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Introduction

0.1 Categories

Category Theory originated in an article of Eilenberg and Mac Lane [EiM],
published in 1945. It has now developed into a branch of mathematics, with
its own internal dynamics. Here we want to present its elementary part,
and its strong links with the origins in Algebra and Topology.

Many mathematical theories deal with a certain kind of mathematical
objects, like groups, or ordered sets, or topological spaces, etc. Each kind
has its own privileged mappings, that preserve the structure in some sense,
like homomorphisms of groups, or order-preserving mappings, or continu-
ous mappings.

We have thus the ‘category’ Gp of groups and their homomorphisms,
Ord of ordered sets and monotone mappings, Top of topological spaces and
continuous mappings, and so on. More elementarily, we have the category
Set of sets and their mappings.

In all these instances, the privileged mappings are called morphisms or
arrows of the category; an arrow from the object X to the object Y is
written as f: X — Y.

Two consecutive morphisms, say [: X — Y and g: Y — Z, can be
composed giving a morphism ¢gf: X — Z; this partial composition law is
‘as regular as it can be’, which means that it is associative (when legitimate)
and has a partial identity idX: X — X (written also as 1x) for every
object, which acts as a unit for every legitimate composition.

‘Concrete categories’ are often associated with mathematical structures,
in this way; but we shall see that categories are not limited to these in-
stances, by far.
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0.2 Universal properties

In these categories (and many ‘similar’ ones) we have cartesian products,
constructed by forming the cartesian product of the underlying sets and
putting on it the ‘natural’ structure of the kind we are considering, be it
of algebraic character, or an ordering, or a topology, or something else.

All these procedures can be unified, so that we can better understand
what we are doing: we have a family (X;);e; of objects of a category,
indexed by a set I, and we want to find an object X equipped with a
family of morphisms p;: X — X; (i € I), called cartesian projections,
which satisfies the following universal property:

- for every object ¥ and every family of morphisms f;: Y — X; (i € I) in
the given category

yr =B i

x l (0.1)

X

there exists precisely one morphism f: Y — X such that p;f = f;, for all
el

We shall see that this property determines the solution up to isomor-
phism, i.e. an invertible morphism of the given category. In fact, the proof
is quite easy and some hints can be useful as of now: given two solu-
tions (X, (ps)), (Y, (g:)), we can determine two morphisms f: X — Y and
g: Y — X and prove that their composites coincide with the identities of
X and Y.

(Let us remark, incidentally, that the product topology is much less
obvious than the other product structures we have mentioned; the universal
property tells us that it is indeed the ‘right’ choice.)

These facts bring to light a crucial aspect: a categorical definition (as
the previous one) is based on morphisms and their composition, while the
objects only step in as domains and codomains of arrows. If we want to
understand what unifies the product of a family (X;) of sets, or groups, or
ordered sets, or topological spaces we should forget the nature of the ob-
jects, and think of the family of cartesian projections p;: X — X, together
with the previous property. Then — in each category we are interested in —
we come back to the objects in order to prove that a solution exists (and
also to fix a particular solution, when this can be useful).

From a structural point of view, a category only ‘knows’ its objects by
their morphisms and composition.

This is even more evident if we think of another procedure, which in
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category theory is called a ‘sum’, or ‘coproduct’. We start again from a
family (X,);er of objects; its (categorical) sum is an object X equipped
with a family of morphisms w;: X; — X (¢ € I), called injections, which
satisfies the following universal property:

- for every object Y and every family of morphisms f;: X; =Y (i € I) in
the given category

¥ s ¥
uT / (0.2)

X;

there exists precisely one morphism f: X — Y such that fu; = f;, for all
1€l

Again, the solution is determined up to isomorphism; its existence de-
pends on the category.

The sum of a family of objects is easy to construct in the category Set
of sets, by a disjoint union. We have similar solutions in Ord and Top. But
in Gp the categorical sum of a family of groups is called the free product
of the family; its construction is rather complex, and its underlying set
has little to do with the disjoint union of the sets underlying the groups.
The categorical approach highlights the fact that we are ‘solving the same
problem’ and — finally — makes clear what we are doing.

It is also important to note that the categorical definitions of product
and coproduct are dual to each other: each of them is obtained from the
other by reversing all arrows and compositions. This only makes sense —
in general — within category theory, because the dual of a given category,
formed by reversing its arrows and partial composition law, is a formal
construction: the dual of a category of structured sets and mappings is
not a category of the same kind (even though, in certain cases, it may
essentially be, as a result of some duality theorem).

0.3 Diagrams in a category

In a category the objects and morphisms that we are considering are often
represented by vertices and arrows in a diagram, as above in (0.1) and (0.2),
to make evident their relationship and which compositions are legitimate.

As an important property, satisfied in the previous cases, we say that a
diagram in a category is commutative if:

(i) whenever we have two ‘paths’ of consecutive arrows, from a certain
object to another, the two composed morphisms are the same,
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(ii) whenever we have a ‘loop’ of consecutive arrows, from an object to
itself, then the composed morphism is the identity of that object.

Let us consider some other instances

f
—

-1 ¥

A B
X lg hl \d\ lk Xe=¥ (0.3)

The first diagram above is commutative if and only if gf = h. For the
second, commutativity means that kf = d = gh. For the third, it means
that vu = idX and wv = idY’; let us note that in this case the morphisms
u and v are inverse to each other, and each of them is an isomorphism of
our category.

Formal definitions of these notions, diagrams and commutative diagrams,
will be given in 1.4.9.

0.4 Functors

It becomes now possible to view on the same level, so to say, mathematical
theories of different branches, and formalise their links. A well-behaved
mapping between categories is called a functor.

Among the simplest examples there are the forgetful functors, that forget
the structure (or part of it), like:

Gp — Set, Ord — Set, Top — Set, (0.4)

For instance, U: Gp — Set takes a group G to its underlying set U(G),
and a homomorphism f: G — G’ to its underlying mapping U(f): U(G) —
U(G"). The whole procedure is well-behaved, in the sense that it preserves
composition and identities.

These functors are so obvious that they are often overlooked, in mathe-
matics; but here it will be important to keep trace of them. In particular,
we shall see that they often determine other functors ‘backwards’, which are
much less obvious: like the free-group functor F': Set — Gp, ‘left adjoint’
to U: Gp — Set (of which more will be said below).

In another range of examples, a reader with some knowledge of Algebraic
Topology will know that the core of this discipline is constructing functors
from a category of topological spaces to a category of algebraic structures,
and using them to reduce topological problems to simpler algebraic ones.
We have thus the sequence of singular homology functors, with values in
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the category of abelian groups
H,: Top — Ab (n = 0), (0.5)

and the fundamental group functor 7y : Topes — Gp, defined on the category
of pointed topological spaces and pointed continuous mappings.

0.5 Natural transformations and adjunctions

The third basic element of category theory is a natural transformation
w: F' = G between two functors I, G: C — D with the same domain C
and the same codomain D. We also write ¢: F — G: C — D.

This simply amounts to a family of morphisms of D, indexed by the
objects X of C

px: F(X)— G(X), (0.6)

under a condition of ‘naturality’ which will be made explicit in the text.

Here we just give an example, based on groups and free groups (but
the reader can replace groups with semigroups, or abelian groups, or R-
modules, or any algebraic structure defined by ‘equational axioms’). We
have mentioned in the previous point the forgetful functor U: Gp — Set
and the free-group functor F': Set — Gp, that turns a set X into the free
group generated by X.

The insertion of X in F'(X), as its basis, is a canonical mapping in Set

nx: X = U(F(X)). (0.7)
All of them give a natural transformation
n:id — UF': Set — Set, (0.8)

where id is the identity functor of the category Set (turning objects and
arrows into themselves) and U F': Set — Set is the composed functor (turn-
ing each set into the underlying set of the free group on it). This natural
transformation is essential in linking the functors U, F' and making the
functor F': Set — Gp left adjoint to U: Gp — Set.

The link is represented by the universal property of the insertion of the
basis, namely the fact that every mapping f: X — U(G) with values in a
group (G (more precisely in its underlying set) can be uniquely extended to
a homomorphism ¢: F(X) — G. Formally:

- for every morphism f: X — U(G) in Set, there exists precisely one mor-
phism g: F(X) — G in Gp such that U(g).nx = f.
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One can reformulate this link in an equivalent presentation of the ad-
junction, which may be more familiar to the reader: there is a (natural)
bijective correspondence

exa: Gp(F(X),G) = Set(X,U(Q)),

(0.9)
exc(9) = Ulg)nx,

between the set of group-homomorphisms F(X) — G and the set of map-
pings X — U(G).

We shall see many constructions of free algebraic structures, or more gen-
erally of left (or right) adjoints of given functors (in particular in Chapters
3, 4 and 6). Many of them are ‘real constructions’, which give a good idea
of the backward procedure; others are so complicated that one can doubt
of their constructive character. In such cases, one can prefer to prove the
existence of the adjoint, by the Adjoint Functor Theorem (in Section 3.5)
or some other general statement: then the result is determined up to iso-
morphism, and its universal property allows its use. Much in the same
way as we can define a real function as the solution of a certain differential
equation with initial data, as soon as we know that the solution exists and
is unique.

0.6 A brief outline

The first chapter deals with the basic tools: categories, functors and natural
transformations. Ordered sets can be seen as categories of a special kind;
adjunctions in this particular case are well known, as ‘covariant Galois
connections’; studying them (in Section 1.7) will also serve as an elementary
introduction to general adjunctions.

Chapter 2 introduces the limits in a category (including products and
the classical projective limits) and their dual notion, the colimits (including
sums and the classical inductive limits); universal arrows with respect to a
functor are a general formulation of universal properties (in Section 2.7).

Chapter 3 studies the crucial notion of adjunction: many important con-
structions in mathematics can be described as an adjoint functor of some
obvious functor: from free algebraic structures to Stone-Cech compactifi-
cation, metric completion etc. We also explore the related notion of monad
and its algebras, which investigates when a category can be thought of as
a category of ‘algebras’ over another category, in a very wide sense.

The next three chapters explore applications of category theory in Alge-
bra, Topology and Algebraic Topology, Homological Algebra.

Finally, Chapter 7 is a brief introduction to higher dimensional category
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theory, with some of its applications. The starting point is the fact that
‘small’ categories, functors and natural transformations — with all their
composition laws — form a ‘two-dimensional category’. Another aspect of
the power of category theory is that it is able to ‘study itself’.

0.7 Classes of categories

It is a common feature of Mathematics to look for the natural framework
where certain properties should be studied: for instance, the properties of
ordinary polynomials with real coefficients are usually examined in general
polynomial rings, or in more general algebras. Besides yielding more gen-
eral results, the natural framework gives a deeper comprehension of what
we are studying.

Category theory makes a further step in this sense. For instance, cat-
egories of modules are certainly important, but — since Buchsbaum’s Ap-
pendiz [Bu2] and Grothendieck’s paper [Gt] in the 1950’s — a consistent
part of Homological Algebra finds its natural framework in abelian cate-
gories and their generalisations (see Chapter 6). Similarly, the categories
of structured sets can be viewed as particular concrete categories (defined
in 1.4.8), and the categories of equational algebras as particular monadic
categories (see Sections 3.6 and 4.4).

In other words, when studying certain ‘classes’ of categories, we may
(or perhaps had better) look for a structural definition including this class,
rather than some general way of constructing the important examples we
want to study.

This leads again to considering categories of (small) categories, and to
higher dimensional category theory.

0.8 Owur approach

Notions will be presented in a concrete way, starting from examples taken
from elementary mathematical theories. Then their theory is developed,
with new examples and many exercises; the latter are generally endowed
with a solution, or a partial solution, or suitable hints. Three chapters are
devoted to applications.

We hope that a beginner can get, from these examples and applications,
a concrete grasp of a theory which might risk of being quite abstract.

Many examples and applications are standard. But some of them may
come out as unexpected, and hopefully intriguing, like those devoted to
distributive lattices in 1.2.7, or to chains of adjunctions in 1.7.7 and 3.2.8,
or to networks in 1.8.9.



8 Introduction

The author’s comments on some possibly unclear or controversial points
are expressed:

- in 1.1.5, on the relationship between mathematical structures and cate-
gories,
-in 1.1.6 and 3.6.1, on varieties of algebras and artificial exclusions,

-in 1.5.9, 3.3.7 and 3.6.6, on favouring notions invariant up to categorical
equivalence,

- in the introduction to Chapter 7, on the relationship between (strict and
weak) 2-categories and double categories,

-1in 7.3.3, about the ‘naive view’ of enrichment of a category over a monoidal
category.

The foundational setting we use is based on standard set theory, assum-
ing the existence of Grothendieck universes to formalise some necessary
‘smallness’ conditions. This aspect, presented in 1.1.3, will be mostly left
as understood.

0.9 Literature

For further study of general category theory there are excellent texts, like
Mac Lane [M4], Borceux [Bol, Bo2, Bo3|, Addmek, Herrlich and Strecker
[AHS], Freyd and Scedrov [FrS]. References for higher dimensional category
theory can be found in Chapter 7.

Sheaf categories and toposes, which are not treated here, are presented
in Mac Lane-Moerdijk [MaM] and [Bo3|, with extensive references to more
advanced texts like Johnstone’s [Jo3, Jod]. A peculiar, conceptual intro-
duction to category theory can be found in Lawvere and Schanuel [LwS].

As already warned, the range of applications of category theory is much
wider than what will be seen here, and can be presented in an elementary
text.

For instance, we only explore a few categorical properties of topologi-
cal vector spaces and Banach spaces, for which the reader is referred to
Semadeni’s book [Se]. The applications in Homological Algebra examined
here follow a particular approach, discussed in Chapter 6, where other ap-
proaches are cited. Some old and new applications of categories to the
theory of networks are briefly presented in 1.8.9. Morita equivalence is
only mentioned, in 1.5.6.

We do not examine the deep relationship among category theory, Logic
and theoretical Computer Science, which is explored in texts like Makkai
and Reyes [MkR], Lambek and Scott [LaS], Barr and Wells [BarW], Crole
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[Cr], nor the growing influence of categories and higher dimensional cate-
gories in parts of theoretical Physics, for which one can see Baez and Lauda
[BaLl.

Differential Geometry is studied in a ‘synthetic’ way in Kock [Kol], mak-
ing formal use of infinitesimals. A new book by Bunge, Gago and San Luis
[BunGS] extends this subject to Synthetic Differential Topology. Different
forms of Galois Theory are explored in Borceux and Janelidze [BoJ]. A
categorical view of Set Theory can be found in Lawvere and Rosebrugh
[LwR].

The relationship of category theory with Algebraic Geometry is perhaps
too complex to be simply referred to.

0.10 Notation

The symbol C denotes weak inclusion.

As usual, the symbols N, Z, Q, R, C denote the sets of natural, integral,
rational, real or complex numbers; N* is the subset of the positive integers.
Open and semi-open real intervals are denoted as ]a, b|, [a,b], etc. This
notation, loosely taken from Bourbaki, has the advantage of distinguishing
the interval Ja, b from the pair (a,b).

A singleton set is often written as {*}. The equivalence class of an
element x, with respect to an assigned equivalence relation, is generally
written as [x]. A bullet in a diagram stands for an arbitrary object.

Categories, 2-categories and bicategories are generally denoted as A, B...;
strict or weak double categories as A, B...

A section, subsection or part marked with * deals with some topic out of
the main line of this book, and is often addressed to readers having some
knowledge of the subject.

0.11 Acknowledgements

Many points have been discussed with my colleagues and friends: in par-
ticular with Bob Paré and George Janelidze, during a long collaboration.
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Categories, functors and natural
transformations

Categories were introduced by Eilenberg and Mac Lane [EiM] in 1945,
together with the other basic terms of category theory.

1.1 Categories

We start by considering concrete categories, associated with mathematical
structures. But categories are not restricted to these instances, and the
theory must be developed in a general way.

Given a mathematical discipline, it may not be obvious which category or
categories are best suited for its study. This questionable point is discussed
in 1.1.5, 1.1.6.

1.1.1 Some examples

Loosely speaking, before giving a precise definition, a category C consists of
objects and morphisms together with a (partial) composition law: given two
‘consecutive’ morphisms f: X — Y and ¢g: Y — Z we have a composed
morphism ¢gf: X — Z. This partial operation is associative (whenever
composition is legitimate) and every object X has an identity, written as
idX: X — X or 1x, which acts as a unit for legitimate compositions.
The prime example is the category Set of sets (and mappings), where:
- an object is a set,
- the morphisms f: X — Y between two given sets X and Y are the
(set-theoretical) mappings from X to VY,
- the composition law is the usnal composition of mappings, where (gf)(z)
=g(f(z)).
The following categories of structured sets and structure-preserving map-
pings (with the usual composition) will often be used and analysed:

10
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- the category Top of topological spaces (and continuous mappings),
- the category Hsd of Hausdorff spaces (and continuous mappings),
- the category Gp of groups (and their homomorphisms),

- the category Ab of abelian groups (and homomorphisms),

- the category Mon of monoids, i.e. unitary semigroups (and homomor-
phisms),

- the category Abm of abelian monoids (and homomorphisms),

- the category Rng of rings, understood to be associative and unitary (and
homomorphisms),

- the category CRng of commutative rings (and homomorphisms),

- the category R Mod of left modules on a fixed unitary ring R (and homo-
morphisms),

- the category K Vct ( = K Mod) of vector spaces on a commutative field
K (and homomorphisms),

- the category RAlg of unitary algebras on a fixed commutative unitary ring
R (and homomorphisms),

- the category Ord of ordered sets (and monotone mappings),

- the category pOrd of preordered sets (and monotone mappings),

- the category Set, of pointed sets (and pointed mappings),

- the category Top, of pointed topological spaces (and pointed continuous
mappings),

- the category Ban of Banach spaces and continuous linear mappings.

- the category Ban; of Banach spaces and linear weak contractions (with
norm < 1).

A homomorphism of a ‘unitary structure’, like a monoid or a unitary
ring, is always assumed to preserve units.

For Set, we recall that a pointed set is a pair (X, zo) consisting of a set X
and a base-element o € X, while a pointed mapping f: (X,z¢) — (Y, yo)
is a mapping f: X — Y such that f(zo) = yo.

Similarly, a peinted topological space (X, x) is a space with a base-point,
and a pointed map f: (X,z0) — (Y, o) is a continuous mapping from X
to ¥ such that f(xg) = yo. The reader may know that the category Top,
is important in Algebraic Topology: for instance, the fundamental group
71 (X, xp) is defined for a pointed topological space.

For the categories Ban and Ban; it is understood that we have chosen
etther the real or the complex field; when using both one can write RBan
and CBan.
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When a category is named after its objects alone (e.g. the ‘category of
groups’), this means that the morphisms are understood to be the obvious
ones (in this case the homomorphisms of groups), with the obvious com-
position law. Different categories with the same objects are given different
names, like Ban and Ban; above.

1.1.2 Definition
A category C consists of the following data:

(a) a set ObC, whose elements are called objects of C,

(b) for every pair X,Y of objects, a set C(X,Y") (called a hom-set) whose
elements are called morphisms (or maps, or arrows) of C from X to Y and
denoted as f: X = Y,

(¢) for every triple X,Y, Z of objects of C, a mapping of composition
CX,Y)xCY,2) > C(X,2), (f,9)—gf
where g f is also written as g.f.

These data must satisfy the following axioms.

(i) Associativity. Given three consecutive arrows, f: X =Y, g: ¥V — Z
and h: Z — W, one has: h(gf) = (hg)f.

(ii) Identities. Given an object X, there exists an endomap e: X — X
which acts as an identity whenever composition makes sense; in other words
if f: X" X and g: X — X", one has: ef = [ and ge = g. One shows,
in the usual way, that e is determined by X; it is called the identity of X
and written as 1y or idX.

We generally assume that the following condition is also satisfied:

(iii) Separation. For all X, X', Y, Y’ objects of C, if C(X, Y)NC(X",Y') # 0
then X = X’ and Y =Y.

Therefore a map f: X — Y has a well-determined domain and codomain
Dom (f) = X, Cod(f) =Y.

Concretely, when constructing a category, one can forget about condition
(iii), since one can always satisfy it by redefining a morphism f X > Yas
a triple (X,Y, f) where f is a morphism from X to Y in the original sense
(possibly not satisfying the Separation axiom).

MorC denotes the set of all the morphisms of C, i.e. the disjoint union of
its hom-sets. Two morphisms f, g are said to be parallel when they have
the same domain and the same codomain.
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If C is a category, the opposite (or dual) category, written as C°P, has the
same objects as C, reversed arrows and reversed composition

Cop(Xv Y) = C(Y X)v

(1.1)
g*xj=7rg, id°P(X) = id X.

Every topic of category theory has a dual instance, which comes from the
opposite category (or categories). A dual notion is generally distinguished
by the prefix ‘co-".

A set X can be viewed as a discrete category: its objects are the elements
of X, and the only arrows are their (formal) identities; here X°P = X.

As usual in category theory, the term graph will be used to denote a
simplified structure, with objects (or vertices) and morphisms (or arrows)
f:x — y, but no assigned composition nor identities. (This is called a
directed multigraph in graph theory, or also a quiver). A morphism of
graphs preserves objects, arrows, domain and codomain. Every category
has an underlying graph.

1.1.3 Small and large categories

We shall not insist on set-theoretical foundations. Yet some caution is
necessary, to avoid speaking of ‘the set of all sets’, or requiring of a category
properties of completeness that are ‘too large for its size’ (as we shall see
in 2.2.3).

We assume the existence of a (Grothendieck) universe U, which is fixed
throughout; its axioms — recalled below, in 1.1.7 — say that we can perform
inside it the usual operations of set theory. Its elements are called small
sets (or U-small sets, if necessary).

A category is understood to have objects and arrows belonging to this
universe, and is said to be small if its set of morphisms belongs to U, large
if it does not (and is just a subset of I/). As a consequence, in a small
category the set of objects (which is in bijective correspondence with the
set of identities) also belongs to U. A category C is said to have small
hom-sets if all its sets C(X,Y) are small; in this case C is small if and only
if its set of objects is.

The categories of structured sets that we consider are generally large
U-categories, like the category Set of small sets (and mappings), or Top of
small topological spaces (and continuous mappings), or Ab of small abelian
groups (and homomorphisms); in such cases, the term ‘small’ (referred to
these structured sets) will be generally understood, and we speak — as usual
— of the ‘category of sets’, and so on.
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*In fact one often needs a hierarchy of universes. For instance, Cat will
denote the category of small categories and functors, introduced in 1.4.1. In
order to view the (large) categories Set, Top, Ab, etc. in a similar structure
we should assume the existence of a second universe V, with i/ € V, and
use the category Caty (also written as CAT) of V-small categories. In a
more complex situation one may need a longer chain of universes. Most of
the time these aspects will be left understood.*

1.1.4 Isomorphisms and groupoids

In a category C a morphism f: X — Y is said to be invertible, or an
isomorphism, if it has an inverse, i.e. a morphism ¢g: Y — X such that
gf = 1x and fg = 1y. The latter is uniquely determined; it is called the
inverse of f and written as f~.

In the categories listed in 1.1.1 this definition gives the usual isomor-
phisms of the various structures — called ‘homeomorphisms’ in the case of
topological spaces.

The isomorphism relation X = Y between objects of C (meaning that
there exists an isomorphism X — Y7) is an equivalence relation.

A groupoid is a category where every map is invertible; it is interesting
to recall that this structure was introduced before categories, by H. Brandt
in 1927 [Bra).

The fundamental groupoid of a space X is an important structure, that
contains all the fundamental groups 1 (X, x) for z € X. Tt will be reviewed
in 5.2.9.

1.1.5 A digression on mathematical structures and categories

When studying a mathematical structure with the help of category theory,
it is crucial to choose the ‘right’ kind of structure and the ‘right’ kind of
morphisms, so that the result is sufficiently general and ‘natural’ to have
good properties with respect to the goals of our study — even if we are
interested in more particular situations.

(a) A first point to be verified is that the isomorphisms of the category (i.e.
its invertible arrows) preserve the structure we are interested in, or we risk
of studying something different from our purpose.

As a trivial example, the category T of topological spaces and all map-
pings between them has little to do with topology: an isomorphism of T
is any bijection between topological spaces. Indeed T is ‘equivalent’ to the
category of sets (as we shall see in 1.5.5), and is a ‘deformed’ way of looking
at the latter.
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Less trivially, the category M of metric spaces and continuous mappings
misses crucial properties of metric spaces, since its invertible morphisms
need not preserve completeness: e.g. the real line is homeomorphic to
any non-empty open interval. In fact, M is equivalent to the category
of metrisable topological spaces and continuous mappings (by 1.5.5, again),
and should be replaced with the latter.

A ‘reasonable’ category of metric spaces should be based on Lipschitz
maps, or — more particularly — on weak contractions, so that its isomor-
phisms (bi-Lipschitz or isometric bijections, respectively) do preserve met-
ric properties, like being complete or bounded (see 5.1.7).

(b) Other points will become clearer below. For instance, the category Top
of topological spaces and continuous mappings is a classical framework for
studying Topology. Among its good properties there is the fact that all
‘categorical products’ and ‘categorical sums’ (studied in Section 2.1, but
already sketched in the Introduction) exist, and are computed as in Set,
then equipped with a suitable topology determined by the structural maps.

(More generally, this is true of all limits and colimits, and — as we shall
see — is a consequence of the fact that the forgetful functor Top — Set has a
left and a right adjoint, corresponding to discrete and chaotic topologies).

Hausdorff spaces are certainly important, but it is often better to view
them in Top, as their category Hsd is less well behaved: colimits exist,
but are not computed as in Set, and the simplest way to compute them
— generally — is to take the colimit in Top and ‘make it Hausdorff’ (see

5.1.4(b)).

*(c) Many category theorists would agree with Mac Lane, saying that even
Top is not sufficiently good ([M4], Section VIL.8), because it is not a carte-
sian closed category (see 5.1.1), and prefer — for instance — the category of
compactly generated Hausdorff spaces (see 2.6.3(d)). However, researchers
interested in Homotopy Theory and Algebraic Topology might be satis-
fied with the fact that the standard interval (with its cartesian powers) is
exponentiable in Top, as we shall exploit in Section 5.2.

We shall also hint, in 5.1.8, at another approach called ‘pointless topol-
ogy’, which is based on the category of locales and is favoured in topos
theory.

(d) Finally we remark that artificial exclusions ‘most of the time’ give
categories of poor properties, like the category of non-abelian groups, or
non-empty semigroups. The latter case needs some further comment.
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1.1.6 Variety of algebras and horror vacui

In Universal Algebra, a ‘variety of algebras’ includes all the algebraic struc-
tures of a given signature (i.e. with a certain family of operations, of as-
signed arity), that satisfy a given set of equational axioms (or universally
quantified identities): e.g. all groups, or all rings; but not all fields, be-
cause multiplicative inverses only exist for non-zero elements, and cannot
be given by a ‘general’ unary operation satisfying some universal identities.

Here a variety of algebras will mean a category of objects defined in this
way, with their homomorphisms (as made precise in Section 4.3). We do
not follow the convention that the underlying set should be non empty; a
convention which has unlucky consequences for any theory without 0-ary
operations, like semigroups: for instance two subalgebras of an algebra may
not have a meet (as subalgebras).

This convention is rather usual in Universal Algebra (cf. Gritzer [Grl]),
but is not followed in Cohn’s book [Coh]. (Of course, generally speaking,
results can be easily translated from one setting to the other.)

*For a reader with some knowledge of limits and colimits, dealt with in
Chapter 2, we can add that a variety of algebras (in the present sense) has
all limits and colimits, while the category of non-empty semigroups lacks
certain limits (like equalisers and pullbacks) and certain colimits (as an
initial object), precisely because we have artificially taken out a solution.*

Other comments in this sense can be found in 3.6.1; but there is also a
comment in the opposite sense, in 5.3.9, for categories used in an ‘auxiliary

?

way'.

1.1.7 *Grothendieck universes

For the interested reader, we recall the definition of a universe as given
in [M4], Section 1.6. It is a set U satisfying the following (redundant)
properties:

(i) € u € U implies = € U,

(ii) u,v € U implies that {u, v}, (u,v) and v xv belong to U,

(iii) = € U implies that Pz and Uz belong to U,

(iv) the set N of finite ordinals belongs to I,

(v) if f: @ — y is a surjective mapping with & € i and y C U, then y € U.

Here Pu is the set of subsets of z and Uz = {y | y € z for some z € z}.
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1.2 Monoids and preordered sets as categories

Monoids and preordered sets can be viewed as categories of two simple
kinds, providing intuition and models for some aspects of category theory.

We also review here some basic facts about the theory of lattices, to
be used later on. A reader interested in this beautiful domain will find
pleasure in browsing, or studying, the classical texts of Birkhoff and Gratzer

[Bi, Gr2].

1.2.1 Monoids and categories

As we have seen, monoids (i.e. semigroups with unit) and their homomor-
phisms form a category, which we write as Mon. But we deal here with a
different aspect.

A single monoid M can (and will often) be viewed as a category with
one formal object *. The morphisms x: * — % are the elements of M,
composed by the multiplication zy of the monoid, with identity id(x) = 1,
the unit of the monoid. If M is a group, the associated category is a
groupoid.

On the other hand, in every category C, the endomorphisms X — X of
any object form a (possibly large) monoid, under the composition law

End(X) = C(X, X), (1.2)

and the invertible ones form the group Aut(X) of automorphisms of X.
In this way a monoid is essentially the same as a category on a single
object, while a category can be thought to be a ‘multi-object generalisation’
of a monoid. Groups and groupoids have a similar relationship.
The theory of regular, orthodox and inverse semigroups (see [CIP, Ho,
Law]) has a strong interplay with the categories of relations and their ap-
plications in Homological Algebra, which is investigated in [G9].

1.2.2 Preordered and ordered sets

We shall use the following terminology for orderings. A preorder relation
x < 7' is reflexive and transitive. An order relation, generally written as
x < o, is also anti-symmetric: if ¢ < 2’ < « then z = o/,

The category of ordered sets and increasing mappings (the order preserv-
ing ones, also called monotone) will be written as Ord, while we write as
pOrd the category of preordered sets and monotone mappings.

An order relation is said to be total if for all z,2’ we have x < 2’ or
' < x.
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(An ordered set is often called a ‘partially ordered set’, abbreviated to
‘poset’, to stress that the ordering is not assumed to be total. Accordingly,
the reader can find the notation Pos for the category Ord.)

A preordered set X has an associated equivalence relation x ~ 2" defined
by the conjunction: z < 2’ and 2’ < z. The quotient X/~ has an induced
order: [z] < [2'] if x < 2/,

If X is a preordered set, X °P is the opposite one (with reversed preorder).
If a € X, the symbols | @ and T a denote the downward or upward closed
subsets of X generated by the element a

la={reX |z =<a}, ta={re X |a=<uz} (1.3)

It will be important to note that every hom-set Ord(X,Y") is canonically
ordered by the pointwise order relation, defined as follows for f,g: X — Y

f<g ifforall 2 € X we have f(z) < g(z) in Y. (1.4)

Similarly, every hom-set pOrd(X,Y") has a canonical preorder f < g.

In a preordered set X, the infimum (or meet) of a subset A, written
as infA or AA, is defined as the greatest element of X smaller than all
the elements of A, and is determined up to the associated equivalence
relation (provided it exists). Dually, the supremum (or join) supA = VA
is the infimum of A in X°P. In an ordered set these results are uniquely
determined — if extant.

1.2.3 Preorders and categories

A preordered set X will often be viewed as a category, where the objects
are the elements of X and the set X (z,2") contains precisely one arrow if
z < a', which can be written as (r,2'): z — 2/, and no arrow otherwise.
Composition and units are (necessarily) as follows

(z',z").(z, ") = (z, "), id(z) = (z, z).

In this way a preordered set is essentially the same as a category where
each hom-sets has at most one element. All diagrams in these categories
commute. Two elements x, 2z’ are isomorphic objects if and only if z ~ z'.

In particular, each ordinal defines a category, written as 0,1, 2, ...

- 0 is the empty category,
- 1 is the singleton category, i.e. the discrete category on one object,

- 2 is the arrow category, with two objects (0 and 1), and precisely one
non-identity arrow, 0 — 1.
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Here 2 should not be confused with the cardinal 2 = {0, 1}, which is
viewed as a discrete category.

1.2.4 Lattices

Classically a lattice is defined as an ordered set X such that every pair
x,2" of elements has a join vz’ = sup{z,z'} (the least element of X
greater than both) and a meet z A2’ = inf{x, 2’} (the greatest element of
X smaller than both).

Here we follow a different convention, usual in category theory: lattice
will always mean an ordered set with finite joins and meets, which amounts
to the existence of binary joins and meets together with the least element
0 = V@ and the greatest element 1 = AQ. (This structure is called a
‘bounded lattice’ in Lattice Theory.)

The bounds 0 and 1 (the empty join and the empty meet) are equal in
the one-point lattice {*}, and only there.

Consistently with this terminology, a lattice homomorphism has to pre-
serve finite joins and meets; a sublattice of a lattice X is closed under such
operations (and has the same bounds as X). The category of lattices and
homomorphisms will be written as Lth.

Occasionally we speak of a quasi lattice when we only assume the exis-
tence of binary joins and meets; a homomorphism of quasi lattices only has
to preserve them. A quasi sublattice Y of a quasi lattice X is closed under
binary joins and meets in X; when X is a lattice, Y may have different
bounds, or lack some of them.

For instance, if X is a lattice and a € X, the downward and upward
closed subsets | a, Ta of X generated by a (see 1.2.2) are quasi sublattices
of X, and lattices in their own right.

Let us note that the free lattice (see 2.7.3) generated by an element x
has three elements: 0 < x < 1, while the free quast lattice L generated by z
is just the singleton {x}: in fact every mapping {z} — X with values in a
lattice (resp. in a quasi lattice) has a unique extension to a homomorphism
L — X (resp. {z} — X). In the same way, the free lattice L generated
by a set S can be obtained from the corresponding free quasi-lattice M by
adding a (new) minimum and a (new) maximum, even when M is already
bounded — as above.

1.2.5 Ezxercises and complements

(a) Latltices as algebras. The reader may know, or be interested to prove,
that a lattice can be equivalently presented as a set X equipped with two
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operations, x vy and z Ay, called join and meet, that satisfy the following
axioms:

(i) both operations are associative, commutative and idempotent:

zv(yvz)=(zvy)vz, za(ynz)=(zry) Az,
TVYy=yvaz, FAY =YNAT,
TvE =, Y

(ii) each operation has a unit, written as 0 and 1, respectively

zvl=z=2znl,

(iii) the following absorption laws hold:

zv(zay)=z=zr(zvy).

Given this presentation, one defines the ordering by letting x < y if
z vy =y, or equivalently z Ay = x. Again, one should be aware that 0 = 1
is not excluded; we already know that in this case all the elements coincide.
The reader will easily guess how the opposite lattice X°P is defined here.

(b) Complete lattices. The reader may know, or easily prove, that a pre-
ordered set has all infima (of its subsets) if and only if it has all suprema.
In this case — if it is an ordered set — it is called a complete lattice. This
agrees with the notion of a ‘complete category’, as we shall see in 2.2.5(e).

Frames are particular complete lattices, related with topological spaces
and ‘pointless topology’, and will be briefly introduced in 5.1.8.

1.2.6 Daistributive and modular lattices

A lattice is said to be distributive if the meet operation distributes over the
join operation, or equivalently if the join distributes over the meet. In fact,
if we assume that meets distribute over joins, we have:

(vy)alzvz)=(zvy)rz)v(zvy)rz)
=zv(zaz)v(yaz)=xv(ynrz).

A boolean algebra is a distributive (bounded) lattice where every element
2 has a (necessarily unique) complement @', defined by the properties:

zaz' =0, zva' = 1.

The subsets of a set X form the classical boolean algebra PX, which is
a complete lattice.



1.2 Monoids and preordered sets as calegories 21

The (complete) lattice SubA of subgroups of an abelian group (or sub-
modules of a module) is not distributive, generally (see 1.2.7(d)); but one
can easily check that it always satisfies a weaker, restricted form of dis-
tributivity, called modularity.

Namely, a lattice is said to be modular if it satisfies the following selfdual
property (for all elements z,y, z)

(1) ifz<zthen (zvy)nz=zv(ynrz).
The category of modular (resp. distributive) lattices and their homomor-
phisms will be written as Mlh (resp. Dlh).

*By Birkhoff’s representation theorem ([Bi] III.5, Theorem 5) the free
distributive lattice on n generators is finite and isomorphic to a lattice of
subsets. The reader may also be interested to know that the free modular
lattice on three elements is finite and (obviously!) not distributive (see [Bil,
I11.6, Fig. 10), while four generators already give an infinite free modular
lattice (see the final Remark in [Bi], TT1.6).*

1.2.7 *Exercises and complements (Distributive lattices)

The goal of this point is to show that the (complete) lattice X = Sub(Z) of
subgroups of the abelian group Z (or ideals of the ring Z) is distributive — a
fact that will have unexpected links with Homological Algebra, in Section
6.6.

The interested reader is invited to directly investigate the problem, be-
fore considering the layout given below. The first step is showing that X is
anti-isomorphic to the divisibility lattice of natural numbers (a well-known,
nearly obvious point). Then one proves that the latter is distributive, a
(hopefully amusing) exercise based on our school knowledge — prime fac-
torisation.

(a) The reader likely knows, or should prove, that each subgroup of Z is of
the form nZ, for a unique n € N (and is an ideal of the ring of integers).

This gives us an isomorphism X — Y°P, where Y = (N, |) is the set of
natural numbers ordered by the divisibility relation m|n. Therefore Y is a
(complete) lattice as well, and we recognise its operations mvn and man
as fairly well-known. We also note that 1 = minY and 0 = maxY’.

(b) Now, each n € N* has a unique decomposition n = I1, p™» as a product
of powers of non-invertible prime numbers p; of course the natural expo-
nents n, are quasi-null (i.e. all of them are 0, out of a finite number of
prime indices p), so that the factorisation is essentially finite.

The reader will use this fact to prove that ¥ can be embedded in the
cartesian product [T, N of countably many copies of the set N = N U {oo},
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with the natural order. One can now show that Y is distributive, and X
as well.

(¢) As a consequence, the lattice Sub(A) of any cyclic group A is also
distributive.

(d) The reader can easily show that this property fails for the abelian group
Z2, or for any non-trivial abelian group A @ A. (Again, this will be of use
in Section 6.6.)

On the other hand, Z/2 & Z/3 = Z/6 has a distributive lattice of
subgroups.

(e) A reader acquainted with principal ideal domains may like to rethink
the whole thing.

1.3 Monomorphisms and epimorphisms

In a category, monomorphisms and epimorphisms (monos and epis for
short) are defined by cancellation properties with respect to composition.

For categories of structured sets, they represent an ‘approximation’ to
the injective and surjective mappings of the category.

1.3.1 Main definitions

In a category C a morphism f: X — Y is said to be a monomorphism, or
mono, if it satisfies the following cancellation property: for every pair of
maps u,v: X’ — X (defined on an arbitrary object X') such that fu = fv,
one has u = v (see the left diagram below)

x=x-Lvy x vV (1.5)

Dually, the morphism f: X — VY is said to be an epimorphism, or epi, if it
satisfies the dual cancellation property: for every pair of maps v,v: ¥ — Y’
such that uf = vf, one has u = v (see the right diagram above).

An arrow — will always denote a monomorphism, while — stands for
an epimorphism.

Every isomorphism is mono and epi. A category is said to be balanced if
the converse holds: every morphism which is mono and epi is invertible.

Suppose now that we have, in a category C, two maps m: A — X and
p: X — A such that pm = idA. It follows that m is a monomorphism
(called a section, or a split monomorphism), while p is an epimorphism
(called a retraction, or a split epi); A is said to be a retract of X.

A family of morphisms f;: X — Y, (i € I) with the same domain is
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said to be jointly mono if for every pair of maps u,v: X’ — X such that
fiu = fiv (for all indices 7) one has v = v. Dually a family f;: X; — Y
is jointly epi if for all u,v: Y — Y’ such that uf; = vf; (for all i) one has
=i,

The general properties of monos, epis and retracts will be examined in
1.3.6. Related notions, like regular monos and epis, strong monos and epis,
subobjects and quotients, will be seen in the next chapter.

1.3.2 Comments

In a category of structured sets and structure-preserving mappings, an
injective mapping (of the category) is obviously a monomorphism, while
a surjective one is an epimorphism. The converse may require a non-
trivial proof, or even fail. This can only be understood by working out
the examples below.

Interestingly, a divergence appears between monos and epis: the theory
of categories is self-dual, but our frameworks of structured sets are not!
When we classify monos in Set, this tells us everything about the epis of
Set°? but nothing about the epis of Set.

In fact, in all the examples below it will be easy to prove that the mono-
morphisms coincide with the injective morphisms. Later we shall see, in
2.7.4(d), some conditions that ensure this fact, and hold true in all the
‘usual categories of structured sets’.

On the other hand, various problems occur with epimorphisms: classi-
fying them in various categories of algebraic structures leads to difficult
problems with no elementary solution (and no real need of it).

1.3.3 FExercises and complements, 1

(a) The first point is to prove that in Set every mono is an injective mapping
and every epi is surjective. We write down the proof, but a beginner should
try to give an independent solution; this is quite easy for monos and slightly
less for epis.

If f: X — Y is a monomorphism in Set, let us suppose that f(x) = f(a'),
for x, 2" € X. We consider the mappings u, v

== x Loy u(¥) =z, v(*)=2. (1.6)

Now we have fu = fv, whence v = v and x = x/, which shows that f is

injective. Note that the proof works by simulating an element of X with a
map {*} = X.
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On the other hand, if f: X — Y is an epimorphism in Set, we define two
mappings u, v with values in the set {0,1}

x Loy = q01) (1.7)

where u is the characteristic function of the subset f(X) C Y (with u(y) =
1 if and only if y € f(X)) and v is the constant map v(y) = 1. Then
uf = vf, whence u = v and f(X) =Y. (A different proof can be based
on the set Y x{0, 1}, the disjoint union of two copies of Y; or a quotient of
the latter.)

Since the invertible morphisms in Set are obviously the same as the
bijective mappings, we remark that the category Set is balanced.

(b) Now the reader should prove that also in Top and Ab monos and epis
coincide with the injective and surjective mappings of the category, respec-
tively.

For monos the proof is quite similar to the previous one, making use of
the singleton in Top and of the group Z in Ab. Note that the latter allows
us to simulate an element = € X by a homomorphism u: Z — X, sending
the generator 1 to x.

To prove that an epi is surjective, one can use a two-point codiscrete
space in Top and the quotient group Y/ f(X) in Ab. Note that the last
point follows a different pattern: constructing arrows is fairly free in Set,
somewhat less in Top, much less in categories of algebraic structures.

We conclude here that Ab is balanced, while Top is not: a bijective
continuous mapping need not be invertible in Top, i.e. a homeomorphism.

(¢) The reader should prove that, in the categories Mon of monoids and Rng
of rings, the monomorphisms coincide again with the injective homomor-
phisms. Then one can easily show that the inclusion N — Z (of additive
monoids) is mono and epi in Mon, which is not balanced. The same holds
for the inclusion Z — @ in Rng.

In fact epimorphisms in Mon and Rng have no elementary characteri-
sation and the ‘regular epimorphisms’ (namely the surjective homomor-
phisms) are more important, as we shall see in Section 4.4.

(d) In a preordered set, viewed as a category, all arrows are mono and epi.
The category is balanced under a precise condition on the preordering.

1.3.4 Ezxercises and complements, Il

(a) In the category Gp of groups all epimorphisms are surjective: a non-
obvious fact, whose proof can be found in [M4], Section .5, Exercise 5.



