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Chapter 1 )
Why Categories? e

Marek Kus, Barttomiej Skowron and Krzysztof Wajtowicz

The aim of philosophy, abstractly formulated, is to understand
how things in the broadest possible sense of the term hang
together in the broadest possible sense of the term. [35]

Mathematical tools are much richer than our everyday intuitions
and purely verbal distinctions; they are able to reveal
unexpected aspects of reality. [13]

We did not then regard it as a field for further research efforts,
but just as a language and an orientation—a limitation which
we followed for a dozen years or so, till the advent of adjoint

Sfuntors. [26]

Abstract In this article we answer the question of why categories are becoming
more and more popular in physics, mathematics and philosophy. The article presents
areview of the role of categories in the philosophy of mathematics, in the foundations
of mathematics, in metaphysics and in quantum mechanics. Our claim s that category
theory is a formal ontology that captures the relational aspects of the given domain
in question.
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1.1 Introduction

Eilenberg and Mac Lane—the founders of category theory (CT)—initially treated
their invention as a useful language for certain mathematical problems. Its intensive
and unexpected development in the twentieth century led to the fact that it was an
increasingly popular theory among mathematicians, computer scientists, physicists,
engineers and philosophers alike. What has made CT so popular and why is it being
used more and more widely in so many different fields of knowledge? This review
article is supposed to answer—at least partially—this question.

In the second section (following the introduction) we describe the beginnings of
CT. The third section deals with relations between CT and philosophy, and in partic-
ular with philosophical problems concerning the foundations and unity of mathemat-
ics, as well as the problem of structuralism in the philosophy of mathematics. The
third section also describes how CT affects contemporary metaphysics. The fourth
section deals with the role of CT in contemporary physics, in particular quantum
mechanics.

1.2 The Beginnings of Category Theory

Category theory is a joint work of Samuel Eilenberg and Saunders Mac Lane. Their
collaboration in the 1940s led to its creation. More specifically, the emergence of
category theory was determined by the combination of Mac Lane’s algebraic talent
and Eilenberg’s topological talent. Here, Mac Lane himself recalls the origins of CT
[2, p. 20-1]:

In the spring of 1941 Michigan invited me to give a series of five or six lectures, so I talked
about group extensions. This was a subject on which I had done some work and it came out
of my earlier work on valuations with [O. F. G.] Schilling. I had calculated a particular group
extension for p-adic solenoids. Eilenberg was in the audience, except at the last lecture,
and made me give the last lecture to him ahead of time. Then he said, “Well, now that
calculation smells like something we do in topology, in a paper of [Norman] Steenrod.” So
we stayed up all night trying to figure out what the connection was and we discovered one.
‘We wrote our first joint paper on group extensions in homology, which exploited precisely
that connection. It so happened that this was a time when more sophisticated algebraic
techniques were coming into algebraic topology. Sammy knew much more than I did about
the topological background, but I knew about the algebraic techniques and had practice in
elaborate algebraic calculations. So our talents fitted together. That’s how our collaboration
got started. And so it went on for fifteen major papers.

Atfirst, it did not seem that CT would constitute a separate and independent subject
of mathematical research. The notion of category was only an auxiliary notion, which
was needed for other purposes—it was just an abstract basis for research on the
phenomenon of natural equivalences. In their joint article General Theory of Natural
Equivalences in 1945, which now serves as a classic reference, Eilenberg and Mac
Lane [10, p. 247] claimed:
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It should be observed first that the whole concept of a category is essentially an auxiliary
one; our basic concepts are essentially those of a functor and of a natural transformation
(...). The idea of a category is required only by the precept that every function should have a
definite class as domain and a definite class as range, for the categories are provided as the
domains and ranges of functors. Thus one could drop the category concept altogether and
adopt an even more intuitive standpoint, in which a functor such as “Hom” is not defined
over the category of “all” groups, but for each particular pair of groups which may be given.
The standpoint would suffice for the applications, inasmuch as none of our developments
will involve elaborate constructions on the categories themselves.

Eilenberg and Mac Lane introduced very abstract tools into mathematics, which
seemed even too abstract. Nevertheless, they motivated their work with both technical
merits, which allow for an effective study of the phenomenon of naturality, and
conceptual advantages. They noted that the proposed conception is so general that
it allows for the detection of the same structures in fundamentally different fields
of mathematics. By finding new analogies between different fields of mathematics
it suggests new results. Thanks to the fact that categorical glasses allow for the
observation of the same structures in both topology and algebra, these glasses allow
for a unifying view of mathematics. Already in 1945 it was clear that CT had the
power to unify mathematics.

From an ontological point of view, it can be said that Eilenberg and Mac Lane
have made a certain shift. Well, mathematical objects in practice are considered as if
they were autonomous, separate from other objects. As if they existed as independent
substances, whose interior determines what they really are. It is enough to look inside
to know what properties they have. This is a standard and natural cognitive approach
to mathematical objects. Eilenberg and Mac Lane did it differently, contrary to this
natural and widespread attitude. They suggested that mathematical objects should
always be considered with their surroundings. If we consider groups, we should
consider them together with all homomorphisms, if we consider topological space,
we should consider all homeomorphisms. Therefore, we do not consider objects in
themselves, but consider them simultaneously with morphisms; in other words, we
do not consider individual objects, but categories [10, p. 236].

The ontological shift proposed by the fathers of CT has many consequences. Group
theory in the categorical approach becomes a study of the invariants of the respective
functors. Group theory explores constructions that are covariant or contravariant
under homomorphisms. In their words: “group theory studies functors defined on
well specified categories of groups, with values in another such category” [10, p.
237]. It was not a completely new approach. The authors themselves have noticed
that this is actually an extension of Klein’s Erlanger Programme. Geometric space
was considered by Klein together with its transformation group, while Eilenberg and
Mac Lane suggested that one should consider the categories together with its algebra
of morphisms.

The proposal of such a general conceptual framework was not obvious at that time.
Mac Lane himself wondered whether categorical concepts had been introduced too
early. Here, again, in his own words [26, p. 334-5]:
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It was perhaps a rash step to introduce so quickly such a sweeping generality—an evident
piece of what was soon to be called “general abstract nonsense.” One of our good friends
(an admirer of Eilenberg) read the paper and told us privately that he thought the paper was
without any content. Eilenberg took care to see to it that the editor of the Transactions sent
the manuscript to a young referee (perhaps one who might be gently bullied). The paper
was accepted by Transactions. | have sometimes wondered what could have happened had
the same paper been submitted by a couple of wholly unknown authors. At any rate, we did
think it was good, and that it provided a handy language to be used by topologists and others,
and that it offered a conceptual view of parts of mathematics, in some way analogous to
Felix Klein’s “Erlanger programme.” We did not then regard it as a field for further research
efforts, but just as a language and an orientation—a limitation which we followed for a dozen
years or so, till the advent of adjoint funtors.

Nevertheless, such abstract concepts as category hung in the air somewhere at the
time. What if Eilenberg and Mac Lane hadn’t introduced CT? Mac Lane speculated
that other mathematicians would have done it, unless they were afraid of the excessive
abstraction of the emerging concepts (cf. [28, p. 210]). Among the potential creators
of category theory he listed Claude Chevalley, Heinz Hopf, Norman Steenrod, Henri
Cartan, Charles Ehresmann, and John von Neumann (cf. [18, p. 3]).

Category theory developed very quickly and intensively. As one of the break-
through years for the development of CT Mac Lane [26, p. 346] indicates the
year 1963. It was then that Lawvere’s groundbreaking dissertation appeared, which
contained categorical descriptions of algebraic theories and many other important
ideas. That year also marked the first public presentation of the adjoint functor the-
orem by Freyd, Ehresmann published his paper on what we call internal categories,
Mac Lane’s first coherence theorem also appeared in 1963. And SGA TV was also
published—the seminar notes from the Séminaire de Géométrie Algébrique du Bois
Marie run by Alexander Grothendieck. As Mac Lane [26, p. 347] estimates between
1962 and 1967 around 60 people started working in category theory. Already in
1965 in California, at the CT conference, Lawvere delivered the talk “The category
of categories as a foundation of mathematics” [26, p. 351].

The classic (still advanced) textbook in category theory Categories for the Working
Mathematician was published by Mac Lane for the first time in 1976. In 1992 Mac
Lane, jointly with Ieke Moerdijk, published Sheaves in Geometry and Logic: A First
Introduction to Topos Theory. In 2017, a textbook for philosophers was published:
Categories for the Working Philosopher, edited by Elaine Landry [19]. In 2006 Steve
Awodey, Mac Lane’s last Ph.D. student, wrote a textbook Category Theory that was
easier to read then the textbook by Mac Lane. That’s why Awodey felt the need to
write a new textbook [3, p. v]:

Why write a new textbook on Category Theory, when we already have Mac Lane’s Categories
for the Working Mathematician? Simply put, because Mac Lane’s book is for the working
(and aspiring) mathematician. What is needed now, after 30 years of spreading into various
other disciplines and places in the curriculum, is a book for everyone else.

Let’s see what CT looks like in Poland. Due to the intensive development of
category theory, students of the first years of mathematical studies can now study
CT in some departments in Poland. Categorical terms are often introduced in other



1 Why Categories? 5

courses, e.g. in topological courses. The first (and so far the only) CT textbook in
Polish was Wstep do teorii kategorii i funktoréw published by Zbigniew Semadeni
and Antoni Wiweger in 1972.

1.3 Category Theory and Philosophy

Category theory, as well as set theory and, unlike algebraic topology, aroused the
interest of philosophers from the very beginning. Already in the classic paper [10,
p. 247] there are comments on the foundations of category theory (but not yet the
foundations of mathematics!), in particular there are references to an unramified
theory of types or to the Fraenkel-von Neumann—Bernays’ system—these systems
are mentioned as possible solutions for the ontological foundation of categories.
Multidimensional relations occur between category theory and philosophy.'
Below we will restrict ourselves to a brief discussion of four selected themes:

the discussion between mathematical structuralism and object realism;
the problem of foundations of mathematics;

the problem of the unity of mathematics;

the role of CT in contemporary metaphysics.

W=

1.3.1 Structuralism Versus Object Realism

One of the fundamental philosophical question concerns the nature of mathematical
concepts—which, under the realistic interpretation, is formulated as the ontological
question concerning the status and properties of mathematical objects. Speaking in
very general terms, the question is, whether mathematical objects have any intrinsic
properties, or whether their properties are purely relative. Earlier we pointed to
this issue when we mentioned the ontological shift of Eilenberg and Mac Lane. A
related question concerns the identity criterion for mathematical objects: is identity
determined by some immanent properties of the objects, or rather purely by the
relations in which this object stands to other mathematical objects?

Mathematical structuralism rejects the view, that there are intrinsic properties.
According to the structuralist point of view, an object is constituted by the relations
to other objects. For instance, the function of a president (of a country or a company)
is defined regardless of the particular person holding the office—and only due to the
place within the whole structure (country or company).

Consider natural numbers. According to the structuralist picture, natural numbers
can be characterized only by their role in the natural numbers structure (i.c. in the
w-sequence). They have no intrinsic properties, and what really matters are only

'In this volume, see [8, 17, 23, 37, 44].
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relationships between natural numbers. Indeed, the question, whether the number 5
has its properties regardless of the existence of other natural numbers seems strange—
for instance, whether it is still prime. The notion of primeness would not make
sense if only one number existed. This way of thinking is then extended to other
mathematical objects: according to this view, the only properties of mathematical
objects are relational properties—so their identity is determined only via the roles
they play in mathematical structures. We can say, that mathematical objects are
like vertices in a giant graph or—as Mac Lane (see [24, Chap. XII entitled The
Mathematical Network]) would probably say—network.

The argument between structuralist and non-structuralists is a prototypical exam-
ple of an relativist-essentialist argument in metaphysics [34, p. 86]:

Quine has captured the incompleteness of mathematical objects in his doctrine of ontological
relativity: there is no fact of the matter as to whether the ontology of one theory is included
in that of another except relative to an interpretation of the former in the latter. What I have
tried to do so far is show that Quine’s surprising doctrine is what we would expect to hold
in mathematics.

The categorical point of view seems to be particularly well-suited to express the
intuitions of mathematical structuralism. Take a typical expression of the structuralist
position [34, p. 84]:

For me, mathematical objects have no distinguishing characteristics except those they have
by virtue of their relationships to other positions in the structures to which they belong. In
short, I take the geometrical point, the paradigm position, as a paradigmatic mathematical
object.

The familiar illustration of categories in terms of graphs (with black dots and
arrows) suits this view very well. All the black dots look alike—and the only things,
that determines their identity is the place within the graph, in particular the arrows
which connect the dot with the other dots. The properties of objects within a category
are defined only via the respective morphisms. For instance, the “essence” of being
the initial or terminal object is captured by the morphisms—not by any immanent
properties, which are secondary. Also the notion of identity in some sense loses its
meaning, as we only speak of isomorphisms within a category (and this is obviously
a category-relative notion).

Objects and morphisms within the category live on the first level of abstraction.
They might be considered to be natural environment(s) for different kinds of math-
ematical objects. But what is much more interesting and conceptually fertile are the
relationships between categories, expressed in terms of functors (and higher-order
constructions, like natural transformations). Categories—in a sense—become “dots”
and are viewed from a higher level.

Coming back to the natural numbers example we can not only think of the par-
ticular numbers as points (“dots™) within a structure (so that the “dots” inherit their
properties from the structure they live in). We can also think of the natural number
structure in terms of its universal properties within a “higher-order structure”, i.e.
the Peano category, as Mazur [29, p. 231-2] claims:
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This strategy of defining the Natural Numbers as “an” initial object in a category of (what
amounts to) discrete dynamical systems, as we have just done, is revealing, I think: it isolates,
as Peano himself had done, the fundamental role of mere succession in the formulation of
the natural numbers.

A paradigm example of a structure with purely relational properties is a group.
It does not make sense to ask, what the neutral element “really is”: of course, a
group can have many representations (as number, matrices, linear transformations—
and many others), but the “essence” of the neutral element is exactly being neutral
with respect to the operation (and not being a 15 x 15 identity matrix or a certain
function).

1.3.2 The Foundations of Mathematics

The problem of finding a suitable foundation for the mathematical edifice has been
discussed extensively for at least 150 years—and the crisis in foundations of math-
ematics around 1900 made the topic very hot.” There are many mathematical dis-
ciplines, which prima facie seem very different—like geometry and algebra in the
historical sense of these terms (today they are of course “entangled” in a profound
way, and the term “algebraic geometry” illustrates that). Do these different disciplines
have common roots?

According to the most widespread view, set theory can serve the role of a founda-
tional theory. Indeed, set theory is so strong and general that virtually all mathematical
notions previously used by mathematicians in an informal way (e.g. the concepts of:
natural, rational, real, complex numbers; real-valued function; probability; differen-
tiation in the real and complex sense; Banach space; differential manifold, etc.) can
be formally reconstructed in the language of set theory. But there is a tension between
the fact, that mathematical notions can be formally represented in set theory—but on
the other hand, that they have a meaning outside the context of set theory, and lead a
happy life without ever noticing, that (according to some foundationalists) they are
really sets. In fact, mathematical practice does not really need set theory—apart from
some elementary textbook facts.> More advanced set-theoretic notions (large cardi-

ZPerhaps today the discussions are not so emotional, and there is no crisis in sight: even if some
philosophical doubts can be formulated, mathematics seems to be doing well even without any
(official) foundations. But this is more of a pragmatic than a fundamental issue.

3The problem of how much set theory is needed, and whether this set theory is really “set-theoretic
set theory” or perhaps “category-theoretic set theory” is discussed for instance by Colin McLarty
in [30, p. 2]:

All support the claim that mathematicians know and use the concepts and axioms of the
Elementary Theory of the Category of Sets (ETCS), often without knowing or caring that
they are the ETCS axioms.

He examines the example of two standard and influential textbooks on topology and algebra.
McLarty also claims:
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nal, Boolean-valued model) are very remote from everyday mathematical practice
and play virtually no role there.

A standard illustration are natural numbers. Usually, on the pre-theoretic level, we
consider them to be objects per se—and the computations performed on them have
a “self-contained character”. But from the point of view of the set-theoretic foun-
dations of mathematics, natural numbers are just sets. For instance, in the (rather
standard) von Neumann representation, natural numbers are identified with finite
ordinal numbers.* But there are many representations of this kind, and all of them
are admissible, from the logical point of view.® But from the point of view of the
working mathematician (for instance, a number theorist), the set-theoretic reduction
of numbers plays no role, as mathematicians obviously do not think of natural num-
bers as being sets obtained from an empty set of set-theoretic operations! Indeed, the
question, whether 0 € 2 seems rather awkward, and is surely irrelevant for, say, the
Twin Primes Conjecture. So the problem of set-theoretic reduction seems artificial
from the point of view of mathematical practice: no mathematician is really worried
about the problem of translating the results into some awkward logical notation (into
the language with one two-place predicate €, i.e. into set theory).

The foundational enterprise has a theoretic character, just like the formalizabil-
ity postulate: no mathematician bothers with formalizing proofs to the full extent,
however, this postulate (the common belief, that proofs can—in principle—be for-
malized) serves as a kind of methodological warrant. Complaints about the artificial
character of the reductions can be countered with the observations, that our everyday
habits are not a warrant for methodological correctness. We are free to use informal,
and even metaphorical language even in science—as long as we are aware of the
fact, and are able to provide rigorous paraphrases.

Category theory is believed (perhaps not very widely—but very firmly!) to be a
good candidate for a foundational theory. But the notion of “foundation” is different
than in the case of set theory. It is not about isolating one single notion or a the-
ory (like “set” and “set theory”) which appears in the ultimate definiendum of all
mathematical notions. This point of view is typical for set-theoretic foundationalism.
Adherents of category-theoretic foundations stress the fact, that CT takes mathemat-
ics “at face value”: mathematical notions are not forced into the Procrustean bed
of set theory (or some other formal theory we choose), but are free to live within
their natural conceptual environment: groups populate the category Grp; topologi-
cal spaces live within T op; partial orders also have their own place to live. Sets are

the category of sets described in ETCS is a closer fit to the practical needs of most mathe-
maticians than is the cumulative hierarchy of sets described in ZFC.

“The empty set becomes 0; the singleton {¢}} becomes 1; {@, {@#}} plays the role of 2, erc. The suc-
cessor functions is defined as a set-theoretic operation: n + 1 = n U {n}, and the resulting sequence
of natural numbers is: @, {3}, {¥, {P}}, (4, {9}, {4, {¥}}), ...

SAn example of a different representation is: @, {#}, {{#}}, {{{¥}}}, {{{{¥}}}}, .. —i.e. the empty set
is 0, and the rule for successoris: n + 1 = {n}. This leads to the famous multiple-reduction problem
in philosophy of mathematics (the locus classicus is [5]). As there are many possible reductions,
it is not clear, that any of them is the proper one. So perhaps identifying numbers with sets is not
legitimate.
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indeed important—they have their category of their own—but this is just one of many
categories, by far neither the only, nor the most important one. The notion of set is
one of many natural mathematical notions—just like the notion of continuity. And
even the logic is not absolute—a topos might have some internal logic, and could
serve as a way of interpreting mathematical notions within it.°

So this way of thinking is not quite reductionist—it might rather be considered
as providing a useful, enlightening template for interpreting mathematical notions—
within their respective domains. This constitutes a strong shift in thinking about
mathematical notions: what is most interesting about them, are their universal prop-
erties. A tensor product is important primarily because it is an object representing
an important functor, not interesting per se. Even the Cartesian product of two sets
is rather viewed as an object with appropriate arrows—and this is important, not the
particular ordered pairs.

An important general insight is therefore perhaps: mathematics does not need
foundation—but organization. As Mac Lane [24, p. 406] put it:

Alternatively, set theory and category theory may be viewed as proposals for the organi-
zation of Mathematics. The canons of set theory provide guides to the formulation of new
concepts and emphasize the extensional character of Mathematics: A “property” is com-
pletely determined by knowing all the elements which have that property. Similarly, the
canons of category theory emphasize the importance of considering not just the objects
but also their morphisms. They also emphasize the use of universal constructions and their
associated adjoint functors.

For Mac Lane, none of these proposals are fully successful. Category theory works
well in algebra and topology, but not so well in analysis. Set theory, for Mac Lane,
contains many artificial constructions and, as Mac Lane [24, p. 407] has repeatedly
said following Hermann Weyl: “it contains far too much sand”.

CT serves as a method for organizing mathematics rather as a foundation. Never-
theless, CT still has ambitions to replace set theory’s pride of place. In recent years,
homotopy type theory and univalent foundations (HoTT/UF) have been intensively
developed and has become a serious competitor to set theory. In principle, HoTT/UF
can serve as a foundation for mathematics. It is a paradigm that marks a new way
of thinking about the foundations of mathematics, which more faithfully than set
theory, represents everyday mathematical practice (in this respect CT has always
challenged set theory) on the one hand, and on the other HoTT/UF “is suited to
computer systems and has been implemented in existing proof assistants” [42, p. 7].

In homotopy type theory the idea of a collection is realized by a type, just as in set
theory the idea of a collection is realized by a set. The elements of types are points.
A set is made up only of elements, but the type is made up of both points and ways
of identifying points. Two points can be the same in many ways (let’s take the sets
{a, b} and {c, d} as the points and bijection as a relation of being the same, in this
case there is more than one bijection; or: two topological spaces can be homeomor-
phic in many ways), so types also consist of ways in which elements are the same.

®This problem is discussed in the context of Topos Quantum Theory in [44].
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Types are therefore certain spaces, not pure sets, more specifically they are w-
grupoids. In set theory the relation of being the same is given a priori, from the
very beginning, as being in a sense ready. In homotopy type theory, if a collection
is considered, reasons for “being the same element” must be considered simultane-
ously. For the foundations of mathematics it is important that the universe of sets is
an appropriate part of the universe of types (through ETCS), therefore the model of
ZFC can be reconstructed in HoTT/UF. Thus, if set theory reconstructs mathematical
objects, then HoTT/UF does it all the more (for a more detailed explanation see a
brief discussion of the idea in [38] and a full presentation of HoTT/UF in [42]).
Undoubtedly HoTT/UF is much richer—ontologically speaking—than set theory
[42, p. 1]:

Homotopy type theory also brings new ideas into the very foundation of mathematics. On
the one hand, there is Voevodsky’s subtle and beautiful univalence axiom. The univalence
axiom implies, in particular, that isomorphic structures can be identified, a principle that
mathematicians have been happily using on workdays, despite its incompatibility with the
“official” doctrines of conventional foundations. On the other hand, we have higher inductive
types, which provide direct, logical descriptions of some of the basic spaces and construc-
tions of homotopy theory: spheres, cylinders, truncations, localizations, etc. Both ideas are
impossible to capture directly in classical set-theoretic foundations (...).

1.3.3 The Problem with Unifying Mathematics

Category theory takes a bird’s eye view of mathematics. From
high in the sky, details become invisible, but we can spot
patterns that were impossible to detect from ground level. [31]

Notwithstanding the fact, that there are dozens of mathematical disciplines (and hun-
dreds of subdisciplines), itis an empirical datum, that mathematics is a unity. Notions,
methods, theorems are transferred in a very natural way from one mathematical dis-
cipline to another; examples are abundant. But in the history of mathematics, these
theories often emerged as separate disciplines, and great contributions in the history
of mathematics consisted often in transferring concepts from discipline D; to dis-
cipline D,—applying algebra in geometry to solve classic questions (like the angle
trisection) is the most obvious illustration. This mutual applicability of mathematical
disciplines is almost a “raw data”, a phenomenon which requires an explanation. The
insights from CT might provide it.

From the point of view of reductive foundationalism (for instance—set theoretic),
the answer is very natural: mathematics is a unity just because of the fact that all of
Mathematics can be reduced to the Fundamental Theory (whatever it is). But this is
not exactly what mathematical practice suggests: the mutual applications of diverse
mathematical notions and results is not the result of translating everything into set-
theoretic language, and then proceeding within set theory. The conceptual links are
much more direct, that via a set-theoretic translation.

So, it is natural to ask, whether the phenomenon of unity could be explained
not by postulating a reduction to set theory, but in a more direct way. This is the
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point of view of CT: the unity of mathematics stems from the fact that all math-
ematical theories and objects live within their natural environment(s) (which are
the respective category/ies)—and the unity is explained by investigating the rela-
tionships between these categories. From this point of view, some notions become
natural, and “environment-relative”—one of the simplest examples is the notion of
isomorphism. In set theory there is an enormous amount of the “implementations” of
this notion (isomorphism of groups is something different than the isomorphism of
rings, even if the underlying set is the same’). In CT the isomorphism between objects
in a category is defined via the properties of the morphisms. And the “transfer” of
isomorphisms between different categories is explained via functorial notions (like
the homeomorphism of topological spaces and algebraic isomorphisms). We might
say, that the “essence” of the familiar notion of isomorphism (in all its variants) is
captured by one category-theoretic definition.

In the development of mathematics, isolating proper, core notions for a discipline
(e.g. by finding appropriate primitive notions for an axiomatization) was a natural
problem. Identifying such notions can have great explanatory value, in a sense—
metaphorically speaking—this is about identifying “the essence of the theory”. And
the proper identification can lead to a fertile conceptual recasting—being an explana-
tory presentation of a discipline.

This statement is perhaps difficult to grasp in a precise way: what does it mean, that
a theory is presented in an explanatory or a non-explanatory way? An illuminating
example is presented in [32], where Pringsheim’s presentation of complex analysis
is discussed.® According to Mancosu [32, p. 108]:

The original approach to complex analysis defended by Pringsheim is based on the claim

that only according to his method it is possible to “explain” a great number of results, which
in previous approaches, in particular Cauchy’s, remain mysterious and unexplained.

Of course, this is not a new theory, there are no new theorems—rather, this is
an example of a shift in perspective. Mancosu’s example does not concern CT in
any way—but illustrates the phenomenon. Providing a reformulation of a theory can
provide important insights. And the problem of “immersing” different subjects into
one conceptual system is obviously connected with questions concerning the unity
of a subject.

At this point it is worth mentioning that CT in the person of F. W. Lawvere led to a
peculiar demythologisation of Godel’s famous theorems. It turns out that both Godel’s
incompleteness theorem and Russell’s paradox, as well as Cantor’s theorem and
Tarski’s undefinability theorem—all these results are instances of a simple categori-
cal construction. An interested reader should take a look at Lawvere’s work in [21],
and areader whois not familiar with CT yet can easily follow Lawvere’s result, thanks
to N. Yanofsky’s accessible introduction to the subject in [45] without the use of a
CT-toolbox. This observation by Lawvere is a good example of how CT naturally

"Isomorphism of Lie groups as groups is something quite different than their isomorphism as
topological spaces.

8Without going into details, it takes the notion of the mean value of a function as basic—and the
other (standard) definitions are treated as derived facts.
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finds surprising similarities between different mathematical phenomena. It is proba-
bly even more surprising that the topological operator of the interior is connected with
the inclusion operator in the same way as the existential quantifier with the general
quantifier—these are the examples of adjoint functors that were noticed in principle
only thanks to CT. An overview of many examples of adjoint functors can be found in
Mac Lane’s classic work Categories for the Working Mathematician [27]. The issue
of adjointness in the foundations of mathematics (understood not as “starting-point”
or “justification” but as the study of what is universal in mathematics) is discussed
by Lawvere in his work Adjointness in Foundations [20]. Lawvere shows how one
can understand the game of Formal and Conceptual aspects of mathematics in the
context of their adjointness.

CT is not an object-level theory, it is perhaps rather “a theory of theories”—and
its contributions to our understanding are at a quite abstract level. As Spivak [41, p.
400] put it:

Category theory is not a theory of everything. It is more like, as topologist Jack Morava put it,
(...) “a theory of theories of anything”. In other words, it is a model of models. It leaves each
subject alone to solve its own problems, to sharpen and refine its toolset in the ways it sees
fit. That is, CT does not micromanage in the affairs of any discipline. However, describing
any discipline categorically tends to bring increased conceptual clarity, because conceptual
clarity is CT’s main concern, its domain of expertise. (...) Finally, category theory allows
one to compare different models, thus carrying knowledge from one domain to another, as
long as one can construct the appropriate “analogy”, i.e., functor.

And this might be characteristic of CT: it takes on a new perspective. This new
perspective is indeed an ontological shift that we mentioned earlier. It is a change
of ontological form, whereby form, following Ingarden (in his Controversy over the
Existence of the World [15]) we mean something radically non-qualitative. The form
can be a parthood and a wholehood, a substance and its properties (the form here is
the subject of properties) or exactly relationality, as in the case of CT. Existence in CT
is only and exclusively being in relation. Hence, ontologically speaking, Eilenberg
and Mac Lane made a formal-ontological shift towards pure relationality. This is not
a technical (in the mathematical sense) shift, many mathematicians use both CT and
set theory simultaneously. However, the difference between CT and set theory lies in
the fundamentally different ontology behind them, hence discussions between fierce
category theorists and set theorists resemble discussions between metaphysicists. CT
is essentially a formal metaphysics of mathematics that defends a different vision of
the world.

1.3.4 Category Theory in Metaphysics

Spivak [41, p. 382] pointed out that CT has served science as a modeling language
for various studied phenomena:

There is a good deal of work on using category theory to model high-level conceptual
aspects of scientific subjects. For example, categories have been used by John Baez to model
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1.4 Physics: Category Theory as an Ontology Rescuing Tool

Category theory entered physics seemingly only as a new language for old theo-
ries. But, in fact, one of the original purposes of the categorical (topos) approach to
quantum mechanics, as presented in seminal papers of Christopher Isham, Andreas
Déring, and Jeremy Butterfield has been to find an alternative logical foundation for
the orthodox quantum theory [9, 16]. The most fundamental result of such a shift
can be briefly explained by the following observations. The classical and quantum
descriptions of the physical world differ considerably on the mathematical level.
Classical systems are described in terms of a phase space, usually a differential
manifold, its (measurable) subsets, coordinate systems, etc. Observables, i.e. phys-
ical quantities that we can measure, or, in general to which we can ascribe certain
numerical values characterizing the observed system, are functions on the phase
space. Observables, such like positions, momenta, energies, angular momenta etc.
are some properties of systems like particles, ensembles of particles, rigid bodies,
etc. They can change in time, but are properties that are possessed by systems alone
and do not depend on whether or not they are actually measured at a particular
moment. Moreover, at least in principle, we can measure them without disturbing
them. Consequently, measurements can be performed in an arbitrary order, or even
simultaneously, and provide the same results. We can thus pose questions about exact
values of, say, the position and the momentum of a particle. Usually, however, due
to e.g. inaccuracies of measurements we inquire into the probability that our particle
is in a certain subset of the phase space. Such a probability is determined by the
volumes of the relevant subsets.

Quantum mechanics offers a completely different picture. Here we do not have
a phase space in the form of a manifold. Instead a system is described in terms
of vectors and operators in a Hilbert space. We may ascribe to each system some
properties that pretend to be the quantum analogues of classical ones like positions,
momenta, angular momenta, energies, etc. (and some others that seem to be of
a purely quantum mechanical nature, like spin, isospin, strangeness, hypercharge
etc.). However, they are no longer infrinsic in the classical sense. They are not
“carried” by a system during its evolution, rather they are “brought to life”” by an act
of measurement, which can be interpreted as an impossibility of a non-disturbing
experiment. Each act of measurement disturbs the actual state of a system by bringing
it to another state corresponding to a result of the measurement performed. Hence,
the order in which measurements are taken does matter, and some measurements
can not be taken simultaneously (the uncertainty principle). Moreover, although
results of measurements depend on the actual state of the system prior to the act of
a measurement, they do it only in a probabilistic manner. This is because for each
observable (position, momentum, angular momentum, energy, spin, etc.) there is a
corresponding selfadjoint operator, the eigenvalues of which are possible outcomes
with probabilities depending on the state of a system before the measurement and
the eigenvectors determine possible states after it.
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It is thus clear that it is rather hard to find a unifying ontological basis for clas-
sical and quantum physics. The ontological status of such fundamental elements of
physical reality, as positions, momenta, angular momenta, etc. have radically dif-
ferent ontological status in both theories. Whereas they are intrinsic and objective
properties of a physical system, it is not so in quantum theory.

From a purely physical point of view this is not a danger. Ultimately, physics
is an experimental science. It can and should answer experimental questions about
outcomes of various measurements. Such an approach clearly puts more emphasis
on the epistemology, moving apart, or even totally discarding ontological issues.

As an attempt to unify classical and quantum physics on common epistemological
ground one can treat the quantum logic approach that goes back to Birkhoff and von
Neumann [6]. The main idea is to analyze the structure of elementary experimental
question/propositions about a system. In classical physics, elementary propositions
can be reduced to statements that values of observed quantities (coordinates) belong
to a certain subset of the phase space. The logical structure of the set of such proposi-
tions, determined by the rules concerning their negations, conjunctions and disjunc-
tions isomorphically reflects the Boole algebra structure of the set of (measurable)
subsets of the phase space. One of the characteristic features of a Boolean structure is
the distributivity law, allowing for the distribution of conjunctions over disjunctions
and vice versa.

In quantum mechanics elementary propositions concern positions of state vectors
(characterizing a state of a system) with respect to eigenspaces of observables (self-
adjoint operators in Hilbert space). As in the classical case we can ask composite
questions corresponding to conjunctions and disjunctions. However, the ensuing log-
ical structure is no longer distributive. The logic of a system described by a Hilbert
space 7 is represented by the orthomodular lattice of closed subspaces in .7#°. The
involution sending a subspace to its orthogonal complement represents logical nega-
tion, satisfying the law of an excluded middle: measuring the spin of an electron
will yield either ‘up’ or ‘down’, fertium non datur. As said, the resulting lattice is
non-distributive: x-spin up does not imply x-spin up and z-spin up or x-spin up and
z-spin down (the incompatibility of the two measurements is reflected by the non-
distributivity of the sub-lattice they ‘generate’, just as by the non-commutativity of
the corresponding sub-algebra of operators). Having the lattice stand for the logic of
the system, one derives its probability theory where states assign ‘probabilities’ to
elements of the lattice, respecting the underlying structure (order and complementa-
tion). These states turn out to coincide with the usual density matrices by a celebrated
theorem of Gleason (as long as dim 5% > 3, [11]).

Despite differences in the logical structures of both theories, such an approach
definitely provides a unifying picture for the whole physics. The differences them-
selves reflect precisely the dissimilarities between the two theories. Does it really
mean that we achieved the goal and we can look at classical quantum physics from
the same point of view? For supporters of the purely epistemological approach briefly
described above, most probably yes. But for those who pay more attention to the onto-
logical basis of physical theories it might be disappointing. It seems that category
theory could be called to come to the rescue.



