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Editorial Note

To illustrate the enormous strides in Statistical Sciences during the last three
and a haif decades and to exhibit the direction of these developments the
Editors decided to reproduce the well-known American Statistical Associa-
tion Presidential Address by Gertrude Cox Statistical Frontiers delivered
on September 9, 1956, at the 116th Annual Meeting of the ASA in Detroit
and printed in the March 1957 issue of the Journal of American Statistical
Association.

Gertrude Cox (1900-1978), an illustrious representative of the classical
school of modern statistics in the K. Pearson - R.A. Fisher tradition, delivered
her address on the state of statistical sciences just before the major impact and
eventual dominating position of computer technology in statistical methodol-
ogy and practice, and the expansion of appreciation of statistical methodolo-
gy to various new branches of medical engineering and behavioral sciences.
Although the comparison between the state of statistical sciences in the fall of
1956 and in the fall of 1990 (when these lines are being written) is self-evident
for readers of these volumes, we thought that it would be expedient to solicit
comments on this subject. Each person was requested to provide a 200-400
word commentary on Statistical Universe in 1990 versus 1956. Respondents’
comments are printed, with minor editorial alterations, following G. Cox’s
address.



Statistical Frontiers*®

Gertrude M. Cox
Institute of Statistics,
University of North Carolina

1. Introduction

I am going to ask you to look forward as we try to discern, as best we can,
what the future holds for statisticians. If ten years ago we had predicted some
of the things we are doing today, we would have been ridiculed. Now, my
concern is that we may become too conservative in our thinking.

Civilization is not threatened by atomic or hydrogen bombs; it is threat-
ened by ourselves. We are surrounded with ever widening horizons of thought,
which demand that we find better ways of analytical thinking. We must recog-
nize that the observer is part of what he observes and that the thinker is
part of what he thinks. We cannot passively observe the statistical universe as
outsiders, for we are all in it.

The statistical horizon looks bright. Exciting experiences lie ahead for
those young statisticians whose minds are equipped with knowledge and who
have the capacity to think constructively, imaginatively, and accurately.

Will you, with me, look upon the statistical universe as containing three
major continents: (1) descriptive methods, (2) design of experiments and inves-
tigations, and (3) analysis and theory. As we tour these continents, we shall
visit briefly a few selected well developed countries, where statisticians have
spent considerable time. As tourists, we shall have to stop sometimes to com-
ment on the scenery, culture, politics, or the difficulties encountered in se-
curing a visa. With our scientific backgrounds, we should spend most of our
time, secking out the new, the underdeveloped, the unexplored or even the
dangerous areas.

* Presidential address, at the 116th Annual Meeting of the American Statistical Association,
Detroit, Michigan, September 9, 1956.
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It is one of the challenges of the statistical universe that, as new regions are
discovered and developed, the horizon moves further away. We cannot visit
all the frontiers for they are too numerous. I believe that we should try to
visualize the challenges of the future by looking at typical types of unsolved
problems. I hope you will find the trip so interesting that you will revisit some
of these statistical frontiers not as tourists but as explorers.

You know how many folders and guide books one can accumulate while
traveling. I am not going even to list the ones used. This will leave you guess-
ing whether I am quoting or using original ideas. Many people in this audi-
ence will recognize their statements used with no indication that they are
quotations.

2. Descriptive Methods Continent

In planning our tour, I decided to take you first to the descriptive methods
continent, for it is the oldest and has the densest settlement. The lay concep-
tion of descriptive methods ordinarily includes these countries: (1) collection
of data; (2) summarization of data including such states as tabulation, mea-
sures of central tendency and dispersion, index numbers and the description
of time series; and (3) the presentation of data in textual, tabular, and graphic
form.

The collection of data is the largest country on this descriptive methods
continent. This country is of common interest and concern to the whole statis-
tical universe and is by far the oldest country. Official statistics existed in the
classic and medieval world. In fact, in 1500 B.C. in Judea the population is
given as 100,000 souls. Practical necessity forced the earliest rulers to have
some count of the number of people in their kingdom.

The collection of official statistics has increased in importance over the
years as evidenced by the large units of our Federal Government such as
Census, Agriculture, and Labor, organized to collect all kinds of useful data.

Before going into the frontier area to collect more data, one should check
carefully the sources of data in the settled areas to be sure that he is not about
to perform needless duplication. The decision will have to be made whether
to take a census, or to take a sample from the population. Here, as we stand
on a ridge, we look over into the sampling country which we shall visit later.

Between the collection and the summarization of data countries, there is
this border area, where the police (editors) check our schedule to make sure
the blanks are filled and that no absurd or highly improbable entries have
been made. As we continue our tour, our papers and passports will be checked
frequently.

Our first stop in the summarization country is at the state called tabula-
tion. Here the data on all items from the individual schedules are tabulated
and cross-tabulated. A visit here is prerequisite to all further study of the data
by statistical methods.
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1 shall have to ask you to pass up a visit to the well-known array, ranking,
and frequency tables states. There still exists disputed area around the fre-
quency table, such as the choice of the beginning and extent of class intervals.
These historic frontiers and the political devices such as ratios, proportions
and percentages are visited by many tourists.

Let us proceed to two other states, where the calculations of measures of
central tendency and dispersion are made. The central tendency state has
several clans. In one, the arithmetic mean is the rule. A second group has a
median rule, and a third group prefers the mode rule.

Near the mainland, there are islands between it and the analysis and theory
continent. Even on these islands mathematical definitions are required for the
rules used for measuring central tendencies such as the geometric and har-
monic means.

As we go on into the dispersion state you will note that the topography is
becoming less familiar. Yet variation of individuals in a measurable charac-
teristic is a basic condition for statistical analysis and theory. If uniformity
prevailed, there would be no need for statistical methods, though descriptive
methods might be desired.

This variation state also has several clans. One advocates the range as the
simplest measure to describe the dispersion of a distribution. Another prefers
the use of the mean deviation, while the most densely populated clan advo-
cates the standard deviation. Nearby is a frontier area where dwell less famil-
iar and relatively uninteresting groups such as the quartile deviation and the
10-90 percentile range.

In this descriptive methods continent, placed in the summarization of data
country are other states settled by special purpose groups. Let us now visit
two, the index number and the description of time series states, to look at
some of their unsettled and disputed frontier problems.

The index number state, consisting of one or a set of measures for one or a
group of units, evaluates indirectly the incidence of a characteristic that is not
directly measurable. We do not have time to visit the single factor index area,
but proceed directly to the wide open frontiers of multi-factor indexes. For
example, the price and level-of-living indexes are well known and of vital
interest. On this frontier: (1) Which multi-factor index formula is the best?
(2) What items should be included? (3) What is the proper weighting of items?
(4) Is the fixed base or chain method best? (5) How frequently should the base
be changed? (6) When and how can you remove obsolete commodities and
add new ones into the index? and (7) If the index number has no counterpart
in reality, should it be discarded? To settle these frontiers, developments are
needed on the borders with the theory continent.

In the description of time series state, we find measures recorded on some
characteristic of a unit (or a group of units) for different periods or points of
time. There are several method groups governing this state such as inspection,
semi-averages, moving averages and least squares. Of course, there are dis-
putes about which method is best. One of the frontier problems is how to
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handle nonlinear trends. One group of statisticians exploring in this state
deals with time series accounting for secular trend, cyclical, periodic, and
irregular movements.

Note that most of the folks in this area are economists. The public health
and industrial scientists are beginning to explore here. They have such prob-
lems as fatigue testing, incubation period of a disease, and the life time of
radioactive substances.

This is rather an exhausting tour, so much to be seen in so short a time.
However, before you leave the descriptive methods continent, I want you to
visit the presentation of results country. The availability and usefulness of
whatever contribution to scientific knowledge the project has yielded are de-
pendent upon the successful performance in this country.

As we enter the presentation of results country, you will be asked to swear
allegiance to logical organization, preciseness, and ease of comprehension. In
this country, certain conventions in structure and style of the form of presen-
tation have developed and are generally accepted.

The methods of presentation of results divide into several states: textual,
tabular, and graphic. The textual state gives only statements of findings and
interpretation of results. The tabular state has two types of tables, the general
and the special purpose tables, according to their functions. In the graphic
state, presentation of quantitative data is represented by geometric designs.
It is obvious that the tourist naive in mathematics will enjoy this state. Some
of the named community settlements are: the bar diagram, area diagram,
coordinate chart, statistical map, and pictorial statistics.

3. Design of Experiments and Investigations
Continent

Later in discovery and development was the analytical statistics hemisphere
where the tools and techniques for research workers are provided and used.
The northern continent, called Design of Experiments and Investigations, is
divided into two major sections, the design of experiments and the design of
investigations.

My own random walks have taken me into the design of experiment sec-
tion of this continent more frequently and extensively than into any other
area we shall visit.

This section is divided into four major countries: (1) completely random-
ized, (2) randomized block, (3) latin square, and (4) incomplete block designs.
The first three countries are the oldest and are well developed. However, in
the latin square country, let us visit a newly explored state, where the latin
square is adjusted so as to measure residual effects which may be present
when the treatments are applied in sequence.
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We might inquire about the uprisings in the latin square country when
nonrandom treatments are assigned to the rows and columns. This takes you
over into the incomplete block design country. It is hoped that this area will
be placed in the incomplete block design country without further trouble.

The selection of the treatment combinations to go into these countries
takes us into another dimension of this statistical universe. We have single
factor and multiple factor treatment combinations. Small factorial groups fit
nicely into our design countries. If several factors are involved, we may need
to introduce confounding. This requires settlement in the incomplete block
design country, where there are more blocks than replications. Some con-
founded areas are settled, such as those where confounding on a main effect,
the split-plot design country. Here you find political parties with platforms
ranging from randomization to stripping the second factor. This latter com-
plicates its trade relations with the analysis countries.

Let us continue in the incomplete block design country and cross the state
where confounding on high-order interactions is practiced. Right near, and
often overlapping, is a new state using confounding on degree effects. These
two states are being settled, with good roads already constructed, but the
border has not been defined or peacefully occupied.

A rather new and progressive group of settlers are the fractional replica-
tion folks. Their chief platform is that five or more factors can be included
simultaneously in an experiment of a practicable size so that the investigator
can discover quickly which factors have an important effect on their product.
In this area the hazard of misinterpretation is especially dangerous when one
is not sure of the aliases. The penalties may be trivial. However, it seems wise
not to join this group unless you know enough about the nature of the factor
interactions.

The balanced and partially balanced incomplete block states are being
settled very rapidly. So far as experimental operations are concerned, the
incomplete block design country is no more difficult to settle than the com-
plete block design country. It will take some extra planning and analysis to
live in the incomplete block country and you will have to have adjusted
means. The weights to use to adjust the means are still in a frontier status.

There are numerous frontier areas in this incomplete block country where
roads and communications have been established. There are 376 partially
balanced incomplete block design lots with k > 2 and 92 lots with k = 2 from
which to choose. These lots have two associate classes.

We should look at some of the newer settlements as (1) the chain block and
the generalized chain block design states; (2) the doubly-balanced incomplete
block design state where account can be taken of the correlation between
experimental units; and (3) the paired comparison design areas for testing
concordance between judges, together with the appropriate agreements with
the analysis continent. Beyond the latin square country dikes have been built
to provide new land. There are latin squares with a row and column added
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or omitted, or with a column added and a row omitted. Further work cover-
ing more general situations will give this design continent more areas for
expansion.

Let us go now to another large new country which, after negotiations, has
been established by taking sections of the design and analysis continents. The
process has raised some political issues and questions of international control.
The development came about because, in the design continent, there is a two-
party system with data measured (1) on a continuous scale (quantitative vari-
able) or (2) on a discontinuous scale (qualitative variable). These party mem-
bers have settled side by side in the design continent for single-factor groups.

If we have factorial groups, we have to consider both whether the measures
are continuous or discontinuous and whether the factors are independent or
not. To handle these problems, some of the continuous scale statisticians have
established a response surface country. To prepare for the peaceful settlement
of this response surface country a portion of the regression analysis state has
been transferred. Whether this separation of portions of countries to make up
a new country will hold, only time will tell.

Here in this rather new response surface country, observe that major inter-
est lies in quantitative variables, measured on a continuous scale. In this
situation, it is often natural to think of response as related to the levels of the
factors by some mathematical function. The new methods are applicable
when the function can be approximated, within the limits of the experimental
region, by a polynomial.

In this tropical and exciting response surface country, the central compos-
ite and non-central composite states have been settled for some time. Some
of the other borders are not firmly fixed, as would be expected in a new
country. New states identified as first, second, third, and higher-order designs
are seeking admittance to this country. They overlap with some of the older
countries. We can stand over here on this mountain top and see many fron-
tiers as the very special central composite rotatable design area, which has
been named and partially settled with some roads constructed. Over there is
the evaluation frontier where the relative efficiency of these designs and meth-
ods needs to be determined.

Progress has been made on strategies to be used for determining the opti-
mum combination of factor levels. In addition to locating the maximum of y,
it is often desirable to know something about how y varies when the factor
levels are changed from their optimum values. The efficient location of an
optimum combination of factor levels often requires a planned sequential
series of experiments.

Most experimentation is sequential, since the treatments are applied to the
experimental units in some definite time sequence. To explore in this area, the
process of measurement must be rapid so that the response on any unit is
known before the experimenter treats the next unit. A method of sequential
analysis gives rules that determine, after any number of observations, whether
to stop or continue the experiment.
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The full sequential approach is often not practical, thus the two or multiple
stage sequential plan with groups of units handled at one time takes us into
the frontiers of this region. So far, the matter of testing hypotheses has been
given major attention, but now sequential methods hold promise of increas-
ing the efficiency of both testing and estimation procedures.

Are you ready now to visit the investigations (more popularly known as
sampling) section of this design continent? Since this section borders on the
descriptive methods continent, both continents find that it is essential to
maintain trade relationships.

In all fields of experimentation and in most collections of descriptive data
only a sample from the population can be considered. How to do this effi-
ciently presents an extensive horizon.

I hope you did not forget to get a visa permit to travel into the sample
design territory. We shall quickly cross the settled simple random sampling
country. Here is the method of sampling in which the members of the sample
are drawn independently with equal probabilities. This is a satisfactory place
to settle if the population is not highly variable. On the frontier between this
country and the other countries of this area, there are two problems: (1) How
could the present sampling procedures be improved if the observations fol-
lowed a standard distribution form? (2) What are the effects of nonrandom-
ness? The inhabitants of these frontiers invade the settled areas frequently,
and frontier battles result.

Next, we must cross the systematic sampling country. It is very difficult to
secure permission from a statistician to enter this country. However, it is
densely settled mostly by older people who have lived here all their lives. We
frequently hear about uprisings and renewed efforts of this group to acquire
all the advantages of the simple random sampling country.

It appears that settlement in the systematic sampling country can safely
be recommended if one of the following conditions exists, (1) the order of the
population is essentially random, or (2) several strata are to be used, with an
independent systematic sample drawn from each stratum. There may be pop-
ulations for which systematic sampling gives extremely precise estimates of
the mean but never gives reliable estimates of the variance of the mean.

Perhaps the most popular section of the sampling area is the stratified
random sampling country. The population is divided into parts called strata,
then a sample is drawn independently in each part. One popular political
party selects the number of units per stratum by optimum allocation. The
second party advocates selection of a proportionate number of units per stra-
tum. Some recently explored frontier areas are: (1) the determination of opti-
mum allocation in multivariate studies, (2) the improvement of criteria for
the construction of strata, and (3) the selection of the optimum number of
strata.

If you are interested in large sample surveys, you will want to visit the
multi-stage sampling country. Here the first stage units may be selected with
probability proportional to size, the second stage units with equal proba-
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bility. An adjacent area has been explored where first stage units are selected
with arbitrary probability.

In newer areas of the multi-stage sampling country more than one first
stage unit per stratum is drawn in order to permit internal assessment of the
sampling errors of estimates. Even here many of these large surveys have been
relegated to the archives without securing the sampling errors of estimates.
This is done perhaps because of the complexity of the estimating formulas.
Electronic computing machines are helping to settle this difficulty. In fact,
the machines may open up even wider frontiers for settlement in the sample
design countries.

In all the sampling territory, there are many internal political and eco-
nomic frontiers to be cleared. These sampling countries now have fair control
over sampling errors but relatively little over non-sampling errors. They real-
ize the need to find an economic balance between investment on sample and
investment on measurement technique. To these developing frontiers, we can
add others such as: (1) What are the relative efficiencies of the various sam-
pling plans? (2) What is the effect of nonresponse? and (3) What is an efficient
method to sample for scarce items? Efforts are being made to clear out the
underbrush and to settle some of this frontier area around the sampling
territory.

4. Statistical Inference; Analysis and Theory
Continent

In the analytical statistics hemisphere, we have visited the northern design of
experiments and investigations continent. Let us start our tour of the south-
ern statistical inference or the analysis and theory continent. The broad prob-
lem of statistical inference is to provide measures of the uncertainty of conclu-
sions drawn from experimental data. All this territory, in the statistical uni-
verse, has been discovered and settled by a process of generalizing from par-
ticular results.

Let us visit several analytical technique countries, keeping in mind that the
level of civilization in each of these countries is determined largely by the
status of its theoretical development.

First, here is the beautiful and popular t-test country, where testing of
hypotheses and setting up of confidence intervals for univariate populations
are performed. This area is a tourist photographic paradise, but we cannot
tarry. I know you will return.

Hurriedly, the way some tourists travel, we shall cross another univariate
country, analysis of variance. Almost all statisticians, except maybe a few
theorists, have enjoyed the beautiful lakes and mountains in this country.
Among the attractive features to explore are the orthogonal sets of single
degrees of freedom, the separation of simple effects when interaction exists,
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the use of both continuous and discontinuous variables and even the fitting
of regression models for the fixed continuous variable. This latter region is
being urged to establish an alliance with the response surface country.

We have time to observe only a few frontier problems: (1) What is the
power of analysis of variance to detect the winner? (2) How do you analyze
data which involve both a quantal and a graded response? (3) How do you
attach confidence limits to proportions? (4) What about nonhomogeneity of
variance when making tests of significance? and (5) Should we enter these
countries with nonnormal data? I may just mention a subversive area, at least
it is considered so by some, that is, the region where effects suggested by the
data are tested.

Are you ready now to visit the correlation country? Bivariate populations
are often interesting because of the relationship between measurements. First,
let us visit the well developed product moment correlation section, where the
cultural level is high due to theoretical verifications. Around here are several
unincorporated areas, quite heavily populated by special groups, but not too
well supported by theory. You should be careful if you visit the method of
rank difference, p (rho), the non-linear, n (eta), the biserial or the tetrachoric
coefficients of correlation districts.

While we travel across to the regression country, I might mention that its
constitution has several articles like the constitution of the correlation coun-
try. The two are confused by some users of statistics and even by statisticians.

We had better check to see if you have your visa before we enter the
regression country. Some of the acceptable reasons for granting visas are: (1)
to see if Y depends on X and if so, how much, (2) to predict Y from X, (3) to
determine the shape of the regression line, (4) to find the error involved in
experiments after effect of related factor is discounted or (5) to seek cause and
effect.

Some near frontier areas are being settled, such as those where there are
errors in both the X and the Y variables. Other frontiers include the test of the
heterogeneity of two or more regressions. How do we average similar ones?
What about the nonlinear regression lines?

As we leave the bivariate countries of the analysis and theory continent
and enter the multivariate countries, we find that life becomes more compli-
cated. All kinds of mechanical, electrical and electronic statistical tools have
come into use. These countries have been developed from, but are not inde-
pendent of, the univariate and bivariate areas by a process of successive gen-
eralizations. For example, people were taken from the t-test country and by
generalization they developed the statistics T country. This T group does
all the things done by the t group for any number of variates simultaneously,
be they mutually correlated or independent.

In this multivariate area, new territory related to the analysis of variance
has been explored and is called the multivariate analysis of variance. Here are
theoretical frontiers to be explored. Some are (1) What are the values of the
roots of a determinantal equation and what particular combination of them
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should be used for a particular purpose? (2) What are the limitations and
usefulness of the multivariate analysis of variance country? and (3) What are
the confidence bounds on parametric functions connected with multivariate
normal populations?

The next time you come this way, I wish you would stop to explore the
areas where the discriminant function and factor analysis methods are used.
There may be some danger that the latter will not be able to withstand the
attacks being made by those who advocate replacing factor analysis by other
statistical methods. I personally believe the factor analysis area will resist its
attackers and will remain in the statistical universe as a powerful country.

The simple correlation ideas were generalized into two new countries, the
multiple correlation country and the less well known canonical correlation
country, which has two sets of variates.

Crossing the multiple regression country, we look at the frontiers. There
are situations where it is desirable to combine scored, ranked, and continuous
data into a multiple regression or factor analysis. How can this be done le-
gally? What about the normal distribution assumptions?

I cannot resist having you visit the analysis of covariance country for it
accomplishes some of the same purposes as do the design countries. Covari-
ance helps to increase accuracy of estimates of means and variances. How-
ever, dangerous mountains exist in this country. The explorers may need to
develop added theory to enable the applied statistician to reach the top of
such cliffs as the one where the X variable is affected by the treatments. If the
treatments do affect X, a covariance analysis may add information about the
way in which the treatments produce their effects. The interpretation of the
results when covariance is used requires care, since an extrapolation danger
may be involved. Now that I have acknowledged that we are in a dangerous
area, I might state that the dangers of extrapolation exist in all regression and
related areas, and especially back in the response surface country.

We are ready to enter the variance component country, where separate
sources of variability are identified. Estimates of these variance components
are desired. These estimates are used to plan future experiments, to make tests
of significance, and to set confidence limits.

This country is relatively new, so that adequate statistical theory has not
been developed, thus leaving rugged frontiers: (1) The assumption of addi-
tivity needs to be explored in detail, (2) A clear statement is needed of how to
decide whether the interaction in a two-way classification is nonrandom or
random, (3) More exact methods of assigning confidence limits for the vari-
ance components need to be developed, (4) How does one handle the mixed
model? (5) How can one detect correlated errors? (6) What can be done to
simplify the analysis of data with unequal variances? (7) What are the effects
of various types of nonnormality on the consistency and efficiency of esti-
mates? and (8) Some study needs to be made of the proper allocation of
samples in a nested sampling problem when resources are limited and good
estimates of all components are desired.

Another section of the variance component country is called components
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of error. The problem of choosing the correct error term in the analysis of two
or more factors depends upon whether the factors are random or nonrandom
or upon the question you ask. Do you want the mean difference between
treatments averaged over these particular areas with narrow confidence limits,
or do you want mean differences averaged over a population of areas of which
these areas are a sample with broad confidence limits?

So far, we have visited almost exclusively the parametric inference coun-
tries. Let us take a glimpse at the frontier in the nonparametric inference
territory. When the experimenter does not know the form of his population
distribution, or knows that it is not normal, then he may either transform his
data or use methods of analysis called distribution free or nonparametric
methods. This territory is being settled. The area dealing with the efficiency
of certain tests for two by two tables has been partially settled and some
general theorems on the asymptotic efficiency of tests have been proved.

Some of the frontiers are: (1) What is the general theory of power functions
for distribution free tests? (2) What is the efficiency of nonparametric tests? (3)
Can sequential methods be applied to nonparametric problems, and (4) How
can two nonnormal populations be compared?

There are three more general frontiers I wish to mention. (1) How far are
we justified in using statistical methods based on probability theory for the
analysis of nonexperimental data? Much of the data used in the descriptive
methods continent are observational or nonexperimental records. (2) What
are the effects of nonnormality, heterogeneity, nonrandomness and noninde-
pendence of observations to which standard statistical methods are applied?
And (3) How can we deal with truncated populations in relationship problems?

As we complete our tour of the three continents, I wish to emphasize the
fact that there are many important problems of design and statistical infer-
ence which remain unexplored.

5. Training Frontier

Our travels took us to only a part of the statistical universe, but we managed
to observe many frontier areas. I hope one thing impressed you: that is, the
extent of the need for statisticians to explore these areas. In recent years, there
have been advances in statistical theory and technology, but the prompt ap-
plication of these to our biological, social, physical, industrial, and national
defense needs has created an unprecedented demand for intelligent and highly
trained statisticians. Research workers in many fields are requesting the stat-
istician to help both in planning experiments or surveys and in drawing con-
clusions from the data. Administrators are facing the quantitative aspects of
problems, such as optimum inventories, production schedules, sales efforts,
pricing policies and business expansion, which call for new mathematical
methods for solving problems concerned with decision making.



Comments on
Cox (1957) Statistical Frontiers

G.A. Barnard

Perhaps the most obvious omission from her survey is any mention of com- -
puters, which might be thought of as large mechanised tractors which are in
course of ploughing all the land she traversed, and bringing about in every
area new and luxuriant growth. When the University of London took delivery
of its Mercury Computer in the mid fifties I recall saying that at last we could
really draw likelihood curves and contour plots. Yet it was not until the late
seventies that a set of likelihood plots appeared in the “Annals”, in a paper
by Morris De Groot. Of course it would not have been possible in the mid
fifties to foresee all the graphics we now can have on desk top computers, nor
the computer-intensive possibilities of projection pursuit and the bootstrap.
The statistical world has yet to adjust to the full possibilities opened up by
computers.

A feature that has developed since Gertrude wrote—and which is to a
large extent a consequence of initiatives which she promoted—is the direct
involvement of statisticians in applications of their ideas. The Kettering award
to David Cox is an instance of what I mean—the award normally goes to a
piece of medical research. Related to this sort of development are the powerful
pressures exerted both in the US and in the UK, as well as in other countries,
for guaranteeing public access to accurate statistics as an important bulwark
of democracy.
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1.J. Good

In 1977, Gertrude Cox presented a colloquium at Virginia Tech with the title
“A Consulting Statistician: Facing a Real World.” She encouraged students
to become consultants and see the world, and she received a standing ovation.
Here’s one anecdote from this colloquium. Gertrude had been invited to do
some statistical consulting for a mining company and she insisted that she
should be allowed to go down the mine. She was one of the rare women at
that time (Eleanor Roosevelt was another) to do so. This anecdote reveals her
determination and her hands-on down-into-the-earth approach to consult-
ing. Her love of traveling, which was clear from the colloquium, would help to
explain the “geographical” structure of her presidential address in 1957. Per-
haps she had specific continents and countries in mind and used them to
organize her address.

Her address contained about fifty suggestions for research projects, many
of which are still topical. For example, she mentioned the problem of com-
bining discrete and continuous data, an area of considerable current interest
for medical diagnosis. She said she’d let us guess which ideas were original to
her, but I think her main aim in this address was to be useful rather than
original.

Ideas in one continent often affect others, and can even affect another
world. For example, one of the earliest ideas in Gertrude’s continent, Yates’s
adding-and-subtracting algorithm for obtaining the interactions in a 2" facto-
rial experiment (Yates, 1933, pp. 15 and 29; Cochran & Cox, 1957, §5.24a) led
to an influential Fast Fourier Transform. It was probably anticipated by
Gauss.

Gertrude’s address had little to say about Computerica (two sentences on
page 7), nothing on multivariate categorical data, and, apart from the two
words “decision making” on page 10, she didn’t mention Bayesiana. Fisher
had pushed that continent away but by 1957 it was already drifting back fast.

The prediction on page 11 that “statisticians are destined for a larger role”
was correct and probably influential. It was anticipated by Wilks (1950) who
acknowledged the prophet H.G. Wells but without a citation. In fact Wells
(1932, pp. 372 and 391) said “The science of statistics is still in its infancy—a
vigorous infancy”, and on page 391 “... the movement of the last hundred
years is all in favour of the statistician.”
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D.V. Lindley

Guide books do not ordinarily concern themselves with the politics or philos-
ophy of the countries they are describing and tourists, save in exceptional
cases, ignore the manner of government. In this respect, Dr. Cox really is a
tourist, not mentioning the philosophy of statistics. In 1956, this was reason-
able, since Savage, the revolutionary text, had only just appeared. Jeffreys lay
unread and de Finetti was still only available in Italian. The statistical world,
at least in the United States, looked to be soundly governed by the Wald-
Neyman-Pearson school. Few had doubts that power, confidence intervals
and unbiased estimates were not completely sound. Basu had not produced
his counter-examples.

Today, the travellers would surely look at the philosophy of statistics and
its implication for practice. They would not be quite so confident that their
methods were sound. Fisher still flourishes like an awkward government that
is slightly suspect. The upstart Bayesian movement is being contained, largely
by being ignored, but represents a continual threat to the establishment. Even
the arithmetic mean has fallen from its pedestal and we argue about whether
or not to shrink our census returns.

To leave the travel-guide analogy, there are three features that would be
present in a contemporary survey yet are omitted by Cox. First, there would
be a discussion about computers; about their ability to handle large data sets,
to perform more complicated and larger analyses than hitherto, to simulate in
procedures like the bootstrap and Gibbs sampling. Second, the topic of prob-
ability would loom larger. The ideas of influence diagrams, expert systems
and artificial intelligence have led to an appreciation of probability manipula-
tions, and especially of independence, that are important. Third, there would
be some consideration of decision-making. Cox’s view of a statistician’s role
was passive; we observe and report. There is increasing awareness today, for
example in Ron Howard’s recent address, to the more active statistician who
contemplates risk and utility, and is prepared to advise not just about beliefs
but about the actions that might spring from those beliefs.

F. Mosteller

Gertrude Cox loved travel so much that we are not surprised that she chose
this analogy for her paper. Although statisticians have made progress on
many of the issues that she mentions in 1956, her list leaves plenty of room
for a decade more of thoughtful doctoral dissertations in the last decade of
her century.

One omission I note is that in dealing with descriptive statistics, both
graphical and tabular, she does not invoke the need for behavioral science to
help us decide what methods of presentation come through to the viewers as
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especially helpful. We have had little progress in this area, though Cleveland’s
group has made some contributions. I look forward to big progress as com-
puter technology offers us plenty of options for flexible and attractive presen-
tations and for easy assessment.

An example of the kind of research needed is given in Ibrekk and Morgan
(1987) where these authors explore for nontechnical users the communication
merits of nine pictorial displays related to the uncertainity of a statistic.

In learning how to use graphics to improve analysis, statistics alone may
well be adequate, but in improving presentation, we have to find out what
methods are better at communicating, and for this nothing can replace the
findings for actual users.
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P.K. Sen

Looking back at this remarkable article written almost thirty-five years ago, I
have nothing but deep appreciation for the utmost care with which (the late)
Gertrude M. Cox depicted the statistical universe (in 1956) as well as for her
enormous foresight. In fact, to appreciate fully this (ASA) presidential address
delivered to a very wide audience (from all walks in statistical methodology
and applications), it would be very appropriate to bear the remembrance of
her prime accomplishments in creating such a universe in the Research Tri-
angle Park in the heart of North Carolina, and even after 35 years, we are
proudly following her footsteps.

The three major fortresses in her statistical frontiers are (i) descriptive
methods, (ii) design of experiments and investigations, and (iii) analysis and
theory. Collection of data, their summarization and presentation in textual/
tabular/graphical forms constitute the first aspect. The advent of modern
computer and statistical packages has made this job somewhat easier and
mechanical, albeit the abuses of such statistical packages have been increasing
at an alarming rate. The main burden lies with a good planning (synonymous
to design) of experiments/investigations, so that the collected data convey
meaningful information, can be put to valid statistical analysis, and suitable
statistical packages can be incorporated in that context. In spite of the fact
that most of us have our bread and butter from statistical theory and analysis,
we often digress from applicable methodology onto the wilderness of abstrac-
tions. Gertrude was absolutely right in pointing out that there is a compelling
need to ensure that statistical methodology is theoretically sound and at
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the same time adoptable in diverse practical situations. The scenario has not
changed much in the past three decades, although introduction of new disci-
plines has called for some shifts in emphasis and broadening of the avenues
emerging from the Cox fortresses.

The genesis of statistical sciences lies in a variety of disciplines ranging
from agricultural science, anthropometry, biometry, genetics, sociology, eco-
nomics, physical and engineering sciences, and bio-sciences to modern medi-
cine, public health and nascent bio-technology. While Cox’s thoughtful ob-
servations pertain to a greater part of this broad spectrum, there may be some
need to examine minutely some of the frontiers which were mostly annexed
to the Cox universe later on. In this respect, I would like to place the utmost
emphasis on Energy, Ecology and Environmetrics. Our planet is endangered
with the thinning of the ozone layer, extinction of several species, massive
atmospheric pollution, nuclear radiation, genotoxicity, ecological imbalance
and numerous other threatening factors. The thrust for energy-sufficiency and
economic stability has led to global tensions, and the mankind is indeed in a
perilous state. Statisticians have a basic role to play in conjunction with the
scientists in other disciplines in combating this extinction. The design of such
investigations may differ drastically from that of a controlled experiment. The
collection of data may need careful scrutiny in order that valid statistical
analysis can be done, and more noticably, novel statistical methodology has
to be developed to carry out such valid and efficient statistical analysis. Lack
of a control, development of proper scientific instruments to improve the
measurement system, proper dimension reduction of data for efficient analy-
sis and above all good modelling are essential factors requiring close atten-
tion from the statisticians. To a lesser extent, similar problems cropped up in
the area of epidemiological investigations including clinical trials and retro-
spective studies, and the past two decades have witnessed phenomenal growth
of the literature of statistical methodology to cope with these problems. Non-
stationarity of concomitant variates (over time or space), measurement errors,
doubts about the appropriateness of linear, log-linear or logistic models, and
above all, the relevance of ‘random sampling’ schemes (particularly, equal
probability sampling with/without replacement) all call for non-standard sta-
tistical analysis, for which novel methodology need to be developed. As statis-
ticians, we have the obligation to bridge the gap between the classical theory
and applicable methodology, so that valid statistical conclusions can be made
in a much broader spectrum of research interest. Last year, at the Indian
Science Congress Association Meeting in Madurai, I have tried to summarize
this concern, and as such, I would not go into the details. Rather, I would like
to conclude this discussion with the remark that most of the problems relating
to multivariate analysis, nonparametric methods and sequential analysis re-
ferred to in this Cox address has been satisfactorily resolved in the past three
decades, and we need to march forward beyond these traditional quarters
onto the rough territories which are as yet deprived of the statistical facilities,
and towards this venture, we need to accommodate a plausible shift in our
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statistical attitude too. Nevertheless, the Cox milestone remains a good explo-
ration point.
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Introduction to
Fisher (1922) On the Mathematical
Foundations of Theoretical Statistics

Seymour Geisser
University of Minnesota

1. General Remarks

This rather long and extraordinary paper is the first full account of Fisher’s
ideas on the foundations of theoretical statistics, with the focus being on
estimation. The paper begins with a sideswipe at Karl Pearson for a pur-
ported general proof of Bayes’ postulate. Fisher then clearly makes a distinc-
tion between parameters, the objects of estimation, and the statistics that one
arrives at to estimate the parameters. There was much confusion between the
two since the same names were given to both parameters and statistics, e.g.,
mean, standard deviation, correlation coefficient, etc., without an indication
of whether it was the population or sample value that was the subject of
discussion. This formulation of the parameter value was certainly a critical
step for theoretical statistics [see, e.g., Geisser (1975), footnote on p. 320 and
Stigler (1976)]. In fact, Fisher attributed the neglect of theoretical statistics
not only to this failure in distinguishing between parameter and statistic but
also to a philosophical reason, namely, that the study of results subject to
greater or lesser error implies that the precision of concepts is either impossi-
ble or not a practical necessity. He sets out to remedy the situation, and
remedy it he did. Indeed, he did this so convincingly that for the next 50 years
or so almost all theoretical statisticians were completely parameter bound,
paying little or no heed to inference about observables.

Fisher states that the purpose of statistical methods is to reduce a large
quantity of data to a few that are capable of containing as much as possible
of the relevant information in the original data. Because the data will general-
ly supply a large number of “facts,” many more than are sought, much infor-
mation in the data is irrelevant. This brings to the fore the Fisherian dictum
that statistical analysis via the reduction of data is the process of extracting
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the relevant information and excluding the irrelevant information. A way of
accomplishing this is by modeling a hypothetical population specified by rela-
tively few parameters.

Hence, the critical problems of theoretical statistics in 1920, according to
Fisher, were (1) specification, choice of the hypothetical parametric distribu-
tion; (2) estimation, choice of the statistics for estimating the unknown param-
eters of the distribution; (3) sampling distributions, the exact or approximate
distributions of the statistics used to estimate the parameters. For a majority
of statisticians, these have been and still are the principal areas of statistical
endeavor, 70 years later. The two most important additions to this view are
that the parametric models were, at best, merely approximations of the under-
lying process generating the observations, and in view of this, much greater
empbhasis should be placed on observable inference rather than on parametric
inference.

2. Foundational Developments

In this paper, Fisher develops a number of concepts relevant to the estimation
of parameters. Some were previously introduced but not generally developed,
and others appear for the first time. Here, also, the richness of Fisher’s lingua
statistica emerges, yielding poignant appelatives for his concepts, vague though
some of them are. This activity will continue throughout all his future contri-
butions. First he defines consistency: A statistic is consistent if, when calcu-
lated from the whole population, it is equal to the parameter describing the
probability law. This is in contradistinction to the usual definition which
entails a sequence of estimates, one for each sample size, that converges in
probability to the appropriate parameter. While Fisher consistency is restricted
to repeated samples from the same distribution, it does not suffer from the
serious defect of the usual definition. That flaw was formally pointed out later
by Fisher (1956): Suppose one uses an arbitrary value A for an estimator
for n < ny, where n is as large as one pleases, and for n > n, uses an asympto-
tically consistent estimator T,. The entire sequence, now corrupted by A for
n < n, and then immaculately transformed to T, thereafter, remains a useless,
but perfectly well-defined, consistent estimator for any n. Fisher is not to be
trifled with!

Indicating that many statistics for the same parameter can be Fisher-
consistent, in particular, the sample standard deviation and sample mean
deviation for the standard deviation of a normal population, he goes on to
suggest a criterion for efficiency. It is a large sample definition. Among all
estimators for a parameter that are Fisher-consistent and whose distributions
are asymptotically normal, the one with the smallest variance is efficient.
Later, he shows that when the asymptotic distribution of the method of mo-
ments estimator is normal for the location of a uniform distribution while that
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of the “optimum” estimator is double exponential, he realizes that the vari-
ance does not necessarily provide a satisfactory basis for comparison, espe-
cially for small samples. Thus, he also recognizes that his large sample defini-
tion of intrinsic accuracy (a measure of relative efficiency) should not be based
on variances and a definition appropriate for small samples is required. In
later papers, e.g., Fisher (1925), vague concepts of intrinsic accuracy will be
replaced by the more precise amount of information per observation. At any
rate, the large sample criterion is incomplete and needs to be supplemented
by a sufficiency criterion. The “remarkable™ property of this concept was
previously pointed out when introduced for a special case without giving it a
name [Fisher (1920)]. A statistic, then, is sufficient if it contains all the infor-
mation in the sample regarding the parameter to be estimated; that is, given
a sufficient statistic, the distribution of any other statistic does not involve the
parameter. This compelling concept of his, including the factorization result,
is still in vogue. Assuming a sufficient statistic and any other statistic whose
joint distribution is asymptotically bivariate normal with both means being
the parameter estimated, he then “demonstrates” that the sufficient statistic
has an asymptotic variance smaller than that of the other statistic by a clever
conditioning argument that exploits the correlation between the statistics.
Hence, he claims that a sufficient* statistic satisfies the criterion of (large
sample) efficiency. This “proof™ of course could only apply to those statistics
whose asymptotic bivariate distribution with the sufficient statistic was nor-
mal.

He comments further on the method of moments estimation procedure.
While ascribing great practical utility to it, he also exposes some of its short-
comings. In particular, in estimating the center of a one-parameter Cauchy
distribution, he points out that the first sample moment, the sample mean,
which is the method of moments estimator is not consistent but the median
is. He also cautions against the statistical rejection of outliers unless there are
other substantive reasons. Rather than outright rejection, he proposes that it
seriously be considered that the error distribution is not normal. Fisher effec-
tively argues that the specification of the underlying probability law will gen-
erally require the full set of observations. A sufficient reduction is only mean-
ingful once the probability law has been adequately established.

3. Maximum Likelihood

Fisher begins this part of his discourse acknowledging, first, that properties
such as sufficiency, efficiency, and consistency per se were inadequate in di-
rectly obtaining an estimator. In solving any particular problem, we would

* In the author’s note, Fisher (1950), there is a handwritten correction to the definition of intrinsic
accuracy replacing sufficiency by efficiency, possibly based on his later recognition that maxi-
mum likelihood estimators were not always sufficient.
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require a method that would lead automatically to the statistic which satisfied
these criteria. He proposes such a method to be that of maximum likelihood,
while admitting dissatisfaction with regard to the mathematical rigor of any
proof that he can devise toward that result. Publication would have been
withheld until a rigorous proof was found, but the number and variety of new
results emanating from this method pressed him to publish. With some un-
characteristic humility, he says, “I am not insensible of the advantage which
accrues to Applied Mathematics from the cooperation of the Pure Mathema-
tician and this cooperation is not infrequently called forth by the very imper-
fections of writers on Applied Mathematics.” This totally disarming state-
ment would preclude any harsh commentary on the evident lack of rigor in
many of his “proofs” here. Such evident modesty and good feelings toward
mathematicians would never again flow from his pen.

Fisher (1912) had earlier argued for a form of maximum likelihood estima-
tion. He had taken what superficially appeared to be a Bayesian approach
because the maximizing procedure resembled the calculation of the mode of
a posterior probability. In the present paper, he is very concerned to differen-
tiate it from the Bayesian approach. He also argues against the “customary”
Bayesian use of flat priors on the grounds that different results are obtained
when different scales for the parameters are considered.

To illustrate Fisher’s argument, suppose x denotes the number of successes
out of n independent trials with probability of success; then the likelihood
function is

n!
L —_ (1 — p)"*
(p) 7x!(n_x)!p( p) O<p<l,
which is maximized when p is chosen to be x/n. Now, if a uniform distribution
on (0, 1) is taken to be the prior distribution of p, then Bayesian analysis
would yield

n(p) oc p*(1 — p)*~*

as the posterior density of p. But if we parameterize this Bernoulli process in
a different way, say, in terms of 8 with sinf = 2p — 1, then the likelihood
function of 8 is

L) = n! (1 +sin8)*(1 —sin@)"* (n rc),

x!(n — x)! 2x n=x "‘E <0< :2

which, when maximized with respect to 6, gives sinf = (2x — n)/n = 26— L.
Thus, the maximum likelihood estimate is invariant under a 1-1 transforma-
tion. For the Bayes approach, he questions the assignment of a prior assigned
to 0. The uniformity of & on (—n/2, n/2) leads to the posterior density of p as

n(p) oc p* 31 — pyrrTA,

which is different from the previous result above. Due to this inconsistency
and other reasons, Fisher derides the arbitrariness of the Bayes prior and
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mation. But 6 has a smaller mean squared error for a sufficiently large sample
size.

The method of maximum likelihood appears to have been anticipated by
Edgeworth (1908-9) according to Pratt (1976). Although there is less than
universal consensus for this view, there is ample evidence that Edgeworth
derived the method in the translation case directly and also using inverse
probability. It appears he also conjectured the asymptotic efficiency of the
method without giving it a name.

4. Other Topics

The remainder of the paper contains mainly applications of maximum likeli-
hood techniques and various relative efficiency calculations. There is a long
discussion of the Pearson system of frequency curves. This section serves
mainly to display Fisher’s analytic virtuosity in handling the Pearson system,
also displaying graphs that serve to characterize the system in a more useful
form than previously. This enables him to calculate for the various Pearson
frequency curves,} regions for varying percent efficiencies of the method of
moments estimators of location and scale. He also determines the conditions
that make them fully efficient. In the latter case, he shows that if the log of a
density is quartic, under certain conditions it will be approximately normal
and fit the Pearson system. In dealing with the Pearson-type III curve, he now
demonstrates that the asymptotic variance of the maximum likelihood esti-
mators of scale a and shape p is smaller than that of their method of mo-
ments counterparts. However, he fails to remark or perhaps notice the anom-
aly of the nonregular case. Here the asymptotic variance of the maximum
likelihood estimator of a is larger when m and p are given than when only p is
given. Similarly, the maximum likelihood estimator of p has smaller asymp-
totic variance when a and m are unknown than when a and m are known.

Interest in the Pearsonian system has declined considerably over the years,
being supplanted by so-called nonparametric and robust procedures, and
revival appears unlikely unless Bayesians find use for them. The final part of
the paper looks at discrete distributions, where the method of minimum chi-
square is related to maximum likelihood, and the problem of Sheppard’s
correction for grouped normal data is addressed in detail. This and the mate-
rial on the Pearson system actually make up the bulk of the paper. No doubt
of considerable interest 70 years ago, it is of far less interest than the preceding
work on the foundations. Fisher implies as much in his author’s note. How-
ever, there is a final example that deals with the distribution of observations
in a dilution series that is worthy of careful examination.

1 The density on the bottom of page 342 as well as the one on page 343 of the original paper
contain misprints. The section involving this material has been omitted in the abridged version
of Fisher’s paper which follows.
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After earlier displaying the potential lack of efficiency inherent in an un-
critical application of the method of moments, Fisher in an ingenious volte-
face produces an estimation procedure for a dilution series example, which,
though inefficient, is preferable to a fully efficient one essentially for economic
and practical reasons. To be sure, in later years Fisher fulminated against the
wholesale introduction of utility or decision theory into scientific work, but
rarely again were such principles so elegantly and unobtrusively applied to
such a significant practical problem. The analysis here represents a peerless
blend of theory and application.

An important monitoring procedure, of ongoing interest and wide applica-
bility, used in this instance for estimating the density of protozoa in soils, was
brought to Fisher’s attention. A series of dilutions of a soil sample solution
were made such that each is reduced by a factor a. At each dilution, a uniform
amount of the solution is deposited on s different plates containing a nutrient.
After a proper incubation period, the number of protozoa on each plate is to
be counted. A reasonable model for such a situation is that the chance of z
protozoa on a plate is Poisson-distributed with expected value 6/a*, where 6
is the density or number of protozoa per unit volume of the original solution,
and x the dilution level. A large number of such series were made daily for a
variety of organisms. It proved either physically impossible or economically
prohibitive to count the number of such organisms on every plate for many
such series in order to estimate 6. First, Fisher suggests that only those plates
containing no organisms be counted; the chance of such an occurrence at level
x is p, = exp(—0/a*). By this device, an experimentally feasible situation is
attained that produces a joint likelihood for Y,, the number of sterile plates
at level x, as

k 5 _
=[] ( )pi‘{l — Py
x=0 \Vx

for dilution levels x = 0, 1,..., k. He then calculates the contribution of a plate
at level x to the information about log 8 to be

Wy = px(l - Px)_l(log px)z'

This is informative as to the number of dilution levels necessary in such exper-
iments. Further, the total expected information is approximately given as

2
SL WA (610ga)

The maximum likelihood solution to the problem, however, required a heavy
investment of time and effort given the computational facilities of 1922. (Of
course, it can easily be done today.)

At this point, Fisher employs a second wrinkle that makes the problem
tractable. He suggests that the expected total number of sterile plates be
equated to the observed total number in order to obtain an estimate of 6. This
“rough” procedure has expected information with respect to log @ of approxi-
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mate value

s
log2loga’

This results in a very quick and easy procedure possessing an efficiency, inde-
pendent of the dilution factor, of about 88%,.

This may very well be one of the earliest statistical applications of a deci-
sion like approach to the analysis of data.

5. Summary

Clearly Fisher’s paper was a landmark event in theoretical statistics. While it
suffered from a lack of mathematical rigor, long analytic excursions into areas
of lesser interest, and some confusion in parts, the novelty and number of
ideas expressed here, both those developed from previous work and newly
introduced, are still compelling for most statisticians. Although this paper is
infrequently cited, its influence completely pervades the subsequent paper
[Fisher (1925)1,§ which presents a clearer exposition of his views. However, he
poured into the 1922 paper, pell-mell, all his creative thinking and work on
the foundations of statistics, the major exception being the fiducial argument.
This work, filtered through the 1925 paper, has had a profound impact on
statistical thinking unto this day. One has only to scan any serious work on
the foundations to see that these ideas still have relevance in statistical theory,
although citation is almost always to the 1925 paper.
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On the Mathematical Foundations of
Theoretical Statistics

R.A. Fisher
Fellow of Gonville and Caius College,
Chief Statistician, Rothamsted Experimental Station

Definitions

Centre of Location. That abscissa of a frequency curve for which the sampling
errors of optimum location are uncorrelated with those of optimum scaling.
9.)

Consistency. A statistic satisfies the criterion of consistency, if, when it is
calculated from the whole population, it is equal to the required parameter.
4)

Distribution. Problems of distribution are those in which it is required to
calculate the distribution of one, or-the simultaneous distribution of a num-
ber, of functions of quantities distributed in a known manner. (3.)

Efficiency. The efficiency of a statistic is the ratio (usually expressed as a
percentage) which its intrinsic accuracy bears to that of the most efficient
statistic possible. It expresses the proportion of the total available relevant
information of which that statistic makes use. (4 and 10.)

Efficiency (Criterion). The criterion of efficiency is satisfied by those statis-
tics which, when derived from large samples, tend to a normal distribution
with the least possible standard deviation. (4.)

Estimation. Problems of estimation are those in which it is required to
estimate the value of one or more of the population parameters from a ran-
dom sample of the population. (3.)

Intrinsic Accuracy. The intrinsic accuracy of an error curve is the weight
in large samples, divided by the number in the sample, of that statistic of
location which satisfies the criterion of efficiency. (9.)

Isostatistical Regions. If each sample be represented in a generalized space
of which the observations are the co-ordinates, then any region throughout
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elementary of statistical concepts. It is a parameter which specifies a simple
dichotomy in an infinite hypothetical population, and it represents neither
more nor less than the frequency ratio which we imagine such a population
to exhibit. For example, when we say that the probability of throwing a five
with a die is one-sixth, we must not be taken to mean that of any six throws
with that die one and one only will necessarily be a five; ar that of any six
million throws, exactly one million will be fives; but that of a hypothetical
population of an infinite number of throws, with the die in its original condi-
tion, exactly one-sixth will be fives. Our statement will not then contain any
false assumption about the actual die, as that it will not wear out with contin-
ued use, or any notion of approximation, as in estimating the probability
from a finite sample, although this notion may be logically developed once
the meaning of probability is apprehended.

The concept of a discontinuous frequency distribution is merely an exten-
sion of that of a simple dichotomy, for though the number of classes into
which the population is divided may be infinite, yet the frequency in each class
bears a finite ratio to that of the whole population. In frequency curves, how-
ever, a second infinity is introduced. No finite sample has a frequency curve:
a finite sample may be represented by a histogram, or by a frequency polygon,
which to the eye more and more resembles a curve, as the size of the sample
is increased. To reach a true curve, not only would an infinite number of
individuals have to be placed in each class, but the number of classes (arrays)
into which the population is divided must be made infinite. Consequently, it
should be clear that the concept of a frequency curve includes that of a hypo-
thetical infinite population, distributed according to a mathematical law, rep-
resented by the curve. This law is specified by assigning to each element of the
abscissa the corresponding element of probability. Thus, in the case of the
normal distribution, the probability of an observation falling in the range dx,
is

1

o./2n

e-(:n:‘m)z,dc:r2 dx,

in which expression x is the value of the variate, while m, the mean, and o, the
standard deviation, are the two parameters by which the hypothetical popu-
lation is specified. If a sample of n be taken from such a population, the data
comprise n independent facts. The statistical process of the reduction of these
data is designed to extract from them all relevant information respecting the
values of m and g, and to reject all other information as irrelevant.

It should be noted that there is no falsehood in interpreting any set of
independent measurements as a random sample from an infinite population;
for any such set of numbers are a random sample from the totality of numbers
produced by the same matrix of causal conditions: the hypothetical popula-
tion which we are studying is an aspect of the totality of the effects of these
conditions, of whatever nature they may be. The postulate of randomness
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thus resolves itself into the question, “Of what population is this a random
sample?” which must frequently be asked by every practical statistician.

It will be seen from the above examples that the process of the reduction
of data is, even in the simplest cases, performed by interpreting the available
observations as a sample from a hypothetical infinite population; this is a
Jortiori the case when we have more than one variate, as when we are seeking
the values of coefficients of correlation. There is one point, however, which
may be briefly mentioned here in advance, as it has been the cause of some
confusion. In the example of the frequency curve mentioned above, we took
it for granted that the values of both the mean and the standard deviation of
the population were relevant to the inquiry. This is often the case, but it
sometimes happens that only one of these quantities, for example the stan-
dard deviation, is required for discussion. In the same way an infinite normal
population of two correlated variates will usually require five parameters for
its specification, the two means, the two standard deviations, and the correla-
tion; of these often only the correlation is required, or if not alone of interest,
it is discussed without reference to the other four quantities. In such cases an
alteration has been made in what is, and what is not, relevant, and it is not
surprising that certain small corrections should appear, or not, according as
the other parameters of the hypothetical surface are or are not deemed rele-
vant. Even more clearly is this discrepancy shown when, as in the treatment
of such fourfold tables as exhibit the recovery from smallpox of vaccinated
and unvaccinated patients, the method of one school of statisticians treats the
proportion of vaccinated as relevant, while others dismiss it as irrelevant to
the inquiry. (3.)

3. The Problems of Statistics

The problems which arise in reduction of data may be conveniently divided
into three types:

(1) Problems of Specification. These arise in the choice of the mathematical
form of the population.

(2) Problems of Estimation. These involve the choice of methods of cal-
culating from a sample statistical derivates, or as we shall call them statis-
tics, which are designed to estimate the values of the parameters of the
hypothetical population.

(3) Problems of Distribution. These include discussions of the distribution
of statistics derived from samples, or in general any functions of quantities
whose distribution is known.

It will be clear that when we know (1) what parameters are required to specify
the population from which the sample is drawn, (2) how best to calculate from



16 R.A. Fisher

the sample estimates of these parameters, and (3) the exact form of the distri-
bution, in different samples, of our derived statistics, then the theoretical as-
pect of the treatment of any particular body of data has been completely
elucidated.

As regards problems of specification, these are entirely a matter for the
practical statistician, for those cases where the qualitative nature of the hypo-
thetical population is known do not involve any problems of this type. In
other cases we may know by experience what forms are likely to be suitable,
and the adequacy of our choice may be tested a posteriori. We must confine
ourselves to those forms which we know how to handle, or for which any
tables which may be necessary have been constructed. More or less elaborate
forms will be suitable according to the volume of the data. Evidently these are
considerations the nature of which may change greatly during the work of a
single generation. We may instance the development by Pearson of a very
extensive system of skew curves, the elaboration of a method of calculating
their parameters, and the preparation of the necessary tables, a body of work
which has enormously extended the power of modern statistical practice, and
which has been, by pertinacity and inspiration alike, practically the work of
a single man. Nor is the introduction of the Pearsonian system of frequency
curves the only contribution which their author has made to the solution of
problems of specification: of even greater importance is the introduction of
an objective criterion of goodness of fit. For empirical as the specification of
the hypothetical population may be, this empiricism is cleared of its dangers
if we can apply a rigorous and objective test of the adequacy with which the
proposed population represents the whole of the available facts. Once a statis-
tic, suitable for applying such a test, has been chosen, the exact form of its
distribution in random samples must be investigated, in order that we may
evaluate the probability that a worse fit should be obtained from a random
sample of a population of the type considered. The possibility of developing
complete and self-contained tests of goodness of fit deserves very careful con-
sideration, since therein lies our justification for the free use which is made of
empirical frequency formulae. Problems of distribution of great mathematical
difficulty have to be faced in this direction.

Although problems of estimation and of distribution may be studied sepa-
rately, they are intimately related in the development of statistical methods.
Logically problems of distribution should have prior consideration, for the
study of the random distribution of different suggested statistics, derived from
samples of a given size, must guide us in the choice of which statistic it is most
profitable to calculate. The fact is, however, that very little progress has been
made in the study of the distribution of statistics derived from samples. In
1900 Pearson (15) gave the exact form of the distribution of 2, the Pearsonian
test of goodness of fit, and in 1915 the same author published (18) a similar
result of more general scope, valid when the observations are regarded as
subject to linear constraints. By an easy adaptation (17) the tables of probabil-
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ity derived from this formula may be made available for the more numerous
cases in which linear constraints are imposed upon the hypothetical popula-
tion by the means which we employ in its reconstruction. The distribution of
the mean of samples of n from a normal population has long been known, but
in 1908 “Student” (4) broke new ground by calculating the distribution of the
ratio which the deviation of the mean from its population value bears to the
standard deviation calculated from the sample. At the same time he gave the
exact form of the distribution in samples of the standard deviation. In 1915
Fisher (5) published the curve of distribution of the correlation coefficient for
the standard method of calculation, and in 1921 (6) he published the corre-
sponding series of curves for intraclass correlations. The brevity of this list is
emphasised by the absence of investigation of other important statistics, such
as the regression coefficients, multiple correlations, and the correlation ratio.
A formula for the probable error of any statistic is, of course, a practical
necessity, if that statistic is to be of service: and in the majority of cases such
formulae have been found, chiefly by the labours of Pearson and his school,
by a first approximation, which describes the distribution with sufficient accu-
racy if the sample is sufficiently large. Problems of distribution, other than the
distribution of statistics, used to be not uncommon as examination problems
in probability, and the physical importance of problems of this type may be
exemplified by the chemical laws of mass action, by the statistical mechanics
of Gibbs, developed by Jeans in its application to the theory of gases, by the
electron theory of Lorentz, and by Planck’s development of the theory of
quanta, although in all these applications the methods employed have been,
from the statistical point of view, relatively simple.

The discussions of theoretical statistics may be regarded as alternating
between problems of estimation and problems of distribution. In the first
place a method of calculating one of the population parameters is devised
from common-sense considerations: we next require to know its probable
error, and therefore an approximate solution of the distribution, in samples,
of the statistic calculated. It may then become apparent that other statistics
may be used as estimates of the same parameter. When the probable errors
of these statistics are compared, it is usually found that, in large samples, one
particular method of calculation gives a result less subject to random errors
than those given by other methods of calculation. Attacking the problem
more thoroughly, and calculating the surface of distribution of any two statis-
tics, we may find that the whole of the relevant information contained in one
is contained in the other: or, in other words, that when once we know the
other, knowledge of the first gives us no further information as to the value
of the parameter. Finally it may be possible to prove, as in the case of the
Mean Square Error, derived from a sample of normal population (7), that a
particular statistic summarises the whole of the information relevant to the
corresponding parameter, which the sample contains. In such a case the prob-
lem of estimation is completely solved.
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4. Criteria of Estimation

The common-sense criterion employed in problems of estimation may be
stated thus:—That when applied to the whole population the derived statistic
should be equal to the parameter. This may be called the Criterion of Consis-
tency. It is often the only test applied: thus, in estimating the standard devia-
tion of a normally distributed population, from an ungrouped sample, either
of the two statistics—

o, = 1 \/ESHx —X|) (Mean error)
ny 2

1
g, = }ES{x — X)? (Mean square error)

will lead to the correct value, ¢, when calculated from the whole population.
They both thus satisfy the criterion of consistency, and this has led many
computers to use the first formula, although the result of the second has 14
per cent. greater weight (7), and the labour of increasing the number of obser-
vations by 14 per cent. can seldom be less than that of applying the more
accurate formula.

Consideration of the above example will suggest a second criterion, namely:
—That in large samples, when the distributions of the statistics tend to nor-
mality, that statistic is to be chosen which has the least probable error.

This may be called the Criterion of Efficiency. It is evident that if for large
samples one statistic has a probable error double that of a second, while both
are proportional to n~'2, then the first method applied to a sample of 4n
values will be no more accurate than the second applied to a sample of any n
values. If the second method makes use of the whole of the information avail-
able, the first makes use of only one-quarter of it, and its efficiency may there-
fore be said to be 25 per cent. To calculate the efficiency of any given method,
we must therefore know the probable error of the statistic calculated by that
method, and that of the most efficient statistic which could be used. The
square of the ratio of these two quantities then measures the efficiency.

The criterion of efficiency is still to some extent incomplete, for different
methods of calculation may tend to agreement for large samples, and yet
differ for all finite samples. The complete criterion suggested by our work on
the mean square error (7) is:

That the statistic chosen should summarise the whole of the relevant infor-
mation supplied by the sample.

This may be called the Criterion of Sufficiency.

In mathematical language we may interpret this statement by saying that
if @ be the parameter to be estimated, 8, a statistic which contains the whole
of the information as to the value of 8, which the sample supplies, and 6, any
other statistic, then the surface of distribution of pairs of values of 8, and 6,,

and
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the four moments of the grouped population

(o

1A = xf(x) dx,

2Ap = ] (x2 + “1'2)f(x) dx,

o= [ (5 0 a

Ay = ) : (x‘ + %xz— + gg)f(x) dx.

If we ignore the periodic terms, these equations lead to the ordinary Shep-
pard corrections for the second and fourth moment. The nature of the ap-
proximation involved is brought out by the periodic terms. In the absence of
high contact at the ends of the curve, the contribution of these will, of course,
include the terms given in a recent paper by Pearson (8); but even with high
contact it is of interest to see for what degree of coarseness of grouping the
periodic terms become sensible.

Now
1 p=x 2n E+(1/2)a
Ag=- Y j sin s0 d6 I E¥ (x) dx,
T p=—w Jo E-(1/2)a
2 [+4] 2 &+(1/2)a
=< I sin 2™ 4z £ (x) dx,
— a E—(1/2)a
2 (= §+(1/2)a 2
= J f(x) dx J £ sin 27 4.
a)-» E—(1/2)a a
But
x+(1/2)a
%f ésin@ﬁ:—icosz—nﬁfcosns,
a x—(1/2)a a s a
therefore

a |® 2nsx
1As = ("')SHE f_m cos 4 (x) dx;

similarly the other terms of the different moments may be calculated.
For a normal curve referred to the true mean

2e —(s2g2/262
1AS=(_)s+l?e (sa/Zc),

in which
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The error of the mean is therefore
_28(8*(62/251) sin 0 — %e—maz/zah sin 20 + %e—(gcrz,’z.:!) sin 30 — ).

To illustrate a coarse grouping, take the group interval equal to the stan-
dard deviation: then

o
E = —
2n’
and the error is
o _ )
——e 2 sin @
n

. . . a
with sufficient accuracy. The standard error of the mean being 7, we may
n

calculate the size of the sample for which the error due to the periodic terms
becomes equal to one-tenth of the standard error, by putting

whence

For the second moment

2
Bs —_ (_)s 4 (0.2 + 8_2) e—(szcﬂszzl,
S

and, if we put

there results
n = gige*™ =175 x 10'2.

The error, while still very minute, is thus more important for the second
than for the first moment.
For the third moment
6as g2 et (5202
As - (_)s £ {l s2g? - 3s4g? (nzsz —6)re o /252);

putting

1_5 3
\/ 7 = 12n0%

10\/n ’

= pm? _ 12
n 96072¢ 147 x 104
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While for the fourth moment

80%s? ot £6
B, = (=)™ {1 — (n%s? = 3) 55 — (n%5® — 6) c— pe 02
5 EZ ( )540_4 ( )5606 ’

so that, if we put,
/960" = 32nlgte ™

10/n ’
. 3
~ 3200n*

e*™ =134 x 10'2,

In a similar manner the exact form of Sheppard’s correction may be found
for other curves; for the normal curve we may say that the periodic terms are
exceedingly minute so long as a is less than o, though they increase very
rapidly if a is increased beyond this point. They are of increasing impor-
tance as higher moments are used, not only absolutely, but relatively to the
increasing probable errors of the higher moments. The principle upon which
the correction is based is merely to find the error when the moments are
calculated from an infinite grouped sample; the corrected moment therefore
fulfils the criterion of consistency, and so long as the correction is small no
greater refinement is required.

Perhaps the most extended use of the criterion of consistency has been
developed by Pearson in the “Method of Moments.” In this method, which is
without question of great practical utility, different forms of frequency curves
are fitted by calculating as many moments of the sample as there are parame-
ters to be evaluated. The parameters chosen are those of an infinite popula-
tion of the specified type having the same moments as those calculated from
the sample.

The system of curves developed by Pearson has four variable parameters,
and may be fitted by means of the first four moments. For this purpose it is
necessary to confine attention to curves of which the first four moments are
finite; further, if the accuracy of the fourth moment should increase with the
size of the sample, that is, if its probable error should not be infinitely great,
the first eight moments must be finite. This restriction requires that the class
of distribution in which this condition is not fulfilled should be set aside as
“heterotypic,” and that the fourth moment should become practically value-
less as this class is approached. It should be made clear, however, that there
is nothing anomalous about these so-called “heterotypic” distributions except
the fact that the method of moments cannot be applied to them. Moreover,
for that class of distribution to which the method can be applied, it has not
been shown, except in the case of the normal curve, that the best values will be
obtained by the method of moments. The method will, in these cases, certainly
be serviceable in yielding an approximation, but to discover whether this
approximation is a good or a bad one, and to improve it, if necessary, a more

adequate criterion is required.
A single example will be sufficient to illustrate the practical difficulty al-
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Figure 1. Symmetrical error curves of equal intrinsic accuracy:

1 dx
A..... df=E o
B.......df = —Le-*’f‘
2/n

luded to above. If a point P lie at known (unit) distance from a straight line
AB, and lines be drawn at random through P, then the distribution of the
points of intersection with AB will be distributed so that the frequency in any
range dx is

_ b dx
Tal+(x—-m?¥

af

in which x is the distance of the infinitesimal range dx from a fixed point 0 on
the line, and m is the distance, from this point, of the foot of the perpendicular
PM. The distribution will be a symmetrical one (Type VII.) having its centre
at x = m (fig. 1). It is therefore a perfectly definite problem to estimate the
value of m (to find the best value of m) from a random sample of values of x.
We have stated the problem in its simplest possible form: only one parameter
is required, the middle point of the distribution. By the method of moments,
this should be given by the first moment, that is by the mean of the observa-
tions: such would seem to be at least a good estimate. It is, however, entirely
valueless. The distribution of the mean of such samples is in fact the same,
identically, as that of a single observation. In taking the mean of 100 values of
X, we are no nearer obtaining the value of m than if we had chosen any value
of x out of the 100. The problem, however, is not in the least an impracticable
one: clearly from a large sample we ought to be able to estimate the centre of
the distribution with some precision; the mean, however, is an entirely useless
statistic for the purpose. By taking the median of a large sample, a fair ap-
proximation is obtained, for the standard error of the median of a large sam-

. T . . .
ple of nis 7, which, alone, is enough to show that by adopting adequate
n
statistical methods it must be possible to estimate the value for m, with in-
creasing accuracy, as the size of the sample is increased.
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This example serves also to illustrate the practical difficulty which observ-
ers often find, that a few extreme observations appear to dominate the value
of the mean. In these cases the rejection of extreme values is often advocated,
and it may often happen that gross errors are thus rejected. As a statistical
measure, however, the rejection of observations is too crude to be defended:
and unless there are other reasons for rejection than mere divergence from the
majority, it would be more philosophical to accept these extreme values, not
as gross errors, but as indications that the distribution of errors is not normal.
As we shall show, the only Pearsonian curve for which the mean is the best
statistic for locating the curve, is the normal or gaussian curve of errors. If the
curve is not of this form the mean is not necessarily, as we have seen, of any
value whatever. The determination of the true curves of variation for different
types of work is therefore of great practical importance, and this can only be
done by different workers recording their data in full without rejections, how-
ever they may please to treat the data so recorded. Assuredly an observer need
be exposed to no criticism, if after recording data which are not probably
normal in distribution, he prefers to adopt some value other than the arith-
metic mean.

6. Formal Solution of Problems of Estimation

The form in which the criterion of sufficiency has been presented is not of
direct assistance in the solution of problems of estimation. For it is necessary
first to know the statistic concerned and its surface of distribution, with an
infinite number of other statistics, before its sufficiency can be tested. For the
solution of problems of estimation we require a method which for each partic-
ular problem will lead us automatically to the statistic by which the criterion
of sufficiency is satisfied. Such a method is, I believe, provided by the Method
of Maximum Likelihood, although I am not satisfied as to the mathematical
rigour of any proof which I can put forward to that effect. Readers of the
ensuing pages are invited to form their own opinion as to the possibility of
the method of the maximum likelihood leading in any case to an insufficient
statistic. For my own part I should gladly have withheld publication until a
rigorously complete proof could have been formulated; but the number and
variety of the new results which the method discloses press for publication,
and at the same time I am not insensible of the advantage which accrues to
Applied Mathematics from the co-operation of the Pure Mathematician, and
this co-operation is not infrequently called forth by the very imperfections of
writers on Applied Mathematics.

If in any distribution involving unknown parameters 0,, 6,, 65, ..., the
chance of an observation falling in the range dx be represented by

fl(x, 0y, 0,,...)dx,
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d
pX(1 = Pt = p* (L = PP dp,
p(1 = p)
a result inconsistent with that obtained previously. In fact, the distribution
previously assumed for p was equivalent to assuming the special distribution
for 0,

cos 0
df = do,
y 2
the arbitrariness of which is fully apparent when we use any variable other

than p.

In a less obtrusive form the same species of arbitrary assumption underlies
the method known as that of inverse probability. Thus, if the same observed
result A might be the consequence of one or other of two hypothetical condi-
tions X and Y, it is assumed that the probabilities of X and Y are in the same
ratio as the probabilities of A occurring on the two assumptions, X is true, Y
is true. This amounts to assuming that before A was observed, it was known
that our universe had been selected at random from an infinite population in
which X was true in one half, and Y true in the other half. Clearly such an
assumption is entirely arbitrary, nor has any method been put forward by
which such assumptions can be made even with consistent uniqueness. There
is nothing to prevent an irrelevant distinction being drawn among the hypo-
thetical conditions represented by X, so that we have to consider two hypo-
thetical possibilities X, and X,, on both of which A will occur with equal
frequency. Such a distinction should make no difference whatever to our con-
clusions; but on the principle of inverse probability it does so, for if previously
the relative probabilities were reckoned to be in the ratio x to y, they must
now be reckoned 2x to y. Nor has any criterion been suggested by which
it is possible to separate such irrelevant distinctions from those which are
relevant.

There would be no need to emphasise the baseless character of the assump-
tions made under the titles of inverse probability and Bayes’ Theorem in view
of the decisive criticism to which they have been exposed at the hands of
Boole, Venn, and Chrystal, were it not for the fact that the older writers, such
as Laplace and Poisson, who accepted these assumptions, also laid the foun-
dations of the modern theory of statistics, and have introduced into their
discussions of this subject ideas of a similar character. I must indeed plead
guilty in my original statement of the Method of the Maximum Likelihood
(9) to having based my argument upon the principle of inverse probability; in
the same paper, it is true, I emphasised the fact that such inverse probabilities
were relative only. That is to say, that while we might speak of one value of
p as having an inverse probability three times that of another value of p, we
might on no account introduce the differential element dp, so as to be able to
say that it was three times as probable that p should lie in one rather than the
other of two equal elements. Upon consideration, therefore, I perceive that
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the word probability is wrongly used in such a connection: probability is a
ratio of frequencies, and about the frequencies of such values we can know
nothing whatever. We must return to the actual fact that one value of p, of
the frequency of which we know nothing, would yield the observed result
three times as frequently as would another value of p. If we need a word to
characterise this relative property of different values of p, I suggest that we
may speak without confusion of the likelihood of one value of p being thrice
the likelihood of another, bearing always in mind that likelihood is not here
used loosely as a synonym of probability, but simply to express the relative
frequencies with which such values of the hypothetical quantity p would in
fact yield the observed sample.

The solution of the problems of calculating from a sample the parameters
of the hypothetical population, which we have put forward in the method of
maximum likelihood, consists, then, simply of choosing such values of these
parameters as have the maximum likelihood. Formally, therefore, it resem-
bles the calculation of the mode of an inverse frequency distribution. This
resemblance is quite superficial: if the scale of measurement of the hypotheti-
cal quantity be altered, the mode must change its position, and can be brought
to have any value, by an appropriate change of scale; but the optimum, as the
position of maximum likelihood may be called, is entirely unchanged by any
such transformation. Likelihood also differs from probability* in that it is not
a differential element, and is incapable of being integrated: it is assigned to a
particular point of the range of variation, not to a particular element of it.
There is therefore an absolute measure of probability in that the unit is chosen
so as to make all the elementary probabilities add up to unity. There is no
such absolute measure of likelihood. It may be convenient to assign the value
unity to the maximum value, and to measure other likelihoods by compari-
son, but there will then be an infinite number of values whose likelihood is
greater than one-half. The sum of the likelihoods of admissible values will
always be infinite.

Our interpretation of Bayes’ problem, then, is that the likelihood of any
value of p is proportional to

p*(1 —py,

and is therefore a maximum when

X
p=-,

n
* It should be remarked that likelihood, as above defined, is not only fundamentally distinct from
mathematical probability, but also from the logical “probability” by which Mr. Keynes (21) has
recently attempted to develop a method of treatment of uncertain inference, applicable to those
cases where we lack the statistical information necessary for the application of mathematical
probability. Although, in an important class of cases, the likelihood may be held to measure the
degree of our rational belief in a conclusion, in the same sense as Mr. Keynes’ “probability,” yet
since the latter quantity is constrained, somewhat arbitrarily, to obey the addition theorem of
mathematical probability, the likelihood is a quantity which falls definitely outside its scope.
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which is the best value obtainable from the sample; we shall term this the
optimum value of p. Other values of p for which the likelihood is not much less
cannot, however, be deemed unlikely values for the true value of p. We do
not, and cannot, know, from the information supplied by a sample, anything
about the probability that p should lie between any named values.

The reliance to be placed on such a result must depend upon the frequency
distribution of x, in different samples from the same population. This is a
perfectly objective statistical problem, of the kind we have called problems of
distribution; it is, however, capable of an approximate solution, directly from
the mathematical form of the likelihood.

When for large samples the distribution of any statistic, #,, tends to nor-
mality, we may write down the chance for a given value of the parameter 6,
that 6, should lie in the range d6, in the form

b= oo do, .
o./2n

The mean value of §, will be the true value 6, and the standard deviation
is g, the sample being assumed sufficiently large for us to disregard the depen-
dence of ¢ upon 6.

The likelihood of any value, 6, is proportional to

e 01=02207
this quantity having its maximum value, unity, when
9 = 91,
for

d 0, -6
a-ﬂlogd)—- o

Differentiating now a second time

2 1
6? log 0= — ? .

Noy @ stands for the total frequency of all samples for which the chosen
statistic has the value 6,, consequently ® = §’(¢), the summation being taken
over gll such samples, where ¢ stands for the probability of occurrence of a
certain specified sample. For which we know that

log ¢ = C + S(log f),

the summation being taken over the individual members of the sample.
If now we expand log f in the form
log £(6) = log f(6,) + 0~ 6, = log f6,) + *_ " ©" 10g 1(6,) + -
20 ! 2 o ! ’
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or

b
log f =log f, +af — 6, +§6“ 6, + -,

we have
logg=C+80—0,S(a)+ 16 —6,°S(b) + ---;
now for optimum statistics
S(a) =0,

and for sufficiently large samples S(b) differs from nb only by a quantity of
ord‘cr ﬁa,,; moreover, 6 — 60, being of order n™2, the only terms in log ¢
which are not reduced without limit, as n is increased, are

logp=C+inb8—0,%
hence
qS oc e(l[Z)nEB—_Blz_
Now this factor is constant for all samples which have the same value of

0y, hence the variation of ® with respect to @ is represented by the same factor,
and consequently

log®=C +4nb0—0,%
whence
1 92

) = Wlog ® = nb,

where

62
b= 153108 /(6,),
0, being the optimum value of 6.
The formula

1 2
o2 = et

[

supplies the most direct way known to me of finding the probable errors of
statistics It may be seen that the above proof applies only to statistics ob-
tained by the method of maximum likelihood.*

* A similar method of obtaining the standard deviations and correlations of statistics derived
from large samples was developed by Pearson and Filon in 1898 (16). It is unfortunate that in
this memoir no sufficient distinction is drawn between the population and the sample, in conse-
quence of which the formulae obtained indicate that the likelihood is always a maximum (for
continuous distributions) when the mean of each variate in the sample is equated to the corre-
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But the factorisation of f into factors involving (6, 6) and (6, 6,) respec-
tively is merely a mathematical expression of the condition of sufficiency; and
it appears that any statistic which fulfils the condition of sufficiency must be
a solution obtained by the method of the optimum

It may be expected, therefore, that we shall be led to a sufficient solution
of problems of estimation in general by the following procedure. Write down
the formula for the probability of an observation falling in the range dx in the
form

110, x) dx,
where 8 is an unknown parameter. Then if
L = S(log f),

the summation being extended over the observed sample, L differs by a con-
stant only from the logarithm of the likelihood of any value of 6. The most
likely value, 0, is found by the equation

dL
Z=0,
a0
and the standard deviation of é, by a second differentiation, from the formula
9*L 1
202 ¥’

]

this latter formula being applicable only where f is normally distributed, as
is often the case with considerable accuracy in large samples. The value g
so found is in these cases the least possible value for the standard deviation
of a statistic designed to estimate the same parameter; it may therefore be
applied to calculate the efficiency of any other such statistic.

When several parameters are determined simultaneously, we must equate
the second differentials of L, with respect to the parameters, to the coefficients
of the quadratic terms in the index of the normal expression which represents
the distribution of the corresponding statistics. Thus with two parameters,

L 11 62L_ 11
oL 1 r
= 4 3 . ,
00,00, 1- T34, 95.%,

or, in effect, ag is found by dividing the Hessian determinant of L, with respect
to the parameters, into the corresponding minor.

The application of these methods to such a series of parameters as occur in
the specification of frequency curves may best be made clear by an example. ...
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12. Discontinuous Distributions

The applications hitherto made of the optimum statistics have been problems
in which the data are ungrouped, or at least in which the grouping intervals
are so small as not to disturb the values of the derived statistics. By grouping,
these continuous distributions are reduced to discontinuous distributions,
and in an exact discussion must be treated as such.

If p, be the probability of an observation falling in the cell (s), p, being a
function of the required parameters 0,, 0,...; and in a sample of N, if n, are
found to fall into that cell, then

S(log f) = S(n, log p,).

If now we write i, = p,N, we may conveniently put

n
L=S{nlog=
(ns Ogﬁs)’

where L differs by a constant only from the logarithm of the likelihood, with
sign reversed, and therefore the method of the optimum will consist in finding
the minimum value of L. The equations so found are of the form

dL ngong\
=S %)=o ©

It is of interest to compare these formulae with those obtained by making the
Pearsonian x2 a minimum.
For
=2
=gl =)

— s
s

nZ
1+ 2=5(%),
T (m)

so that on differentiating by d6, the condition that x* should be a minimum

for variations of 8 is

2 —

n? on

-S{ 57 )=0. (7
(ﬁf 59)

Equation (7) has actually been used (12) to “improve” the values obtained
by the method of moments, even in cases of normal distribution, and the
Poisson series, where the method of moments gives a strictly sufficient solu-
tion. The discrepancy between these two methods arises from the fact that x?
is itself an approximation, applicable only when 7, and n, are large, and the
difference between them of a lower order of magnitude. In such cases

and therefore
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discontinuous (as is that of ¥?), but it is not impossible that mathematical
research will reveal the existence of effective graduations for the most impor-
tant groups of cases to which y* cannot be applied.

We shall conclude with a few illustrations of important types of discontinu-
ous distribution.

1. The Poisson Series

2 x
- m m
e "‘(l, m,j,...,F,...)

involves only the single parameter, and is of great importance in modern
statistics. For the optimum value of m,

S{(—a%(—m + x log m)} =0,

whence

or
= X.

The most likely value of m is therefore found by taking the first moment of
the series.
Differentiating a second time,

1 X n

so that

as is well known.

2. Grouped Normal Data

In the case of the normal curve of distribution it is evident that the second
moment is a sufficient statistic for estimating the standard deviation, in inves-
tigating a sufficient solution for grouped normal data, we are therefore in
reality finding the optimum correction for grouping; the Sheppard correction
having been proved only to satisfy the criterion of consistency.
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gether of the wrong magnitude, and even in the wrong direction In order to
. . oL . .
obtain the optimum value of o, we tabulate the values of 5, in the region
I

under consideration; this may be done without great labour if values of ¢ be
chosen suitable for the direct application of the table of the probability inte-
gral (13, Table I1.). We then have the following values:

1
- 043 0.44 0.45 0.46
L
P +15.135 +2.149 —11.098 | —24.605
oL
AP —0.261 -0.260
do

By interpolation,

= 0.441624
¢ = 2.26437.
We may therefore summarise these results as follows:—
Uncorrected estimateofe . . . . . . . . . . 2.28254
Sheppard’s correction .o .. . . . . . —001833
Correction for maximum llkehhood ... . . . —001817
“Correction” for minimum y?2 . e . . . . . . 4007332

Far from shaking our faith, therefore, in the adequacy of Sheppard’s cor-
rection, when small, for normal data, this example provides a striking in-
stance of its effectiveness, while the approximate nature of the x? test renders
it unsuitable for improving a method which is already very accurate.

It will be useful before leaving the subject of grouped normal data to calcu-
late the actual loss of efficiency caused by grouping, and the additional loss
due to the small discrepancy between moments with Sheppard’s correction
and the optimum solution.

To calculate the loss of efficiency involved in the process of grouping nor-

mal data, let
1 [e+2a
v=- J (&) dé,

£~(1/2)a

when a, is the group interval, then
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é?. 1 aZ 5 a4 .
-2——2+m5{ (1082 = 3) — 2 5(9¢* +21¢7 = 5)

6
a 6 4 2 _
+ 30’240(266 + 110&% + 36&° — 7)

8

_ a 8 6 4 2
71,814,400(516 + 315&° + 351¢ 5564 +9) + },

of which the mean value is
2 { a2+a4 at N 83a®
o? 6 40 270 ' 129,600 |’
neglecting the periodic terms; and consequently
02—62 1+a1+a4_ a’
¢ 2n 6 360 10,800 |-

For ungrouped data

2
so that the loss of efficiency in scaling due to grouping is nearly %. This may

be made as low as 1 per cent by keeping a less than .
The further loss of efficiency produced by using the grouped second mo-
ment with Sheppard’s correction is again very small, for

2 4 2 4
T Sl N
I n( +6+360)

neglecting the periodic terms.
Whence it appears that the further loss of efficiency is only

(18

10,800

We may conclude, therefore, that the high agreement between the opti-
mum value of ¢ and that obtained by Sheppard’s correction in the above
example is characteristic of grouped normal data. The method of moments
with Sheppard’s correction is highly efficient in treating such material, the
gain in efficiency obtainable by increasing the likelihood to its maximum
value is trifling, and far less than can usually be gained by using finer groups.
The loss of efficiency involved in grouping may be kept below 1 per cent. by
making the group interval less than one-quarter of the standard deviation.
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2 — %)X, — .

l
n

Hotelling’s generalized T? is given as
T? = NX'S7'x.

The analogy of T? to t* = Nx?/s* is obvious in this vector notation. Hotelling
actually carried out his exposition entirely in terms of the components of X,
%, §, etc., although now that seems very cumbersome.

The t-statistic, t = ﬁ X/s, is scale-invariant; that is, if each observation is
multiplied by a positive constant ¢, the sample mean X and standard devia-
tion s are both multiplied by c, but ¢ is unaffected. For example, if X, repre-
sents the length in feet of the ath object and ¢ = 12 in. per foot, X is the
length measured in inches. The t-statistic does not depend on the units of
measurement. Hotelling points out that T? = Nx'S™'X is invariant under
linear transformations X* = CX,, where C is a nonsingular matrix because
% is replaced by X* = Cx and S is replaced by §* = CSC', leaving T? un-
changed. In particular, T? does not depend on the scale for each component
of X. In the univariate case, the real line has a positive and a negative direc-
tion, but in the multivariate case, no direction has special meaning. Hotelling’s
T? really corresponds to Student’s ¢* since ¢ is invariant with respect to
multiplication of X, by any real constant different from 0.

The statistic T2 is the only invariant function of the sufficient statistics, X
and S; that is, any function of X and S that is invariant is a function of T2. An
important use of the T2-statistic is to test the null hypothesis that 4 = 0 in
N(u, Z); the hypothesis is rejected if T2 is greater than a number preassigned
to attain a desired significance level. This test is the uniformly most powerful
invariant test. [See Sect. 5.3 of Anderson (1984), for example.] The only in-
variant of the parameters, u and Z, is £’'Z'u. The power of the T-test is,
therefore, a function of this invariant of the parameters.

Hotelling approached the distribution of T? when u = 0 by a geometric
method similar to that introduced by Fisher (1915) in finding the distribution
of the Pearson correlation coefficient. Since T? is invariant with respect to
nonsingular transformation X} = CX,, in the case of u = 0 the distribution
of T? is the same as the distribution of T*2 = Nx*($*)"'x*. If X, has the
distribution N(0, Z), then X¥ has the distribution N(0, CEC'). Inasmuch as
C can be chosen so that CEC’ = I, Hotelling assumed £ = I when he derived
the distribution of T2 under the null hypothesis = 0. In this case, the ob-
served components x;,, i = 1,..., p,a =1, ..., N, are independent and each
has the standard normal distribution N(0, 1); the vectors x; = (x;;, ..., X;x),
i=1, ..., p, are independently distributed N(0, Iy). The critical feature of
N(0, I) is that it is a spherical distribution.

Consider X = (x,, ..., X,) as spanning a p-dimensional linear space ¥, and
let{ =e=(l,..., 1) be an N-dimensional vector. Then the point in ¥, closest



Introduction to Hotelling (1931) 47

to { = e is (by usual least squares)
& =X(X'X)"'X'e = NX(X'X)'x.
The length of this vector is
¢e = N2x'(X'X)'x.

The squared distance of e from V, is

(e—&'(e—&=N—-Nx(XX)'x
The cotangent of the angle 6 between e and V, is given by

cot? 0 = &2 _ Nx'(X'X)'x _ Nx'(nS + Nxx')"'x
le—&J*> 1-—Nx'(XX)'x 1—Nx'(nSy+ xx') %
A little algebra shows that this is T2/n = Nx'(nS)™'x.

The distribution of T2 when u = 0 is generated by the vectors x,, ..., b
the direction of each of these is random in the sense that its projection on the
unit sphere has a uniform distribution. It follows that the distribution of the
angle between e and V, is the same as the distribution of the angle between
an arbitrary vector y and V,,. In fact, y can be assigned a distribution N(0, Iy)
independent of x,, ..., x,. The cotangent squared of the angle 6, between y
and V, is

YX(X'X)"'X'y
Yy — yX(X'X)"'XYy’
Since y has a spherical distribution, the distribution of cot? 6, does not de-
pend on X, that is, ¥,. Hotelling then found the distribution of cot? , by
representing the projection of y on the unit sphere in polar coordinates and
performing integration. Of course, from normal regression theory, we know
that the numerator of cot? 6, has a y*-distribution with p degrees of freedom
and the denominator has a y?-distribution with N — p degrees of freedom in-
dependent of the numerator. Hence, (N — p) cot? 6,/p has the F-distribution
with p and N — p degrees of freedom.

A form of the T2-statistic can be used to test the hypothesis u = u’ on the
basis of observations X, ..., Xy, from N(g, X)and X}, ..., X}, from N(y', Z).

Hotelling defined
NN,
= X —X),
e= Jx &)

which has the distribution N(0, ) under the null hypothesis, and

29 _
cot® 0, =

N, N,
nS= 3 (X, — (X, — %) + ¥ (- F)0K =2,
a=1 a=

where n = N, + N, — 2. The matrix nS has the distribution of NiN—27 Z.,
where the Z,’s are independent and Z, has the distribution N(0, ). Then
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arbitrary p, the author acknowledges the help of Fisher; the method was
Fisher’s geometric one. Later Wishart and Bartlett (1933) proved the result
by characteristic functions.

Following “The generalization of Student’s ratio” came many generaliza-
tions of univariate statistics. Wilks, who had spent the academic year 1931-32
with Hotelling, published “Certain generalizations in the analysis of vari-
ance” (1932). While Hotelling generalized Student’s t, Wilks generalized the
F-statistic basic to the analysis of variance; one generalization is the likeli-
hood ratio criterion, often called “Wilks’ lambda.” If X, a =1, ..., N;
i=1,...,q,is the ath observation from the ith distribution N(y;, Z), we define
the “between” covariance matrix as

1 g ; - . =
S = = 3 X9 - XO10x0 - X0

and the “within” covariance matrix as
_ 1
Z?=1 N;—q/

In the scalar case (p = 1), the F-statistic is F = §,/S,. In the multivariate case,
Wilks’ lambda is N/2 times

N‘ - . .
3. [XP - XOI[X9 — XOT.

1 a=1

M=

S

T N 98]
lig = 1S, + (Tiey No— @S, |°

which for p = 1 reduces to

1
@—DFIXE Ni—g + 1

Wilks found the moments of A and the distribution in some special cases. In
a paper written the next year (when Wilks was in London and Cambridge),
E.S. Pearson and Wilks (1933) treated a more general problem when p = 2,
testing the homogeneity of covariance matrices as well as of means in the case
of N(i;, ), i = 1, ..., g. Wilks continued his research in multivariate statis-
tics; see S.S. Wilks, Collected Papers (1967).

Later Hotelling (1947, 1951) proposed a “generalized T test” for the anal-
ysis of variance. In the preceding notation, it was tr §,5;", known also as
T#, to test the hypothesis u, = -+ = u,. However, Lawley (1938) had already
made this generalization.

Further study was done on the T2-statistics. Hsu (1938) found the distribu-
tion of T? = NX'Sx when u # 0. This leads to the power function of a T-test.
Simaika (1941) proved that of all tests of H : u = 0 with the power depending
only on Nu'E ™'y, the T?-test is uniformily most powerful. Hsu (1945) proved
an optimal property of the t2-test that involves averaging the power over u
and Z.

Bartlett, who was at Cambridge University with Wishart, developed much
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of the theory of the multivariate generalization. In his paper (1934), he devel-
oped further the geometric approach to multivariate analysis.

The study of properties of the T-test, alternatives to the test, and adapta-
tions continue. A key paper was Stein (1956), in which it was shown that the
T?-test is admissible within the class of all tests of H : u = 0 (not just invariant
tests). The proof depended on a more general theorem concerning exponen-
tial distributions and closed convex acceptance regions. An alternative proof
of the admissibility of the T2-test is to show that it is a proper Bayes proce-
dure [Kiefer and Schwartz (1965)]. A different kind of test procedure of test-
ing H: p = 0is a step-down procedure. Marden and Perlman (1990) showed
that a step-down procedure is admissible only if it is trivial, that is, has no
step.

For references up to 1966, see Anderson, Das Gupta, and Styan (1972).
About 125 papers are listed under the category “Tests of hypotheses about
one or two mean vectors of multivariate normal distributions and Hotelling’s
T2>

4. Comments

For a modern reader, this paper has the disadvantage of being written explic-
itly in terms of the components of constituent vectors and matrices. Linear
operations and inverses do not seem as natural as in matrix notation. We are
accustomed to defining A~! the inverse to a nonsingular matrix A, as the
(unique) matrix satisfying A(4™') = I. In keeping with usage at that time,
Hotelling defined a as the determinant of (a;;) and an element of the symmetric
inverse as

_ cofactor of a;;in a
ji = a :
The exposition of regression (pages 57-58) is particularly opaque. Let the
observation matrix be X = (x;,),i=1,...,p,a=1,...,n. Then X = H + E,
where £E = 0. The model can be written

H=2 G,

pxN pxq gqxN
where Z = ({;,) is the matrix of parameters and G = (g,,) the matrix of inde-
pendent variables. The matrix of regression coefficients Z is estimated by
minimizing each diagonal element of

[X - ZG'][X — 2G'Y
with respect to the elements of that row of Z.

Hotelling found the distribution of 72 under the null hypothesis u = 0, but
his approach can be developed to obtain the distribution when u # 0; the



