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Chapter 1

Introduction

The diagram in Figure 1.1 is intended to evoke thoughts of the scientific method.

Figure 1.1

An observation analyzed by a person yields a hypothesis, which analyzed
by a person produces a prediction, which motivates the specification of an
experiment, which when executed results in an observation.
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Its statements look valid, and a good graphic can be very useful for leading a reader
through a story that the author wishes to tell.

But a graphic has the power to evoke feelings of understanding without really meaning
much. The same is true for text: it is possible to use a language like English to express
ideas that are never made rigorous or clear. When someone says, “I believe in free will,”
what does she believe in? We may all have some concept of what she’s saying—something
we can conceptually work with and discuss or argue about. But to what extent are we
all discussing the same thing, the thing she intended to convey?

Science is about agreement. When we supply a convincing argument, the result of
this convincing is agreement. When, in an experiment, the observation matches the
hypothesis—success!l—that is agreement. When my methods make sense to you, that is
agreement. When practice does not agree with theory, that is disagreement. Agreement
is the good stuff in science; it is the celebratory moment.

But it is easy to think we are in agreement, when we really are not. Modeling our
thoughts on heuristics and graphics may be convenient for quick travel down the road, but
we are liable to miss our turnoff at the first mile. The danger is in mistaking convenient
conceptualizations for what is actually there. It is imperative that we have the ability at
any time to ground in reality. What does that mean?

Data. Hard evidence. The physical world. It is here that science is grounded and
heuristics evaporate. So let’s look again at Figure 1.1. It is intended to evoke an idea of
how science is performed. Do hard evidence and data back up this theory? Can we set
up an experiment to find out whether science is actually performed according to such a
protocol? To do so we have to shake off the impressions evoked by the diagram and ask,
What does this diagram intend to communicate?

In this book I will use a mathematical tool called ologs, or ontology logs, to give
some structure to the kinds of ideas that are often communicated in graphics. Each olog
inherently offers a framework in which to record data about the subject. More precisely, it
encompasses a database schema, which means a system of interconnected tables that are
initially empty but into which data can be entered. For example, consider the following
olog:

; an object of mass
SEETE m held at height h when dropped has
above the ground as number of sec-
onds till hitting the
ground

has as height
in meters ?

Ty —
2h+9.8
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center of the mathematical universe. He explained how whole algebraic theories can be
viewed as examples of a single system. He and others went on to show that higher-
order logic was beautifully captured in the setting of category theory (more specifically
toposes). It is here also that Grothendieck and his school worked out major results in
algebraic geometry.

In 1980, Joachim Lambek showed that the types and programs used in computer
science form a specific kind of category. This provided a new semantics for talking about
programs, allowing people to investigate how programs combine and compose to create
other programs, without caring about the specifics of implementation. Eugenio Moggi
brought the category-theoretic notion of monads into computer science to encapsulate
ideas that up to that point were considered outside the realm of such theory.

It is difficult to explain the clarity and beauty brought to category theory by people
like Daniel Kan and André Joyal. They have each repeatedly extracted the essence of
a whole mathematical subject to reveal and formalize a stunningly simple yet extremely
powerful pattern of thinking, revolutionizing how mathematics is done.

All this time, however, category theory was consistently seen by much of the mathe-
matical community as ridiculously abstract. But in the twenty-first century it has finally
come to find healthy respect within the larger community of pure mathematics. It is the
language of choice for graduate-level algebra and topology courses, and in my opinion will
continue to establish itself as the basic framework in which to think about and express
mathematical ideas.

As mentioned, category theory has branched out into certain areas of science as well.
Baez and Dolan [6] have shown its value in making sense of quantum physics, it is well
established in computer science, and it has found proponents in several other fields as well.
But to my mind, we are at the very beginning of its venture into scientific methodology.
Category theory was invented as a bridge, and it will continue to serve in that role.

1.2 Intention of this book

The world of applied mathematics is much smaller than the world of applicable mathe-
matics. As mentioned, this book is intended to create a bridge between the vast array
of mathematical concepts that are used daily by mathematicians to describe all man-
ner of phenomena that arise in our studies and the models and frameworks of scientific
disciplines such as physics, computation, and neuroscience.

For the pure mathematician I try to prove that concepts such as categories, func-
tors, natural transformations, limits, colimits, functor categories, sheaves, monads, and
operads—concepts that are often considered too abstract even for math majors—can be
communicated to scientists with no math background beyond linear algebra. If this ma-
terial is as teachable as I think, it means that category theory is not esoteric but well
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aligned with ideas that already make sense to the scientific mind. Note, however, that this
book is example-based rather than proof-based, so it may not be suitable as a reference
for students of pure mathematics.

For the scientist I try to prove the claim that category theory includes a formal
treatment of conceptual structures that the scientist sees often, perhaps without realizing
that there is well-oiled mathematical machinery to be employed. A major topics is the
structure of information itself: how data is made meaningful by its connections, both
internal and outreaching, to other data.? Note, however, that this book should certainly
not be taken as a reference on scientific matters themselves. One should assume that any
account of physics, materials science, chemistry, and so on, has been oversimplified. The
intention is to give a flavor of how category theory may help model scientific ideas, not
to explain those ideas in a serious way.

Data gathering is ubiquitous in science. Giant databases are currently being mined
for unknown patterns, but in fact there are many (many) known patterns that simply
have not been catalogued. Consider the well-known case of medical records. In the
carly twenty-first century, it is often the case that a patient’s medical history is known
by various doctor’s offices but quite inadequately shared among them. Sharing medical
records often means faxing a handwritten note or a filled-in house-created form from one
office to another.

Similarly, in science there exists substantial expertise making brilliant connections
between concepts, but this expertise is conveyed in silos of English prose known as journal
articles. Every scientific journal article has a methods section, but it is almost impossible
to read a methods section and subsequently repeat the experiment—the English language
is inadequate to precisely and concisely convey what is being done.

The first thought I wish to convey in this book is that reusable methodologies can
be formalized and that doing so is inherently valuable. Consider the following analogy.
Suppose one wants to add up the area of a region in space (or the area under a curve). One
breaks the region down into small squares, each with area A, and then counts the number
of squares, say n. One multiplies these numbers together and says that the region has an
area of about nA. To obtain a more precise and accurate result, one repeats the process
with half-size squares. This methodology can be used for any area-finding problem (of
which there are more than a first-year calculus student generally realizes) and thus it
deserves to be formalized. But once we have formalized this methodology, it can be taken
to its limit, resulting in integration by Riemann sums. Formalizing the problem can lead

2The word data is generally considered to be the plural form of the word datum. However, individual
datum elements are only useful when they are organized into structures (e.g., if one were to shuffle the
cells in a spreadsheet, most would consider the data to be destroyed). It is the whole organized structure
that really houses the information; the data must be in formation in order to be useful. Thus I use
the word data as a collective noun (akin to sand); it bridges the divide between the individual datum
elements (akin to grains of sand) and the dafa set (akin to a sand pile).
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to powerful techniques that were unanticipated at the outset.

I intend to show that category theory is incredibly efficient as a language for exper-
imental design patterns, introducing formality while remaining flexible. It forms a rich
and tightly woven conceptual fabric that allows the scientist to maneuver between dif-
ferent perspectives whenever the need arises. Once she weaves that fabric into her own
line of research, she has an ability to think about models in a way that simply would not
occur without it. Moreover, putting ideas into the language of category theory forces a
person to clarify her assumptions. This is highly valuable both for the researcher and for
her audience.

What must be recognized in order to find value in this book is that conceptual chaos
is a major problem. Creativity demands clarity of thinking, and to think clearly about a
subject requires an organized understanding of how its pieces fit together. Organization
and clarity also lead to better communication with others. Academics often say they
are paid to think and understand, but that is not the whole truth. They are paid to
think, understand, and communicate their findings. Universal languages for science, such
as calculus and differential equations, matrices, or simply graphs and pie charts, already
exist, and they grant us a cultural cohesiveness that makes scientific research worthwhile.
In this book I attempt to show that category theory can be similarly useful in describing
complex scientific understandings.

1.3 What is requested from the student

The only way to learn mathematics is by doing exercises. One does not get fit by merely
looking at a treadmill or become a chef by merely reading cookbooks, and one does not
learn math by watching someone else do it. There are about 300 exercises in this book.
Some of them have solutions in the text, others have solutions that can only be accessed
by professors teaching the class.

A good student can also make up his own exercises or simply play around with the
material. This book often uses databases as an entry to category theory. If one wishes to
explore categorical database software, FQL (functorial query language) is a great place
to start. It may also be useful in solving some of the exercises.

1.4 Category theory references

I wrote this book because the available books on category theory are almost all written
for mathematicians (the rest are written for computer scientists). One book, Conceptual
Mathematics by Lawvere and Schanuel [24], offers category theory to a wider audience,
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but its style is not appropriate for a course or as a reference. Still, it is very well written
and clear.

The bible of category theory is Categories for the Working Mathematician by Mac
Lane [29]. But as the title suggests, it was written for working mathematicians and
would be opaque to my target audience. However, once a person has read the present
book, Mac Lane’s book may become a valuable reference.

Other good books include Awodey’s Category theory [4], a recent gentle introduction
by Simmons [37], and Barr and Wells’s Category Theory for Computing Science, [11].
A paper by Brown and Porter, “Category Theory: an abstract setting for analogy and
comparison” [9] is more in line with the style of this book, only much shorter. Online, I
find Wikipedia [46] and a site called nLab [34] to be quite useful.

This book attempts to explain category theory by examples and exercises rather than
by theorems and proofs. I hope this approach will be valuable to the working scientist.



Chapter 2

The Category of Sets

The theory of sets was invented as a foundation for all of mathematics. The notion of
sets and functions serves as a basis on which to build intuition about categories in gen-
eral. This chapter gives examples of sets and functions and then discusses commutative
diagrams. Ologs are then introduced, allowing us to use the language of category theory
to speak about real world concepts. All this material is basic set theory, but it can also
be taken as an investigation of the category of sets, which is denoted Set.

2.1 Sets and functions

People have always found it useful to put things into bins.

R is put into "
a thing | —————— a bin

The study of sets is the study of things in bins.

2.1.1 Sets

You probably have an innate understanding of what a set is. We can think of a set X
as a collection of elements x € X, each of which is recognizable as being in X and such
that for each pair of named elements z, 2’ € X we can tell if © = 2’ or not.! The set
of pendulums is the collection of things we agree to call pendulums, each of which is

I1Note that the symbol 2, read “x-prime,” has nothing to do with calculus or derivatives. It is simply
notation used to name a symbol that is somehow like x. This suggestion of kinship between = and 2’ is
meant only as an aid for human cognition, not as part of the mathematics.

9
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X 6

Figure 2.2 A function from a set X to a set Y.

Application 2.1.2.2. In studying the mechanics of materials, one wishes to know how a
material responds to tension. For example, a rubber band responds to tension differently
than a spring does. To each material we can associate a force-extension curve, recording
how much force the material carries when extended to various lengths. Once we fix a
methodology for performing experiments, finding a material’s force-extension curve would
ideally constitute a function from the set of materials to the set of curves.

00

FErxercise 2.1.2.3.

Here is a simplified account of how the brain receives light. The eye contains about
100 million photoreceptor (PR) cells. Each connects to a retinal ganglion (RG) cell. No
PR cell connects to two different RG cells, but usually many PR cells can attach to a
single RG cell.

Let PR denote the set of photoreceptor cells, and let RG denote the set of retinal
ganglion cells.

a. According to the above account, does the connection pattern constitute a function
RG — PR, a function PR — RG, or neither one?

b. Would you guess that the connection pattern that exists between other areas of the
brain are function-like? Justify your answer.
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Solution 2.1.2.3.

a. To every element of PR we associate an element of RG, so this is a function PR — RG.
b. (Any justified guess is legitimate.) With no background in the subject, I might guess
this happens in any case of immediate perception being translated to neural impulses.

+

Ezample 2.1.2.4. Suppose that X is a set and X' < X is a subset. Then we can consider
the function X’ — X given by sending every element of X' to “itself” as an element of
X. For example, if X = {a,b,c,d,e, f} and X' = {b,d, e}, then X' € X. We turn that
into the function X’ — X given by b+ b,d — d,e — e.2

As a matter of notation, we may sometimes say the following: Let X be a set, and let
i: X' € X be a subset. Here we are making clear that X’ is a subset of X, but that i is
the name of the associated function.

FEzxercise 2.1.2.5.

Let f: N — N be the function that sends every natural number to its square, e.g.,
f(6) = 36. First fill in the blanks, then answer a question.

a. 2
b. 0—
c. -2+
d. 5—

e. Consider the symbol — and the symbol —. What is the difference between how these
two symbols are used so far in this book?

Solution 2.1.2.5.
a. 4

b. 0

c. The function does not apply to —2 because —2 is not an element of .

2This kind of arrow, +— , is read “maps to” A function f: X — Y means a rule for assigning to each
element z € X an element f(z) € Y. We say that “z maps to f(x)” and write z — f(z).
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d. 25

e. The symbol — is used to denote a function from one set to another. For example, the
arrow in g: X — Y is a symbol that tells us that g is the name of a function from set X
to set Y. The symbol + is used to tell us where the function sends a specific element
of the domain. So in our squaring function f: N — N, we write b — 25 because the
function f sends 5 to 25.

]
Given a function f: X — Y, the elements of Y that have at least one arrow pointing
to them are said to be in the image of f; that is, we have

im(f) :={yeY | dx e X such that f(z) = y}. (2.3)

The image of a function f is always a subset of its codomain, im(f) € Y.
Ezercise 2.1.2.6.

If f: X - Y is depicted by Figure 2.2, write its image, im(f) as a set. 0
Solution 2.1.2.6.

The image is im(f) = {y1,y2. Ya}- ¢
Given a function f: X — Y and a function g: Y — Z, where the codomain of f is
the same set as the domain of g (namely, Y'), we say that f and g are composable

g N
The composition of f and g is denoted by go f: X — Z. See Figure 2.3.
Slogan 2.1.2.7.

Given composable functions X L% 7 , we have a way of putting every
thing in X into a bin in Y, and we have a way of putting cach bin from Y
into a larger bin in Z. The composite, go f: X — Z, is the resulting way
that every thing in X is put into a bin in Z.

FEzercise 2.1.2.8.

If A € X is a subset, Example 2.1.2.4 showed how to think of it as a function

i: A —- X. Given a function f: X — Y, we can compose A Hx L vand get a
function foi: A — Y. The image of this function is denoted

f(A) :=im(f o),
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X Y Z

Figure 2.3 Functions [: X — Y and ¢g: Y — Z compose to a function go f: X — Z
(follow the arrows).

see (2.3) for the definition of image.

Let X =Y :=2Z let A :={-1,0,1,2,3} € X, and let f: X — Y be given by
f(z) = z%. What is the image set f(A)? 0

Solution 2.1.2.8.

By definition of image (see (2.3), we have

flA) ={yeZ|Jae Asuch that foi(a) = y}.

Since A = {-~1,0,1,2,3} and since i(a) = a for all a € A, we have f(A) = {0,1,4,9}.
Note that an element of a set can only be in the set once; even though f(—1) = f(1) = 1,
we need only mention 1 once in f(A). In other words, if a student has an answer such as
{1,0,1, 4,9}, this suggests a minor confusion. ¢

Notation 2.1.2.9. Let X be a set and z € X an element. There is a function {®} — X
that sends © — x. We say that this function represents © € X. We may denote it
z: {@} — X.
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Fzercise 2.1.2.10.

Let X be a set, let € X be an element, and let z: {®&} — X be the function
representing it. Given a function f: X — Y, what is fox? 0

Solution 2.1.2.10.

Tt is the function {®} — Y that sends ® to f(x). In other words, it represents the
element f(x). ]

Remark 2.1.2.11. Suppose given sets A, B,C and functions A f, B % C. The classical
order for writing their composition has been used so far, namely, go f: A — C. For any
element a € A, we write g o f(a) to mean g(f(a)). This means “do g to whatever results
from doing f to a.”

However, there is another way to write this composition, called diagrammatic order.
Instead of g o f, we would write f;g: A — C, meaning “do f, then do g Given an
element a € A, represented by a: {®} — A, we have an element a; f; g.

Let X and Y be sets. We write Homget (X, Y) to denote the set of functions X — V.3
Note that two functions f,g: X — Y are equal if and only if for every element = € X, we

have f(z) = g(z).
Ezercise 2.1.2.12.
Let A={1,2,3,4,5} and B = {z,y}.

a. How many elements does Homget (A, B) have?

b. How many elements does Homget (B, A) have?

¢
Solution 2.1.2.12.
a. 32. For example, 1 —» 2,2 — 2,3 — 2,4 — y,5 — 2.
b. 25. For example, x — 1,y — 4.
]
3The notation Homgeg(—, —) will make more sense later, when it is seen in a larger context. See

especially Section 5.1.



2.1. SETS AND FUNCTIONS 19

Application 2.1.2.16. There is an isomorphism between the set Nucpya of nucleotides
found in DNA and the set Nucgyna of nucleotides found in RNA. Indeed, both sets
have four elements, so there are 24 different isomorphisms. But only one is useful in
biology. Before we say which one it is, let us say there is also an isomorphism Nucpya =
{A,C,G, T} and an isomorphism Nucgna = {A,C, G, U}, and we will use the letters as
abbreviations for the nucleotides.

The convenient isomorphism Nucpya =, Nucpna is that given by RNA transcription;
it sends

AU, C—G, G- C, T A

o

(See also Application 5.1.2.21.) There is also an isomorphism Nuecpya — Nucpna (the
matching in the double helix), given by

AT, C—G, G—-C, T— A

Protein production can be modeled as a function from the set of 3-nucleotide sequences
to the set of eukaryotic amino acids. However, it cannot be an isomorphism because there
are 4% = 64 triplets of RNA nucleotides but only 21 eukaryotic amino acids.

00
Ezercise 2.1.2.17.
Let n € N be a natural number, and let X be a set with exactly n elements.
a. How many isomorphisms are there from X to itself?
b. Does your formula from part (a) hold when n = 07
0

Solution 2.1.2.17.

a. There are n!, pronounced “n factorial” For example, if X = {a,b, ¢, d}, then we have
4! =4 %3 %2x%1 = 24 isomorphisms X =, X. One such isomorphism is a + a,b —
d,c + b,d — b. The heuristic reason that the answer is 4! is that there are four
ways to pick where a goes, but then only three remaining ways to pick where b goes,
then only two remaining ways to pick were ¢ goes, and then only one remaining way
to pick where d goes. To really understand this answer, list all the isomorphisms

{1,2,3,4} = {1,2,3,4} for yourself.

b. Yes, there is one function ¢J — & and it is an isomorphism.



20 CHAPTER 2. THE CATEGORY OF SETS

Proposition 2.1.2.18. The following facts hold aboul isomorphism.
1. Any set A is isomorphic to itself: i.e., there exists an isomorphism A = A
2. For any sets A and B, if A is isomorphic to B, then B is isomorphic to A.

3. For any sets A, B, and C, if A is isomorphic to B, and B is isomorphic to C, then
A is isomorphic to C.

Proof. 1. The identity function idq: A — A is invertible; its inverse is id4 because
idA OidA = id,q.

2. If f: A — B is invertible with inverse g: B — A, then g is an isomorphism with
inverse f.

3.1 f: A - B and f': B — C are each invertible with inverses g: B — A and
g': C — B, then the following calculations show that f’ o f is invertible with
inverse g o g':

(ffoflo(gog)=fo(fog)og = foidgog = f og =id¢
(gogo(fof)=go(gof)of=goidpof=gof=ids

Ezxercise 2.1.2.19.

Let A and B be these sets:

A=

Note that the sets A and B are isomorphic. Suppose that f: B — {1,2,3,4,5} sends
“Bob” to 1, sends & to 3, and sends r8 to 4. Is there a canonical function A — {1,2, 3,4, 5}
corresponding to f7* 0

y

4Canonical, as used here, means something like “best choice,” a choice that stands out as the only

reasonable one.
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Solution 2.1.2.19.

No. There are a lot of choices, and none is any more reasonable than any other, i.e.,
none are canonical. (In fact, there are six choices; do you see why?)

The point of this exercise is to illustrate that even if one knows that two sets are
isomorphic, one cannot necessarily treat them as the same. To treat them as the same,
one should have in hand a specified isomorphism g: A = B, such as a — 18, 7 —
“Bob”, () — &. Now, given f: B — {1,2,3,4,5}, there is a canonical function A —
{1,2,3,4,5} corresponding to f, namely, f o g. ¢
Ezercise 2.1.2.20.

Find a set A such that for any set X, there is an isomorphism of sets
X = Homsget (A4, X).

Hint: A function A — X points each element of A to an element of X. When would
there be the same number of ways to do that as there are elements of of X7 0

Solution 2.1.2.20.

Let A = {@}. Then to point each element of A to an element of X, one must simply
point @ to an element of X. The set of ways to do that can be put in one-to-one
correspondence with the set of elements of X. For example, if X = {1,2,3}, then ® — 3
is a function A — X representing the element 3 € X. See Notation 2.1.2.9. ¢

Notation 2.1.2.21. For any natural number n € N, define a set
it =128 e (2.4)

We call n the numeral set of size n. So, in particular, 2 = {1,2},1 = {1}, and 0 = @.
Let A be any set. A function f: n — A can be written as a length n sequence

f=(fQ), f(2),..., f(n))- (2.5)
We call this the sequence notation for f.
Ezercise 2.1.2.22.

a. Let A = {a,b,c,d}. If f: 10 — A is given in sequence notation by (a, b, c, ¢, b,a,d,d,a,b),
what is f(4)7

b. Let s: 7 — N be given by s(i) = i%. Write s in sequence notation.
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Solution 2.1.2.22.

a. ¢
b. (1,4,9,16,25,36,49)
]

Definition 2.1.2.23 (Cardinality of finite sets). Let A be a set and n € N a natural
number. We say that A has cardinality n, denoted

|A] = n,

if there exists an isomorphism of sets A =~ n. If there exists some n € W such that A has
cardinality n, then we say that A is finite. Otherwise, we say that A is infinite and write
|A] = c0.

Fzercise 2.1.2.24.

a. Let A= {5,6,7}. What is |A|?
b. What is |{1,1,2,3,5}|7

. What is [N|7

. What is [{ne N | n < 5}|?

Ao

Solution 2.1.2.24.

a. |5,6,7| = 3.

b. [{1,1,2,3,5}| = 4. As explained in Solution 2.1.2.8, a set contains each of its elements
only once. So we have {1,1,2,3,5} = {1,2,3,5}, which has cardinality 4.

c. |N| = oo.
L

We will see in Corollary 3.4.5.6 that for any m,n € N, there is an isomorphism m = n
if and only if m = n. So if we find that A has cardinality m and that A has cardinality
n, then m = n.



2.2, COMMUTATIVE DIAGRAMS 23

Proposition 2.1.2.25. Let A and B be finite sets. If there is an isomorphism of sels
f: A — B, then the two sets have the same cardinality, |A| = |B|.

Proof. If f: A — B is an isomorphism and B = n, then A =~ n because the composition
of two isomorphisms is an isomorphism.
]

2.2 Commutative diagrams

At this point it is difficult to precisely define diagrams or commutative diagrams in
general, but we can get a heuristic idea.® Consider the following picture:

A-L.B (2.6)

N

C

We say this is a diagram of sets if each of A, B, C is a set and each of f, g, h is a function.
We say this diagram commutes if go f = h. In this case we refer to it as a commutative
triangle of sets, or, more generally, as a commutative diagram of sets.

Application 2.2.1.1. In its most basic form, the central dogma of molecular biology is that
DNA codes for RNA codes for protein. That is, there is a function from DNA triplets to
RNA triplets and a function from RNA triplets to amino acids. But sometimes we just
want to discuss the translation from DNA to amino acids, and this is the composite of
the other two. The following commutative diagram is a picture of this fact

DNA —— RNA

N

AA
00

Consider the following picture:

f

A——=B
‘!

5Commutative diagrams are precisely defined in Section 6.1.2.
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2.3.1.1 Types with compound structures

Many types have compound structures, i.e., they are composed of smaller units. Examples
include

a food portion f and
a child ¢ such that ¢ (2.9)
e ate all of f

a man and

It is good practice to declare the variables in a compound type, as in the last two cases
of (2.9). In other words, it is preferable to replace the first box in (2.9) with something
like

a pair (m,w),
or where m is a man
and w is a woman

a man m and
a woman w

so that the variables (m,w) are clear.

Rules of good practice 2.3.1.2. A type is presented as a text box. The text in that box
should

(i) begin with the word a or an;
(ii) refer to a distinction made and recognizable by the olog’s author;
(iii) refer to a distinction for which instances can be documented;
(iv) be the common name that each instance of that distinction can be called; and
(v) declare all variables in a compound structure.

The first, second, third, and fourth rules ensure that the class of things represented by
each box appears to the author to be a well defined set, and that the class is appropriately
named. The fifth rule encourages good readability of arrows (see Section 2.3.2).

I do not always follow the rules of good practice throughout this book. I think of
these rules being as followed “in the background,” but I have nicknamed various boxes.
So "Steve™ may stand as a nickname for "a thing classified as Steve™ and Targinine” as
a nickname for "a molecule of arginine™. However, one should always be able to rename
each type according to the rules of good practice.
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2.3.2 Aspects

An aspect of a thing & is a way of viewing it, a particular way in which x can be regarded
or measured. For example, a woman can be regarded as a person; hence “being a person”
is an aspect of a woman. A molecule has a molecular mass (say in daltons), so “having
a molecular mass” is an aspect of a molecule. In other words, when it comes to ologs,
the word aspect simply means function. The domain A of the function f: A — B is the
thing we are measuring, and the codomain is the set of possible answers or results of the
measurement.

[ woman ] —*[a person| (2.10)

has as molecular mass (Da) —
a molecule | a positive real number ‘ (2.11)

So for the arrow in (2.10), the domain is the set of women (a set with perhaps 3 billion
elements); the codomain is the set of persons (a set with perhaps 6 billion elements). We
can imagine drawing an arrow from each dot in the “woman” set to a unique dot in the
“person” set, just as in Figure 2.2. No woman points to two different people nor to zero
people—each woman is exactly one person—so the rules for a function are satisfied. Let
us now concentrate briefly on the arrow in (2.11). The domain is the set of molecules,
the codomain is the set R of positive real numbers. We can imagine drawing an arrow
from each dot in the “molecule” set to a single dot in the “positive real number” set. No
molecule points to two different masses, nor can a molecule have no mass: each molecule
has exactly one mass. Note, however, that two different molecules can point to the same
mass.

2.3.2.1 Invalid aspects

To be valid an aspect must be a functional relationship. Arrows may on their face appear
to be aspects, but on closer inspection they are not functional (and hence not valid as
aspects).

Consider the following two arrows:

(@ person] % [a child] (2124

|a mechanical pencil ‘ = ‘ a piece of lead| (2:13%)
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A person may have no children or may have more than one child, so the first arrow is
invalid: it is not a function. Similarly, if one drew an arrow from each mechanical pencil
to each piece of lead it uses, one would not have a function.

Warning 2.3.2.2. The author of an olog has a worldview, some fragment of which is
captured in the olog. When person A examines the olog of person B, person A may or
may not agree with it. For example, person B may have the following olog

which associates to each marriage a man and a woman. Person A may take the position
that some marriages involve two men or two women and thus see B’s olog as wrong.
Such disputes are not “problems” with either A’s olog or B’s olog; they are discrepancies
between worldviews. Hence, a reader R may see an olog in this book and notice a
discrepancy between R’s worldview and my own, but this is not a problem with the olog.
Rules are enforced to ensure that an olog is structurally sound, not to ensure that it
“correctly reflects reality,” since worldviews can differ.

Consider the aspect "an object™ bas, ra weight™. At some point in history, this
would have been considered a valid function. Now we know that the same object
would have a different weight on the moon than it has on earth. Thus, as world-
views change, we often need to add more information to an olog. Even the validity

of Tan object on earth” 5. ng weight™ is questionable, e.g., if I am considered to be
the same object on earth before and after I eat Thanksgiving dinner. However, to build
a model we need to choose a level of granularity and try to stay within it, or the whole
model would evaporate into the nothingness of truth. Any level of granularity is called
a stereotype; e.g., we stereotype objects on earth by saying they each have a weight. A
stereotype is a lie, more politely a conceptual simplification, that is convenient for the
way we want to do business.

Remark 2.3.2.3. In keeping with Warning 2.3.2.2, the arrows in (2.12%) and (2.13*) may
not be wrong but simply reflect that the author has an idiosyncratic worldview or vo-
cabulary. Maybe the author believes that every mechanical pencil uses exactly one piece
of lead. If this is so, then "a mechanical pencil? ———-» Ta piece of lead™ is indeed a valid
aspect. Similarly, suppose the author meant to say that each person was once a child,

or that a person has an inner child. Since every person has one and only one inner child
has as inner child

(according to the author), the map "a person” Ta child™ is a valid as-
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pect. We cannot fault the olog for its author’s view, but note that we have changed the
name of the label to make the intention more explicit.

2.3.2.4 Reading aspects and paths as English phrases

Each arrow (aspect) X 2, ¥ can be read by first reading the label on its source box X,
then the label on the arrow f, and finally the label on its target box Y. For example, the
arrow

has as first author
a book a person (2.14)

is read “a book has as first author a person.”

Remark 2.3.2.5. Note that the map in (2.14) is a valid aspect, but a similarly benign-
looking map "a book? —asasauthor  r, 4 erson™ would not be valid, because it is not
functional. When creating an olog, one must be vigilant about this type of mistake

because it is easy to miss, and it can corrupt the olog.

Sometimes the label on an arrow can be shortened or dropped altogether if it is obvious
from context (see Section 2.3.3). Here is a common example from the way I write ologs.

(2.15)

Neither arrow is readable by the preceding protocol (e.g., “a pair (z,y), where z and y
are integers x an integer” is not an English sentence), and yet it is clear what each map
means. For example, given (8,11) in A, arrow x would yield 8 and arrow y would yield
11. The label = can be thought of as a nickname for the full name “yields as the value of
x,” and similarly for y. I do not generally use the full name, so as not to clutter the olog.

One can also read paths through an olog by inserting the word which (or who) after
each intermediate box. For example, olog (2.16) has two paths of length 3 (counting
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arrows in a chain):

(2.16)

The top path is read “a child is a person, who has as parents a pair (w, m), where w is
a woman and m is a man, which yields, as the value of w, a woman.” The reader should
read and understand the content of the bottom path, which associates to every child a
year.

2.3.2.6 Converting nonfunctional relationships to aspects

There are many relationships that are not functional, and these cannot be considered

aspects. Often the word has indicates a relationship—sometimes it is functional, as in

has f o B i has )
Ta person” —— "a stomach™, and sometimes it is not, as in "a father™ —— Ta child™.

Clearly, a father may have more than one child. This one is easily fixed by realizing that

the arrow should go the other way: there is a function "a child” has, ra father.

What about "a person? —~=, Fa car”. Again, a person may own no cars or more
than one car, but this time a car can be owned by more than one person too. A quick
fix would be to replace it by Ta person? == Ta set of cars?. This is okay, but the
relationship between Ta car™ and "a set of cars? then becomes an issue to deal with later.
There is another way to indicate such nonfunctional relationships. In this case it would

look like this:
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example, consider the two paths from A to C in the olog

(2.17)

We know as English speakers that a woman parent is called a mother, so these two paths
A — C should be equivalent. A mathematical way to say this is that the triangle in olog
(2.17) commutes. That is, path equivalences are simply commutative diagrams, as in
Section 2.2. In the preceding example we concisely say “a woman parent is equivalent to
a mother.” We declare this by defining the diagonal map in (2.17) to be the composition
of the horizontal map and the vertical map.

I generally prefer to indicate a commutative diagram by drawing a check mark, v,
in the region bounded by the two paths, as in olog (2.17). Sometimes, however, one
cannot do this unambiguously on the two-dimensional page. In such a case I indicate
the commutative diagram (fact) by writing an equation. For example, to say that the
diagram

f

A——=B
J )
[

commutes, we could either draw a check mark inside the square or write the equation

alfigl = alh.i]

above it.% Either way, it means that starting from A, “doing f, then ¢” is equivalent to
“doing h, then i.”

SWe defined function composition in Section 2.1.2, but here we are using a different notation. There
we used classical order, and our path equivalence would be written go f = ioh. As discussed in Remark
2.1.2.11, category theorists and others often prefer the diagrammatic order for writing compositions,
which is f;g = h;i. For ologs, we roughly follow the latter because it makes for better English sentences,
and for the same reason, we add the source object to the equation, writing [ f, g] ~ a[h,i].
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Here is another example:

Note how this diagram gives us the established terminology for the various ways in which
DNA, RNA, and protein are related in this context.
Ezxercise 2.3.3.1.

Create an olog for human nuclear biological families that includes the concepts of
person, man, woman, parent, father, mother, and child. Make sure to label all the arrows
and that each arrow indicates a valid aspect in the sense of Section 2.3.2.1. Indicate with
check marks (v) the diagrams that are intended to commute. If the 2-dimensionality of
the page prevents a check mark from being unambiguous, indicate the intended commu-
tativity with an equation. 0

Solution 2.3.3.1.

Note that neither of the two triangles from child to person commute. To say that they
did commute would be to say that “a child and its mother are the same person” and that
“a child and its father are the same person.” ¢
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Ezample 2.3.3.2 (Noncommuting diagram). In my conception of the world, the following
diagram does not commute:

a person has as father P (218)

lives in
lives in

The noncommutativity of diagram (2.18) does not imply that no person lives in the same
city as his or her father. Rather it implies that it is not the case that every person lives
in the same city as his or her father.

FExercise 2.3.3.3.

Create an olog about a scientific subject, preferably one you think about often. The
olog should have at least five boxes, five arrows, and one commutative diagram. 0

Solution 2.3.3.3.
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To be clear, the check mark in the lower half of the diagram indicates that the square
including W commutes; the square that includes W’ does not. The reason is that the
space of possible definitions for a word includes the meanings for that word in all contexts.
The space of definitions for a word in context is smaller than the space of definitions for
a word taken out of context, because out of context the meaning of a word is more
ambiguous.

In my conception, a word has a space rather than simply a set of meanings. For
example, consider the sentence, “He wore a large hat.” Here, the word large has a space
of meanings, though I might say that the space is connected in that the meaning of large
is fluid but not ambiguous. On the other hand, in the ambiguous sentence, “Kids make
nutritious snacks,” the word make has two disconnected spaces of meanings: either the
kids assemble snacks or they are themselves considered to be snacks. ¢

2.3.3.4 A formula for writing facts as English

Every fact consists of two paths, say, P and @, that are to be declared equivalent. The
paths P and @) will necessarily have the same source, say, s, and target, say, t, but their
lengths may be different, say, m and n respectively.” We draw these paths as

ap=s fi a1 fz: ax f3 fm-1 @m-1  fin am=t

P: . . « —> ... o — =" (2.19)
bo=s g1 by g2 b2 g3 gn—1 bn-1 g, bp=t
G ° . ® cen ° °

Every part £ of an olog (i.e., every box and every arrow) has an associated English phrase,
which we write as {£%. Using a dummy variable z, we can convert a fact into English
too. The following general formula may be a bit difficult to understand (see Example
2.3.3.5). The fact P ~ @ from (2.19) can be Englished as follows:

Given z,{s) consider the following. (2:20)

We know that z is {s),
which ((f1)) a1, which {f2)) €ag)), which ... {fin-1)) €am-1)), which
Cfm» D,

that we call P(z).

We also know that z is (s},

'%’;;Ch &g by, which {g2)) b2}, which ... {gn—1) bn—1), which {gn})
that we call Q(x).

Fact: Whenever z is (s, we will have P(z) = Q(x).

7If the source equals the target, s = ¢, then it is possible to have m = 0 or n = 0, and the ideas that
follow still make sense.
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Ezample 2.3.3.5. Consider the olog

(2.21)

To put the fact that diagram (2.21) commutes into English, we first English the two
paths: F'="a person has an address which is in a city” and GG=""a person lives in a city.”
The source of both is s = “a person” and the target of both is ¢t = “a city.” Write:

Given x, a person, consider the following.
We know that z is a person,
who has an address, which is in a city,

that we call P(x).
We also know that x is a person,
who lives in a city
that we call Q(x).
Fact: Whenever z is a person, we will have P(z) = Q(x).
More concisely, one reads olog 2.21 as
A person z has an address, which is in a city, and this is the city x lives in.

FEzercise 2.3.3.6.

This olog was taken from Spivak [38].

N

C
has
‘a phone number | ———————| an area code

is assigned
y corresponds to

P R
——— | a physical hone‘—-a—
is \ phy p is currently g

located in

OLP
an operational land-
line phone

(2.22)

It says that a landline phone is physically located in the region to which its phone number
is assigned. Translate this fact into English using the formula from (2.20). 0
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assuming each person has a primary residence.

The point is that the notion of image creates new types out of existing aspects, or func-
tions. This connection puts the function first and derives the type from it as its image. A

bicycle owner is not a type of person until we have the function that assigns ownership.
]



Chapter 3

Fundamental Considerations in
Set

In this chapter we continue to pursue an understanding of sets. We begin by examining
how to combine sets in various ways to get new sets. To that end, products and coproducts
are introduced, and then more complex limits and colimits, with the aim of conveying
a sense of their universal properties. The chapter ends with some additional interesting
constructions in Set.

3.1 Products and coproducts

This section introduces two concepts that are likely to be familiar, although perhaps not
by their category-theoretic names: product and coproduct. Each is an example of a large
class of ideas that exist far beyond the realm of sets (see Section 6.1.1).

3.1.1 Products

Definition 3.1.1.1. Let X and Y be sets. The product of X and Y, denoted X x VY, is
defined as the set of ordered pairs (z,y), where z € X and y € Y. Symbolically,

XxY={(x,y)|zeX, yeY}.

41
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There are two natural projection functions, m: X xY - X and m: X xY - Y.

XxY
7N
X Y

Ezample 3.1.1.2 (Grid of dots). Let X = {1,2,3,4,5,6} and Y = {&, <, ¥, #}. Then we
can draw X x Y as a 6 by 4 grid of dots, and the projections as projections

v A%
&
L ]
o™ |3 (3.1)
Q@
L ]
&
L ]
T
1 2 3 4 5 6
[ ] [ ] [ ] [ ] L ] [ ]
X

Application 3.1.1.3. A traditional (Mendelian) way to predict the genotype of offspring
based on the genotype of its parents is by the use of Punnett squares. If F' is the set of
possible genotypes for the female parent, and M is the set of possible genotypes of the
male parent, then I’ x M is drawn as a square, called a Punnett square, in which every
combination is drawn. 00

FExercise 3.1.1.4.

How many elements does the set {a,b, ¢, d} x {1,2,3} have? 0
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Solution 3.1.1.4.

4x3=12. 4

Application 3.1.1.5. Suppose we are conducting experiments about the mechanical prop-
erties of materials, as in Application 2.1.2.2. For each material sample we will produce
multiple data points in the set "extension® x force™ = R x R.

o0

Remark 3.1.1.6. It is possible to take the product of more than two sets as well. For
example, if A, B, and C are sets, then A x B x C is the set of triples

Ax BxC:={(a,bec)]|ac Abe B,ceC}.

This kind of generality is useful in understanding multiple dimensions, e.g., what
physicists mean by ten-dimensional space. It comes under the heading of limits (see
Section 6.1.3).

Fzample 3.1.1.7. Let R be the set of real numbers. By R? we mean R x R. Similarly, for
any n € N, we define R" to be the product of n copies of R.

According to Penrose [35], Aristotle seems to have conceived of space as something
like S := R? and of time as something like T := R. Space-time, had he conceived of it,
would probably have been S x T = R*. He, of course, did not have access to this kind of
abstraction, which was probably due to Descartes. (The product X x Y is often called
Cartesian product, in his honor.)

Fzercise 3.1.1.8.

Let Z denote the set of integers, and let +: Z x Z — Z denote the addition function
and -: Z X Z — Z denote the multiplication function. Which of the following diagrams
commute?

a.
(a,b,c)—(a-b,a-c)
ZxZxZ ZxZ
(ﬂ‘bsﬂ)’—'(ﬂ‘*‘b‘c)l l(w,y)»—hw%-y
Z x Z Z
(zy)—zy
b.
z—(x,0)
Z———————=7Z X T
l(ufb)»—m.-b
idz

Z
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z—(x,1)

L————= 7 X7

\ l (a,b)—a-b
idz

Z

Solution 3.1.1.8.

a. This diagram does not commute because a-b+ a-c # (a + b) - ¢, at least for some
integers a,b,ce Z,e.g.,a=0,b=1,c=1.

b. This diagram does not commute because x - 0 # x, at least for some integers x € Z.

¢. This diagram commutes. For every integer = € Z, we have x - 1 = .

3.1.1.9 Universal property for products

A universal property is an abstract quality that characterizes a given construction. For
example, the following proposition says that the product construction is characterized as
possessing a certain quality.

Proposition 3.1.1.10 (Universal property for product). Let X and Y be sets. For any
set A and functions f: A — X and g: A — Y, there exists a unique function A — X xY
such that the following diagram commules:

XxY (3.2)

We say this function is induced by f and g, and we denote it

(f,g: A— X xY, where  (f.g)(a) = (f(a),g(a)).
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b. Consider the map {ps,p;): ¥ x X - X x Y. Let s: X xY — X x Y be the composite
{p2,p1) o (mwa,m . We have m; 0 s = m by the following calculation:

T 08 =Ty 0 {pa, p1) © {2, T1)

:P20<W2,7F1> =T,

and by a similar calculation, 73 © s = 7. But we also have 7 cidx«y = m and
72 0 idxxy = me. Thus the universal property (Proposition 3.1.1.10) implies that
s = idXXY'

By similar reasoning, if t: Y x X — Y x X is the composite {my, T ) © (pa, p1 ), we
can show that ¢t = idy « x. By Definition 2.1.2.14, the functions s and ¢ constitute an
isomorphism X x YV — Y x X.

¢

Ezample 3.1.1.15. Suppose given sets X, X', Y, Y’ and functions m: X — X' andn: Y —
Y’. We can use the universal property for products to construct a function s: X x ¥ —
Xl ¥,

The universal property (Proposition 3.1.1.10) says that to get a function from any set
A to X' x Y, we need two functions, namely, some f: A — X’ and some g: A — Y.
Here we want to use A := X x Y.

What we have readily available are the two projections 71: X xY — X and 7o: X x
Y — Y. But we also have m: X — X’ and n: ¥ — Y’. Composing, we set f := mom
and g := nomy.

X' xY'
) A Th
1 | 2
|
¥ | y!
mT Y T
x N oy
|
\ | /
XxY

The dotted arrow is often called the product of m: X — X’ and n: Y — Y’. Here it
is denoted (f,g>, but f and g were not given variables. Since writing {m o m,nomg) is
clunky notation, we instead denote this function

mxn: X xY - X xY'.
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3.1.1.16 Ologging products

Given two objects ¢,d in an olog, there is a canonical label {¢ x d)) for their product
¢ x d, written in terms of the labels (¢} and {d). Namely,

(e x dy:="a pair (z,y), where x is (¢ and y is {d}).

The projections ¢ « ¢ x d — d can be labeled “yields, as z,” and “yields, as y,” respec-
tively.

Suppose that e is another object, and p: e — ¢ and ¢: e — d are two arrows. By
the universal property for products (Proposition 3.1.1.10), p and ¢ induce a unique arrow
e — ¢ x d, making the evident diagramns commute. This arrow can be labeled

“yields, insofar as it {p) «c) and (g {d),” .

Ezample 3.1.1.17. Every car owner owns at least one car, but there is no obvious function
Ta car owner? — "a car” because he or she may own more than one. One good choice
would be the car that the person drives most often, which can be called his or her primary
car. Also, given a person and a car, an economist could ask how much utility the person
would get out of the car. From all this we can put together the following olog involving
products:

1as as associ-
4

(@]

ited utility
a car o — | a dollar value

P

a person a car

The composite map O — V tells us the utility a car owner gets out of their primary car.

3.1.2 Coproducts

We can characterize the coproduct of two sets with its own universal property.

Definition 3.1.2.1. Let X and Y be sets. The coproduct of X and Y, denoted X 1Y,
is defined as the disjoint union of X and Y, i.e., the set for which an element is either an
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element of X or an element of Y. If something is an element of both X and Y, then we
include both copies, and distinguish between them, in X U Y. See Example 3.1.2.2.
There are two natural inclusion functions, i;: X - X uY andis: Y - X 0 Y.

X Y

XuY

(3.3)

Ezample 3.1.2.2. The coproduct of X := {a,b,c,d} and Y := {1,2,3} is
XuY ={abrcd1,23}
The coproduct of X and itself is
XuX ={a,b,c1,dy,a0,bo,co,ds}.
The names of the elements in X U Y are not so important. What is important are the

inclusion maps i1, 12 from (3.3), which ensure that we know where each element of X 1Y
came from.

Ezample 3.1.2.3 (Airplane seats).

X gl
an economy- a first-class
class seat in seat in an (3.4)
an airplane airplane
XuY
a seat in an
airplane

FEzercise 3.1.2.4.

Would you say that "a phone™ is the coproduct of "a cell phone™ and "a landline
phone™? 0
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Solution 3.1.2.4.

Let’s make the case that "a phone™ is the coproduct "a cell phone™w"a landline phone™.
First, there is no overlap between cell phones and landline phones (nothing is both). But
is it true that every phone is either a cell phone or a landline? There used to be some-
thing called car phones, which were mobile in that they worked from any location but
were immobile in the sense that the said location had to be within a given car. So, if at
the time this solution is being read, there are phones that are neither landlines nor cell
phones, then the answer to this question is no. But if every phone is either a cell phone
or a landline, then the answer to this question is yes. ¢
Ezample 3.1.2.5 (Disjoint union of dots). Below, X and Y are sets, having six and four
elements respectively, and X v Y is their coproduct, which has ten elements.

xr x5

P

o

iz

(3.5)

LE¢]

P

=N
o
[ J=2l

3.1.2.6 Universal property for coproducts

Proposition 3.1.2.7 (Universal property for coproduct). Let X and Y be sets. For any
set A and functions f: X — A and g: Y — A, there exists a unique function X Y — A
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such that the following diagram commules:

A
A
\
|
|
|
|
|
\
|
]

XuY

We say this function is induced by f and g, and we denote it

{f:XuY—>A.
g

That is, we have {5 ciy = f and {é‘ oiy = g, and {5 is the only function for which
that is so. l I I

Proof. Suppose given [, g as in the proposition statement. To provide a function £: X 1
Y — A is equivalent to providing an element f(m) € A for each m e X u'Y. We need

such a function ¢ = ; such that {g oi; = [ and {5 ois = g. But each element

m e X uY is either of the form iyx or isy and cannot be of both forms. So we assign

foo 5@ itm =i,
{ (m) {g(y) if m = izy. (3-6)

This assignment is necessary and sufficient to make all relevant diagrams commute.

Slogan 3.1.2.8.

Any time behavior is determined by cases, there is a coproduct involved.

1We are using a two-line symbol, which is a bit unusual. A certain function X 1Y — A is being

denoted by the symbol {g , called case notation. The reasoning for this will be clear from the proof,

especially (3.6).
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To assign an A value to each element of X U Y, you can delegate responsibility: have
one person assign an A value to each element of X, and have another person assign an
A value to each element of Y. One function is equivalent to two. )

Ezample 3.1.2.13. In the following olog the types A and B are disjoint, so the coproduct
C' = A u B is just the union.

C=AuB B

A . .
18 is
a person | ——= ‘ a person or a cat ‘ <——acat

Ezample 3.1.2.14. In the following olog A and B are not disjoint, so care must be taken
to differentiate common elements.

Since ducks can both swim and fly, each duck is found twice in C, once labeled “A”, a
flyer, and once labeled “B”, a swimmer. The types A and B are kept disjoint in ', which
justifies the name disjoint union.

FEzxercise 3.1.2.15.

Following Section 3.1.1.16, devise a naming system for coproducts, the inclusions, and
the universal maps. Try it out by making an olog (involving coproducts) that discusses
the idea that both a .wav file and an .mp3 file can be played on a modern computer. Be
careful that your arrows are valid (see Section 2.3.2.1). 0

Solution 3.1.2.15.

Given two objects ¢, d in an olog, there is a canonical label “c L d” for their coproduct
c u d, written in terms of the labels “c” and “d.” Namely,

&ew dyy := “{e) (indicated as being “¢e)”) or {d}) (indicated as being “{d)7).”

The inclusions ¢ — ¢ L d < d can be labeled “after being tagged “c” is” and “after being
tagged “d” is” respectively.
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For example,

3.2 Finite limits in Set

This section discusses limits of variously shaped diagrams of sets. This is made more
precise in Section 6.1.3, which discusses arbitrary limits in arbitrary categories.
3.2.1 Pullbacks

Definition 3.2.1.1 (Pullback). Suppose given the following diagram of sets and func-
tions:

Y (3.8)
9
X —F Z
Its fiber product is the set
X xzY :={(z,2,9) | f(z) = 2 = g(y)}.

There are obvious projections m1: X xzY — X and m: X xz Y — Y (e.g., ma(z, 2,y) =
y). The following diagram commutes:

XxzY -2>Y (3.9)

X — s

f
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Given the setup of diagram (3.8), we define a pullback of X and Y over Z to be any set

W for which we have an isomorphism W =»> X xz Y. The corner symbol J in diagram
(3.9) indicates that X xz Y is a pullback.

Ezxercise 3.2.1.2.

Let X,Y,Z be as drawn and f: X — Z and g: ¥ — Z the indicated functions.
X V4 Y

What is the fiber product of the diagram X 72 ¥} 0
Solution 3.2.1.2.

It is the five-element set

X xzY = {(x1,21,1), (T2, 22, ¥2), (T2, 22,Ya), (T3, 22, Y2), (T3, 22, Y4) }.
Ezercise 3.2.1.3.

a. Draw a set X with five elements and a set ¥ with three elements. Color each element
of X and each element of Y red, blue, or green,? and do so in a random-looking way.
Considering your coloring of X as a function X — ', where C' = {red, blue, green},
and similarly obtaining a function Y — C, draw the fiber product X xo Y.

b. The universal property for products guarantees a function X x¢ Y — X x Y, which
will be an injection. This means that the drawing you made of the fiber product can
be embedded into the 5 x 3 grid. Draw the grid and indicate this subset.

2You may use shadings rather than coloring, if you prefer.
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Solution 3.2.1.3.

a. Let X ={1,2,3,4,5} and Y = {a, b, c}. The fiber product is shown in part (b).
b.

Y vV y
13
L ]
B | (3.10)
[ ]
(.‘.
m
1 2 3 4 5
L ] L ] L ] L ] [ ]
X

Note that inside the set of X x Y = 15 possible (z,y) pairs is the set of pairs that
agree on color—this is X x¢ Y. The grid X x YV is not drawn, but it includes the
drawn dots, X xcY € X x Y, as well as eight nondrawn dots such as (3, a), which
“couldn’t agree on a color.”

4

Remark 3.2.1.4. Some may prefer to denote the fiber product in (3.8) by f x z g rather
than X xz Y. The former is mathematically better notation, but human-readability
is often enhanced by the latter, which is also more common in the literature. We use
whichever is more convenient.

Ezxercise 3.2.1.5.

Let f: X > Z and g: Y — Z be functions.
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a. Suppose that ¥ = ¢F; what can you say about X x, Y7

b. Suppose now that Y is any set but that Z has exactly one element; what can you say
about X xz Y7

Solution 3.2.1.5.

a. fY =, then X xz Y = ¢ regardless of X,Y, Z, f, and g.

b. We always have that X x z Y is the set of all triples (z, z,y), wherex € X,ye Y,z € Z
and f(x) = z = g(y). If Z has only one element, say, Z = {®}, then for all z € X
and y € Y, we have f(z) = @ = g(y). So X x,0, Y = {(2,9,2) [z e X,y e Y}. But
this set is isomorphic to the set {(x,y) | z € X,y € Y}. In other words, if Z has one
element, then X xz VY = X x Y. One way of seeing this is by looking at Exercise
3.2.1.3 and thinking about what happens when there is only one color.

Fzercise 3.2.1.6.

Let S = R®,T = R, and think of them as (Aristotelian) space and time, with the
origin in § x T given by the center of mass of MIT at the time of its founding. Let
Y =8xT, and let g1: ¥ — S be one projection and g2: ¥ — T the other projection.
Let X = {®} be a set with one element, and let f;: X — S and fo: X — T be given by
the origin in both cases.

a. What are the fiber products W7 and W:

Wy, —>Y Wy — =Y
. | . |
l lyl l 92

b. Interpret these sets in terms of the center of mass of MIT at the time of its founding.
¢
Solution 3.2.1.6.

Let (sp.t9) € S x T, where sp € S and ty € T, be the center of mass of MIT at the
time of its founding.
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Solution 3.2.1.10.

a. This is appropriate.
b. This is appropriate.

¢. This is misleading. If a piece of furniture has precisely the same width as a space in
our house, it is not a good fit—it is terribly frustrating but not a fit.

FEzercise 3.2.1.11.

Consider your olog from Exercise 2.3.3.1. Are any of the commutative squares in it
actually pullback squares? 0

Solution 3.2.1.11.

Yes, both commutative squares are pullbacks. That is, a mother is a parent who is a
woman, and a father is a parent who is a man. )

Definition 3.2.1.12 (Preimage). Let f: X — Y be a function and y € Y an element.
The preimage of y under f, denoted f~'(y), is the subset f~!(y) := {x € X | f(z) = y}.
If Y/ € Y is any subset, the preimage of Y’ under f, denoted f~!(Y”), is the subset
Y ={ze X | fx)eY'}.

Fzxercise 3.2.1.13.

Let f: X — Y be a function and y € Y an element. Draw a pullback diagram in
which the fiber product is isomorphic to the preimage f~1(y). O

Solution 3.2.1.13.

It is often useful to think of an element y € Y as a function y: {®} — Y, as in
Notation 2.1.2.9. Then the following diagram is a pullback:

fy) —X
o
{0} —5—Y
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Fzercise 3.2.1.14.

Consider the function f: N — N, where f(n) =n+3. Let A= {ieN|i > T}, and
let g: A — N be the inclusion, e.g., g(17) = 17. What is the pullback of the following
diagram?

A

|

N —
fN

Solution 3.2.1.14.

The pullback is isomorphic to the set {(n,7) e NxN |n+3 =1 =T} = {neN|n =4}
¢

Proposition 3.2.1.15 (Universal property for pullback). Suppose given the diagram of
sets and functions as below:

Y

VA

For any set A and the following commutative solid-arrow diagram (i.e., functions f: A —
X and g: A — Y such thatto f = wocg), there is a unique function A - X xz Y such
that the diagram commutes:

X—>

X %zY (3.12)

§
S A
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Fzercise 3.2.1.16.

a. Create an olog whose underlying shape is a commutative square. Now add the fiber
product so that the shape is the same as that of diagram (3.12).

b. Use your result to devise English labels to the object X x z Y, to the projections 7y, s,

and to the dotted map A % X xz Y, such that these labels are as canonical as
possible.

Solution 3.2.1.16.

b. The answer to part (a) is not as general as possible, so we proceed in two steps. First
we will give a good guess for the answer to part (a), then we will give the general
answer.

What makes this example particularly nice is that the function u: Y — Z is labeled
“is”, suggesting that Y is a subset of Z. In this case, the map m; is labeled the same as
u (namely, “is”), the map 7y is labeled the same as ¢, and the map (f,g). A - X xzY
is labeled the same as f. If {X ), Y5, (Z), {t), and {u)) are the labels for X, Y, Z, ¢,
and u respectively, then the object X x z Y is labeled “{ X%, which {t){Y ) For the
part (a) example, it would be "a person who has as favorite color blue™. See Example

3.4.5.10.

But, in general, we cannot expect either ¢ or u to be an “is.” In general, X x z Y should
be labeled “a pair (z, z), where z is {X), y is (Y, and z{(¢t){Z) that is the same
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as {(y»&wy.” The maps m and ms should simply be labeled “yields, as 2” and “yields,
as y.” The map (f, g), should be labeled “yields, insofar as it {f)»{ X)) and {gHpLY )
and these agree as (XHANCZ) and (Y HLupdZ)”

3.2.1.17 Pasting diagrams for pullback

Consider the following diagram, which includes a left-hand square, a right-hand square,
and a big rectangle:
' _f,:__ B i} o
- |

[= 4= |
The right-hand square has a corner symbol indicating that B’ = B x C” is a pullback.
But the corner symbol in the leftmost corner is ambiguous; it might be indicating that
the left-hand square is a pullback, or it might be indicating that the big rectangle is a
pullback. It turns out not to be ambiguous because the left-hand square is a pullback if
and only if the big rectangle is. This is the content of the following proposition.

Proposition 3.2.1.18. Consider the diagram:

where B' = B xc C’ is a pullback. Then there is an isomorphism A xg B' = A xo C".
In other words, there is an isomorphism

A)(B(B chf)EAXCC,.

Proof. We first provide amap ¢: Axg(BxcC') —» AxC’. Anelement of Axg(BxcC")
is of the form (a,b,(b,c,¢’)) such that f(a) = b,g(b) = ¢ and k(') = c. But this
implies that g o f(a) = ¢ = k(') so we put &(a,b, (b,c,c)) = (a,¢,¢) € A xe C7. Now
we provide a proposed inverse, ¢': A x¢ C' — A xg (B x¢ C'). Given (a,c, ') with
go fla) =e¢=k(c), let b= f(a) and note that (b,e,¢’) is an element of B x~ C’. So we
can define ¢(a,c, ') = (a,b, (b,c,’)). It is easy to see that ¢ and ¢ are inverse.

o
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Proposition 3.2.1.18 can be useful in authoring ologs. For example, the type a cell
phone that has a bad battery™ is vague, but we can lay out precisely what it means using
pullbacks:

(3.13)

The category-theoretic fact described here says that since A = B xp C and C =
D x g E, it follows that A ~ B x g E. That is, we can deduce the definition “a cell phone
that has a bad battery is defined as a cell phone that has a battery which remains charged
for less than one hour.”

Ezercise 3.2.1.19.

a. Create an olog that defines two people to be “of approximately the same height” if
and only if their height difference is less than half an inch, using a pullback. Your olog
can include the box Ta real number z such that —.5 <z < .5™.

b. In the same olog, use pullbacks to make a box for those people whose height is ap-
proximately the same as a person named “Mary Quite Contrary.”



