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Basics

raditional first courses in category theory and quantum computing would prepare
T the reader with solid foundations for this book. However, not much of that material
is truly essential to get the most out of this book. This chapter gives a very brief
introduction to category theory, linear algebra and quantum computing, enough to get
you going with this book if you have not taken a course in any of these areas before, or
perhaps to remind you of some details if you have forgotten them. Everything in this
chapter can be found in more detail in many other standard texts (see the Notes at the
end of the chapter for references). You could skip this chapter for now, and refer back to
it whenever some background is missing.

The material is divided into three sections. Section 0.1 gives an introduction to
category theory, and in particular the categories Set of sets and functions, and Rel of
sets and relations. Section 0.2 introduces the mathematical formalism of Hilbert spaces
that underlies quantum mechanics, and defines the categories Vect of vector spaces and
linear maps, and Hilb of Hilbert spaces and bounded linear maps. Section 0.3 recalls the
basics of quantum theory, including the standard interpretation of states, dynamics and
measurement and the quantum teleportation procedure.

0.1 Category Theory

This section gives a brief introduction to category theory. We focus in particular on the
category Set of sets and functions, and the category Rel of sets and relations, and present
a matrix calculus for relations. We introduce the idea of commuting diagrams, and define
isomorphisms, groupoids, skeletal categories, opposite categories and product categories.
We then define functors, equivalences and natural transformations, and also products,
equalizers and idempotents.

Categories for Quantum Theory: An Introduction. Chris Heunen and Jamie Vicary, Oxford University Press (2019).
© Chris Heunen and Jamie Vicary. DOI: 10.1093/0s0/9780198739623.001.0001
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0.1.1 Categories

Categories are formed from two basic structures: objects A, B, C, . . .,and morphisms A L B
going between objects. In this book, we will often think of an object as a system, and
a morphism A = B as a process under which the system A becomes the system B.
Categories can be constructed from almost any reasonable notion of system and process.
Here are a few examples:

« physical systems, and physical processes governing them;
« data types in computer science, and algorithms manipulating them;

« algebraic or geometric structures in mathematics, and structure-preserving func-
tions;

« logical propositions, and implications between them.

Category theory is quite different from other areas of mathematics. While a category is
itself just an algebraic structure—much like a group, ring or field—we can use categories
to organize and understand other mathematical objects. This happens in a surprising way:
by neglecting all information about the structure of the objects, and focusing entirely on
relationships between the objects. Category theory is the study of the patterns formed by
these relationships. While at first this may seem limiting, it is in fact empowering, as it
becomes a general language for the description of many diverse structures.
Here is the definition of a category.

Definition 0.1. A category C consists of the following data:

+ a collection Ob(C) of objects;

« for every pair of objects A and B, a collection C(A,B) of morphisms, with
f € C(A, B) written A~ B;

« for every pair of morphisms A 7, B and B8 C with common intermediate object,
(e)
a composite A ELN C;

« for every object A an identity morphism A LAY

These must satisfy the following properties, for all objects A, B, C, D, and all morphisms

A-LsB B chsp.

« associativity:
ho(gof)=(hog)of; (0.1)
o identity:
idgof =f=foida. (0.2)
We will also sometimes use the notation f : A— B fora morphism f € C(A4, B).

From this definition we see quite clearly that the morphisms are ‘more important’
than the objects; after all, every object A is canonically represented by its identity
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morphism id4. This seems like a simple point, but it is a significant departure from
much of classical mathematics, in which particular structures (like groups) play a
more important role than the structure-preserving maps between them (like group
homomorphisms.)

Our definition of a category refers to collections of objects and morphisms, rather
than sets, because sets are too small in general. The category Set defined in Section 0.1.2
illustrates this well, since Russell’s paradox prevents the collection of all sets from being a
set. However, such size issues will not play a role in this book, and we will use set theory
naively throughout. (See the Notes and Further Reading at the end of this chapter for
more sophisticated references on category theory.)

0.1.2 The Category Set

The most basic relationships between sets are given by functions.

Definition 0.2. For sets A and B, a function A ER B comprises, for each a € A, a choice of
element f(a) € B. We write f : a — f(a) to denote this choice.

Writing @ for the empty set, the data for a function ¥ — A can be provided trivially; there
is nothing for the for each’ part of the definition to do. So there is exactly one function
of this type for every set A. However, functions of type A— {J cannot be constructed
unless A = (. In general there are |B| Il functions oftype A—> B, where |—| indicates the
cardinality of a set.

‘We can now use this to define the category of sets and functions.

Definition 0.3 (Set, FSet). In the category Set of sets and functions:

« objectsaresets A,B,C,...;
» morphisms are functions f,g,h, .. .;

« composition of A 1, B and B4+ C is the function gof: ar> g(f(a)); this is the
reason the standard notation g o f is not in the other order, even though that would
be more natural in some equations such as (0.5);

« the identity morphism on A is the functionidg : a > a.
Write FSet for the restriction of Set to finite sets.

Wewill often think ofa function A > Bina dynamical way, as indicating how elements
of A can evolve into elements of B. This suggests the following sort of picture:

f

A—B
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0.1.3 The Category Rel

Relations give a more general notion of process between sets.
- . . R .
Definition 0.4. Given sets A and B, a relation A — Bisasubset R C A x B.

If elements a € A and b € B satisfy (a,b) € R, we often indicate this by writing aRb, or
even g ~ b when R is clear. Since a subset can be defined by giving its elements, we can
define our relations by listing the related elements, in the form a; R by, ay Rb3, a3 R b3 and
SO on.

We can think of a relation A Y B in a dynamical way, generalizing (0.3):

R

A———8B

(0.4)

The difference with functions is that this picture indicates interpreting a relation as a kind
of nondeterministic classical process: each element of A can evolve into any element of
B to which it is related. Nondeterminism enters here because an element of A can relate
to more than one element of B, so under this interpretation, we cannot predict perfectly
how the system will evolve. An element of A could also be related to no elements of B: we
interpret this to mean that, for these elements of A, the dynamical process halts. Because of
this interpretation, the category of relations is important in the study of nondeterministic
classical computing.

Suppose we have a pair of relations, with the codomain of the first equal to the domain
of the second:

R N

A—B B——mm™C

=

Our interpretation of relations as dynamical processes then suggests a natural notion of
composition: an element a € A is related to ¢ € C if there is some b € B with aRb and
b Sc. For the example here, this gives rise to the following composite relation:
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SoR
A > C

This definition of relational composition has the following algebraic form:
SoR={(a,c) | b€ B: aRband bSc} CTA x C (0.5)

We can write this differently as

a(SoR)c & \/(bSc/\aRb), (0.8)
b

where V represents logical disjunction (or), and A represents logical conjunction (and).
Comparing this with the definition of matrix multiplication, we see a strong similarity:

(goflx= ng;f,-k (0.7)
i

This suggests another way to interpret a relation: as a matrix of truth values. For the
example relation (0.4), this gives the following matrix, where we write 0 for false and 1
for true:

(0.8)

$

S O O
o = QO
o = O
=)

Composition of relations is then just given by ordinary matrix multiplication, with logical
disjunction and conjunction replacing + and x, respectively (so that 1 +1 =1).

There is an interesting analogy between quantum dynamics and the theory of relations.
First, a relation A %> B tells us, for each a € A and b € B, whether it is possible for a to
produce b, whereas a complex-valued matrix H — K gives us the amplitude for a to evolve
to b. Second, relational composition tells us the possibility of evolving via an intermediate
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point through a sum-of-paths formula, whereas matrix composition tells us the amplitude
for this to happen.

The intuition we have developed leads to the following category.
Definition 0.5 (Rel, FRel). In the category Rel of sets and relations:

+ objectsaresets A,B,C,.. ;
+ morphisms are relations R € A x B;

« composition of A &, Band B-3> Cis the relation
{(a,c) e Ax C|3beB: (ab) €R,(bc) €S};
« the identity morphism on A is the relation {(a,a) € A x A | a € A}.
Write FRel for the restriction of Rel to finite sets.

While Set is a setting for classical physics, and Hilb (to be introduced in Section 0.2)
is a setting for quantum physics, Rel is somewhere in the middle. It seems like it should
be a lot like Set, but in fact, its properties are much more like those of Hilb. This makes
it an excellent test-bed for investigating different aspects of quantum mechanics from a
categorical perspective.

0.1.4 Morphisms

It often helps to draw diagrams of morphisms, indicating how they compose. Here is an
example:

(0.9)

-
O+—n
et

S

We say a diagram commutes when every possible path from one object in it to another
is the same. In the example, this means iof =koh and g =joi. It then follows that
gof =jokoh, where we do not need to write parentheses thanks to the associativity
equation (0.1). Thus, we have two ways to speak about equality of composite morphisms:
by algebraic equations, or by commuting diagrams.

The following terms are very useful when discussing morphisms. The term ‘operator’
that follows comes from physics.

Definition 0.6 (Domain, codomain, endomorphism, operator). For a morphism
A~ B, its domain is the object A, and its codomain is the object B. If A = B then we call f
an endomorphism or operator. We sometimes write dom(f) = A and cod(f) = B.

Definition 0.7 (IsomorphismLTetraction). A morphism A ER Bis an isomorphism when
it has an inverse morphism B ~—— A satisfying:
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flof=ids fof ' =idg (0.10)

We then say that A and B are isomorphic, and write A~ B. If only the left or right equation
of (0.10) holds, then f is called left- or right-invertible, respectively. A right-invertible
morphism is also called a retraction.

Lemma 0.8. If a morphism has an inverse, then this inverse is unique.
Proof. If g and g’ are inverses for f, then:

g @) goid @ go(fog) o (gof)og’ ) idog ©2 Y 0
Example 0.9. Let us see what isomorphisms are like in our example categories:

« in Set, the isomorphisms are exactly the bijections of sets;

« in Rel, the isomorphisms are the graphs of bijections: a relation A& B is an
isomorphism when there is some bijection A = B such that aRb < f(a) = b.

The notion of isomorphism leads to some important types of category.

Definition 0.10 (Skeletal category). A category is skeletal when any two isomorphic
objects are equal.

We will see in Section 0.1.6 that every category is equivalent to a skeletal category, which
means they encode essentially the same algebraic data.

Definition 0.11 (Groupoid, group). A groupoid is a category in which every morphism
is an isomorphism. A group is a groupoid with one object.

Of course, this definition of group agrees with the ordinary one.
Many constructions with and properties of categories can be easily described in terms
of morphisms.

Definition 0.12 (Opposite category). Given a category C, its opposite C°F is a category
with the same objects, but with C°P(A,B) given by C(B,A). That is, the morphisms
A— B in C°P are morphisms B— A in C.

Definition 0.13 (Product category). For categories C and D, their product is a category
C x D, whose objects are pairs (A, B) of objects A € Ob(C) and B € Ob(D), and whose
morphisms are pairs (A, B) RN (C,D) with A=— C and B 4D,

Definition 0.14 (Discrete category). A category is discrete when all the morphisms are
identities.

Definition 0.15 (Indiscrete category). A category is indiscrete when there is a unique
morphism A — B for each two objects A and B.

0.1.5 Graphical Notation

There is a graphical notation for morphisms and their composites. Draw an object A as
follows:
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A 0.11)

Itisjust a line. In fact, you should think of it as a picture of the identity morphism A ~*> A,
Remember, in category theory, the morphisms are more important than the objects.

A morphism A — B is drawn as a box with one ‘input’ at the bottom, and one ‘output
at the top:

B

(0.12)

A

Composition of A i> Band B2 Cis then drawn by connecting the output of the first
box to the input of the second box:

[¢]
/]

The identity law f oidy = f = idp o f and the associativity law (hog) of =ho(gof)
then look like:

0.13)

B B B

(0.14)
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To make these laws immediately obvious, we choose to not depict the identity morphisms
id4 at all and not indicate the bracketing of composites.

The graphical calculus is useful because it ‘absorbs’ the axioms of a category,
making them a consequence of the notation. This is because the axioms of a category
are about stringing things together in sequence. At a fundamental level, this connects
to the geometry of the line, which is also one-dimensional. Of course, this graphical
representation is quite familiar: you usually draw it horizontally and call it algebra.

0.1.6 Functors

Remember the motto that in category theory, morphisms are more important than
objects. Category theory takes its own medicine here: there is an interesting notion of
‘morphism between categories), as given by the following definition.

Definition 0.16 (Functor, covariance, contravariance). Given categories C and D, a
functor F: C— D is defined by the following data:

« for each object A € Ob(C), an object F(A) € Ob(D);
« for each morphism A i> Bin C, a morphism F(A) F—(f)> F(B) inD.

This data must satisfy the following properties:

« F(gof) = F(g) o F(f) for all morphisms A LB and B> Cin G
« F(ida) = idp(a) for every object Ain C.

Functors are implicitly covariant. There are also contravariant versions reversing the direc-
tion of morphisms: F(gof) = F(f) o F(g). We will only use this covariant definition,
and model the contravariant version C — D as a covariant functor C°F — D. A functor
between groups is also called a group homomorphism; of course this coincides with the
usual notion.

‘We can use functors to give a notion of equivalence for categories.

Definition 0.17 (Equivalence). A functor F: C—> D is an equivalence when it is:
« full, meaning that the functions C(4,B) %D(F(A),F(B)) given by f = F(f) are
surjective for all A, B € Ob(C);
« faithful, meaning that the functions C(4, B) —>D(F(A),P(B)) given by f > F(f)
are injective for all A,B € Ob(C);

« essentially surjective on objects, meaning that for each object B € Ob(D) there is an
object A € Ob(C) such that B~ F(A).

If two categories are equivalent, then one is just as good as the other for the purposes
of doing category theory, even though they might be defined in quite a different way.
Nonetheless, one might be much easier to work with than the other, and that is one reason
why the notion of equivalence is so useful.
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A category C is a subcategory of a category D when every object of C is an object of D,
every morphism of C is a morphism of D, and composition and identities in C are the
same as in D. In other words, the inclusion C — D is a faithful functor.

Every category has a skeleton, a smaller category with the same algebraic structure, that
is equivalent to it.

Definition 0.18 (Skeleton). A skeleton ofa category C is a subcategory S such that every
object in C is isomorphic (in C) to exactly one object in S.

Intuitively, a skeleton is built by restricting the category C to contain just one object from
each isomorphism class. The definition says, in other words, that the inclusion functor
§ — C s an equivalence and that § is skeletal.

0.1.7 Natural Transformations

Just as a functor is a map between categories, so there is a notion of a map between
functors, called a natural transformation.

Definition 0.19 (Natural transformation, natural isomorphism). Given functors
F: C—D and G: C—D, a natural transfarmatmn ¢: F= G is an assignment to
every object A in C of a morphism F(A) L4, G(A) in D, such that the following diagram
commutes for every morphism A— B in C:

FA) — A G

F(f) G(f) (0.15)

F(B) ——— G(B
(B) & (B)

If every component £4 is an isomorphism then ¢ is called a natural isomorphism, and F
and G are called naturally isomorphic.

Many important concepts in mathematics can be defined in a simple way using functors
and natural transformations, such as the following.

Example 0.20. A group representation is a functor G — Vect, where G is a group
regarded as a category with one object (see Definition 0.11.) An intertwiner is a natural
transformation between such functors.

The notion of natural isomorphism leads to another characterization of equivalence of
categories.

Definition 0.21 (Equivalence by natural isomorphism). A functor F: C— D is an
equivalence if and only if there exists a functor G: D — C and natural isomorphisms
GoF~idcandidp ~FoQG.
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A functor is an equivalence by Definition 0.21 just when it is an equivalence by
Definition 0.17, and so we abuse terminology mildly, using the word ‘equivalence’ for
both concepts. It is interesting to consider the difference between these definitions: while
Definition 0.17 is written in terms of the internal structure of the categories involved,
in the form of their objects and morphisms, Definition 0.21 is written in terms of their
external context, given by the functors and natural transformations between them. This
is a common dichotomy in category theory, with ‘internal’ concepts often being more
elementary and direct, while the associated ‘external’ perspective, although making use of
more sophisticated notions, is often more powerful and elegant. We revisit this external
notion of equivalence in Chapter 8, from the perspective of higher category theory.

0.1.8 Limits

Limits are recipes for finding objects and morphisms with universal properties, with great
practical use in category theory. We won't describe the general case here, but just the
important special cases of products, equalizers, terminal objects and their dual notions.

To get the idea, it is useful to think about the disjoint union S+ T of sets § and T.
It is not just a bare set; it comes equipped with functions S=*»§+ T and TS+ T
that show how the individual sets embed into the disjoint union. And furthermore, these
functions have a special property: a function S + T 1, U corresponds exactly to a pair of
functions of types S 5, Uand T 2% U, suchthatf o is = fs andf o i = fr. The concepts
of limit and colimit generalize this observation.

‘We now define product and coproduct, and also terminal and initial object.

Definition 0.22 (Product, coproduct). Given objects A and B, a product is an object
A x B together with morphisms A x B Aand AxB ﬂ>B, such that any two mor-
phisms X Js Aand X %> Ballowa unique morphism (é) : X—AxBwithpy o (é) =f

and pg o (J;) =g. The following diagram summarizes these relationships:

() ™

A AXxB B
pa PB

X
1
|
v
X

A coproduct is the dual notion, that reverses the directions of all the arrows in this
diagram. Given objects A and B, a coproduct is an object A + B equipped with morphisms
A A +BandB 1By A + B, such that for any morphisms A LX and B £, X, thereisa
unique morphism (f g): A4+ B— Xsuchthat (fg)oig =fand (fg)oip=g.

Definition 0.23 (Terminal object, initial object). An object A is terminal if for every
object X, there is exactly one morphism X — A. It is initial if for every object X, there is
exactly one morphism A — X.
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A category may not have any of these structures, but if they exist, they are unique up to
isomorphism.

Definition 0.24 (Cartesian category). A category is Cartesian when it has a terminal
object and products of any pair of objects.

These structures exist in our main example categories.

Example 0.25. Products, coproducts, terminal objects and initial objects take the
following forms in our main example categories:

« in Set, products are given by the Cartesian product, and coproducts by the disjoint
union, any 1-element set is a terminal object, and the empty set is the initial object;

« inRel, products and coproducts are both given by the disjoint union, and the empty
set is both the terminal and initial object.

Given a pair of functions S fe, T, it is interesting to ask on which elements of S they
take the same value. Category theory dictates that we shouldn’t ask about elements,
but use morphisms to get the same information using a universal property. This leads
to the notion of equalizer, a structure that may or may not exist in any particular
category.

Definition 0.26. For morphisms A 1e, B, their equalizer isa morphism E > A satisfying
foe=goe, such that any morphism E' -+ A satisfying f o ¢’ = go ¢’ allows a unique
E' I Ewithe = eom:

The coequalizer of f and g is their equalizer in the opposite category.
Example 0.27. Let us see what equalizers look like in our example categories.

+ The categories Set, Vect and Hilb (see Section 0.2) have equalizers for all pairs of
parallel morphisms. An equalizer for A% Bis the set E = {ac Alf(a) =gla)},
equipped with its embedding E —+ A; that i, it is the largest subset of A on which f
and g agree.

« The category Rel does not have all equalizers. For example, consider the relation
R={(yz) e R* |y <z e R}: R—R. Suppose E: X — R were an equalizer of
Randidg. ThenR o R = idg o R, so thereisarelation M: R — X withR = E o M.
Now Eoc(MoE) =(EoM)oE=RoE=idp o E=E, and since S = idy is the
unique morphism satisfying E o S = E, we must have M o E = idx. But then xEy
and yMx for some x € X and y € R. It follows that y(E o M)y, that is, y < y, which
is a contradiction.
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Akernel is a special kind of equalizer.

Definition 0.28. A kernel of a morphism ALB is an equalizer of f and the zero
morphism A N (see Section 2.2.)

A last instance of universal properties is the idea of split idempotents.

Definition 0.29 (Idempotent, splitting). Anendomorphism A R Adis called idempotent
when f of = f. Anidempotent A R A splits when there exist an objectjr and morphisms
A i}' andf -, A such that the following hold:

ifopr=f (0.16)
proif = idf (0.17)

Given such a split idempotent, the injection}'lnﬁ gives an equalizer of f and ids, and

the projection A Lf gives a coequalizer of f and id,.

0.2 Hilbert Spaces

This section introduces the mathematical formalism that underlies quantum theory:
complex vector spaces, inner products and Hilbert spaces. We define the categories Vect
and Hilb, and define basic concepts such as orthonormal bases, linear maps, matrices,
dimensions and duals of Hilbert spaces. We then introduce the adjoint of a linear map
between Hilbert spaces, and define the terms unitary, isometry, partial isometry and
positive. We also define the tensor product of Hilbert spaces and introduce the Kronecker
product of matrices.

0.2.1 Vector Spaces

A vector space is a collection of elements that can be added to one another, and scaled.

Definition 0.30 (Vector space). A vector space is a set V with a chosen element
0 € V, an addition operation 4+: V x V—V, and a scalar multiplication operation
-t C x V—V, satisfying the following properties for all a,b,c € V and s,t € C:

- additive associativity: a4+ (b+¢) = (a+b) + ¢

- additive commutativity: a+b = b+ a;

« additive unit: a+ 0 = a;

« additive inverses: there exists —a € V such that a + (—a) = 0;

- additive distributivity:s- (a+b) = (s-a) + (s- b)

« scalarunit:1-a = a;

o scalar distributivity: (s +1t) -a = (s-a) + (t - a);

« scalar compatibility: s - (t - a) = (st) - a.
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The prototypical example of a vector space is C", the Cartesian product of n copies of the
complex numbers.

Definition 0.31 (Linear map, anti-linear map). A linear mapis a functionf: V—W
between vector spaces, with the following properties, forall a,b € V ands € C:

fla+b) =f(a)+f(b) (0.18)
f(s-a)=s-f(a) (0.19)

An anti-linear map is a function that satisfies (0.18), but instead of (0.19), satisfies
f(s-a) =5s"-f(a), (0.20)

where the star denotes complex conjugation.
Vector spaces and linear maps form a category.
Definition 0.32 (Vect, FVect). In the category Vect of vector spaces and linear maps:

+ objects are complex vector spaces;
+ morphisms are linear functions;
« composition is composition of functions;

« identity morphisms are identity functions.

Write FVect for the restriction of Vect to those vector spaces that are isomorphic to C"
for some natural number n; these are also called finite-dimensional, see Definition 0.34.

Any morphism f: V— W in Vect has a kernel, namely the inclusion of ker(f) =
{v € V| f(v) = 0} into V. Hence, kernels in the categorical sense coincide precisely with
kernels in the sense of linear algebra.

Definition 0.33. The direct sum of vector spaces V and W is the vector space V@& W,
whose elements are pairs (a,b) of elements a € V and b € W, with entrywise addition
and scalar multiplication.

Direct sums are both products and coproducts in the category Vect. Similarly, the zero-
dimensional space is both terminal and initial in Vect.

0.2.2 Bases and Matrices

One of the most important structures a vector space can have is a basis. A basis gives
rise to the notion of dimension of a vector space, and lets us represent linear maps using
matrices.

Definition 0.34 (Basis). For a vector space V, a family of elements {e;} is linearly
independent when every element a € V can be expressed as a finite linear combination
a =7, aje; with coefficients a; € C in at most one way. It is a basis if additionally anya € V
can be expressed as such a finite linear combination.
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Every vector space admits a basis, and any two bases for the same vector space have the
same cardinality.

Definition 0.35 (Dimension, finite-dimensionality). The dimension of a vector space
V, written dim(V'), is the cardinality of any basis. A vector space is finite-dimensional when
it has a finite basis.

If vector spaces V and W have bases {d;} and {¢;}, and we fix some order on the bases, we
canrepresentalinear map V —— W as the matrix with dim(W) rows and dim (V) columns,
whose entry at row i and column j is the coefficient f(d;);. Composition of linear maps
then corresponds to matrix multiplication (0.7). This directly leads to a category.

Definition 0.36 (Matc). In the skeletal category Matc:
« objects are natural numbers 0,1,2,.. ;
« morphisms n— m are complex matrices with m rows and n columns;
« composition is given by matrix multiplication;

. . id, . . . . T
« identities n —"» n are given by n-by-n matrices with entries 1 on the main diagonal,
and 0 elsewhere.

This theory of matrices is ‘just as good” as the theory of finite-dimensional vector spaces,
made precise by the category theory developed in Section 0.1.

Proposition 0.37. There is an equivalence of categories Mate — FVect that sends n to C"
and a matrix to its associated linear map.

Proof. Because every finite-dimensional complex vector space H is isomorphic to
Cdim(H) | the functor R is essentially surjective on objects. It is full and faithful since
there is an exact correspondence between matrices and linear maps for finite-dimensional
vector spaces. O

For square matrices, the trace is an important operation.
Definition 0.38 (Trace). For a square matrix with entries m;, its trace is the sum > imii

of its diagonal entries.

0.2.3 Hilbert Spaces

Hilbert spaces are structures that are built on vector spaces. The extra structure lets us
define angles and distances between vectors, and is used in quantum theory to calculate
probabilities of measurement outcomes.

Definition 0.39 (Inner product). An inner product on a complex vector space V is a
function (—|—): V x V— C that is:

« conjugate-symmetric: for alla,b € V,

(alb) = (bla)™; 0.21)
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« linear in the second argument: forall a,b,c € Vands € C,

{als-b) =s-{a|b), (0.22)
(alb+c) = (alb) + {alc); (0.23)
« positive definite: for alla € V,
{ala) >0, (0.24)
(ala) =0=v=0. (0.25)

Definition 0.40 (Norm). For a vector space with inner product, the norm of an element
vis ||v]| = +/(v|v), a nonnegative real number.

The complex numbers carry a canonical inner product:
(s|t) ="t (0.26)

The induced norm satisfies the triangle inequality ||a + b|| < ||a|| + [|b]| by virtue of the
Cauchy-Schwarz inequality |(a|b)|* < (a|a) - (b|b), that holds in any vector space with
an inner product. Thanks to these properties, it makes sense to think of ||a — b|| as the
distance between vectors a and b.

A Hilbert space is an inner product space in which it makes sense to add infinitely many
vectors in certain cases.

Definition 0.41 (Hilbert space). A Hilbert space is a vector space H with an inner
product that is complete in the following sense: if a sequence vy, v, ... of vectors satisfies
2?21 llvi]l < oc, then there is a vector v such that [|v — )", ;| tends to zero as n goes
to infinity.

Every finite-dimensional vector space with inner product is necessarily complete. Any
vector space with an inner product can be completed to a Hilbert space by formally adding
the appropriate limit vectors.

There is a notion of bounded map between Hilbert spaces that makes use of the inner
product structure. The idea is that for each map there is some maximum amount by which
the norm of a vector can increase.

Definition 0.42 (Bounded linear map). A linear map f : H—K between Hilbert
spaces is bounded when there exists a number r € R such that ||[f(a)|| <r- ||a|| for all
acH.

Every linear map between finite-dimensional Hilbert spaces is bounded.
Hilbert spaces and bounded linear maps form a category. This category will be the main
example throughout the book to model phenomena in quantum theory.

Definition 0.43 (Hilb, FHilb). In the category Hilb of Hilbert spaces and bounded linear
maps:

« objects are Hilbert spaces;

« morphisms are bounded linear maps;
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« composition is composition of linear maps as ordinary functions;

« identity morphisms are given by the identity linear maps.
Write FHilb for the restriction of Hilb to finite-dimensional Hilbert spaces.

This definition is perhaps surprising, especially in finite dimensions: since every linear
map between Hilbert spaces is bounded, FHilb is an equivalent category to FVect. In
particular, the inner products play no essential role. We will see in Section 2.3 how to
model inner products categorically, using the idea of daggers.

Hilbert spaces have a more discerning notion of basis.

Definition 0.44 (Basis, orthogonal basis, orthonormal basis). For a Hilbert space
H, an orthogonal basis is a family of elements {e;} with the following properties:

» they are pairwise orthogonal, that is, (e;|¢;) = 0 for all i # j;
« every element a € H can be written as an infinite linear combination of e;; that

is, there are coefficients a; € C for which [la — 3, a;¢;|| tends to zero as n goes to
infinity.

It is orthonormal when additionally (e;|e;) = 1 for all i.

Any orthogonal family of elements is linearly independent. For finite-dimensional
Hilbert spaces, the ordinary notion of basis as a vector space, as given by Definition 0.34,
is still useful. Hence, once we fix (ordered) bases on finite-dimensional Hilbert spaces,
linear maps between them correspond to matrices, just as with vector spaces. For infinite-
dimensional Hilbert spaces, however, having a basis for the underlying vector space is
rarely mathematically useful.

If two vector spaces carry inner products, we can give an inner product to their direct
sum, leading to the direct sum of Hilbert spaces.

Definition 0.45 (Direct sum). The direct sum of Hilbert spaces H and K is the vector
space H@® K, made into a Hilbert space by the inner product ((aj,b1)|(az,b2)) =
(ar|az) + (b |b2).

Direct sums provide both products and coproducts for the category Hilb. Hilbert
spaces have the good property that any closed subspace can be complemented. That is, if
the inclusion U < V is a morphism of Hilb satisfying ||u||y = ||u||tr, then there exists
another inclusion morphism Ut < V of Hilb with V = U @ U™. Explicitly, UL is the
orthogonal subspace {a € V | Yb € U: (a|b) = 0}.

0.2.4 Adjoint Linear Maps

The inner product gives rise to the adjoint of a bounded linear map.

Definition 0.46. For a bounded linear map f: H—K, its adjoint f*: K— H is the
unique linear map with the following property, foralla € Hand b € K:

(@) |b) = (alf" (b)) 0:27)
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The existence of the adjoint follows from the Riesz representation theorem for Hilbert
spaces, which we do not cover here. It follows immediately from (0.27) by uniqueness of
adjoints that they also satisfy the following properties:

(' =f; (0.28)
(gof)* :f*og*; (0.29)
idg" = idy. (0.30)

Taking adjoints is an anti-linear operation.
Adjoints give rise to various specialized classes of linear maps.

Definition 0.47. A bounded linear map H L, K between Hilbert spaces is:
+ self-adjoint when f = fT;
« aprojectionwhenf =f"andf of =f;
« unitarywhen both f* o f = idyy and f o ft = idg;
« anisometry when f' o f = idy;
« apartial isometry when f' o f is a projection;
+ and positive when f = g' o g for some bounded linear map H N

The following notation is standard in the physics literature.

Definition 0.48 (Bra-ket). Givenan elementa € H ofa Hilbert space, its ket C Ao, His

the linear map s > sa. Its bra H-, C is the linear map b +—> (a|b).

You can check that |a)T = (a|:
(¢ uadc) = (c c) = (c ) (0.31)

The final expression identifies the number (b|a) with the linear map 1 +— (b|a). Thus
the inner product (or ‘bra-ket”) (b|a) decomposes into a bra (b| and a ket |a). Originally
due to Paul Dirac, this is traditionally called Dirac notation.

The correspondence between |a) and (a| leads to the notion of a dual space.

Definition 0.49. For a Hilbert space H, its dual Hilbert space H* is the vector space
Hilb(H,C).

A Hilbert space is isomorphic to its dual in an anti-linear way: the map H — H" given by
|a) = ¢4 = (al is an invertible anti-linear function. The inner product on H* is given by
(@al@p) g+ = (a|b)y, and makes the function |a) > (a| bounded.

Some bounded linear maps support a notion of trace.

Definition 0.50 (Trace, trace class). When it converges, the trace of a positive linear
map f: H— H is given by Tr(f) = > _(e;|f (¢;)} for any orthonormal basis {¢;}, in which
case the map is called trace class.
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If the sum converges for one orthonormal basis, then with effort you can prove that it
converges for all orthonormal bases, and that the trace is independent of the chosen basis.
In the finite-dimensional case, the trace defined in this way agrees with the matrix trace of
Definition 0.38.

0.2.5 Tensor Products

The tensor product is a way to make a new vector space out of two given ones. With some
work the tensor product can be constructed explicitly, butitis only important for us that it
exists, and is defined up to isomorphism by a universal property. If U, V and W are vector
spaces, a function f: U x V— W is called bilinear when it is linear in each variable; that
is, when the function u = f(u,v) islinear for each v € V, and the function v = f(u,v) is
linear for eachu € U.

Definition 0.51. The tensor product of vector spaces U and V is a vector space
U ® V together with a bilinear functionf: U x V— U & V such that for every bilinear
functiong: U x V— W there exists a unique linear function h: U ® V — W such that
g=hof.

(bilinear)f
UxV Uu®Vv
|
i
:
i

h (linear)
(bilinear) g

w

Note that U x V is not itself a vector space, so it doesn’t make sense to ask if f or g are
linear. The function f usually stays anonymous and is written as (a,b) > a @ b. It follows
that arbitrary elements of U® V take the form » " 5;a; ® b; for 5; € C, a; € U and
b; € V. The tensor product also extends to linear maps. If fi : Uy — Vi andfo: Uy — V3
are linear maps, there is a unique linear map f; ® f,: U; @ Uy — V| @ V, that satisfies
(i ®f) (a1 @ ay) = fi(a)) @ f>(ay) for a; € Uy and a; € Us. In this way, the tensor

product becomes a functor ®: Vect x Vect— Vect.

Definition 0.52. The fensor product of Hilbert spaces H and K is the Hilbert space
H & K built by taking tensor product of the underlying vector spaces, giving it the inner
product (a1 @ by |ax ® by) = (a1|az)n - (b1|b2}k, then completing it. If H-—H’ and
K- K’ are bounded linear maps, then so is the continuous extension of the tensor
product of linear maps to a function that we again call f ® g: H® K— H' ® K'. This
gives a functor ®: Hilb x Hilb — Hilb.

If {e;} is an orthonormal basis for Hilbert space H, and {f;} is an orthonormal basis
for K, then {¢; ® f;} is an orthonormal basis for H® K. So when H and K are finite-
dimensional, there is no difference between their tensor products as vector spaces and as
Hilbert spaces.
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Definition 0.53 (Kronecker product). When finite-dimensional Hilbert spaces
Hj,H,K;,K; are equipped with fixed ordered orthonormal bases, linear maps H; R K

R
and H, i*Kz can be written as matrices. Their tensor product H; ® H» Qﬂﬁ ® K,
corresponds to the following block matrix, called their Kronecker product:

(fhig) (f2g) - (fing)
(h1g)  (f28) - (fng)

f®g:= (0.32)

(fmig)  (f2g) - (fng)

0.3 Quantum Information

Quantum information theory studies the information processing capabilities of quantum
systems, using the mathematical abstractions of Hilbert spaces and linear maps.

0.3.1 State Spaces

Classical computer science often considers systems to have a finite set of states. An
important simple system is the bit, with state space given by the set {0,1}. Quantum
information theory instead assumes that systems have state spaces given by finite-
dimensional Hilbert spaces. The quantum version of the bit is the qubit.

Definition 0.54. A qubit is a quantum system with state space C2.

A pure state of a quantum system is given by a vector v € H in its associated Hilbert
space. Such a state is normalized when the vector in the Hilbert space has norm 1:

(ala) =1 (0.33)

In particular, a complex number of norm 1 is called a phase. A pure state of a qubit is
therefore a vector of the form
s
a=
t

withs, t € C, whichisnormalized when |s|* 4 |¢|> = 1.In Section 0.3.4 we will encounter
a more general notion of state, called a mixed state. However, when our meaning is clear,
we’ll often just say state instead of pure state.

When performing computations in quantum information, we often use the following
privileged basis.
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Definition 0.55 (Computational basis, Z basis). For the Hilbert space C", the
computational basis, or Z basis is the orthonormal basis given by the following vectors:

1 0 0
0 0

)=, =1, m-1=1, (0:34)
0 0 1

This orthonormal basis is no better than any other, but it is useful to fix a standard
choice. Every state a € C"” can be written in terms of the computational basis; for a qubit,
we can write a = s|0) + £|1) for some s,t € C. The following alternative qubit basis also
plays an important role.

Definition 0.56. The X basis for a qubit C? is given by the following states:
— L
I+) = 700 +11)
=L —
=) = J=(0) — 1))

Processing quantum information takes place by applying unitary maps H R H to the
Hilbert space of states. Such a map will take a normalized state a € H to a normalized
state f(a) € H. An example of a unitary map is the X gate represented by the matrix (9 }),
which acts as |0) = [1) and |1) +> |0) on the computational basis states of a qubit.

0.3.2 Compound Systems and Entanglement

Given two quantum systems with state spaces given independently by Hilbert spaces H
and K, as a joint system their overall state space is H ® K, the tensor product of the two
Hilbert spaces (see Section 0.2.5). This is a postulate of quantum theory. As a result, state
spaces of quantum systems grow large very rapidly: a collection of n qubits will have a
state space isomorphic to c?, requiring 2" complex numbers to specify its state vector
exactly. In contrast, a classical system consisting of n bits can have its state specified by a
single binary number of length n.

In quantum theory, (pure) product states and (pure) entangled states are defined as
follows.

Definition 0.57 (Product state, entangled state). For a compound system with state
space H ® K, a product stateis a state of the form a ® bwitha € Hand b € K. An entangled
state is a state not of this form.

The definition of product and entangled state also generalizes to systems with more than
two components. When using Dirac notation, if [a) € H and |b) € K are chosen states,
we will often write |ab) for their product state |a) ® |b).

The following family of entangled states plays an important role in quantum informa-
tion theory.
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Definition 0.58 (Bell state). The Bell basis for a pair of qubits with state space C* @ C?
is the orthonormal basis given by the following states:

|Bell) = —=(/00) +[11))

[Bell;) = —=(/00) — [11))

|Bell,) = ﬁ(lon +|10))

[Bells) = —=(|01) — |10))

The state |Belly) is often called ‘the Bell state’, and is very prominent in quantum
information. The Bell states are maximally entangled, meaning that they induce an
extremely strong correlation between the two systems involved (see Definition 0.72).

0.3.3 Pure States and Measurements

Fora quantum system in a pure state, the most basic notion of measurement is a projection-
valued measure. Quantum theory is a set of rules that says what happens to the quantum
state when a projection-valued measurement takes place, and the probabilities of the
different outcomes. Recall from Definition 0.47 that projections are maps satisfying

p=p'=pop.
Definition 0.59. A finite family of linear maps H ER H is complete when the following
holds:

> fi=idu (0.35)

Definition 0.60. A family of linear maps HLH is orthogonal when for any i # j, the
following holds:
fiefj=0 (0.36)

Definition 0.61 (Projection-valued measure, nondegenerate). A pro 'f_zction-vafued
measure (PVM) on a Hilbert space H is a finite family of projections H-—+ H that are
complete and orthogonal. A PVM is nondegenerate when Tr(p;) = 1 for all i.

In this definition of PVM, the orthogonality property is actually redundant; that is, a
complete family of projections is necessarily also orthogonal. For simplicity, however, we
include the orthogonality requirement here directly. Also note that while our PVMs are
finite, in general infinite PVMs are possible; for simplicity, we focus on the finite case.

Lemma 0.62. For a finite-dimensional Hilbert space, nondegenerate projection-valued mea-
sures correspond to orthonormal bases, up to phase.

Proof. For an orthonormal basis |i), define a nondegenerate PVM by p; = i) (i|. Con-
versely, since projections p have eigenvalues 1, if Tr(p) = 1 then p must have rank one;
that is, there is a ket |i) such that p = |i)(i|, unique up to multiplication by a complex
phase et O



0.3 Quantum Information | 23

A projection-valued measure, when applied to a Hilbert space, will have a unique
outcome, given by one of the projections. This outcome will be probabilistic, with
distribution described by the Born rule, defined next. Dirac notation is often extended
to self-adjoint bounded linear functions H == K between Hilbert spaces, writing (a|f|b)

for (a|f (b)) = {f(a)|b).

Definition 0.63 (Born rule). For a projection-valued measure {p;} on a system in a
normalized state a € H, the probability of outcome i is (a|p;|a).

The definition of a projection-valued measure guarantees that the total probability across
all outcomes is 1:

(0.35)

Yialpila) E @(Tipi)la) E (ala) E 1 (0.37)

After a measurement, the new state of the system is p;(a), where p; is the projection
corresponding to the outcome that occured. This part of the standard interpretation is
called the projection postulate. Note that this new state is not necessarily normalized. If the
new state is not zero, it can be normalized in a canonical way, giving p;(a) /||pi(a) ||.

Given some classical information and some quantum information, it is often the case
that we want to apply a unitary operator to the quantum information, in a way that
depends on the classical information.

Definition 0.64 (Controlled operation). GivenaHilbertspace Hand aset S, a controlled
operation is a choice forall s € S of a unitary U;: H— H.

0.3.4 Mixed States and Measurements

Suppose there is a machine that produces a quantum system with Hilbert space H. The
machine has two buttons: one that will produce the system in state a € H and another
that will produce itin state b € H. You receive the system that the machine produces, but
you cannot see it operating; all you know is that the operator of the machine flips a fair
coin to decide which button to press. Taking into account this uncertainty, the state of the
system that you receive cannot be described by an element of H; the system is in a more
general type of state, called a mixed state.

Definition 0.65 (Density matrix, normalized). A density matrix on a Hilbert space H
is a positive map H - H. A density matrix is normalized when Tr(m) = 1. (Warning: a
density matrix is not a matrix in the sense of Definition 0.36.)

Recall from Definition 0.47 that m is positive when there exists some gwithm =g’ og.
Density matrices are more general than pure states, since every pure state @ € H gives rise
to a density matrix m = |a){a| in a canonical way. This last piece of Dirac notation is the
projection onto the line spanned by the vector a.

Definition 0.66 (Pure state, mixed state). A density matrix m: H— H is pure when
m = |a){al for some a € H; generally, it is mixed.
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Definition 0.72. A pure state a € H ® K is maximally entangled when tracing out either
H or K from |a) (a| gives a maximally mixed state; explicitly this means the following, for
somes,t € C:

Try(la)(al) =s-idk Trx (Ja)(al) = t-idy (0.40)

When |a) is normalized, its trace will be a normalized density matrix, so s = 1/ dim(H)
and t = 1/ dim(K).

Up to unitary equivalence there is only one maximally entangled state for each system,
as the following lemma shows; its proof will follow from Theorem 3.50.

Lemma 0.73. Any two maximally entangled states a,b € HQK are related by
(f ® idg)(a) = b for a unique unitary H— H. O

0.3.5 Decoherence

By Lemma 0.62, every nondegenerate projection-valued measure {pi,...,p,} on a
Hilbert space H corresponds (up to a phase) to an orthonormal basis {|1),...,|n)} for
H via p; = |i)(i|, and hence induces n pure states of H. We may regard this as a controlled
preparation: depending on some classical datai = 1,...,#, we prepare state |i). Consider
how this controlled preparation composes with a measurement in the same basis.

If we start with some classical information, use it to prepare a quantum system, and then
immediately measure, we should end up with the same classical information we started
with. Indeed, according to the Born rule of Definition 0.63, the probability of getting
outcome j after preparing state i is:

(ilpilj) = Gl Gl = 1GINIZ (0.41)

which is 1 fori = jbut 0 fori # j.

The other way around is conceptually less straightforward: if you measure a quantum
system, yielding a piece of classical data, and then immediately use that to prepare a state
of a quantum system, what do you get? Well, supposing that the quantum system starts in
a mixed state given by a density matrix H-"» H withm= ) __. cijli) (jl, the measurement
results in outcome |i) with probability Tr(p;m) = (i|m|i) = ¢, so the state eventually
prepared is

Zcr-i\i)(i l. (0.42)

i

The nondiagonal elements of the density matrix m have vanished, and the mixed state
has become a convex combination of pure states. This process is called decoherence. Any
quantum state undergoes decoherence constantly as it interacts with its environment.
It takes extremely good experimental control to keep a quantum state from decohering
rapidly.



