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Introduction

Category theory starts with the observation that many properties of
mathematical systems can be unified and simplified by a presentation
with diagrams of arrows. Each arrow f : X— Y represents a function;
that is, a set X, a set Y, and a rule x+— f x which assigns to each element
x e X an element fxe Y; whenever possible we write fx and not f(x),
omitting unnecessary parentheses. A typical diagram of sets and func-

tions is

X—pZ;

it is commutative when h is h=g- f, where g- f is the usual composite
function g- f : X —Z, defined by x+—g(fx). The same diagrams apply
in other mathematical contexts; thus in the “category” of all topological
spaces, the letters X, ¥, and Z represent topological spaces while f, g,and h
stand for continuous maps. Again, in the “category” of all groups,
X, Y, and Z stand for groups, f, g, and h for homomorphisms.

Many properties of mathematical constructions may be represented
by universal properties of diagrams. Consider the cartesian product
X x Yof two sets, consisting as usual of all ordered pairs {x, y)> of elements
xe X and ye Y. The projections {x, y>+>x, {x, y>+y of the product
on its “axes” X and Y are functions p: X x Y X, q: X x Y— Y. Any
function h: W— X x Y from a third set W is uniquely determined by its
composites poh and g-h. Conversely, given W and two functions
fand g as in the diagram below, there is a unique function h which makes
the diagram commute; namely, hw = {fw, gw):
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Thus, given X and Y, {p, ¢) is “universal” among pairs of functions from
some set to X and Y, because any other such pair < f, g factors uniquely
(via h) through the pair {p,q)>. This property describes the cartesian
product X x Y uniquely (up to a bijection); the same diagram, read in the
category oftopologicalspaces or of groups,describes uniquely the cartesian
product of spaces or of the direct product of groups.

Adjointness is another expression for these universal properties.
If we write hom(W, X) for the set of all functions f: W—Y and
hom({U, V>,{X, Y)) for the set of all pairs of functions f:U—X,
g:V—Y, the correspondence h—<{ph,qh)>=<{f,g)> indicated in the
diagram above is a bijection

hom(W, X x Y)=hom({W, W), {X,Y)).

This bijection is “natural” in the sense (to be made more precise later)
that it is defined in “the same way” for all sets W and for all pairs of sets
(X,Y)> (and it is likewise “natural” when interpreted for topological
spaces or for groups). This natural bijection involves two constructions
on sets: The construction Wi— W, W which sends each set to the diagonal
pair AW = (W, W3, and the construction {X, Y>+ X x Y which sends
each pair of sets to its cartesian product. Given the bijection above,
we say that the construction X x Y is a right adjoint to the construction 4,
and that 4 is left adjoint to the product. Adjoints, as we shall see, occur
throughout mathematics.

The construction “cartesian product” is called a “functor” because it
applies suitably to sets and to the functions between them; two functions
k:X—X"and t: Y— Y’ have a function k x { as their cartesian product:

kxt: X xY—-X'xY, {x,yd=><kx ty).

Observe also that the one-point set 1 = {0} serves as an identity under the
operation “cartesian product”, in view of the bijections

IxX5HXeXx1 (1)

given by 1<{0, x> =x, p{x,0> = x.

The notion of a monoid (a semigroup with identity) plays a central
role in category theory. A monoid M may be described as a set M to-
gether with two functions

p:MxM—-M, n:1-M (2)
such that the following two diagrams commute
MxMxM-—25MxM IxM-2ZL M x M2 M x 1

O R

MxM—*—M, M = M = M
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here 1 in 1 x u is the identity function M— M, and 1 in 1 x M is the one-
point set 1={0}, while 1 and g are the bijections of (1) above. To say
that these diagrams commute means that the following composites are
equal:

pe(Ixpy=peo(ux1), pepxl)=4, pe(lxn=ng.

These diagrams may be rewritten with elements, writing the function u
(say)as a product u(x, y)=xy for x, ye M and replacing the function »
on the one-point set 1 = {0} by its (only) value, an element 7n(0)=ue M.
The diagrams above then become

<x9 Y Z>I—> <x’ yz> <0’ x>l—+<u’ x> <x’ u)_4—|(x, 0>
ey, o (xy)z=x(yz), X = ux, Xu = u.

They are exactly the familiar axioms on a monoid, that the multiplica-
tion be associative and have an element u as left and right identity.
This indicates, conversely, how algebraic identities may be expressed by
commutative diagrams. The same process applies to other identities;
for example, one may describe a group as a monoid M equipped with
a function { : M— M (of course, the function x+x~!) such that the
following diagram commutes

M2oMxMESMxM  xi—s (x, xD)—{x, x>

| - [

1 > M O— u = xx!,

here 6:M—M x M is the diagonal function x+—{x,x) for xe M,
while the unnamed vertical arrow M — 1 = {0} is the evident (and unique)
function from M to the one-point set. As indicated just to the right,
this diagram does state that { assigns to each element x e M an element
x~! which is a right inverse to x.

This definition of a group by arrows u, 5, and { in such commutative
diagrams makes no explicit mention of group elements, so applies
to other circumstances. If the letter M stands for a topological space
(not just a set) and the arrows are continuous maps (not just functions),
then the conditions (3) and (4) define a topological group — for they
specify that M is a topological space with a binary operation x of multi-
plication which is continuous (simultaneously in its arguments) and
which has a continuous right inverse, all satisfying the usual group
axioms. Again, if the letter M stands for a differentiable manifold (of
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class C*) while 1 is the one-point manifold and the arrows u, 5, and {
are smooth mappings of manifolds, then the diagrams (3) and (4) become
the definition of a Lie group. Thus groups, topological groups, and Lie
groups can all be described as “diagrammatic” groups in the respective
categories of sets, of topological spaces, and of differentiable manifolds.

This definition of a group in a category depended (for the inverse
in (4)) on the diagonal map 6: M—M xM to the cartesian square
M x M. The definition of a monoid is more general, because the cartesian
product x in M x M may be replaced by any other operation [] on two
objects which is associative and which has a unit 1 in the sense prescribed
by the isomorphisms (1). We can then speak of a monoid in the system
(C, [, 1), where C is the category, [] is such an operation, and 1 is its
unit. Consider, for example, a monoid M in (Ab, ®, Z), where Ab is
the category of abelian groups, x is replaced by the usual tensor product
of abelian groups, and 1 is replaced by Z, the usual group of integers;
then (1) is replaced by the familiar isomorphism

IR®X=X=X®Z, X an abelian group.

Then a monoid M in (Ab, ®, Z) is, we claim, simply a ring. For the given
morphism p: M®M—M is, by the definition of ®, just a function
M x M—M, call it multiplication, which is bilinear; i.e., distributive
over addition on the left and on the right, while the morphism : Z—M
of abelian groups is completely determined by picking out one element
of M; namely, the image u of the generator 1 of Z. The commutative
diagrams (3) now assert that the multiplication p in the abelian group M
is associative and has u as left and right unit: — in other words, that M
is indeed a ring (with identity = unit).

The (homo)-morphisms of an algebraic system can also be described
by diagrams. If (M, pu, > and {M’, ', "> are two monoids, each described
by diagrams as above, then a morphism of the first to the second may
be defined as a function f:M— M’ such that the following diagrams
commute

M MxM—t—M l—1—M

AR

M, M xM—EXsM, 11— M.

In terms of elements, this asserts that f(xy)=(fx)(fy) and fu=u’,
with u and ' the unit elements; thus a homomorphism is, as usual, just
a function preserving composite and units. If M and M’ are monoids
in (Ab, ®, Z); that is, rings, then a homomorphism f as here defined is
just a morphism of rings (preserving the units).
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Finally, an action of a monoid {M, u, > on a set S is defined to be
a function v: M x S— S such that the following two diagrams commute

MxMxS—1* s MxS§ IxS—"*1, Mx8§

|
Mx§———S§ S.

B

If we write v(x, s) = x * s to denote the result of the action of the monoid
element x on the element s e S, these diagrams state just that

x-(y-s)=(xy)-s, u-s=s

for all x, ye M and all s e S. These are the usual conditions for the action
of a monoid on a set, familiar especially in the case of a group acting
on a set as a group of transformations. If we shift from the category of
sets to the category of topological spaces, we get the usual continuous
action of a topological monoid M on a topological space S. If we take
{M, u, n> to be a monoid in (Ab, ®, Z), then an action of M on an object
S of Ab is just a left module S over the ring M.



I. Categories, Functors, and Natural Transformations

1. Axioms for Categories

First we describe categories directly by means of axioms, without
using any set theory, and calling them “metacategories”. Actually, we
begin with a simpler notion, a (meta)graph.

A metagraph consists of objects a, b, c, ..., arrows f,g,h, ..., and two
operations, as follows:

Domain, which assigns to each arrow f an object a= dom f;
Codomain, which assigns to each arrow f an object b=cod f.

These operations on f are best indicated by displaying f as an actual
arrow starting at its domain (or “source”) and ending at its codomain
(or “target”):

f:ia—b or alb.

A finite graph may be readily exhibited: Thus - —-+—- or - =3 -.
A metacategory is a metagraph with two additional operations:
Identity, which assigns to each object a an arrow id,=1,:a—a;
Composition, which assigns to each pair (g, /> of arrows with
domg=cod f an arrow g- f, called their composite, with g~ f:dom f
—codg. This operation may be pictured by the diagram

b
/X
a—g:-f—-—)(,'

which exhibits all domains and codomains involved. These operations
in a metacategory are subject to the two following axioms:
Associativity. For given objects and arrows in the configuration

PN NN

one always has the equality

kelgef)=(k-g)-f. (1)
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This axiom asserts that the associative law holds for the operation of
composition whenever it makes sense (i.e., whenever the composites on
either side of (1) are defined). This equation is represented pictorially
by the statement that the following diagram is commutative

a kolgof)=(kog)o f d

=%
™~

_——
b - c.

S

Unit law. For all arrows f:a—b and g:b—c composition with
the identity arrow 1, gives

lef=f and g-l,=g. 2

This axiom asserts that the identity arrow 1, of each object b acts as an
identity for the operation of composition, whenever this makes sense.
The Eqgs. (2) may be represented pictorially by the statement that the
following diagram is commutative:

a—L b

NG

b—g—>c .

We use many such diagrams consisting of vertices (labelled by objects
of a category) and edges (labelled by arrows of the same category).
Such a diagram is commutative when, for each pair of vertices ¢ and ¢,
any two paths formed from directed edges leading from ¢ to ¢’ yield,
by composition of labels, equal arrows from ¢ to ¢’. A considerable part
of the effectiveness of categorical methods rests on the fact that such
diagrams in each situation vividly represent the actions of the arrows
at hand.

If b is any object of a metacategory C, the corresponding identity
arrow 1, is uniquely determined by the properties (2). For this reason, it
is sometimes convenient to identify the identity arrow 1, with the object b
itself, writing b:b—b. Thus 1,=b=1id,, as may be convenient.

A metacategory is to be any interpretation which satisfies all these
axioms. An example is the metacategory of sets, which has objects all
sets and arrows all functions, with the usual identity functions and the
usual composition of functions. Here “function™ means a function with
specified domain and specified codomain. Thus a function f: X —Y
consists of a set X, its domain, a set Y, its codomain, and a rule x+ fx
(i.e., a suitable set of ordered pairs {x, fx}) which assigns, to each element
x€ X, an element fx e Y. These values will be written as fx, f,, or f(x),
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as may be convenient. For example, for any set S, the assignment s s
for all se S describes the identity function 15: S—S;if S is a subset of Y,
the assignment s~ s also describes the inclusion or insertion function
S— Y; these functions are different unless S = Y. Given functions f : X — Y
and ¢g:Y—Z, the composite function g- f:X—Z is defined by
(g° f)x=g(fx) for all xe X. Observe that g f will mean first apply f,
then g — in keeping with the practice of writing each function f to the
left of its argument. Note, however, that many authors use the opposite
convention.

To summarize, the metacategory of all sets has as objects, all sets, as
arrows, all functions with the usual composition. The metacategory of all
groups is described similarly: Objects are all groups G, H, K; arrows are
all those functions f from the set G to the set H for which f:G—H
is a homomorphism of groups. There are many other metacategories:
All topological spaces with continuous functions as arrows; all compact
Hausdorff spaces with the same arrows; all ringed spaces with their
morphisms, etc. The arrows of any metacategory are often called its
morphisms.

Since the objects of a metacategory correspond exactly to its identity
arrows, it is technically possible to dispense altogether with the objects
and deal only with arrows. The data for an arrows-only metacategory C
consist of arrows, certain ordered pairs (g, f>, called the composable
pairs of arrows, and an operation assigning to each composable pair
{g,f> an arrow g- f, called their composite. We say “g- f is defined”
for “{g, f > is a composable pair”.

With these data one defines an identity of C to be an arrow u such
that f-u= f whenever the composite f- u is defined and u- g=g when-
ever uc g is defined. The data are then required to satisfy the following
three axioms:

(i) The composite (k- g)- f is defined if and only if the composite
ko(g-f) is defined. When either is defined, they are equal (and this
triple composite is written as kg f).

(i) The triple composite kg f is defined whenever both composites kg
and g f are defined.

(iii) For each arrow g of C there exist identity arrows u and u’ of C
such that u'- g and g - u are defined.

In view of the explicit definition given above for identity arrows, the
last axiom is a quite powerful one; it implies that v’ and u are unique in
(i), and it gives for each arrow g a codomain u’ and a domain u. These
axioms are equivalent to the preceding ones. More explicitly, given a
metacategory of objects and arrows, its arrows, with the given composi-
tion, satisfy the “arrows-only” axioms; conversely, an arrows-only
metacategory satisfies the objects-and-arrows axioms when the identity
arrows, defined as above, are taken as the objects (Proof as exercise).
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2. Categories

A category (as distinguished from a metacategory) will mean any
interpretation of the category axioms within set theory. Here are the
details. A graph (also called a “diagram scheme”) is a set O of objects,
a set A of arrows, and two functions

dom

A—2330. (1)

In this graph, the set of composable pairs of arrows is the set
AxgA={{g.f>|g9,.fe A and domg=codf},

called the “product over O”.
A category is a graph with two additional functions

0454, Ax,A——A,

. @)
c—id,,  {g.f>—g-/

called identity and composition, such that
dom(ida)=a=cod(ida), dom(g-f)=domf, cod(gef)=codg (3)

for all objects a e O and all composable pairs of arrows (g, f> € A X o4,
and such that the associativity and unit axioms (1.1) and (1.2) hold.
In treating a category C, we usually drop the letters A and O, and write

ceC finC 4)

for “c is an object of C” and “f is an arrow of C”, respectively. We also
write

hom(b,c)={f|f in C, domf=b, cod f=c} (5)

for the set of arrows from b to c. Categories can be defined directly in
terms of composition acting on these “hom-sets” (§ 8 below); we do not
follow this custom because we put the emphasis not on sets (a rather special
category), but on axioms, arrows, and diagrams of arrows. We will
later observe that our definition of a category amounts to saying that a
category is a monoid for the product x ,, in the general sense described
in the introduction. For the moment, we consider examples.

0 is the empty category (no objects, no arrows);

1 is the category ® with one object and one (identity) arrow;

2 is the category ® —® with two objects a, b, and just one arrow
a—b not the identity;
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3 is the category with three objects whose non-identity arrows are

arranged as in the triangle /:,} ;

1l is the category with two objects a, b and just two arrows a=3b

not the identity arrows. We call two such arrows parallel arrows.

In each of the cases above there is only one possible definition of
composition.

Discrete Categories. A category is discrete when every arrow is an
identity. Every set X is the set of objects of a discrete category (just add
one identity arrow x— x for each x € X), and every discrete category is
so determined by its set of objects. Thus, discrete categories are sets.

Monoids. A monoid is a category with one object. Each monoid is
thus determined by the set of all its arrows, by the identity arrow, and
by the rule for the composition of arrows. Since any two arrows have a
composite, a monoid may then be described as a set M with a binary
operation M x M — M which is associative and has an identity (= unit).
Thus a monoid is exactly a semigroup with identity element. For any
category C and any object ae C, the set hom(a, a) of all arrows a—a
is 2 monoid.

Groups. A group is a category with one object in which every arrow
has a (two-sided) inverse under composition.

Matrices. For each commutative ring K, the set Matry of all rect-
angular matrices with entries in K is a category; the objects are all
positive integers m, n, ..., and each m x n matrix A4 is regarded as a arrow
A :n—m, with composition the usual matrix product.

Sets. If V is any set of sets, we take Ens, to be the category with
objects all sets X € V, arrows all functions f:X—Y, with the usual
composition of functions. By Ens we mean any one of these categories.

Preorders. By a preorder we mean a category P in which, given
objects p and p’, there is at most one arrow p—p’. In any preorder P,
define a binary relation < on the objects of P with p<p’ if and only if
there is an arrow p—p’ in P. This binary relation is reflexive (because
there is an identity arrow p—s p for each p) and transitive (because arrows
can be composed). Hence a preorder is a set (of objects) equipped with
a reflexive and transitive binary relation. Conversely, any set P with
such a relation determines a preorder, in which the arrows p—p’ are
exactly those ordered pairs {p, p'> for which p < p’. Since the relation is
transitive, there is a unique way of composing these arrows; since it is
reflexive, there are the necessary identity arrows.

Preorders include partial orders (preorders with the added axiom
that p<p’ and p'<p imply p=p’) and linear orders (partial orders
such that, given p and p’, either p<p’ or p'<p).

Ordinal Numbers. We regard each ordinal number # as the linearly
ordered set of all the preceding ordinals n= {0, 1, ..., n — 1}; in particular,
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0 is the empty set, while the first infinite ordinal is w={0,1,2,...}.
Each ordinal n is linearly ordered, and hence is a category (a preorder).
For example, the categories 1, 2, and 3 listed above are the preorders be-
longing to the (linearly ordered) ordinal numbers 1, 2, and 3. Another
example is the linear order w. As a category, it consists of the arrows

0—1-52-53—...,

all their composites, and the identity arrows for each object.

A is the category with objects all finite ordinals and arrows f:m—n
all order-preserving functions (i <j in m implies f; < f; in n). This category
A, sometimes called the simplicial category, plays a central role
(Chapter VII).

Finord = Set,,isthe category with objectsall finite ordinalsnand arrows
f:m—n all functions from m to n. This is essentially the category of all
finite sets, using just one finite set n for each finite cardinal number n.

Large Categories. In addition to the metacategory of all sets — which
is not a set — we want an actual category Set, the category of all small
sets. We shall assume that there is a big enough set U, the “universe”,
then describe a set x as “small” if it is a member of the universe, and take
Set to be the category whose set U of objects is the set of all small sets, with
arrows all functions from one small set to another. With this device
(details in §7 below) we construct other familiar large categories, as
follows:

Set: Obijects, all small sets; arrows, all functions between them.

Set, : Objects, small sets each with a selected base-point; arrows,
base-point preserving functions.

Ens: Category of all sets and functions within a (variable) set V.

Cat: Obijects, all small categories; arrows, all functors (§ 3).

Mon: Objects, all small monoids; arrows, all morphisms of monoids.

Grp: Objects, all small groups; arrows, all morphisms of groups.

Ab: Objects, all small (additive) abelian groups, with morphisms
of such.

Rng: All small rings, with the ring morphisms (preserving units)
between them.

CRng: All small commutative rings and their morphisms.

R-Mod: All small left modules over the ring R, with linear maps.

Mod-R: Small right R-modules.

K-Mod: Small modules over the commutative ring K.

Top: Small topological spaces and continuous maps.

Toph: Topological spaces, with arrows homotopy classes of maps.

Top,.: Spaces with selected base point, base point-preserving maps.

Particular categories (like these) will always appear in bold-face type.
Script capitals are used by many authors to denote categories.
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3. Functors

A functor is a morphism of categories. In detail, for categories C and B
afunctor T': C— B with domain C and codomain B consists of two suitably
related functions: The object function T, which assigns to each object
¢ of C an object Tc of B and the arrow function (also written T) which
assigns to each arrow f:c—c" of C an arrow Tf: Tc— T¢' of B, in such
a way that

T(lc)=1Tc’ T(gof)=Tg°Tf1 (1)

the latter whenever the composite g - f is defined in C. A functor, like a
category, can be described in the “arrows-only” fashion: It is a function T
from arrows f of C to arrows Tf of B, carrying each identity of C to
an identity of B and each composable pair {g, f» in C to a composable
pair {Tg, Tf> in B, with Tge T f=T(g- f).

A simple example is the power set functor & :Set— Set. Its object
function assigns to each set X the usual power set 2 X, with elements all
subsets SCX; its arrow function assigns to each f:X—Y that map
P f: P X—PY which sends each SCX to its image f S C Y. Since both
P(ly)=1,yx and P(g-f)=Pg-Pf, this clearly defines a functor
2 . Set— Set.

Functors were first explicitly recognized in algebraic topology,
where they arise naturally when geometric properties are described by
means of algebraic invariants. For example, singular homology in a
given dimension n (1 a natural number) assigns to each topological space
X an abelian group H,(X), the n-th homology group of X, and also to
each continuous map f: X — Y of spaces a corresponding homomorphism
H,(f): H,(X)— H,(Y) of groups, and this in such a way that H, becomes
a functor Top— Ab. For example, if X = Y = S" is the circle, H,(S')=Z,
so the group homomorphism H, (f) : Z—Z is determined by an integer d
(the image of 1); this integer is the usual “degree” of the continuous
map f: §*— S, In this case and in general, homotopic maps f,g: X—Y
yield the same homomorphism H,(X)— H,(Y), so H, can actually be
regarded as a functor Toph— Grp, defined on the homotopy category.
The Eilenberg-Steenrod axioms for homology start with the axioms that
H,, for each natural number #, is a functor on Toph, and continue with
certain additional properties of these functors. The more recently
developed extraordinary homology and cohomology theories are also
functors on. Toph. The homotopy groups =,(X) of a space X can also
be regarded as functors; since they depend on the choice of a base point
in X, they are functors Top, — Grp. The leading idea in the use of functors
in topology is that H, or &, gives an algebraic picture or image not just
of the topological spaces, but also of all the continuous maps between
them.
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Functors arise naturally in algebra. To any commutative ring K
the set of all non-singular n x n matrices with entries in K is the usual
general linear group GL,(K); moreover, each homomorphism f: K—K’
of rings produces in the evident way a homomorphism GL, f': GL,(K)
—GL,(K") of groups. These data define for each natural number n a
functor GL,: CRng— Grp. For any group G the set of all products
of commutators xyx~!y~!(x, ye G) is a normal subgroup [G, G] of G,
called the commutator subgroup. Since any homomorphism G— H
of groups carries commutators to commutators, the assignment
G [G, G] defines an evident functor Grp— Grp, while G+ G/[G, G]
defines a functor Grp— Ab, the factor-commutator functor. Observe,
however, that the center Z(G) of G (all ae G with ax = xa for all x) does
not naturally define a functor Grp— Grp, because a homomorphism
G— H may carry an element in the center of G to one not in the center of H.

A functor which simply “forgets” some or all of the structure of an
algebraic object is commonly called a forgetful functor (or, an underlying
functor). Thus the forgetful functor U : Grp— Set assigns to each group G
the set UG of its elements (“forgetting” the multiplication and hence the
group structure), and assigns to each morphism f: G— G’ of groups the
same function f, regarded just as a function between sets. The forgetful
functor U : Rng— Ab assigns to each ring R the additive abelian group
of R and to each morphism f: R— R’ of rings the same function, regarded
just as a morphism of addition.

Functors may be composed. Explicitly, given functors

CLBS A
between categories 4, B, and C, the composite functions
c—8(Te)  f=S(T)

on objects ¢ and arrows [ of C define a functor So T: C— A, called the
composite (in that order) of § with T. This composition is associative.
For each category B there is an identity functor I : B— B, which acts as
an identity for this composition. Thus we may consider the metacategory
of all categories: its objects are all categories, its arrows are all functors
with the composition above. Similarly, we may form the category
Cat of all small categories — but not the category of all categories.

An isomorphism T:C— B of categories is a functor T from C to B
which is a bijection, both on objects and on arrows. Alternatively, but
equivalently, a functor T: C— B is an isomorphism if and only if there
is a functor §: B—C for which both composites ST and T-§ are
identity functors; then S is the two-sided inverse S=T '

Certain properties much weaker than isomorphism will be useful.

A functor T:C—B is full when to every pair ¢, ¢’ of objects of C
and to every arrow g: Tc— T¢" of B, there is an arrow f:c—c¢ of C
with g = T f. Clearly the composite of two full functors is a full functor.
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A functor T: C— B is faithful (or an embedding) when to every pair
¢, ¢ of objects of C and to every pair f;, f,:c—c of parallel arrows of
Ctheequality Tf, = Tf, : Tc — T¢ implies f; = f,. Again, composites of
faithful functors are faithful. For example, the forgetful functor Grp—Set
is faithful but not full and not a bijection on objects. .

These two properties may be visualized in terms of hom-sets (see (2.5)).
Given a pair of objects ¢, ¢’ € C, the arrow function of T': C— B assigns
to each f:c—c an arrow Tf:Tc—Tc¢ and so defines a function

T, .:hom(c, ¢)—hom(Tc, Tc¢'), frTf.

Then T is full when every such function is surjective, and faithful when
every such function is injective. For a functor which is both full and
faithful, every such function is a bijection, but this need not mean that
the functor itself is an isomorphism of categories, for there may be objects
of B not in the image of T.

A subcategory S of a category C is a collection of some of the objects
and some of the arrows of C, which includes with each arrow f both the
object dom fand the object cod f, with each object s its identity arrow
1, and with each pair of composable arrows s—s'—s” their composite.
These conditions insure that these collections of objects and
arrows themselves constitute a category S. Moreover, the injection
(inclusion) map §— C which sends each object and each arrow of S to
itself (in C) is a functor, the inclusion functor. This inclusion functor is
automatically faithful. We say that S is a full subcategory of C when the
inclusion functor S—C is full. A full subcategory, given C, is thus
determined by giving just the set of its objects, since the arrows between
any two of these objects s, s’ are all morphisms s— s’ in C. For example,
the category Set of all finite sets is a full subcategory of the category Set.

Exercises

1. Show how each of the following constructions can be regarded as a functor:
The field of quotients of an integral domain; the Lie algebra of a Lie group.

2. Show that functors 1—C, 2—C, and 3— C correspond respectively to objects,
arrows, and composable pairs of arrows in C.

3. Interpret “functor” in the following special types of categories: (a) A functor
between two preorders is a function T which is monotonic (i.e., p < p’ implies
Tp = Tp').(b) A functor between two groups (one-object categories)is a morphism
of groups. (c) If G is a group, a functor G—Set is a permutation representation
of G, while G—Matry is a matrix representation of G.

4. Prove that there is no functor Grp— Ab sending each group G to its center
(ConsiderS,—S;—S,, the symmetric groups).

5. Find two different functors T: Grp— Grp with object function T(G)=G the
identity for every group G.
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sets (in some universe U). Every ordinal n={0,1,...,n— 1} is a finite
set, so the inclusion S is a functor S : Finord—Set,. On the other hand,
each finite set X determines an ordinal number n= # X, the number of
elements in X; we may choose for each X a bijection 0y : X — # X. For
any function f : X — Y between finite sets we may then define a correspond-
ing function # f: # X — # Y between ordinals by # f=0y f8%"; this
insures that the diagram

X—% ,ax

lf J#f

Yﬂ_ﬂv_,#y

will commute, and makes # a functor # :Set,— Finord. If X is itself
an ordinal number, we may take 6 to be the identity. This insures that
the composite functor # - S is the identity functor I’ of Finord. On the
other hand, the composite S > # is not the identity functor I : Set,— Set ,
because it sends each finite set X to a special finite set— the ordinal number
n with the same number of elements as X. However, the square diagram
above does show that 0:1--S # is a natural isomorphism. All told we
have I=Sc#, I'=4-8§.

More generally, an equivalence between categories C and D is defined
to be a pair of functors S: C—D, T: D—C together with natural iso-
morphisms I, T- S, I =S~ T. This example shows that this notion
(to be examined in §IV.4) allows us to compare categories which are
“alike” but of very different “sizes”.

We shall use many other examples of naturality. As Eilenberg-
Mac Lane first observed, “category” has been defined in order to define
“functor” and “functor” has been defined in order to define “natural
transformation”.

Exercises

1. Let S be a fixed set, and X the set of all functions h: S— X. Show that X — X3
is the object function of a functor Set—Set, and that evaluation ey : X5 x §—= X,
defined by e(h, s) = h(s), the value of the function h at s S, is a natural trans-
formation.

2. If H is a fixed group, show that G H x G defines a functor H x — : Grp— Grp,
and that each morphism f : H— K of groups defines a natural transformation
Hx —=Kx—,

3. If B and C are groups (regarded as categories with one object each) and
S, T:B—C are functors (homomorphisms of groups), show that there is a
natural transformation S—=T if and only if § and T are conjugate; i.e., if and
only if there is an element he C with Tg=h(Sg)h~* for all ge B.
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4. For functors S, T: C— P where C is a category and P a preorder, show that
there is a natural transformation S-= T (which is then unique) if and only if
Sc < Tc for every object ce C.

5. Show that every natural transformation t : - T defines a function (also called 1)
which sends each arrow f:c—¢ of C to an arrow tf:Sc—T¢ of B in such-a
way that Tg- f=1(gf)=1g-Sf for each composable pair {g, f>. Conversely,
show that every such function 7 comes from a unique natural transformation
with 7.=1(1,). (This gives an “arrows only” description of a natural transfor-
mation.)

6. Let F be a field. Show that the category of all finite-dimensional vector spaces
over F (with morphisms all linear transformations) is equivalent to the category
Matr, described in § 2.

5. Monics, Epis, and Zeros

In categorical treatments many properties ordinarily formulated by
means of elements (elements of a set or of a group) are instead formulated
in terms of arrows. For example instead of saying that a set X has just
one element, one can say that for any other set Y there is exactly one
function Y— X. We now formulate a few more instances of such methods
of “doing without elements”.

An arrow e:a—b is invertible in C if there is an arrow ¢ :b—a
in C with ¢'e=1, and ee’=1,. If such an ¢’ exists, it is unique, and is
written as ¢ = e~ !. By the usual proof, (e; e,) ! =e; 'e; !, provided the
composite e, e, is defined and both e, and e, are invertible. Two objects
a and b are isomorphic in the category C if there is an invertible arrow
(an isomorphism) e :a—b; we write a=b. The relation of isomorphism
is manifestly reflexive, symmetric, and transitive.

An arrow m:a—sb is monic in C when for any two parallel arrows
f1» f2:d—a the equality mo f; =mo f, implies f; = f,; in other words,
m is monic if it can always be cancelled on the left (is left cancellable).
In Set and in Grp the monic arrows are precisely the injections (mono-
morphisms) in the usual sense; i.e., the functions which are one-one into.

An arrow h:a—b is epi in C when for any two arrows g,, g, : b—c
the equality g, - h = g, o himplies g, = g,; in other words, h is epi when it is
right cancellable. In Set the epi arrows are precisely the surjections
(epimorphisms) in the usual sense; i.e., the functions onto.

For an arrow h:a—b, a right inverse is an arrow r:b—a with
hr=1,. A right inverse (which is usually not unique) is also called a
section of h. If h has a right inverse, it is evidently epi; the converse holds
in Set, but fails in Grp. Similarly, a left inverse for h is called a retraction
for h, and any arrow with a left inverse is necessarily monic. If gh=1,,
then g is a split epi, h a split monic, and the composite f = hg is defined
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