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PREFACE TO THE 1998 EDITION

Introductory courses in calculus are now routinely taught to
high school students and college freshmen. For students who
hope to become mathematicians or to enter professions that
require a knowledge of calculus, such courses are the highest
hurdle they have to jump. Studies show that almost half of
college freshmen who take a course in calculus fail to pass.
Those who fail almost always abandon plans to major in
mathematics, physics, or engineering—three fields where
advanced calculus is essential. They may even decide against
entering such professions as architecture, the behavioral
sciences, or the social sciences (especially economics) where
calculus can be useful. They exit what they fear will be too
difficult a road to consider careers where entrance roads are
easier.

One reason for such a high dropout rate is that
introductory calculus is so poorly taught. Classes tend to be
so boring that students sometimes fall asleep. Calculus
textbooks get fatter and fatter every year, with more
multicolor overlays, computer graphics, and photographs of
eminent mathematicians (starting with Newton and Leibniz),
yet they never seem easier to comprehend. You look through
them in vain for simple, clear exposition and for problems
that will hook a student’s interest. Their exercises have, as
one mathematician recently put it, “the dignity of solving
crossword puzzles.” Modern calculus textbooks often contain
more than a thousand pages—heavy enough to make
excellent doorstops—and more than a thousand frightening
exercises! Their prices are rapidly approaching $100.

“Why do calculus books weigh so much?” Lynn Arthur
Steen asked in a paper on “Twenty Questions for Calculus



Reformers” that is reprinted in Toward a Lean and Lively
Calculus (Mathematical Association of America, 1986), edited
by Ronald Douglas. Because, he answers, “the economics of
publishing compels authors ... to add every topic that anyone
might want so that no one can reject the book just because
some particular item is omitted. The result is an
encyclopaedic compendium of techniques, examples,
exercises and problems that more resemble an overgrown
workbook than an intellectually stimulating introduction to a
magnificent subject.”

“The teaching of calculus is a national disgrace,” Steen, a
mathematician at St. Olaf College, later declared. “Too often
calculus is taught by inexperienced instructors to ill-prepared
students in an environment with insufficient feedback.”

Leonard Gillman, writing on “The College Teaching
Scandal” (Focus, Vol. 8, 1988, page 5), said: “The calculus
scene has been execrable for many years, and given the
inertia of our profession is quite capable of continuing that
way for many more.”

Calculus has been called the topic mathematicians most
love to hate. One hopes this is true only of teachers who do
not appreciate its enormous power and beauty. Howard Eves
is a retired mathematician who actually enjoyed teaching
calculus. In his book Great Moments in Mathematics 1 found
this paragraph:

Surely no subject in early college mathematics is more
exciting or more fun to teach than the calculus. It is like
being the ringmaster of a great three-ring circus. It has
been said that one can recognize the students on a
college campus who have studied the calculus—they
are the students with no eyebrows. In utter
astonishment at the incredible applicability of the
subject, the eyebrows of the calculus students have

receded higher and higher and finally vanished over the
backs of their heads.

Recent years have seen a great hue and cry in



mathematical circles over ways to improve calculus teaching.
Endless conferences have been held, many funded by the
federal government. Dozens of experimental programs are
underway here and there.

Some leaders of reform argue that while traditional
textbooks get weightier, the need for advanced calculus is
actually diminishing. In his popular Introduction to the History
of Mathematics, Eves sadly writes: “Today the larger part of
mathematics has no, or very little connection with calculus or
its extensions.”

Why is this? One reason is obvious. Computers! Today’s
digital computers have become incredibly fast and powerful.
Continuous functions which once could be handled only by
slow analog machines can now be turned into discrete
functions which digital computers handle efficiently with
step-by-step algorithms. Hand-held calculators called
“graphers” will instantly graph a function much too complex
to draw with a pencil on graph paper. The trend now is away
from continuous math to what used to be called finite math,
but now is more often called discrete math.

Calculus is steadily being downgraded to make room for
combinatorics, graph theory, topology, knot theory, group
theory, matrix theory, number theory, logic, statistics,
computer science, and a raft of other fields in which
continuity plays a relatively minor role.

Discrete mathematics is all over the scene, not only in
mathematics but also in science and technology. Quantum
theory is riddled with it. Even space and time may turn out
to be quantized. Evolution operates by discrete mutation
leaps. Television is on the verge of replacing continuous
analog transmission by discrete digital transmission which
greatly improves picture quality. The most accurate way to
preserve a painting or a symphony is by converting it to
discrete numbers which last forever without deteriorating.

When I was in high school I had to master a pencil-and-

paper way to calculate square roots. Happily, I was not
forced to learn how to find cube and higher roots! Today it



would be difficult to locate mathematicians who can even
recall how to calculate a square root. And why should they?
They can find the nth root of any number by pushing keys in
less time than it would take to consult a book with tables of
roots. Logarithms, once used for multiplying huge numbers,
have become as obsolete as slide rules.

Something similar is happening with calculus. Students see
no reason today why they should master tedious ways of
differentiating and integrating by hand when a computer will
do the job as rapidly as it will calculate roots or multiply and
divide large numbers. Mathematica, a widely used software
system developed by Stephen Wolfram, for example, will
instantly differentiate and integrate, and draw relevant
graphs, for any calculus problem likely to arise in
mathematics or science. Calculators with keys for finding
derivatives and integrals now cost less than most calculus
textbooks. It has been estimated that more than ninety
percent of the exercises in the big textbooks can be solved by
using such calculators.

Leaders of calculus reform are not suggesting that calculus
no longer be taught, what they recommend is a shift of
emphasis from problem solving, which computers can do so
much faster and more accurately, to an emphasis on
understanding what computers are doing when they answer
calculus questions. A knowledge of calculus is even essential
just to know what to ask a computer to do. Above all,
calculus courses should instill in students an awareness of the
great richness and elegance of calculus.

Although suggestions are plentiful for ways to improve
calculus teaching, a general consensus is yet to emerge.
Several mathematicians have proposed introducing integral
calculus before differential calculus. A notable example is the
classic two-volume Differential and Integral Calculus (1936-
37) by Richard Courant. However, differentiating is so much
easier to master than integrating that this switch has not
caught on.

Several calculus reformers, notably Thomas W. Tucker (See



his “Rethinking Rigor in Calculus,” in American Mathematical
Monthly, (Vol. 104, March 1997, pp. 231-240) have
recommended that calculus texts replace the important mean
value theorem (MVT) with an increasing function theorem
(IFT). (On the mean value theorem see my Postscript to
Thompson’s Chapter 10.) The IFT states that if the derivative
on a function’s interval is equal to or greater than zero, then
the function is increasing on that interval. For example, if a
car’s speedometer always shows a number equal to or greater
than zero, during a specified interval of time, then during
that interval the car is either standing still or moving
forward. Stated geometrically, it says that if the curve of a
continuous function, during a given interval, has a tangent
that is either horizontal or sloping upward, the function on
that interval is either unchanging or increasing. This change
also has not caught on.

Many reformers want to replace the artificial problems in
traditional textbooks with problems about applications of
calculus in probability theory, statistics, and in the biological
and social sciences. Unfortunately, for beginning students not
yet working in these fields, such “practical” problems can
seem as dull and tedious as the artificial ones.

More radical reformers believe that calculus should no
longer be taught in high school, and not even to college
freshmen unless they have decided on a career for which a
knowledge of calculus is required. And there are opponents
of reform who find nothing wrong in the way calculus has
been traditionally taught, assuming, of course, it is taught by
competent teachers.

In its February 28, 1992, issue, Science investigated Project
Calc, a computer oriented calculus course offered at Duke
University. Only 57 percent of its students continued on with
a second course in calculus as compared with 68 percent who
continued on after taking a more traditional course. A few
students liked the experimental course. Most did not. One
student called it “the worst class I ever took.” Another
described it as “a big exercise in confusion.” Still another is



quoted in Science as saying: “I am very jealous of my friends
in normal calculus. I would do anything to have taken a
regular calculus with pencil and paper.”

Efforts are now underway to combine continuous and
discrete mathematics in a single textbook. An outstanding
example is Concrete Mathematics (1984, revised 1989), an
entertaining textbook by Ronald Graham, Donald Knuth, and
Oren Patashnik. The authors coined the term “concrete” by
taking “con” from the start of “continuous,” and “crete” from
the end of “discrete.” However, even this exciting textbook
presupposes a knowledge of calculus.

The American philosopher and psychologist William
James, in an 1893 letter to Theodore Flournoy, a Geneva
psychologist, asked “Can you name me any simple book on
the differential calculus which gives an insight into the
philosophy of the subject?”

In spite of the current turmoil over fresh ways to teach
calculus, I know of no book that so well meets James’s
request as the book you are now holding. Many similar
efforts have been made, with such titles as Calculus for the
Practical Man, The ABC of Calculus, What Is Calculus About?,
Calculus the Easy Way, and Simplified Calculus. They tend to
be either too elementary, or too advanced. Thompson strikes
a happy medium. It is true that his book is old-fashioned,
intuitive, and traditionally oriented. Yet no author has
written about calculus with greater clarity and humor.
Thompson not only explains the “philosophy of the subject,”
he also teaches his readers how to differentiate and integrate
simple functions.

Silvanus Phillips Thompson was born in 1851, the son of a
school teacher in York, England. From 1885 until his death in
1916 he was professor of physics at the City and Guilds
Technical College, in Finsbury. A distinguished electrical
engineer, he was elected to the Royal Society in 1891, and
served as president of several scientific societies.

Thompson wrote numerous technical books and manuals
on electricity, magnetism, dynamos, and optics, many of



which went through several editions. He also authored
popular biographies of scientists Michael Faraday, Philipp
Reis, and Lord Kelvin. A devout Quaker and an active Knight
Templar, he wrote two books about his faith: The Quest for
Truth (1915), and A Not Impossible Religion (published
posthumously 1918). He was much in demand as a lecturer,
and said to be a skillful painter of landscapes. He also wrote
poetry. In 1920 two of his four daughters, Jane Smeal
Thompson and Helen G. Thompson, published a book about
their father titled Silvanus Phillips Thompson: His Life and
Letters.

Calculus Made Easy was first issued by Macmillan in
England in 1910 under the pseudonym of F.R.S.—initials that
stand for Fellow of the Royal Society. The identity of the
author was not revealed until after his death. The book was
reprinted three times before the end of 1910. Thompson
revised the book considerably in 1914, correcting errors and
adding new material. The book was further revised and
enlarged posthumously in 1919, and again in 1945 by F. G.
W. Brown. Some of these later additions, such as the chapter
on partial fractions, are more technical than chapters in
Thompson’s original work. Curiously, Thompson’s first
edition, with its great simplicity and clarity, is in a way
closer to the kind of introductory book recommended today
by reformers who wish to emphasize the basic ideas of
calculus, and to downplay tedious techniques for solving
problems that today can be solved quickly by computers.
Readers who wish merely to grasp the essentials of calculus
can skip the more technical chapters, and need not struggle
with solving all the exercises. The book has never been out of
print. St. Martin’s Press published its paperback edition in
1970.

Almost all reviews of the book’s first edition were
favorable. A reviewer for The Athenaeum wrote:

It is not often that it falls to the lot of a reviewer of
mathematical literature to read such a gay and
boisterous book as this “very simplest introduction to



those beautiful methods of reckoning which are
generally called by the terrifying names of the
differential calculus and the integral calculus.” As a
matter of fact, professional mathematicians will give a
warm welcome to a book which is so orthodox in its
teaching and so vigorous in its exposition.

Professor E. G. Coker, a colleague, said in a letter to
Thompson:

I am very pleased to hear that your little book on the
calculus is likely to be available for general use. As you
know, I have been teaching the elements of this subject
to the junior classes here for some years, and I do not
know of any other book so well adapted to give
fundamental ideas. One of the great merits of the book
is that it dispels the mysteries with which professional
mathematicians envelope the subject. I feel sure that
your little book, with its common sense way of dealing
with elementary ideas of the calculus, will be a great
success.

Many of today’s eminent mathematicians and scientists
first learned calculus from Thompson’s book. Morris Kline,
himself the author of a massive work on calculus, always
recommended it as the best book to give a high school
student who wants to learn calculus. The late economist and
statistician Julian Simon, sent me his paper, not yet
published, titled “Why Johnnies (and Maybe You) Hate Math
and Statistics.” It contains high praise for Thompson’s book:

Calculus Made Easy has been damned by every
professional mathematician I have asked about it. So far
as I know, it is not used in any calculus courses
anywhere. Nevertheless, almost a century after its first
publication, it still sells briskly in paperback even in
college  bookstores. It teaches a system of
approximation that makes quite clear the central idea of
calculus—the idea that is extraordinarily difficult to



comprehend using the mathematician’s elegant method
of limits.

Later on Simon asks:

Question: why don't high school and college kids get to
learn calculus the Thompson way? Answer: Thompson’s
system has an unremediable fatal flaw: It is ugly in the
eyes of the world-class mathematicians who set the
standards for the way mathematics is taught all down
the line; the run-of-the-mill college and high school
teachers, and ultimately their students, are subject to
this hegemony of the aesthetic tastes of the great.
Thompson simply avoids the deductive devices that
enthrall mathematicians with their beauty and
elegance.

I mentioned earlier a book titled Toward a Lean and Lively
Calculus. It contains papers by mathematicians who
participated in a 1986 conference at Tulane University on
how to improve calculus teaching. Most of the contributors
urged cutting down on techniques for problem solving,
stressing the understanding of ideas, integrating calculus
with the use of calculators, and scaling down textbooks to
leaner and livelier forms. Now, the leanest and liveliest
introduction to calculus ever written is Thompson’s Calculus
Made Easy, yet Peter Renz was the only mathematician at the
conference who had the courage to praise the book and list it
as a reference.

The two most important concepts in calculus are functions
and limits. Because Thompson more or less assumes that his
readers understand both notions, I have tried in two
preliminary chapters to make clearer what they both mean.
And I have added a brief chapter about derivatives. Here and
there throughout Calculus Made Easy 1 have inserted
footnotes where I think something of interest can be said
about the text. These notes are initialed M.G. to distinguish
them from Thompson’s notes.



Where Thompson speaks of British currency I have
changed the values to dollars and cents. Terminology has
been updated. Thompson uses the obsolete term “differential
coefficient.” I have changed it to “derivative.” The term
“indefinite integral” is still used, but it is rapidly giving way
to “antiderivative,” so I have made this substitution.

Thompson followed the British practice of raising a
decimal point to where it is easily confused with the dot that
stands for multiplication. I have lowered every such point to
conform to American custom. Where Thompson used a now
discarded sign for factorials, I have changed it to the familiar
exclamation mark. Where Thompson used the Greek letter for
epsilon, I have changed it to the english e. Where Thompson
used the symbol log,, I have replaced it with In. Finally, in a

lengthy appendix, I have thrown together a variety of
calculus-related problems that have a recreational flavor.

[ hope my revisions and additions for this newly revised
edition of Calculus Made Easy will render it even easier to
understand—not just for high school and college students,
but also for older laymen who, like William James, long to
know what calculus is all about. Most mathematics deals
with static objects such as circles and triangles and numbers.
But the great universe “out there,” not made by us, is in a
constant state of what Newton called flux. At every
microsecond it changes magically into something different.

Calculus is the mathematics of change. If you are not a
mathematician or scientist, or don't intend to become one,
there is no need for you to master the techniques for solving
calculus problems by hand. But if you avoid acquiring some
insight into the essentials of calculus, into what James called
its philosophy, you will miss a great intellectual adventure.
You will miss an exhilarating glimpse into one of the most
marvelous, most useful creations of those small and
mysterious computers inside our heads.

[ am indebted to Dean Hickerson, Oliver Selfridge, and
Peter Renz for looking over this book’s manuscript and
providing a raft of corrections and welcome suggestions.



—MARTIN GARDNER
January, 1998



Preliminary Chapter 1

WHAT IS A FUNCTION?

No concept in mathematics, especially in calculus, is more
fundamental than the concept of a function. The term was
first used in a 1673 letter written by Gottfried Wilhelm
Leibniz, the German mathematician and philosopher who
invented calculus independently of Isaac Newton. Since then
the term has undergone a gradual extension of meaning.

In traditional calculus a function is defined as a relation
between two terms called variables because their values vary.
Call the terms x and y. If every value of x is associated with
exactly one value of y, then y is said to be a function of x. It
is customary to use x for what is called the independent
variable, and y for what is called the dependent variable
because its value depends on the value of x.

As Thompson explains in Chapter 3, letters at the end of
the alphabet are traditionally applied to variables, and letters
elsewhere in the alphabet (usually first letters such as
a,b,c...) are applied to constants. Constants are terms in an
equation that have a fixed value. For example, in y = ax +
b, the variables are x and y, and a and b are constants. If y =
2x + 7, the constants are 2 and 7. They remain the same as x
and y vary.

A simple instance of a geometrical function is the
dependence of a square’s area on the length of its side. In this
case the function is called a one-to-one function because the
dependency goes both ways. A square’s side is also a function



of its area.

A square’s area is the length of its side multiplied by itself.
To express the area as a function of the side, let y be the

area, x the side, then write y = x2. It is assumed, of course,
that x and y are positive.

A slightly more complicated example of a one-to-one
function is the relation of a square’s side to its diagonal. A
square’s diagonal is the hypotenuse of an isosceles right
triangle. We know from the Pythagorean theorem that the
square of the hypotenuse equals the sum of the squares of the
other two sides. In this case the sides are equal. To express
the diagonal as a function of the square’s side, let y be the

diagonal, x the side, and write y=\V2 +?, or more simply
y = +\/ 2 to express the side as a function of the diagonal, let

y be the side, x the diagonal, and write y = \/E , Or
2

more simply ) = :
T2

The most common way to denote a function is to replace y,

the dependent variable, by f(x)—f being the first letter of

“function.” Thus y = f(x) = x2 means that y, the dependent
variable, is the square of x. Instead of, say, y = 2x — 7, we
write y = f(x) = 2x — 7. This means that y, a function of x,
depends on the value of x in the expression 2x — 7. In this
form the expression is called an explicit function of x. If the
equation has the equivalent form of 2x — y — 7 = 0, it is
called an implicit function of x because the explicit form is
implied by the equation. It is easily obtained from the
equation by rearranging terms. Instead of f(x), other symbols
are often used.

If we wish to give numerical values to x and y in the
example y = f(x) = 2x — 7, we replace x by any value, say 6,
and write y = f(6) = (2 - 6) — 7, giving the dependent
variable y a value of 5.

If the dependent variable is a function of a single



independent variable, the function is called a function of one
variable. Familiar examples, all one-to-one functions, are:

The circumference or area of a circle in relation to its
radius.

The surface or volume of a sphere in relation to its radius.
The log of a number in relation to the number.

Sines, cosines, tangents, and secants are called
trigonometric functions. Logs are logarithmic functions.
Exponential functions are functions in which x, the
independent variable, is an exponent in a equation, such as y

= 2X, There are, of course, endless other examples of more
complicated one-variable functions which have been given
names.

Functions can depend on more than one variable. Again,
there are endless examples. The hypotenuse of a right
triangle depends on its two sides, not necessarily equal. (The
function of course involves three variables, but it is called a
two-variable function because it has two independent
variables.) If z is the hypotenuse, we know from the

Pythagorean theorem that ., — \/,? 4 y?- Note that this is

not a one-to-one function. Knowing x and y gives z a unique
value, but knowing z does not yield unique values for x and

Y.
Two other familiar examples of a two-variable function,
neither one-to-one, are the area of a triangle as a function of

its altitude and base, and the area of a right circular cylinder
as a function of its radius and height.

Functions of one and two variables are ubiquitous in
physics. The period of a pendulum is a function of its length.
The distance covered by a dropped stone and its velocity are
each functions of the elapsed time since it was dropped.
Atmospheric pressure is a function of altitude. A bullet’s
energy is a two-variable function dependent on its mass and
velocity. The electrical resistance of a wire depends on the
length of the wire and the diameter of its circular cross
section.



Functions can have any number of independent variables.
A simple instance of a three-variable function is the volume
of a rectangular room. It is dependent on the room’s two
sides and height. The volume of a four-dimensional hyper-
room is a function of four variables.

A beginning student of calculus must be familiar with how
equations with two variables can be modeled by curves on
the Cartesian plane. (The plane is named after the French
mathematician and philosopher René Descartes who invented
it.) Values of the independent variable are represented by
points along the horizontal x axis. Values of the dependent
variable are represented by points along the vertical y axis.
Points on the plane signify an ordered pair of x and y
numbers. If a function is linear—that is, if it has one form y
= ax + b—the curve representing the ordered pairs is a
straight line. If the function does not have the form ax + b
the curve is not a straight line.

Figure 1 is a Cartesian graph of y = x2. The curve is a
parabola. Points along each axis represent real numbers
(rational and irrational), positive on the right side of the x
axis, negative on the left; positive at the top of the y axis,
negative at the bottom. The graph’s origin point, where the
axes intersect, represents zero. If x is the side of a square, we
assume it is neither zero nor negative, so the relevant curve
would be only the right side of the parabola. Assume the
square’s side is 3. Move vertically up from 3 on the x axis to
the curve, then go left to the y axis where you find that the
square of 3 is 9. (I apologize to readers for whom all this is

old hat.)



FIG. 1. y = x4 or f(x) = x2
Note that the scales are different on the two axes.

If a function involves three independent variables, the
Cartesian graph must be extended to a three-dimensional
space with axes x, y, and z. I once heard about a professor,
whose name I no longer recall, who liked to dramatize this
space to his students by running back and forth while he
exclaimed “This is the x axis!” He then ran up and down the
center aisle shouting “This is the y axis!”, and finally hopped
up and down while shouting “This is the z axis!” Functions of
more than three variables require a Cartesian space with
more than three axes. Unfortunately, a professor cannot
dramatize axes higher than three by running or jumping.

Note the labels “domain” and “range” in Figure 1. In recent
decades it has become fashionable to generalize the
definition of function. Values that can be taken by the
independent variable are called the variable’s domain. Values



that can be taken by the dependent variable are called the
range. On the Cartesian plane the domain consists of numbers
along the horizontal (x) axis. The range consists of numbers
along the vertical (y) axis.

Domains and ranges can be infinite sets, such as the set of
real numbers, or the set of integers; or either one can be a
finite set such as a portion of real numbers. The numbers on
a thermometer, for instance, represent a finite interval of real
numbers. If used to measure the temperature of water, the
numbers represent an interval between the temperatures at
which water freezes and boils. Here the height of the
mercury column relative to the water’s temperature is a one-
to-one function of one variable.

In modern set theory this way of defining a function can be
extended to completely arbitrary sets of numbers for a
function that is described not by an equation but by a set of
rules. The simplest way to specify the rules is by a table. For
example, the table in Figure 2 shows a set of arbitrary
numbers that constitute the domain on the left. The
corresponding set of arbitrary numbers in the range is on the
right. The rules that govern this function are indicated by
arrows. These arrows show that every number in the domain
correlates to a single number on the right. As you can see,
more than one number on the left can lead to the same
number on the right, but not vice versa. Another example of
such a function is shown in Figure 3, along with its graph,
consisting of 6 isolated points in the plane.

Because every number on the left leads to exactly one
number on the right, we can say that the numbers on the
right are a function of those on the left. Some writers call the
numbers on the right “images” of those on the left. The
arrows are said to furnish a “mapping” of domain to range.
Some call the arrows “correspondence rules” that define the
function.
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FIG. 2. An arbitrary function.

For most of the functions encountered in calculus, the
domain consists of a single interval of real numbers. The
domain might be the entire x axis, as it is for the function y

= x2. Or it might be an interval that’s bounded; for example,
the domain of y = arcsin x consists of all x such that -1 < x
< 1. Or it might be bounded on one side and unbounded on

the other; for example, the domain y = \/; consists of all x

> 0. We call such a function “continuous” if its graph can be
drawn without lifting the pencil from the paper, and
“discontinuous” otherwise. (The complete definition of
continuity, which is also applicable to functions with more
complicated domains, is beyond the scope of this book.)
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FIG. 3. How another arbitrary discrete function of integers is
graphed.




For example, the three functions just mentioned are all
continuous. Figure 4 shows an example of a discontinuous
function. Its domain consists of all real numbers, but its
graph has infinitely many pieces that aren't connected to
each other. In this book we will be concerned almost entirely
with continuous functions.

Note that if a vertical line from the x axis intersects more
than one point on a curve, the curve cannot represent a
function because it maps an x number to more than one y
number. Figure 5 is a graph that clearly is not a function
because vertical lines, such as the one shown dotted,
intersect the graph at three spots. (It should be noted that
Thompson did not use the modern definition of “function.”
For example the graph shown in Figure 30 of Chapter XI fails
this vertical line test, but Thompson considers it a function.)

In this generalized definition of function, a one-variable
function is any set of ordered pairs of numbers such that
every number in one set is paired with exactly one number of
the other set. Put differently, in the ordered pairs no x
number can be repeated though a y number can be.
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FIG. 4. This function is called the greatest integer function
because it maps each real number (on the x axis) to the



largest integer on the y axis that is equal to or less than the
real number.

In this broad way of viewing functions, the arbitrary
combination of a safe or the sequence of buttons to be
pushed to open a door, are functions of counting numbers. To
open a safe you must turn the knob back and forth to a
random set of integers. If the safe’s combination is, say, 2-19-
3-2-19, then those numbers are a function of 1,2,3,4,5. They
represent the order in which numbers must be taken to open
the safe, or the order in which buttons must be pushed to
open a door. In a similar way the heights of the tiny “peaks”
along a cylinder lock’s key are an arbitrary function of
positions along the key’s length.

In recent years mathematicians have widened the notion of
function even further to include things that are not numbers.
Indeed, they can be anything at all that are elements of a set.
A function is simply the correlation of each element in one
set to exactly one element of another set. This leads to all
sorts of uses of the word function that seem absurd. If Smith
has red hair, Jones has black hair, and Robinson’s hair is
white, the hair color is a function of the three men. Positions
of towns on a map are a function of their positions on the
earth. The number of toes in a normal family is a function of
the number of persons in the family. Different persons can
have the same mother, but no person has more than one
mother. This allows one to say that mothers are a function of
persons. Elephant mothers are a function of elephants, but
not grandmothers because an elephant can have two
grandmothers. As one mathematician recently put it,
functions have been generalized “up to the sky and down
into the ground.”
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FIG. 5. A graph that does not represent a function.

A useful way to think of functions in this generalized way
is to imagine a black box with input and output openings.
Any element in a domain, numbers or otherwise, is put into
the box. Out will pop a single element in the range. The
machinery inside the box magically provides the correlations
by using whatever correspondence rules govern the function.
In calculus the inputs and outputs are almost always real
numbers, and the machinery in the black box operates on
rules provided by equations.

Because the generalized definition of a function leads to
bizarre extremes, many educators today, especially those
with engineering backgrounds, think it is confusing and
unnecessary to introduce such a broad definition of functions
to beginning calculus students. Nevertheless, an increasing
number of modern calculus textbooks spend many pages on
the generalized definition. Their authors believe that defining
a function as a mapping of elements from any set to any
other set is a strong unifying concept that should be taught to
all calculus students.

Opponents of this practice think that calculus should not
be concerned with toes, towns, mothers, and elephants. Its
domains and ranges should be confined, as they have always
been, to real numbers whose functions describe continuous
change.



It is a fortunate and astonishing fact that the fundamental
laws of our fantastic fidgety universe are based on relatively
simple equations. If it were otherwise, we surely would know
less than we know now about how our universe behaves, and
Newton and Leibniz would probably never have invented (or
discovered?) calculus.



Preliminary Chapter 2

WHAT IS A LIMIT?

It is possible, though difficult, to understand calculus without
a firm grasp on the meaning of a limit. A derivative, the
fundamental concept of differential calculus, is a limit. An
integral, the fundamental concept of integral calculus, is a
limit.

To explain what is meant by a limit, we will be concerned
in this chapter only with limits of discrete functions because
limits are easier to understand in discrete terms. When you
read Calculus Made Easy you will learn how the limit concept
applies to what are called functions of a continuous variable
because their variables have real number values that vary
continuously. Functions of discrete variables have variables
whose values jump from one value to another. There are also
functions of complex variables in which the values are
complex numbers—numbers based on the imaginary square

root of minus one. Complex variables are outside the scope of
Thompson’s book.

A sequence is a set of numbers in some order. The numbers
don't have to be different and they need not be integers.
Consider the sequence 1,2,3,4, .... This is just the positive
integers. It is an infinite sequence because it continues
without stopping. If it stopped it would be a finite sequence.

If the terms of a finite sequence are added to obtain a finite
sum, it is called a series. If a series is infinite, the sum up to
any specified term is called a “partial sum.” If the partial



sums of an infinite series get closer and closer to a number k,
so that by continuing the series you can make the sum as
close to k as you please, then k is called the limit of the
partial sums, or the limit of the infinite series. The terms are
said to “converge” on k. If there is no convergence, the series
is said to “diverge.”

The limit of an infinite series is sometimes called its “sum
at infinity,” but of course this is not a sum in the usual
arithmetical sense when the number of terms is finite. You
can't obtain the “sum” of an infinite series by adding because
the number of terms to be added is infinite. When we speak
of the “sum” of an infinite series, this is just a short way of
naming its limit.

An infinite series can converge on its limit in three
different ways:

1. The partial sums get ever closer to the limit without

actually reaching it, but they never go beyond the limit.

The partial sums reach the limit.

. The partial sums go beyond the limit before they
converge.

W N

Let’s look at examples of types 1 and 3.

The fifth century B.C. Greek philosopher Zeno of Elia

invented several famous paradoxes intended to show that
there is something extremely mysterious about motion. One
of them imagines a runner going from A to B. He first runs
half the distance, then half the remaining distance, then
again half the remaining distance, and so on. The distances
he runs get smaller and smaller in the halving series

x4+ l} +aitet. ... —. . Distances from B approach zero as

1\"

their limit while the distances from A form a series that
converges on 1. The runner, of course, models a point
moving along a line from A to B. Does the runner ever reach
the goal?



[t depends.

Assume that after each step in the series the runner pauses
to rest for a second. We can model this with a pawn
(representing a point) that you push across a table from one
edge to the edge opposite. First you push the pawn half the
distance, then pause for a second. You push it half the
remaining distance and again pause for a second. If this
procedure continues, the pawn (point) will get closer and
closer to the limit, but will never reach it.

There is an old joke based on this. A mathematics professor
places a male student at one side of an empty room and a
gorgeous female student at the opposite wall. On command,
the boy walks half the distance toward the girl, waits a
second, then goes half the rest of the way, and so on, always
pausing a second before he cuts the remaining distance in
half. The girl says, “Ha ha, you'll never reach me!” The boy
replies, “True, but I can get close enough for all practical
purposes.”

Suppose, now, that instead of waiting a second after each
pawn push, the pawn is moved at a steady rate. Assume that
the constant speed is such that the pawn goes half the
distance in one second, half the remaining distance in half a
second, and so on. No pauses. A discrete process has been
transformed into a continuous one. In two seconds the pawn
has reached the table’s far edge. Zeno’s runner, if he goes at a
steady rate, will reach the goal in a finite period of time. The
halving series, modeled in this fashion, converges exactly on
the limit.

Zeno’s runner leads to a variety of amusing paradoxes
involving what are called “infinity machines.” A simple
example is a lamp that is turned off at the end of one minute,
then turned on at the end of half a minute, off after a quarter
minute, and so on in an infinite series of ons and offs. The
time series converges on two minutes. At the end of two
minutes is the lamp on or off? This of course is a thought
experiment. It can't be performed with an actual lamp, but
can it be answered in the abstract? No, because there is no



last operation in an infinite series of on and off. It is like
asking if the last digit of pi is odd or even.”
An easy way to “see” that the limit of { 4+ 414 . . is1

is to mark off the fractional lengths along a number line as
Thompson does in his Figure 46. A similar “look-see” proof
that the series converges on 1 is shown by the dissected unit
square in Figure 6. The partial sums of this series are
generated by the discrete function | — ;'-,,_, where n takes the

integral values 1,2,3,4,5, ....

| | -

FIG. 6. A two-dimensional “look-see” proof that
ititstnt. =1

We turn now to an infinite series that goes past its limit
before finally converging. An example is provided by

changing every other sign in the halving series to a minus

sign: 3 —%4:—+-+.... The partial sums of this

D
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“alternating series” are alternately above and below the limit
!

of % The difference from ; can be made as small as you

please, but every other partial sum is larger than the limit.

As an infinite series approaches but never reaches its limit,
the differences between a partial sum and the limit get closer
and closer to zero. Indeed they get so close that you can
assume they are zero and therefore, as Thompson likes to say,
they can be “thrown away.” In early books on calculus, terms



said to become infinitely close to zero were called
“infinitesimals.” Clearly there is something spooky about
numbers living in a neverland that is infinitely close to zero,
yet somehow not zero. In the halving series, for example, the
fractions approaching zero never become infinitesimals
because they always remain a finite portion of 1.
Infinitesimals are an infinitely small part of 1. They are
smaller than any finite fraction you can name, yet never zero.
Are they legitimate mathematical entities, or should they be
banished from mathematics?

The most outspoken opponent of infinitesimals was the
eighteenth-century British philosopher Bishop George
Berkeley who attacked them in a 1734 book titled The
Analyst, Or a Discourse Addressed To an Infidel Mathematician.
The infidel was the astronomer Edmond Halley, for whom
Halley’s comet is named, and the man who persuaded
Newton to publish his famous Principia.

Here are some of Bishop Berkeley’s complaints about
infinitesimals. (“Fluxion” was Newton’s term for a
derivative.)

And what are these fluxions? The velocities of
evanescent increments. And what are these same
evanescent increments? They are neither (finite
quantities, nor quantities infinitely small, nor yet
nothing. May we not call them ghosts of departed
quantities?

And of the aforesaid fluxions there be other fluxions,
which fluxions of fluxions are called second fluxions.
And the fluxions of these second fluxions are called
third fluxions: and so on, fourth, fifth, sixth, etc., ad
infinitum. Now, as our Sense is strained and puzzled
with the perception of objects extremely minute, even
so the Imagination, which faculty derives from sense, is
very much strained and puzzled to frame clear ideas of
the least particle of time, or the least increment
generated therein: and much more to comprehend the



moments, or those increments of the flowing quantities
in status nascenti, in their first origin or beginning to
exist, before they become finite particles. And it seems
still more difficult to conceive the abstracted velocities
of such nascent imperfect entities. But the velocities of
the wvelocities, the second, third, fourth, and fifth
velocities, etc., exceed, if I mistake not, all human
understanding. The further the mind analyseth and
pursueth these fugitive ideas the more it is lost and
bewildered; the objects, at first fleeting and minute,
soon vanishing out of sight. Certainly, in any sense, a
second or third fluxion seems an obscure Mystery. The
incipient celerity of an incipient celerity, the nascent
augment of a nascent augment, i. e. of a thing which
hath no magnitude; take it in what light you please, the
clear conception of it will, if I mistake not, be found
impossible; whether it be so or no I appeal to the trial
of every thinking reader. And if a second fluxion be
inconceivable, what are we to think of third, fourth,
fifth fluxions, and so on without end.

He who can digest a second or third fluxion, a second
or third difference, need not, methinks, be squeamish
about any point in Divinity.

Johann Bernoulli, a Swiss mathematician who did
pioneering work in developing calculus, expressed the
paradox of infinitesimals crisply. They are so tiny, he said,
that “if a quantity is increased or decreased by an
infinitesimal, then that quantity is neither increased nor
decreased.”

For two centuries most mathematicians agreed with
Berkeley and refused to use the term. You won't find it in
Calculus Made Easy. Bertrand Russell, in Principles of
Mathematics (1903, Chapters 39 and 40) has a vigorous
attack on infinitesimals. He calls them “mathematically
useless,” “unnecessary, erroneous, and self-contradictory.” As
late as 1941 the noted mathematician Richard Courant



wrote: “Infinitely small quantities are now definitely and
dishonorably discarded.” Like Russell and others, he believed
that calculus should replace infinitesimals by the concept of
limits.

Charles Peirce (1839-1914), America’s great
mathematician and philosopher, and friend of William
James, strongly disagreed. He was almost alone in his day in
siding with Leibniz, who believed that infinitesimals were as
real and as legitimate as imaginary numbers. Here are some
typical remarks by Peirce that I found by checking
“infinitesimal” in the indexes of the volumes that make up
Peirce’s Collected Papers and his New Elements of Mathematics.

Infinitesimals may exist and be highly important for
philosophy, as I believe they are.

The doctrine of infinitesimals is far simpler than the
doctrine of limits.

[s it consistent ... freely to admit of imaginaries while
rejecting infinitesimals as inconceivable?

Infinitesimals, in the strict and literal sense, are
perfectly intelligible, contrary to the teaching of the
great body of modern textbooks on the calculus.

There is nothing contradictory about the idea of such
quantities. ... As a mathematician, I prefer the method
of infinitesimals to that of limits, as far easier and less
infested with snares.

Peirce would have been delighted had he lived to see the
work of Abraham Robinson, of Yale University. In 1960, to
the vast surprise of mathematicians everywhere, Robinson
found a way to reintroduce Leibniz’s infinitesimals as
legitimate, precisely defined mathematical entities! His way
of using them in calculus is known as “nonstandard analysis.”
(Analysis is a term applied to calculus and all higher
mathematics that use calculus.) Nonstandard analysis has
produced simpler solutions than standard analysis to many
calculus problems, and of course it is closer to an intuitive



way of interpreting infinite converging series. Robinson’s
achievement is too difficult to go into here, but you will find
a good introduction to it in “Nonstandard Analysis,” by
Martin Davis and Reuben Hersh, in Scientific American, June
1972.

Mathematician and science fiction writer Rudy Rucker, in
his book Infinity and the Mind (1982) vigorously defends
infinitesimals:

So great is the average person’s fear of infinity that to
this day calculus all over the world is being taught as a
study of limit processes instead of what it really is:
infinitesimal analysis.

As someone who has spent a good portion of his adult
life teaching calculus courses for a living, I can tell you
how weary one gets of trying to explain the complex
and fiddling theory of limits to wave after wave of
uncomprehending freshmen. ...

But there is hope for a brighter future. Robinson’s
investigations of the hyperreal numbers have put
infinitesimals on a logically unimpeachable basis, and
here and there calculus texts based on infinitesimals
have appeared.

Which is preferable? To talk about quantities so infinitely
small that you can, as Thompson says, “throw them away,”
or to talk of values approaching a limit? Debate over the
infinitesimal versus the limit language goes nowhere because
they are two ways of saying the same thing. It’s like choosing
between calling a triangle a polygon with three sides or a
polygon with three angles. Calculations in differentiating or
integrating are exactly the same regardless of your preference
for how to describe what you are doing. Now that
infinitesimals have become respectable again, thanks to
nonstandard analysis, you needn't hesitate, if you like, to use
the term.

You might suppose that if the terms of an infinite series get



smaller and smaller, the series must converge. This is far
from true The most famous example 1S
T + = + 1 + Z + § +  _  Known as the “harmonic series,” it

has countless applications in physics as well as in
mathematics. Although its fractions get progressively smaller,
converging on zero, its partial sums grow without limit! The
growth is infuriatingly slow. After a hundred terms the
partial sum is only a bit higher than 5. To reach a sum of 100

requires more than 1043 terms!

If we eliminate all terms in the harmonic series that have
even denominators, will it converge? Amazingly, it will not,
though its rate of growth is much slower. If we eliminate
from the series all terms whose denominators contain a
specific digit one or more times, the series will then converge.
The following table gives to two decimal places the limit for
each omitted digit:

Omitted digit Sum

16.18
19.26
20.57
21.33
21.83
22.21
22.49
22.73
22.92
23.10

Limits of infinite series can be expressed by unending

decimal fractlons For example, .33333. ... is the limit of the

series IU+ “m + 1”0“-4- , =1, Inc1dently, there is a

ridiculously easy way to determme the integral limit of any
repeating decimal. The trick is to divide the repetend (the
repeated sequence of digits) by a number consisting of the
same number of nines as there are digits in the repetend.
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Thus .3333 ... reduces to 2 =+ If the repeating decimal is,
say, .123123123. ... the limit is 12 which reduces to <L

999 333°

[rrational numbers such as irrational roots, and
transcendental numbers such as pi and e, are limits of many
infinite series. Pi, for example, is the limit of such highly

4 "

patterned series as: ; — 31_ + g* — 34 5—....The number e

(you will encounter it in Thompson’s Chapter 14) is the limit
of l +i4+5n+vw4+5+.....

Although Archimedes did not know calculus, he
anticipated integration by calculating pi as the limit of the
perimeters of regular polygons as their number of sides
increases. In the language of infinitesimals, a circle can be
viewed as the perimeter of a regular polygon with an infinity
of sides, its perimeter consisting of an infinity of straight line
segments each of infinitesimal length.

Many ingenious techniques have been found for
determining if an infinite series converges or diverges, as
well as ways, sometimes not easy, of finding the limit. If the
terms of a series decrease in a geometric progression (each
term is the same fraction of the preceding one) finding the
limit is easy. Here is how it works on the halving series
| + % 4 1] + % + Let x equal the entire series. Multiply

each side of the equation by 2:
2x=2+5+5+5+5+...
Reduce the terms:
2x=2+1+3+5+5+....

Note that the series beyond 2 is the same as the original
halving series which we took as x. This enables us to
substitute x for the sequence and write 2x = 2 + Xx.
Rearranging terms to 2x — x = 2 gives x, the limit of the
series, a value of 2.

The same trick will show that is the limit of

rJ | —



%+%+—,‘—+;'—+ ... it works on any series in which
terms decrease in geometric progression.

Bouncing ball problems are common in the literature on
limits. They assume that an ideally elastic ball is dropped a
specified distance to a hard floor. After each bounce it rises a
constant fraction of the previous height. Here is a typical
example.

The ball is dropped from a height of four feet. Each bounce
takes it to -: the previous height. In practice, of course, a
rubber ball bounces only a finite number of times, but the
idealized ball bounces an infinite number of times. The rises
approach zero as a limit, but because the times of each
bounce also approach a limit of zero, the ball (like Zeno’s
runner) finally reaches the limit. After an infinity of bounces,
it comes to rest after a finite period of time. When the ball

ceases to bounce, how far has it traveled?

We can solve this problem by using the same trick used on
the halving series. Ignoring for a moment the initial drop of
four feet, the ball will rise three feet then fall three feet for a
total of six feet. After that, each bounce (rise plus fall) is
three-fourths the previous bounce. Letting x be the total
distance the ball travels after the first drop of four feet, we
write the equation:

lﬁ 486

x=6+T+7+% +m¢ -
Reducing the fractions:
'!l]l

x=06+ 1+ +%’+I’H+

Because each term is —: its following term, we multiply each
side by 7 to get:

T=8+6+5+5+5+.

Observe that after 8 the sequence is the same as x, so we
can substitute x for it:
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This is the distance the ball bounces after the initial drop
of 4 feet. The total distance traveled by the ball is 24 + 4 =
28 feet.

Sam Loyd, America’s great puzzlemaker, in his Cyclopedia
of Puzzles (p. 23), and his British counterpart Henry Ernest
Dudeney, in Puzzles and Curious Problems (Problem 223),
each give the following ball bounce problem. A ball is
dropped 179 feet from the Tower of Pisa. Each bounce is one-
tenth the height of the previous bounce. How far does the
ball travel after an infinity of bounces before it finally comes
to rest? (See Figure 7.)

We can solve this by the trick used before, but because
each fraction is one-tenth the previous one, we can find the
answer by an even faster method.

After the initial drop of 179 feet, the height of the first
bounce is 17.9. Succeeding bounces have heights of 1.79,
179, .0179, and so on, with the decimal point moving one
position left after each bounce. Adding these heights gives a
total of 19.8888. ... We now double this distance to obtain
the up plus down distances for each bounce to get 39.7777.
... Finally, we add the initial drop of 179 feet to obtain the
total distance the ball travels: 218.7777 ..., or exactly 218
and ; feet.






3,5,7,09 11
x=1+5+3+5++u+....

Note that the numerators are odd numbers in sequence,
and the denominators are a doubling series. Here is a simple
way to find the limit.

First divide each term by 2:

Subtract this sequence from the original sequence:

=1+
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L+{1+5+5+5+....]

Observe that after the 1 inside the brackets, the sequence
that follows is our old friend the halving series which we
know converges on 1. Adding 2 to the initial 1 gives the
series a limit of 3. Since 3 is half of x, x must be 6, the limit
of the original series.

Thompson does not spend much time on series and their
limits. I have done so in this chapter for two reasons: they
are the best way to become comfortable with the limit
concept, and modern calculus textbooks now usually include
chapters on infinite series and their usefulness in many
aspects of calculus.

"On infinity machines, see “Alephs and Supertasks,” Chapter 4, in my
Wheels, Life, and Other Mathematical Amusements (W. H. Freeman, 1983),
and the references cited in that chapter’s bibliography.—M.G.



Preliminary Chapter 3

WHAT IS A DERIVATIVE?

In Chapter 3 Thompson makes crystal clear what a derivative
is, and how to calculate it. However, it seemed to me useful
to make a few introductory remarks about derivatives that
may make Thompson’s chapter even easier to understand.

Let’s start with Zeno’s runner. Assume that he runs ten
meters per second on a path from zero to 100 meters. The
independent variable is time, represented by the x axis of a
Cartesian graph. The dependent variable y is the runner’s
distance from his starting spot. It is represented on the y axis.
Because the function is linear, the runner’s motion graphs as
an upward tilted straight line from zero, the graph’s origin, to
the point that is ten seconds on the time axis and 100 meters
on the distance axis. (Figure 8) If by distance we mean
distance from the goal, the line on the graph tilts the other
way (Figure 9).

Given any point in time, how fast is the runner moving?
Because we are dealing with a simple linear function we
don't need calculus to tell us that at every instant he is going
ten meters per second. The function’s equation is y = 10x.
Note that the slope of the line on the graph, as measured by
the height in meters at any point divided by the elapsed time
in seconds at any point, is 10. At each instant the runner has
gone in meters ten times the elapsed number of seconds. His
instantaneous speed throughout the run clearly is ten meters
per second.



Consider any moment of time along the x axis, then go
vertically up the graph to the distance traveled in meters.
You will find that the distance is always ten times the elapsed
time. As you will learn when you read Calculus Made Easy,
the derivative of a function is simply another function that
describes the rate at which a dependent variable changes
with respect to the rate at which the independent variable
changes. In this case the runner’s speed never changes, so the
derivative of y = 10x is simply the number 10. It tells you
two things: (1) that at any time the runner’s speed is ten
meters per second, and (2) that at any point on the line that
graphs this function, the slope of the line is 10. This
generalizes to all linear functions in which the variable y
changes with respect to variable x at a constant rate. If a
function is y = ax, its derivative is simply the constant a.
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FIG. 8. Graph of Zeno’s runner.

The x axis is time, the y axis is the distance from the start of
the run.
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FIG. 9. Graph of Zeno’s runner showing distance from goal.
The equationis y = 10(10 - x).

As I said, you don't need calculus to tell you all this, but it
is good to know that calculating derivatives gives the correct
result even when functions are linear.

An even simpler case of a derivative, too obvious to require
any thought, let alone demanding calculus, is the case of a
runner who stands perfectly still. Let’s say he stops running
after going ten meters. The function is y = 10. The graph
becomes a horizontal straight line as shown in Figure 10. Its
slope is zero which is the same as saying that the rate at
which the runner’s distance from the start changes, relative
to changes of time, is zero. The function’s derivative is zero.
Even in this extreme case it is comforting to know that
calculus still applies. In general, the derivative of any
constant is zero.

Calculus ceases to be trivial when functions are nonlinear.
Consider the simple nonlinear function y = x2, which



Thompson uses to open his chapter on derivatives. Let’s see
how it applies to the growth of a square, the simplest
geometrical interpretation of this function.

Imagine a monster living on Flatland, a plane of two
dimensions. It is born a square of side 1 and area 1, then
grows at a steady rate. We wish to know, at any instant of
time, how fast its area grows with respect to the growth of its
side.

The monster’s area, of course, is the square of its side, so

the function we have to consider is y = x2, where y is the
area and x the side. (It graphs as the parabola shown in
Figure 1 of the first preliminary chapter.) As you will learn
from Thompson, the function’s derivative is 2x. What does
this tell us? It tells us that at any given moment the monster’s
area is growing at a rate that is 2x times as fast as its side is
lengthening.

FIG. 10. Graph of a runner who stands still at a distance of ten
units from the start.

For example, let’s say the monster’s side is growing at a
rate of 3 units per second. Starting with a side of one unit, at
the end of ten seconds its side will have reached 31 units.
The value of x at this point is 31. The derivative says that
when the monster’s side is 31, its area is increasing with
respect to its side at a rate of 2x, or 2 X 31 = 62 units.



When the square reaches 100 on its side, its area will be
increasing with respect to its side by 2 X 100 = 200 units.

These figures express the rate of the square’s growth with
respect to its side. For the square’s growth rate with respect
to time we have to multiply these values by 3. Thus when the
square has a side of 31 (after ten seconds), it is growing at a
rate of 3 X 2 X 31 = 186 square units per second. When
the side is 100, its growth rate per second is 3 X 2 X 100 =
600.

Suppose the monster is a cube of edge x which increases at
a steady rate of 2 units per second. The cube’s volume, y, is

x3. The derivative of the function y = x3 is 3x2. This tells

you that the cube’s volume in cubical units grows 3x2 times
as fast as its edge grows. Thus when the cube’s side reaches,

say, 10, the value of x, its volume, is growing 3 X 102 =
300 square inches as fast as its side. Its growth rate per

secondis 2 X 3 X 102 = 600.

Although Thompson avoids defining a derivative as the
limit of a sequence of ratios, this clearly is the case. Suppose,
for instance, that our growing square has sides that increase
at one unit per second. We can tabulate the area’s growth at
times slightly larger than 2 seconds as follows:

Time Side Area
2 3 O

2.1 3.1 9.61
2.01 3.01 9.0601
2.001 3.001 9.006001

The average rate of growth from time 2 to time 2.1 is:

9.61 -9
21-2

6.1

And from time 2 to time 2.01:



9.0601 =9

6.0
2.01 =2
And from time 2 to time 2.001:
9.006001 -9
= 6.001

2.001 = 2

The averages obviously approach a limit of 6. Thus the
derivative of the area with respect to time is the limit of an
infinite sequence of ratios that converge on 6. Put simply, a
derivative is the rate at which a function’s dependent
variable grows with respect to the growth rate of the
independent variable. In geometrical terms, it determines the
exact slope of the tangent to a function’s curve at any
specified point along the curve. This equivalence of the
algebraic and geometrical definitions of a derivative is one of
the most beautiful aspects of calculus.

[ hope this and the previous two preliminary chapters will
help prepare you for understanding Calculus Made Easy.



CALCULUS MADE EASY

What one fool can do, another can.
—Ancient Simian proverb



PUBLISHER’S NOTE ON THE THIRD
EDITION

Only once in its long and useful life in 1919, has this book
been enlarged and revised. But in twenty-six years much
progress can be made, and the methods of 1919 are not likely
to be the same as those of 1945. If, therefore, any book is to
maintain its usefulness, it is essential that it should be
overhauled occasionally so that it may be brought up-to-date
where possible, to keep pace with the forward march of
scientific development.

For the new edition the book has been reset, and the
diagrams modernised. Mr. F. G. W. Brown has been good
enough to revise the whole of the book, but he has taken
great care not to interfere with the original plan. Thus
teachers and students will still recognise their well-known
guide to the intricacies of the calculus. While the changes
made are not of a major kind, yet their significance may not
be inconsiderable. There seems no reason now, even if one
ever existed, for excluding from the scope of the text those
intensely practical functions, known as the hyperbolic sine,
cosine and tangent, whose applications to the methods of
integration are so potent and manifold. These have,
accordingly, been introduced and applied, with the result
that some of the long cumbersome methods of integrating
have been displaced, just as a ray of sunshine dispels an
obstructing cloud.

The introduction, too, of the very practical integrals:



¥

e‘” sin &¢ - dt  and c*‘m cos kt - dt

has eliminated some of the more ancient methods of “Finding
Solutions” (Chapter XXI). By their application, shorter and
more intelligible ones have grown up naturally instead.

In the treatment of substitutions, the whole text has been
tidied up in order to render it methodically consistent. A few
examples have also been added where space permitted, while
the whole of the exercises and their answers have been
carefully revised, checked and corrected. Duplicated
problems have thus been removed and many hints provided
in the answers adapted to the newer and more modern
methods introduced.

It must, however, be emphatically stated that the plan of
the original author remains unchanged; even in its more
modern form, the book still remains a monument to the skill
and the courage of the late Professor Silvanus P. Thompson.
All that the present reviser has attempted is to revitalize the
usefulness of the work by adapting its distinctive utilitarian
bias more closely in relation to present-day requirements.



PROLOGUE

Considering how many fools can calculate, it is surprising
that it should be thought either a difficult or a tedious task
for any other fool to learn how to master the same tricks.

Some calculus-tricks are quite easy. Some are enormously
difficult. The fools who write the text-books of advanced
mathematics—and they are mostly clever fools—seldom take
the trouble to show you how easy the easy calculations are.
On the contrary, they seem to desire to impress you with
their tremendous cleverness by going about it in the most
difficult way.

Being myself a remarkably stupid fellow, I have had to
unteach myself the difficulties, and now beg to present to my
fellow fools the parts that are not hard. Master these

thoroughly, and the rest will follow. What one fool can do,
another can.

COMMON GREEK LETTERS USED AS SYMBOLS

Capital Small English Name
a Alpha

B Beta

Y Gamma
d Delta

€ Epsilon
n Eta

?, Theta

K Kappa

X O T D> -m >
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Lambda
Mu

Xi

Pi

Rho
Sigma
Phi
Omega



Chapter I

TO DELIVER YOU FROM THE
PRELIMINARY TERRORS

The preliminary terror, which chokes off most high school
students from even attempting to learn how to calculate, can
be abolished once for all by simply stating what is the
meaning—in common-sense terms—of the two principal
symbols that are used in calculating.

These dreadful symbols are:
(1) d which merely means “a little bit of”.

Thus dx means a little bit of x; or du means a little bit of w.
Ordinary mathematicians think it more polite to say “an
element of”, instead of “a little bit of”. Just as you please. But
you will find that these little bits (or elements) may be
considered to be infinitely small.

(2) | which is merely a long S, and may be called (if you
like) “the sum of”.

Thus [ dx means the sum of all the little bits of x; or [ dt
means the sum of all the little bits of t. Ordinary
mathematicians call this symbol “the integral of”. Now any
fool can see that if x is considered as made up of a lot of little
bits, each of which is called dx, if you add them all up
together you get the sum of all the dx’s (which is the same
thing as the whole of x). The word “integral” simply means
“the whole”. If you think of the duration of time for one



hour, you may (if you like) think of it as cut up into 3600
little bits called seconds. The whole of the 3600 little bits
added up together make one hour.

When you see an expression that begins with this terrifying
symbol, you will henceforth know that it is put there merely
to give you instructions that you are now to perform the
operation (if you can) of totalling up all the little bits that are
indicated by the symbols that follow.

That’s all.



Chapter II

ON DIFFERENT DEGREES OF
SMALLNESS

We shall find that in our processes of calculation we have to
deal with small quantities of various degrees of smallness.

We shall have also to learn under what circumstances we
may consider small quantities to be so minute that we may
omit them from consideration. Everything depends upon
relative minuteness.

Before we fix any rules let us think of some familiar cases.
There are 60 minutes in the hour, 24 hours in the day, 7 days
in the week. There are therefore 1440 minutes in the day and
10,080 minutes in the week.

Obviously 1 minute is a very small quantity of time
compared with a whole week. Indeed, our forefathers
considered it small as compared with an hour, and called it
“one minute”, meaning a minute fraction—namely one
sixtieth—of an hour. When they came to require still smaller
subdivisions of time, they divided each minute into 60 still
smaller parts, which, in Queen Elizabeth’s days, they called
“second minutes” (i.e. small quantities of the second order of
minuteness). Nowadays we call these small quantities of the
second order of smallness “seconds”. But few people know
why they are so called.

Now if one minute is so small as compared with a whole



day, how much smaller by comparison is one second!

Again, think of a hundred dollars compared with a penny:
it is worth only a — part. A penny is of precious little

importance compared with a hundred dollars: it may
certainly be regarded as a small quantity. But compare a
penny with ten thousand dollars: relative to this greater sum,
a penny is of no more importance than a hundredth of a
penny would be to a hundred dollars. Even a hundred dollars
is relatively a negligible quantity in the wealth of a
millionaire.

Now if we fix upon any numerical fraction as constituting
the proportion which for any purpose we call relatively
small, we can easily state other fractions of a higher degree

of smallness. Thus if, for the purpose of time, 2; be called a

small fraction, then of 5 (being a small fraction of a small

fraction) may be regarded as a small quantity of the second

order of smallness.”
Or, if for any purpose we were to take 1 percent (i e. —) as

a small fraction then 1 percent of 1 percent (i.e.

100
) would

lﬂﬂﬂﬂ

be a small fraction of the second order of smallness; and

,.w‘”“, would be a small fraction of the third order of

smallness, being 1 percent of 1 percent of 1 percent.

Lastly, suppose that for some very precise purpose we

should regard l,(}l}l}l',(){'lﬂ as “small”. Thus, if a first-rate

chronometer is not to lose or gain more than half a minute in
a year, it must keep time with an accuracy of 1 part in
1,051,200. Now if, for such a purpose, we regard m (or

one millionth) as a small quantity, then lwlmm of muo 500 °
|

that is, tsssan0s00555 Will be a small quantity of the second

order of smallness, and may be utterly disregarded, by
comparison.

Then we see that the smaller a small quantity itself is, the
more negligible does the corresponding small quantity of the
second order become. Hence we know that in all cases we are
justified in neglecting the small quantities of the second—or third



(or higher)—orders, if only we take the small quantity of the
first order small enough in itself.

But it must be remembered that small quantities, if they
occur in our expressions as factors multiplied by some other
factor, may become important if the other factor is itself
large. Even a penny becomes important if only it is
multiplied by a few hundred.

Now in the calculus we write dx for a little bit of x. These
things such as dx, and du, and dy, are called “differentials”,
the differential of x, or of u, or of y, as the case may be. [You
read them as dee-eks, or dee-you, or dee-wy.] If dx be a small
bit of x, and relatively small of itself, it does not follow that

such quantities as x - dx, or x2dx, or aXdx are negligible. But
dx X dx would be negligible, being a small quantity of the
second order.

A very simple example will serve as illustration. Consider
the function f(x) = x2

Let us think of x as a quantity that can grow by a small
amount so as to become x + dx, where dx is the small

increment added by growth. The square of this is x2 + 2x -

dx + (dx)2. The second term is not negligible because it is a
first-order quantity; while the third term is of the second

order of smallness, being a bit of a bit of x2. Thus if we took

dx to mean numerically, say, Eﬁ of x, then the second term

would be = % of x2, whereas the third term would be "'Eﬁi'i of

x2. This last term is clearly less important than the second.

But if we go further and take dx to mean only - of x, then

the second term will be —— of x2, while the third term will

lUU‘U
be only —

2
woooas Of x=.

Geometrically this may be depicted as follows: Draw a
square (Fig. 1) the side of which we will take to represent x.
Now suppose the square to grow by having a bit dx added to
its size each way. The enlarged square is made up of the

original square x2, the two rectangles at the top and on the



right, each of which is of area x - dx (or together 2x - dx), and

a little square at the top right-hand corner which is (dx)2. In
Fig. 2 we have taken dx as quite a big fraction of x—about -f;

But suppose we had taken it only I[Im about the thickness of

an inked line drawn with a fine pen (See Figure 3). Then the

little corner square will have an area of only 10‘:300 of x2, and

be practically invisible. Clearly (dx)Z is negligible if only we
consider the increment dx to be itself small enough.

Let us consider a simile.

Suppose a millionaire were to say to his secretary: next
week I will give you a small fraction of any money that
comes in to me. Suppose that the secretary were to say to his
boy: I will give you a small fraction C;f what I get. Suppose

the fraction in each case to be -— part. Now if Mr.

Millionaire received during the next week $1,000, the
secretary would receive $10 and the boy 1 dime. Ten dollars
would be a small quantity compared with $1,000; but a dime
is a small small quantity indeed, of a very secondary order.
But what would be the disproportion if the fraction, instead

of being EIW had been settled at ﬁ part? Then, while Mr.

Millionaire got his $1,000, Mr. Secretary would get only
$1.00, and the boy only a tenth of a penny!

X

FIG. 1.
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The witty Dean Swift once wrote:

So, Nat'ralists observe, a Flea

Hath smaller Fleas that on him prey.
And these have smaller Fleas to bite ‘em.
And so proceed ad infinitum.

An ox might worry about a flea of ordinary size—a small
creature of the first order of smallness. But he would
probably not trouble himself about a flea’s flea; being of the
second order of smallness, it would be negligible. Even a
gross of fleas’ fleas would not be of much account to the ox.

“The mathematicians may talk about the second order of “magnitude” (i.e.
greatness) when they really mean second order of smallness. This is very



confusing to beginners.
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