Robert C. Martin Series |

Clean Code

A Handbook of Agile Software Craftsmanship

Foreword by James O. Coplien Robert C. Martin

Clean Code

A Handbook of Agile
Software Craftsmanship

The Object Mentors:

Robert C. Martin

Michael C. Feathers Timothy R. Ottinger
Jeffrey J. Langr Brett L. Schuchert
James W. Grenning Kevin Dean Wampler
Object Mentor Inc.

Writing clean code is what you must do in order to call yourself a professional.
There is no reasonable excuse for doing anything less than your best.

'Y) Upper Saddle River, NJ = Boston * Indianapolis * San Francisco

:: New York « Toronto « Montreal * London ¢« Munich « Paris « Madrid

PRENTICE Capetown * Sydney * Tokyo « Singapore « Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department

at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.
Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Martin, Robert C.
Clean code : a handbook of agile software craftsmanship / Robert C. Martin.
p.cm.
Includes bibliographical references and index.
ISBN 0-13-235088-2 (pbk. : alk. paper)
1. Agile software development. 2. Computer software—Reliability. 1. Title.
QA76.76.D47TM3652 2008
005.1—dc22 2008024750

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,
New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-235088-4

ISBN-10: 0-13-235088-2

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Fourteenth printing January 2015

Contents

FOreWOTd ..o XIiX
INErOAUCTION .ot XXV
ON the COVET ..., XXIX
Chapter 1: Clean Code..........................cooooiiiiiieceeeeee 1
There Will Be Codeoooouviiiiiiiiiiieeeee e 2
Bad Code.......oeeeeeee et et e e nnen 3
The Total Cost of OWning a MessScccoeviviieeiieiie e +
The Grand Redesign in the SKy........ccooovviviioiiii e 5
ATETEIAR ..ot 5

The Primal Conundrum...........cccoooieiiiiiie e 6

The Art of Clean Code?..........oooviiiiiiiiie e 6
What I8 Clean Code?.........ouiviiiiiiiiiieee et 7
Schools of Thought..................oooo e, 12
WeAre AULNOTSoooee e, 13
The Boy Scout Rule.................coooiiiiiiieeee e 14
Prequel and Principles..................cooooi oo 15
LO01) 1T 1113 1) 1 T 15
BibliograpRhy..........ccooiiiiiiiiiicccce e 15
Chapter 2: Meaningful Names ... 17
INEroduCtionoooiiiiiiiiiie et 17
Use Intention-Revealing Names ..., 18
Avoid Disinformationc.ooociiiiiii e, 19
Make Meaningful Distinctions.................................. 20
Use Pronounceable Names.....................ccooooiiiiiiiiiie e 21
Use Searchable Namesccccooooiiiiiiiiiee e, 22

vil

viii Contents

AVOId ENCOdINGS ..ot 23
Hungarian Notationcccoovviiiiieiiiii e 23
Member PrefiXes.......cooiiiiiiiioiicee e 24
[nterfaces and Implementations ..o 24

Avoid Mental Mappingccoooovveoiiii e 25

Class NAMIS ... e e e e s 25

Method NAMES ..o e 25

Don’t Be Cute ... 26

Pick One Word per Concept...............c.cooovveiiiiieiiiie e 26

Don’t PURN ..o e 26

Use Solution Domain Names ..., 27

Use Problem Domain Names. ..., 27

Add Meaningful Context..................cooiiiiiiii e 27

Don’t Add Gratuitous Context.................ccceiiininiiiieneceeee, 29

FInal Words ... 30

Chapter 3: FUnCtions ... 31

Smalll... e 34
Blocks and Indenting............ccccvooviieiiiiiiiiiie e 35

Do OneThING. ..o 35
Sections Within FUNCHONScoooviiiiiiiiiiiiice e 36

One Level of Abstraction per Functioncoon. 36
Reading Code from Top to Bottom: The Stepdown Rule.................. 37

Switch Statements ... 37

Use Descriptive Names............ccoooeiiiieiiiiecieie e 39

Function Arguments................cooooooiiiiiiiiiiieiceecee e 40
Common Monadic FOrmS..........cooviiviiiiiiicceee e 41
Flag ATZUMENTSoiiiiiiii et 41
Dyadic FUNCHIONS.......coiiiiiie i e e 42
TIIAAS e e e 42
Argument ODBJECES.cuuiiiiiiiiiiiei ittt 43
ATUMENE LISES oottt ettt 43
Verbs and Keywords ... 43

Have No Side Effects ... 4
OUtPUL ATZUMENTS ..ottt 45

Command Query Separation....................cccooovivieiiecieeeceee . 45

Contents X

Prefer Exceptions to Returning Error Codes 46
Extract Try/Catch BIockSoooviiiiiiiiiiiiciie e 46
Error Handling Is One Thing............ccoooooiiiiiiiiiciiccee e 47
The Error.java Dependency Magnetc.oooveeviieieiieciciece, 47

Don’t RepeatYourself ... 48

Structured Programmingc.cocoooooiiiiiieecie e 48

How Do You Write Functions Like This?ocoein. 49

ComCIUSION ..o 49

SetupTear@oWnINCLUARTooooiiiiiiiiiiiee e 50

Bibliography. ..ot 52

Chapter 4: Comments ..o 53

Comments Do Not Make Up for Bad Code.....................ooooeieeiinnnn. 55

Explain Yourself in Codecooooiiiiiiiii e 55

GoOod CommMENTS..........coiiiiiiiiiii e 55
Legal COMMENTS.......cooiiiiiie et 55
[nformative COMMENTS........cccooviiiiiiiie et 56
Explanation of Intent............cccoovviiiiiiiiiiicciecce e 56
ClarificatioNoooiiii e e e 57
Warning of CONSEQUENCESoviiiiiiieiieiietire e eie e eeeie e 58
TODO COMMENTS......ooiiiiiiiiitiiiie e 58
AMPIACAION.......oiiiii e 59
Javadocs in Public APIS.......ccoovioiiecee e, 59

Bad Commentsoooiiiiiii e 59
MUMDIINZ ..ot 59
Redundant Commentscc..ooovvieeeiiiiiiiicceee e 60
Misleading COMMENTS..........coviiiiirieeeiiii e e 63
Mandated COMMENTS...........ccouiiiiiiie i 63
Journal COmMMENTS.........oooiiiiiiiiiiiie e e 63
INOISE COMMENLSoeiiiiieiiiie et ee e e ee e e e e 64
SCATY NOISE ..ottt ettt ettt ettt e et ea et sbe e ess s 66
Don’t Use a Comment When You Can Use a
Function or a Variable............ccccooooiiiiiii e 67
PoSItion Markers..........c.ooveeiiiiiiie e e 67
Closing Brace COmMMENtS........cc.eoevveeieeieeiieeciee e 67

Attributions and Bylines...........cocoooiiii i 68

X Contents

Commented-Out Code..........coovviiiiieeiii e 68
HTML COMIMENES ..ot e e 69
Nonlocal Information..............coooi vt 69
Too Much Informationccccoveiioii e 70
[NObVIOUS CONNECHION.......ooiiiiiie et e 70
Function Headers...........ooieiiiioe e 70
Javadocs in Nonpublic Codecccoovvivieiiiiiiiiiiceee e 71
EXAMPIC....iiiiiiei e e 71
BibLiography............cccooooiiiii e 74
Chapter S: Formatting ... 75
The Purpose of Formattingcooooiiiiii i 76
Vertical Formatting................ccooooooiiiiiiiiiiice e 76
The Newspaper Metaphorccccvviieiriiiiiceiecie e 77
Vertical Openness Between Conceptscccooeiiiiiiiiiiieiiicieceene 78
Vertical DenSityocuvieeecee et 79
Vertical DIStanceccoovvviiiiiiieceeie e e 80
Vertical Ordering........ocovvviiieriiieceecee sttt 84
Horizontal Formatting........................oooe i 85
Horizontal Openness and Densityccccovveieniieicieiieniceene 86
Horizontal AlIZNMENt.........c.ooviiiiiiiiiieieiice e 87
INAentation.........ooooii e 88
DUMMY SCOPES. .ottt et 90
Team Rules...........ooooi e 90
Uncle Bob’s Formatting Rules.....................cccooioiiiiiceece, 90
Chapter 6: Objects and Data Structures............................... 93
Data AbStraction...................oooiiiii e 93
Data/Object Anti-Symmetryccccoooiieiiiieiie e 95
The Law of Demeter......................ocooiiiiiiiiiiii e 97
Train WIECKS ..ot 98
HYDBIIAS oo et 99
Hiding Structirecooooiiii i 99
Data Transfer Objects................coooiiiiiii e, 100
ACtVE RECOTA. ..o 101
ConCIUSTON ... e 101

Bibliography............ccooooiiiiii e 101

Contents X1

Chapter 7: Error Handling ..o 103
Use Exceptions Rather Than Return Codesccoeeneen. 104
Write Your Try-Catch-Finally Statement First..................... 105
Use Unchecked Exceptions..................cooooiiiiiiiiiiiie e 106
Provide Context with Exceptions......................occcoiiiiiiiiiieein, 107
Define Exception Classes in Terms of a Caller’s Needs.................. 107
Define the Normal Flow ... 109
Don’t Return Null...............o e 110
Don’t Pass Null ... 111
ConCIUSION ... e 112
Bibliography.........ccoooiiiiiiic e 112

Chapter 8: Boundaries........................coooiiiii 113
Using Third-Party Code.................c.ooooiiiiiiice 114
Exploring and Learning Boundaries...........................ccccooiieiinnn, 116
Learning LoG4 7o, 116
Learning Tests Are Better Than Free............................cocooiiin. 118
Using Code That Does Not Yet Exist.......................c.coooooiiiinn 118
Clean Boundariesccooooiiiiiiiiiii e 120
Bibliography..........ocoooiiiiiiie e s 120

Chapter 9: Unit Testscoooooiiiiiiiiiiiiieeee e 121
The Three Laws of TDD ..., 122
Keeping Tests Cleancccoooiiviiiiiieie e 123

Tests Enable the -111t1eS.......cccoioiiiiiei e 124
C1ean TeStSoooiiiiii e 124
Domain-Specific Testing Language..........ccoevevviiiceciieviecceene 127
A Dual Standardcoooiioiiee e 127
One Assert per Testccoeviiieiiiiiie e 130
Single Concept per Test.......cccvvviviviiiiiiii e 131
FLR.S. T e 132
ConCIUSION ..o 133
Bibliography. ... 133

Chapter 10: Classes............cocoovieiieveiieieee s 135

Class Orgamizationcoooovviiiii i 136

ENcapsulationcooiiiiiiiiie e 136

xii Contents

Classes Should Be Small!.................... .
The Single Responsibility Principle..........cccccovviivviiiiiii e
CONESION . ..ot
Maintaining Cohesion Results in Many Small Classes..................

Organizing for Changeccooooiiiiiiiiee e,
Isolating from Change..........c.ocovveiieieeeeeieeee e

Bibliography.........ccoooiiiiiiiiic e e

Chapter 11: Systems ...
How Would You Build a City? ..o,
Separate Constructing a System from Using It..........................

Separation 0f Main........ooovioiiiii e

FACLOTIES ...ttt ettt bttt et

Dependency InJection......cccveeieeiieiie e
Sealing Up ... s

Cross-Cutting CONCEINScuveeveeieie et e
Java Proxies.............oooooiiii
Pure Java AOP Frameworks...............ccoooiiiiiiiiic
ASPECET ASPECES ..ottt s
Test Drive the System Architecture........................coooi
Optimize Decision MaKing...................c.ccooviviie e
Use Standards Wisely, When They Add Demonstrable Value.........
Systems Need Domain-Specific Languages...................................
ConcluSion ..o
Bibliography.........ccooooiiiiiie e e

Chapter 12: Emergencecococoooeiiiiieieece
Getting Clean via Emergent Designcccooooiiiieiinnen,
Simple Design Rule 1: Runs All the Tests.....................cccoooeieennnnn,
Simple Design Rules 2—4: Refactoringooooeiiiinnn,
No Duplication ..o
EXPIesSiVe.ooiiiiiiiiiie e e
Minimal Classes and Methods ...
ConcluSion.... ...
Bibliography.........cc.oooiiiiiiiii e s

Chapter 13: Concurrencycococoooveeieeiieeeeeee

Why ConcurrenCy?coooviiiiieiiieiiee e
Myths and MiSCONCEPLIONS.ciuviviiiieeirie e

136

154
154

178

Contents Xiii

Challengesoooiiiiiiicee e e 180
Concurrency Defense Principles....................cccoovviiiiiiiiieiecce 180
Single Responsibility Principleooovivviiiiiiiiiiiiicceeee 181
Corollary: Limit the Scope of Data..........ccooooiiiiiiiii 181
Corollary: Use Copies of Data.........coceevvieoeeeiiiieceeee e 181
Corollary: Threads Should Be as Independent as Possible 182
Know Your LiDrarycoccoooiiiiiiiiiiioncce e 182
Thread-Safe Collections...........ooioiiiiiiiiiiii e 182
Know Your Execution Models ... 183
Producer-COonSUMETcocoiiiiiiiiir it 184
Readers-WITterS.ooiiiiiie e e 184
Dining PhiloSOPherscccooviiiiii e 184
Beware Dependencies Between Synchronized Methods 185
Keep Synchronized Sections Small..................cccooieiiiiiiiiiicineenn, 185
Writing Correct Shut-Down Code Is Hard.................................... 186
Testing Threaded Code..................ccccoiiiiiiiiiii e 186
Treat Spurious Failures as Candidate Threading Issues.................. 187
Get Your Nonthreaded Code Working First.............ccccooovviiieiinnnn. 187
Make Your Threaded Code Pluggablec.coovveevieiiiiicien, 187
Make Your Threaded Code Tunable.............ccoooeiiiiiiiiiiis 187
Run with More Threads Than Processors.............ccccceovveiveeiinennn. 188
Run on Different Platforms..........cccooviiiiiiiiii e, 188
Instrument Your Code to Try and Force Failures................cc.c........ 188
Hand-Codedooveeiieeieeie e 189
AUEOMALE ..o e 189
ConcluSion. ... 190
Bibliography. ..o 191
Chapter 14: Successive Refinement.................................. 193
Args Implementationc.ccoooiiiiiiii e 194
How Did I DO ThiS? ...ooiiiiiiiiiiie e 200
Args: The Rough Draft ... 201
SO T SLOPPE .. 212
On IncrementaliSm...........ooooviiiiiiiiiee e 212
String ArgUumentscocoooiiiiieiie e e 214

CONCIUSION ..o 250

Xiv Contents

Chapter 15: JUnit Internals..................ccocoooooviiicie 251
The JUnit Framework.................ccoccooiiiioiiiiiee e 252
Conclusion. ...t 265

Chapter 16: Refactoring SerialDateccocooiviiiieeene, 267
First, Make IEWOTK. ... 268
Then Make It Right............... 270
COonNCIUSION ... e 284
Bibliography...........coccoooiiii e 284

Chapter 17: Smells and Heuristics ... 285
COMMIEIIES ... et 286

C1: Inappropriate INfOrmation.................ccccoecceriiiveiisineiieiiiinen 286
C2: Obsolete COMMENL..............ccoceeeeieiiiiiiiiiiesieeeeeee e 286
C3: Redundant COMMENLc.ccoveevieeeeieeee e, 286
C4: Poorly Written COMMENL............cc..cceeceiceeeeeeieeieaeieeseeeeeaeeaenn 287
C5: Commented-Out COdeocoeeeeceeeeeeeeeeeeeeeeeeeeeeeeea 287
ENvironmentcooooooiiiiiiis e s 287
E1: Build Requires More Than One Step...............cccccceevvveveeennnn... 287
E2: Tests Require More Than One Stepcccovveeveeeveevceeeeerennn.. 287
FUnCHions ... e 288
F1: 700 Many Ar@UMERLSccceeeiivieriieeiieeeiiee e 288
F2: Output ArGUMENLSccovviivieeiiieeceee e 288
F3: Flag Argumentscccccoovoiiviiiieieiieeiieiis s 288
F4: Dead FURCHIONcc..ccovieiieeeiiieecee e 288
General. ... 288
G1: Multiple Languages in One Source File................ccccouveuen..... 288
G2: Obvious Behavior Is Unimplemented...................cccccvvevnnn... 288
G3: Incorrect Behavior at the Boundariescc.cccoeeveeunn... 289
G4: Overridden Safetiescccccciveviveeeciieeiiieeiieeeiiee e, 289
GS: DUPLICATION ...t 289
G6: Code at Wrong Level of Abstraction.....................c......ccece.... 290
G7: Base Classes Depending on Their Derivatives 291
G8: Too Much Informationccccocvueeeiireeeieee e, 291
G9: Ded COde...........cocooeeeeeeeeceeeeeeee e 292
G10: Vertical Separationccccoeeeeeeeeeeevieeeeeeeee e 292
G111 TNCONSISIENCY ..o 292

G L2: CTUI@E vt ee e e e e e e e e ee e s et eeeeee s ensanaraenees 293

Contents XV
G13: Artificial Couplingccccooeoeeviieeiieiiie e 293
G1A: FEAUFE ENVY ..o e 293
G15: Selector ArGUMENTS............cccccovvviviiiiiiieciiiiieinieniiseee e 294
G16: Obscured INENtccoccoeoueeeeeieeeeeie e 295
G17: Misplaced Responsibility..............cccooeoveeeeeecieeaeeceecieeaeenne. 295
G18: Inappropriate SIALIC.............cceeceeeeeeeeeeeeeeeieeee e 296
G19: Use Explanatory Variablescc.cccccccvveveiiviiniiveninnn, 296
G20: Function Names Should Say What They Do 297
G21: Understand the AIGOrithmccccoeevivveiviiieiiie e, 297
G22: Make Logical Dependencies Physical..................cccc.c......... 298
G23: Prefer Polymorphism to If/Else or Switch/Case..................... 299
G24: Follow Standard Conventions...............ccc.cccoueveveeviieecveeneenne. 299
G25: Replace Magic Numbers with Named Constants 300
G20: BE PreCiSe.........cccoviiiiiiiiieiiii ettt 301
G27: Structure over CORVERLIONcc.eeveeeeeeieeeieeeeeee e 301
G28: Encapsulate Conditionalscccoeeeeveeeceecveecieeeeeenn.. 301
G29: Avoid Negative Conditionalsc..ccccoveveecveeseivieainnnnn. 302
G30: Functions Should Do One Thingccccccceeeeceerecearae. 302
G31: Hidden Temporal Couplings.............c.ccccoeevvvueevereevirecieneennn. 302
G32: Don't Be AFDItFArYccoooviviiiiiieiiieiieiiis e 303
G33: Encapsulate Boundary COnditions.....................c.cccocevcinn. 304
G34: Functions Should Descend Only
One Level Of ADSIFACHIONccooeviveeeieeeieiieeeee e, 304
G35: Keep Configurable Data at High Levelis...............................300
G36: Avoid Transitive Navigation...............ccccceeevvesveeeveerieraennenne 306

JAVA e 307
J1: Avoid Long Import Lists by Using Wildeards........................... 307
J2: Don't Inherit CORSIANLScccoovevieeiieeiiieeieeeee e 307
I3: Constants versus ENUMScccccoveeeeieeiiiieeeeieeese e 308

INAITIES ..ottt 309
N1: Choose Descriptive Names................ccoeeeeeevieeveecreeiiaseaeenenn 309
N2: Choose Names at the Appropriate Level of Abstraction.......... 311
N3: Use Standard Nomenclature Where Possible........................... 311
N4: Unambiguous NAMES.............ccccceeveeeeiiieeiieieeeeeeeeee e 312
NS5: Use Long Names for LOng SCOPES............ccccovvvervecreeenaenenn. 312
NO: AVOId ENCOAINGS ... 312
N7: Names Should Describe Side-Effects.cccccceevevene. 313

Xvi Contents

TTSES . e et 313
T1: INSUMFICTENT TESES ... 313
T2: Use a Coverage Tool!c....ccccoovveeiiiiiiiieeeiiieeiiieaeeeen, 313
T3: Don't Skip Trivial TSIScccooveieeeeeiieaeeeeeeee et 313
T4: An Ignored Test Is a Question about an Ambiguity.................. 313
TS: Test Boundary CORItIONSccocoveeeveeeeeeieieeeeieeeeee e, 314
T6: Exhaustively Test Near Bugs............cccccovevcveviiiviieiiecineennenn, 314
T7: Patterns of Failure Are Revealingccoceevveeiveeninnnenn. 314
T8: Test Coverage Patterns Can Be Revealingccc.c..... 314
TO: Tests Should Be FAST............ccccoeceeviieiiieiiieiieeecee e 314

ConCIUSTON ... e 314

Bibliography..........ccooooiiii e 315

Appendix A: Concurrency Il 317

Client/Server Example...................i e 317
THE SEIVET 1.eeiiiie ettt eee 317
Adding Threading.........cccoovvevviiiii i 319
Server ObServationsccocovvovieoiiiiiireee e 319
ConECIUSION. ...ttt 321

Possible Paths of Execution ..., 321
Number of Paths.......ccocooiiiiiiiii e 322
DIg@ING DEEPET ..cvviieiieeiie ettt e 323
CONCIUSION ...ttt et et e e 326

Knowing Your Library............c.oooe e 326
Executor Frameworkcccooiiiiiiiiiiieieceee 0. 320
Nonblocking SOIUtIONSccueiiiiiiieii e 327
Nonthread-Safe Classes.........c.ccooioiiiiiiiiiiii e, 328

Dependencies Between Methods

Can Break Concurrent Code ... 329
Tolerate the Fallure............ooovieiiiiiiie e 330
Client-Based LOCKING.........cccooiiiiiiiiiiieieciieecce e 330
Server-Based LoCKINgooveiivieiiiiii e 332

Increasing Throughput ... 333
Single-Thread Calculation of Throughput............ccooooiiniiin 334
Multithread Calculation of Throughput............cooovviieiiiiiinenn. 335

DeadlocCkK.o 335
Mutual EXCIUSIONooooiiiii e 336

LoCK & Wall oo e 337

Contents xvii

INO PIe@mPUION. ..ottt 337
Circular Walt ... 337
Breaking Mutual EXCIUSION.cooviviiiiiiiiiiieciccee 337
Breaking Lock & Wait...........ooviiiiiiiiie e 338
Breaking Preemption............ocoooeiiiiiiiiiiiccie e 338
Breaking Circular Wait..............ccoooiiiiiiiieeeee e 338
Testing Multithreaded Code.......................c.coooiiiiiiiii 339
Tool Support for Testing Thread-Based Code 342
ConcluSion.............ooooiii e 342
Tutorial: Full Code Examples..............cccoooviviivie i 343
Client/Server Nonthreaded...........cccoovviiiiiiiiiiece e 343
Client/Server Using Threadscccoveiieiieiiveiecieeciece e 347
Appendix B: org.jfree.date.SerialDate ... 349
Appendix C: Cross References of Heuristics...................... 409
EPIlOZUE ... 411

This page intentionally left blank

Foreword

One of our favorite candies here in Denmark is Ga-Jol, whose strong licorice vapors are a
perfect complement to our damp and often chilly weather. Part of the charm of Ga-Jol to
us Danes is the wise or witty sayings printed on the flap of every box top. I bought a two-
pack of the delicacy this morning and found that it bore this old Danish saw:

Arlighed i sma ting er ikke nogen lille ting.
“Honesty in small things is not a small thing”’ It was a good omen consistent with what I

already wanted to say here. Small things matter. This is a book about humble concerns
whose value is nonetheless far from small.

God is in the details, said the architect Ludwig mies van der Rohe. This quote recalls
contemporary arguments about the role of architecture in software development, and par-
ticularly in the Agile world. Bob and I occasionally find ourselves passionately engaged in
this dialogue. And yes, mies van der Rohe was attentive to utility and to the timeless forms
of building that underlie great architecture. On the other hand, he also personally selected
every doorknob for every house he designed. Why? Because small things matter.

In our ongoing “debate” on TDD, Bob and I have discovered that we agree that soft-
ware architecture has an important place in development, though we likely have different
visions of exactly what that means. Such quibbles are relatively unimportant, however,
because we can accept for granted that responsible professionals give some time to think-
ing and planning at the outset of a project. The late-1990s notions of design driven only by
the tests and the code are long gone. Yet attentiveness to detail is an even more critical
foundation of professionalism than is any grand vision. First, it is through practice in the
small that professionals gain proficiency and trust for practice in the large. Second, the
smallest bit of sloppy construction, of the door that does not close tightly or the slightly
crooked tile on the floor, or even the messy desk, completely dispels the charm of the
larger whole. That is what clean code is about.

Still, architecture is just one metaphor for software development, and in particular for
that part of software that delivers the initial product in the same sense that an architect
delivers a pristine building. In these days of Scrum and Agile, the focus is on quickly
bringing product to market. We want the factory running at top speed to produce software.
These are human factories: thinking, feeling coders who are working from a product back-
log or user story to create product. The manufacturing metaphor looms ever strong in such
thinking. The production aspects of Japanese auto manufacturing, of an assembly-line
world, inspire much of Scrum.

Xix

XX Foreword

Yet even in the auto industry, the bulk of the work lies not in manufacturing but in
maintenance—or its avoidance. In software, 80% or more of what we do is quaintly called
“maintenance”: the act of repair. Rather than embracing the typical Western focus on pro-
ducing good software, we should be thinking more like home repairmen in the building
industry, or auto mechanics in the automotive field. What does Japanese management have
to say about rthar?

In about 1951, a quality approach called Total Productive Maintenance (TPM) came
on the Japanese scene. Its focus is on maintenance rather than on production. One of the
major pillars of TPM is the set of so-called 58 principles. 58 is a set of disciplines—and
here I use the term “discipline” instructively. These 58S principles are in fact at the founda-
tions of Lean—another buzzword on the Western scene, and an increasingly prominent
buzzword in software circles. These principles are not an option. As Uncle Bob relates in
his front matter, good software practice requires such discipline: focus, presence of mind,
and thinking. [t is not always just about doing, about pushing the factory equipment to pro-
duce at the optimal velocity. The 58 philosophy comprises these concepts:

* Seiri, or organization (think “sort” in English). Knowing where things are—using
approaches such as suitable naming—is crucial. You think naming identifiers isn’t
important? Read on in the following chapters.

* Seiton, or tidiness (think “systematize™ in English). There is an old American saying:
A place for everything, and everything in its place. A piece of code should be where
you expect to find it—and, if not, you should re-factor to get it there.

* Seiso, or cleaning (think “shine” in English): Keep the workplace free of hanging
wires, grease, scraps, and waste. What do the authors here say about littering your
code with comments and commented-out code lines that capture history or wishes for
the future? Get rid of them.

* Seiketsu, or standardization: The group agrees about how to keep the workplace clean,
Do you think this book says anything about having a consistent coding style and set of
practices within the group? Where do those standards come from? Read on.

* Shutsuke, or discipline (self-discipline). This means having the discipline to follow the
practices and to frequently reflect on one’s work and be willing to change.

If you take up the challenge—yes, the challenge—of reading and applying this book,
you’ll come to understand and appreciate the last point. Here, we are finally driving to the
roots of responsible professionalism in a profession that should be concerned with the life
cycle of a product. As we maintain automobiles and other machines under TPM, break-
down maintenance—waiting for bugs to surface—is the exception. Instead, we go up a
level: inspect the machines every day and fix wearing parts before they break, or do the
equivalent of the proverbial 10,000-mile oil change to forestall wear and tear. In code,
refactor mercilessly. You can improve yet one level further, as the TPM movement inno-
vated over 50 years ago: build machines that are more maintainable in the first place. Mak-
ing your code readable is as important as making it executable. The ultimate practice,
introduced in TPM circles around 1960, is to focus on introducing entire new machines or

Foreword Xxi

replacing old ones. As Fred Brooks admonishes us, we should probably re-do major soft-
ware chunks from scratch every seven years or so to sweep away creeping cruft. Perhaps
we should update Brooks’ time constant to an order of weeks, days or hours instead of
years. That’s where detail lies,

There is great power in detail, yet there is something humble and profound about this
approach to life, as we might stereotypically expect from any approach that claims Japa-
nese roots. But this is not only an Eastern outlook on life; English and American folk wis-
dom are full of such admonishments. The Seiton quote from above flowed from the pen of
an Ohio minister who literally viewed neatness “as a remedy for every degree of evil.”
How about Seiso? Cleanliness is next to godliness. As beautiful as a house is, a messy
desk robs it of its splendor. How about Shutsuke in these small matters? He who is faithful
in little is faithful in much. How about being eager to re-factor at the responsible time,
strengthening one’s position for subsequent “big” decisions, rather than putting it off? 4
stitch in time saves nine. The early bird catches the worm. Don't put off until tomorrow
what you can do today. (Such was the original sense of the phrase “the last responsible
moment” in Lean until it fell into the hands of software consultants.) How about calibrat-
ing the place of small, individual efforts in a grand whole? Mighty oaks from little acorns
grow. Or how about integrating simple preventive work into everyday life? An ounce of
prevention is worth a pound of cure. An apple a day keeps the doctor away. Clean code
honors the deep roots of wisdom beneath our broader culture, or our culture as it once was,
or should be, and can be with attentiveness to detail.

Even in the grand architectural literature we find saws that hark back to these sup-
posed details. Think of mies van der Rohe’s doorknobs. That’s seiri. That’s being attentive
to every variable name. You should name a variable using the same care with which you
name a first-born child.

As every homeowner knows, such care and ongoing refinement never come to an end.
The architect Christopher Alexander—father of patterns and pattern languages—views
every act of design itself as a small, local act of repair. And he views the craftsmanship of
fine structure to be the sole purview of the architect; the larger forms can be left to patterns
and their application by the inhabitants. Design is ever ongoing not only as we add a new
room to a house, but as we are attentive to repainting, replacing worn carpets, or upgrad-
ing the kitchen sink. Most arts echo analogous sentiments. In our search for others who
ascribe God’s home as being in the details, we find ourselves in the good company of the
19th century French author Gustav Flaubert. The French poet Paul Valery advises us that a
poem is never done and bears continual rework, and to stop working on it is abandonment.
Such preoccupation with detail is common to all endeavors of excellence. So maybe there
is little new here, but in reading this book you will be challenged to take up good disci-
plines that you long ago surrendered to apathy or a desire for spontaneity and just
“responding to change.”

Unfortunately, we usually don’t view such concerns as key cornerstones of the art of
programming. We abandon our code early, not because it is done, but because our value
system focuses more on outward appearance than on the substance of what we deliver.

xxii Foreword

This inattentiveness costs us in the end: 4 bad penny always shows up. Research, neither in
industry nor in academia, humbles itself to the lowly station of keeping code clean. Back
in my days working in the Bell Labs Software Production Research organization (Produc-
tion, indeed!) we had some back-of-the-envelope findings that suggested that consistent
indentation style was one of the most statistically significant indicators of low bug density.
We want it to be that architecture or programming language or some other high notion
should be the cause of quality; as people whose supposed professionalism owes to the
mastery of tools and lofty design methods, we feel insulted by the value that those factory-
floor machines, the coders, add through the simple consistent application of an indentation
style. To quote my own book of 17 years ago, such style distinguishes excellence from
mere competence. The Japanese worldview understands the crucial value of the everyday
worker and, more so, of the systems of development that owe to the simple, everyday
actions of those workers. Quality is the result of a million selfless acts of care—not just of
any great method that descends from the heavens. That these acts are simple doesn’t mean
that they are simplistic, and it hardly means that they are easy. They are nonetheless the
fabric of greatness and, more so, of beauty, in any human endeavor. To ignore them is not
yet to be fully human.

Of course, I am still an advocate of thinking at broader scope, and particularly of the
value of architectural approaches rooted in deep domain knowledge and software usability.
The book isn’t about that—or, at least, it isn’t obviously about that. This book has a subtler
message whose profoundness should not be underappreciated. It fits with the current saw
of the really code-based people like Peter Sommerlad, Kevlin Henney and Giovanni
Asproni. “The code is the design” and “Simple code” are their mantras. While we must
take care to remember that the interface is the program, and that its structures have much
to say about our program structure, it is crucial to continuously adopt the humble stance
that the design lives in the code. And while rework in the manufacturing metaphor leads to
cost, rework in design leads to value. We should view our code as the beautiful articulation
of noble efforts of design—design as a process, not a static endpoint. It’s in the code that
the architectural metrics of coupling and cohesion play out. If you listen to Larry Constan-
tine describe coupling and cohesion, he speaks in terms of code—not lofty abstract con-
cepts that one might find in UML. Richard Gabriel advises us in his essay, “Abstraction
Descant” that abstraction is evil. Code is anti-evil, and clean code is perhaps divine.

Going back to my little box of Ga-Jol, I think it’s important to note that the Danish
wisdom advises us not just to pay attention to small things, but also to be honest in small
things. This means being honest to the code, honest to our colleagues about the state of our
code and, most of all, being honest with ourselves about our code. Did we Do our Best to
“leave the campground cleaner than we found it”? Did we re-factor our code before check-
ing in? These are not peripheral concerns but concerns that lie squarely in the center of
Agile values. It is a recommended practice in Scrum that re-factoring be part of the con-
cept of “Done.” Neither architecture nor clean code insist on perfection, only on honesty
and doing the best we can. 7o err is human, to forgive, divine. In Scrum, we make every-
thing visible. We air our dirty laundry. We are honest about the state of our code because

Foreword XxXiil

code is never perfect. We become more fully human, more worthy of the divine, and closer
to that greatness in the details.

In our profession, we desperately need all the help we can get. If a clean shop floor
reduces accidents, and well-organized shop tools increase productivity, then I'm all for
them. As for this book, it is the best pragmatic application of Lean principles to software |
have ever seen in print. I expected no less from this practical little group of thinking indi-
viduals that has been striving together for years not only to become better, but also to gift
their knowledge to the industry in works such as you now find in your hands. It leaves the
world a little better than I found it before Uncle Bob sent me the manuscript.

Having completed this exercise in lofty insights, I am off to clean my desk.

James O. Coplien
Meardrup, Denmark

This page intentionally left blank

Introduction

wWTF

BAd code .

(c) 2008 Focus Shift

Good code .

Reproduced with the kind permission of Thom Holwerda.
http://www.osnews.com/story/19266/WTFs_m

Which door represents your code? Which door represents your team or your company?
Why are we in that room? Is this just a normal code review or have we found a stream of
horrible problems shortly after going live? Are we debugging in a panic, poring over code
that we thought worked? Are customers leaving in droves and managers breathing down

XXV

XXVI Introduction

our necks? How can we make sure we wind up behind the right door when the going gets
tough? The answer is: crafismanship.

There are two parts to learning craftsmanship: knowledge and work. You must gain
the knowledge of principles, patterns, practices, and heuristics that a craftsman knows, and
you must also grind that knowledge into your fingers, eyes, and gut by working hard and
practicing.

I can teach you the physics of riding a bicycle. Indeed, the classical mathematics is
relatively straightforward. Gravity, friction, angular momentum, center of mass, and so
forth, can be demonstrated with less than a page full of equations. Given those formulae 1
could prove to you that bicycle riding is practical and give you all the knowledge you
needed to make it work. And you'd still fall down the first time you climbed on that bike.

Coding is no different. We could write down all the “‘feel good” principles of clean
code and then trust you to do the work (in other words, let you fall down when you get on
the bike), but then what kind of teachers would that make us, and what kind of student
would that make you?

No. That’s not the way this book is going to work.

Learning to write clean code is hard work, Tt requires more than just the knowledge of
principles and patterns. You must sweat over it. You must practice it yourself, and watch
yourself fail. You must watch others practice it and fail. You must see them stumble and
retrace their steps. You must see them agonize over decisions and see the price they pay for
making those decisions the wrong way.

Be prepared to work hard while reading this book. This is not a “feel good” book that
you can read on an airplane and finish before you land. This book will make you work, and
work hard. What kind of work will you be doing? You’ll be reading code—lots of code.
And you will be challenged to think about what’s right about that code and what’s wrong
with it. You’ll be asked to follow along as we take modules apart and put them back
together again. This will take time and effort; but we think it will be worth it.

We have divided this book into three parts. The first several chapters describe the prin-
ciples, patterns, and practices of writing clean code. There is quite a bit of code in these
chapters, and they will be challenging to read. They’ll prepare you for the second section
to come. If you put the book down after reading the first section, good luck to you!

The second part of the book is the harder work. It consists of several case studies of
ever-increasing complexity. Each case study is an exercise in cleaning up some code—of
transforming code that has some problems into code that has fewer problems. The detail in
this section is infense. You will have to flip back and forth between the narrative and the
code listings. You will have to analyze and understand the code we are working with and
walk through our reasoning for making each change we make. Set aside some time
because this should take you days.

The third part of this book is the payoff. It is a single chapter containing a list of heu-
ristics and smells gathered while creating the case studies. As we walked through and
cleaned up the code in the case studies, we documented every reason for our actions as a

Introduction XXVii

heuristic or smell. We tried to understand our own reactions to the code we were reading
and changing, and worked hard to capture why we felt what we felt and did what we did.
The result is a knowledge base that desribes the way we think when we write, read, and
clean code.

This knowledge base is of limited value if you don’t do the work of carefully reading
through the case studies in the second part of this book. In those case studies we have care-
fully annotated each change we made with forward references to the heuristics, These for-
ward references appear in square brackets like this: [H22]. This lets you see the confext in
which those heuristics were applied and written! It is not the heuristics themselves that are
so valuable, it is the relationship between those heuristics and the discrete decisions we
made while cleaning up the code in the case studies.

To further help you with those relationships, we have placed a cross-reference at the end
of the book that shows the page number for every forward reference. You can use it to look
up each place where a certain heuristic was applied.

If you read the first and third sections and skip over the case studies, then you will
have read yet another “feel good” book about writing good software. But if you take the
time to work through the case studies, following every tiny step, every minute decision—if
you put yourself in our place, and force yourself to think along the same paths that we
thought, then you will gain a much richer understanding of those principles, patterns, prac-
tices, and heuristics. They won’t be “feel good” knowledge any more. They’ll have been
ground into your gut, fingers, and heart. They’ll have become part of you in the same way
that a bicycle becomes an extension of your will when you have mastered how to ride it.

Acknowledgments

Thank you to my two artists, Jeniffer Kohnke and Angela Brooks. Jennifer is responsible
for the stunning and creative pictures at the start of each chapter and also for the portraits
of Kent Beck, Ward Cunningham, Bjarne Stroustrup, Ron Jeffries, Grady Booch, Dave
Thomas, Michael Feathers, and myself.

Angela is responsible for the clever pictures that adorn the innards of each chapter,
She has done quite a few pictures for me over the years, including many of the inside pic-
tures in Agile Software Develpment: Principles, Patterns, and Practices. She is also my
firstborn in whom I am well pleased.

A special thanks goes out to my reviewers Bob Bogetti, George Bullock, Jeffrey
Overbey, and especially Matt Heusser. They were brutal. They were cruel. They were
relentless. They pushed me hard to make necessary improvements.

Thanks to my publisher, Chris Guzikowski, for his support, encouragement, and jovial
countenance. Thanks also to the editorial staff at Pearson, including Raina Chrobak for
keeping me honest and punctual.

XXviii Introduction

Thanks to Micah Martin, and all the guys at 8th Light (www.8thlight.com) for their
reviews and encouragement.

Thanks to all the Object Mentors, past, present, and future, including: Bob Koss,
Michael Feathers, Michael Hill, Erik Meade, Jeff Langr, Pascal Roy, David Farber, Brett
Schuchert, Dean Wampler, Tim Ottinger, Dave Thomas, James Grenning, Brian Button,
Ron Jeffries, Lowell Lindstrom, Angelique Martin, Cindy Sprague, Libby Ottinger, Joleen
Craig, Janice Brown, Susan Rosso, et al.

Thanks to Jim Newkirk, my friend and business partner, who taught me more than
I think he realizes. Thanks to Kent Beck, Martin Fowler, Ward Cunningham, Bjarne
Stroustrup, Grady Booch, and all my other mentors, compatriots, and foils. Thanks to John
Vlissides for being there when it counted. Thanks to the guys at Zebra for allowing me to
rant on about how long a function should be.

And, finally, thank you for reading these thank yous.

On the Cover

The image on the cover is M104: The Sombrero Galaxy. M 104 is located in Virgo and is
just under 30 million light-years from us. At its core is a supermassive black hole weigh-
ing in at about a billion solar masses.

Does the image remind you of the explosion of the Klingon power moon Praxis? 1
vividly remember the scene in Star Trek VI that showed an equatorial ring of debris flying
away from that explosion. Since that scene, the equatorial ring has been a common artifact
in sci-fi movie explosions. It was even added to the explosion of Alderaan in later editions
of the first Star Wars movie.

What caused this ring to form around M104? Why does it have such a huge central
bulge and such a bright and tiny nucleus? It looks to me as though the central black hole
lost its cool and blew a 30,000 light-year hole in the middle of the galaxy. Woe befell any
civilizations that might have been in the path of that cosmic disruption.

Supermassive black holes swallow whole stars for lunch, converting a sizeable frac-
tion of their mass to energy. £ = M(C” is leverage enough, but when M is a stellar mass:
Look out! How many stars fell headlong into that maw before the monster was satiated?
Could the size of the central void be a hint?

The image of M104 on the cover is a
combination of the famous visible light pho-
tograph from Hubble (right), and the recent
infrared image from the Spitzer orbiting
observatory (below, right). Tt’s the infrared
image that clearly shows us the ring nature
of the galaxy. In visible light we only see the
front edge of the ring in silhouette. The cen-
tral bulge obscures the rest of the ring,

But in the infrared, the hot particles in
the ring shine through the central bulge. The
two images combined give us a view we’ve
not seen before and imply that long ago it
was a raging inferno of activity.

UYL ML . S el ULy L v U

XXIX

This page intentionally left blank

1

Clean Code

You are reading this book for two reasons. First, you are a programmer. Second, you want
to be a better programmer. Good. We need better programmers.

2 Chapter 1: Clean Code

This is a book about good programming, It is filled with code. We are going to look at
code from every different direction. We’ll look down at it from the top, up at it from the
bottom, and through it from the inside out. By the time we are done, we’re going to know a
lot about code. What’s more, we’ll be able to tell the difference between good code and bad
code. We’ll know how to write good code. And we’ll know how to transform bad code into
good code.

There Will Be Code

One might argue that a book about code is somehow behind the times—that code is no
longer the issue; that we should be concerned about models and requirements instead.
Indeed some have suggested that we are close to the end of code. That soon all code will
be generated instead of written. That programmers simply won’t be needed because busi-
ness people will generate programs from specifications.

Nonsense! We will never be rid of code, because code represents the details of the
requirements. At some level those details cannot be ignored or abstracted; they have to be
specified. And specifying requirements in such detail that a machine can execute them is
programming. Such a specification is code.

I expect that the level of abstraction of our languages will continue to increase. |
also expect that the number of domain-specific languages will continue to grow. This
will be a good thing. But it will not eliminate code. Indeed, all the specifications written
in these higher level and domain-specific language will be code! It will still need to
be rigorous, accurate, and so formal and detailed that a machine can understand and
execute it.

The folks who think that code will one day disappear are like mathematicians who
hope one day to discover a mathematics that does not have to be formal. They are hoping
that one day we will discover a way to create machines that can do what we want rather
than what we say. These machines will have to be able to understand us so well that they
can translate vaguely specified needs into perfectly executing programs that precisely meet
those needs.

This will never happen. Not even humans, with all their intuition and creativity,
have been able to create successful systems from the vague feelings of their customers.
Indeed, if the discipline of requirements specification has taught us anything, it is that
well-specified requirements are as formal as code and can act as executable tests of that
code!

Remember that code is really the language in which we ultimately express the require-
ments, We may create languages that are closer to the requirements, We may create tools
that help us parse and assemble those requirements into formal structures. But we will
never eliminate necessary precision—so there will always be code.

Bad Code 3

Bad Code

I was recently reading the preface to Kent Beck’s
book Implementation Patterns.' He says, “. . . this
book is based on a rather fragile premise: that
good code matters. . . . A fragile premise? 1 dis-
agree! I think that premise is one of the most
robust, supported, and overloaded of all the pre-
mises in our craft (and I think Kent knows it). We
know good code matters because we’ve had to
deal for so long with its lack.

I know of one company that, in the late 80s,
wrote a killer app. It was very popular, and lots of
professionals bought and used it. But then the
release cycles began to stretch. Bugs were not
repaired from one release to the next. Load times
grew and crashes increased. I remember the day I
shut the product down in frustration and never
used it again. The company went out of business
a short time after that.

Two decades later I met one of the early employees of that company and asked him
what had happened. The answer confirmed my fears. They had rushed the product to
market and had made a huge mess in the code. As they added more and more features, the
code got worse and worse until they simply could not manage it any longer. It was the bad
code that brought the company down.

Have you ever been significantly impeded by bad code? If you are a programmer of
any experience then you’ve felt this impediment many times. Indeed, we have a name for
it. We call it wading. We wade through bad code. We slog through a morass of tangled
brambles and hidden pitfalls. We struggle to find our way, hoping for some hint, some
clue, of what is going on; but all we see is more and more senseless code.

Of course you have been impeded by bad code. So then—why did you write it?

Were you trying to go fast? Were you in a rush? Probably so. Perhaps you felt that you
didn’t have time to do a good job; that your boss would be angry with you if you took the
time to clean up your code. Perhaps you were just tired of working on this program and
wanted it to be over. Or maybe you looked at the backlog of other stuff that you had prom-
ised to get done and realized that you needed to slam this module together so you could
move on to the next. We’ve all done it.

We’ve all looked at the mess we’ve just made and then have chosen to leave it for
another day. We’ve all felt the relief of seeing our messy program work and deciding that a

1. [Beck07].

4 Chapter 1: Clean Code

working mess is better than nothing. We’ve all said we'd go back and clean it up later. Of
course, in those days we didn’t know LeBlanc’s law: Later equals never.

The Total Cost of Owning a Mess

If you have been a programmer for more than two or three years, you have probably been
significantly slowed down by someone else’s messy code. If you have been a programmer
for longer than two or three years, you have probably been slowed down by messy code.
The degree of the slowdown can be significant. Over the span of a year or two, teams that
were moving very fast at the beginning of a project can find themselves moving at a snail’s
pace. Every change they make to the code breaks two or three other parts of the code. No
change is trivial. Every addition or modification to the system requires that the tangles,
twists, and knots be “understood” so that more tangles, twists, and knots can be added.
Over time the mess becomes so big and so deep and so tall, they can not clean it up. There
is no way at all.

As the mess builds, the productivity of the team continues to decrease, asymptotically
approaching zero. As productivity decreases, management does the only thing they can;
they add more staff to the project in hopes of increasing productivity. But that new staff is
not versed in the design of the system. They don’t know the difference between a change
that matches the design intent and a change that thwarts the design intent, Furthermore,
they, and everyone else on the team, are under horrific pressure to increase productivity. So
they all make more and more messes, driving the productivity ever further toward zero.
(See Figure 1-1.)

101
z°
-.E 6l
'§ 4
o 9
[

Time

Figure 1-1

Productivity vs. time

The Total Cost of Owning a Mess 5

The Grand Redesign in the Sky

Eventually the team rebels. They inform management that they cannot continue to develop
in this odious code base. They demand a redesign. Management does not want to expend
the resources on a whole new redesign of the project, but they cannot deny that productiv-
ity is terrible. Eventually they bend to the demands of the developers and authorize the
grand redesign in the sky.

A new tiger team is selected. Everyone wants to be on this team because it’s a green-
field project. They get to start over and create something truly beautiful. But only the best
and brightest are chosen for the tiger team. Everyone else must continue to maintain the
current system.

Now the two teams are in a race. The tiger team must build a new system that does
everything that the old system does. Not only that, they have to keep up with the changes
that are continuously being made to the old system. Management will not replace the old
system until the new system can do everything that the old system does.

This race can go on for a very long time. I’ve seen it take 10 years. And by the time it’s
done, the original members of the tiger team are long gone, and the current members are
demanding that the new system be redesigned because it’s such a mess.

If you have experienced even one small part of the story I just told, then you already
know that spending time keeping your code clean is not just cost effective; it’s a matter of
professional survival.

Attitude

Have you ever waded through a mess so grave that it took weeks to do what should have
taken hours? Have you seen what should have been a one-line change, made instead in
hundreds of different modules? These symptoms are all too common.

Why does this happen to code? Why does good code rot so quickly into bad code? We
have lots of explanations for it. We complain that the requirements changed in ways that
thwart the original design. We bemoan the schedules that were too tight to do things right.
We blather about stupid managers and intolerant customers and useless marketing types
and telephone sanitizers. But the fault, dear Dilbert, is not in our stars, but in ourselves.
We are unprofessional.

This may be a bitter pill to swallow. How could this mess be our fault? What about the
requirements? What about the schedule? What about the stupid managers and the useless
marketing types? Don’t they bear some of the blame?

No. The managers and marketers look to us for the information they need to make
promises and commitments; and even when they don’t look to us, we should not be shy
about telling them what we think. The users look to us to validate the way the requirements
will fit into the system. The project managers look to us to help work out the schedule. We

6 Chapter 1: Clean Code

are deeply complicit in the planning of the project and share a great deal of the responsi-
bility for any failures; especially if those failures have to do with bad code!

“But wait!” you say. “If I don’t do what my manager says, I'll be fired.” Probably not.
Most managers want the truth, even when they don’t act like it. Most managers want good
code, even when they are obsessing about the schedule. They may defend the schedule and
requirements with passion; but that’s their job. It’s your job to defend the code with equal
passion.

To drive this point home, what if you were a doctor and had a patient who demanded
that you stop all the silly hand-washing in preparation for surgery because it was taking
too much time?* Clearly the patient is the boss; and yet the doctor should absolutely refuse
to comply. Why? Because the doctor knows more than the patient about the risks of dis-
ease and infection. It would be unprofessional (never mind criminal) for the doctor to
comply with the patient.

So too it is unprofessional for programmers to bend to the will of managers who don’t
understand the risks of making messes.

The Primal Conundrum

Programmers face a conundrum of basic values. All developers with more than a few years
experience know that previous messes slow them down. And yet all developers feel
the pressure to make messes in order to meet deadlines. In short, they don’t take the time
to go fast!

True professionals know that the second part of the conundrum is wrong. You will not
make the deadline by making the mess. Indeed, the mess will slow you down instantly, and
will force you to miss the deadline. The only way to make the deadline—the only way to
go fast—is to keep the code as clean as possible at all times.

The Art of Clean Code?

Let’s say you believe that messy code is a significant impediment. Let’s say that you accept
that the only way to go fast is to keep your code clean. Then you must ask yourself: “How
do I write clean code?” It’s no good trying to write clean code if you don’t know what it
means for code to be clean!

The bad news is that writing clean code is a lot like painting a picture. Most of us
know when a picture is painted well or badly. But being able to recognize good art from
bad does not mean that we know how to paint. So too being able to recognize clean code
from dirty code does not mean that we know how to write clean code!

2. When hand-washing was first recommended to physicians by Ignaz Semmelweis in 1847, it was rejected on the basis that
doctors were too busy and wouldn’t have time to wash their hands between patient visits.

The Total Cost of Owning a Mess 7

Writing clean code requires the disciplined use of a myriad little techniques applied
through a painstakingly acquired sense of “cleanliness.” This “code-sense” is the key.
Some of us are born with it. Some of us have to fight to acquire it. Not only does it let us
see whether code is good or bad, but it also shows us the strategy for applying our disci-
pline to transform bad code into clean code.

A programmer without “code-sense” can look at a messy module and recognize the
mess but will have no idea what to do about it. A programmer with “code-sense” will look
at a messy module and see options and variations. The “code-sense” will help that pro-
grammer choose the best variation and guide him or her to plot a sequence of behavior
preserving transformations to get from here to there.

In short, a programmer who writes clean code is an artist who can take a blank screen
through a series of transformations until it is an elegantly coded system.

What Is Clean Code?

There are probably as many definitions as there are programmers. So I asked some very
well-known and deeply experienced programmers what they thought.

Bjarne Stroustrup, inventor of C++
and author of The C++ Programming
Language

I like my code to be elegant and efficient. The
logic should be straightforward to make it hard
Jor bugs to hide, the dependencies minimal to
ease maintenance, error handling complete
according to an articulated strategy, and per-
Jormance close to optimal so as not to tempt
people to make the code messy with unprinci-
pled optimizations. Clean code does one thing
well.

Bjarne uses the word “elegant.”” That’s
quite a word! The dictionary in my MacBook”
provides the following definitions: pleasingly
graceful and stylish in appearance or manner; pleasingly ingenious and simple. Notice the
emphasis on the word “pleasing.” Apparently Bjarne thinks that clean code is pleasing to
read. Reading it should make you smile the way a well-crafted music box or well-designed
car would.

Bjarne also mentions efficiency—twice. Perhaps this should not surprise us coming
from the inventor of C++; but I think there’s more to it than the sheer desire for speed.
Wasted cycles are inelegant, they are not pleasing. And now note the word that Bjarne uses

8 Chapter 1: Clean Code

to describe the consequence of that inelegance. He uses the word “tempt.” There is a deep
truth here. Bad code tempts the mess to grow! When others change bad code, they tend to
make it worse.

Pragmatic Dave Thomas and Andy Hunt said this a different way. They used the meta-
phor of broken windows.® A building with broken windows looks like nobody cares about
it. So other people stop caring. They allow more windows to become broken. Eventually
they actively break them. They despoil the facade with graffiti and allow garbage to col-
lect. One broken window starts the process toward decay.

Bjarne also mentions that error handing should be complete. This goes to the disci-
pline of paying attention to details. Abbreviated error handling is just one way that pro-
grammers gloss over details. Memory leaks are another, race conditions still another.
Inconsistent naming yet another. The upshot is that clean code exhibits close attention to
detail.

Bjarne closes with the assertion that clean code does one thing well. It is no accident
that there are so many principles of software design that can be boiled down to this simple
admonition. Writer after writer has tried to communicate this thought. Bad code tries to do
too much, it has muddled intent and ambiguity of purpose. Clean code is focused. Each
function, each class, each module exposes a single-minded attitude that remains entirely
undistracted, and unpolluted, by the surrounding details.

Grady Booch, author of Object
Oriented Analysis and Design with
Applications

Clean code is simple and direct. Clean code
reads like well-writien prose. Clean code never
obscures the designer’s intent but rather is full
of crisp abstractions and straightforward lines
of control.

Grady makes some of the same points as
Bjarne, but he takes a readability perspective. 1
especially like his view that clean code should
read like well-written prose. Think back on a
really good book that you've read. Remember how the words disappeared to be replaced
by images! It was like watching a movie, wasn’t it? Better! You saw the characters, you
heard the sounds, you experienced the pathos and the humor.

Reading clean code will never be quite like reading Lord of the Rings. Still, the liter-

ary metaphor is not a bad one. Like a good novel, clean code should clearly expose the ten-
sions in the problem to be solved. It should build those tensions to a climax and then give

3. http://www.pragmaticprogrammer.com/booksellers/2004-12.html

The Total Cost of Owning a Mess 9

the reader that “Aha! Of course!” as the issues and tensions are resolved in the revelation
of an obvious solution.

I find Grady’s use of the phrase “crisp abstraction” to be a fascinating oxymoron!
After all the word “crisp” is nearly a synonym for “concrete.”” My MacBook’s dictionary
holds the following definition of “crisp™: briskly decisive and matter-of-fact, without hesi-
tation or unnecessary detail. Despite this seeming juxtaposition of meaning, the words
carry a powerful message. Our code should be matter-of-fact as opposed to speculative,
It should contain only what is necessary. Our readers should perceive us to have been
decisive.

“Big” Dave Thomas, founder
of OTI, godfather of the
Eclipse strategy

Clean code can be read, and enhanced by a
developer other than its original author. It has
unit and acceptance tests. It has meaningful
names. It provides one way rather than many
ways for doing one thing. It has minimal depen-
dencies, which are explicitly defined, and pro-
vides a clear and minimal API. Code should be
literate since depending on the language, not all
necessary information can be expressed clearly
in code alone.

Big Dave shares Grady’s desire for readabil-
ity, but with an important twist. Dave asserts that
clean code makes it easy for other people to enhance it. This may seem obvious, but it can-
not be overemphasized. There is, after all, a difference between code that is easy to read
and code that is easy to change.

Dave ties cleanliness to tests! Ten years ago this would have raised a lot of eyebrows.
But the discipline of Test Driven Development has made a profound impact upon our
industry and has become one of our most fundamental disciplines. Dave is right. Code,
without tests, is not clean. No matter how elegant it is, no matter how readable and acces-
sible, if it hath not tests, it be unclean.

Dave uses the word minimal twice. Apparently he values code that is small, rather
than code that is large. Indeed, this has been a common refrain throughout software litera-
ture since its inception. Smaller is better.

Dave also says that code should be literate. This is a soft reference to Knuth’s literate
programming.’ The upshot is that the code should be composed in such a form as to make
it readable by humans.

4. [Knutho2).

10

Michael Feathers, author of Working
Effectively with Legacy Code

I could list all of the qualities that I notice in
clean code, but there is one overarching quality
that leads to all of them. Clean code always
looks like it was written by someone who cares.
There is nothing obvious that you can do to
make it better. All of those things were thought
about by the code’s author, and if you try to
imagine improvements, vou're led back to
where you are, sitting in appreciation of the
code someone left for you—code left by some-
one who cares deeply about the crafl.

One word: care. That’s really the topic of

this book. Perhaps an appropriate subtitle

would be How to Care for Code.

Michael hit it on the head. Clean code is

Chapter 1: Clean Code

code that has been taken care of. Someone has taken the time to keep it simple and orderly.

They have paid appropriate attention to details. They have cared.

Ron Jeffries, author of Extreme Programming

Installed and Extreme Programming
Adventures in C#

Ron began his career programming in Fortran at
the Strategic Air Command and has written code in
almost every language and on almost every

machine. It pays to consider his words carefully.

In recent years I begin, and nearly end, with Beck's
rules of simple code. In priority order, simple code:

* Runs all the tests;
» Contains no duplication;

» Expresses all the design ideas that are in the
system;

* Minimizes the number of entities such as classes,

methods, functions, and the like.

Of these, I focus mostly on duplication. When the same thing is done over and over,
it’s a sign that there is an idea in our mind that is not well represented in the code. I try to

Sfigure out what it is. Then [try to express that idea more clearly.

Expressiveness to me includes meaningful names, and [am likely to change the
names of things several times before I settle in. With modern coding tools such as Eclipse,
renaming is quife inexpensive, so it doesn’t trouble me to change. Expressiveness goes

The Total Cost of Owning a Mess 11

beyond names, however. I also look at whether an object or method is doing more than one
thing. If it’s an object, it probably needs to be broken into two or more objects. If it’s a
method, I will always use the Extract Method refactoring on it, resulting in one method
that says more clearly what it does, and some submethods saying how it is done.

Duplication and expressiveness take me a very long way into what I consider clean
code, and improving dirty code with just these two things in mind can make a huge differ-
ence. There is, however, one other thing that I'm aware of doing, which is a bit harder to
explain.

After years of doing this work, it seems to me that all programs are made up of very
similar elements. One example is “find things in a collection.” Whether we have a data-
base of employee records, or a hash map of keys and values, or an array of items of some
kind, we often find ourselves wanting a particular item from that collection. When I find
that happening, 1 will often wrap the particular implementation in a more abstract method
or class. That gives me a couple of interesting advantages.

I can implement the functionality now with something simple, say a hash map, but
since now all the references to that search are covered by my little abstraction, I can
change the implementation any time [want. I can go forward quickly while preserving my
ability to change later:

In addition, the collection abstraction often calls my attention to what’s “really”
going on, and keeps me from running down the path of implementing arbitrary collection
behavior when all I really need is a few fairly simple ways of finding what [want.

Reduced duplication, high expressiveness, and early building of simple abstractions.
That'’s what makes clean code for me.

Here, in a few short paragraphs, Ron has summarized the contents of this book. No
duplication, one thing, expressiveness, tiny abstractions. Everything is there.

Ward Cunningham, inventor of Wiki,
inventor of Fit, coinventor of eXtreme
Programming. Motive force behind
Design Patterns. Smalltalk and OO
thought leader. The godfather of all
those who care about code.

You know you are working on clean code when each
routine you read turns out to be pretty much what
vou expected. You can call it beautiful code when
the code also makes it look like the language was
made for the problem.

Statements like this are characteristic of Ward.
You read it, nod your head, and then go on to the
next topic. It sounds so reasonable, so obvious, that it barely registers as something
profound. You might think it was pretty much what you expected. But let’s take a closer
look.

12 Chapter 1: Clean Code

... pretty much what you expected.” When was the last time you saw a module that
was pretty much what you expected? Isn’t it more likely that the modules you look at will
be puzzling, complicated, tangled? Isn’t misdirection the rule? Aren’t you used to flailing
about trying to grab and hold the threads of reasoning that spew forth from the whole sys-
tem and weave their way through the module you are reading? When was the last time you
read through some code and nodded your head the way you might have nodded your head
at Ward’s statement?

Ward expects that when you read clean code you won’t be surprised at all. Indeed, you
won’t even expend much effort. You will read it, and it will be pretty much what you
expected. It will be obvious, simple, and compelling. Each module will set the stage for
the next. Each tells you how the next will be written. Programs that are that clean are so
profoundly well written that you don’t even notice it. The designer makes it look ridicu-
lously simple like all exceptional designs.

And what about Ward’s notion of beauty? We’ve all railed against the fact that our lan-
guages weren't designed for our problems. But Ward’s statement puts the onus back on us.
He says that beautiful code makes the language look like it was made for the problem! So
it’s our responsibility to make the language look simple! Language bigots everywhere,
beware! It is not the language that makes programs appear simple. It is the programmer
that make the language appear simple!

Schools of Thought

What about me (Uncle Bob)? What do I think
clean code is? This book will tell you, in hideous
detail, what I and my compatriots think about
clean code. We will tell you what we think makes
a clean variable name, a clean function, a clean
class, etc. We will present these opinions as abso-
lutes, and we will not apologize for our stridence.
To us, at this point in our careers, they are abso-
lutes. They are our school of thought about clean
code.

Martial artists do not all agree about the best
martial art, or the best technique within a martial
art. Often master martial artists will form their
own schools of thought and gather students to
learn from them. So we see Gracie Jiu Jistu,
founded and taught by the Gracie family in Brazil. We see Hakkoryu Jiu Jistu, founded
and taught by Okuyama Ryuho in Tokyo. We see Jeet Kune Do, founded and taught by
Bruce Lee in the United States.

We Are Authors 13

Students of these approaches immerse themselves in the teachings of the founder.
They dedicate themselves to learn what that particular master teaches, often to the exclu-
sion of any other master’s teaching. Later, as the students grow in their art, they may
become the student of a different master so they can broaden their knowledge and practice,
Some eventually go on to refine their skills, discovering new techniques and founding their
own schools.

None of these different schools is absolutely right. Yet within a particular school we
act as though the teachings and techniques are right. After all, there is a right way to prac-
tice Hakkoryu Jiu Jitsu, or Jeet Kune Do. But this rightness within a school does not inval-
idate the teachings of a different school.

Consider this book a description of the Object Mentor School of Clean Code. The
techniques and teachings within are the way that we practice our art. We are willing to
claim that if you follow these teachings, you will enjoy the benefits that we have enjoyed,
and you will learn to write code that is clean and professional. But don’t make the mistake
of thinking that we are somehow “right” in any absolute sense. There are other schools and
other masters that have just as much claim to professionalism as we. It would behoove you
to learn from them as well.

Indeed, many of the recommendations in this book are controversial. You will proba-
bly not agree with all of them. You might violently disagree with some of them. That’s fine.
We can’t claim final authority. On the other hand, the recommendations in this book are
things that we have thought long and hard about. We have learned them through decades of
experience and repeated trial and error. So whether you agree or disagree, it would be a
shame if you did not see, and respect, our point of view.

We Are Authors

The éauther field of a Javadoc tells us who we are. We are authors. And one thing about
authors 1s that they have readers. Indeed, authors are responsible for communicating well
with their readers. The next time you write a line of code, remember you are an author,
writing for readers who will judge your effort.

You might ask: How much is code really read? Doesn’t most of the effort go into
writing it?

Have you ever played back an edit session? In the 80s and 90s we had editors like Emacs
that kept track of every keystroke. You could work for an hour and then play back your whole
edit session like a high-speed movie. When I did this, the results were fascinating.

The vast majority of the playback was scrolling and navigating to other modules!

Bob enters the module.

He serolls down to the function needing change.

He pauses, considering his options.

Oh, he’s scrolling up to the top of the module to check the initialization of a variable.
Now he scrolls back down and begins to type.

14 Chapter 1: Clean Code

Qoops, he's erasing what he typed!

He types it again.

He erases it again!

He types half of something else but then erases that!

He scrolls down to another function that calls the function he'’s changing to see how it is
called.

He scrolls back up and types the same code he just erased.

He pauses.

He erases that code again!

He pops up another window and looks at a subclass. Is that function overridden?

You get the drift. Indeed, the ratio of time spent reading vs. writing is well over 10:1.
We are constantly reading old code as part of the effort to write new code.

Because this ratio is so high, we want the reading of code to be easy, even if it makes
the writing harder. Of course there’s no way to write code without reading it, so making it
easy to read actually makes it easier 1o write.

There is no escape from this logic. You cannot write code if you cannot read the sur-
rounding code. The code you are trying to write today will be hard or easy to write
depending on how hard or easy the surrounding code is to read. So if you want to go fast,
if you want to get done quickly, if you want your code to be easy to write, make it easy to
read.

The Boy Scout Rule

It’s not enough to write the code well. The code has to be kept clean over time. We’ve all
seen code rot and degrade as time passes. So we must take an active role in preventing this
degradation.

The Boy Scouts of America have a simple rule that we can apply to our profession.
Leave the campground cleaner than vou found it”

If we all checked-in our code a little cleaner than when we checked it out, the code
simply could not rot. The cleanup doesn’t have to be something big. Change one variable
name for the better, break up one function that’s a little too large, eliminate one small bit of
duplication, clean up one composite if statement.

Can you imagine working on a project where the code simply got better as time
passed? Do you believe that any other option is professional? Indeed, isn’t continuous
improvement an intrinsic part of professionalism?

5. This was adapted from Robert Stephenson Smyth Baden-Powell’s farewell message to the Scouts: *“Try and leave this world a
little better than you found it . . ™

Bibliography 15

Prequel and Principles

In many ways this book is a “prequel” to a book I wrote in 2002 entitled Agile Software
Development: Principles, Patterns, and FPractices (PPP). The PPP book concerns itself
with the principles of object-oriented design, and many of the practices used by profes-
sional developers. If you have not read PPP, then you may find that it continues the story
told by this book. If you have already read it, then you’ll find many of the sentiments of
that book echoed in this one at the level of code.

In this book you will find sporadic references to various principles of design. These
include the Single Responsibility Principle (SRP), the Open Closed Principle (OCP), and
the Dependency Inversion Principle (DIP) among others. These principles are described in
depth in PPP.

Conclusion

Books on art don’t promise to make you an artist. All they can do is give you some of the
tools, techniques, and thought processes that other artists have used. So too this book can-
not promise to make you a good programmer. It cannot promise to give you “code-sense.”
All it can do is show you the thought processes of good programmers and the tricks, tech-
niques, and tools that they use.

Just like a book on art, this book will be full of details. There will be lots of code.
You'll see good code and you’ll see bad code. You’ll see bad code transformed into good
code. You'll see lists of heuristics, disciplines, and techniques. You’ll see example after
example. After that, it’s up to you.

Remember the old joke about the concert violinist who got lost on his way to a perfor-
mance? He stopped an old man on the corner and asked him how to get to Carnegie Hall.
The old man looked at the violinist and the violin tucked under his arm, and said: “Prac-
tice, son. Practice!”

Bibliography
[Beck07]: Implementation Patterns, Kent Beck, Addison-Wesley, 2007.

[Knuth92]: Literate Programming, Donald E. Knuth, Center for the Study of Language
and Information, Leland Stanford Junior University, 1992,

This page intentionally left blank

2

Meaningful Names

by Tim Ottinger

Introduction
Names are everywhere in software. We name our variables, our functions, our arguments,

classes, and packages. We name our source files and the directories that contain them. We
name our jar files and war files and ear files. We name and name and name. Because we do

17

18 Chapter 2: Meaningful Names

so much of it, we’d better do it well. What follows are some simple rules for creating
good names.

Use Intention-Revealing Names

It is easy to say that names should reveal intent. What we want to impress upon you is that
we are serious about this. Choosing good names takes time but saves more than it takes.
So take care with your names and change them when you find better ones. Everyone who
reads your code (including you) will be happier if you do.

The name of a variable, function, or class, should answer all the big questions. It
should tell you why it exists, what it does, and how it is used. If a name requires a com-
ment, then the name does not reveal its intent.

int d; // elapsed time in days

The name d reveals nothing. It does not evoke a sense of elapsed time, nor of days. We
should choose a name that specifies what is being measured and the unit of that measure-
ment:

int elapsedTimeInDays;

int daysSinceCreation;

int daysSinceModification;

int fileAgeInDays;

Choosing names that reveal intent can make it much easier to understand and change
code. What is the purpose of this code?

public List<int[]> getThem() {
List<int[]> listl = new ArrayList<int[]>();
for (int[] x : theList)
if (x[0] == 4)
listl.add(x);
return listl;
}

Why is it hard to tell what this code is doing? There are no complex expressions.
Spacing and indentation are reasonable. There are only three variables and two constants
mentioned. There aren’t even any fancy classes or polymorphic methods, just a list of
arrays (Or so it seems).

The problem isn’t the simplicity of the code but the implicify of the code (to coin a
phrase): the degree to which the context is not explicit in the code itself. The code implic-
itly requires that we know the answers to questions such as:

1. What kinds of things are in thelist?

2. What is the significance of the zeroth subscript of an item in cheLisc?
3. What is the significance of the value 47

4. How would I use the list being returned?

Avoid Disinformation 19

The answers to these questions are not present in the code sample, but they could have
been. Say that we’re working in a mine sweeper game. We find that the board is a list of
cells called theList. Let’s rename that to gameBoard.

Each cell on the board is represented by a simple array. We further find that the zeroth
subscript is the location of a status value and that a status value of 4 means “flagged.” Just
by giving these concepts names we can improve the code considerably:

public List<int[]> getFlaggedCells()
List<int[]> flaggedCells = new ArrayList<int([]>();
for (int[] cell : gameBoard)
if (cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);
return flaggedCells;
}
Notice that the simplicity of the code has not changed. It still has exactly the same number
of operators and constants, with exactly the same number of nesting levels. But the code
has become much more explicit.

We can go further and write a simple class for cells instead of using an array of ints.
It can include an intention-revealing function (call it isFlagged) to hide the magic num-
bers. It results in a new version of the function:

public List<Cell> getFlaggedCells() {
List<Cell> flaggedCells = new ArrayList<Cell>();
for (Cell cell : gameBoard)
if (cell.isFlagged())
flaggedCells.add(cell);
return flaggedCells;
}
With these simple name changes, it’s not difficult to understand what’s going on. This is

the power of choosing good names.

Avoid Disinformation

Programmers must avoid leaving false clues that obscure the meaning of code. We should
avoid words whose entrenched meanings vary from our intended meaning. For example,
hp, aix, and =co would be poor variable names because they are the names of Unix plat-
forms or variants. Even if you are coding a hypotenuse and hp looks like a good abbrevia-
tion, it could be disinformative.

Do not refer to a grouping of accounts as an accountList unless it’s actually a List,
The word list means something specific to programmers. If the container holding the
accounts is not actually a List, it may lead to false conclusions.' So accountGroup or
bunchOfAccounts or just plain accounts would be better.

1. As we’ll see later on, even if the container is a List, it’s probably better not to encode the container type into the name.

20 Chapter 2: Meaningful Names

Beware of using names which vary in small ways. How long does it take to spot the
subtle difference between a xvzcontrollerForEfficientHandlingOfStrings in one module
and, somewhere a little more distant, XvZControllerForEfficientStorage0fstrings? The
words have frightfully similar shapes.

Spelling similar concepts similarly is information. Using inconsistent spellings is dis-
information. With modern Java environments we enjoy automatic code completion. We
write a few characters of a name and press some hotkey combination (if that) and are
rewarded with a list of possible completions for that name. It is very helpful if names for
very similar things sort together alphabetically and if the differences are very obvious,
because the developer is likely to pick an object by name without seeing your copious
comments or even the list of methods supplied by that class.

A truly awful example of disinformative names would be the use of lower-case L or
uppercase 0 as variable names, especially in combination. The problem, of course, is that
they look almost entirely like the constants one and zero, respectively.

int a = 1;

if(0==1)
a = 01;

else

1 =01;

The reader may think this a contrivance, but we have examined code where such
things were abundant. In one case the author of the code suggested using a different font
so that the differences were more obvious, a solution that would have to be passed down to
all future developers as oral tradition or in a written document. The problem is conquered
with finality and without creating new work products by a simple renaming.

Make Meaningful
Distinctions

Programmers create problems for them-

selves when they write code solely to sat-

isfy a compiler or interpreter. For example,

because you can’t use the same name to refer

to two different things in the same scope,

you might be tempted to change one name

in an arbitrary way. Sometimes this is done by misspelling one, leading to the surprising
situation where correcting spelling errors leads to an inability to compile.”

It is not sufficient to add number series or noise words, even though the compiler is
satisfied. If names must be different, then they should also mean something different.

2. Consider, for example, the truly hideous practice of creating a variable named k1lass just because the name class was used
for something else.

Use Pronounceable Names 21

Number-series naming (al, 22, .. a¥) is the opposite of intentional naming. Such
names are not disinformative—they are noninformative; they provide no clue to the
author’s intention. Consider:

public static void copyChars(char all], char a2[]) {
for (int 1 = 0; 1 < al.length; i++) {
a2[i] = al[il;

}
}
This function reads much better when source and destination are used for the argument
names.

Noise words are another meaningless distinction. Imagine that you have a Product
class. If you have another called Product Info or ProductData, you have made the names dif-
ferent without making them mean anything different, Info and Data are indistinct noise
words like a, an, and the.

Note that there is nothing wrong with using prefix conventions like a and the so long
as they make a meaningful distinction. For example you might use a for all local variables
and che for all function arguments.’ The problem comes in when you decide to call a vari-
able theZork because you already have another variable named zork,

Noise words are redundant. The word variable should never appear in a variable
name. The word table should never appear in a table name. How is Namestring better than
Name? Would a vame ever be a floating point number? If so, it breaks an earlier rule about
disinformation. Imagine finding one class named Customer and another named
customerobject. What should you understand as the distinction? Which one will represent
the best path to a customer’s payment history?

There is an application we know of where this is illustrated. we’ve changed the names
to protect the guilty, but here’s the exact form of the error:
getActiveAccount () ;

getActiveAccounts () ;
getActiveAccountInfo();

How are the programmers in this project supposed to know which of these functions to call?

In the absence of specific conventions, the variable monevimount is indistinguishable
from money, customerInfo is indistinguishable from customer, accountData is indistinguish-
able from account, and theMessage is indistinguishable from message, Distinguish names in
such a way that the reader knows what the differences offer.

Use Pronounceable Names

Humans are good at words. A significant part of our brains is dedicated to the concept of
words. And words are, by definition, pronounceable. It would be a shame not to take

3. Uncle Bob used to do this in C++ but has given up the practice because modern IDEs make it unnecessary.

22 Chapter 2: Meaningful Names

advantage of that huge portion of our brains that has evolved to deal with spoken lan-
guage. So make your names pronounceable.

If you can’t pronounce it, you can’t discuss it without sounding like an idiot. “Well,
over here on the bee cee arr three cee enn tee we have a pee ess zee kyew int, see?” This
matters because programming is a social activity.

A company I know has genymdhme (generation date, year, month, day, hour, minute,
and second) so they walked around saying “gen why emm dee aich emm ess”. I have an
annoying habit of pronouncing everything as written, so I started saying “gen-yah-mudda-
hims.” It later was being called this by a host of designers and analysts, and we still
sounded silly. But we were in on the joke, so it was fun. Fun or not, we were tolerating
poor naming. New developers had to have the variables explained to them, and then they
spoke about it in silly made-up words instead of using proper English terms. Compare

class DtaRcrdl0Z {

private Date genymdhms;
private Date modymdhms;

private final String pszgint = "102";

/
/* oo ¥/

to

class Customer {
private Date generationTimestamp;
private Date modificationTimestamp;;
private final String recordId = *102";

/* ... %/

1.
]

Intelligent conversation is now possible: “Hey, Mikey, take a look at this record! The gen-
eration timestamp is set to tomorrow’s date! How can that be?”

Use Searchable Names

Single-letter names and numeric constants have a particular problem in that they are not
easy to locate across a body of text.

One might easily grep for ¥ax_cLASSES_PER_STUDENT, but the number 7 could be more
troublesome. Searches may turn up the digit as part of file names, other constant defini-
tions, and in various expressions where the value is used with different intent. It is even
worse when a constant is a long number and someone might have transposed digits,
thereby creating a bug while simultaneously evading the programmer’s search.

Likewise, the name e is a poor choice for any variable for which a programmer might
need to search. It is the most common letter in the English language and likely to show up
in every passage of text in every program. In this regard, longer names trump shorter
names, and any searchable name trumps a constant in code.

My personal preference is that single-letter names can ONLY be used as local vari-
ables inside short methods. The length of a name should correspond to the size of its scope

Avoid Encodings 23

[N5]. If a variable or constant might be seen or used in multiple places in a body of code,
it is imperative to give it a search-friendly name. Once again compare

for (int j=0; J<34; j++) {
s += (L[j]1*4)/5;
}

to

int realDaysPerIdealDay = 4;

const int WORK_DAYS_PER_WEEK = 5;

int sum = 0;

for (int j=0;] < NUMBER_OF_TASKS; j++)

int realTaskDays = taskEstimate[]] * realDaysPerIdealDay;
int realTaskWeeks = (realdays / WORK_DAYS_PER_WEEK);
sum += realTaskWeeks;

}

Note that sum, above, is not a particularly useful name but at least is searchable. The
intentionally named code makes for a longer function, but consider how much easier it
will be to find work_pavs_pEr_weex than to find all the places where 5 was used and filter
the list down to just the instances with the intended meaning.

Avoid Encodings

We have enough encodings to deal with without adding more to our burden. Encoding
type or scope information into names simply adds an extra burden of deciphering. It
hardly seems reasonable to require each new employee to learn yet another encoding *“lan-
guage” in addition to learning the (usually considerable) body of code that they’ll be work-
ing in. It is an unnecessary mental burden when trying to solve a problem. Encoded names
are seldom pronounceable and are easy to mis-type.

Hungarian Notation

In days of old, when we worked in name-length-challenged languages, we violated this
rule out of necessity, and with regret. Fortran forced encodings by making the first letter a
code for the type. Early versions of BASIC allowed only a letter plus one digit. Hungarian
Notation (HN) took this to a whole new level.

HN was considered to be pretty important back in the Windows C API, when every-
thing was an integer handle or a long pointer or a void pointer, or one of several implemen-
tations of “string” (with different uses and attributes). The compiler did not check types in
those days, so the programmers needed a crutch to help them remember the types.

In modern languages we have much richer type systems, and the compilers remember
and enforce the types. What’s more, there is a trend toward smaller classes and shorter
functions so that people can usually see the point of declaration of each variable they’re
using.

24 Chapter 2: Meaningful Names

Java programmers don’t need type encoding. Objects are strongly typed, and editing
environments have advanced such that they detect a type error long before you can run a
compile! So nowadays HN and other forms of type encoding are simply impediments.
They make it harder to change the name or type of a variable, function, or class. They
make it harder to read the code. And they create the possibility that the encoding system
will mislead the reader.

PhoneNumber phoneString;
/{ name not changed when type changed!

Member Prefixes

You also don’t need to prefix member variables with m_ anymore. Your classes and func-
tions should be small enough that you don’t need them. And you should be using an edit-
ing environment that highlights or colorizes members to make them distinct.

public class Part {
private String m_dsc; // The textual description
void setName(String name) {
m_dsc = name;

b

public class Part {
String description;
vold setDescription(String description)
this.description = description;
b

|
}

Besides, people quickly learn to ignore the prefix (or suffix) to see the meaningful
part of the name. The more we read the code, the less we see the prefixes. Eventually the
prefixes become unseen clutter and a marker of older code.

Interfaces and Implementations

These are sometimes a special case for encodings. For example, say you are building an
ABSTRACT FACTORY for the creation of shapes. This factory will be an interface and will
be implemented by a concrete class. What should you name them? Ishaperactory and
ShapeFactory? I prefer to leave interfaces unadorned. The preceding I, so common in
today’s legacy wads, is a distraction at best and too much information at worst. I don’t
want my users knowing that I’'m handing them an interface. | just want them to know that
it’s a ShepeFactory. So if I must encode either the interface or the implementation, I choose
the implementation. Calling it ShapeFactoryImp, or even the hideous CShapeFactory, is pref-
erable to encoding the interface.

Method Names 25

Avoid Mental Mapping

Readers shouldn’t have to mentally translate your names into other names they already
know. This problem generally arises from a choice to use neither problem domain terms
nor solution domain terms.

This is a problem with single-letter variable names. Certainly a loop counter may be
named i or j or k (though never 1!) if its scope is very small and no other names can con-
flict with it. This is because those single-letter names for loop counters are traditional.
However, in most other contexts a single-letter name is a poor choice; it’s just a place
holder that the reader must mentally map to the actual concept. There can be no worse rea-
son for using the name c than because = and » were already taken.

In general programmers are pretty smart people. Smart people sometimes like to show
off their smarts by demonstrating their mental juggling abilities. After all, if you can reli-
ably remember that r is the lower-cased version of the url with the host and scheme
removed, then you must clearly be very smart.

One difference between a smart programmer and a professional programmer is that
the professional understands that clarity is king. Professionals use their powers for good
and write code that others can understand.

Class Names

Classes and objects should have noun or noun phrase names like Customer, WikiPage,
Account, and AddressParser. Avoid words like Manager, Processor, Data, or Info in the name
of a class. A class name should not be a verb.

Method Names

Methods should have verb or verb phrase names like postPayment, deletePage, OT save.
Accessors, mutators, and predicates should be named for their value and prefixed with get,
set, and is according to the javabean standard.’

string name = employee.getName();
customer.setName ("mike");
if (paycheck.isPosted(})...

When constructors are overloaded, use static factory methods with names that
describe the arguments. For example,

Complex fulcrumPoint = Complex.FromRealNumber (23.0);
is generally better than
Complex fulcrumPoint = new Complex(23.0);

Consider enforcing their use by making the corresponding constructors private.

4. http://java.sun.com/products/javabeans/docs/spec.html]

26 Chapter 2: Meaningful Names

Don’t Be Cute

If names are too clever, they will be
memorable only to people who share the
author’s sense of humor, and only as long
as these people remember the joke. Will
they know what the function named
HolyHandGrenade is supposed to do? Sure,
it’s cute, but maybe in this case
DeleteItems might be a better name.
Choose clarity over entertainment value.

Cuteness in code often appears in the form of colloquialisms or slang. For example,
don’t use the name whack() to mean kill (). Don’t tell little culture-dependent jokes like
eatMyShorts (] to mean abort().

Say what you mean. Mean what you say.

Pick One Word per Concept

Pick one word for one abstract concept and stick with it. For instance, it’s confusing to
have fetch, retrieve, and get as equivalent methods of different classes. How do you
remember which method name goes with which class? Sadly, you often have to remember
which company, group, or individual wrote the library or class in order to remember which
term was used. Otherwise, you spend an awful lot of time browsing through headers and
previous code samples.

Modern editing environments like Eclipse and IntelliJ provide context-sensitive clues,
such as the list of methods you can call on a given object. But note that the list doesn’t usu-
ally give you the comments you wrote around your function names and parameter lists.
You are lucky if it gives the parameter names from function declarations. The function
names have to stand alone, and they have to be consistent in order for you to pick the cor-
rect method without any additional exploration.

Likewise, it’s confusing to have a controller and a manager and a driver in the same
code base. What is the essential difference between a DeviceManager and a Protccol-
Controller? Why are both not controllers or both not managers? Are they both Drivers
really? The name leads you to expect two objects that have very different type as well as
having different classes.

A consistent lexicon is a great boon to the programmers who must use your code.

Don’t Pun

Avoid using the same word for two purposes. Using the same term for two different ideas
is essentially a pun.

Add Meaningful Context 27

If you follow the “one word per concept” rule, you could end up with many classes
that have, for example, an add method. As long as the parameter lists and return values of
the various add methods are semantically equivalent, all is well.

However one might decide to use the word zdd for “consistency” when he or she is not
in fact adding in the same sense. Let’s say we have many classes where adc will create a
new value by adding or concatenating two existing values. Now let’s say we are writing a
new class that has a method that puts its single parameter into a collection. Should we call
this method =zad? It might seem consistent because we have so many other add methods,
but in this case, the semantics are different, so we should use a name like insert or append
instead. To call the new method add would be a pun.

Our goal, as authors, is to make our code as easy as possible to understand. We want
our code to be a quick skim, not an intense study. We want to use the popular paperback
model whereby the author is responsible for making himself clear and not the academic
model where it is the scholar’s job to dig the meaning out of the paper.

Use Solution Domain Names

Remember that the people who read your code will be programmers. So go ahead and use
computer science (CS) terms, algorithm names, pattern names, math terms, and so forth. It
is not wise to draw every name from the problem domain because we don’t want our
coworkers to have to run back and forth to the customer asking what every name means
when they already know the concept by a different name.

The name AccountvVisitor means a great deal to a programmer who is familiar with
the VISITOR pattern. What programmer would not know what a JobQueue was? There are
lots of very technical things that programmers have to do. Choosing technical names for
those things is usually the most appropriate course.

Use Problem Domain Names

When there is no “programmer-eese” for what you’re doing, use the name from the prob-
lem domain. At least the programmer who maintains your code can ask a domain expert
what it means.

Separating solution and problem domain concepts is part of the job of a good pro-
grammer and designer. The code that has more to do with problem domain concepts
should have names drawn from the problem domain.

Add Meaningful Context

There are a few names which are meaningful in and of themselves—most are not. Instead,
you need to place names in context for your reader by enclosing them in well-named
classes, functions, or namespaces. When all else fails, then prefixing the name may be nec-
essary as a last resort.

28 Chapter 2: Meaningful Names

Imagine that you have variables named fireclName, lastlame, street, houseNumber, city,
state, and zipcode. Taken together it’s pretty clear that they form an address. But what if
you just saw the state variable being used alone in a method? Would you automatically
infer that it was part of an address?

You can add context by using prefixes: addrFirstlame, addrLastName, addrState, and so
on. At least readers will understand that these variables are part of a larger structure. Of
course, a better solution is to create a class named Address. Then, even the compiler knows
that the variables belong to a bigger concept.

Consider the method in Listing 2-1. Do the variables need a more meaningful con-
text? The function name provides only part of the context; the algorithm provides the rest.
Once you read through the function, you see that the three variables, nurber, verb, and
pluralModifier, are part of the “guess statistics” message. Unfortunately, the context must
be inferred. When you first look at the method, the meanings of the variables are opaque.

Listing 2-1

Variables with unclear context.

private vold printGuessStatistics(char candidate, int count) {
String number;
String verb;
String pluralModifier;

if (count == 0)
number = "no";
verb = "are";
pluralModifier = "s";
} else i1f (count == 1) {
number = "1";
verb = "is";
pluralModifier = "";
} else {
number = Integer.toString(count);
verb = "are";
pluralModifier = "s";

}
String guessMessage = String.format (
"There %z %s %s%s", verb, number, candidate, pluralModifier
i
print (guessMessage);

The function is a bit too long and the variables are used throughout. To split the func-
tion into smaller pieces we need to create a GuesssStatisticsMessage class and make the
three variables fields of this class. This provides a clear context for the three variables. They
are definitively part of the GuessStatisticsMeszace. The improvement of context also allows
the algorithm to be made much cleaner by breaking it into many smaller functions. (See
Listing 2-2.)

Don’t Add Gratuitous Context 29

Listing 2-2
Variables have a context.
public class GuessStatisticsMessage {
private String number;
private String verb;
private String pluralModifier;

public String make (char candidate, int count) {
createPluralDependentMessageParts (count);
return String.format (
"There %s %s %s%s",
verb, number, candidate, pluralModifier);

}

private void createPluralDependentMessageParts (int count) {
if {count == 0) {
thereAreNoLetters();
} else if (count == 1) {
therelsOneletter();
} else {
thereAreManyLetters(count);
}
}

private voild thereAreManyLetters(int count)
number = Integer.toString(count);
verb = "are";
pluralModifier = "s*;

}

private void thereIsOneletter() {
number = "1";
verb = "is";
pluralModifier = "*;

}

private vold thereArelNolLetters() {
number = "no";
verb = "are";
pluralModifier = "s*;

}

1
}

Don’t Add Gratuitous Context

In an imaginary application called “Gas Station Deluxe,” it is a bad idea to prefix every
class with csn. Frankly, you are working against your tools. You type G and press the com-
pletion key and are rewarded with a mile-long list of every class in the system. Is that
wise? Why make it hard for the IDE to help you?

Likewise, say you invented a MailingAddress class in GSD's accounting module, and
you named it GEDAccountiddress. Later, you need a mailing address for your customer con-
tact application. Do you use GSDAccountiddress? Does it sound like the right name? Ten of
17 characters are redundant or irrelevant.

30 Chapter 2: Meaningful Names

Shorter names are generally better than longer ones, so long as they are clear. Add no
more context to a name than is necessary.

The names accountiddress and customerAddress are fine names for instances of the
class address but could be poor names for classes. Address is a fine name for a class. If [
need to differentiate between MAC addresses, port addresses, and Web addresses, | might
consider PostallAddress, MAC, and URI. The resulting names are more precise, which is the
point of all naming.

Final Words

The hardest thing about choosing good names is that it requires good descriptive skills and
a shared cultural background. This is a teaching issue rather than a technical, business, or
management issue. As a result many people in this field don’t learn to do it very well.

People are also afraid of renaming things for fear that some other developers will
object. We do not share that fear and find that we are actually grateful when names change
(for the better). Most of the time we don’t really memorize the names of classes and meth-
ods. We use the modern tools to deal with details like that so we can focus on whether the
code reads like paragraphs and sentences, or at least like tables and data structure (a sen-
tence isn’t always the best way to display data). You will probably end up surprising some-
one when you rename, just like you might with any other code improvement. Don’t let it
stop you in your tracks.

Follow some of these rules and see whether you don’t improve the readability of your
code. If you are maintaining someone else’s code, use refactoring tools to help resolve these
problems. [t will pay off in the short term and continue to pay in the long run.

Functions

In the early days of programming we composed our systems of routines and subroutines.
Then, in the era of Fortran and PL/1 we composed our systems of programs, subprograms,
and functions. Nowadays only the function survives from those early days. Functions are
the first line of organization in any program. Writing them well is the topic of this chapter.

34 Chapter 3: Functions

Unless you are a student of FitNesse, you probably don’t understand all the details.
Still, you probably understand that this function performs the inclusion of some setup and
teardown pages into a test page and then renders that page into HTML. If you are familiar
with TUnit,” you probably realize that this function belongs to some kind of Web-based
testing framework. And, of course, that is correct. Divining that information from Listing 3-2
is pretty easy, but it’s pretty well obscured by Listing 3-1.

So what is it that makes a function like Listing 3-2 easy to read and understand? How
can we make a function communicate its intent? What attributes can we give our functions
that will allow a casual reader to intuit the kind of program they live inside?

Small!

The first rule of functions is that they should be small. The second rule of functions is that
they should be smaller than that. This is not an assertion that I can justify. I can’t provide
any references to research that shows that very small functions are better. What I can tell
you is that for nearly four decades I have written functions of all different sizes. I've writ-
ten several nasty 3,000-line abominations. I've written scads of functions in the 100 to 300
line range. And I've written functions that were 20 to 30 lines long. What this experience
has taught me, through long trial and error, is that functions should be very small.

In the ecighties we used to say that a function should be no bigger than a screen-full.
Of course we said that at a time when VT100 screens were 24 lines by 80 columns, and
our editors used 4 lines for administrative purposes. Nowadays with a cranked-down font
and a nice big monitor, you can fit 150 characters on a line and a 100 lines or more on a
screen. Lines should not be 150 characters long. Functions should not be 100 lines long.
Functions should hardly ever be 20 lines long.

How short should a function be? In 1999 I went to visit Kent Beck at his home in Ore-
gon. We sat down and did some programming together. At one point he showed me a cute
little Java/Swing program that he called Sparkie. It produced a visual effect on the screen
very similar to the magic wand of the fairy godmother in the movie Cinderella. As you
moved the mouse, the sparkles would drip from the cursor with a satisfying scintillation,
falling to the bottom of the window through a simulated gravitational field. When Kent
showed me the code, I was struck by how small all the functions were. I was used to func-
tions in Swing programs that took up miles of vertical space. Every function in this pro-
gram was just two, or three, or four lines long. Each was transparently obvious. Each told
a story. And each led you to the next in a compelling order. That s how short your functions
should be!*

2. An open-source unit-testing tool for Java. www. junit.org
3. T asked Kent whether he still had a copy, but he was unable to find one. I searched all my old computers too, but to no avail.
All that is left now is my memory of that program.

Do One Thing 35

How short should your functions be? They should usually be shorter than Listing 3-2!
Indeed, Listing 3-2 should really be shortened to Listing 3-3.

Blocks and Indenting

This implies that the blocks within if statements, else statements, while statements, and
so on should be one line long. Probably that line should be a function call. Not only does
this keep the enclosing function small, but it also adds documentary value because the
function called within the block can have a nicely descriptive name.

This also implies that functions should not be large enough to hold nested structures.

Therefore, the indent level of a function should not be greater than one or two. This, of
course, makes the functions easier to read and understand.

Do One Thing

It should be very clear that Listing 3-1 is doing lots
more than one thing. It’s creating buffers, fetching
pages, searching for inherited pages, rendering paths,
appending arcane strings, and generating HTML,
among other things. Listing 3-1 is very busy doing
lots of different things. On the other hand, Listing 3-3
is doing one simple thing. It’s including setups and
teardowns into test pages.

The following advice has appeared in one form
or another for 30 years or more.

FUNCTIONS SHOULD DO ONE THING. THEY SHOULD DO IT WELL.
THEY SHOULD DO IT ONLY.

The problem with this statement is that it is hard to know what “one thing” is. Does
Listing 3-3 do one thing? It’s easy to make the case that it’s doing three things:
1. Determining whether the page is a test page.
2. If so, including setups and teardowns.
3. Rendering the page in HTML.

36 Chapter 3: Functions

So which is it? Is the function doing one thing or three things? Notice that the three
steps of the function are one level of abstraction below the stated name of the function. We
can describe the function by describing it as a brief 70" paragraph:

TO RenderPageWithSetupsAnd Teardowns, we check to see whether the page is a test page
and if so, we include the setups and teardowns. In either case we render the page in
HTML.

If a function does only those steps that are one level below the stated name of the
function, then the function is doing one thing. After all, the reason we write functions is to
decompose a larger concept (in other words, the name of the function) into a set of steps at
the next level of abstraction.

It should be very clear that Listing 3-1 contains steps at many different levels of
abstraction. So it is clearly doing more than one thing. Even Listing 3-2 has two levels of
abstraction, as proved by our ability to shrink it down. But it would be very hard to mean-
ingfully shrink Listing 3-3. We could extract the if statement into a function named
includegetupsindTeardowns1iTest Page, but that simply restates the code without changing
the level of abstraction.

So, another way to know that a function is doing more than ““one thing” is if you can
extract another function from it with a name that is not merely a restatement of its imple-
mentation [G34].

Sections within Functions

Look at Listing 4-7 on page 71. Notice that the generaterrimes function is divided into
sections such as declarations, initializations, and sieve. This is an obvious symptom of
doing more than one thing. Functions that do one thing cannot be reasonably divided into
sections.

One Level of Abstraction per Function

In order to make sure our functions are doing “one thing,” we need to make sure that the
statements within our function are all at the same level of abstraction. It is easy to see how
Listing 3-1 violates this rule. There are concepts in there that are at a very high level of
abstraction, such as getltnl (}; others that are at an intermediate level of abstraction, such
as: String pagePathName = PathParser.render (pagePach); and still others that are remark-
ably low level, such as: .append("\n"),

Mixing levels of abstraction within a function is always confusing. Readers may not
be able to tell whether a particular expression 1s an essential concept or a detail. Worse,

4. The LOGO language used the keyword “TO” in the same way that Ruby and Python use ““def” So every function began with
the word “TO.” This had an interesting effect on the way functions were designed.

Switch Statements 37

like broken windows, once details are mixed with essential concepts, more and more
details tend to accrete within the function.

Reading Code from Top to Bottom: The Stepdown Rule

We want the code to read like a top-down narrative.” We want every function to be fol-
lowed by those at the next level of abstraction so that we can read the program, descending
one level of abstraction at a time as we read down the list of functions. I call this The Step-
down Rule.

To say this differently, we want to be able to read the program as though it were a set
of TO paragraphs, each of which is describing the current level of abstraction and refer-
encing subsequent 7O paragraphs at the next level down.

1o include the setups and teardowns, we include setups, then we include the test page con-
tent, and then we include the teardowns.

To include the setups, we include the suite setup if this is a suite, then we include the
regular setup.

To include the suite setup, we search the parent hierarchy for the “SuiteSetUp” page
and add an include statement with the path of that page.

To search the parent. . .

It turns out to be very difficult for programmers to learn to follow this rule and write
functions that stay at a single level of abstraction. But learning this trick is also very
important. It is the key to keeping functions short and making sure they do “one thing.”
Making the code read like a top-down set of 70 paragraphs is an effective technique for
keeping the abstraction level consistent.

Take a look at Listing 3-7 at the end of this chapter. It shows the whole
testabledtml function refactored according to the principles described here. Notice
how each function introduces the next, and each function remains at a consistent level
of abstraction.

Switch Statements

It’s hard to make a small switch statement.” Even a switch statement with only two cases is
larger than Id like a single block or function to be. It’s also hard to make a switch state-
ment that does one thing. By their nature, switch statements always do N things. Unfortu-
nately we can’t always avoid switch statements, but we can make sure that each switch
statement is buried in a low-level class and is never repeated. We do this, of course, with
polymorphism.

5. [KP78],p.37.
6. And, of course, I include if'else chains in this.

38 Chapter 3: Functions

Consider Listing 3-4. It shows just one of the operations that might depend on the
type of employee.

There are several problems with this function. First, it’s large, and when new
employee types are added, it will grow. Second, it very clearly does more than one thing.
Third, it violates the Single Responsibility Principle’ (SRP) because there is more than one
reason for it to change. Fourth, it violates the Open Closed Principle® (OCP) because it
must change whenever new types are added. But possibly the worst problem with this
function is that there are an unlimited number of other functions that will have the same
structure. For example we could have

isPayday (Employee e, Date date),
or
deliverPay (Employee e, Money pay),
or a host of others. All of which would have the same deleterious structure.

The solution to this problem (see Listing 3-5) is to bury the switch statement in the
basement of an ABSTRACT FACTORY,’ and never let anyone see it. The factory will use the
switch statement to create appropriate instances of the derivatives of Emplovee, and the var-
tous functions, such as calculatePay, isPayday, and deliverpay, will be dispatched poly-
morphically through the zrplovee interface.

My general rule for switch statements is that they can be tolerated if they appear
only once, are used to create polymorphic objects, and are hidden behind an inheritance

7. a. http://en.wikipedia.org/wiki/Single_responsibility principle
b. http://www.objectmentor.com/resources/articles/srp.pdf
o/fen.wikipedia.org/wiki/Open/closed_principle
b. http://www.objectmentor.com/resources/articles/ocp.pdf
9. [GOF].

Function Arguments 41

Output arguments are harder to understand than input arguments. When we read a
function, we are used to the idea of information going in to the function through arguments
and out through the return value. We don’t usually expect information to be going out
through the arguments. So output arguments often cause us to do a double-take.

One input argument is the next best thing to no arguments. SetupTeardown-
Includer.render (pageData) is pretty easy to understand. Clearly we are going to render the
data in the pageData object.

Common Monadic Forms

There are two very common reasons to pass a single argument into a function. You may be
asking a question about that argument, as in boolean fileExists(*MyFile”). Or you may be
operating on that argument, transforming it into something else and refurning it. For
example, InputStream fileOpen(“MyFile”) transforms a file name String into an
InputStream return value. These two uses are what readers expect when they see a func-
tion. You should choose names that make the distinction clear, and always use the two
forms in a consistent context. (See Command Query Separation below.)

A somewhat less common, but still very useful form for a single argument function,
is an event, In this form there is an input argument but no output argument, The overall
program is meant to interpret the function call as an event and use the argument to alter the
state of the system, for example, void passwordAttemptFailedNtimes(int attempts). Use
this form with care. It should be very clear to the reader that this is an event. Choose
names and contexts carefully.

Try to avoid any monadic functions that don’t follow these forms, for example, void
includeSetupPagelnto(StringBuffer pageText). Using an output argument instead of a
return value for a transformation is confusing, If a function is going to transform its input
argument, the transformation should appear as the return value. Indeed, StringBuffer
transform(StringBuffer in) is better than void transform(StringBuffer out), even if the
implementation in the first case simply returns the input argument, At least it still follows
the form of a transformation.

Flag Arguments

Flag arguments are ugly. Passing a boolean into a function is a truly terrible practice. It
immediately complicates the signature of the method, loudly proclaiming that this function
does more than one thing. It does one thing if the flag is true and another if the flag is false!

In Listing 3-7 we had no choice because the callers were already passing that flag
in, and 1 wanted to limit the scope of refactoring to the function and below. Still, the
method call render (true) is just plain confusing to a poor reader. Mousing over the call
and seeing render (boolean issuite) helps a little, but not that much. We should have
split the function into two: renderForSuite () and renderForSingleTest ().

42 Chapter 3: Functions

Dyadic Functions

A function with two arguments is harder to understand than a monadic function. For exam-
ple, writeField(name) is easier to understand than writeField(output-Stream, name)."
Though the meaning of both is clear, the first glides past the eve, easily depositing its
meaning. The second requires a short pause until we learn to ignore the first parameter.
And that, of course, eventually results in problems because we should never ignore any
part of code. The parts we ignore are where the bugs will hide.

There are times, of course, where two arguments are appropriate. For example,
Point p = new Point(0,0); is perfectly reasonable. Cartesian points naturally take two
arguments. Indeed, we'd be very surprised to see new Point (0). However, the two argu-
ments in this case are ordered components of a single value! Whereas output-Stream and
name have neither a natural cohesion, nor a natural ordering.

Even obvious dyadic functions like assertEquals (expected, actual) are problematic.
How many times have you put the actual where the expected should be? The two argu-
ments have no natural ordering. The expected, actual ordering is a convention that
requires practice to learn.

Dyads aren’t evil, and you will certainly have to write them. However, you should be
aware that they come at a cost and should take advantage of what mechanisms may be
available to you to convert them into monads. For example, you might make the
writeField method a member of cutputStream so that you can say outputStream.
writeField(name). Or you might make the cutputStream a member variable of the current
class so that you don’t have to pass it. Or you might extract a new class like FieldWriter
that takes the cutputStream in its constructor and has a write method.

Triads

Functions that take three arguments are significantly harder to understand than dyads. The
issues of ordering, pausing, and ignoring are more than doubled. I suggest you think very
carefully before creating a triad.

For example, consider the common overload of assertEquals that takes three argu-
ments: assertEquals(message, expected, actual). How many times have you read the
message and thought it was the expected? I have stumbled and paused over that particular
triad many times. In fact, every time [see it, | do a double-take and then learn to ignore the
message.

On the other hand, here is a triad that is not quite so insidious: assertEquals (1.0,
amount, .001). Although this still requires a double-take, it’s one that’s worth taking. It’s
always good to be reminded that equality of floating point values is a relative thing.

10. 1 just finished refactoring a module that used the dyadic form. I was able to make the outputStreanm a field of the class and
convert all the writeField calls to the monadic form. The result was much cleaner.

Function Arguments 43

Argument Objects

When a function seems to need more than two or three arguments, it is likely that some of
those arguments ought to be wrapped into a class of their own. Consider, for example, the
difference between the two following declarations:

Circle makeCircle(double x, double vy, double radius);

Circle makeCircle(Point center, double radius);
Reducing the number of arguments by creating objects out of them may seem like
cheating, but it’s not. When groups of variables are passed together, the way = and
y are in the example above, they are likely part of a concept that deserves a name of its
own.

Argument Lists

Sometimes we want to pass a variable number of arguments into a function. Consider, for
example, the string. format method:

String.format ("%s worked %.2f hours.", name, hours);
If the variable arguments are all treated identically, as they are in the example above, then
they are equivalent to a single argument of type List. By that reasoning, string, format is
actually dyadic. Indeed, the declaration of String.format as shown below is clearly
dyadic.

public String format (String format, Object... args)

So all the same rules apply. Functions that take variable arguments can be monads,
dyads, or even triads. But it would be a mistake to give them more arguments than
that.

void monad(Integer... args);
void dyad(String name, Integer... args);
void triad(String name, int count, Integer... args);

Verbs and Keywords

Choosing good names for a function can go a long way toward explaining the intent of
the function and the order and intent of the arguments. In the case of a monad, the
function and argument should form a very nice verb/noun pair. For example,
write(name) is very evocative. Whatever this “name” thing is, it is being “written.”” An
even better name might be writeField(nane), which tells us that the “name” thing is a
“field.”

This last is an example of the keyword form of a function name. Using this form we
encode the names of the arguments into the function name. For example, assertEquals
might be better written as assertExpectedEqualsictual (expected, actual). This strongly
mitigates the problem of having to remember the ordering of the arguments.

44 Chapter 3: Functions

Have No Side Effects

Side effects are lies. Your function promises to do one thing, but it also does other hidden
things. Sometimes it will make unexpected changes to the variables of its own class.
Sometimes it will make them to the parameters passed into the function or to system glo-
bals. In either case they are devious and damaging mistruths that often result in strange
temporal couplings and order dependencies.

Consider, for example, the seemingly innocuous function in Listing 3-6. This function
uses a standard algorithm to match a userName to a password. It returns true if they match
and falze if anything goes wrong. But it also has a side effect. Can you spot it?

Listing 3-6
UserValidator.java

[
3

public class UserValidator
private Cryptographer cryptographer;

public boolean checkPassword(String userName, String password) {
User user = UserGateway.findByName (userName);
if (user != User,NULL) {
String codedPhrase = user.getPhraseEncodedByPassword();
String phrase = cryptographer.decrypt (codedPhrase, password);
if ("Valid Password".egquals(phrase))
Session.initialize();
return true;

1
I

return false;

The side effect is the call to Session.initialize(), of course. The checkPassword func-
tion, by its name, says that it checks the password. The name does not imply that it initial-
izes the session. So a caller who believes what the name of the function says runs the risk
of erasing the existing session data when he or she decides to check the validity of the
user.

This side effect creates a temporal coupling. That is, checkPassword can only be
called at certain times (in other words, when it is safe to initialize the session). If it is
called out of order, session data may be inadvertently lost. Temporal couplings are con-
fusing, especially when hidden as a side effect. If you must have a temporal coupling,
you should make it clear in the name of the function. In this case we might rename the
function checkPasswordindinitializeSession, though that certainly violates “Do one
thing.”

Command Query Separation 45

Output Arguments

Arguments are most naturally interpreted as inputs to a function. If you have been pro-
gramming for more than a few years, I'm sure you’ve done a double-take on an argument
that was actually an output rather than an input. For example:

appendFooter (s);

Does this function append = as the footer to something? Or does it append some footer
to s? Is = an input or an output? It doesn’t take long to look at the function signature
and see:

public void appendFooter (StringBuffer report)

This clarifies the issue, but only at the expense of checking the declaration of the function.
Anything that forces you to check the function signature is equivalent to a double-take. It’s
a cognitive break and should be avoided.

In the days before object oriented programming it was sometimes necessary to have
output arguments. However, much of the need for output arguments disappears in OO lan-
guages because this is infended to act as an output argument. In other words, it would be
better for appendfooter to be invoked as

report.appendFooter();

In general output arguments should be avoided. If your function must change the state
of something, have it change the state of its owning object.

Command Query Separation

Functions should either do something or answer something, but not both. Either your
function should change the state of an object, or it should return some information about
that object. Doing both often leads to confusion. Consider, for example, the following
function:

public boolean set(String attribute, String value);

This function sets the value of a named attribute and returns true if it is successful and
falee if no such attribute exists. This leads to odd statements like this:

if (set("username", "unclebob"))...

Imagine this from the point of view of the reader. What does it mean? Is it asking whether
the “username” attribute was previously set to “unclebob”? Or is it asking whether the
“uzername” attribute was successfully set to “unclebob”? It’s hard to infer the meaning from
the call because it’s not clear whether the word “set” is a verb or an adjective.

The author intended set to be a verb, but in the context of the if statement it feels like
an adjective. So the statement reads as “If the username attribute was previously set to
unclebob” and not “‘set the usernare attribute to unclebob and if that worked then. . . ”” We

48 Chapter 3: Functions

to add new errors because then they have to rebuild and redeploy everything. So they reuse
old error codes instead of adding new ones.

When you use exceptions rather than error codes, then new exceptions are derivatives of
the exception class. They can be added without forcing any recompilation or redeployment."”

Don’t Repeat Yourself"

Look back at Listing 3-1 carefully and you
will notice that there is an algorithm that
gets repeated four times, once for each of
the SetUp, SuiteSetUp, TearDown, and
SuiteTearDown cases. It’s not easy to spot
this duplication because the four instances
are intermixed with other code and aren’t
uniformly duplicated. Still, the duplication

is a problem because it bloats the code and
will require four-fold modification should the algorithm ever have to change. It is also a
four-fold opportunity for an error of omission.

This duplication was remedied by the include method in Listing 3-7. Read through
that code again and notice how the readability of the whole module is enhanced by the
reduction of that duplication.

Duplication may be the root of all evil in software. Many principles and practices have
been created for the purpose of controlling or eliminating it. Consider, for example, that
all of Codd’s database normal forms serve to eliminate duplication in data. Consider also
how object-oriented programming serves to concentrate code into base classes that would
otherwise be redundant. Structured programming, Aspect Oriented Programming, Compo-
nent Oriented Programming, are all, in part, strategies for eliminating duplication. It
would appear that since the invention of the subroutine, innovations in software develop-
ment have been an ongoing attempt to eliminate duplication from our source code.

Structured Programming

Some programmers follow Edsger Dijkstra’s rules of structured programming."* Dijkstra
said that every function, and every block within a function, should have one entry and one
exit. Following these rules means that there should only be one return statement in a func-
tion, No break Or continue statements in a loop, and never, ever, any goto statements.

12. This is an example of the Open Closed Principle (OCP) [PPP02].
13. The DRY principle. [PRAG].
14, [SP72].

Conclusion 49

While we are sympathetic to the goals and disciplines of structured programming,
those rules serve little benefit when functions are very small. It is only in larger functions
that such rules provide significant benefit.

So if you keep vour functions small, then the occasional multiple return, break, or
continue statement does no harm and can sometimes even be more expressive than the sin-
gle-entry, single-exit rule. On the other hand, goto only makes sense in large functions, so
it should be avoided.

How Do You Write Functions Like This?

Writing software is like any other kind of writing. When you write a paper or an article,
you get your thoughts down first, then you massage it until it reads well. The first draft
might be clumsy and disorganized, so you wordsmith it and restructure it and refine it until
it reads the way you want it to read.

When I write functions, they come out long and complicated. They have lots of
indenting and nested loops. They have long argument lists, The names are arbitrary, and
there is duplicated code. But I also have a suite of unit tests that cover every one of those
clumsy lines of code.

So then I massage and refine that code, splitting out functions, changing names, elim-
inating duplication. I shrink the methods and reorder them. Sometimes I break out whole
classes, all the while keeping the tests passing.

In the end, I wind up with functions that follow the rules I've laid down in this chapter.
I don’t write them that way to start. I don’t think anyone could.

Conclusion

Every system is built from a domain-specific language designed by the programmers to
describe that system. Functions are the verbs of that language, and classes are the nouns.
This is not some throwback to the hideous old notion that the nouns and verbs in a require-
ments document are the first guess of the classes and functions of a system. Rather, this is
a much older truth. The art of programming is, and has always been, the art of language
design.

Master programmers think of systems as stories to be told rather than programs to
be written. They use the facilities of their chosen programming language to construct a
much richer and more expressive language that can be used to tell that story. Part of that
domain-specific language is the hierarchy of functions that describe all the actions that
take place within that system. In an artful act of recursion those actions are written to
use the very domain-specific language they define to tell their own small part of the
story.

This chapter has been about the mechanics of writing functions well. If you follow
the rules herein, your functions will be short, well named, and nicely organized. But

50 Chapter 3: Functions

never forget that your real goal is to tell the story of the system, and that the functions
you write need to fit cleanly together into a clear and precise language to help you with
that telling.

SetupTeardownIncluder

Listing 3-7
SetupTeardownIncluder.java
package fitnesse.html;

import fitnesse.responders.run.SuiteResponder;
import fitnesse.wiki.*;

public class SetupTeardownIncluder {
private PageData pageData;
private boolean isSuite;
private WikiPage testPage;
private StringBuffer newPageContent;
private PageCrawler pageCrawler;

public static String render (PageData pageData) throws Exception {
return render (pageData, false);

}

public static String render (PageData pageData, boolean isSuite)
throws Exception {
return new SetupTeardownIncluder (pageData).render (isSuite);

}

private SetupTeardownlIncluder (PageData pageData) {
this.pageData = pageData;
testPage - pageData.getWikiPage();
pageCrawler = testPage.getPageCrawler();
newPageContent = new StringBuffer();

}

private String render (boolean isSuite) throws Exception {
this.is8uite = isSuite;
if (isTestPage())
includeSetupAndTeardownPages () ;
return pageData.getHtml();
}

private boolean isTestPage() throws Exception {
return pageData.hasAttribute("Test");
}

private void includeSetupAndTeardownPages() throws Exception {
includeSetupPages () ;
includePageContent () ;
includeTeardownPages () ;
updatePageContent () ;

SetupTeardownIncluder

51

Listing 3-7 (continued)
SetupTeardownIncluder.java

private void includeSetupPages() throws Exception {
if (isSuite)
includeSuiteSetupPage();
includeSetupPage();
}

private void includeSuiteSetupPage() throws Exception {
include (SuiteResponder.SUITE_SETUP_NAME, "-setup");
}

private void includeSetupPage() throws Exception {
include("SetUp", "-setup");
}

private void includePageContent () throws Exception {
newPageContent.append (pageData.getContent ());
}

private void includeTeardownPages() throws Exception {
includeTeardownPage() ;
if (isSuite)
includeSuiteTeardownPage () ;

}

private void includeTeardownPage() throws Exception {
include ("TearDown", "-teardown");

}

private void includeSuiteTeardownPage() throws Exception {
include (SuiteResponder.SUITE_TEARDOWN_NAME, "-teardown");
}

private void updatePageContent () throws Exception {
pageData.setContent (newPageContent.toString());
}

private void include(String pageName, String arg) throws Exception {
WikiPage inheritedPage = findInheritedPage(pageliame);
if ({inheritedPage != null) {
String pagePathName = getPathNameForPage (inheritedPage);
buildIncludeDirective (pagePathName, arg);
}
}

private WikiPage findInheritedPage (String pagelName) throws Exception {
return PageCrawlerImpl.getInheritedPage (pagelame, tectPage);
}

private String getPathNameForPage (WikiPage page) throws Exception {
WikiPagePath pagePath = pageCrawler.getFullPath(page);
return PathParser.render (pagePath);

}

private void buildIncludeDirective(String pagePathName, String arg) {
newPageContent
.append ("\n'include ")

52 Chapter 3: Functions

Bibliography

[KP78]: Kernighan and Plaugher, The Elements of Programming Style, 2d. ed., McGraw-
Hill, 1978.

[PPP02]: Robert C. Martin, Agile Software Development: Principles, Patterns, and Prac-
tices, Prentice Hall, 2002.

[GOF]: Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al.,
Addison-Wesley, 1996.

[PRAG]: The Pragmatic Programmer, Andrew Hunt, Dave Thomas, Addison-Wesley,
2000.

[SP72]: Structured Programming, O.-]. Dahl, E. W, Dijkstra, C. A. R, Hoare, Academic
Press, London, 1972.

Good Comments 55

Comments Do Not Make Up for Bad Code

One of the more common motivations for writing comments is bad code. We write a mod-
ule and we know it is confusing and disorganized. We know its a mess. So we say to our-
selves, “Ooh, I'd better comment that!”” No! You'd better clean it!

Clear and expressive code with few comments is far superior to cluttered and complex
code with lots of comments. Rather than spend your time writing the comments that
explain the mess you’ve made, spend it cleaning that mess.

Explain Yourself in Code

There are certainly times when code makes a poor vehicle for explanation. Unfortunately,
many programmers have taken this to mean that code is seldom, if ever, a good means for
explanation. This is patently false. Which would you rather see? This:

/! Check to see if the employee is eligible for full benefits

if ((employee.flags & HOURLY_FLAG) &&
[employee.age > 65))

Or this?
if (employee.isEligibleForFullBenefits())

It takes only a few seconds of thought to explain most of your intent in code. In many
cases it’s simply a matter of creating a function that says the same thing as the comment
you want to write.

Good Comments

Some comments are necessary or beneficial. We’ll look at a few that I consider worthy of
the bits they consume. Keep in mind, however, that the only truly good comment is the
comment you found a way not to write.

Legal Comments

Sometimes our corporate coding standards force us to write certain comments for legal
reasons. For example, copyright and authorship statements are necessary and reasonable
things to put into a comment at the start of each source file.

Here, for example, is the standard comment header that we put at the beginning of
every source file in FitNesse. I am happy to say that our IDE hides this comment from act-
ing as clutter by automatically collapsing it.

// Copyright (C) 2003,2004,2005 by Object Mentor, Inc. All rights reserved.
// Released under the terms of the GNU General Public License version 2 or later.

56 Chapter 4: Comments

Comments like this should not be contracts or legal tomes. Where possible, refer to a stan-
dard license or other external document rather than putting all the terms and conditions
into the comment.

Informative Comments

It is sometimes useful to provide basic information with a comment. For example, con-
sider this comment that explains the return value of an abstract method:

// Returns an instance of the Responder being tested.

protected abstract Responder responderInstance();
A comment like this can sometimes be useful, but it is better to use the name of the func-
tion to convey the information where possible. For example, in this case the comment
could be made redundant by renaming the function: responderBeingTested,

Here’s a case that’s a bit better:

// format matched kk:mm:ss EEE, MMM dd, yyyy
Pattern timeMatcher = Pattern.compile(
"AAERANG* AR Vwr, \wr ANdF, AR

In this case the comment lets us know that the regular expression is intended to match a
time and date that were formatted with the simpleDateformat. format function using the
specified format string. Still, it might have been better, and clearer, if this code had been
moved to a special class that converted the formats of dates and times. Then the comment
would likely have been superfluous.

Explanation of Intent

Sometimes a comment goes beyond just useful information about the implementation and
provides the intent behind a decision. In the following case we see an interesting decision
documented by a comment. When comparing two objects, the author decided that he
wanted to sort objects of his class higher than objects of any other.

public int compareTo(Object o)
{
if(o instanceof WikiPagePath)
{
WikiPagePath p = (WikiPagePath) o;
String compressedName = StringUtil.join(names, "");
String compressedArgumentName = StringUtil.jein(p.names, "");
return compressedName.compareTo (compressedArgumentName) ;
}
return 1; // we are greater because we are the right type.

}

Here’s an even better example. You might not agree with the programmer’s solution to
the problem, but at least you know what he was trying to do.
public void testConcurrentAddWidgets() throws Exception {
WidgetBuilder widgetBuilder =
new WidgetBuilder (new Class[]{BoldWidget.class});

Good Comments 57

String text = "'''bold text'''";
ParentWidget parent =
new BoldWidget (new MockWidgetRoot (), "''‘'bold text'''");
AtomicBoolean faillFlag = new AtomicBoolean();
failFlag.set (false);

//This is our best attempt to get a race condition
I /by creating large number of threads.
for (int 1 = 0; 1 < 25000; 1++4) {
WidgetBuilderThread widgetBuilderThread =
new WidgetBuilderThread(widgetBuilder, text, parent, failFlag);
Thread thread = new Thread(widgetBullderThread);
thread.start{);

—

assertEquals(false, failFlag.get());

Clarification

Sometimes it is just helpful to translate the meaning of some obscure argument or return
value into something that’s readable. In general it is better to find a way to make that argu-
ment or return value clear in its own right; but when its part of the standard library, or in
code that you cannot alter, then a helpful clarifying comment can be useful.

public void testCompareTo() throws Exception

{

|
I

WikiPagePath a = PathParser.parse("Paged");
WikiPagePath ab = PathParser.parse("PageA.PageB"};
WikiPagePath b = PathParser.parse("PageB");

WikiPagePath aa = PathParser.parse("PagehA.Pageh");
WikiPagePath bb = PathParser.parse("PageB.PageB");
WikiPagePath ba = PathParser.parse("PageB.Pageld");

ssertTrue (a.compareTo(a) == 0); // a == a
sertTrJe(.compareTo(b) != 0); // al=Dh
ssertTrue (ab.compareT o(an) == 0); // ab == ab
sgertTrue (a.compareTo(b) == -1}; // a<hb
sgertTrue (aa.compareTo(ab) == -1); // aa < ab
sertTrJe(ba compareTo (bb) == -1); // ba < bb
ssertTrue (b.compareTo(a) == 1); /b a
sertTrJe(aD compareTo(aa) == 1); // ab > aa
assertTrue (bb.compareTo(ba) == 1); // bb > ba

There is a substantial risk, of course, that a clarifying comment is incorrect. Go
through the previous example and see how difficult it is to verify that they are correct. This
explains both why the clarification is necessary and why it’s risky. So before writing com-
ments like this, take care that there is no better way, and then take even more care that they
are accurate.

