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PREFACE

Atiyah described mathematics as the “science of analogy.” In this vein, the purview
of category theory is mathemuticul unulogy. Category theory provides a cross-disciplinary
language for mathematics designed to delineate general phenomena, which enables the
transfer of ideas from one area of study to another. The category-theoretic perspective can
function as a simplifying! abstraction, isolating propositions that hold for formal reasons
from those whose proofs require techniques particular to a given mathematical discipline.?

A subtle shift in perspective enables mathematical content to be described in language
that is relatively indifferent to the variety of objects being considered. Rather than charac-
terize the objects directly, the categorical approach emphasizes the transformations between
objects of the same general type. A fundamental lemma in category theory implies that any
mathematical object can be characterized by its universal property—Iloosely by a represen-
tation of the morphisms to or from other objects of a similar form. For example, tensor
products, “free” constructions, and localizations are characterized by universal properties in
appropriate categories, or mathematical contexts. A universal property typically expresses
one of the mathematical roles played by the object in question. For instance, one universal
property associated to the unit interval identifies self-homeomorphisms of this space with
re-parameterizations of paths. Another highlights the operation of gluing two intervals end
to end to obtain a new interval, the construction used to define composition of paths.

Certain classes of universal properties define blueprints which specify how a new
object may be built out of a collection of existing ones. A great variety of mathematical
constructions fit into this paradigm: products, kernels, completions, free products, “gluing”
constructions, and quotients are all special cases of the general category-theoretic notion of
limits or colimits, a characterization that makes it easy to define transformations to or from
the objects so-defined. The input data for these constructions are commututive diagrams,
which are themselves a vehicle for mathematical definitions, e.g., of rings or algebras,
representations of a group, or chain complexes.

Important technical differences between particular varieties of mathematical objects
can be described by the distinctive properties of their categories: that rings have all limits
and colimits while fields have few, that a continuous bijection defines an isomorphism of
compact Hausdorff spaces but not of generic topological spaces. Constructions that convert
mathematical objects of one type into objects of another type often define transformations
between categories, called functors. Many of the basic objects of study in modern algebraic
topology and algebraic geometry involve functors and would be impossible to define without
category-theoretic language.

'In his mathematical notebooks, Hilbert formulated a “24th problem” (inspired by his work on syzygies) to
develop a criterion of simplicity for evaluating competing proofs of the same result [TW02].

2For example, the standard properties of induced representations (Frobenius reciprocity, transitivity of induc-
tion, even the explicit formula) are true of any construction defined as a left Kun extension: character tables,
however, are non-formal.
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Category theory also contributes new proof techniques, such as diagram chasing or
arguments by duality; Steenrod called these methods “abstract nonsense.”> The aim of
this text is to introduce the language, philosophy, and basic theorems of category theory.
A complementary objective is to put this theory into practice: studying functoriality in
algebraic topology, naturality in group theory, and universal properties in algebra.

Practitioners often assert that the hard part of category theory is to state the correct
definitions. Once these are established and the categorical style of argument is sufficiently
internalized, proving the theorems tends to be relatively easy.* Indeed, the proofs of several
propositions appearing in this text are left as exercises, with confidence that the reader will
eventually find it more efficient to supply their own arguments than to read the author’s.> The
relative simplicity of the proofs of major theorems occasionally leads detractors to assert
that there are no theorems in category theory. This is not at all the case! Counterexamples
abound in the text that follows. A short list of further significant theorems, beyond the
scope of a first course but not too far to be out of the reach of comprehension, appears as
an epilogue.

Sample corollaries

It is difficult to preview the main theorems in category theory before developing
fluency in the language needed to state them. (A reader possessing such fluency might
wish to glance ahead to §E.1.) Instead, here are a few corollaries, results in other areas
of mathematics that follow trivially as special cases of general categorical results that are
proven in this text.

As an application of the theory of equivalence between categories:

CoroLLARY 1.5.13. In u path-connected space, any choice of buasepoint yields an isomor-
phic fundumental group.

A fundamental lemma in category theory has the following two results as corollaries:

CoroLLARY 2.2.9. Every row operation on matrices with n rows is defined by left multipli-
cution by some n X n matrix, namely the matrix obtuined by performing the row operation
on the identity matrix.

Cororrary 2.2.10. Any group is isomorphic to a subgroup of a permutation group.
A special case of a general result involving the interchange of limits and colimits is:
CoroLLARY 3.8.4. For any puir of sets X und Y and any function f: X x ¥ — R

supinf f(x,y) < inf sup f(x,y)
xeX ye¥ yeY xeX

3Lang’s Algebra [Lan02, p. 759] supports the general consensus that this was not intended as an epithet:

In the forties and fifties (mostly in the works of Cartan, Eilenberg, MacLane, and
Steenrod, see [CE56]), it was realized that there was a systematic way of developing
certain relations of linear algebra, depending only on fairly general constructions
which were mostly arrow-theoretic, and were affectionately called abstract nonsense
by Steenrod.

+A famous exercise in Lang’s Algebra asks the reader to “Take any book on homological algebra, and prove
all the theorems without looking at the proofs given in that book” [Lan84, p. 175]. Homological algebra is the
subject whose development induced Eilenberg and Mac Lane to introduce the general notions of category, functor,
and natural transformation.

5In the first iteration of the course that inspired the writing of these lecture notes, the proofs of several major
theorems were also initially left to the exercises, with a type-written version appearing only after the problem set
was due,
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whenever these infima and suprema exist.

The following five results illustrate a few of the many corollaries of a common theo-
rem, which describes one consequence of a type of “duality” enjoyed by certain pairs of
mathematical constructions:

CoroLLARY 4.5.4. For any function : A — B, the inverse image function f~': PB — PA
between the power sets of A und B preserves both unions und intersections, while the direct
imuge function f,: PA — PB only preserves unions.

CoROLLARY 4.5.5. For uny vector spaces U, V, W,
Ug(VeW)z(UeV)a(UeW).
CoROLLARY 4.5.6. For any cardinals «, 8,7y, cardinal arithmetic salisfies the luws:
axX(B+vy)=(axf)+(axy) Bxy)* =" xy" o =af xa”.

CoroLLARY 4.5.7. The free group on the set X U'Y is the free product of the free groups on
the sets X und Y.

CoRroLLARY 4.5.8. For uny R—S bimodule M, the tensor product M ®s — is right exuct.

Finally, a general theorem that recognizes categories whose objects bear some sort of
“algebraic” structure has a number of consequences, including:

CoOROLLARY 5.6.2. Any bijective continuous function between compact Huausdor[f spuces
is a homeomorphism.

This is not to say that category theory necessarily provides a more efficient proof of
these results. In many cases, the proof that general consensus designates the “most elegant”
reflects the categorical argument. The point is that the category-theoretic perspective allows
for an efficient packaging of general arguments that can be used over and over again and
eliminates contextual details that can safely be ignored. For instance, our proof that the
tensor product commutes with the direct sum of vector spaces will not make use of any
bases, but appeals instead to the universal properties of the tensor product and direct sum
constructions.

A tour of basic categorical notions

... the science of mathematics exemplifies the
interdependence of its parts.

Saunders Mac Lane, “Topology and logic as a
source of algebra” [ML76]

A category is a context for the study of a particular class of mathematical objects.
Importantly, a category is not simply a type signature, it has both “nouns” and “verbs,”
containing specified collections of objects and transformations, called morphisms,® between
them. Groups, modules, topological spaces, measure spaces, ordinals, and so forth form
categories, but these classifications are not the main point. Rather, the action of packaging
cach variety of objects into a category shifts one’s perspective from the particularities
of each mathematical sub-discipline to potential commonalities between them. A basic
observation along these lines is that there is a single categorical definition of isomorphism

6The term “morphism” is derived from homomorphism, the name given in algebra to a structure-preserving
function. Synonyms include “arrow” (because of the notation “—") and “map” (adopting the standard mathemat-
ical colloquialism).
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that specializes to define isomorphisms of groups, homeomorphisms of spaces, order
isomorphisms of posets, and even isomorphisms between categories (see Definition 1.1.9).

Mathematics is full of constructions that translate mathematical objects of one kind
into objects of another kind. A construction that converts the objects in one category into
objects in another category is functoriual if it can be extended to a mapping on morphisms
in such a way that composites and identity morphisms are preserved. Such constructions
define morphisms between categories, called functors. Functoriality is often a key prop-
erty: for instance, the chain rule from multivariable calculus expresses the functoriality
of the derivative (see Example 1.3.2(x)). In contrast with earlier numerical invariants in
topology, functorial invariants (the fundamental group, homology) tend both to be more
easily computable and also provide more precise information. While the Euler character-
istic can distinguish between the closed unit disk and its boundary circle, an easy proof
by contradiction involving the functoriality of their fundamental groups proves that any
continuous endomorphism of the disk must have a fixed point (see Theorem 1.3.3).

On occasion, functoriality is achieved by categorifving an existing mathematical con-
struction. “Categorification” refers to the process of turning sets into categories by adding
morphisms, whose introduction typically demands a re-interpretation of the elements of the
sets as related mathematical objects. A celebrated knot invariant called the Jones polyno-
mial must vanish for any knot diagram that presents the unknot, but its categorification, a
functor? called Khovanov homology, detects the unknot in the sense that any knot diagram
whose Khovanov homology vanishes must represent the unknot. Khovanov homology
converts an oriented link diagram into a chain complex whose graded Euler characteristic
is the Jones polynomial.

A functor may describe an eguivalence of cutegories, in which case the objects in one
category can be translated into and reconstructed from the objects of another. For instance,
there is an equivalence between the category of finite-dimensional vector spaces and linear
maps and a category whose objects are natural numbers and whose morphisms are matrices
(see Corollary 1.5.11). This process of conversion from college linear algebra to high
school linear algebra defines an equivalence of categories; eigenvalues and eigenvectors
can be developed for matrices or for linear transformations, it makes no difference.

Treating categories as mathematical objects in and of themselves, a basic observation is
that the process of formally “turning around all the arrows™ in a category produces another
category. In particular, any theorem proven for all categories also applies to these opposite
cutegories; the re-interpretation of the result in the opposite of an opposite category yields
the statement of the duul theorem. Categorical constructions also admit duals: for instance,
in Zermelo—Fraenkel set theory, a function f: X — Y is defined via its graph, a subset
of X x Y isomorphic to X. The dual presentation represents a function via its cograph, a
Y-indexed partition of X LI Y. Categorically-proven properties of the graph representation
will dualize to describe properties of the cograph representation.

Categories and functors were introduced by Eilenberg and Mac Lane with the goal of
giving precise meaning to the colloquial usage of “natural” to describe families of isomor-
phisms. For example, for any triple of k-vector spaces U, V, W, there is an isomorphism

(0.0.1) Vect (U @y V, W) = Vecty (U, Hom(V, W))
between the set of linear maps U &, V — W and the set of linear maps from U to the vector

space Hom(V, W) of linear maps from V to W. This isomorphism is natural in all three

"Morally, one could argue that functoriality is the main innovation in this construction, but making this
functoriality precise is somewhat subtle [CMW09].



A TOUR OF BASIC CATEGORICAL NOTIONS Xiii

variables, meaning it defines an isomorphism not simply between these sets of maps but
between appropriate set-valued functors of U/, V, and W. Chapter 1 introduces the basic
language of category theory, defining categories, functors, natural transformations, and
introducing the principle of duality, equivalences of categories, and the method of proof by
diagram chasing.

In fact, the isomorphism (0.0.1) defines the vector space U ®y V by declaring that
linear maps U @, V — W correspond to linear maps U — Hom(V, W), i.e., to bilinear
maps U x V. — W. This definition is sufficiently robust that important properties of
the tensor product—for instance its symmetry and associativity—can be proven without
reference to any particular construction (see Proposition 2.3.9 and Exercise 2.3.ii). The
advantages of this approach compound as the mathematical objects so-described become
more complicated.

In Chapter 2, we study such definitions abstractly. A characterization of the morphisms
either to or from a fixed object describes its universal property; the cases of “to” or “from”
are dual. By the Yoneda lemma—which, despite its innocuous statement, is arguably the
most important result in category theory—every object is characterized by either of its
universal properties. For example, the Sierpinski space is characterized as a topological
space by the property that continuous functions X — S correspond naturally to open
subsets of X. The complete graph on n vertices is characterized by the property that
graph homomorphisms G — K, correspond to n-colorings of the vertices of the graph
G with the property that adjacent vertices are assigned distinct colors. The polynomial
ring Z[xy,...,x,] is characterized as a commutative unital ring by the property that ring
homomorphisms Z[x;,...,x,] — R correspond to n-tuples of elements (ry,...,r,) € R.
Modern algebraic geometry begins from the observation that a commutative ring can be
identified with the functor that it represents.

The idea of probing a fixed object using morphisms abutting to it from other objects
in the category gives rise to a notion of “generalized elements” (see Remark 3.4.15). The
elements of a set A are in bijection with functions * — A with domain a singleton set; a
generulized element of A is a morphism X — A with generic domain. In the category of
directed graphs, a parallel pair of graph homomorphisms ¢, : A =2 B can be distinguished
by considering generalized elements of A whose domain is the free-living vertex or the
free-living directed edge.® A related idea leads to the representation of a topological space
via its singular complex.

The Yoneda lemma implies that a general mathematical object can be represented as
a functor valued in the category of sets. A related classical antecedent is a result that
comforted those who were troubled by the abstract definition of a group: namely that any
group is isomorphic to a subgroup of a permutation group (see Corollary 2.2.10). A deep
consequence of these functorial representations is that proofs that general categorically-
described constructions are isomorphic reduce to the construction of a bijection between
their set-theoretical analogs (for instance, see the proof of Theorem 3.4.12).

Chapter 3 studies a special case of definitions by universal properties, which come in
two dual forms, referred to as limits and colimits. For example, aggregating the data of the
cyclic p-groups Z/p" and homomorphisms between them, one can build more complicated
abelian groups. Limit constructions build new objectsin a category by “imposing equations”
on existing ones. For instance, the diagram of quotient homomorphisms

c» Zpt > Lp 2Pt > T p

8The incidence relation in the graph A can be recovered by also considering the homomorphisms between
these graphs.
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has a limit, namely the group 7, of p-udic integers: its elements can be understood as
tuples of elements («, € Z/p")ues, that are compatible modulo congruence. There is a
categorical explanation for the fact that 7, is a commutative ring and not merely an abelian
group: each of these quotient maps is a ring homomorphism, and so this diagram and also
its limit lifts to the category of rings.?

By contrast, colimit constructions build new objects by “gluing together” existing ones.
The colimit of the sequence of inclusions

Zlp—=Z/p* = Z[pP— - Lp" -

is the Priifer p-group Z[%]/Z, an abelian group which can be presented via generators and
relations as

(0.0.2) Z[ﬁ]/z = (gl,gz,‘.. |pg1 =0,pg=g1,pg3 = gg,...).

The inclusion maps are not ring homomorphisms (failing to preserve the multiplicative
identity) and indeed it turns out that the Priifer p-group does not admit any non-trivial
multiplicative structure.

Limits and colimits are accompanied by universal properties that generalize familiar
universal properties in analysis. A poset (A, <) may be regarded as a category whose objects
are the elements ¢ € A and in which a morphism « — «’ is present if and only if ¢ < «’.
The supremum of a collection of elements {u;};c;, an example of a colimit in the category
(A, <), has a universal property: namely to prove that

supu; < d

iel
is equivalent to proving that «; < « for all i € I. The universal property of a generic colimit
is a generalization of this, where the collection of morphisms («; — a);es is regarded as
data, called a cone under the diagram, rather than simply a family of conditions. Limits
have a dual universal property that specializes to the universal property of the infimum of
a collection of elements in a poset.

Chapter 4 studies a generalization of the notion of equivalence of categories, in which
a pair of categories are connected by a pair of opposite-pointing translation functors called
an adjunction. An adjunction expresses a kind of “duality” between a pair of functors, first
recognized in the case of the construction of the tensor product and hom functors for abelian
groups (see Example 4.3.11). Any adjunction restricts to define an equivalence between
certain subcategories, but categories connected by adjunctions need not be equivalent.
For instance, there is an adjunction connecting the poset of subsets of C” and the poset
of subsets of the ring C[x, ..., x,] that restricts to define an equivalence between Zariski
closed subsets and radical ideals (see Example 4.3.2). Another adjunction encodes a duality
between the constructions of the suspension and of the loop space of a based topological
space (see Example 4.3.14).

When a “forgetful” functor admits an adjoint, that adjoint defines a “free” (or, less
commonly, the dual “cofree”) construction. Such functors define universal solutions to
optimization problems, e.g., of adjoining a multiplicative unit to a non-unital ring. The
existence of free groups or free rings have implications for the constructions of limits in these
categories (namely, Theorem 4.5.2); the dual properties for colimits do not hold because
there are no “cofree” groups or rings in general. A category-theoretic re-interpretation
of the construction of the Stone—Cech compactification of a topological space defines a

9The lifting of the limit is considerably more subtle than the lifting of the diagram. Results of this nature
motivate Chapter 5.
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left adjoint to any limit-preserving functor between any pair of categories with similar
set-theoretic properties (see Theorem 4.6.10 and Example 4.6.12).

Many familiar varieties of “algebraic” objects—such as groups, rings, modules, pointed
sets, or sets acted on by a group—admit a “free—forgetful” adjunction with the category of
sets. A special property of these adjoint functors explains many of the common features
of the categories of algebras that are presented in this manner. Chapter 5 introduces
the categorical approach to universal algebra, which distinguishes the categories of rings,
compact Hausdorft spaces, and lattices from the set-theoretically similar categories of
fields, generic topological spaces, and posets. The former categories, but not the latter, are
cutegories of ulgebrus over the category of sets.

The notion of ulgebru is given a precise meaning in relation to a monad, an endofunctor
that provides a syntactic encoding of algebraic structure that may be borne by objects in the
category on which it acts. Monads are also used to construct categories whose morphisms
are partially-defined or non-deterministic functions, such as Markov kernels (see Example
5.2.10), and are separately of interest in computer science. A key result in categorical
universal algebra is a vast generalization of the notion of a presentation of a group via
generators and relations, such as in (0.0.2), which demonstrates that an algebra of any
variety can be presented canonically as a coequulizer'® of a pair of maps from a free
algebra on the “relations” to a free algebra on the “generators.”

The concluding Chapter 6 introduces a general formalism that can be used to redefine
all of the basic categorical notions introduced in the first part of the text. Special cases of
Kun extensions define representable functors, limits, colimits, adjoint functors, and monads,
and their study leads to a generalization of, as well as a dualization of, the Yoneda lemma.
In the most important cases, a Kan extension can be computed by a particular formula,
which specializes to give the construction of a representation for a group induced from a
representation for a subgroup (see Example 6.2.8), to provide a new way to think about
the collection of ultrafilters on a set (see Example 6.5.12), and to define an equivalence of
categories connecting sheaves on a space with étale spaces over that space (see Exercise
6.5.iii).

A brief detour introduces derived functors, which are certain special Kan extensions that
are of great importance in homological algebra and algebraic topology. A recent categorical
discovery reveals that a common mechanism for constructing “point-set level” derived
functors yields total derived functors with superior universal properties (see Propositions
6.4.12 and 6.4.13). A final motivation for the study of Kan extensions reaches beyond the
scope of this book. The calculus of Kan extensions facilitates the extension of basic category
theory to enriched, internul, fibered, or higher-dimensionul contexts, which provide natural
homes for more sophisticated varieties of mathematical objects whose transformations have
some sort of higher-dimensional structure.

Note to the reader

The text that follows is littered with examples drawn from a broad range of mathematical
areas. The examples are included for color or historical context but are never essential for
understanding the abstract category theory. In principle, one could study category theory
immediately after learning some basic set theory and logic, as no other prerequisites are
strictly required, but without some level of mathematical maturity it would be difficult to
see what the point of it all is. We hope that the majority of examples are comprehensible in
outline, even if the details are unfamiliar, but if this is not the case, it is not worth stressing

19A coequalizer is a generalization of a cokernel to contexts that may lack a “zero” homomorphism.
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over. Inevitably, given the diversity of mathematical tastes and experiences, the examples
presented here will seldom be optimized for any particular individual, and indeed, each
reader is encouraged to search for their own contexts in which to explore categorical ideas.

Notational conventions

An arrow symbol “—.” either in a display or in text, is only ever used to denote a
morphism in an appropriate category. In particular, the objects surrounding it necessarily
lie in a common category. Double arrows “=" are reserved for natural transformations,
the notation used to suggest the intuition that these are some variety of “2-dimensional”
morphisms. The symbol “+.” read as “maps to,” appears occasionally when defining a
function between sets by specifying its action on particular elements. The symbol “+s" is
used in a less technical sense to mean something along the lines of “yields” or “leads to”
or “can be used to construct.” If the presence of certain morphisms implies the existence
of another morphism, the latter is often depicted with a dashed arrow “--»” to suggest the
correct order of inference.!!

We use “33” as an abbreviation for a parallel pair of morphisms, i.e., for a pair of
morphisms with common source and target, and “$5” as an abbreviation for an opposing
pair of morphisms with sources and targets swapped.

Italics are used occasionally for emphasis and to highlight technical terms. Boldface
signals that a technical term is being defined by its surrounding text.

The symbol “=" is reserved for genuine equality (with “:=
equality), with “=" used instead for isomorphism in the appropriate ambient category, by
far the more common occurrence.

2

used for definitional
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CHAPTER 1
Categories, Functors, Natural Transformations

Frequently in modern mathematics there occur
phenomena of “naturality”.

Samuel Eilenberg and Saunders Mac Lane,
“Natural isomorphisms in group theory”

[EM42b]

A group extension of an abelian group H by an abelian group G consists of a group E
together with an inclusion of G < E as a normal subgroup and a surjective homomorphism
E —» H that displays H as the quotient group E/G. This data is typically displayed in a
diagram of group homomorphisms:

0-G-o>FE—->H-0!

A pair of group extensions £ and E’ of G and H are considered to be equivalent whenever
there is an isomorphism E = E’ that commutes with the inclusions of G and quotient maps
to H, in a sense that is made precise in §1.6. The set of equivalence classes of abeliun
group extensions E of H by G defines an abelian group Ext(H, G).

In 1941, Saunders Mac Lane gave a lecture at the University of Michigan in which
he computed for a prime p that Ext(Z[‘%]/Z, 7) = 7 p, the group of p-adic integers, where
Z[%]/Z is the Priifer p-group. When he explained this result to Samuel Eilenberg, who had
missed the lecture, Eilenberg recognized the calculation as the homology of the 3-sphere
complement of the p-adic solenoid, a space formed as the infinite intersection of a sequence
of solid tori, each wound around p times inside the preceding torus. In teasing apart this
connection, the pair of them discovered what is now known as the universal coefficient
theorem in algebraic topology, which relates the homology H, and cohomology groups H*
associated to a space X via a group extension [MLO05]:

(1.0.1) 0 — Ext(H,_1(X),G) = H"(X,G) — Hom(H,(X),G) — 0.

To obtain a more general form of the universal coefficient theorem, Eilenberg and Mac
Lane needed to show that certain isomorphisms of abelian groups expressed by this group
extension extend to spaces constructed via direct or inverse limits. And indeed this is the
case, precisely because the homomorphisms in the diagram (1.0.1) are npatural with respect
to continuous maps between topological spaces.

The adjective “natural’” had been used colloquially by mathematicians to mean “defined
without arbitrary choices.” For instance, to define an isomorphism between a finite-
dimensional vector space V and its dual, the vector space of linear maps from V to the

'The zeros appearing on the ends provide no additional data. Instead, the first zero implicitly asserts that the
map G — E is an inclusion and the second that the map E — H is a surjection. More precisely, the displayed
sequence of group homomorphisms is exact, meaning that the kernel of each homomorphism equals the image of
the preceding homomorphism.
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ground field k, requires a choice of basis. However, there is an isomorphism between V
and its double dual that requires no choice of basis; the latter, but not the former, is natural.

To give arigorous proof that their particular family of group isomorphisms extended to
inverse and direct limits, Eilenberg and Mac Lane sought to give a mathematically precise
definition of the informal concept of “naturality.” To that end, they introduced the notion of
a naturual transformation, a parallel collection of homomorphisms between abelian groups
in this instance. To characterize the source and target of a natural transformation, they
introduced the notion of a functor.2 And to define the source and target of a functor in
the greatest generality, they introduced the concept of a category. This work, described in
“The general theory of natural equivalences” [EM45], published in 1945, marked the birth
of category theory.

While categories and functors were first conceived as auxiliary notions, needed to
give a precise meaning to the concept of naturality, they have grown into interesting and
important concepts in their own right. Categories suggest a particular perspective to be
used in the study of mathematical objects that pays greater attention to the maps between
them. Functors, which translate mathematical objects of one type into objects of another,
have a more immediate utility. For instance, the Brouwer fixed point theorem translates a
seemingly intractable problem in topology to a trivial one (0 # 1) in algebra. It is to these
topics that we now turn.

Categories are introduced in §1.1 in two guises: firstly as universes categorizing
mathematical objects and secondly as mathematical objects in their own right. The first
perspective is used, for instance, to define a general notion of isomorphism that can be
specialized to mathematical objects of every conceivable variety. The second perspective
leads to the observation that the axioms defining a category are self-dual.? Thus, as explored
in §1.2, for any proof of a theorem about all categories from these axioms, there is a dual
proof of the dual theorem obtained by a syntactic process that is interpreted as “turning
around all the arrows.”

Functors and natural transformations are introduced in §1.3 and §1.4 with examples
intended to shed light on the linguistic and practical utility of these concepts. The category-
theoretic notions of isomorphism, monomorphism, and epimorphism are invariant under
certain classes of functors, including in particular the equivalences of cutegories, introduced
in §1.5. At a high level, an equivalence of categories provides a precise expression of the
intuition that mathematical objects of one type are “the same as” objects of another variety:
an equivalence between the category of matrices and the category of finite-dimensional
vector spaces equates high school and college linear algebra.

In addition to providing anew language to describe emerging mathematical phenomena,
category theory also introduced a new proof technique: that of the diagram chase. The
introduction to the influential book [ESS2] presents commutative diagrams as one of the
“new techniques of proof™ appropriate for their axiomatic treatment of homology theory.
The technique of diagram chasing is introduced in §1.6 and applied in §1.7 to construct
new natural transformations as horizoniul or verticul composites of given ones.

2A brief account of functors and natural isomorphisms in group theory appeared in a 1942 paper [EM42b].
3As is the case for the duality in projective plane geometry, this duality can be formulated precisely as a feature
of the first-order theories that axiomatize these structures.



1.1. ABSTRACT AND CONCRETE CATEGORIES 3

1.1. Abstract and concrete categories

It frames a possible template for any
mathematical theory: the theory should have
nouns and verbs, i.e., objects, and morphisms,
and there should be an explicit notion of
composition related to the morphisms; the theory
should, in brief, be packaged by a category.

Barry Mazur, “When is one thing equal to some
other thing?” [Maz08]

DeriniTioN 1.1.1. A category consists of

e a collection of objects X, Y, Z, ...
e acollection of morphisms f,g.k, ...

so that:

e Each morphism has specified domain and codomain objects; the notation f: X — ¥
signifies that f is a morphism with domain X and codomain Y.

e Each object has a designated identity morphism 1y: X — X.

e For any pair of morphisms f, ¢ with the codomain of f equal to the domain of g, there
exists a specified composite morphism* ¢/ whose domain is equal to the domain of
f and whose codomain is equal to the codomain of g, i.e..:

f:X->Y g Y-oZ ~ ef: X—Z.
This data is subject to the following two axioms:
e Forany f: X — Y, the composites lyf and f1x are both equal to f.

e For any composable triple of morphisms f, g, h, the composites h(gf) and (hg)f are
equal and henceforth denoted by hgf.

frX->Y g Y>Z hZ->sW o hgf: X - W.

That is, the composition law is associative and unital with the identity morphisms serving
as two-sided identities.

ReEmMARK 1.1.2. The objects of a category are in bijective correspondence with the identity
morphisms, which are uniquely determined by the property that they serve as two-sided
identities for composition. Thus, one can define a category to be a collection of morphisms
with a partially-defined composition operation that has certain special morphisms, which
are used to recognize composable pairs and which serve as two-sided identities; see [Ehr65,
§1.1] or [FS90, §1.1]. But in practice it is not so hard to specify both the objects and the
morphisms and this is what we shall do.

It is traditional to name a category after its objects; typically, the preferred choice of
accompanying structure-preserving morphisms is clear. However, this practice is somewhat
contrary to the basic philosophy of category theory: that mathematical objects should
always be considered in tandem with the morphisms between them. By Remark 1.1.2, the
algebra of morphisms determines the category, so of the two, the objects and morphisms,
the morphisms take primacy.

ExampLE 1.1.3. Many familiar varieties of mathematical objects assemble into a category.

4The composite may be written less concisely as g - f when this adds typographical clarity.
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(i) Set has sets as its objects and functions, with specified domain and codomain,’ as
its morphisms.

(ii) Top has topological spaces as its objects and continuous functions as its morphisms.

(iii) Set, and Top, have sets or spaces with a specified basepoint® as objects and basepoint-
preserving (continuous) functions as morphisms.

(iv) Group has groups as objects and group homomorphisms as morphisms. This example
lent the general term “morphisms” to the data of an abstract category. The categories
Ring of associative and unital rings and ring homomorphisms and Field of fields and
field homomorphisms are defined similarly.

(v) For a fixed unital but not necessarily commutative ring R, Modp, is the category of
left R-modules and R-module homomorphisms. This category is denoted by Vecty,
when the ring happens to be a field k and abbreviated as Ab in the case of Modz, as
a Z-module is precisely an abelian group.

(vi) Graph has graphs as objects and graph morphisms (functions carrying vertices to
vertices and edges to edges, preserving incidence relations) as morphisms. In the
variant DirGraph, objects are directed graphs, whose edges are now depicted as
arrows, and morphisms are directed graph morphisms, which must preserve sources
and targets.

(vii) Man has smooth (i.e., infinitely differentiable) manifolds as objects and smooth maps
as morphisms.

(viii) Meas has measurable spaces as objects and measurable functions as morphisms.

(ix) Poset has partially-ordered sets as objects and order-preserving functions as mor-
phisms.

(x) Chg has chain complexes of R-modules as objects and chain homomorphisms as
morphisms.”

(xi) For any signature o, specifying constant, function, and relation symbols, and for
any collection of well formed sentences T in the first-order language associated to
o, there is a category Modely whose objects are o-structures that model T, i.e., sets
equipped with appropriate constants, relations, and functions satisfying the axioms
T. Morphisms are functions that preserve the specified constants, relations, and
functions, in the usual sense.® Special cases include (iv), (v), (vi), (ix), and (x).

The preceding are all examples of concrete cutegories, those whose objects have
underlying sets and whose morphisms are functions between these underlying sets, typically
the “structure-preserving” morphisms. A more precise definition of a concrete category is
given in 1.6.17. However, “abstract” categories are also prevalent:

ExampLE 1.1.4.

(i) For a unital ring R, Matg is the category whose objects are positive integers and in
which the set of morphisms from # to m is the set of m X n matrices with values in

S[EM45, p. 239] emphasizes that the data of a function should include specified sets of inputs and potential
outputs, a perspective that was somewhat radical at the time.

SA basepoint is simply a chosen distinguished point in the set or space.

7A chain complex C, is a collection (C,,),cz of R-modules equipped with R-module homomorphisms d: C,, —
C,1. called boundary homomorphisms, with the property that ¢> = 0, i.e., the composite of any two boundary
maps is the zero homomorphism. A map of chain complexes f: C, — C, is comprised of a collection of
homomorphisms f;,: C, = C}, so thatdf, = f,_jd forallne Z.

#Model theory pays greater attention to other types of morphisms, for instance the elementary embeddings,
which are (automatically injective) functions that preserve and reflect satisfaction of first-order formulae.
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R. Composition is by matrix multiplication

A B B-A
n—m, m—k s n—k

with identity matrices serving as the identity morphisms.
A group G (or, more generally, a monoid?®) defines a category BG with a single object.
The group elements are its morphisms, each group element representing a distinct
endomorphism of the single object, with composition given by multiplication. The
identity element ¢ € G acts as the identity morphism for the unique object in this
category.

12

(12) (13)

BSi= @3)

B3

A poset (P, <) (or, more generally, a preorder!?) may be regarded as a category. The
elements of P are the objects of the category and there exists a unique morphism
x — yif and only if x < y. Transitivity of the relation “<” implies that the required
composite morphisms exist. Reflexivity implies that identity morphisms exist.

In particular, any ordinal @ = {§ | 8 < @} defines a category whose objects are the
smaller ordinals. For example, 0 is the category with no objects and no morphisms. 1
is the category with a single object and only its identity morphism. 2 is the category
with two objects and a single non-identity morphism, conventionally depicted as
0 — 1. wis the category freely generated by the graph

05125253 —>...

in the sense that every non-identity morphism can be uniquely factored as a composite
of morphisms in the displayed graph; a precise definition of the notion of free
generation is given in Example 4.1.13.

A set may be regarded as a category in which the elements of the set define the
objects and the only morphisms are the required identities. A category is discrete if
every morphism is an identity.

Htpy, like Top, has spaces as its objects but morphisms are homotopy classes of
continuous maps. Htpy, has based spaces as its objects and basepoint-preserving
homotopy classes of based continuous maps as its morphisms.

Measure has measure spaces as objects. One reasonable choice for the morphisms is
to take equivalence classes of measurable functions, where a parallel pair of functions
are equivalent if their domain of difference is contained within a set of measure zero.

Thus, the philosophy of category theory is extended. The categories listed in Example
1.1.3 suggest that mathematical objects ought to be considered together with the appropriate
notion of morphism between them. The categories listed in Example 1.1.4 illustrate that

A monoid is a set M equipped with an associative binary multiplication operation M x M = Mandan identity
element e € M serving as a two-sided identity. In other words, a monoid is precisely a one-object category.

10A preorder is a set with a binary relation < that is reflexive and transitive. In other words, a preorder is
precisely a category in which there are no parallel pairs of distinct morphisms between any fixed pair of objects.
A poset is a preorder that is additionally antisymmetric: x < y and y < x implies that x = y.
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these morphisms are not always functions.!! The morphisms in a category are also called
arrows or maps, particularly in the contexts of Examples 1.1.4 and 1.1.3, respectively.

Remark 1.1.5. Russell’s paradox implies that there is no set whose elements are “all sets.”
This is the reason why we have used the vague word “collection” in Definition 1.1.1. Indeed,
in each of the examples listed in 1.1.3, the collection of objects is not a set. Eilenberg and
Mac Lane address this potential area of concern as follows:

... the whole concept of a category is essentially an auxiliary one;

our basic concepts are essentially those of a functor and of a natural

transformation . ... The idea of a category is required only by the

precept that every function should have a definite class as domain

and a definite class as range, for the categories are provided as the

domains and ranges of functors. Thus one could drop the category

concept altogether and adopt an even more intuitive standpoint, in

which a functor such as “Hom™ is not defined over the category of

“all” groups, but for each particular pair of groups which may be

given. [EM45]
The set-theoretical issues that confront us while defining the notion of a category will
compound as we develop category theory further. For that reason, common practice among
category theorists is to work in an extension of the usual Zermelo—Fraenkel axioms of set
theory, with new axioms allowing one to distinguish between “small” and “large” sets,
or between sets and classes. The search for the most useful set-theoretical foundations
for category theory is a fascinating topic that unfortunately would require too long of a
digression to explore.!2 Instead, we sweep these foundational issues under the rug, not
because these issues are not serious or interesting, but because they distract from the task
at hand. 13

For the reasons just discussed, it is important to introduce adjectives that explicitly
address the size of a category.
DeriniTion 1.1.6. A category is small if it has only a set’s worth of arrows.

By Remark 1.1.2, a small category has only a set’s worth of objects. If C is a small
category, then there are functions

dom
mor C <—id¢— obC

cod

that send a morphism to its domain and its codomain and an object to its identity.

1Reid’s Undergraduate algebraic geometry emphasizes that the morphisms are not always functions, writing
“Students who disapprove are recommended to give up at once and take a reading course in category theory
instead” [Rei88, p. 4].

12The preprint [Shu08] gives an excellent overview, though it is perhaps better read after Chapters 1-4.

131f pressed, let us assume that there exists a countable sequence of inaccessible cardinals, meaning uncountable
cardinals that are regular and strong limit. A cardinal « is regular if every union of fewer than « sets each of
cardinality less than « has cardinality less than , and strong limit if 1 < « implies that 24 < . Inaccessibility
means that sets of size less than « are closed under power sets and x-small unions. If « is inaccessible, then the
k-stage of the von Neumann hierarchy, the set V. of sets of rank less than «, is a model of Zermelo-Fraenkel set
theory with choice (ZFC); the set V is a Grothendieck universe. The assumption that there exists a countable
sequence of inaccessible cardinals means that we can “do set theory™ inside the universe Vy, and then enlarge the
universe if necessary as often as needed.

It ZFC is consistent, these axioms cannot prove the existence of an inaccessible cardinal or the consistency of
the assumption that one exists (by Godel’s second incompleteness theorem). Nonetheless, from the perspective
of the hierarchy of large cardinal axioms, the existence of inaccessibles is a relatively mild hypothesis.
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None of the categories in Example 1.1.3 are small—each has too many objects—but
“locally” they resemble small categories in a sense made precise by the following notion:
Derinition 1.1.7. A category is locally small if between any pair of objects there is only
a set’s worth of morphisms.

It is traditional to write
(1.1.8) C(X,Y) or Hom(X.,Y)

for the set of morphisms from X to ¥ in a locally small category C.!'4 The set of arrows
between a pair of fixed objets in a locally small category is typically called a hom-set,
whether or not it is a set of “homomorphisms” of any particular kind. Because the notation
(1.1.8) is so convenient, it is also adopted for the collection of morphisms between a fixed
pair of objects in a category that is not necessarily locally small.

A category provides a context in which to answer the question “When is one thing the

same as another thing?” Almost universally in mathematics, one regards two objects of the
same category to be “the same” when they are isomorphic, in a precise categorical sense
that we now introduce.
DEermniTION 1.1.9. An isomorphism in a category is a morphism f: X — Y for which
there exists a morphism g: ¥ — X so that gf = 1y and fg = ly. The objects X and Y are
isomorphic whenever there exists an isomorphism between X and Y, in which case one
writes X = Y.

An endomorphism, i.e., a morphism whose domain equals its codomain, that is an
isomorphism is called an automorphism.

ExampLE 1.1.10.

(i) The isomorphisms in Set are precisely the bijections.
(ii) The isomorphisms in Group, Ring, Field, or Modg are the bijective homomorphisms.
(iii) Theisomorphisms in the category Top are the homeomorphisms, i.e., the continuous
functions with continuous inverse, which is a stronger property than merely being a
bijective continuous function.
(iv) The isomorphisms in the category Hipy are the homotopy equivalences.
(v) In a poset (P, <), the axiom of antisymmetry asserts that x < y and y < x imply that
x = y. That is, the only isomorphisms in the category (P, <) are identities.
Examples 1.1.10(ii) and (iii) suggest the following general question: In a concrete
category, when are the isomorphisms precisely those maps in the category that induce
bijections between the underlying sets? We will see an answer in Lemma 5.6.1.
DeriniTION 1.1.11. A groupoid is a category in which every morphism is an isomorphism.
ExampLE 1.1.12,
(i) A group is a groupoid with one object.!s
(ii) For any space X, its fundamental groupoid IT,(X) is a category whose objects are
the points of X and whose morphisms are endpoint-preserving homotopy classes of
paths.

14Mac Lane credits Emmy Noether for emphasizing the importance of homomorphisms in abstract algebra,
particularly the homomorphism onto a quotient group, which plays an integral role in the statement of her first
isomorphism theorem. His recollection is that the arrow notation first appeared around 1940, perhaps due to
Hurewicz [ML88]. The notation Hom(X, ¥) was first used in [EM42a] for the set of homomorphisms between a
pair of abelian groups.

15This is not simply an example; it is a definition.
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A subcategory D of a category C is defined by restricting to a subcollection of objects
and subcollection of morphisms subject to the requirements that the subcategory D contains
the domain and codomain of any morphism in D, the identity morphism of any object in
D, and the composite of any composable pair of morphisms in D. For example, there is a
subcategory CRing c Ring of commutative unital rings. Both of these form subcategories
of the category Rng of not-necessarily unital rings and homomorphisms that need not
preserve the multiplicative unit. !¢

Lemma 1.1.13. Any cutegory C contuins u maximal groupoid, the subcuategory contuining
ull of the objects and only those morphisms that are isomorphisms.

Proor. Exercise 1.1.ii. a

For instance, Fin;y,, the category of finite sets and bijections, is the maximal sub-
groupoid of the category Fin of finite sets and all functions. Example 1.4.9 will explain
how this groupoid can be regarded as a categorification of the natural numbers, providing
a vantage point from which to prove the laws of elementary arithmetic.

Exercises.
Exerciske 1.1.i.
(i) Show that a morphism can have at most one inverse isomorphism.
(ii) Consider a morphism f: x — y. Show that if there exists a pair of morphisms
g h:y =33 xsothatgf = 1,and fi = 1,,then g = hand f is an isomorphism.

Exercisi 1.1.i. Let C be a category. Show that the collection of isomorphisms in C
defines a subcategory, the maximal groupoid inside C.
Exgercisk 1.1.iii. For any category C and any object ¢ € C, show that:
(i) There is a category ¢/C whose objects are morphisms f: ¢ — x with domain ¢ and
in which a morphism from f: ¢ — xto g: ¢ — yisamap h: x — vy between the
codomains so that the triangle

7\

Y

commutes, i.e., so that g = hf.

(ii) There is a category C/c whose objects are morphisms f: x — ¢ with codomain ¢
and in which a morphism from f: x — ctog: y = cisamap h: x — y between the
domains so that the triangle

h
x—l>y

N

commutes, i.c., so that f = gh.

The categories ¢/C and C/c are called slice categories of C under and over c, respectively.

16To justify our default notion of ring, see Poonen’s “Why all rings should have a 1” [Poo14]. The relationship
between unital and non-unital rings is explored in greater depth in §4.6.
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1.2. Duality

The dual of any axiom for a category is also an
axiom ... A simple metamathematical argument
thus proves the duality principle. 1f any statement
about a category is deducible from the axioms for
a category, the dual statement is likely deducible.

Saunders Mac Lane, “Duality for groups” [ML50]

Upon first acquaintance, the primary role played by the notion of a category might
appear to be taxonomic: vector spaces and linear maps define one category, manifolds and
smooth functions define another. But a category, as defined in 1.1.1, is also a mathematical
object in its own right, and as with any mathematical definition, this one is worthy of
further consideration. Applying a mathematician’s gaze to the definition of a category, the
following observation quickly materializes. If we visualize the morphisms in a category
as arrows pointing from their domain object to their codomain object, we might imagine
simultaneously reversing the directions of every arrow. This leads to the following notion.

DeriniTION 1.2.1. Let C be any category. The opposite category C° has

e the same objects as in C, and
e amorphism f°P in C°P for each a morphism f in C so that the domain of f°P is defined
to be the codomain of f and the codomain of f°P is defined to be the domain of f: i.e.,

fP:X—->Y eC® s f:¥Y—-X eC.

That is, C° has the same objects and morphisms as C, except that “‘each morphism is
pointing in the opposite direction.” The remaining structure of the category C°P is given as
follows:

e For each object X, the arrow I;P serves as its identity in C°P.

e To define composition, observe that a pair of morphisms f°P, g°P in C°P is composable
precisely when the pair g, f is composable in C, i.e., precisely when the codomain of
g equals the domain of f. We then define g - f°P to be (f - g)°P: i.e.,

[P XY, g Y >Z €CP ~ gPfP:X>Z eCP
3 3

g Z-Y f1¥Y-X eC oy fe:Z—-X eC

The data described in Definition 1.2.1 defines a category C°P—i.e., the composition
law is associative and unital—if and only if C defines a category. In summary, the process of
“turning around the arrows’ or “exchanging domains and codomains” exhibits a syntactical
self-duality satisfied by the axioms for a category. Note that the category C°P contains
precisely the same information as the category C. Questions about the one can be answered
by examining the other.

ExampLE 1.2.2.

(i) Matf,;p is the category whose objects are non-zero natural numbers and in which a
morphism from m to n is an m X n matrix with values in R. The upshot is that a reader
who would have preferred the opposite handedness conventions when defining Matg
would have lost nothing by adopting them.

(i) When a preorder (P, <) is regarded as a category, its opposite category is the category
that has a morphism x — y if and only if y < x. For example, w®? is the category
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freely generated by the graph
- =>3-52-51-50.

(iii) If G is a group, regarded as a one-object groupoid, the category (BG)P = B(GP)
is again a one-object groupoid, and hence a group. The group G is called the
opposite group and is used to define right actions as a special case of left actions;
see Example 1.3.9.

This syntactical duality has a very important consequence for the development of
category theory. Any theorem containing a universal quantification of the form “for all
categories C” also necessarily applies to the opposites of these categories. Interpreting the
result in the dual context leads to a dual theorem, proven by the dual of the original proof,
in which the direction of each arrow appearing in the argument is reversed. The result is
a two-for-one deal: any proof in category theory simultaneously proves two theorems, the
original statement and its dual.!” For example, the reader may have found Exercise 1.1.iii
redundant, precisely because the statements (i) and (ii) are dual; see Exercise 1.2.i.

To illustrate the principle of duality in category theory, let us consider the following
result, which provides an important characterization of the isomorphisms in a category.
Lemma 1.2.3. The following ure equivalent:

(i) f: x> yisun isomorphism in C.
(i) For ull objects ¢ € C, post-composition with f defines u bijection

f*: C(Cs X) — C(C',)’)-
(iti) For all objects ¢ € C, pre-composition with f defines u bijection
i Cly,e) = C(x,0).

ReEMARK 1.2.4. In language introduced in Chapter 2, Lemma 1.2.3 asserts that isomor-
phisms in a locally small category are defined representubly in terms of isomorphisms in
the category of sets. That is, a morphism f: x — y in an arbitrary locally small category
C is an isomorphism if and only if the post-composition function f,: C(c,x) — C(c,y)
between hom-sets defines an isomorphism in Set for each object ¢ € C.

In set theoretical foundations that permit the definition of functions between large sets,
the proof given here applies also to non-locally small categories. In our exposition, the set
theoretical hypotheses of smallness and local smallness will only appear when there are
essential subtleties concerning the sizes of the categories in question. This is not one of
those occasions.

Proor or LEmma 1.2.3. We will prove the equivalence (i) & (ii) and conclude the
equivalence (i) & (iii) by duality.

Assuming (i), namely that f: x — y is an isomorphism with inverse g: y — x, then,
as an immediate application of the associativity and identity laws for composition in a
category, post-composition with g defines an inverse function

g« C(e,y) = Cle, x)
to f. in the sense that the composites
g«fi: Clc,x) = C(c,x) and fig.: Clc,y) = C(c,y)
"More generally, the proof of a statement of the form “for all categories C,Cs,..., Cp” leads to 2" dual

theorems. In practice, however, not all of the dual statements will differ meaningfully from the original; see
e.g., §4.3.



1.2. DUALITY 11

are both the identity function: forany h: ¢ — xand k: ¢ — y. g.fi(h) = gfh = h and
Jeg.(k) = fek = k.

Conversely, assuming (ii), there must be an element g € C(y, x) whose image under
Je: G(y.x) = C(y,y) is 1,. By construction, 1, = fg. But now, by associativity of
composition, the elements gf, 1, € C(x, x) have the common image f under the function
Jfo: C(x, x) = C(x,y), whence gf = 1,. Thus, f and g are inverse isomorphisms.

We have just proven the equivalence (i) < (ii) for all categories and in particular for
the category C°P: i.e., a morphism f°P: y — x in C° is an isomorphism if and only if

(1.2.5) £F: C°(e,y) = C°(c, x) is an isomorphism for all ¢ € C°P.

Interpreting the data of C°P in its opposite category C, the statement (1.2.5) expresses the
same mathematical content as

(1.2.6) f": C(v,¢) = C(x,c) is an isomorphism for all c € C.

That is: C°(c, x) = C(x, ¢), post-composition with f°F in C° translates to pre-composition
with f in the opposite category C. The notion of isomorphism, as defined in 1.1.9, is
self-dual: f°?: y — xis an isomorphism in C° if and only if f: x — y is an isomorphism
in C. So the equivalence (i) & (ii) in CP expresses the equivalence (i) < (iii) in C.'* O

Concise expositions of the duality principle in category theory may be found in [Awo10,
§3.1] and [HS97, §I1.3]. As we become more comfortable with arguing by duality, dual

proofs and eventually also dual statements will seldom be described in this much detail.
Categorical definitions also have duals; for instance:

DeriNITION 1.2.7. A morphism f: x — y in a category is
(i) a monomorphism if for any parallel morphisms &, k: w =3 x, fh = fk implies that

h=k; or
(ii) an epimorphism if for any parallel morphisms A, k: y =3 z, hf = kf implies that
h =k

Note that a monomorphism or epimorphism in C is, respectively, an epimorphism or
monomorphism in C°P. In adjectival form, a monomorphism is monic and an epimorphism
is epic. In common shorthand, a monomorphism is a mono and an epimorphism is an
epi. For graphical emphasis, monos are often decorated with a tail “>—" while epis may be
decorated at their head “—.”

The following dual statements re-express Definition 1.2.7:

(i) f: x — y is a monomorphism in C if and only if for all objects ¢ € C, post-
composition with f defines an injection f, : C(e¢, x) — C(c, y).
(i) f: x — yis an epimorphism in C if and only if for all objects ¢ € C, pre-composition
with f defines an injection f*: C(y,c) = C(x, ).
ExampLE 1.2.8. Suppose f: X — Y is a monomorphism in the category of sets. Then, in
particular, given any two maps x, x*: 1 =3 X, whose domain is the singleton set, if fx = fx’
then x = x’. Thus, monomorphisms are injective functions. Conversely, any injective
function can easily be seen to be a monomorphism.

Similarly, a function f: X — Y is an epimorphism in the category of sets if and only
if it is surjective. Given functions h,k: ¥ =3 Z, the equation hf = kf says exactly that / is
equal to k on the image of f. This only implies that 2 = k in the case where the image is all
of Y.

18A similar translation, as just demonstrated between the statements (1.2.5) and (1.2.6), transforms the proof
of (i) & (ii) into a proof of (i) & (iii).



