

William E Clocksin

Clause
and Effect

Prolog Programming
for the Working Programmer

§)) Springer

Dr. William F. Clocksin
Computer Laboratory
University of Cambridge
Pembroke Street
Cambridge CB2 3QG, UK

Computing Reviews Classification (1991): D.1.6

Library of Congress Cataloging-in-Publication Data

Clocksin, W. E. (William E), 1955-
Clause and effect: Prolog programming for the working programmer
/ William E. Clocksin.
p. cm.
Includes bibliographical references and index.
ISBN 978-3-540-62971-9 ISBN 978-3-642-58274-5 (eBook)
DOI 10.1007/978-3-642-58274-5
1. Prolog (Computer program language)
QA76.73.P76Cs565 1997
005.13'--dc21 97-35795
CIp

ISBN 978-3-540-62971-9

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must aP(ways be obtainecf’ from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1997
Originally published by Springer-Verlag Berlin Heidelberg in 1997

The use of general descriptive names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use,

Cover Design: Kiinkel + Lopka Werbeagentur, Heidelberg
Typesetting: Camera ready by the author
SPIN 11540823 45/3111 - 5 4 3 21 - Printed on acid-free paper

Table of Contents

1. Getting Started...................cooiiiiii 1
1.1 SYIEAX ettt bbbt ebees 2
1.2 PTOZTAINIS. ..ottt st s eneesr e 6

ification....ccoociiiiiiiiiiii i 7

1.4 Execution Model.......cceconvicriiiinnnnnns et 9
Worksheet 1: Party Pairs.......ccceeeviiiiiiiiiiiiiniiiiieeeceeeceseieeee, 12
Worksheet 2: Drinking Pairs..............cccoiiiii 13
Worksheet 3: Affordable Journeys.........ccccooviiiiicinneiiieiiicenns 14
Worksheet 4: Acyclic Directed Graph.......cccccocevvviiiiinineinnnenne, 16

2. Data SEruChIIFeS. ...kt sss s ss b s sssbsmsatnnn 17

2.1 Square Bracket Notation...........c.cocooiiii 19
Worksheet 5: Member.....coccoiiiiiiiiiiieiiiiie i 20
Worksheet 6: Length of @ List........ccccoviiiiiiiiiiiiiiiiniiiiicicne 22
Worksheet 7: Inner ProducCt........cocreciaaneseasassssanssmnsnsassnnes 23
Worksheet 9: Searching a Cyclic Graph.........cccceveeviinvncneennee., 25

3. MapPing.......ccocoooiiiiiii 27

Worksheet 10: Full Maps.........cccoviiiiiiiiiiiiciiiiciiiniiieeeee, 30
Worksheet 11: Multiple Choices......cccococceiiiiiiieiiiianiiiiiecnns 31
Worksheet 12: Partial Maps......ccooeeieeieiieieiiecsieeeiceee e, 32
Worksheet 13: Removing Duplicates..........ccoocvviaeeeeenscennnnenn. 33
Worksheet 14: Partial Maps with a Parameter.............ccc........ 34
Worksheet 15: Multiple Disjoint Partial Maps..........ccccceceeren. 35
Worksheet 16: Multiple Disjoint Partial Maps..........cccoceeueee. 36
Worksheet 17: Full Maps with State...........coccviinienniennnen. 37
Worksheet 18: Sequential Maps with State...........ccccccceeee. 38

Worksheet 19: Scattered Maps with State...........ccocvvevirneeennennn 39

viii Table of Contents

41 The ‘Cut’icceeiiiiiiiiiiiiiiiiiiiiiiiiiiic e . w41
4.2 A Disjoint Partial Map with Cut.......ccocociiiiiiiiiiiiiieciiee. 43
Worksheet 20: Multiple Choices with Cut.............cccooeine 46
Worksheet 22: Ordered Search Trees........cooeeeviiiiiiniiiiiiiinnenns 47
Worksheet 23: Frequency Distribution........coccovvciiiiiinnnnnnan.. 49

4.3 Taming Cut.......ocoooiiiiiiiiii 50
4.4 Cut and Negation-as-Failure..............ccccociiiiiiiiniiiniiinnnn, 50
4.5 Negation-as-Failure Can Be Misleading...........ccccoceiiiiiiinnnnns 51
Worksheet 24: Negation-as-Failure.........cccccocvevinniiiniiininnneen.. 53

5. Difference Structures 55
Worksheet 25: Concatenating Lists...........cocoviiiiiiiiiiine 56
Worksheet 26: Rotations of @ LiSt....oeiiiiconinaaeenaeenans 57
Worksheet 27: Linearising........cccccoveeiiiiieeieiieiinie e 58

iff LiStS..iiiiiiiiiiiieicecee, eerennnnes '
Worksheet 28: Linearising Efficiently..........coccoiiniiiian. 62
Worksheet 29: Linearising Trees.......cccccocvuriueiiieiiiieiieeeeieeaennnns 63
Worksheet 30: Difference Structures.........ccccceveiiiiiennciaennne. 64
Worksheet 31: Rotation Revisited................ooooooiiiiii o, 65
Worksheet 32: Max Tree......cccceeeeiiiiiiiiiiii 66

5.2 Solution to Max Tree 67

6. Case Study: Term Rewriting............cccocociviiiniiniiiieiiinireennneens 69
6.1 Symbolic Differentiation.........coeiiiniiiniiiesiie i 69
6.2 Matrix Products by Symbolic Algebra........cccccovviiininiicinnininnns 70
6.3 The SIimplifier.......ccciiiiiiiiiniiiiii i, 72

7. Case Study: Manipulation of Combinational Circuits..... 75
7.1 Representing Circuits.......ccociciiiiiiiiiiiiiiiiias 75
7.2 Simulation of Circuits......cccoieeuviiiiieiiieieeiiiieniiieieeinieee e, 79
7.3 Sums and Products.... s ssssiisiccsssssssssssssnsanas 79
7.4 Simplifying SOP EXPressions.........cociiiiiiiiiiiiiiiiiceiee e 82

7.5 Alternative Representation........ccooeiiiiiiiiiiiniiiiiiiiiiiieiiiiianaes 83

Table of Contents ix

8. Case Study: Clocked Sequential Circuits........................... 85
8.1 Divide-by-Two Pulse Divider.........ccoccvvviiviiiicciiniiiiiinns 86
8.2 Sequential Parity Checker.........cccoviiiiiiiiiiiiiiiiiiicieiienn 86
8.3 Four-Stage Shift Register.........ccccvviiiiiiiiiiiiiiieceiiie e 87
8.4 Gray Code CoOUNeT. .c.ioie ittt teianaeeasaneencneeaenseseeennennens 89
8.5 Specification of Cascaded Components......c.ccccoevreccvreccrnnnnnen. 90

9. Case Study: A Compiler forThree Model Computers........ 93
9.1 The Register Machine......c..ccvvuiiiiiiiiiiiiiiiiieiiiiee e eie e, 97
9.2 The Single-Accumulator Machine..........cccccocviieiiiiciiiiiiiinnnns 102
9.3 The Stack Machine 107
9.4 Optimisation: Preprocessing the Syntax Tree............cccccoeennnns 110
9.5 Peephole Optimisation......cccccoeciiiiiiiiiiiiiiiiiiec e 113

10. Case Study: The Fast Fourier Transform in Prolog......... 115
10.1 INtrodUCHON. .ucussiississssisssssssssssssssssssssssssnssssnssssssassssssssssnsnsnss L1
10.2 Notation for Polynomials...........cccoeiiiniiiiiiiinniiicniinnien s 116
10.3 The DFT ittt 117
10.4 Example: 8-point DFT.......cccccoviiiiiiiiiiniiiiiii e, 117
10.5 Naive Implementation of the DFT..............ocooiiiiiiiiiiinnnne. 119
10.6 From DFT t0 FFT..c..oiiiiiiiiieie it 120
10.7 Merging Common Subexpressions...........ccccoeevveecevureeionnenn. 121
10.8 The Graph Generator......c.ccccviiiiiiiiieiieieiicees e ceeeeeeeeeeaee e, 123
10.9 Example Run: 8-point FFT......ccccoiiiiiiiiiiiiiiiiiiie e, 124
10.10 Bibliographic Notes...........cocoiviiiiiiiieiiiie e, 126

11. Case Study: Higher-Order Functional Programming 127

11.1 INtrodUCHION. uuuee i ieieiieiiiii et eeeveveeeeeeeeeviaeann 127
11.2 A Notation for FUNCHONS.ccoiiviiiiiiiiiiiiiiiecei et ee e seea e 129
11.3 The Evaluator.......oooevuviieiieeiiieieiriiiee e ieeeessssnsnsanns 131
11.4 Using Higher-Order Functions..........ccccvevecciicniiinienncecninnnnn. 136
11.5 Di . 138
11.6 Bibliographic INOteS.....ccciviviiiiiiiie it eeeiiiee ettt eceiees e e 139

Index 141

CHAPTER ONE
GETTING STARTED

Prolog is the most widely used programming language to have been
inspired by logic programming research. There are a number of reasons
for the popularity of Prolog as a programming language:

Powerful symbol manipulation facilities, including unification with
logical variables. Programmers can consider logical variables as
named ‘holes’ in data structures. Unification also serves as the
parameter passing mechanism, and provides a constructor and sel-
ector of data structures. When combined with recursive procedures
and a surface syntax for data structures, the symbol manipulation
possibilities of Prolog surpass those of other languages.

Automatic backtracking provides generate-and-test as the basic
control flow model. This is more general than the strict uni-
directional sequential flow of control in conventional languages.
Although generate-and-test is not appropriate for some applica-
tions, other control flow models can be programmed to correspond
to the demands of a particular application.

Program clauses and data structures have the same form. This gives
a unified model for representing data as programs and programs as
data. Other languages such as Lisp also have this feature.

The procedural interpretation of clauses, together with a back-
tracking control structure, provides a convenient way to express
and to use nondeterministic procedures. However, the price to pay
is the occasional necessity to employ extralogical control features
such as fail and cut.

The relational form of clauses lends the possibility to define
‘procedures’ that can be used for more than one purpose. It is the

2 Clause and Effect

responsibility of the programmer to ensure whether a particular
procedure completely implements a given relation.

* A Prolog program can be regarded as a relational database that con-
tains rules as well as facts. It is easy to add and remove information
from the database, and to pose sophisticated queries.

1.1 Syntax

Everything (programs and data structures) in Prolog is constructed from
terms. There are three kinds of terms: constants, variables and com-
pound terms:

A constant names an individual. Constants are further divided into
numbers and atoms. Numbers are the usual signed integer and floating-
point numbers. Examples of numbers are 17, 17.2, -65, -0.22E+07.
There are several ways to write atoms:

(a) An atom may begin with a lower-case letter which may be followed
by digits and letters and may include the underscore character. For
example, alpha, gross_pay, john_smith.

(b) An atom may also consist of a sequence of sign characters, for
example, +, **, A, =/=.

(c) An atom may be any sequence of characters enclosed in single-
quotes, for example, '12Q&A’. Quotes may or may not be necessary,
depending on the sequence of characters making up the name. For
example, this and 'this’ denote the same atom.

A variable stands for a term. A variable begins with an upper-case letter

or underscore character which may be followed by digits and letters and

may include the underscore character. For example, X, Gross_pay, _257.

A single underscore character names the anonymous variable. An

anonymous variable is distinct from any other variable. Its uses will be

described later.

A compound term names an individual by its parts. A compound term
consists of a functor and one or more arguments. The arguments may be
any terms. The arguments are written separated by commas and
enclosed in a pair of round brackets. The number of arguments of a
compound term is called its arity.

For example,
likes(john,mary)

is a compound term with functor likes of arity 2, and arguments john

and mary. The term

++(V, inc(a), 128)

Getting Started 3

has functor ++ of arity 3, with arguments V (which is a variable), inc(a),
and 128. The argument inc(a) is itself a compound term with functor inc
of arity 1 and argument a.

The taxonomy of terms is illustrated as follows, showing examples in
the boxes:

alpha17
gross_pay
john_smith

poverty
dyspepsia

+
=/=
"12Q8&A’

Atom

Constant

0

1

Number —— 57.3
-2.71828

0.31415E+01

Term

X
Gross_pay
Diagnosis
_217xy

Variable

like(john, mary)
book(dickens,X)
Compound Term f(tan(Theta))
++(Value, inst(inc))
f(X, +(9(X), (X)), ¥, Z)

1.1.1 Operator Notation

Any atom may be designated as an operator. This does not change the
meaning of the atom. The only purpose of operators is for convenience.
Whether an atom is designated as an operator only affects how the term
containing the atom is parsed. So, if '+' is declared as an infix operator,
the term 3+17 is not the same thing as the integer 20. The plus sign

4 Clause and Effect

does not automatically mean ‘add’. It is simply the functor of a term
which could just as well be written +(3,17).

Operators have three properties: position, priority, and associativity.
The position of an operator may be prefix, infix, or postfix. Here are
some examples:

Operator Syntax ~ Equivalent to

Prefix: -a -(a)
Infix: 5+17 +(5,17)
Postfix: N! H(N)

Once an atom is designated as an operator, the operator syntax shown
for the above examples may be used. This is equivalent to a Prolog term
which also can be written in the usual way.

Associativity and precedence determine how operators bind to
arguments relative to other operators in the term. In Prolog, operators
may associate on the right, on the left, or prohibit association. The
priority is an integer from 1 to 1200, with lower numbers binding more
tightly.

Although we won't be declaring any operators for the moment, it is
useful to know the built-in declarations of commonly used operators:

Operator Class Priority Used for
- xfx 1200 Separating head and body of a clause
, xfy 1000 Separating goals in a clause
is xfx 700 Arithmetic evaluation
+ — yfx 500
*/ yfx 400
- fy 200

The class is used to encode position and associativity. The 'f' represents
an operator in a term in which 'x’ and possibly 'y’ represent subterms.
The yfx declaration for '+ above means that '+ is a binary (arity 2)
operator that associates on the left, so for example the term a+b+c is
parsed as (a+b)+c.

Notice that the same atom may have more than one operator
declaration, so the hyphen - may be used as a binary (arity 2) operator
and a unary (arity 1) operator, depending on the context in which it
appears in the expression. The -’ and 'is’ operators prohibit association

Getting Started 5

to reduce the risk of syntax errors. In any expression, round brackets
may be used to enforce the association of subexpressions in a way that
overrides the operator declaration.

1.1.2 Trees
In this book, terms will often be drawn in tree form. Drawing terms this
way graphically depicts the syntactic structure of programs and data
structures. An n-ary compound term is drawn as a node (its functor)
having n branches (its arguments). Constants and variables appear as
the leaves of the tree. For example, the terms

parents(fido, spot, rover)
and

equal(15+X, (0*a)+(2-5))
are depicted as:

equal
parents +/\+
fido spot rover 15 X /\ /\
0 a 2 5

Although the equal term looks like an arithmetic expression, it is
important to remember that no arithmetic interpretation is necessarily
made. This term is just like any other. Later we shall see how terms that
look like arithmetic expressions may be given a special interpretation as
arithmetic expressions and be evaluated as such.

Sometimes it is useful to draw trees in a slightly different way. For
example, suppose we have a binary (that is, having arity 2) term which
is deeply nested on one of the arguments, such as

n(4, n(3, n(2, n(1, n(0, O)))))
Although the tree shown on the left looks like a tree, the drawing on
the right is usually more convenient, because it shows the linear
structure of the term and takes up less vertical space on the page:

6 Clause and Effect

n n n n n 0

[I I R

4 3 2 1 0

3/\n
s
A
0/\0

You should be able to see that the two drawings depict equivalent data
structures.

1.2 Programs

A Prolog program consists of a collection of procedures. Each procedure
defines a particular predicate, being a certain relationship between its
arguments. A procedure consists of one or more assertions, or clauses. It
is convenient to think of two kinds of clauses: facts and rules.

If T is a term of the form H :- B (where H and B are terms and ’;-’ is an
infix functor), then T is called a rule. The term H is called the head, and
B is called the body of the clause. If the :- sign and the body are missing,
then T is called a fact. When facts and rules are written down to make a
program, each one is terminated by a dot (that is, the ‘full stop’ or
‘period’ character).

Here is an example of a procedure drink consisting of three clauses,
all facts:

drink(beer).

drink(milk).

drink(water).
If the body of a rule consists of n terms Gy, G;,..., Gn separated by
commas, then all the G are called goals. In the next example, procedure
likes consists of two clauses: one fact and one rule. The rule is defined in
terms of goals human and honest. Procedures defining these would need
to appear elsewhere in the program:

Getting Started 7

Goals

likes(john, mary). 'A

likes(mary, X) :- human(X), honest(X).
L] | J

Head Body

Clauses can be given a declarative reading or a procedural reading. For
example, the clause
H:- Gy, Gy, ..., Gp.
can be read declaratively as
"That H is provable follows from goals G;, G, ..., G, being provable

L

or procedurally as
"In order to execute procedure H, the procedures called by
goals Gy, Gz, ..., G, should be executed."
Before turning to the mechanics of program execution, we need to
introduce unification.

1.3 Unification

Unification is a basic operation on terms. Two terms unify if sub-
stitutions can be made for any variables in the terms so that the terms
are made identical. If no such substitution exists, then the terms do not
unify. Unification is a very powerful technique, and in Prolog, uni-
fication is used for passing actual parameters, ‘pattern matching’, and
database access. In the Programming in Prolog book, unification is called
‘matching’, because it is a more descriptive word. This was probably
misjudged, because in computer science the word ‘matching’ is more
often used in another sense to mean the less powerful one-way pattern
matching such as what the language ML does.

An algorithm for unification proceeds by recursive descent of the
two input terms: when attempting to unify two terms, determine
whether their corresponding components unify. Ultimately, constants,
variables and compund terms will be compared. The rules are as follows:

e Constants unify if they are identical. For example, john will unify
with john, but john and mary will not unify.

e Variables unify with any term, including other variables. When as a
result of unification a term has been substituted for a variable, we

10 Clause and Effect

(In this book, answers from the Prolog system will appear in italics.)
If the query had been
?- drink(2+6).
Prolog would answer
no
because there is no way that the term drink(2+6) can be derived from the
program. More usefully, if the query is
?- drink(X).
we are asking the Prolog system to find a value for X that logically
follows from the clauses in the program. The first solution according to
the above program is
X = beer
There are more solutions, because there are three possible choices from
the program that unify with drinks(X). Depending on which Prolog
system you are using, there are various ways to ask for the next
solution, and we shall see how to do this later.
What about rules? Suppose our program is about who drinks what:

drinks(john, water).

drinks(jeremy, milk).

drinks(camilla, beer).

drinks(jeremy, X) :- drinks(john, X).
The first three facts are straightforward: the first argument of each drinks
clause is a person’s name, and the second argument is the drink which
is drunk by that person. The last clause, a rule, says that jeremy also
drinks anything that john drinks.
By posing various queries, we can find out who drinks what:

?- drinks(camilla, X)
X = beer

?- drinks(X, gin).
no.

The more interesting query is to find out what jeremy drinks. From the
above program, you should be able to tell that jeremy drinks milk (by
virtue of clause 2), and that he also drinks water (because according to
clause 4, he drinks whatever john drinks, and according to clause 1, john
drinks water). All the possibilities for what jeremy drinks can be depicted
in this ‘proof tree”:

Getting Started 11

drinks(jeremy, X)

drinks(jeremy,) drinks(john, X)

drinks(john,)

The straight lines show how one goal sets up another goal. The curved
lines show the alternative values for X for different solutions.

The general case is of a sequence of queries that must be satisfied.
The subgoals in a query are separated by commas. Prolog begins from
left to right attempting to satisfy each query. If a subgoal succeeds,
Prolog tries the next one on the right. If a subgoal fails, Prolog goes back
to the goal on the left to see if there are any more solutions. So, if we
wish to test whether some X is human and honest, the query

?- human(X), honest(X).
is executed. This picture might help:

if subgoal succeeds, move right

N

human(X) , honest(X) . query succeeds

.

if subgoal fails, move left

query fails

This way of showing how success and failure propagate though a
sequence of subgoals works for any number of subgoals in the body of a
clause.

