasms showed the characteristic magpie diversity of the
Elizabethan intellectual, among them astronomy, astrology, and lin-
guistics. He tutored Walter Raleigh in mathematics, and when Raleigh
set out on a voyage to the New World in 1585 he employed Hariot as
navigator. Together they sailed to the land that Raleigh named in
honour of his Virgin Queen: Virginia. On the voyage, Raleigh sought
Hariot’s expert advice about the most efficient way to stack cannonballs
on deck.

The question led Hariot to the beginnings of a theory about the close-
packing of spheres. Some time between 1606 and 1608 he communi-
cated his thoughts to a fellow astronomer, the German Johannes Kepler,
who enjoyed the patronage of the Holy Roman Emperor Rudolph II at
his illustrious court in Prague. Most of the correspondence between
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Kepler and Hariot concerns the refraction of light and the origin of
rainbows, but they also discussed atomism: what are atoms, and can
empty space come between them? This was an ancient theme,
prompted by the belief that nature abhors a vacuum, but it seemed
then to be as irresolvable as ever. The issue of how atoms sat against
one another brought Hariot back to Raleigh’s cannonballs, and he asked
what Kepler thought about the matter. In 1611 Kepler wrote a short
treatise in which he speculated that the familiar cannonball stacking,
which disports the balls in a hexagonal, honeycomb array, is the dens-
est arrangement there can be. The hexagonal packing ‘will be the
tightest possible’, he wrote, ‘so that in no other arrangement could
more pellets be stuffed into the same container’* The booklet in
which this assertion was contained was a New Year’s gift from Kepler
to his patron Johann Matthdus Wacker von Wackenfels: seasonably so,
for its title indicates the object towards which Kepler’s thoughts on
close-packing became directed. It was called On the Six-Cornered
Snowflake.

‘There must be a cause why snow has the shape of a six-cornered
starlet’, Kepler says. ‘It cannot be chance. Why always six? The cause is
not to be looked for in the material, for vapour is formless and flows,
but in an agent. But Kepler does not claim that he can solve the
mystery; indeed, his booklet is a rather charming study in bafflement,
full of false trails and head-scratching. Nonetheless, it contains the seed
of an important idea. Prompted by his discussions with Hariot, Kepler
began to think about the geometrical shapes that bodies will adopt if
their constituent particles are close-packed like cannonballs. He sug-
gested that the hexagonal symmetry he had seen in snowflakes that he
collected and observed that very winter might stem from the stacking of
‘globules’ of water. These globules are not in themselves atoms; rather,
he said, ‘vapour coagulates into globules of a definite size, as soon as it
begins to feel the onset of cold’ They are like little droplets, and, as
such, are perfectly spherical.

Yet in the end Kepler rejects this idea, for he notes that balls can be
packed into other regular patterns too—notably square arrays—and yet
four-pointed snowflakes are never observed. He remarks that flowers
commonly display five-pointed heads (a notion I explored in Book I),

*Kepler’s conjecture remained just that for nearly four centuries. It was proven to be true by
the American mathematician Thomas Hales in 1998.
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which he attributes to a ‘formative faculty’ or plant soul. But ‘to imagine
an individual soul for each and any starlet of snow is utterly absurd,
Kepler wrote, ‘and therefore the shapes of snowflakes are by no means
to be deduced from the operation of soul in the same way as with
plants.” So how does water vapour acquire a formative faculty? It
must, in the end, be God’s work—which sounds like a capitulation,
but in fact reflects the semi-mystical belief common among early
seventeenth-century philosophers that nature is imbued with ‘hidden’
forces that shape its forms. Yet what purpose could be served by this
symmetrical expression of a gaseous formative faculty? There is none,
Kepler decides: ‘No purpose can be observed in the shaping of a snow-
flake... [the] formative reason does not act only for a purpose, but also
to adorn... [it] is in the habit also of playing with the passing moment.’
In this seemingly whimsical conclusion we can discern something valid
and profound—for, as I hope this trilogy will show, nature does indeed
seem to have an intrinsic pattern-forming tendency that it exercises as
though from some irrepressible urge. Kepler even hints inadvertently at
the way this impulse can act in living organisms in apparent defiance of
the strict utilitarianism that Darwinism later seemed to dictate.

Despite its inconclusiveness, Kepler’s treatise on the snowflake es-
tablished the idea that the geometric shapes of crystals are related to
the ordered arrangements of their component units. From this elem-
entary notion came the science of crystallography, beginning in the late
eighteenth century, in which the faceted nature of mineral crystals is
explained in terms of close-packing of their atoms and molecules
(Fig. 1.2). And what is more, his invocation of an almost vitalistic
principle behind the growth of snowflakes, redolent of (if not the
same as) the ‘soul’ that guides the growth of plants, captures something
of the confusion that snowflakes provoke. The sixness, the hexagonal
symmetry, speaks of crystals, of a regularity so perfect that it appears
barren. But the branchingness hints at life and growth, at something
vegetative and vital.

René Descartes, the arch-mechanist of the early Enlightenment,
could not resist the allure of snowflakes. He sketched them in 1637 for
his study of meteorology, Les Météores, where he recorded rarer var-
ieties alongside the six-pointed stars (Fig. 1.3):

After this storm cloud, there came another, which produced only little roses or
wheels with six rounded semicircular teeth...which were quite transparent and
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Fig. 1.2: Early crystallographers such as René Just Hauy, from whose
book Traité de Minéralogie (1801) this illustration comes, explained
the faceted shapes of crystals in terms of the packing of their
component atoms.

Fig. 1.3: Drawings of snowflakes by René Descartes in 1637.

quite flat. .. and formed as perfectly and as symmetrically as one could possibly
imagine. There followed, after this, a further quantity of such wheels joined two
by two by an axle, or rather, since at the beginning these axles were quite thick,
one could as well have described them as little crystal columns, decorated at
each end with a six-petalled rose a little larger than their base. But after that there
fell more delicate ones, and often the roses or stars at their ends were unequal.
But then there fell shorter and progressively shorter ones until finally these stars
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Fig. 1.4: Twelve-pointed snowflakes are formed when two normal
six-pointed varieties fuse together at their centres, rotated in relation
to one another by about 30°. (Photo: Ken Libbrecht, California
Institute of Technology.)

completely joined, and fell as double stars with twelve points or rays, rather long
and perfectly symmetrical, in some all equal, in other alternately unequal.

We can recognize in this vivid description some of the unusual forms
that have been found in snowflakes, such as prismatic columns with
end-caps, like elaborate sundials, and twelve-pointed stars in which
two hexagonal flakes have become fused (Fig. 1.4).

The English scientist Robert Hooke had the advantage of a micro-
scope in preparing illustrations of snowflakes for his famous Microgra-
phia (1665), where he shows that the ‘flowers’ are not just six-pointed
but branch repeatedly, in a hierarchical manner (Fig. 1.5a). The organic
associations of these ice crystals are very apparent in the drawings by
the Italian astronomer Giovanni Domenico Cassini in 1692, where they
look almost leafy (Fig. 1.5b). The biologist Thomas Huxley acknow-
ledged this aspect in 1869, when he called snowflakes ‘frosty imitations
of the most complex forms of vegetable foliage’. Huxley’s comments
appeared in an essay on ‘the physical basis of life’, in which he strove
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Fig. 1.5: Using an early microscope, Robert Hooke recorded the characteristic ‘Christmas-tree’
branching patterns of snowflakes (a). Giovanni Domenico Cassini's drawings from 1692 seem to
make reference to their resemblance to plants (b).

like a good positivist to quell any notion of a vital force that animated
organic matter and made it fundamentally different from the inorganic
world. To Huxley, the ‘organic’ forms of snowflakes provided evidence
that the complex shapes of the biological world need not compel the
scientist to invoke some mysterious vitalistic sculpting mechanism,
since something of that nature surely did not operate in the simple
process of the freezing of water:

We do not assume that a something called ‘aquosity’ entered into and took
possession of the oxide of hydrogen as soon as it was formed, and then guided
the aqueous particles to their places in the facets of the crystal, or amongst the
leaflets of the hoar-frost.

It was a reasonable enough assertion, but it surely begs the question: if
there is nothing ‘organic’ about the formation of the snowflake, why
then do they look so tantalizingly as though there is?
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Flakes frozen on film

As Descartes hinted, the shapes of snowflakes can evolve and mutate as
the weather changes. Friedrich Martens, on board a ship travelling from
Spitzbergen in Norway to Greenland in 1675, noticed that different
meteorological conditions produce different kinds of flake. It takes an
Arctic chill to condense the best, most symmetrical snowflakes, as the
English explorer William Scoresby noted in his Account of the Arctic
Regions with a History and Description of the Northern Whale-Fishery
in 1820. Scoresby took the observations of snowflakes to a new standard
of detail and accuracy, recording a wide range of different shapes
(Fig. 1.6). One of the most charming of nineteenth-century records
was that produced in 1864 by a minister’s wife in Maine named
Frances Knowlton Chickering, who used, if not invented, the trick
now popular at Christmas of cutting out doily-style snowflakes from
folded paper. Chickering’s paper flakes were masterpieces of dexterity:
from memory of her first-hand observations, she clipped out delicate
frond-like branches and pasted the results into her Cloud Crystals: A
Snow-Flake Album, which implicitly acknowledged the ‘artistry’ of
natural phenomena that the biologist Ernst Haeckel was later to cele-
brate in his drawings of marine life, as we saw in Book L.

The accuracy of all these visual records of snowflakes was limited not
only by the power of the magnifying glass or microscope but also by the
artist’s inevitable tendency to simplify, idealize, and interpolate these
complex geometric forms. That problem was avoided once researchers

%%*}??@k%m

Fig. 1.6: In 1820, explorer William Scoresby made accurate drawings of the snowflakes he
observed during a trip to the Arctic.
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found a way to marry the new art of photography to the power of the
microscope. Microphotography was already a well-established tech-
nique by the late nineteenth century, and one of its most inventive
practitioners was a Vermont farmer named Wilson Bentley. Between
1885 and 1931, Bentley captured over 5,000 images of snowflakes on
photographic plates, constituting one of the most comprehensive sur-
veys of their astonishing variety and beauty (Fig. 1.7). In the late 1920s
Bentley compiled 2,000 of his photographs into a book entitled Snow
Crystals in collaboration with William J. Humphreys, a physicist work-
ing for the US Weather Bureau. Bentley died only a few weeks after the
book was published in November 1931, allegedly after contracting
pneumonia during one of his forays into the New England winter.

Snow Crystals is rightly regarded as a work of wonder, but it is more
than that. The scientist, gazing at page after page of seemingly infinite
variety on the theme of the six-pointed flower of ice, faces a mystery of
an order not previously encountered in the non-living world. Not only
were the forms indescribably complex, but there was no end to them.

Bentley’s album was pure description, to which Humphreys could
add rather little in the way of hard science. But in the 1930s the book
inspired a Japanese nuclear physicist named Ukichiro Nakaya, working
at the University of Hokkaido, to consider the question of snowflake
growth in a rather more analytical spirit. He made the first systematic
attempt to discover the factors that influenced snowflake growth, lead-
ing to the many different families of shapes that had been seen by
Scoresby and others in the natural environment. Nakaya realized that
snowflakes fall into several distinct categories, and he constructed a
laboratory for exploring the conditions that generated these different
classes of shape.

It was uncomfortable work: Nakaya's wooden-walled lab could be
cooled to —30°C, and he worked in padded clothing with a mask to
protect his face. Snowflakes grow slowly as they fall through the atmos-
phere, but Nakaya could not recreate this long descent in the lab, so
instead he decided to reverse the situation: to hold the snowflake fixed
and to let cold, moist air pass over it in a steady stream. The question
was, how do you hold onto a snowflake? Nakaya experimented with
many different kinds of filament for immobilizing a growing crystal of
ice, but most of them simply became coated with frost. He finally found
that the experiment worked best with a strand of rabbit hair, on which
the natural oils suppressed the simultaneous nucleation of many ice
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Fig. 1.7: The collection of
snowflake photographs
amassed by Wilson Bentley
in the four decades after
1885 still stands as the
most remarkable record of
their endlessly varied
forms.
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Fig. 1.8: Snowflakes made artificially by Ukichiro Nakaya in the 1930s. In the image on the left, the
rabbit’s hair on which the crystals are nucleated is still visible.

crystals at once (Fig. 1.8). Using this equipment, Nakaya and his co-
workers found that the shapes of the individual crystals changed as two
key factors were altered: the temperature and humidity of the air. At low
humidity, the crystals did not develop the six frond-like arms of classic
snowflakes, but took on more compact forms: hexagonal plates and
prisms. These shapes persisted even in moister air if it was very cold
(below about —20 °C). At higher temperatures, however, increasing the
humidity tended to increase the delicacy and complexity of the snow-
flakes, giving rise to the highly branched star forms. In a temperature
range between about —3 and —5 °C, needle-like crystals appeared in-
stead (Fig. 1.9).

Nakaya collected his findings in an album of images clearly indebted
to Bentley and Humphreys, called Snow Crystals: Natural and Artificial
(1954). His studies brought some order to the ice menagerie, but they
did not really bring us any closer to understanding the fundamental
mechanism by which a simple process of crystallization, which typic-
ally generates a compact prismatic or polyhedral shape, in this case
gives us structures that seem to have a life of their own.

As I explained in the previous volumes, the first person to tackle this
sort of question about the genesis of complex form within a modern
scientific framework was the Scottish zoologist D'Arcy Wentworth
Thompson, whose 1917 book On Growth and Form set the scene for
everything I discuss in this series. Thompson included drawings based
on Bentley’s photographs in the 1942 revised edition of his book. ‘The
snow crystal’, he wrote, ‘is a regular hexagonal plate or thin prism.” But
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Fig. 1.9: The ‘morphology diagram’ of snowflakes, showing how their
shape changes for different conditions of temperature and humidity
(supersaturation).

‘ringing her changes on this fundamental form, Nature superadds to
the primary hexagon endless combinations of similar plates or prisms,
all with identical angles but varying lengths of side; and she repeats,
with an exquisite symmetry, about all three axes of the hexagon, what-
soever she may have done for the adornment and elaboration of one.’
In other words, all the arms appear to be identical. ‘The beauty of a
snow-crystal depends on its mathematical regularity and symmetry’,
Thompson observed,

but somehow the association of many variants of a single type, all related but no
two the same, vastly increases our pleasure and admiration. Such is the peculiar
beauty which a Japanese artist sees in a bed of rushes or a clump of bamboos,
especially when the wind'’s ablowing; and such is the phase-beauty of a flowering
spray when it shews every gradation from opening bud to fading flower.

Here it is again: flowers and ice. But even Thompson, like Kepler, could
say no more. With all his ideas about forces and equilibria and geometry,
he, too, was forced to take recourse in metaphors from the organic world.

Endless branches

By the time Nakaya’'s book appeared, scientists had found a way to
attack the problem. Although ice seems to be unique in forming highly
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symmetrical, isolated flakes, many other substances may crystallize as
needle-like protrusions punctuated by regular branches, like a single
snowflake arm. These structures, known as dendrites (from the Greek
for ‘tree’) are found when molten metals freeze (Fig. 1.10a), when salts
precipitate out of a solution, and when metal deposits form on elec-
trically charged electrodes, a process known as electrodeposition and
related to electroplating (Fig. 1.10D) (see page 30). Dendrites typically
have a rounded tip, like the prow of a boat, behind which side-arms
sprout and grow in a Christmas-tree pattern. In general, they appear
when the solidification process happens rapidly, as for example when a
molten metal is quenched (‘undercooled’) by being plunged into cold
surroundings. That’s an important clue. We observed in Book I that
complex pattern and form is often generated in processes that take
place significantly out of thermodynamic equilibrium—which is to say,
when the system is highly unstable. A system in equilibrium does not
change; a system out of equilibrium ‘seeks’ to attain such a stable state
if left alone to do so, but can be driven away from this goal by a constant
influx of energy. We saw in Book II that convection (the flow of a fluid
when heated from below) produces such a non-equilibrium state.
A liquid that is abruptly cooled far below its freezing point is another
non-equilibrium system, being unstable relative to the solid form of
the material. That instability makes change happen rapidly, under
which conditions pattern is apt to appear. In contrast, crystals that
are formed close to equilibrium—very close to their freezing point,
say—grow slowly, and tend instead to develop the familiar compact,
faceted shapes.

In 1947 the Russian mathematician G. P. Ivantsov showed theoretic-
ally that a metal solidifying rapidly from its molten form may develop
needle-like fingers. Ivantsov calculated that the needles have a shape
mathematicians called parabolic, with gently curving sides that con-
verge on a blunt tip. This is the same shape as the trajectory of a stone
thrown through the air and falling under gravity. Ivantsov showed that
in fact all possible types of parabolic needles may be formed, but that
the thinner they are, the more rapidly they grow; so thin, needle-like
tips should shoot rapidly through the molten metal, while fatter bulges
make their way forward at a more ponderous pace.

But in the mid-1970s, Martin Glicksman and co-workers at the
Rensselaer Polytechnic Institute in New York performed careful experi-
ments which showed that, instead of a family of parabolic tips, only one
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Fig. 1.10: Dendrites formed by rapid solidification of a molten metal () and in the
electrodeposition of a metal (b). (Photos: &, Lynn Boatner, Oak Ridge National
Laboratory, Tennessee. b, Eshel Ben-Jacob, Tel Aviv University.)
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single tip shape was seen during rapid solidification of metals. For a
fixed degree of undercooling, a particular tip is privileged over the
others. For some reason, one of Ivantsov’s family of parabolas seems
to be special.

The puzzle was even more profound, however, because in 1963 two
Americans, William Mullins and Robert Sekerka at Carnegie Mellon
University in Pittsburgh, argued that none of Ivantsov’s parabolas
should be stable. They calculated that the slightest disturbance to the
growth of a parabolic tip will be self-amplifying, so that small bulges
that form by chance on the edge of the crystal grow rapidly into thin
fingers. This so-called Mullins-Sekerka instability should cause the tip
to sprout a jumble of random branches.

The instability is an example of a positive feedback process—again,
we have encountered such things already in Books I and II. It works like
this. When a liquid freezes, it releases heat. This is called latent heat,
and it is the key to the difference between a liquid and its frozen, solid
form at the same temperature. Ice and water can both exist at zero
degrees centigrade, but the water can become ice only after it has
becomes less ‘excited’—its molecules cease their vigorous jiggling mo-
tions—by giving up latent heat.

So, in order to freeze, an undercooled liquid has to unload its latent
heat. The rate of freezing depends on how quickly heat can be con-
ducted away from the advancing edge of the solid. This in turn depends
on how steeply the temperature drops from that in the liquid close to
the solidification front to that in the liquid further away: the steeper the
gradient in temperature, the faster heat flows down it. (It may seem odd
that the liquid close to the freezing front is actually warmer than that
further away, but this is simply because the front is where the latent
heat is released. Remember that in these experiments all of the liquid
has been rapidly cooled below its freezing point but has not yet had a
chance to freeze.)

If a bulge develops by chance—because of the random motions of
the atoms and molecules, say—on an otherwise flat solidification front,
the temperature gradient becomes steeper around the bulge than else-
where, because the temperature drops over a shorter distance
(Fig. 1.11). So latent heat is shed around the bulge more rapidly than
it is to either side, and the bulge grows, its apex fastest. This in turn
sharpens the tip and speeds its advance even more.
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Fig. 1.11: The Mullins—Sekerka instability makes protrusions at the
surface of a solidifying material unstable. Because the temperature
gradient (shown here as dashed contours of equal temperature) is
steeper at the tip of the protrusion, heat is conducted away faster and
so solidification proceeds more rapidly here.

In principle, this instability will amplify any irregularity on the solid
front into a growing finger, no matter how small it is. But there is
another factor that sets a minimum limit to the width of the fingers.
The interface between the solid and the liquid has a surface tension,
just like that at the surface of water in a glass. As I explained in Book I,
the existence of surface tension means that an interface costs energy:
the bigger the surface area, the higher the energetic cost. Surface
tension thus encourages surfaces to keep their area as small as possible,
and here it tends to ‘pull’ the solidification front flat. Thanks to this
smoothing effect, surface tension suppresses bulges smaller than a
certain limit. This means that the Mullins-Sekerka instability produces
a characteristic branch-tip width, set by the point at which the narrow-
ing of tips caused by positive feedback is counterbalanced by their cost
in surface energy. In other words, the front develops fingers with a
certain wavelength—a regular pattern with a particular size scale to it,
determined by a balance of opposing factors.
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In 1977 James Langer at the University of California at Santa Barbara
and Hans Miiller-Krumbhaar in Jiilich, Germany, suggested that the
Mullins-Sekerka instability might explain Glicksman’s observation of
a single parabolic tip being selected from all of those allowed by
Ivantsov’s theory. The instability will make fat fingers break up into a
mass of smaller ones, they said, while surface tension sets a limit on
how small and narrow they can become. Perhaps, then, there is an
optimal tip width at which these two effects balance, favouring a single
‘marginally stable’ parabolic tip.

But in the early 1980s, Langer and his co-workers showed that surface
tension in fact destroys this neat picture. Its influence makes the tip of
the dendrite become cooler than the regions to either side. So the tip
starts to slow down, and eventually it forks into two new fingers. These
also split subsequently, and so on. This repeated tip-splitting results not
in a dendritic growth shape at all, but instead a dense mass of repeat-
edly forking branches, a pattern known as the dense-branching
morphology.

This turned out to be a persistent problem with theories of dendrite
growth: they seemed prone to instabilities that led to randomly
branched fingering patterns, not the orderly, Christmas-tree shapes of
snowflake arms. What these theories were neglecting, in the mistaken
belief that it was a mere detail, was the most striking aspect of a
snowflake’s shape: its hexagonal symmetry. It had been suspected
ever since Kepler that this was an echo of the underlying symmetry in
the arrangement of constituent particles. But no one had guessed that it
was to this symmetry that the dendrites owed their very existence.

The joy of six

Why hexagons? Remarkably, the Chinese sages were right: there is a
sense in which six is the number of water. In 1922 the English physicist
William Bragg used his new technique of X-ray crystallography to
deduce how water molecules are arranged in an ice crystal. X-rays
bouncing off crystals produce a pattern of bright spots that encode
the positions of the atoms; Bragg deduced how to calculate backwards
from the X-ray pattern to the atomic structure. In this way, he found
that the water molecules in ice are linked by weak chemical bonds into
hexagonal rings, one molecule at each corner (Fig. 1.12). Thus the
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Fig. 1.12: Ice has a structure with hexagonal symmetry at the
molecular scale. The water (H,0) molecules are linked together by
weak chemical bonds called hydrogen bonds. In this image the spheres
denote the oxygen atoms at the centres of the molecules, and the
rods denote the hydrogen bonds that bind molecules together.

crystal structure is dictated not by the shapes of the water molecules
themselves but by the way in which they are joined together.

It might seem unlikely that this is the origin of the six-pointed
snowflake, since water molecules are very much smaller than a snow-
flake—how could this sixness become so amplified? But as Kepler and
the early crystallographers realized, geometric packing of a crystal’s
constituent units dictates the geometry of the much larger bodies that
result. In essence, water’s crystal structure imposes an innate hexagon-
ality on the way the ice crystal grows. Or, as D’Arcy Thompson wrote
with his customary elegance, ‘these snow-crystals seem to give visible
proof of the space-lattice on which their structure is framed..

The presence of the hexagonal ‘space-lattice’ means that not all direc-
tions are the same for the growing crystal. That is why faceted crystals have
the characteristic shapes that they do: the flat facets are simply planes of
stacked atoms or molecules, but the reason why certain planes and not
others define the crystal’s form is that some facets grow faster. This non-
equivalence of directions is called anisotropy; an isotropic substance is
one that looks the same, and behaves in the same way, in all directions.
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The anisotropy of crystals means that properties like surface tension
differ in different directions. In 1984 Langer and his co-workers showed
that, for Ivantsov parabolas growing in certain ‘favoured’ directions
picked out by the anisotropy of the material’s crystal structure, surface
tension no longer induces a tip-splitting instability—the parabolic tip
remains stable as it grows. Thus dendritic branches will grow outwards
from an initial crystal ‘seed’ only in these preferred directions: the
snowflake grows six arms. This special role of anisotropy in stabilizing
the growth of a particular needle crystal was identified independently
at the same time by David Kessler, Joel Koplik, and Herbert Levine at the
University of California at San Diego.

Anisotropy also explains why a dendrite develops side branches.
When, by chance, the parabolic tip develops small bulges on its flanks,
these may be amplified by the Mullins-Sekerka instability. But again,
only bulges that grow in certain directions will be stable. And there is
only one kind of dendrite tip, for a given set of growth conditions, which
grows fast enough to avoid being overwhelmed by these side branches.
So a particular dendrite, with side branches sprouting in particular
directions, is uniquely selected from amongst the possible growth
shapes.

How the right arm knows what the left arm is doing

The mind-boggling variety of snowflake forms is therefore the outcome
of a tension between chance and necessity. The mechanics of the
growth process ensures that the arms will sprout in directions that
point to the corners of a hexagon. For any given snowflake, these
arms will all grow at the same rate (because, at such a small scale,
they all experience the same conditions of temperature and humidity),
and so they will have the same length. The side-branches of this six-
pointed star are to a degree at the mercy of fate: they may be triggered
by the random appearance of tiny irregularities or bulges along the
parent arm. Yet they too will always surge outwards in a ‘hexagonal’
direction. Changes in the prevailing conditions that an individual
snowflake experiences as it drifts and falls in the air may trigger simul-
taneous changes in the growth of all the branches, accounting for how,
for example, needle-like arms might develop hexagonal plate-like for-
mations at their tips (Fig. 1.13).



