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1

CATEGORIES

1.1 Introduction

What is category theory? As a first approximation, one could say that category
theory is the mathematical study of (abstract) algebras of functions. Just as
group theory is the abstraction of the idea of a system of permutations of a set
or symmetries of a geometric object, category theory arises from the idea of a
system of functions among some objects.

We think of the composition g o f as a sort of “product” of the functions f
and g, and consider abstract “algebras”™ of the sort arising from collections of
functions. A category is just such an “algebra,” consisting of objects A, B,C, ...
and arrows f : A — B, g : B — C,..., that are closed under composition
and satisfy certain conditions typical of the composition of functions. A precise
definition is given later in this chapter.

A branch of abstract algebra, category theory was invented in the tradition
of Felix Klein's Erlanger Programm, as a way of studying and characterizing
different kinds of mathematical structures in terms of their “admissible trans-
formations.” The general notion of a category provides a characterization of the
notion of a “structure-preserving transformation,” and thereby of a species of
structures admitting such transformations.

The historical development of the subject has been, very roughly, as follows:

1945 Eilenberg and Mac Lane’s “General theory of natural equivalences” was
the original paper, in which the theory was first formulated.

Late 1940s The main applications were originally in the fields of algebraic
topology, particularly homology theory, and abstract algebra.
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1950s A. Grothendieck et al. began using category theory with great success in
algebraic geometry.

1960s F.W. Lawvere and others began applying categories to logic, revealing
some deep and surprising connections.

1970s Applications were already appearing in computer science, linguistics,
cognitive science, philosophy, and many other areas.

One very striking thing about the field is that it has such wide-ranging appli-
cations. In fact, it turns out to be a kind of universal mathematical language like
set theory. As a result of these various applications, category theory also tends
to reveal certain connections between different fields—Ilike logic and geometry.
For example, the important notion of an adjoint functor occurs in logic as the
existential quantifier and in topology as the image operation along a continuous
function. From a categorical point of view, these turn out to be essentially the
same operation.

The concept of adjoint functor is in fact one of the main things that the reader
should take away from the study of this book. It is a strictly category-theoretical
notion that has turned out to be a conceptual tool of the first magnitude—on
par with the idea of a continuous function.

In fact, just as the idea of a topological space arose in connection with con-
tinuous functions, so also the notion of a category arose in order to define
that of a functor, at least according to one of the inventors. The notion of a
functor arose—so the story goes on—in order to define natural transformati-
ons. One might as well continue that natural transformations serve to define
adjoints:

Category
Functor
Natural transformation

Adjunction

Indeed, that gives a good outline of this book.

Before getting down to business, let us ask why it should be that category
theory has such far-reaching applications. Well, we said that it is the abstract
theory of functions, so the answer is simply this:

FPunctions are everywhere!

And everywhere that functions are, there are categories. Indeed, the subject
might better have been called abstract function theory, or, perhaps even better:
archery.
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1.2 Functions of sets

We begin by considering functions between sets. I am not going to say here what
a function is, anymore than what a set is. Instead, we will assume a working
knowledge of these terms. They can in fact be defined using category theory, but
that is not our purpose here.

Let f be a function from a set A to another set B, we write

f:A— B.

To be explicit, this means that f is defined on all of A and all the values of f
are in B. In set theoretic terms,

range(f) C B.
Now suppose we also have a function g: B — C|

i

A B

g f '

C
then there is a composite function go f: A — C, given by
(9o f)a) = g(f(a)) ac A (1.1)

Now this operation “o” of composition of functions is associative, as follows. If
we have a further function h: C' — D

A / B
hog
gof !
% = D

and form ho g and go f, then we can compare (ho g)o f and ho(go f) as
indicated in the diagram given above. It turns out that these two functions are
always identical,

(hog)of=ho(gof)
since for any a € A, we have
((heg)e f)(a) = h(g(f(a))) = (he(ge f))(a)
using (1.1).
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By the way, this is, of course, what it means for two functions to be equal:
for every argument, they have the same value.
Finally, note that every set A has an identity function

14:A— A
given by
14(a) = a.

These identity functions act as “units” for the operation o of composition, in
the sense of abstract algebra. That is to say,

fola=f=1pef
for any f: A — B.
A L4
lpof
Jfoly
B I B

These are all the properties of set functions that we want to consider for the
abstract notion of function: composition and identities. Thus, we now want to
“abstract away” evervthing else, so to speak. That is what is accomplished by
the following definition.

1.3 Definition of a category

Definition 1.1. A category consists of the following data:

e Objects: A,B,C, ...
o Arrows: f,q,h,...

e Lor each arrow f, there are given objects
dom(f), cod(f)
called the domain and codomain of f. We write
f:A—B

to indicate that A = dom(f) and B = cod(f).
e Given arrows f: A — B and g : B — C, that is, with

cod(f) = dom(g)
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there is given an arrow
gof:A—-C

called the composite of f and g.

e For each object A, there is given an arrow
1y:A— A

called the identity arrow of A.
These data are required to satisfy the following laws:
o Associativity:

ho(gof)=(hog)of
forall f:A—-B,g:B—C,h:C— D.
e Unit:

fola=f=1pof
for all f: A— B.

A category is anything that satisfies this definition—and we will have plenty of
examples very soon. For now I want to emphasize that, unlike in Section 1.2, the
objects do not have to be sets and the arrows need not be functions. In this sense,
a category is an abstract algebra of functions, or “arrows” (sometimes also called
“morphisms” ), with the composition operation “o” as primitive. If you are familiar
with groups, you may think of a category as a sort of generalized group.

1.4 Examples of categories

1. We have already encountered the category Sets of sets and functions.
There is also the category

Setsgan

of all finite sets and functions between them.

Indeed, there are many categories like this, given by restricting the sets
that are to be the objects and the functions that are to be the arrows. For
example, take finite sets as objects and injective (i.e., “1 to 17) func-
tions as arrows. Since injective functions compose to give an injective
function, and since the identity functions are injective, this also gives
a category.

What if we take sets as objects and as arrows, those f : A — B such
that for all b € B, the subset

fflyycA
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has at most two elements (rather than one)? Is this still a category? What
if we take the functions such that f~!(b) is finite? infinite? There are lots
of such restricted categories of sets and functions.

. Another kind of example one often sees in mathematics is categories of
structured sets, that is, sets with some further “structure” and functions
that “preserveit,” where these notions are determined in some independent
way. Examples of this kind you may be familiar with are

e groups and group homomorphisms,

e vector spaces and linear mappings,

e graphs and graph homomorphisms,

e the real numbers R and continuous functions R — R,

open subsets U C R and continuous functions f: U — V C R defined
on them,

topological spaces and continuous mappings,

L]

o differentiable manifolds and smooth mappings,

e the natural numbers N and all recursive functions N — N, or as in
the example of continuous functions, one can take partial recursive
functions defined on subsets U C N,

e posets and monotone functions.
Do not worry if some of these examples are unfamiliar to you. Later on,

we take a closer look at some of them. For now, let us just consider the
last of the above examples in more detail.

. A partially ordered set or poset is a set A equipped with a binary relation
a < A b such that the following conditions hold for all a,b,c € A:

reflexivity: a <, a,
transitivity: if a <4 band b <4 ¢, then a <4 ¢,
antisymmetry: if a <4 b and b <4 a, then a = b.
For example, the real numbers R with their usual ordering « < y form a

poset that is also linearly ordered: either z < y or y < x for any =, .
An arrow from a poset A to a poset B is a function

m:A— B
that is monotone, in the sense that, for all a,ad’ € A,
a<,ad implies m(a) < m(a').

What does it take for this to be a category? We need to know that 14 :
A — A is monotone, but that is clear since a <4 @' implies a <4 o'
We also need to know that if f: A — B and ¢ : B — C are monotone,
then go f : A — € is monotone. This also holds, since a < o' implies
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f(a) < f(a') implies g(f(a)) < g(f(a’)) implies (g0 f)(a) < (go f)(d).

Therefore, we have the category Pos of posets and monotone functions.

. The categories that we have been considering so far are examples of what
are sometimes called concrete categories. Informally, these are categories in
which the objects are sets, possibly equipped with some structure, and the
arrows are certain, possibly structure-preserving, functions (we shall see
later on that this notion is not entirely coherent; see remark 1.7). But in
fact, one way of understanding what category theory is all about is “doing
without elements,” and replacing them by arrows instead. Let us now take
a look at some examples where this point of view is not just optional, but
essential.

Let Rel be the following category: take sets as objects and take binary
relations as arrows. That is, an arrow f : A — B is an arbitrary subset
f € A x B, The identity arrow on a set A is the identity relation,

lp={(a,a) e AxAlac A} C Ax A.
Given RC A x B and S C B x (, define composition S o R by
(a,c)e So R iff 3b. (a,b) € R & (bc) €S

that is, the “relative product” of S and R. We leave it as an exercise to
show that Rel is in fact a category. (What needs to be done?)

For another example of a category in which the arrows are not “func-
tions,” let the objects be finite sets A, B,C and an arrow F : A — B is
a rectangular matrix F = (n;)i<a,j<p of natural numbers with a = [A]
and b = |B|, where |C| is the number of elements in a set C'. The com-
position of arrows is by the usual matrix multiplication, and the identity
arrows are the usual unit matrices. The objects here are serving simply to
ensure that the matrix multiplication is defined, but the matrices are not
functions between them.

. Finite categories
Of course, the objects of a category do not have to be sets, either. Here
are some very simple examples:

e The category 1 looks like this:

*

It has one object and its identity arrow, which we do not draw.

o The category 2 looks like this:

* —> Kk

It has two objects, their required identity arrows, and exactly one
arrow between the objects.



CATEGORY THEORY

e The category 3 looks like this:

¥ ——————— %

[ ]
It has three objects, their required identity arrows, exactly one arrow
from the first to the second object, exactly one arrow from the second
to the third object, and exactly one arrow from the first to the third
object (which is therefore the composite of the other two).

e The category 0 looks like this:

It has no objects or arrows.

As above, we omit the identity arrows in drawing categories from
Now on.

It is easy to specify finite categories—just take some objects and start
putting arrows between them, but make sure to put in the necessary iden-
tities and composites, as required by the axioms for a category. Also, if
there are any loops, then they need to be cut off by equations to keep the
category finite. For example, consider the following specification:

f
AL B
g

Unless we stipulate an equation like gf = 1 4, we will end up with infinitely
many arrows gf, gfof, gfgfgf, .... This is still a category, of course, but
it is not a finite category. We come back to this situation when we discuss
free categories later in this chapter.

. One important slogan of category theory is

It’s the arrows that really matter!

Therefore, we should also look at the arrows or “mappings” between
categories. A “homomorphism of categories” is called a functor.

Definition 1.2. A functor
F.C—-D

between categories C and D is a mapping of objects to objects and arrows
to arrows, in such a way that

(a) F(f: A— B)=F(f): F(A) — F(B),
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(b) F(14) = 1ra),
(c) Fgo f) = F(g)o F(f).
That is, F' preserves domains and codomains, identity arrows, and com-

postion. A functor F' : C — D thus gives a sort of “picture”—perhaps
distorted—of C in D.

BN
s

F(B)

FQOH

Now, one can easily see that functors compose in the expected way, and
that every category C has an identity functor 1¢ : C — C. So we have
another example of a category, namely Cat, the category of all categories
and functors.

. A preorder is a set P equipped with a binary relation p < g that is both
reflexive and transitive: @ < a, and if a < b and b < ¢, then @ < ¢. Any
preorder P can be regarded as a category by taking the objects to be the
elements of P and taking a unique arrow,

a—b ifandonlyif a<b. (1.2)

The reflexive and transitive conditions on < ensure that this is indeed a
category.

Going in the other direction, any category with at most one arrow bet-
ween any two objects determines a preorder, simply by defining a binary
relation < on the objects by (1.2).

. A poset is evidently a preorder satisfying the additional condition of anti-
symmetry: if a < b and b < a, then a = b. So, in particular, a poset is
also a category. Such poset categories are very common; for example, for
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any set X, the powerset P(X) is a poset under the usual inclusion relation
U C V between the subsets U, V of X.

What is a functor F' : P — @ between poset categories P and Q7 It
must satisfy the identity and composition laws. ... Clearly, these are just
the monotone functions already considered above.

It is often useful to think of a category as a kind of generalized poset,
one with “more structure” than just p < ¢. Thus, one can also think of a
functor as a generalized monotone map.

. An example from topology: Let X be a topological space with collection of

open sets O(X). Ordered by inclusion, O (X) is a poset category. Moreover,
the points of X can be preordered by specialization by setting x < y iff
z € U implies y € U for every open set U, that is, y is contained in
every open set that contains . If X is sufficiently separated (“T3”), then
this ordering becomes trivial, but it can be quite interesting otherwise, as
happens in the spaces of algebraic geometry and denotational semantics.
It is an exercise to show that T spaces are actually posets under the
specialization ordering.

An example from logic: Given a deductive system of logic, there is an
associated category of proofs, in which the objects are formulas:

0,0, ...

An arrow from ¢ to ¥ is a deduction of ¥ from the (uncanceled)
assumption .

h

Composition of arrows is given by putting together such deductions in the
obvious way, which is clearly associative. (What should the identity arrows
1, be?) Observe that there can be many different arrows

Py —
since there may be many different such proofs. This category turns out to

have a very rich structure, which we consider later in connection with the
A-calculus.

An example from computer science: Given a functional programming lan-
guage L, there is an associated category, where the objects are the data
types of L, and the arrows are the computable functions of L (“proces-
ses,” “procedures,” “programs”). The composition of two such programs

N

X 4 Y % Z is given by applying g to the output of f, sometimes also
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written as

gof=rig
The identity is the “do nothing” program.

Categories such as this are basic to the idea of denotational semantics of
programming languages. For example, if C(L) is the category just defined,
then the denotational semantics of the language L in a category D of, say,
Scott domains is simply a functor

5:C(L)—» D

since S assigns domains to the types of L and continuous functions to
the programs. Both this example and the previous one are related to the
notion of “cartesian closed category” that is considered later.

Let X be a set. We can regard X as a category Dis(X) by taking the
objects to be the elements of X and taking the arrows to be just the
required identity arrows, one for each x € X. Such categories, in which
the only arrows are identities, are called discrete. Note that discrete
categories are just very special posets.

A monoid (sometimes called a semigroup with unit) is a set M equipped
with a binary operation - : M x M — M and a distinguished “unit”
element u € M such that for all x,y, z € M,

z(y-2)=(z-y) 2
and
U-T=T=2T- U.

Equivalently, a monoid is a category with just one object. The arrows of
the category are the elements of the monoid. In particular, the identity
arrow is the unit element u. Composition of arrows is the binary operation
m - n of the monoid.

Monoids are very common. There are the monoids of numbers like N,
@, or R with addition and 0, or multiplication and 1. But also for any set
X, the set of functions from X to X, written as

Homgets (X, X)

is a monoid under the operation of composition. More generally, for any
object C in any category C, the set of arrows from C' to ', written as
Home(C, C), is a monoid under the composition operation of C.

Since monoids are structured sets, there is a category Mon whose
objects are monoids and whose arrows are functions that preserve the
monoid structure. In detail, a homomorphism from a monoid M to a
monoid N is a function A : M — N such that for all m,n € M,

h(m -ar ) = h(m) - h(n)
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and
h(’-’.tM') = Uy.

Observe that a monoid homomorphism from M to N is the same thing
as a functor from M regarded as a category to N regarded as a category.
In this sense, categories are also generalized monoids, and functors are
generalized homomorphisms.

1.5 Isomorphisms

Definition 1.3. In any category C, an arrow f : A — B is called an
isomorphism, if there is an arrow g : B — A in C such that

gof=1a and fog=l1p.

Since inverses are unique (proof!), we write g = f . We say that A is isomorphic
to B, written A = B3, if there exists an isomorphism between them.

The definition of isomorphism is our first example of an abstract, category theo-
retic definition of an important notion. It is abstract in the sense that it makes
use only of the category theoretic notions, rather than some additional infor-
mation about the objects and arrows. It has the advantage over other possible
definitions that it applies in any category. For example, one sometimes defi-
nes an isomorphism of sets (monoids, etc.) as a bijective function (respectively,
homomorphism), that is, one that is “1-1 and onto” —making use of the ele-
ments of the objects. This is equivalent to our definition in some cases, such
as sets and monoids. But note that, for example in Pos, the category theore-
tic definition gives the right notion, while there are “hijective homomorphisms”
between non-isomorphic posets. Moreover, in many cases only the abstract defi-
nition makes sense, as for example, in the case of a monoid regarded as a
category.

Definition 1.4. A group G is a monoid with an inverse ¢! for every element g.
Thus, G is a category with one object, in which every arrow is an isomorphism.

The natural numbers N do not form a group under either addition or multi-
plication, but the integers Z and the positive rationals QT, respectively, do. For
any set X, we have the group Aut(X) of automorphisms (or “permutations”) of
X, that is, isomorphisms [ : X — X. (Why is this closed under “o”7) A group
of permutations is a subgroup G C Aut(X) for some set X, that is, a group of
(some) automorphisms of X. Thus, the set G must satisfy the following:

1. The identity function 1x on X is in G.
2. Ifg,¢' € G, thengo ¢’ € G.
3.Ifge G, then g € G.
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A homomorphism of groups h : G — H is just a homomorphism of monoids,
which then necessarily also preserves the inverses (proof!).
Now consider the following basic, classical result about abstract groups.

Theorem (Cayley). Every group G is isomorphic to a group of permutations.

Proof. (sketch)

1. First, define the Cayley representation G of G to he the following group of
permutations of a set: the set is just G itself, and for each element g € G,
we have the permutation g : G — G, defined for all h € G by “acting on
the left”:

g(h) =g-h.

This is indeed a permutation, since it has the action of g~ !

as an inverse.

2. Next define homomorphisms i : G — G by i(g) = g, and j : G — G by
3(@) = g(u).

3. Finally, show that ioj = 15 and joi = 1.

[

Warning 1.5. Note the two different levels of isomorphisms that occur in the
proof of Cayley’s theorem. There are permutations of the set of elements of G,
which are isomorphisms in Sets, and there is the isomorphism between G and
G, which is in the category Groups of groups and group homomorphisms.

Cayley’s theorem says that any abstract group can be represented as a “con-
crete” one, that is, a group of permutations of a set. The theorem can in fact be
generalized to show that any category that is not “too big” can be represented
as one that is “concrete,” that is, a category of sets and functions. (There is a
technical sense of not being “too big” which is introduced in Section 1.8.)

Theorem 1.6. Every category C with a sel of arrows is isomorphic to one in
which the objects are sets and the arrows are functions.

Proof. (sketch) Define the Cayley representation C of C to be the following
concrete category:

e objects are sets of the form
C={feC| cod(f) =C}
for all C € C,

e arrows are functions
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for g: C — D in C, defined for any f: X — Cin C by g(f) = go f.
X

gof

C D

q O
Remark 1.7. This shows us what is wrong with the naive notion of a “concrete”
category of sets and functions: while not every category has special sets and
functions as its objects and arrows, every category is isomorphic to such a one.
Thus, the only special properties such categories can possess are ones that are
categorically irrelevant, such as features of the objects that do not affect the
arrows in any way (like the difference between the real numbers constructed
as Dedekind cuts or as Cauchy sequences). A better attempt to capture what
is intended by the rather vague idea of a “concrete” category is that arbitrary
arrows [ : C' — D are completely determined by their composites with arrows
xz: T — C from some “test object” T, in the sense that fx = gz for all such
x implies f = g. As we shall see later, this amounts to considering a particular
representation of the category, determined by T. A category is then said to be
“concrete” when this condition holds for T" a “terminal object,” in the sense of
Section 2.2; but there are also good reasons for considering other objects T', as
we see Chapter 2.

Note that the condition that C has a set of arrows is needed to ensure that
the collections {f € C | cod(f) = C} really are sets—we return to this point in
Section 1.8.

1.6 Constructions on categories
Now that we have a stock of categories to work with, we can consider some
constructions that produce new categories from old.
1. The product of two categories C and D, written as
CxD
has objects of the form (C, D), for C € C and D € D, and arrows of the

form
(f,9):(C,D)—(C', D)

for f:C —- C" € Cand g: D — D' € D. Composition and units are
defined componentwise, that is,

(f'.g')o(f,9) = (f'of.g og)
lc,p) = (1, 1p).
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There are two obvious projection functors

T w2

C « CxD D

defined by 71 (C, D) = C and 7 (f, g) = f, and similarly for 7.
The reader familiar with groups will recognize that for groups G and H,
the product category G x H is the usual (direct) product of groups.

. The opposite (or “dual”) category C°P of a category C has the same objects
as C, and an arrow f: C — D in C°P ig an arrow f: D — C in C. That
is, C°P is just C with all of the arrows formally turned around.

It is convenient to have a notation to distinguish an object (resp. arrow)
in C from the same one in C°P. Thus, let us write

ff:D* = cC"

in C°F for f:C — D in C. With this notation, we can define composition
and units in C°P in terms of the corresponding operations in C, namely,

ler = (1g)"
ffog"=1(gof)".

Thus, a diagram in C

A / B
gof !
C
looks like this in C°P
*
A* f B*
¥,
*
[fog !
C*

Many “duality” theorems of mathematics express the fact that one category
is (a subcategory of) the opposite of another. An example of this sort which
we prove later is that Sets is dual to the category of complete, atomic
Boolean algebras.

. The arrow category C— of a category C has the arrows of C as objects,
and an arrow g from f: A — Bto f : A — B'in C7 is a “commutative
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square”

g1

A A
] I
B B

g2

where g; and g» are arrows in C. That is, such an arrow is a pair of arrows
g = (g1, 92) in C such that

grof=foag.

The identity arrow 1; on an object f : A — B is the pair (14,1p).
Composition of arrows is done componentwise:

(h1,h2) o (g1,92) = (h1 0 g1, he 0 go)

The reader should verify that this works out by drawing the appropriate
commutative diagram.
Observe that there are two functors:

dom cod

C c— C

4. The slice category C/C of a category C over an object C' € C has

¢ Objects: all arrows f € C such that cod(f) = C,
e Arrows: an arrow a from f : X — C to f/ : X! — C is an arrow
a: X — X' in C such that f'oa = f, as indicated in

X 4 X’

¥

C

The identity arrows and composites are inherited from those of C, just as in
the arrow category. Note that there is a functor U : C/C — C that “forgets
about the base object C.”

If g : C — D is any arrow, then there is a composition functor,

g.:C/C — C/D
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defined by g.(f) = go f.
X

D

and similarly for arrows in C/C. Indeed, the whole construction is a functor,
C/(-):C — Cat

as the reader can easily verify. Compared to the Cayley representation,
this functor gives a “representation” of C as a category of categories and
functors—rather than sets and fuctions. Of course, the Cayley representa-
tion was just this one followed by the forgetful functor U : Cat — Sets
that takes a category to its underlying set of objects.

If C = P is a poset category and p € P, then

P/p= | (p)

the slice category P/p is just the “principal ideal” | (p) of elements g € P
with ¢ < p. We will have more examples of slice categories soon.

The coslice category C'/C of a category C under an object C' of C has
as objects all arrows f of C such that dom(f) = C, and an arrow from
f:C—=Xtof :C— X'isan arrow h: X — X' such that ho f = f'.
The reader should now carry out the rest of the definition of the coslice
category by analogy with the definition of the slice category. How can the
coslice category he defined in terms of the slice category and the opposite
construction?

FEzample 1.8. The category Sets. of pointed sets consists of sets A with a distin-
guished element a € A, and arrows f: (A,a) — (B.b) are functions f: A — B
that preserves the “points,” f(a) = b. This is isomorphic to the coslice category,

Sets, = 1/Sets

of Sets “under” any singleton 1 = {*}. Indeed, functions a : 1 — A correspond
uniquely to elements, a(x) = a € A, and arrows f : (4,a) — (B.b) correspond
exactly to commutative triangles:

1
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1.7 Free categories

Free momnoid. Start with an “alphabet” A of “letters” a, b, c, ..., that is, a set,
A={abc...}.
A word over A is a finite sequence of letters:
thisword, categoriesarefun, asddjbnzzfj, ...

We write “-” for the empty word. The “Kleene closure” of A is defined to be
the set

A" = {words over A}.

[{3%.

Define a binary operation “x” on A* by w x w' = ww’ for words w,w’ € A*.

Thus, “x” is just concalenation. The operation “x” is thus associative, and the
empty word “-” is a unit. Thus, A* is a monoid—called the free monoid on
the set A. The elements a € A can be regarded as words of length one, so we

have a function
it A— A*

defined by i(a) = a, and called the “insertion of generators.” The elements of A
“oenerate” the free monoid, in the sense that every w € A* is a x-product of a’s,
that is, w = ay % aq * -+ - % a,, for some ay, ay, ..., a, in A.

Now what does “free” mean here? Any guesses? One sometimes sees
definitions in “baby algebra” books along the following lines:

A monoid M is freely generated by a subset A of M, if the following conditions
hold:

1. Every element m € M can be written as a product of elements of A:
m=4ai M ... "M Qn , aiEA,

2. No “nontrivial” relations hold in M, that is, if a;...a; = @} ...a}, then
this is required by the axioms for monoids.

The first condition is sometimes called “no junk,” while the second condition is
sometimes called “no noise.” Thus, the free monoid on A is a monoid containing
A and having no junk and no noise. What do you think of this definition of a
free monoid?

I would object to the reference in the second condition to “provability,” or
something. This must be made more precise for this to succeed as a definition. In
category theory, we give a precise definition of “free” —capturing what is meant
in the above—which avoids such vagueness.

First, every monoid N has an underlying set ||, and every monoid homo-
morphism f: N — M has an underlying function |f| : |[N| — |M|. It is easy to
see that this is a functor, called the “forgetful functor.” The free monoid M (A)
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on a set A is by definition “the” monoid with the following so called universal
mapping property or UMP!

Universal Mapping Property of M(A)

There is a function i : A — |M(A)[, and given any monoid N and any function
f: A — |N|, there is a unique monoid homomorphism f : M(A) — N such that
|floi= f, all as indicated in the following diagram:

in Mon:
f
A,[(A) .............. » N
in Sets:
() UL, |
4 f
A

Proposition 1.9. A* has the UMP of the free monoid on A.
Proof. Given f: A — |N|, define f: A* — N by

f(=) =un, the unit of N

1..ai) = fla1) v ..~ flag).
Then, f is clearly a homomorphism with

fla) = f(a) forallac A
If g: A* — N also satisfies g(a) = f(a) for all a € A, then for all a1 ...a; € A*:

glay...a;) = glay *...xa;)
=g(a1) v - g(a)

a1) -~ .-~ f(ag)

a1) ‘N r f(a:)

ap * . *a)

Il
)

I
g
(
I(

CL1 )

So, g = f, as required. [

Think about why the above UMP captures precisely what is meant by “no junk”
and “no noise.” Specifically, the existence part of the UMP captures the vague
notion of “no noise” (because any equation that holds between algebraic combi-
nations of the generators must also hold anywhere they can be mapped to, and
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thus everywhere), while the uniqueness part makes precise the “no junk” idea
(because any extra elements not combined from the generators would be free to
be mapped to different values).

Using the UMP, it is easy to show that the free monoid M(A) is determined
uniquely up to isomorphism, in the following sense.

Proposition 1.10. Given monoids M and N with functions i: A— |M| and
j:A — |N|, each with the UMP of the free monoid on A, there is a (unique)
monoid isomorphism h : M = N such that |h|i = § and |h=t]j = i.

Proof. From j and the UMP of M, we have j : M — N with |j|i = j and from
i and the UMP of N, we have i : N — M with |i|j = i. Composing gives a
homomorphism i o j : M — M such that |io j|i = i. Since 15y : M — M also
has this property, by the uniqueness part of the UMP of M, we have i0j = 1.
Exchanging the roles of M and N shows joi = 1y:

in Mon:

in Sets:

| M| Jl IN| |i] | M|

a

For example, the free monoid on any set with a single element is easily seen to
be isomorphic to the monoid of natural numbers N under addition (the “gene-
rator” is the number 1). Thus, as a monoid, N is uniquely determined up to
isomorphism by the UMP of free monoids.

Free category. Now, we want to do the same thing for categories in general
(not just monoids). Instead of underlying sets, categories have underlying graphs,
so let us review these first.

A directed graph consists of vertices and edges, each of which is directed, that
is, each edge has a “source” and a “target” vertex.

z

A B




