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Preface to the First Edition

The central aim of many studies in the physical, behavioral, social, and biological sciences
is the elucidation of cause—effect relationships among variables or events. However, the
appropriate methodology for extracting such relationships from data — or even from the-
ories — has been fiercely debated.

The two fundamental questions of causality are: (1) What empirical evidence is re-
quired for legitimate inference of cause—effect relationships? (2) Given that we are willing
to accept causal information about a phenomenon, what inferences can we draw from
such information, and how? These questions have been without satisfactory answers in
part because we have not had a clear semantics for causal claims and in part because we
have not had effective mathematical tools for casting causal questions or deriving causal
answers.

In the last decade, owing partly to advances in graphical models, causality has under-
gone a major transformation: from a concept shrouded in mystery into a mathematical
object with well-defined semantics and well-founded logic. Paradoxes and controver-
sies have been resolved, slippery concepts have been explicated, and practical problems
relying on causal information that long were regarded as either metaphysical or unman-
ageable can now be solved using elementary mathematics. Put simply, causality has been
mathematized.

This book provides a systematic account of this causal transformation, addressed pri-
marily to readers in the fields of statistics, artificial intelligence, philosophy, cognitive
science, and the health and social sciences. Following a description of the conceptual
and mathematical advances in causal inference, the book emphasizes practical methods
for elucidating potentially causal relationships from data, deriving causal relationships
from combinations of knowledge and data, predicting the effects of actions and policies,
evaluating explanations for observed events and scenarios, and — more generally — iden-
tifying and explicating the assumptions needed for substantiating causal claims.

Ten years ago, when I began writing Probabilistic Reasoning in Intelligent Systeims
(1988), I was working within the empiricist tradition. In this tradition, probabilistic re-
lationships constitute the foundations of human knowledge, whereas causality simply
provides useful ways of abbreviating and organizing intricate patterns of probabilistic re-
lationships. Today, my view is quite different. I now take causal relationships to be the

XV



XVi Preface to the First Edition

fundamental building blocks both of physical reality and of human understanding of that
reality, and I regard probabilistic relationships as but the surface phenomena of the causal
machinery that underlies and propels our understanding of the world.

Accordingly, 1 see no greater impediment to scientific progress than the prevailing
practice of focusing all of our mathematical resources on probabilistic and statistical infer-
ences while leaving causal considerations to the mercy of intuition and good judgment.
Thus I have tried in this book to present mathematical tools that handle causal rela-
tionships side by side with probabilistic relationships. The prerequisites are startlingly
simple, the results embarrassingly straightforward. No more than basic skills in proba-
bility theory and some familiarity with graphs are needed for the reader to begin solving
causal problems that are too complex for the unaided intellect. Using simple extensions
of probability calculus, the reader will be able to determine mathematically what effects
an intervention might have, what measurements are appropriate for control of confound-
ing, how to exploit measurements that lie on the causal pathways, how to trade one set
of measurements for another, and how to estimate the probability that one event was the
actual cause of another.

Expert knowledge of logic and probability is nowhere assumed in this book, but some
general knowledge in these areas is beneficial. Thus, Chapter 1 includes a summary of the
elementary background in probability theory and graph notation needed for the under-
standing of this book, together with an outline of the developments of the last decade
in graphical models and causal diagrams. This chapter describes the basic paradigms,
defines the major problems, and points readers to the chapters that provide solutions to
those problems.

Subsequent chapters include introductions that serve both to orient the reader and to
facilitate skipping; they indicate safe detours around mathematically advanced topics,
specific applications, and other explorations of interest primarily to the specialist.

The sequence of discussion follows more or less the chronological order by which
our team at UCLA has tackled these topics, thus re-creating for the reader some of our
excitement that accompanied these developments. Following the introductory chapter
(Chapter 1), we start with the hardest questions of how one can go about discovering
cause—effect relationships in raw data (Chapter 2) and what guarantees one can give
to ensure the validity of the relationships thus discovered. We then proceed to ques-
tions of identifiability — namely, predicting the direct and indirect effects of actions and
policies from a combination of data and fragmentary knowledge of where causal relation-
ships might operate (Chapters 3 and 4). The implications of these findings for the social
and health sciences are then discussed in Chapters 5 and 6 (respectively), where we ex-
amine the concepts of structural equations and confounding. Chapter 7 offers a formal
theory of counterfactuals and structural models, followed by a discussion and a unifi-
cation of related approaches in philosophy, statistics, and economics. The applications
of counterfactual analysis are then pursued in Chapters 8—10, where we develop methods
of bounding causal relationships and illustrate applications to imperfect experiments,
legal responsibility, and the probability of necessary, sufficient, and single-event causa-
tion. We end this book (Epilogue) with a transcript of a public lecture that [ presented at
UCLA., which provides a gentle introduction to the historical and conceptual aspects of
causation.
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Readers who wish to be first introduced to the nonmathematical aspects of causation
are advised to start with the Epilogue and then to sweep through the other historical/
conceptual parts of the book: Sections 1.1.1,3.3.3,4.5.3,5.1,54.1,06.1,7.2,7.4,7.5, 8.3,
9.1, 9.3, and 10.1. More formally driven readers, who may be anxious to delve directly
into the mathematical aspects and computational tools, are advised to start with Sec-
tion 7.1 and then to proceed as follows for tool building: Section 1.2, Chapter 3, Sections
4.2-4 4, Sections 5.2-5.3, Sections 6.2-6.3, Section 7.3, and Chapters 8-10.

I owe a great debt to many people who assisted me with this work. First, I would like
to thank the members of the Cognitive Systems Laboratory at UCLA, whose work and
ideas formed the basis of many of these sections: Alex Balke, Blai Bonet, David Chicker-
ing, Adnan Darwiche, Rina Dechter, David Galles, Hector Geftner, Dan Geiger, Moisés
Goldszmidt, Jin Kim, Jin Tian, and Thomas Verma. Tom and Dan have proven some of
the most basic theorems in causal graphs; Hector, Adnan, and Moisés were responsible
for keeping me in line with the logicist approach to actions and change; and Alex and
David have taught me that counterfactuals are simpler than the name may imply.

My academic and professional colleagues have been very generous with their time
and ideas as | began ploughing the peaceful territories of statistics, economics, epidemi-
ology, philosophy, and the social sciences. My mentors—listeners in statistics have been
Phil Dawid, Steffen Lauritzen, Don Rubin, Art Dempster, David Freedman, and David
Cox. In economics, I have benefited from many discussions with John Aldrich, Kevin
Hoover, James Heckman, Ed Learner, and Herbert Simon. My forays into epidemiol-
ogy resulted in a most fortunate and productive collaboration with Sander Greenland and
James Robins. Philosophical debates with James Woodward, Nancy Cartwright, Brian
Skyrms, Clark Glymour, and Peter Spirtes have sharpened my thinking of causality in
and outside philosophy. Finally, in artificial intelligence, I have benefited from discus-
sions with and the encouragement of Nils Nilsson, Ray Reiter, Don Michie, Joe Halpern,
and David Heckerman.

The National Science Foundation deserves acknowledgment for consistently and faith-
fully sponsoring the research that led to these results, with special thanks to H. Moraff,
Y. T. Chien, and Larry Reeker. Other sponsors include Abraham Waksman of the Air
Force Office of Scientific Research, Michael Shneier of the Office of Naval Research, the
California MICRO Program, Northrop Corporation, Rockwell International, Hewlett-
Packard, and Microsoft.

I would like to thank Academic Press and Morgan Kaufmann Publishers for their
kind permission to reprint selected portions of previously published material. Chapter 3
includes material reprinted from Biometrika, vol. 82, Judea Pearl, “Causal Diagrams
for Empirical Research,” pp. 669-710, Copyright 1995, with permission from Oxford
University Press. Chapter 5 includes material reprinted from Sociological Methods and
Research, vol. 27, Judea Pearl, “Graphs, Causality, and Structural Equation Models,”
Pp- 22684, Copyright 1998, with permission from Sage Publications, Inc. Chapter 7 in-
cludes material reprinted from Foundations of Science, vol. 1, David Galles and Judea
Pearl, “An Axiomatic Characterization of Causal Counterfactuals,” pp. 151-82, Copyright
1998, with permission from Kluwer Academic Publishers. Chapter 7 also includes materi-
al reprinted from Artificial Intelligence, vol. 97, David Galles and Judea Pearl, “Axioms
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of Causal Relevance,” pp. 943, Copyright 1997, with permission from Elsevier Science.
Chapter 8 includes material modified from Journal of the American Statistical Associ-
ation, vol, 92, Alexander Balke and Judea Pearl, “Bounds on Treatment Effects from
Studies with Imperfect Compliance,” pp. 11716, Copyright 1997, with permission from
the American Statistical Association.

The manuscript was most diligently typed, processed, and illustrated by Kaoru Mul-
vihill, Jin Tian and Blai Bonet helped in proofing selected chapters. Matt Darnell did a
masterful job of copyediting these pages. Alan Harvey has been my consoling ombuds-
man and virtual editor throughout the production process.

Finally, my humor and endurance through the writing of this book owe a great debt to
my family — to Tammy, Danny, Michelle, and Leora for filling my heart with their smiles,
and to my wife Ruth for surrounding me with so much love, support, and meaning.

J.P.
Los Angeles
August 1999



Preface to the Second Edition

It has been more than eight years since the first edition of this book presented readers
with the friendly face of causation and her mathematical artistry. The popular reception
of the book and the rapid expansion of the structural theory of causation call for a new
edition to assist causation through her second transformation — from a demystified won-
der to a commonplace tool in research and education. This edition (1) provides technical
corrections, updates, and clarifications in all ten chapters of the original book, (2) adds
summaries of new developments and annotated bibliographical references at the end of each
chapter, and (3) elucidates subtle issues that readers and reviewers have found perplexing,
objectionable, or in need of elaboration. These are assembled into an entirely new chap-
ter (11) which, I sincerely hope, clears the province of causal thinking from the last traces
of controversy.

Teachers who have taught from this book before should find the revised edition more
lucid and palatable, while those who have waited for scouts to carve the path will find
the road paved and tested. Supplementary educational material, slides, tutorials, and
homework can be found on my website, http://www.cs.ucla.edu/~judea/.

My main audience remain the students: students of statistics who wonder why
instructors are reluctant to discuss causality in class; students of epidemiology who won-
der why elementary concepts such as confounding are so hard to define mathematically;
students of economics and social science who question the meaning of the parameters
they estimate; and, naturally, students of artificial intelligence and cognitive science,
who write programs and theories for knowledge discovery, causal explanations, and
causal speech.

I hope that each of these groups will find the unified theory of causation presented
in this book to be both inspirational and instrumental in tackling new challenges in their
respective fields.

I.P
Los Angeles
July 2008
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CHAPTER ONE

Introduction to Probabilities, Graphs, and
Causal Models

Chance gives rise to thoughts,
and chance removes them.
Pascal (1670)

1.1 INTRODUCTION TO PROBABILITY THEORY

1.1.1 Why Probabilities?

Causality connotes lawlike necessity, whereas probabilities connote exceptionality, doubt,
and lack of regularity. Still, there are two compelling reasons for starting with, and in
fact stressing, probabilistic analysis of causality; one is fairly straightforward, the other
more subtle.

The simple reason rests on the observation that causal utterances are often used in sit-
uations that are plagued with uncertainty. We say, for example, “reckless driving causes
accidents” or “you will fail the course because of your laziness™ (Suppes 1970), knowing
quite well that the antecedents merely tend to make the consequences more likely, not
absolutely certain. Any theory of causality that aims at accommodating such utterances
must therefore be cast in a language that distinguishes various shades of likelihood —
namely, the language of probabilities. Connected with this observation, we note that
probability theory is currently the official mathematical language of most disciplines that
use causal modeling, including economics, epidemiology, sociology, and psychology. In
these disciplines, investigators are concerned not merely with the presence or absence
of causal connections but also with the relative strengths of those connections and with
ways of inferring those connections from noisy observations. Probability theory, aided
by methods of statistical analysis, provides both the principles and the means of coping
with — and drawing inferences from — such observations.

The more subtle reason concerns the fact that even the most assertive causal expres-
sions in natural language are subject to exceptions, and those exceptions may cause major
difficulties if processed by standard rules of deterministic logic. Consider, for example,
the two plausible premises:

1. My neighbor’s roof gets wet whenever mine does.

2. If T hose my roof it will get wet.

Taken literally, these two premises imply the implausible conclusion that my neighbor’s
roof gets wet whenever | hose mine.
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Such paradoxical conclusions are normally attributed to the finite granularity of our
language, as manifested in the many exceptions that are implicit in premise 1. Indeed, the
paradox disappears once we take the trouble of explicating those exceptions and write,
for instance:

1*. My neighbor’s roof gets wet whenever mine does, except when it is covered
with plastic, or when my roof is hosed, etc.

Probability theory, by virtue of being especially equipped to tolerate unexplicated ex-
ceptions, allows us to focus on the main issues of causality without having to cope with
paradoxes of this kind.

As we shall see in subsequent chapters, tolerating exceptions solves only some of
the problems associated with causality. The remaining problems — including issues of
inference, interventions, identification, ramification, confounding, counterfactuals, and
explanation — will be the main topic of this book. By portraying those problems in the
language of probabilities, we emphasize their universality across languages. Chapter 7
will recast these problems in the language of deterministic logic and will introduce prob-
abilities merely as a way to express uncertainty about unobserved facts.

1.1.2 Basic Concepts in Probability Theory

The bulk of the discussion in this book will focus on systems with a finite number of dis-
crete variables and thus will require only rudimentary notation and elementary concepts
in probability theory. Extensions to continuous variables will be outlined but not elabo-
rated in full generality. Readers who want additional mathematical machinery are invited
to study the many excellent textbooks on the subject — for example, Feller (1950), Hoel
et al. (1971), or the appendix to Suppes (1970). This section provides a brief summary of
elementary probability concepts, based largely on Pearl (1988b), with special emphasis
on Bayesian inference and its connection to the psychology of human reasoning under
uncertainty. Such emphasis is generally missing from standard textbooks.

We will adhere to the Bayesian interpretation of probability, according to which prob-
abilities encode degrees of belief about events in the world and data are used to strengthen,
update, or weaken those degrees of belief. In this formalism, degrees of belief are as-
signed to propositions (sentences that take on true or false values) in some language, and
those degrees of belief are combined and manipulated according to the rules of prob-
ability calculus. We will make no distinction between sentential propositions and the
actual events represented by those propositions. For example, if A stands for the state-
ment “Ted Kennedy will seek the nomination for president in year 2012 then P(A | K)
stands for a person’s subjective belief in the event described by A given a body of knowl-
edge K, which might include that person’s assumptions about American politics, specific
proclamations made by Kennedy, and an assessment of Kennedy’s age and personality.
In defining probability expressions, we often simply write P(A), leaving out the symbol
K. However, when the background information undergoes changes, we need to identify
specifically the assumptions that account for our beliefs and explicitly articulate K (or
some of its elements).

In the Bayesian formalism, belief measures obey the three basic axioms of probabil-
ity calculus:
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0=PA) =1, (1.1)
P (sure proposition) =1, (1.2)
P(A orB) = P(A) + P(B) if A and B are mutually exclusive, (1.3)

The third axiom states that the belief assigned to any set of events is the sum of the be-
liefs assigned to its nonintersecting components. Because any event A can be written as
the union of the joint events (A A B) and (A A - B), their associated probabilities are
given byl

P(A) = P(A,B) + P(A, = B), (14)

where P(A, B) is short for P(A A B). More generally, if B;, i = 1, 2,..., n, is a set
of exhaustive and mutually exclusive propositions (called a partition or a variable), then
P(A) can be computed from P(A, B,),i = 1, 2...., n, by using the sum

P(A) = X P(A.B), (1.5)

which has come to be known as the “law of total probability.” The operation of summing
up probabilities over all B, is also called “marginalizing over B”; and the resulting prob-
ability, P(A), is called the marginal probability of A. For example, the probability of A,
“The outcomes of two dice are equal,” can be computed by summing over the joint
events (A A B)), i1 =1, 2,..., 6, where B; stands for the proposition “The outcome of
the first die is i.” This yields

PA) = PAB—6><1—] 1.6

()Ei(,l) % o (1.6)

A direct consequence of (1.2) and (1.4) is that a proposition and its negation must be

assigned a total belief of unity,

P@A) + P(0A) =1, (1.7

because one of the two statements is certain to be true.

The basic expressions in the Bayesian formalism are statements about conditional
probabilities — for example, P(A | B) — which specify the belief in A under the assump-
tion that B is known with absolute certainty. If P(A |B) = P(A), we say that A and B
are independent, since our belief in A remains unchanged upon learning the truth of B.
If P(A| B, C) = P(A| C), we say that A and B are conditionally independent given
C'; that is, once we know C, learning B would not change our belief in A.

Contrary to the traditional practice of defining conditional probabilities in terms of
joint events,

P(A.B)

P(A|B) = Tk

(1.8)

! The symbols A, v, =, = denote the logical connectives and, or, not, and implies, respectively.
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Bayesian philosophers see the conditional relationship as more basic than that of joint
events — that is, more compatible with the organization of human knowledge. In this
view, B serves as a pointer to a context or frame of knowledge, and A | B stands for an
event A in the context specified by B (e.g., a symptom A in the context of a disease B).
Consequently, empirical knowledge invariably will be encoded in conditional probabil-
ity statements, whereas belief in joint events (if it is ever needed) will be computed from
those statements via the product

P(A.B) = P(A|B) P(B). (1.9)

which is equivalent to (1.8). For example, it was somewhat unnatural to assess

1
PA,B) = —
( ’ ;) 36
directly in (1.6). The mental process underlying such assessment presumes that the two
outcomes are independent, so to make this assumption explicit the probability of the joint
event (equality, B;) should be assessed from the conditional event (equality | B;) via the
product

P(equality | B;) P(B;) = P(outcome of second die is / | B)P(B))

1
6

As in (1.5), the probability of any event A can be computed by conditioning it on any
set of exhaustive and mutually exclusive events B;, i = 1, 2,..., n, and then summing:

PA) = X P(A|B)P(B). (1.10)

This decomposition provides the basis for hypothetical or “assumption-based” rea-
soning. It states that the belief in any event A is a weighted sum over the beliefs in all the
distinct ways that A might be realized. For example, if we wish to calculate the probabil-
ity that the outcome X of the first die will be greater than the outcome Y of the second,
we can condition the event A : X > Y on all possible values of X and obtain

6
S PY <X|X =)PX = i)
i=1

P(A)

6 1 6 i—1 1
EP(Y<1')6= >3 PY =)

=1 i=1j=1

Lls—1 5
6/, 6 12°

It is worth reemphasizing that formulas like (1.10) are always understood to apply in
some larger context K, which defines the assumptions taken as common knowledge (e.g.,
the fairness of dice rolling). Equation (1.10) is really a shorthand notation for the statement
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P(A|K)=EP(A|B;,K)P(BJ; | K). (1.11)

This equation follows from the fact that every conditional probability P(A | K) is itself
a genuine probability function; hence it satisfies (1.10).

Another useful generalization of the product rule (equation (1.9)) is the chain rule for-
mula. It states that if we have a set of nn events, £, E5...., E,, then the probability of
the joint event (£, E,...., E,) can be written as a product of n conditional probabilities:

PE\.Ey,....E)) =PE, | Ep—1s---, E2, Ep) ... P(E3| E ) P(EY). (1.12)

This product can be derived by repeated application of (1.9) in any convenient order.
The heart of Bayesian inference lies in the celebrated inversion formula,

P(e| H)P(H)
P(H‘E)ZT’ (1.13)

which states that the belief we accord a hypothesis /{ upon obtaining evidence e can be
computed by multiplying our previous belief P(f) by the likelihood P(e | ) that ¢ will
materialize if / is true. This P(H | €) is sometimes called the posterior probability (or
simply posterior), and P(H) is called the prior probability (or prior). The denominator
P(e) of (1.13) hardly enters into consideration because it is merely a normalizing con-
stant P(e) = P(e | H)P(H) + P(e | ~H)P(~H), which can be computed by requiring
that P(H | ¢) and P(~H | €) sum to unity.

Whereas formally (1.13) might be dismissed as a tautology stemming from the defi-
nition of conditional probabilities,

P(A, B) P(A, B)

P@A|B) =~p = and P@B|A)="p %,

(1.14)

the Bayesian subjectivist regards (1.13) as a normative rule for updating beliefs in re-
sponse to evidence. In other words, although conditional probabilities can be viewed as
purely mathematical constructs (as in (1.14)), the Bayes adherent views them as primi-
tives of the language and as faithful translations of the English expression ..., given that
I know A.” Accordingly, (1.14) is not a definition but rather an empirically verifiable re-
lationship between English expressions. It asserts, among other things, that the belief a
person attributes to B after discovering A is never lower than that attributed to A A B be-
fore discovering A. Also, the ratio between these two beliefs will increase proportionally
with the degree of surprise [P(A)]_] one associates with the discovery of A.

The importance of (1.13) is that it expresses a quantity P(H | e) — which people of-
ten find hard to assess — in terms of quantities that often can be drawn directly from our
experiential knowledge. For example, if a person at the next gambling table declares the
outcome “twelve,” and we wish to know whether he was rolling a pair of dice or spin-
ning a roulette wheel, our models of the gambling devices readily yield the quantities
P(twelve | dice) and P(twelve | roulette): 1/36 for the former and 1/38 for the latter.
Similarly, we can judge the prior probabilities P(dice) and P(roulette) by estimating the
number of roulette wheels and dice tables at the casino. Issuing a direct judgment of
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P(dice | twelve) would have been much more difficult; only a specialist in such judg-
ments, trained at the very same casino, could do it reliably.

In order to complete this brief introduction, we must discuss the notion of proba-
bilistic model (also called probability space). A probabilistic model is an encoding of
information that permits us to compute the probability of every well-formed sentence S
in accordance with the axioms of (1.1)—(1.3). Starting with a set of atomic propositions
A, B, C,..., the set of well-formed sentences consists of all Boolean formulas involving
these propositions, for example, § = (A A B) v = C. The traditional method of speci-
fying probabilistic models employs a joint distribution function, which is a function that
assigns nonnegative weights to every elementary event in the language (an elementary
event being a conjunction in which every atomic proposition or its negation appears once)
such that the sum of the weights adds up to 1. For example. if we have three atomic propo-
sitions, A, B, and C'. then a joint distribution function should assign nonnegative weights
to all eight combinations — (A A B A C), (A A B =C), ..., (7A A =B A =(C) — such
that the eight weights sum to 1.

The reader may recognize the set of elementary events as the sample space in
probability textbooks. For example, if A, B, and C correspond to the propositions that
coins I, 2, and 3 will come up heads, then the sample space will consist of the set
{HHH, HHT, HTH.,.... TTT}. Indeed, it is sometimes convenient to view the conjunctive
formulas corresponding to elementary events as points (or worlds or configurations), and
to regard other formulas as sefs made up of these points. Since every Boolean formula
can be expressed as a disjunction of elementary events, and since the elementary events
are mutually exclusive, we can always compute P(S5) using the additivity axiom (equa-
tion (1.3)). Conditional probabilities can be computed the same way, using (1.14). Thus,
any joint probability function represents a complete probabilistic model.

Joint distribution functions are mathematical constructs of great importance. They
allow us to determine quickly whether we have sufficient information to specify a com-
plete probabilistic model, whether the information we have is consistent, and at what
point additional information is needed. The criteria are simply to check (i) whether the
information available is sufficient for uniquely determining the probability of every ele-
mentary event in the domain and (ii) whether the probabilities add up to 1.

In practice, however, joint distribution functions are rarely specified explicitly. In the
analysis of continuous random variables, the distribution functions are given by algebraic
expressions such as those describing normal or exponential distributions; for discrete vari-
ables, indirect representation methods have been developed where the overall distribution
is inferred from local relationships among small groups of variables. Graphical models,
the most popular of these representations, provide the basis of discussion throughout
this book. Their use and formal characterization will be discussed in the next few sec-
tions.

1.1.3 Combining Predictive and Diagnostic Supports

The essence of Bayes’s rule (equation 1.13)) is conveniently portrayed using the odds and
likelihood ratio parameters. Dividing (1.13) by the complementary form for P(~H | e),
we obtain
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P(H |e) B Pe |H) P(H)

. : (1.15)
P(=H|e)y P(e|=H) P(~H)
Defining the prior odds on H as
P(H) P(H)
0 = = 1.16
@@ P(~H) 1 — P(H) G160
and the likeliliood ratio as
Lie|H) = ok i 1.17
the posterior odds
T P(H |e) 118
Hlo) =5 h1a (1.18)
are given by the product
O |e) = L(e | H)O(). (1.19)

Thus, Bayes’s rule dictates that the overall strength of belief in a hypothesis /7, based on
both our previous knowledge K and the observed evidence ¢, should be the product of
two factors: the prior odds O(#) and the likelihood ratio L(e | /{). The first factor mea-
sures the predictive or prospective support accorded to H by the background knowledge

alone, while the second represents the diagnostic or retrospective support given to H by
the evidence actually observed.?

Strictly speaking, the likelihood ratio L(e | H) might depend on the content of the
tacit knowledge base K. However, the power of Bayesian techniques comes primarily
from the fact that, in causal reasoning, the relationship P(e | H) is fairly local: given that
H is true, the probability of e can be estimated naturally since it is usually not dependent
on many other propositions in the knowledge base. For example, once we establish that
a patient suffers from a given disease H, it is natural to estimate the probability that she
will develop a certain symptom ¢. The organization of medical knowledge rests on the
paradigm that a symptom is a stable characteristic of the disease and should therefore be
fairly independent of other factors, such as epidemic conditions, previous diseases, and
faulty diagnostic equipment. For this reason the conditional probabilities P(e | H), as
opposed to P(H | e), are the atomic relationships in Bayesian analysis. The former pos-
sess modularity features similar to logical rules. They convey a degree of confidence in
rules such as “If H then e,” a confidence that persists regardless of what other rules or
facts reside in the knowledge base.

Example 1.1.1 Imagine being awakened one night by the shrill sound of your bur-
glar alarm. What is your degree of belief that a burglary attempt has taken place? For

2 1In epidemiology, if H stands for exposure and e stands for disease, then the likelihood ratio L is
called the *risk ratio” (Rothman and Greenland 1998, p. 50). Equation (1.18) would then give the
odds that a person with disease ¢ had been exposed to H.
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illustrative purposes we make the following judgments: (a) There is a 95% chance
that an attempted burglary will trigger the alarm system — P(alarm | burglary) =
0.95; (b) based on previous false alarms, there is a slight (1%) chance that the alarm
will be triggered by a mechanism other than an attempted burglary — P (alarm |
no burglary) = 0.01; (c) previous crime patterns indicate that there is a one in ten thou-
sand chance that a given house will be burglarized on a given night — P(burglary) =
104,
Putting these assumptions together using (1.19), we obtain

O(burglary | alarm) = L (alarm | burglary) O (burglary)

095 104 o
0011 —10% 7
So, from
0O(A)
P(A) = 1.20
(A) [+ 0 (1.20)
we have
0.0095
P (burgl | = —— = (0.00941.
(P Al = e o 0055

Thus, the retrospective support imparted to the burglary hypothesis by the alarm
evidence has increased its degree of belief almost a hundredfold, from one in ten thou-
sand to 94.1 in ten thousand. The fact that the belief in burglary is still below 1%
should not be surprising, given that the system produces a false alarm almost once
every three months. Notice that it was not necessary to estimate the absolute values
of the probabilities P(alarm | burglary) and P(alarm | no burglary). Only their ratio
enters the calculation, so a direct estimate of this ratio could have been used instead.

1.1.4 Random Variables and Expectations

By avariable we will mean an attribute, measurement or inquiry that may take on one of
several possible outcomes, or valies, from a specified domain. If we have beliefs (i.e.,
probabilities) attached to the possible values that a variable may attain, we will call that
variable a random mriab!e.3 For example, the color of the shoes that I will wear tomor-
row is a random variable named “color,” and the values it may take come from the domain
{yellow, green, red,...}.

Most of our analysis will concern a finite set V' of random variables (also called par-
titions) where each variable X € V may take on values from a finite domain Dy. We
will use capital letters (e.g., X, Y, Z) for variable names and lowercase letters (x, y, z)

3 This is a minor generalization of the textbook definition, according to which a random variable is
a mapping from the sample space (e.g., the set of elementary events) to the real line. In our defi-
nition, the mapping is from the sample space to any set of objects called “values,” which may or
may not be ordered.



1.1 Introduction to Probabhility Theory 9

as generic symbols for specific values taken by the corresponding variables. For exam-
ple, if X stands for the color of an object, then x will designate any possible choice of an
element from the set {yellow, green, red,...}. Clearly, the proposition X = yellow de-
scribes an event, namely, a subset of possible states of affair that satisfy the proposition
“the color of the object is yellow.” Likewise, each variable X can be viewed as a parti-
tion of the states of the world, since the statement X = x defines a set of exhaustive and
mutually exclusive sets of states, one for each value of x.

In most of our discussions, we will not make notational distinction between variables
and sets of variables, because a set of variables essentially defines a compound variable
whose domain is the Cartesian product of the domains of the individual constituents in
the set. Thus, if Z stands for the set {X, ¥}, then z stands for pairs (x, y) such that x €
Dy and y € Dy. When the distinction between variables and sets of variables requires
special emphasis, indexed letters (say, X, X5..... X,, or V|, V5,..., V,) will be used to
represent individual variables.

We shall consistently use the abbreviation P(x) for the probabilities P(X = x), x €
D, . Likewise, if Z stands for the set {X, Y}, then P(z) will be defined as

PR)2PZ=2=PX =x,Y=1y), x€Dy, y€EDy.

When the values of a random variable X are real numbers, X is called a real random
variable; one can then define the mean or expected value of X as

E(X) £ xP(x) (1.21)
X
and the conditional mean of X, given event ¥ = y, as

EX|y) 2 xP(x|y). (1.22)

X

The expectation of any function g of X is defined as

E[gX)]2 D g0)P). (1.23)

X

In particular, the function g(X) = (X — E(X ))2 has received much attention; its expec-
tation is called the variance of X, denoted o'%;

ok £ El(X — EX)].

The conditional mean E(X | Y = v) is the best estimate of X, given the observation
Y =y, in the sense of minimizing the expected square error 2 (x — .r')zP(.r | y) over
all possible x'.

The expectation of a function g(X, ¥) of two variables, X and Y, requires the joint
probability P(x, y) and is defined as

EgX.DIZ Y g(x, V)P, y)

X,y
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(cf. equation (1.23)). Of special importance is the expectation of the product (g(X, ¥) =
(X — E(X)(Y — E(Y)), which is known as the covariance of X and Y,

oxy = E[(X — EQX)(Y — EW)],

and which is often normalized to yield the correlation coefficient

axy
ox0y

Pxy =

and the regression coefficient (of X on Y)

ax _oxy
oy o

L
Xy = PXY

b2

The conditional variance, covariance, and correlation coefficient, given Z = z, are
defined in a similar manner, using the conditional distribution P(x, y|z) in taking expec-
tations. In particular, the conditional correlation coefficient, given Z = z, is defined as

TXY|z

Pxy|; = (1.24)

9X)z29Yz

Additional properties, specific to normal distributions, will be reviewed in Chapter 5
(Section 5.2.1).

The foregoing definitions apply to discrete random variables — that is, variables that
take on finite or denumerable sets of values on the real line. The treatment of expectation
and correlation is more often applied to continuous random variables, which are charac-
terized by a density function f(x) defined as follows:

b
Pa=X=b)= S(x) dx

for any two real numbers a and b with @ < b. If X is discrete, then f(x) coincides with
the probability function P(x), once we interpret the integral through the translation

I f@dx <= X P(x). (1.25)
X

Readers accustomed to continuous analysis should bear this translation in mind when-
ever summation is used in this book. For example, the expected value of a continuous
random variable X can be obtained from (1.21), to read

50 = | _fwas,

with analogous translations for the variance, correlation, and so forth.
We now turn to define conditional independence relationships among variables, a
central notion in causal modelling.
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1.1.5 Conditional Independence and Graphoids

Definition 1.1.2 (Conditional Independence)

Let V = {Vy, V,,...} be a finite set of variables. Let P(-) be a joint probability function
over the variables in 'V, and let X, Y, Z stand for any three subsets of variables in V. The
sets X and Y are said to be conditionally independent given Z if

P(x|y,2) = P(x|2) whenever P(y,z) > 0. (1.26)

In words, learning the value of Y does not provide additional information about X, once
we know Z. (Metaphorically, Z “screens off” X from Y.)

Equation (1.26) is a terse way of saying the following: For any configuration x of the
variables in the set X and for any configurations y and z of the variables in ¥ and Z sat-
isfying P(Y = y, Z = z) > 0, we have

PX=x|Y=yZ=2)=PX=x|Z=2z). (1.27)

We will use Dawid’s (1979) notation (XL Y| Z)p or simply (X ILY | Z) to denote
the conditional independence of X and ¥ given Z; thus,

(X1LY|Z)p iff P(x|y.z) = P(x|2) (1.28)

for all values x, y, z such that P(y, z) > 0. Unconditional independence (also called
marginal independence) will be denoted by (X 1LY | 9); that is,

(X1LY |9) iff P(x|y) = P(x) whenever P(y) > 0 (1.29)
(“iff” is shorthand for “if and only if”"). Note that (X 1LY |Z) implies the conditional
independence of all pairs of variables V; € X and V; € ¥, but the converse is not neces-
sarily true.

The following is a (partial) list of properties satisfied by the conditional independence
relation (X1LY | Z).

Symmetry: (X1Y |Z)= (Y1 X |Z).

Decomposition: (X1LYW|Z)=> (X1LY| Z).

Weak union: (X1LYW | Z) == (X1LY | ZW).

Contraction: (X1LY |7Z) & (X1LW | ZY) = (X1LYW | Z).

Intersection: (X1 W |ZY) & (X1LY |ZW)=> (X1LYW | 2).

(Intersection is valid in strictly positive probability distributions.)

The proof of these properties can be derived by elementary means from (1.28) and
the basic axioms of probability thf:ory.4 These properties were called graphoid axioms by

4 These properties were first introduced by Dawid (1979) and Spohn (1980) in a slightly different
form. and were independently proposed by Pearl and Paz (1987) to characterize the relationships
between graphs and informational relevance. Geiger and Pearl (1993) present an in-depth analysis.
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Pearl and Paz (1987) and Geiger et al. (1990) and have been shown to govern the concept
of informational relevance in a wide variety of interpretations (Pearl 1988b). In graphs,
for example, these properties are satisfied if we interpret (X 1LY | Z) to mean “all paths
from a subset X of nodes to a subset Y of nodes are intercepted by a subset Z of nodes.”

The intuitive interpretation of the graphoid axioms is as follows (Pearl 1988b, p. 85).
The symmetry axiom states that, in any state of knowledge Z, if ¥ tells us nothing new
about X, then X tells us nothing new about Y. The decomposition axiom asserts that if
two combined items of information are judged irrelevant to X, then each separate item
is irrelevant as well. The weak union axiom states that learning irrelevant information
W cannot help the irrelevant information ¥ become relevant to X. The confraction axiom
states that if we judge W irrelevant to X after learning some irrelevant information Y,
then W must have been irrelevant before we learned Y. Together, the weak union and
contraction properties mean that irrelevant information should not alter the relevance sta-
tus of other propositions in the system; what was relevant remains relevant, and what
was irrelevant remains irrelevant. The intersection axiom states that if ¥ is irrelevant to
X when we know W and if W is irrelevant to X when we know Y, then neither W nor Y
(nor their combination) is relevant to X.

1.2 GRAPHS AND PROBABILITIES

1.2.1 Graphical Notation and Terminology

A graph consists of a set V of vertices (or nodes) and a set £ of edges (or links) that
connect some pairs of vertices. The vertices in our graphs will correspond to variables
(whence the common symbol V), and the edges will denote a certain relationship that
holds in pairs of variables, the interpretation of which will vary with the application. Two
variables connected by an edge are called adjacent.

Each edge in a graph can be either directed (marked by a single arrowhead on the
edge), or undirected (unmarked links). In some applications we will also use “bidirected™
edges to denote the existence of unobserved common causes (sometimes called cor-
founders). These edges will be marked as dotted curved arcs with two arrowheads (see
Figure 1.1(a)). If all edges are directed (see Figure 1.1(b)), we then have a directed
graph. If we strip away all arrowheads from the edges in a graph G, the resultant undi-
rected graph is called the skeleton of G. A path in a graph is a sequence of edges (e.g.,
(W, 2),Z,Y), (¥, X), (X, Z)) in Figure 1.1(a)) such that each edge starts with the ver-
tex ending the preceding edge. In other words, a path is any unbroken, nonintersecting
route traced out along the edges in a graph, which may go either along or against the ar-
rows. If every edge in a path is an arrow that points from the first to the second vertex of the
pair, we have a directed path. In Figure 1.1(a), for example, the path (W, Z), (Z, Y)) is
directed, but the paths (W, Z), (Z, Y), (Y, X)) and (W, Z), (Z, X)) are not. If there exists
a path between two vertices in a graph, then the two vertices are said to be connected,
else they are disconnected.

Directed graphs may include directed cycles (e.g., X — Y, Y — X), representing
mutual causation or feedback processes, but not self-loops (e.g., X — X). A graph (like
the two in Figure 1.1) that contains no directed cycles is called acyclic. A graph that is
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w

Figure 1.1 (a) A graph containing both di-
Z X rected and bidirected edges. (b) A directed acy-
clic graph (DAG) with the same skeleton as (a).

Y
(@) (b)

both directed and acyclic (Figure 1.1(b)) is called a directed acyclic graph (DAG), and
such graphs will occupy much of our discussion of causality. We make free use of the
terminology of kinship (e.g., parents, children, descendants, ancestors, spouses) to de-
note various relationships in a graph. These kinship relations are defined along the full
arrows in the graph, including arrows that form directed cycles but ignoring bidirected
and undirected edges. In Figure 1.1(a), for example, Y has two parents (X and Z), three
ancestors (X, Z, and W), and no children, while X has no parents (hence, no ancestors),
one spouse (Z), and one child (Y). A family in a graph is a set of nodes containing a
node and all its parents. For example, {W}, {Z, W}, {X}, and {Y, Z, X} are the families in
the graph of Figure 1.1(a).

A node in a directed graph is called a root if it has no parents and a sink if it has no
children. Every DAG has at least one root and at least one sink. A connected DAG in
which every node has at most one parent is called a free, and a tree in which every node
has at most one child is called a chain. A graph in which every pair of nodes is connected
by an edge is called complete. The graph in Figure 1.1(a), for instance, is connected but
not complete, because the pairs (W, X) and (W, Y) are not adjacent.

1.2.2 Bayesian Networks

The role of graphs in probabilistic and statistical modeling is threefold:

1. to provide convenient means of expressing substantive assumptions;
2. to facilitate economical representation of joint probability functions; and

3. to facilitate efficient inferences from observations.

We will begin our discussion with item 2.

Consider the task of specifying an arbitrary joint distribution, P(x,..., x,), for n
dichotomous variables. To store P(xy,..., x,)) explicitly would require a table with 2" en-
tries, an unthinkably large number by any standard. Substantial economy can be achieved
when each variable depends on just a small subset of other variables. Such dependence
information permits us to decompose large distribution functions into several small dis-
tributions — each involving a small subset of variables — and then to piece them together
coherently to answer questions of a global nature. Graphs play an essential role in such
decomposition, for they provide a vivid representation of the sets of variables that are
relevant to each other in any given state of knowledge.
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Both directed and undirected graphs have been used by researchers to facilitate such
decomposition. Undirected graphs, sometimes called Markov networks (Pearl 1988b),
are used primarily to represent symmetrical spatial relationships (Isham 1981; Cox and
Wermuth 1996; Lauritzen 1996). Directed graphs, especially DAGs, have been used to
represent causal or temporal relationships (Lauritzen 1982; Wermuth and Lauritzen
1983; Kiiveri et al. 1984) and came to be known as Bayesian networks, a term coined in
Pearl (1985) to emphasize three aspects: (1) the subjective nature of the input informa-
tion; (2) the reliance on Bayes’s conditioning as the basis for updating information; and
(3) the distinction between causal and evidential modes of reasoning, a distinction that
underscores Thomas Bayes’s paper of 1763. Hybrid graphs (involving both directed and
undirected edges) have also been proposed for statistical modeling (Wermuth and Lau-
ritzen 1990). but in this book our main interest will focus on directed acyclic graphs, with
occasional use of directed cyclic graphs to represent feedback cycles.

The basic decomposition scheme offered by directed acyclic graphs can be illustrated
as follows. Suppose we have a distribution P defined on n discrete variables, which we
may order arbitrarily as X, X,,..., X,.. The chain rule of probability calculus (equation
(1.12)) always permits us to decompose P as a product of n conditional distributions:

Pltiguesy i) = DT PG| 1yes < (1.30)
J

Now suppose that the conditional probability of some variable X; is not sensitive to all
the predecessors of X; but only to a small subset of those predecessors. In other words,
suppose that X; is independent of all other predecessors, once we know the value of a
select group of predecessors called PA;. We can then write

P(x;| xy5..., X;—1) = P(xj| pa)) (1.31)

in the product of (1.30), which will considerably simplify the input information required.
Instead of specifying the probability of X ; conditional on all possible realizations of its
predecessors X X 1> we need only concern ourselves with the possible realizations
of the set PAJ,—. The set PA; is called the Markovian parents of X;, or parents for short.
The reason for the name becomes clear when we build graphs around this concept.

Definition 1.2.1 (Markovian Parents)

LetV =1{X,,...,X,} be an ordered set of variables, and let P(v) be the joint probability
distribution on these variables. A set of variables PA; is said 1o be Markovian parents of
X;if PAjis a minimal set of predecessors of X; that renders X independent of all its other
predecessors. In other words, PA; is any subset of {Xy,..., X;_} satisfying

P(Xj|paj-)=P(xj|x1,...,xj_1) (1.32)

and such that no proper subset of PA; satisfies (1322

> Lowercase symbols (e.g., x; pa;) denote particular realizations of the corresponding variables
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Definition 1.2.1 assigns to each variable X; a select set PA; of preceding variables that
are sufficient for determining the probability of X knowing the values of other pre-
ceding variables is redundant once we know the values pa; of the parent set PA;. This
assignment can be represented in the form of a DAG in which variables are represented
by nodes and arrows are drawn from each node of the parent set PA; toward the child
node X;. Definition 1.2.1 also suggests a simple recursive method for constructing such
a DAG: Starting with the pair (X, X,), we draw an arrow from X, to X, if and only if
the two variables are dependent. Continuing to X5, we draw no arrow in case X5 is in-
dependent of {X,, X,}; otherwise, we examine whether X, screens off X3 from X or X
screens off X5 from X,. In the first case, we draw an arrow from X, to X5; in the second,
we draw an arrow from X | to X5. If no screening condition is found, we draw arrows to
X5 from both X| and X,. In general: at the jth stage of the construction, we select any
minimal set of X;’s predecessors that screens off X; from its other predecessors (as in
equation (1.32)), call this set PAJ,- and draw an arrow from each member in PAj to Xj.
The result is a directed acyclic graph, called a Bayesian network, in which an arrow from
X;to Xj assigns X, as a Markovian parent of XJ;, consistent with Definition 1.2.1.

It can be shown (Pearl 1988b) that the set PA j is unique whenever the distribution
P(v) is strictly positive (i.e., involving no logical or definitional constraints), so that every
configuration v of variables, no matter how unlikely, has some finite probability of oc-
curring. Under such conditions, the Bayesian network associated with P(v) is unique,
given the ordering of the variables.

Figure 1.2 illustrates a simple yet typical Bayesian network. It describes relationships
among the season of the year (X,), whether rain falls (X,), whether the sprinkler is on
(X3), whether the pavement would get wet (X,), and whether the pavement would be
slippery (X5). All variables in this figure are binary (taking a value of either true or false)
except for the root variable X |, which can take one of four values: spring, summer, fall,
or winter. The network was constructed in accordance with Definition 1.2.1, using causal
intuition as a guide. The absence of a direct link between X | and X5, for example, cap-
tures our understanding that the influence of seasonal variations on the slipperiness of the
pavement is mediated by other conditions (e.g., the wetness of the pavement). This intu-
ition coincides with the independence condition of (1.32), since knowing X, renders X5
independent of {X,, X5, X3}.

The construction implied by Definition 1.2.1 defines a Bayesian network as a carrier of
conditional independence relationships along the order of construction. Clearly, every dis-
tribution satisfying (1.32) must decompose (using the chain rule of (1.30)) into the product
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P(Xy, .o Xpy) = HP(x,-|pa,-). (1.33)
1

For example, the DAG in Figure 1.2 induces the decomposition

P(xy, X9, x3, x4, X5) = PP Qry | x)P (x5 | X DP(xg | X9, x3) P (x5 | Xy). (1.34)

The product decomposition in (1.33) is no longer order-specific since, given P and
G, we can test whether P decomposes into the product given by (1.33) without making
any reference to variable ordering. We therefore conclude that a necessary condition for
a DAG G to be a Bayesian network of probability distribution P is for P to admit the
product decomposition dictated by G, as given in (1.33).

Definition 1.2.2 (Markov Compatibility)
If a probability function P admits the factorization of (1.33) relative to DAG G, we say
that G represents P, that G and P are compatible, or that P is Markov relative fo G

Ascertaining compatibility between DAGs and probabilities is important in statistical
modeling primarily because compatibility is a necessary and sufficient condition for a
DAG G to explain a body of empirical data represented by P, that is, to describe a sto-
chastic process capable of generating P (e.g., Pearl 1988b, pp. 210-23). If the value of
each variable X; is chosen at random with some probability P;(x; | pa;), based solely on
the values pa; previously chosen for PA;, then the overall distribution P of the generated
instances x|, x5...., X, will be Markov relative to G. Conversely, if P is Markov rela-
tive to G, then there exists a set of probabilities P;(x; | pa;) according to which we can
choose the value of each variable X; such that the distribution of the generated instances
X1» X3,..., X, will be equal to P. (In fact, the correct choice of P;(x; | pa;) would be
simply P(x; | pa;).)

A convenient way of characterizing the set of distributions compatible with a DAG
G is to list the set of (conditional) independencies that each such distribution must sat-
isfy. These independencies can be read off the DAG by using a graphical criterion called
d-separation (Pearl 1988b; the d denotes directional), which will play a major role in
many discussions in this book.

1.2.3 The d-Separation Criterion

Consider three disjoint sets of variables, X, Y, and Z, which are represented as nodes in
a directed acyclic graph G. To test whether X is independent of Y given Z in any distri-
bution compatible with G, we need to test whether the nodes corresponding to variables
Z “block™ all paths from nodes in X to nodes in Y. By pat/i we mean a sequence of con-
secutive edges (of any directionality) in the graph, and blocking is to be interpreted as
stopping the flow of information (or of dependency) between the variables that are con-
nected by such paths, as defined next.

Definition 1.2.3 (d-Separation)
A path p is said to be d-separated (or blocked) by a set of nodes Z if and only if

S The latter expression seems to gain strength in recent literature (e.g., Spirtes et al. 1993; Lauritzen
1996). Pearl (1988b, p. 116) used “*G is an [-map of P.”
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1. p contains a chain i —m— j or a fork i <= m —j such that the middle node
misinz, or

2. p contains an inverted fork (or collider) i — m < j such that the middle node
m is not in Z and such that no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X
to a node in'Y.

The intuition behind d-separation is simple and can best be recognized if we attribute
causal meaning to the arrows in the graph. In causal chains i —m —j and causal
forks i <— m — j. the two extreme variables are marginally dependent but become in-
dependent of each other (i.e., blocked) once we condition on (i.e., know the value of)
the middle variable. Figuratively, conditioning on m appears to “block™ the flow of in-
formation along the path, since learning about i has no effect on the probability of j,
given m. Inverted forks i — m < j, representing two causes having a common effect,
act the opposite way; if the two extreme variables are (marginally) independent, they
will become dependent (i.e., connected through unblocked path) once we condition on
the middle variable (i.e., the common effect) or any of its descendants. This can be con-
firmed in the context of Figure 1.2. Once we know the season, X5 and X, are independ-
ent (assuming that sprinklers are set in advance, according to the season); whereas finding
that the pavement is wet or slippery renders X> and X3 dependent, because refuting one
of these explanations increases the probability of the other.

In Figure 1.2, X = {X,} and Y = {X3} are d-separated by Z = {X}, because both
paths connecting X, and X5 are blocked by Z. The path X, - X| — X3 is blocked be-
cause it is a fork in which the middle node X, is in Z, while the path X, — X4 < X3
is blocked because it is an inverted fork in which the middle node X4 and all its descen-
dants are outside Z. However, X and Y are not d-separated by the set Z' = {X, Xs}: the
path X5 — X, < X3 (an inverted fork) is not blocked by Z', since X5, a descendant of
the middle node X, is in Z'. Metaphorically, learning the value of the consequence X5
renders its causes X, and X3 dependent, as if a pathway were opened along the arrows
converging at X .

At first glance, readers might find it a bit odd that conditioning on a node not lying on
a blocked path may unblock the path. However, this corresponds to a general pattern of
causal relationships: observations on a common consequence of two independent causes
tend to render those causes dependent, because information about one of the causes tends
to make the other more or less likely, given that the consequence has occurred. This pat-
tern is known as selection bias or Berkson's paradox in the statistical literature (Berkson
1946) and as the explaining away effect in artificial intelligence (Kim and Pearl 1983).
For example, if the admission criteria to a certain graduate school call for either high
grades as an undergraduate or special musical talents, then these two attributes will be
found to be correlated (negatively) in the student population of that school, even if these
attributes are uncorrelated in the population at large. Indeed, students with low grades
are likely to be exceptionally gifted in music, which explains their admission to the
graduate school.

Figure 1.3 illustrates more elaborate examples of d-separation: example (a) contains
a bidirected arc Z; «— —» Z3, and (b) involves a directed cycle X — Z, — Z; — X. In
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Figure 1.3 Graphs illustrating d-separation. In (a), X and Y are d-separated given Z, and d-
connected given Z;. In (b), X and ¥ cannot be d-separated by any set of nodes.

Figure 1.3(a), the two paths between X and ¥ are blocked when none of {Zl, Z,, Z3} 1s
measured. However, the path X— Z| 4« — — » Z3 <Y becomes unblocked when Z, is
measured. This is so because Z, unblocks the “colliders™ at both Z, and Z3: the first
because Z, is the collision node of the collider, the second because Z, is a descendant
of the collision node Z3 through the path Z; <= Z; « Z3. In Figure 1.3(b), X and Y
cannot be d-separated by any set of nodes, including the empty set. If we condition on
Z,, we block the path X < Z; <~ Z, <~ Y yet unblock the path X —Z, « Y. If we
condition on Z;, we again block the path X «— Z,; «<— Z, <= Y and unblock the path
X — Z, « Y, because Z, is a descendant of the collision node Z,.

The connection between d-separation and conditional independence is established
through the following theorem due to Verma and Pearl (1988; see also Geiger et al. 1990).

Theorem 1.2.4 (Probabilistic Implications of d-Separation)

If sets X and Y are d-separated by Z in a DAG G, then X is independent of Y conditional
on Z in every distribution compatible with G. Conversely, if X and Y are not d-separated
by Z in a DAG G, then X andY are dependent conditional on Z in at least one distribution
compatible with G.

The converse part of Theorem 1.2.4 is in fact much stronger — the absence of d-separation
implies dependence in almost all distributions compatible with G. The reason is that a
precise tuning of parameters is required to generate independency along an unblocked
path in the diagram, and such tuning is unlikely to occur in practice (see Spirtes et al.
1993 and Sections 2.4 and 2.9.1).

In order to distinguish between the probabilistic notion of conditional independence
(X1LY | Z)p and the graphical notion of d-separation, for the latter we will use the no-
tation (X 1LY | Z);. We can thereby express Theorem 1.2.4 more succinctly as follows.

Theorem 1.2.5
For any three disjoint subsets of nodes (X,Y,Z) in a DAG G and for all probability func-
tions P, we have:

() XY | Z)g = (X 1LY | Z)p whenever G and P are compatible; and
(it) if (XALY|Z)p holds in all distributions compatible with G, it follows that
XY | Z)g.

An alternative test for d-separation has been devised by Lauritzen et al. (1990), based on
the notion of ancestral graphs. To test for (X 1LY | Z);, delete from G all nodes except
those in {X, ¥, Z} and their ancestors, connect by an edge every pair of nodes that share
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a common child, and remove all arrows from the arcs. Then (X 1LY | Z)s holds if and
only if Z intercepts all paths between X and Y in the resulting undirected graph.

Note that the ordering with which the graph was constructed does not enter into the
d-separation criterion; it is only the topology of the resulting graph that determines the
set of independencies that the probability P must satisfy. Indeed, the following theorem
can be proven (Pearl 1988b, p. 120).

Theorem 1.2.6 (Ordered Markov Condition)

A necessary and sufficient condition for a probability distribution P to be Markov rela-
tive a DAG G is that, conditional on its parents in G, each variable be independent of all
its predecessors in some ordering of the variables that agrees with the arrows of G.

A consequence of this theorem is an order-independent criterion for determining whether
a given probability P is Markov relative to a given DAG G.

Theorem 1.2.7 (Parental Markov Condition)

A necessary and sufficient condition for a probability distribution P to be Markov rel-
ative a DAG G is that every variable be independent of all its nondescendants (in ),
conditional on its parents. (We exclude X; when speaking of its “nondescendants.”)

This condition, which Kiiveri et al. (1984) and Lauritzen (1996) called the “local” Markov
condition, is sometimes taken as the definition of Bayesian networks (Howard and Math-
eson 1981). In practice, however, the ordered Markov condition is easier to use.

Another important property that follows from d-separation is a criterion for deter-
mining whether two given DAGs are observationally equivalent — that is, whether every
probability distribution that is compatible with one of the DAGs is also compatible with
the other.

Theorem 1.2.8 (Observational Equivalence)

Two DAGs are observationally equivalent if and only if they have the same skeletons and
the same sets of v-structures, that is, two converging arrows whose tails are not con-
nected by an arrow (Verma and Pearl 1990).7

Observational equivalence places a limit on our ability to infer directionality from proba-
bilities alone. Two networks that are observationally equivalent cannot be distinguished
without resorting to manipulative experimentation or temporal information. For exam-
ple, reversing the direction of the arrow between X and X, in Figure 1.2 would neither
introduce nor destroy a v-structure. Therefore, this reversal yields an observationally
equivalent network, and the directionality of the link X; — X5 cannot be determined
from probabilistic information. The arrows X; — X4 and X; — X5, however, are of
different nature; there is no way of reversing their directionality without creating a new
v-structure. Thus, we see that some probability functions P (such as the one responsi-
ble for the construction of the Bayesian network in Figure 1.2), when unaccompanied

7 An identical criterion was independently derived by Frydenberg (1990) in the context of chain
graphs, where strict positivity is assumed.
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by temporal information, can constrain the directionality of some arrows in the graph.
The precise meaning of such directionality constraints — and the possibility of using
these constraints for inferring causal relationships from data — will be formalized in
Chapter 2.

1.2.4 Inference with Bayesian Networks

Bayesian networks were developed in the early 1980s to facilitate the tasks of prediction
and “abduction” in artificial intelligence (Al) systems. In these tasks, it is necessary to
find a coherent interpretation of incoming observations that is consistent with both the
observations and the prior information at hand. Mathematically, the task boils down to
the computation of P(y |x), where X is a set of observations and Y is a set of variables
that are deemed important for prediction or diagnosis.

Given a joint distribution P, the computation of P(y | x) is conceptually trivial and
invokes straightforward application of Bayes’s rule to yield
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(1.35)

where § stands for the set of all variables excluding X and Y. Because every Bayesian
network defines a joint probability P (given by the product in (1.33)), it is clear that
P(y | x) can be computed from a DAG G and the conditional probabilities P(x; | pa;)
defined on the families of G.

The challenge, however, lies in performing these computations efficiently and within
the representation level provided by the network topology. The latter is important in sys-
tems that generate explanations for their reasoning processes. Although such inference
techniques are not essential to our discussion of causality, we will nevertheless survey
them briefly, for they demonstrate (i) the effectiveness of organizing probabilistic knowl-
edge in the form of graphs and (ii) the feasibility of performing coherent probabilistic

calculations (and approximations thereof) on such organization. Details can be found in
the references cited.

The first algorithms proposed for probabilistic calculations in Bayesian networks used
message-passing architecture and were limited to trees (Pearl 1982; Kim and Pearl 1983).
With this technique, each variable is assigned a simple processor and permitted to pass
messages asynchronously to its neighbors until equilibrium is achieved (in a finite num-
ber of steps). Methods have since been developed that extend this tree propagation (and
some of its synchronous variants) to general networks. Among the most popular are
Lauritzen and Spiegelhalter’s (1988) method of join-tree propagation and the method of
cut-set conditioning (Pearl 1988b, pp. 204—10; Jensen 1996). In the join-tree method, we
decompose the network into clusters (e.g., cliques) that form tree structures and then treat
the set variables in each cluster as a compound variable that is capable of passing mes-
sages to its neighbors (which are also compound variables). For example, the network of
Figure 1.2 can be structured as a Markov-compatible chain of three clusters:

{X1, X2, X3} — {X5, X3, X4} — {X4, X5}.



1.3 Causal Bayesian Networks 21

In the cut-set conditioning method, a set of variables is instantiated (given specific
values) such that the remaining network forms a tree. The propagation is then performed
on that tree, and a new instantiation chosen, until all instantiations have been exhausted;
the results are then averaged. In Figure 1.2, for example, if we instantiate X | to any spe-
cific value (say, X| = summer), then we break the pathway between X, and X5 and the
remaining network becomes tree-structured. The main advantage of the cut-set condi-
tioning method is that its storage-space requirement is minimal (linear in the size of the
network), whereas that of the join-tree method might be exponential. Hybrid combina-
tions of these two basic algorithms have also been proposed (Shachter et al. 1994; Dechter
1996) to allow flexible trade-off of storage versus time (Darwiche 2009).

Whereas inference in general networks is “NP-hard” (Cooper 1990), the computa-
tional complexity for each of the methods cited here can be estimated prior to actual pro-
cessing. When the estimates exceed reasonable bounds, an approximation method such
as stochastic simulation (Pearl 1988b, pp. 210-23) can be used instead. This method
exploits the topology of the network to perform Gibbs sampling on local subsets of vari-
ables, sequentially as well as concurrently.

Additional properties of DAGs and their applications to evidential reasoning in ex-
pert systems are discussed in Pearl (1988b), Lauritzen and Spiegelhalter (1988), Pearl
(1993a), Spiegelhalter et al. (1993), Heckerman et al. (1995), and Darwiche (2009).

1.3 CAUSAL BAYESIAN NETWORKS

The interpretation of direct acyclic graphs as carriers of independence assumptions does
not necessarily imply causation; in fact, it will be valid for any set of recursive indepen-
dencies along any ordering of the variables, not necessarily causal or chronological.
However, the ubiquity of DAG models in statistical and Al applications stems (often un-
wittingly) primarily from their causal interpretation — that is, as a system of processes,
one per family, that could account for the generation of the observed data. It is this causal
interpretation that explains why DAG models are rarely used in any variable ordering
other than those which respect the direction of time and causation.

The advantages of building DAG models around causal rather than associational in-
formation are several. First, the judgments required in the construction of the model are
more meaningful, more accessible and hence more reliable. The reader may appreciate
this point by attempting to construct a DAG representation for the associations in Fig-
ure 1.2 along the ordering (X5, X, X3, X5, X;). Such exercises illustrate not only that
some independencies are more vividly accessible to the mind than others but also that
conditional independence judgments are accessible (hence reliable) only when they are
anchored onto more fundamental building blocks of our knowledge, such as causal rela-
tionships. In the example of Figure 1.2, our willingness to assert that X5 is independent
of X5 and X; once we know X, (i.e., whether the pavement is wet) is defensible because
we can easily translate the assertion into one involving causal relationships: that the in-
flirence of rain and sprinkler on slipperiness is mediated by the wetness of the pavement.
Dependencies that are not supported by causal links are considered odd or spurious and
are even branded “paradoxical” (see the discussion of Berkson’s paradox, Section 1.2.3).
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We will have several opportunities throughout this book to demonstrate the primacy
of causal over associational knowledge. In extreme cases, we will see that people tend
to ignore probabilistic information altogether and attend to causal information instead
(see Section 6.1.4).% This puts into question the ruling paradigm of graphical models in
statistics (Wermuth and Lauritzen 1990; Cox and Wermuth 1996), according to which
conditional independence assumptions are the primary vehicle for expressing substan-
tive knowledge.9 It seems that if conditional independence judgments are by-products of
stored causal relationships, then tapping and representing those relationships directly
would be a more natural and more reliable way of expressing what we know or believe
about the world. This is indeed the philosophy behind causal Bayesian networks.

The second advantage of building Bayesian networks on causal relationships — one
that is basic to the understanding of causal organizations — is the ability to represent and
respond to external or spontaneous changes. Any local reconfiguration of the mechanisms
in the environment can be translated, with only minor modification, into an isomorphic
reconfiguration of the network topology. For example, to represent a disabled sprinkler
in the story of Figure 1.2, we simply delete from the network all links incident to the node
Sprinkler. To represent the policy of turning the sprinkler off if it rains, we simply add a
link between Rain and Sprinkler and revise P(x3| x|, x5). Such changes would require
much greater remodeling efforts if the network were not constructed along the causal
direction but instead along (say) the order (X5, X, X5, X5, X4). This remodeling flexi-
bility may well be cited as the ingredient that marks the division between deliberative and
reactive agents and that enables the former to manage novel situations instantaneously,
without requiring training or adaptation.

1.3.1 Causal Networks as Oracles for Interventions

The source of this flexibility rests on the assumption that each parent—child relation-
ship in the network represents a stable and autonomous physical mechanism — in other
words, that it is conceivable to change one such relationship without changing the others.
Organizing one’s knowledge in such modular configurations permits one to predict the
effect of external interventions with a minimum of extra information. Indeed, causal
models (assuming they are valid) are much more informative than probability models. A
joint distribution tells us how probable events are and how probabilities would change
with subsequent observations, but a causal model also tells us how these probabilities
would change as a result of external interventions — such as those encountered in policy
analysis, treatment management, or planning everyday activity. Such changes cannot be
deduced from a joint distribution, even if fully specified.

The connection between modularity and interventions is as follows. Instead of spec-
ifying a new probability function for each of the many possible interventions, we specify

8 The Tversky and Kahneman (1980) experiments with causal biases in probability judgment consti-
tute another body of evidence supporting this observation. For example, most people believe that
it is more likely for a girl to have blue eyes, given that her mother has blue eyes, than the other way
around: the two probabilities are in fact equal.

? The author was as guilty of advocating the centrality of conditional independence as were his col-
leagues in statistics; see Pearl (1988b, p. 79).
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merely the immediate change implied by the intervention and, by virtue of autonomy,
we assume that the change is local, and does not spread over to mechanisms other than
those specified. Once we know the identity of the mechanism altered by an intervention
and the nature of the alteration, the overall effect of an intervention can be predicted by
modifying the corresponding factors in (1.33) and using the modified product to compute
a new probability function, For example, to represent the action “turning the sprinkler
On” in the network of Figure 1.2, we delete the link X| — X3 and assign X5 the value
On. The graph resulting from this operation is shown in Figure 1.4, and the resulting joint
distribution on the remaining variables will be

SPRINKLER ((Xs)
=ON

Py, —on (X1, X2, X4, X5) = P(x)) P(xp | X)) P(x4 [ X2, X3 = On) P(x5 | x4), (1.36)

in which all the factors on the right-hand side (r.h.s.), by virtue of autonomy, are the same
as in (1.34).

The deletion of the factor P(x; | x|) represents the understanding that, whatever re-
lationship existed between seasons and sprinklers prior to the action, that relationship is
no longer in effect while we perform the action. Once we physically turn the sprinkler on
and keep it on, a new mechanism (in which the season has no say) determines the state
of the sprinkler.

Note the difference between the action do(X3 = On) and the observation X5 =
On. The effect of the latter is obtained by ordinary Bayesian conditioning, that is,
P(x}, X, x4, X5 | X3 = On), while that of the former by conditioning a mutilated graph,
with the link X{ — X3 removed. This indeed mirrors the difference between seeing and
doing: after observing that the sprinkler is on, we wish to infer that the season is dry, that
it probably did not rain, and so on; no such inferences should be drawn in evaluating the
effects of a contemplated action “turning the sprinkler On.”

The ability of causal networks to predict the effects of actions of course requires a
stronger set of assumptions in the construction of those networks, assumptions that rest
on causal (not merely associational) knowledge and that ensure the system would re-
spond to interventions in accordance with the principle of autonomy. These assumptions
are encapsulated in the following definition of causal Bayesian networks.

Definition 1.3.1 (Causal Bayesian Network)
Let P(v) be a probability distribution on a set'V of variables, and let P (v) denote the
distribution resulting from the intervention do(X = x) that sets a subset X of variables
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to constants x.'° Denote by P the set of all interventional distributions P, (v), X C V,
including P(v), which represents no intervention (i.e., X = ¢). A DAG G is said to be a
causal Bayesian network compatible with P if and only if the following three conditions
hold for every P, € Ps:

(i) P.(v)is Markov relative io G;
(i) P,(vy) = 1 forall V; € Xwhenever v; is consistent with X = x;
(i) P(v;|pa;) = P(v;|pa;) for all V; & X whenever pa, is consistent with X = x,
i.e., each P(v;| pa;) remains invariant to interventions not involving V.

Definition 1.3.1 imposes constraints on the interventional space P that permit us to en-
code this vast space economically, in the form of a single Bayesian network G. These
constraints enable us to compute the distribution P, (v) resulting from any intervention
do(X = x) as a tfruncated factorization

Pw)= [J[ PQ;|pay  forallvconsistent with x, (1.37)
{i| Vi€X}
which follows from (and implies) conditions (i)—(iii), thus justifying the family deletion
procedure on G, as in (1.36). It is not hard to show that, whenever G is a causal Bayes
network with respect to P, the following two properties must hold.

Property 1
For all i,

P(v;|pa;) = Py, (v)). (1.38)

Property 2
For all i and for every subset S of variables disjoint of {V;, PA;}, we have

Ppal‘ s(vi) = Ppai(vi)' (1.39)

Property 1 renders every parent set PA; exogenous relative to its child V;, ensuring that
the conditional probability P(v; | pa;) coincides with the effect (on V}) of setting PA; to
pa; by external control. Property 2 expresses the notion of invariance; once we control
its direct causes PA;, no other interventions will affect the probability of V.

1.3.2 Causal Relationships and Their Stability

This mechanism-based conception of interventions provides a semantical basis for no-
tions such as “causal effects” or “causal influence,” to be defined formally and analyzed
in Chapters 3 and 4. For example, to test whether a variable X; has a causal influence
on another variable Xj, we compute (using the truncated factorization formula of (1.37))
the (marginal) distribution of X ¢ under the actions do(X; = x;) — namely, le,(xj) for all

10" The notation P (v) will be replaced in subsequent chapters with P(v | do(x)) and P(v \ ) to
facilitate algebraic manipulations.
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values .x; of X; — and test whether that distribution is sensitive to x;. It is easy to see from
our previous examples that only variables that are descendants of X; in the causal net-
work can be influenced by X;; deleting the factor P(x;|pa;) from the joint distribution turns
X; into a root node in the mutilated graph, and root variables (as the d-separation crite-
rion dictates) are independent of all other variables except their descendants.

This understanding of causal influence permits us to see precisely why, and in what
way, causal relationships are more “‘stable” than probabilistic relationships. We expect
such difference in stability because causal relationships are ontological, describing objec-
tive physical constraints in our world, whereas probabilistic relationships are episteniic,
reflecting what we know or believe about the world. Therefore, causal relationships
should remain unaltered as long as no change has taken place in the environment, even
when our knowledge about the environment undergoes changes. To demonstrate, con-
sider the causal relationship S, “Turning the sprinkler on would not affect the rain.” and
compare it to its probabilistic counterpart S5, “The state of the sprinkler is independent
of (or unassociated with) the state of the rain.” Figure 1.2 illustrates two obvious ways in
which S, will change while S| remains intact. First, S, changes from false to true when
we learn what season it is (X ). Second, given that we know the season, S, changes from
true to false once we observe that the pavement is wet (X4 = true). On the other hand, S
remains true regardless of what we learn or know about the season or about the pavement.

The example reveals a stronger sense in which causal relationships are more sta-
ble than the corresponding probabilistic relationships, a sense that goes beyond their
basic ontological-epistemological difference. The relationship §| will remain invariant
to changes in the mechanism that regulates how seasons affect sprinklers. In fact, it re-
mains invariant to changes in @/l mechanisms shown in this causal graph. We thus see
that causal relationships exhibit greater robustness to ontological changes as well; they
are sensitive to a smaller set of mechanisms. More specifically, and in marked contrast to
probabilistic relationships, causal relationships remain invariant to changes in the mech-
anism that governs the causal variables (X5 in our example).

In view of this stability, it is no wonder that people prefer to encode knowledge in
causal rather than probabilistic structures. Probabilistic relationships, such as marginal
and conditional independencies, may be helpful in hypothesizing initial causal structures

from uncontrolled observations. However, once knowledge is cast in causal structure,
those probabilistic relationships tend to be forgotten; whatever judgments people express
about conditional independencies in a given domain are derived from the causal structure
acquired. This explains why people feel confident asserting certain conditional indepen-
dencies (e.g., that the price of beans in China is independent of the traffic in Los Angeles)
having no idea whatsoever about the numerical probabilities involved (e.g., whether the
price of beans will exceed $10 per bushel).

The element of stability (of mechanisms) is also at the heart of the so-called ex-
planatory accounts of causality, according to which causal models need not encode
behavior under intervention but instead aim primarily to provide an “explanation” or
“understanding” of how data are generated.“ Regardless of what use is eventually made

T Elements of this explanatory account can be found in the writings of Dempster (1990), Cox (1992),
and Shafer (1996); see also King et al. (1994, p. 75).
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of our “understanding” of things, we surely would prefer an understanding in terms of
durable relationships, transportable across situations, over those based on transitory re-
lationships. The sense of “comprehensibility” that accompanies an adequate explanation
is a natural by-product of the transportability of (and hence of our familiarity with) the
causal relationships used in the explanation. It is for reasons of stability that we regard
the falling barometer as predicting but not explaining the rain; those predictions are not
transportable to situations where the pressure surrounding the barometer is controlled by
artificial means. True understanding enables predictions in such novel situations, where
some mechanisms change and others are added. It thus seems reasonable to suggest that,
in the final analysis, the explanatory account of causation is merely a variant of the ma-
nipulative account, albeit one where interventions are dormant. Accordingly, we may as
well view our unsatiated quest for understanding “how data is generated” or “how things
work” as a quest for acquiring the ability to make predictions under a wider range of
circumstances, including circumstances in which things are taken apart, reconfigured, or
undergo spontancous change.

1.4 FUNCTIONAL CAUSAL MODELS

The way we have introduced the causal interpretation of Bayesian networks represents
a fundamental departure from the way causal models (and causal graphs) were first in-
troduced into genetics (Wright 1921), econometrics (Haavelmo 1943), and the social
sciences (Duncan 1975), as well as from the way causal models are used routinely in
physics and engineering. In those models, causal relationships are expressed in the form
of deterministic, functional equations, and probabilities are introduced through the as-
sumption that certain variables in the equations are unobserved. This reflects Laplace’s
(1814) conception of natural phenomena, according to which nature’s laws are determin-
istic and randomness surfaces owing merely to our ignorance of the underlying boundary
conditions. In contrast, all relationships in the definition of causal Bayesian networks
were assumed to be inherently stochastic and thus appeal to the modern (i.e., quantum
mechanical) conception of physics, according to which all nature’s laws are inherently
probabilistic and determinism is but a convenient approximation.

In this book, we shall express preference toward Laplace’s quasi-deterministic con-
ception of causality and will use it, often contrasted with the stochastic conception, to
define and analyze most of the causal entities that we study. This preference is based on
three considerations. First, the Laplacian conception is more general. Every stochastic
model can be emulated by many functional relationships (with stochastic inputs), but not
the other way around; functional relationships can only be approximated, as a limiting
case, using stochastic models. Second, the Laplacian conception is more in tune with hu-
man intuition. The few esoteric quantum mechanical experiments that conflict with the
predictions of the Laplacian conception evoke surprise and disbelief, and they demand
that physicists give up deeply entrenched intuitions about locality and causality (Maudlin
1994). Our objective is to preserve, explicate, and satisfy — not destroy — those intuitions. 2

12 The often heard argument that human intuitions belong in psychology and not in science or phi-
losophy is inapplicable when it comes to causal intuition — the original authors of causal thoughts



1.4 Functional Causal Models 5.7

Finally, certain concepts that are ubiquitous in human discourse can be defined only
in the Laplacian framework. We shall see, for example, that such simple concepts as “the
probability that event B occured because of event A” and “the probability that event B
would have been different if it were not for event A” cannot be defined in terms of purely
stochastic models. These so-called counterfactual concepts will require a synthesis of
the deterministic and probabilistic components embodied in the Laplacian model.

1.4.1 Structural Equations

In its general form, a functional causal model consists of a set of equations of the form
x;=fipa,u), i =1,...,n, (1.40)

where pa; (connoting parents) stands for the set of variables that directly determine the
value of X; and where the U; represent errors (or “disturbances”) due to omitted fac-
tors. Equation (1.40) is a nonlinear, nonparametric generalization of the linear structural
equation models (SEMs)

x= Dagxg+u, i=1,...,n, (1.41)
k#1
which have become a standard tool in economics and social science (see Chapter 5 for a
detailed exposition of this enterprise). In linear models, pa; corresponds to those vari-
ables on the r.h.s. of (1.41) that have nonzero coefficients.

The interpretation of the functional relationship in (1.40) is the standard interpreta-
tion that functions carry in physics and the natural sciences; it is a recipe, a strategy. or
a law specifying what value nature would assign to X; in response to every possible value
combination that (PA;, U;) might take on. A set of equations in the form of (1.40) and in
which each equation represents an autonomous mechanism is called a structiral model,
if each variable has a distinct equation in which it appears on the left-hand side (called
the dependent variable), then the model is called a structural causal model or a causal
model for short.'? Mathematically, the distinction between structural and algebraic
equations is that any subset of structural equations is, in itself, a valid structural model —
one that represents conditions under some set of interventions.

To illustrate, Figure 1.5 depicts a canonical econometric model relating price and de-
mand through the equations

q=bp+di+u, (1.42)
p = bog + dyw + 1y, (1.43)

where () is the quantity of household demand for a product A, P is the unit price of prod-
uct A,  is houschold income, W is the wage rate for producing product A, and U and

cannot be ignored when the meaning of the concept is in question. Indeed, compliance with hu-
man intuition has been the ultimate criterion of adequacy in every philosophical study of causation,
and the proper incorporation of background information into statistical studies likewise relies on
accurate interpretation of causal judgment.

13 Formal treatment of causal models, structural equations, and error terms are given in Chapter 5
(Section 5.4.1) and Chapter 7 (Sections 7.1 and 7.2.5).
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Figure 1.5 Causal diagram illustrating the relation-
ship between price (P), demand (Q), income ([),
and wages (W).

U, represent error terms — unmodeled factors that affect quantity and price, respectively
(Goldberger 1992). The graph associated with this model is cyclic, and the vertices asso-
ciated with the variables U, U,, I, and W are root nodes, conveying the assumption of
mutual independence. The idea of autonomy (Aldrich 1989), in this context, means that
the two equations represent two loosely coupled segments of the economy, consumers
and producers. Equation (1.42) describes how consumers decide what quantity Q to buy,
and (1.43) describes how manufacturers decide what price P to charge. Like all feedback
systems, this too represents implicit dynamics; today’s prices are determined on the ba-
sis of yesterday’s demand, and these prices will determine the demand in the next period
of transactions. The solution to such equations represents a long-term equilibrium under
the assumption that the background quantities, Uy and U5, remain constant.

The two equations are considered to be “autonomous” relative to the dynamics of
changes in the sense that external changes affecting one equation do not imply changes
to the others. For example, if government decides on price control and sets the price P
at p, then (1.43) will be modified to read p = pg but the relationships in (1.42) will
remain intact, yielding g = by py + di + ;. We thus see that b, the “demand elastic-
ity,” should be interpreted as the rate of change of Q per unit controlled change in P.
This is different, of course, from the rate of change of Q per unit observed change in
P (under uncontrolled conditions), which, besides b, is also affected by the parame-
ters of (1.43) (see Section 7.2.1, equation (7.14)). The difference between controlled and
observed changes is essential for the correct interpretation of structural equation mod-
els in social science and economics, and it will be discussed at length in Chapter 5. If
we have reasons to believe that consumer behavior will also change under a price control
policy, then this modified behavior would need to be modeled explicitly — for example,
by treating the coefficients b; and d; as dependent variables in auxiliary equations in-
volving P.'* Section 7.2.1 will present an analysis of policy-related problems using this
model.

To illustrate the workings of nonlinear functional models, consider again the causal
relationships depicted in Figure 1.2. The causal model associated with these relationships
will consist of five functions, each representing an autonomous mechanism governing
one variable:

X1 = Hl,

Xy = folxy. up),

14 Indeed, consumers normally react to price fixing by hoarding goods in anticipation of shortages
(Lucas 1976). Such phenomena are not foreign to structural models, though; they simply call for
more elaborate equations to capture consumers’ expectations.
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of the error distributions P(ir;). Thus, we need not specify in advance the functional
form of {f;} or the distributions P(u;); once we measure (or estimate) P(x; | pa;). all prob-
abilistic properties of a Markovian causal model are determined, regardless of the mech-
anism that actually generates those conditional probabilities. Druzdzel and Simon
(1993) showed that, for every Bayesian network G characterized by a distribution P (as in
(1.33)), there exists a functional model (as in (1.40)) that generates a distribution identical
to P.'8 It follows that in all probabilistic applications of Bayesian networks — includ-
ing statistical estimation, prediction, and diagnosis — we can use an equivalent functional
model as specified in (1.40), and we can regard functional models as just another way of
encoding joint distribution functions.

Nonetheless, the causal-functional specification has several advantages over the prob-
abilistic specification, even in purely predictive (i.e., nonmanipulative) tasks. First and
foremost, all the conditional independencies that are displayed by the causal diagram
G are guaranteed to be stable — that is, invariant to parametric changes in the mecha-
nisms represented by the functions f; and the distributions P(1t;). This means that agents
who choose to organize knowledge using Markovian causal models can make reliable
assertions about conditional independence relations without assessing numerical proba-
bilities — a common ability among humanoids'® and a useful feature for inference. Sec-
ond, the functional specification is often more meaningful and natural, and it yields a
small number of parameters. Typical examples are the linear structural equations used
in social science and economics (see Chapter 5) and the “noisy OR gate” that has be-
come quite popular in modeling the effect of multiple dichotomous causes (Pearl 1988b,
p. 184). Third (and perhaps hardest for an empiricist to accept), judgmental assumptions
of conditional independence among observable quantities are simplified and made more
reliable in functional models, because such assumptions are cast directly as judgments
about the presence or absence of wnobserved common causes (e.g., why is the price of
beans in China judged to be independent of the traffic in Los Angeles?). In the con-
struction of Bayesian networks, for example, instead of judging whether each variable is
independent of all its nondescendants (given its parents), we need to judge whether the
parent set contains a// relevant immediate causes — in particular, whether no factor omit-
ted from the parent set is a cause of another observed variable. Such judgments are more
natural because they are discernible directly from a qualitative causal structure, the very
structure that our mind has selected for storing stable aspects of experience.

Finally, there is an additional advantage to basing prediction models on causal mech-
anisms that stems from considerations of stability (Section 1.3.2). When some con-
ditions in the environment undergo change, it is usually only a few causal mecha-
nisms that are affected by the change; the rest remain unaltered. It is simpler then to
reassess (judgmentally) or reestimate (statistically) the model parameters knowing that

8 1In Chapter 9 we will show that, except in some pathological cases, there actually exist an infinite
number of functional models with this property.

19 Statisticians who are reluctant to discuss causality yet have no hesitation expressing background
information in the form of conditional independence statements would probably be shocked to
realize that such statements acquire their validity from none other than the causal Markov condi-
tion (Theorem 1.4.1). See note 9.
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the corresponding symbolic change is also local, involving just a few parameters, than to
reestimate the entire model from scratch.?’

1.4.3 Interventions and Causal Effects in Functional Models

The functional characterization x; = f;(pa,, u;), like its stochastic counterpart, provides
a convenient language for specifying how the resulting distribution would change in re-
sponse to external interventions. This is accomplished by encoding each intervention as
an alteration on a select set of functions instead of a select set of conditional probabilities.
The overall effect of the intervention can then be predicted by modifying the correspon-
ding equations in the model and using the modified model to compute a new probability
function. Thus, all features of causal Bayesian networks (Section 1.3) can be emulated
in Markovian functional models.

For example, to represent the action “turning the sprinkler On” in the model of (1.44),
we delete the equation x3 = f3(x), 113) and replace it with x3 = On. The modified model
will contain all the information needed for computing the effect of the action on other vari-
ables. For example, the probability function induced by the modified model will be equal
to that given by (1.36), and the modified diagram will coincide with that of Figure 1.4.

More generally, when an intervention forces a subset X of variables to attain fixed
values x, then a subset of equations is to be pruned from the model in (1.40), one for
each member of X, thus defining a new distribution over the remaining variables that
characterizes the effect of the intervention and coincides with the truncated factorization
obtained by pruning families from a causal Bayesian network (equation (1 372

The functional model’s representation of interventions offers greater flexibility and
generality than that of a stochastic model. First, the analysis of interventions can be
extended to cyclic models, like the one in Figure 1.5, so as to answer policy-related
questions22 (e.g.: What would the demand quantity be if we control the price at py?).
Second, interventions involving the modification of equational parameters (like | and
d; in (1.42)) are more readily comprehended than those described as modifiers of condi-
tional probabilities, perhaps because stable physical mechanisms are normally associated
with equations and not with conditional probabilities. Conditional probabilities are per-
ceived to be derivable from, not generators of, joint distributions. Third, the analysis of
causal effects in non-Markovian models will be greatly simplified using functional mod-
els. The reason is: there are infinitely many conditional probabilities P(x; | pa;) but only
a finite number of functions x; = f;(pa;, 1;) among discrete variables X; and PA;. This
fact will enable us in Chapter 8 (Section 8.2.2) to use linear-programming techniques to
obtain sharp bounds on causal effects in studies involving noncompliance.

20 To the best of my knowledge, this aspect of causal models has not been studied formally; it is
suggested here as a research topic for students of adaptive systems.

An explicit translation of interventions to “wiping out” equations from the model was first pro-
posed by Strotz and Wold (1960) and later used in Fisher (1970) and Sobel (1990). More elabo-
rate types of interventions, involving conditional actions and stochastic strategies, will be formu-
lated in Chapter 4.

Such questions, especially those involving the control of endogenous variables, are conspicuously
absent from econometric textbooks (see Chapter 5).

21

22
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Finally, functional models permit the analysis of context-specific actions and poli-
cies. The notion of causal effect as defined so far is of only minor use in practical policy
making. The reason is that causal effects tell us the general tendency of an action to
bring about a response (as with the tendency of a drug to enhance recovery in the over-
all population) but are not specific to actions in a given situation characterized by a set
of particular observations that may themselves be affected by the action. A physician is
usually concerned with the effect of a treatment on a patient who has already been exam-
ined and found to have certain symptoms. Some of those symptoms will themselves be
affected by the treatment. Likewise, an economist is concerned with the effect of taxa-
tion in a given economic context characterized by various economical indicators, which
(again) will be affected by taxation if applied. Such context-specific causal effects can-
not be computed by simulating an intervention in a static Bayesian network, because the
context itself varies with the intervention and so the conditional probabilities P(x; | pa;)
are altered in the process. However, the functional relationships x; = f;(pa;, 1;) remain
invariant, which enables us to compute context-specific causal effects as outlined in the
next section (see Sections 7.2.1, 8.3, and 9.3.4 for full details).

1.4.4 Counterfactuals in Functional Models

We now turn to the most distinctive characteristic of functional models — the analysis
of counterfactials. Certain counterfactual sentences, as we remarked before, cannot be
defined in the framework of stochastic causal networks. To see the difficulties, let us con-
sider the simplest possible causal Bayesian network consisting of a pair of independent
(hence unconnected) binary variables X and Y. Such a network ensues, for example, in a
controlled (i.e., randomized) clinical trial when we find that a treatment X has no effect
on the distribution of subjects’ response Y, which may stand for either recovery (¥ = 0)
or death (Y = 1). Assume that a given subject, Joe, has taken the treatment and died; we
ask whether Joe’s death occurred becaiise of the treatment, despite the treatment, or re-
gardless of the treatment. In other words, we ask for the probability Q that Joe would
have died had he not been treated.

To highlight the difficulty in answering such counterfactual questions, let us take an
extreme case where 50% of the patients recover and 50% die in both the treatment and
the control groups; assume further that the sample size approaches infinity, thus yielding

P(y|x) = 1/2 forallxandy. (1.46)

Readers versed in statistical testing will recognize immediately the impossibility of an-
swering the counterfactual question from the available data, noting that Joe, who took
the treatment and died, was never tested under the no-treatment condition. Moreover, the
difficulty does not stem from addressing the question to a particular individual, Joe, for
whom we have only one data point. Rephrasing the question in terms of population fre-
quencies — asking what percentage Q of subjects who died under treatment would have
recovered had they not taken the treatment — will encounter the same difficulties because
none of those subjects was tested under the no-treatment condition. Such difficulties have
prompted some statisticians to dismiss counterfactual questions as metaphysical and to
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advocate the restriction of statistical analysis to only those questions that can be answered
by direct tests (Dawid 2000).

However, that our scientific, legal, and ordinary languages are loaded with counter-
factual utterances indicates clearly that counterfactuals are far from being metaphysical;
they must have definite testable implications and must carry valuable substantive infor-
mation. The analysis of counterfactuals therefore represents an opportunity to anyone
who shares the aims of this book: integrating substantive knowledge with statistical data
so as to refine the former and interpret the latter. Within this framework, the counterfac-
tual issue demands answers to tough, yet manageable technical questions: What is the
empirical content of counterfactual queries? What knowledge is required to answer those
queries? How can this knowledge be represented mathematically? Given such represen-
tation, what mathematical machinery is needed for deriving the answers?

Chapter 7 (Section 7.2.2) presents an empirical explication of counterfactuals as claims
about the temporal persistence of certain mechanisms. In our example, the response to
treatment of each (surviving) patient is assumed to be persistent. If the outcome Y were a
reversible condition, rather than death, then the counterfactual claim would translate di-
rectly into predictions about response to future treatments. But even in the case of death,
the counterfactual quantity Q implies not merely a speculation about the hypothetical be-
havior of subjects who died but also a testable claim about surviving untreated subjects
under subsequent treatment. We leave it as an exercise for the reader to prove that, based
on (1.46) and barring sampling variations, the percentage Q of deceased subjects from
the treatment group who would have recovered had they not taken the treatment precisely
equals the percentage Q' of surviving subjects in the nontreatment group who will die if
given treatment.”® Whereas Q is hypothetical, Q' is unquestionably testable.

Having sketched the empirical interpretation of counterfactuals, our next step in this
introductory chapter is the question of representation: What knowledge is required to an-
swer questions about counterfactuals? And how should this knowledge be formulated so
that counterfactual queries can be answered quickly and reliably? That such representation
exists is evident by the swiftness and consistency with which people distinguish plausi-
ble from implausible counterfactual statements. Most people would agree that President
Clinton’s place in history would be different had he not met Monica Lewinsky, but only
a few would assert that his place in history would change had he not eaten breakfast yes-
terday. In the cognitive sciences, such consistency of opinion is as close as one can get to
a proof that an effective machinery for representing and manipulating counterfactuals re-
sides someplace in the human mind. What then are the building blocks of that machinery?

A straightforward representational scheme would (i) store counterfactual knowledge
in the form of counterfactual premises and (ii) derive answers to counterfactual queries
using some logical rules of inference capable of taking us from premises to conclusions.
This approach has indeed been taken by the philosophers Robert Stalnaker (1968) and
David Lewis (1973a,b), who constructed logics of counterfactuals using closest-world

2 For example, if Q equals 100% (i.e., all those who took the treatment and died would have recov-
ered had they not taken the treatment), then all surviving subjects from the nontreatment group
will die if given treatment (again, barring sampling variations). Such exercises will become rou-
tine when we develop the mathematical machinery for analyzing probabilities of causes (see
Chapter 9, Theorem 9.2.12, equations (9.11)—(9.12)).
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Ul U1 Figure 1.6 (a) A causal Bayesian net-
» » work that represents the distribution of
X. X‘" X, (1.47). (b) A causal diagram representing
U U the process generating the distribution in
el 2 e 2 (a), according to model 1. (c) Same, ac-
. ' cording to model 2. (Both U, and U, are
Y Y Y unobserved.)
() (®) ©

semantics (i.e., “B would be true if it were A” just in case B is true in the closest possi-
ble world (to ours) in which A is true). However, the closest-world semantics still leaves
two questions unanswered. (1) What choice of distance measure would make counterfac-
tual reasoning compatible with ordinary conceptions of cause and effect? (2) What mental
representation of interworld distances would render the computation of counterfactuals
manageable and practical (for both humans and machines)? These two questions are an-
swered by the structural model approach expanded in Chapter 7.

An approach similar to Lewis’s (though somewhat less formal) has been pursued
by statisticians in the potential-outcome framework (Rubin 1974; Robins 1986; Hol-
land 1988). Here, substantive knowledge is expressed in terms of probabilistic relation-
ships (e.g., independence) among counterfactual variables and then used in the estimation
of causal effects. The question of representation shifts from the closest-world to the
potential-outcome approach: How are probabilistic relationships among counterfactuals
stored or inferred in the investigator’s mind? In Chapter 7 (see also Section 3.6.3) we
provide an analysis of the closest-world and potential-outcome approaches and compare
them to the structural model approach, to be outlined next, in which counterfactuals are
derived from (and in fact defined by) a functional causal model (equation (1.40)).

In order to see the connection between counterfactuals and structural equations, we
should first examine why the information encoded in a Bayesian network, even in its
causal interpretation, is insufficient to answer counterfactual queries. Consider again our
example of the controlled randomized experiment (equation (1.46)), which corresponds
to an edgeless Bayesian network (Figure 1.6(a)) with two independent binary variables
and a joint probability:

P(y.x) =025 forallxandy. (1.47)

We now present two functional models, each generating the joint probability of (1.47)
yet each giving a different value to the quantity of interest, Q = the probability that a
subject who died under treatment (x = 1, y = 1) would have recovered (y = 0) had he
or she not been treated (x = 0).

Model 1 (Figure 1.6(b))

Let
X = Uy,
vy = iy,

where U, and U, are two independent binary variables with P(ir; = 1) = P(u, = 1) =
é (e.g., random coins).
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linearity, normality, and error independence are sufficient for computing all counterfac-
tual queries in the model of Figure 1.5 (see Section 7.2.1). In Chapter 9, we will present
conditions under which counterfactual queries concerning probability of causation can be
inferred from data when f; and P(i1) are unknown, and only general features (e.g., mono-
tonicity) of these entities are assumed. Likewise, Chapter 8 (Section 8.3) will present
methods of bhounding probabilities of counterfactuals when only stochastic models are
available.

The preceding considerations further imply that the three tasks listed in the beginning
of this section — prediction, intervention, and counterfactuals — form a natural hierarchy
of causal reasoning tasks, with increasing levels of refinement and increasing demands
on the knowledge required for accomplishing these tasks. Prediction is the simplest of
the three, requiring only a specification of a joint distribution function. The analysis of
interventions requires a causal structure in addition to a joint distribution. Finally, pro-
cessing counterfactuals is the hardest task because it requires some information about the
functional relationships and/or the distribution of the omitted factors.

This hierarchy also defines a natural partitioning of the chapters in this book. Chap-
ter 2 will deal primarily with the probabilistic aspects of causal Bayesian networks (though
the underlying causal structure will serve as a conceptual guide). Chapters 3—6 will deal
exclusively with the interventional aspects of causal models, including the identification
of causal effects, the clarification of structural equation models, and the relationships
between confounding and collapsibility. Chapters 7—10 will deal with counterfactual
analysis, including axiomatic foundation, applications to policy analysis, the bounding
of counterfactual queries, the identification of probabilities of causes, and the explication
of single-event causation.

I wish the reader a smooth and rewarding journey through these chapters. But first,
an important stop for terminological distinctions.

1.5 CAUSAL VERSUS STATISTICAL TERMINOLOGY

This section defines fundamental terms and concepts that will be used throughout this
book. These definitions may not agree with those given in standard sources, so it is im-
portant to refer to this section in case of doubts regarding the interpretation of these terms.

A probabilistic parameter is any quantity that is defined in terms> of a joint proba-
bility function. Examples are the quantities defined in Sections 1.1 and 1.2.

A statistical parameter is any quantity that is defined in terms of a joint probabil-
ity distribution of observed variables, making no assumption whatsoever regarding the
existence or nonexistence of unobserved variables,

Examples: the conditional expectation E(Y [ ),

the regression coefficient ryy,
the value of the density function aty = 0, x = 1.

A causal parameter is any quantity that is defined in terms of a causal model (as in
(1.40)) and is not a statistical parameter.

3 A quantity Q is said to be defined in terms of an object of class C if O can be computed unique-
ly from the description of any object in class C (i.e., if Q is defined by a functional mapping from
C to the domain of Q).
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Examples: the coefficients a;; in (1.41),
whether X has influence on X3 for some u,
the expected value of ¥ under the intervention do(X = 0),
the number of parents of variable X.

Remark: The exclusion of unmeasured variables from the definition of statistical
parameters is devised to prevent one from hiding causal assumptions under the
guise of latent variables. Such constructions, if permitted, would qualify any
quantity as statistical and would thus obscure the important distinction between
quantities that can be estimated from statistical data alone, and those that require
additional assumptions beyond the data.

A statistical assumption is any constraint on a joint distribution of observed variable;
for example, that f is multivariate normal or that P is Markov relative to a given DAG D.

A causal assumption is any constraint on a causal model that cannot be realized by
imposing statistical assumptions; for example, that f; is linear, that U; and U j (unobserved)
are uncorrelated, or that x3 does not appear in fy(pay, i14). Causal assumptions may or may
not have statistical implications. In the former case we say that the assumption is “testable™
or “falsifiable.” Often, though not always, causal assumptions can be falsified from exper-
imental studies, in which case we say that they are “experimentally testable.” For exam-
ple, the assumption that X has no effect on E(Y) in model 2 of Figure 1.6 is empirically
testable, but the assumption that X may cure a given subject in the population is not.

Remark: The distinction between causal and statistical parameters is crisp and
fundamental — the two do not mix. Causal parameters cannot be discerned from
statistical parameters unless causal assumptions are invoked. The formulation
and simplification of these assumptions will occupy a major part of this book.

Remark: Temporal precedence among variables may furnish some information
about (the absence of) causal relationships — a later event cannot be the cause of
an earlier event. Temporally indexed distributions such as P(y, |y, 1, x), 1 =
1..... which are used routinely in economic analysis, may therefore be regarded
as borderline cases between statistical and causal models. We shall nevertheless
classify those models as statistical because the great majority of policy-related
questions cannet be discerned from such distributions, given our commitment to
making no assumption regarding the presence or absence of unmeasured vari-
ables. Consequently, econometric concepts such as “Granger causality” (Granger
1969) and “‘strong exogeneity” (Engle et al. 1983) will be classified as statistical
rather than causal.

Remark: The terms “theoretical” and “structural” are often used interchangeably
with “causal”; we will use the latter two, keeping in mind that some structural
models may not be causal (see Section 7.2.5).

26 Caution must also be exercised in labeling as a “‘data-generating model” the probabilistic sequence
P(yfly, 1 X, t=1,... (e.g., Davidson and MacKinnon 1993, p. 53; Hendry 1995). Such sequences
are statistical in nature and, unless causal assumptions of the type developed in Chapter 2 (see
Definitions 2.4.1 and 2.7.4) are invoked, they cannot be applied to policy-evaluation tasks.
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Causal versus Statistical Concepls

The demarcation line between causal and statistical parameters extends as well to gen-
eral concepts and will be supported by terminological distinction. Examples of statistical
concepts are: correlation, regression, conditional independence, association, likelihood,
collapsibility, risk ratio, odds ratio, propensity score, Granger’s causality, and so on.
Examples of causal concepts are: randomization, influence, effect, confounding, exo-
geneity, ignorability, disturbance (e.g., (1.40)), spurious correlation, path coefficients,
instrumental variables, intervention, explanation, and so on. The purpose of this demar-
cation line is not to exclude causal concepts from the province of statistical analysis but,
rather, to encourage investigators to treat nonstatistical concepts with the proper set of
tools.

Some readers may be surprised by the idea that textbook concepts such as random-
ization, confounding, spurious correlation, and effects are nonstatistical. Others may be
shocked at the idea that controversial concepts such as exogeneity, confounding, and
counterfactuals can be defined in terms of causal models. This book is written with these
readers in mind, and the coming pages will demonstrate that the distinctions just made
between causal and statistical concepts are essential for clarifying both.

Two Mental Barriers to Causal Analysis

The sharp distinction between statistical and causal concepts can be translated into a
useful principle: behind every causal claim there must lie some causal assumption that
is not discernable from the joint distribution and, hence, not testable in observational
studies. Such assumptions are usually provided by humans, resting on expert judgment.
Thus, the way humans organize and communicate experiential knowledge becomes an
integral part of the study, for it determines the veracity of the judgments experts are
requested to articulate.

Another ramification of this causal-statistical distinction is that any mathematical
approach to causal analysis must acquire new notation. The vocabulary of probability
calculus, with its powerful operators of expectation, conditionalization, and marginal-
ization, is defined strictly in terms of distribution functions and is therefore insufficient
for expressing causal assumptions or causal claims. To illustrate, the syntax of probabil-
ity calculus does not permit us to express the simple fact that “symptoms do not cause
diseases.” let alone draw mathematical conclusions from such facts. All we can say is
that two events are dependent — meaning that if we find one, we can expect to encounter
the other, but we cannot distinguish statistical dependence, quantified by the condition-
al probability P(disease | symptom), from causal dependence, for which we have no
expression in standard probability calculus.

The preceding two requirements: (1) to commence causal analysis with untested,
judgmental assumptions, and (2) to extend the syntax of probability calculus, constitute
the two main obstacles to the acceptance of causal analysis among professionals with
traditional training in statistics (Pearl 2003c, also sections 11.1.1 and 11.6.4). This book
helps overcome the two barriers through an effective and friendly notational system
based on symbiosis of graphical and algebraic approaches.



CHAPTER TWO

A Theory of Inferred Causation

I would rather discover one causal law
than be King of Persia.
Democritus (460-370 B.c.)

Preface

The possibility of learning causal relationships from raw data has been on philosophers’
dream lists since the time of Hume (1711-1776). That possibility entered the realm of for-
mal treatment and feasible computation in the mid-1980s, when the mathematical rela-
tionships between graphs and probabilistic dependencies came to light. The approach
described herein is an outgrowth of Rebane and Pearl (1987) and Pearl (1988b, Chap. 8),
which describes how causal relationships can be inferred from nontemporal statistical data
if one makes certain assumptions about the underlying process of data generation (e.g., that
it has a tree structure). The prospect of inferring causal relationships from weaker struc-
tural assumptions (e.g., general directed acyclic graphs) has motivated parallel research
efforts at three universities: UCLA, Carnegie Mellon University (CMU), and Stanford. The
UCLA and CMU teams pursued an approach based on searching the data for patterns of con-
ditional independencies that reveal fragments of the underlying structure and then piec-
ing those fragments together to form a coherent causal model (or a set of such models). The
Stanford group pursued a Bayesian approach, where data are used to update prior prob-
abilities assigned to candidate causal structures (Cooper and Herskovits 1991). The UCLA
and CMU efforts have led to similar theories and almost identical discovery algorithms,
which were implemented in the TETRAD II program (Spirtes et al. 1993). The Bayesian
approach has since been pursued by a number of research teams (Singh and Valtorta 1995;
Heckerman et al. 1994) and now serves as the basis for several graph-based learning meth-
ods (Jordan 1998). This chapter describes the approach pursued by Tom Verma and me in
the period 1988-1992, and it briefly summarizes related extensions, refinements, and
improvements that have been advanced by the CMU team and others. Some of the philo-
sophical rationale behind this development, primarily the assumption of minimality, are
implicit in the Bayesian approach as well (Section 2.9.1).

The basic idea of automating the discovery of causes — and the specific implementa-
tion of this idea in computer programs — came under fierce debate in a number of forums
(Cartwright 1995a; Humphreys and Freedman 1996; Cartwright 1999; Korb and Wallace
1997; McKim and Turner 1997; Robins and Wasserman 1999). Selected aspects of this
debate will be addressed in the discussion section at the end of this chapter (Section 2.9.1).

41
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Acknowledging that statistical associations do not logically imply causation, this
chapter asks whether weaker relationships exist between the two. In particular, we ask:

1. What clues prompt people to perceive causal relationships in uncontrolled obser-
vations?

2. What assumptions would allow us to infer causal models from these clues?

Would the models inferred tell us anything useful about the causal mechanisms
that underly the observations?

In Section 2.2 we define the notions of causal models and causal structures and then de-
scribe the task of causal discovery as an inductive game that scientists play against Nature.
In Section 2.3 we formalize the inductive game by introducing “minimal model”” seman-
tics — the semantical version of Occam’s razor — and exemplify how, contrary to common
folklore, causal relationships can be distinguished from spurious covariations following
this standard norm of inductive reasoning. Section 2.4 identifies a condition, called sfa-
bility (or faithfulness), under which effective algorithms exist that uncover structures of
casual influences as defined here. One such algorithm (called IC), introduced in Sec-
tion 2.5, uncovers the set of all causal models compatible with the data, assuming all
variables are observed. Another algorithm (IC*), described in Section 2.6, is shown to
uncover many (though not all) valid causal relationships when some variables are not
observable. In Section 2.7 we extract from the IC* algorithm the essential conditions un-
der which causal influences are inferred. and we offer these as independent definitions
of genuine influences and spurious associations, with and without temporal information.
Section 2.8 offers an explanation for the puzzling yet universal agreement between the
temporal and statistical aspects of causation. Finally, Section 2.9 summarizes the claims
made in this chapter, re-explicates the assumptions that lead to these claims, and offers
new justifications of these assumption in light of ongoing debates.

2.1 INTRODUCTION - THE BASIC INTUITIONS

An autonomous intelligent system attempting to build a workable model of its environ-
ment cannot rely exclusively on preprogrammed causal knowledge: rather, it must be
able to translate direct observations to cause-and-effect relationships. However, given
that statistical analysis is driven by covariation, not causation, and assuming that the bulk
of human knowledge derives from passive observations, we must still identify the clues
that prompt people to perceive causal relationships in the data. We must also find a com-
putational model that emulates this perception.

Temporal precedence is normally assumed to be essential for defining causation, and
it is undoubtedly one of the most important clues that people use to distinguish causal
from other types of associations. Accordingly, most theories of causation invoke an ex-
plicit requirement that a cause precede its effect in time (Reichenbach 1956; Good 1961;
Suppes 1970; Shoham 1988). Yet temporal information alone cannot distinguish genuine
causation from spurious associations caused by unknown factors — the barometer falls
before it rains yet does not cause the rain. In fact, the statistical and philosophical lit-
erature has adamantly warned analysts that, unless one knows in advance all causally
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the observables, but it hides the underlying causal model as well as the causal structure.
We investigate the feasibility of recovering the topology D of the DAG from features of
the probability distribution Pyg;.”

2.3 MODEL PREFERENCE (OCCAM’S RAZOR)

In principle, since V' is unknown, there is an unbounded number of models that would fit a
given distribution, each invoking a different set of “hidden” variables and each connecting
the observed variables through different causal relationships. Therefore, with no restric-
tion on the type of models considered, the scientist is unable to make any meaningful
assertions about the structure underlying the phenomena. For example, every probability
distribution P can be generated by a structure in which no observed variable is a cause
of another but instead all variables are consequences of one latent common cause, U 3
Likewise, assuming V' = O but lacking temporal information, the scientist can never
rule out the possibility that the underlying structure is a complete, acyclic, and arbitrar-
ily ordered graph — a structure that (with the right choice of parameters) can mimic the
behavior of any model, regardless of the variable ordering. However, following standard
norms of scientific induction, it is reasonable to rule out any theory for which we find
a simpler, less elaborate theory that is equally consistent with the data (see Definition
2.3.5). Theories that survive this selection process are called minimal. With this notion,
we can construct our (preliminary) definition of inferred causation as follows.

Definition 2.3.1 (Inferred Causation (Preliminary))
A variable X is said to have a causal influence on a variable Y if a directed path from X
to Y exists in every minimal structure consistent with the data.

Here we equate a causal structure with a scientific theory, since both contain a set of free
parameters that can be adjusted to fit the data, We regard Definition 2.3.1 as preliminary
because it assumes that all variables are observed. The next few definitions generalize
the concept of minimality to structures with unobserved variables.

Definition 2.3.2 (Latent Structure)
A latent structure is a pair L = (D, O}, where D is a causal structure over V and where
0O C V is a set of observed variables.

Definition 2.3.3 (Structure Preference)
One latent structure L = (D, O) is preferred to another L' = (D', O) (written L < L")
if and only if D" can mimic D over O — that is, if and only if for every © p there exists a

2 This formulation invokes several idealizations of the actual task of scientific discovery. It assumes,
for example, that the scientist obtains the distribution directly, rather than events sampled from
the distribution. Additionally, we assume that the observed variables actually appear in the origi-
nal causal model and are not some aggregate thereof. Aggregation might result in feedback loops,
which we do not discuss in this chapter.

3 This can be realized by letting U have as many states as (O, assigning to U the prior distribution
P(u) = P(o(u)) (where o(u) is the cell of O corresponding to state u), and letting each observed
variable O, take on its corresponding value in o(u).
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Oy such that P[O]((D LO'p)) = P[O]((D, O p)). Two latent structures are equivalent,
written L' = L, if and only if L < L' and L = e

Note that the preference for simplicity imposed by Definition 2.3.3 is gauged by the
expressive power of a structure, not by its syntactic description. For example, one la-
tent structure L; may invoke many more parameters than L, and still be preferred if
L, can accommodate a richer set of probability distributions over the observables. One
reason scientists prefer simpler theories is that such theories are more constraining and
thus more falsifiable; they provide the scientist with less opportunities to overfit the data
“hindsightedly” and therefore command greater credibility if a fit is found (Popper 1959;
Pearl 1978; Blumer et al. 1987).

We also note that the set of independencies entailed by a causal structure imposes lim-
its on its expressive power, that is, its power to mimic other structures. Indeed, .| cannot
be preferred to L, if there is even one observable dependency that is permitted by L; and
forbidden by L,. Thus, tests for preference and equivalence can sometimes be reduced to
tests of induced dependencies, which in turn can be determined directly from the topol-
ogy of the DAGs without ever concerning ourselves with the set of parameters. This is
the case in the absence of hidden variables (see Theorem 1.2.8) but does not hold gener-
ally in all latent structures. Verma and Pearl (1990) showed that some latent structures
impose numerical rather than independence constraints on the observed distribution
(see, e.g.. Section 8.4, equations (8.21)—(8.23)): this makes the task of verifying model
preference complicated but does still permit us to extend the semantical definition of
inferred causation (Definition 2.3.1) to latent structures.

Definition 2.3.4 (Minimality)

A latent structure L is minimal with respect to a class LC of latent structures if and only
if there is no member of L that is strictly preferred to L — that is, if and only if for every
L' € Lwe have L = L' whenever L' < L.

Definition 2.3.5 (Consistency) .
A latent structure L = iD, O| is consistent with a distribution P over O if D can ac-

commodate some model that generates P — that is, if there exists a parameterization O p
such that Pjo1({D. Op)) = P.

Clearly, a necessary (and sometimes sufficient) condition for L to be consistent with P
is that L can account for all the dependencies embodied in P

Definition 2.3.6 (Inferred Causation)
Given P, a variable C has a causal influence on variable E if and only if there exists a
directed path from C to E in every minimal latent structure consistent with P.

We view this definition as normative because it is based on one of the least disputed norms
of scientific investigation: Occam’s razor in its semantical casting. However, as with any

4 We use the succinct term “preferred to” to mean “preferred or equivalent to,” a relation that has
also been named “a submodel of.”
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Figure 2.1 Causal structures illustrating the minimality of (a) and (b) and the justification for infer-
ring the relationship ¢ — d. The node (*) represents a hidden variable with any number of states.

scientific inquiry, we make no claims that this definition is guaranteed to always identify
stable physical mechanisms in Nature. It identifies the mechanisms we can plausibly in-
fer from nonexperimental data; moreover, it guarantees that any alternative mechanism
will be less trustworthy than the one inferred because the alternative would require more
contrived, hindsighted adjustment of parameters (i.e., functions) to fit the data.

As an example of a causal relation that is identified by Definition 2.3.6, imagine that
observations taken over four variables {a, b. ¢, a'} reveal two independencies: “a is in-
dependent of 5" and “d is independent of {@, b} given ¢.” Assume further that the data
reveals no other independence besides those that logically follow from these two. This
dependence pattern would be typical, for example, of the following variables: @ = having
a cold, b = having hay fever, ¢ = having to sneeze, d = having to wipe one’s nose.
It is not hard to see that structures (a) and (b) in Figure 2.1 are minimal, for they entail
the observed independencies and none other.” Furthermore, any structure that explains
the observed dependence between ¢ and d by an arrow from d to ¢, or by a hidden com-
mon cause () between the two, cannot be minimal, because any such structure would be
able to “out-mimic” the one shown in Figure 2.1(a) (or the one in Figure 2.1(b)), which
reflects all observed independencies. For example, the structure of Figure 2.1(c), unlike
that of Figure 2.1(a), accommodates distributions with arbitrary relations between a and
b. Similarly, Figure 2.1(d) is not minimal because it fails to impose the conditional in-
dependence between d and {a, b} given ¢ and will therefore accommodate distributions
in which d and {a, b} are dependent given c. In contrast, Figure 2.1(¢) is not consis-
tent with the data, since it imposes an unobserved marginal independence between {a, b}
and d.

This example (taken from Pearl and Verma 1991) illustrates a remarkable connection
between causality and probability: certain patterns of probabilistic dependencies (in our
case, all dependencies except (¢ LL b) and (d LL {a, b} | ¢)) imply unambiguous causal
dependencies (in our case, ¢ — d) without making any assumption about the presence

5 To verify that (a) and (b) are equivalent, we note that (b) can mimic (a) if we let the link @ < =
impose equality between the two variables. Conversely, (a) can mimic (b), since it is capable of
generating every distribution that possesses the independencies entailed by (b). (For theory and
methods of “reading off” conditional independencies from graphs, see Section 1.2.3 or Pearl 1988b.)
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or absence of latent variables.® The only assumption invoked in this implication is min-
imality — models that overfit the data are ruled out.

2.4 STABLE DISTRIBUTIONS

Although the minimality principle is sufficient for forming a normative theory of inferred
causation, it does not guarantee that the structure of the actual data-generating model
would be minimal, or that the search through the vast space of minimal structures would
be computationally practical. Some structures may admit peculiar parameterizations that
would render them indistinguishable from many other minimal models that have totally
disparate structures. For example, consider a binary variable C that takes the value 1
whenever the outcomes of two fair coins (A and B) are the same and takes the value 0
otherwise. In the trivariate distribution generated by this parameterization, each pair of
variables is marginally independent yet is dependent conditional on the third variable.
Such a dependence pattern may in fact be generated by three minimal causal structures,
each depicting one of the variables as causally dependent on the other two, but there
is no way to decide among the three. In order to rule out such “pathological” param-
eterizations, we impose a restriction on the distribution called stability, also known as
DAG-isomorphism or perfect-mapness (Pearl 1988b, p. 128) and faithfulness (Spirtes
et al. 1993). This restriction conveys the assumption that all the independencies embedded
in P are stable; that is, they are entailed by the structure of the model D and hence remain
invariant to any change in the parameters O p,. In our example, only the correct structure
(namely, A — C < B) will retain its independence pattern in the face of changing para-
meterizations — say, when the coins become slightly biased.

Definition 2.4.1 (Stability)

Let I (P) denote the set of all conditional independence relationships embodied in P.
A causal model M = (D, O p) generates a stable distribution if and only if P((D, © p))
contains no extraneous independences — that is, if and only if I(P({D, @D})) -
I(P({D, ® ) for any set of parameters O .

The stability condition states that, as we vary the parameters from ® to ®', no inde-
pendence in P can be destroyed; hence the name “stability.” Succinctly, P is a stable
distribution of M if it “maps” the structure D of M, thatis, (X 1LY 1 Z)p <= (X 1L Y 1 Z)p
for any three sets of variables X, ¥, and Z (see Theorem 1.2.5).

The relationship between minimality and stability can be illustrated using the follow-
ing analogy. Suppose we see a picture of a chair and that we need to decide between two
theories as follows.

T,: The object in the picture is a chair.
T,: The object in the picture is either a chair or two chairs positioned such that
one hides the other.

% Standard probabilistic definitions of causality (e.g., Suppes 1970; Eells 1991) invariably require
knowledge of all relevant factors that may influence the observed variables (see Section 7.5.3).
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Our preference for T over T can be justified on two principles, one based on minimality
and the other on stability. The minimality principle argues that T is preferred to 75 be-
cause the set of scenes composed of single objects is a proper subset of scenes composed
of two or fewer objects and, unless we have evidence to the contrary, we should prefer the
more specific theory. The stability principle rules out T, a priori, arguing that it would
be rather unlikely for two objects to align themselves so as to have one perfectly hide the
other. Such an alignment would be unstable relative to slight changes in environmental
conditions or viewing angle.

The analogy with independencies is clear. Some independencies are structural, that
is, they would persist for every functional—distributional parameterization of the graph.
Others are sensitive to the precise numerical values of the functions and distributions.
For example, in the structure Z <— X — Y, which stands for the relations

z = filxquy), vy = folx,ug), .1

the variables Z and Y will be independent, conditional on X, for all functions f; and f5.
In contrast, if we add an arrow Z — Y to the structure and use a lincar model

z=9yx+u, y=ax+ Bz+ u,, (2.2)
with &« = — By, then Y and X will be independent. However, the independence between
Y and X is unstable because it disappears as soon as the equality « = — 37 is violated.

The stability assumption presumes that this type of independence is unlikely to occur in
the data, that all independencies are structural.

To further illustrate the relations between stability and minimality, consider the causal
structure depicted in Figure 2.1(c). The minimality principle rejects this structure on the
ground that it fits a broader set of distributions than those fitted by structure (a). The
stability principle rejects this structure on the ground that, in order to fit the data (specif-
ically, the independence (a1l b)), the association produced by the arrow @ — b must
cancel precisely the one produced by the path @ «<— ¢ — b. Such precise cancelation can-
not be stable, for it cannot be sustained for all functions connecting variables a, b, and
c. In structure (a), by contrast, the independence (a 1L b) is stable.

2.5 RECOVERING DAG STRUCTURES

With the added assumption of stability, every distribution has a unique minimal causal
structure (up to d-separation equivalence), as long as there are no hidden variables. This
uniqueness follows from Theorem 1.2.8, which states that two causal structures are equiv-
alent (i.e., they can mimic each other) if and only if they relay the same dependency in-
formation — namely, they have the same skeleton and same set of v-structures.

In the absence of unmeasured variables, the search for the minimal model then boils
down to reconstructing the structure of a DAG D from queries about conditional inde-
pendencies, assuming that those independencies reflect d-separation conditions in some
undisclosed underlying DAG D,. Naturally, since Dy may have equivalent structures,
the reconstructed DAG will not be unique, and the best we can do is to find a graphical
representation for the equivalence class of Dy,. Such graphical representation was intro-
duced in Verma and Pearl (1990) under the name pattern. A pattern is a partially directed
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Definition 2.6.1 (Projection)
A latent structure Ligy = (Do), O) is a projection of another latent structure L if and
only if:
L. every unobservable variable of D g, is a parentless common cause of exactly two
nonadjacent observable variables; and
2. for every stable distribution P generated by L, there exists a stable distribution
P’ generated by Ligy such that I (Pgy)) =1 (P'[g.

Theorem 2.6.2 (Verma 1993)
Any latent structure has at least one projection.

It is convenient to represent projections using a bidirectional graph with only the ob-
served variables as vertices (i.e., leaving the hidden variables implicit). Each bidirected
link in such a graph represents a common hidden cause of the variables corresponding to
the link’s endpoints.

Theorem 2.6.2 renders our definition of inferred causation (Definition 2.3.0) opera-
tional; it can be shown (Verma 1993) that the existence of a certain link in a distinguished
projection of any minimal model of P must indicate the existence of a causal path in
every minimal model of P. Thus, our search reduces to finding the distinguished projec-
tion of any minimal model of P and identifying the appropriate links. Remarkably, these
links can be identified by a simple variant of the IC algorithm, here called IC*, that takes
a stable distribution P and returns a marked pattern, which is a partially directed acyclic
graph that contains four types of edges:

1. amarked arrow @ —= b, signifying a directed path from a to b in the underly-
ing model;

2. an unmarked arrow a — b, signifying either a directed path from a to b or a
latent common cause a <— L — b in the underlying model;

3. a bidirected edge a <—> b, signifying a latent common cause ¢ <— L — b in
the underlying model; and

4. an undirected edge a — b, standing for either a«—bora—bora<—L—b
in the underlying model 8

IC* Algorithm (Inductive Causation with Latent Variables)
Input: P, a stable distribution (with respect to some latent structure).
Output:  core (P), a marked pattern.

1. For each pair of variables « and b, search for a set S, such that « and b
are independent in P, conditioned on S,

8 Spirtes et al. (1993) used @ o— b to represent uncertainty about the arrowhead at node a. Several
errors in the original proof of IC* were pointed out to us by Peter Spirtes and were corrected in
Verma (1993). Alternative proofs of correctness, as well as refinements in the algorithm, are given

in Spirtes et al. (1993).
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Figure 2.2 Illustration of R, in step 3 of the IC* algorithm.
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Figure 2.3 Graphs constructed by the IC* algorithm. (a) Underlying structure. (b) After step 1. (c)
After step 2. (d) Output of IC*,

If there is no such S, place an undirected link between the two
variables, a — b.

2. For each pair of nonadjacent variables a and » with a common neighbor ¢,
check if ¢ € Syp.
If it is, then continue.
If it is not, then add arrowheads pointing at ¢ (i.e., a — ¢ < b).

3. In the partially directed graph that results, add (recursively) as many
arrowheads as possible, and mark as many edges as possible, according
to the following two rules:

Ry:  For each pair of nonadjacent nodes « and » with a common neighbor
¢, if the link between a and ¢ has an arrowhead into ¢ and if the link
between ¢ and b has no arrowhead into ¢, then add an arrowhead on
the link between ¢ and b pointing at # and mark that link to obtain
&=Ly b

Ry:  If a and b are adjacent and there is a directed path (composed strictly
of marked links) from a to b (as in Figure 2.2), then add an arrowhead
pointing toward 5 on the link between « and 5.

Steps 1 and 2 of IC* are identical to those of IC, but the rules in step 3 are different; they
do not orient edges but rather add arrowheads to the individual endpoints of the edges,
thus accommodating bidirectional edges.

Figure 2.3 illustrates the operation of the IC* algorithm on the sprinkler example of
Figure 1.2 (shown schematically in Figure 2.3(a)).

I. The conditional independencies entailed by this structure can be read off using
the d-separation criterion (Definition 1.2.3), and the smallest conditioning sets
corresponding to these independencies are given by S,; = {b, ¢}, S,. = {d},
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Figure 2.4 Latent structures equivalent to those of Figure 2.3(a).

Spe = {a}, Spe = {d}, and S, = {d}. Thus, step 1 of IC* yields the undirected
graph of Figure 2.3(b).

2. The triplet (b, d, ¢) is the only one that satisfies the condition of step 2, since d is
not in S;,.. Accordingly, we obtain the partially directed graph of Figure 2.3(c).

3. Rule R, of step 3 is applicable to the triplet (b, d, ¢) (and to (¢, d, ¢)), since b
and e are nonadjacent and there is an arrowhead at d from b but not from ¢. We
therefore add an arrowhead at e, and mark the link, to obtain Figure 2.3(d). This
is also the final output of IC*, because R and R, are no longer applicable.

The absence of arrowheads on @ — b and @ — ¢, and the absence of markings on
b —d and ¢ — d, correctly represent the ambiguities presented by P. Indeed, each of
the latent structures shown in Figure 2.4 is observationally equivalent to that of Figure
2.3(a). Marking the link d — ¢ in Figure 2.3(d) advertises the existence of a directed
link d — ¢ in each and every latent structure that is independence-equivalent to the one
in Figure 2.3(a).

2.7 LOCAL CRITERIA FOR INFERRING CAUSAL RELATIONS

The IC* algorithm takes a distribution P and outputs a partially directed graph. Some
of the links are marked unidirectional (denoting genuine causation), some are nmarked
unidirectional (denoting potential causation), some are bidirectional (denoting spurious
association), and some are undirected (denoting relationships that remain undetermined).
The conditions that give rise to these labelings can be taken as definitions for the various
kinds of causal relationships. In this section we present explicit definitions of potential
and genuine causation as they emerge from the IC* algorithm. Note that, in all these def-
initions, the criterion for causation between two variables (X and Y) will require that a
third variable Z exhibit a specific pattern of dependency with X and Y. This is not sur-
prising, since the essence of causal claims is to stipulate the behavior of X and Y under
the influence of a third variable, one that corresponds to an external control of X (or ¥) —
as echoed in the paradigm of “no causation without manipulation” (Holland 1986). The
difference is only that the variable Z, acting as a virtual control, must be identified within
the data itself, as if Nature had performed the experiment. The IC* algorithm can be re-
garded as offering a systematic way of searching for variables Z that qualify as virtual
controls, given the assumption of stability.
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Definition 2.7.1 (Potential Cause)
A variable X has a potential causal influence on another variable Y (that is inferable from
P) if the following conditions hold.

1. X and Y are dependent in every context.

2. There exists a variable Z and a context S such that
(i) X and Z are independent given S (i.e., X 1L Z | S) and
(ii) Z and Y are dependent given S (i.e., ZILY | S).

By “context” we mean a set of variables tied to specific values. In Figure 2.3(a), for ex-
ample, variable b qualifies as a potential cause of d by virtue of variable Z = ¢ being
dependent on d and independent of b in context S = a. Likewise, ¢ qualifies as a poten-
tial cause of d (with Z = b and S = a). Neither b nor ¢ qualifies as a genuine cause of
d, because this pattern of dependencies is also compatible with a latent common cause,
shown as bidirected arcs in Figures 2.4(a)—(b). However, Definition 2.7.1 disqualifies
d as a cause of b (or ¢), and this leads to the classification of d as a genuine cause of
e, as formulated in Definition 2.7.2.9 Note that Definition 2.7.1 precludes a variable X
from being a potential cause of itself or of any other variable that functionally deter-
mines X.

Definition 2.7.2 (Genuine Cause)
A variable X has a genuine causal influence on another variable Y if there exists a vari-
able Z such that either:

1. X andY are dependent in any context and there exists a context S satisfying
(i) Zis a potential cause of X (per Definition 2.7.1),
(ii) Z andY are dependent given S (i.e., ZWLY | S), and
(iii) Z and Y are independent given S U X (i.e., Z 1LY |S U X);
or
2. X and are in the transitive closure of the relation defined in criterion 1.

Conditions (i)—(iii) are illustrated in Figure 2.3(a) with X = d, Y =e¢,Z = b, and § =
9. The destruction of the dependence between b and e through conditioning on d can-
not be attributed to spurious association between d and e; genuine causal influence is the
only explanation, as shown in the structures of Figure 2.4,

Definition 2.7.3 (Spurious Association)
Two variables X and Y are spuriously associated if they are dependent in some context
and there exist two other variables (Z) and Z,) and two contexts (S and S,) such that:

Y Definition 2.7.1 was formulated in Pearl (1990) as a relation between events (rather than variables)
with the added condition P(Y | X) > P(Y) (in the spirit of Reichenbach 1956, Good 1961, and
Suppes 1970). This refinement is applicable to any of the definitions in this section, but it will not
be formulated explicitly.



