LODE <

COMPLETE

=

el

(_
G f")

olEeve

Two-time {inner of the Sortware\Development Viagazine Jolt Award

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2004 by Steven C. McConnell

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
MecConnell. Steve
Code Complete / Steve McConnell.--2nd ed.
p.cm.
Includes index.
ISBN 0-7356-1967-0
1. Computer Software--Development--Handbooks, manuals. ete. I. Title.

QAT76.76 DATM39 2004
005 1--de22 2004049981

Printed and bound in the United States of America.
ISBN: 978-0-7356-1967-8
Twenty-fourth Printing: February 2015

Distributed in Canada by H.B. Fenn and Company Ltd. A CIP catalogue record for this book is available from
the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information

about international editions, contact vour local Microsoft Corporation office or contact Microsoft Press International
directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput(a
microsoft.com.

Microsoft, Microsoft Press, PowerPoint, Visual Basic, Windows, and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Other product and company names
mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company. organization, product, domain name, e-mail
address, logo. person, place. or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory. or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers. or distributors
will be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editors: Linda Engelman and Robin Van Steenburgh
Project Editor: Devon Musgrave

Indexer: Bill Myers

Principal Desktop Publisher: Carl Diltz

Body Part No. X10-53130
[2014-03-2]

Microsoft

Code Complete, Second Edition

Steve McConnell

Contents at a Glance

Part |

A wWwN

Part Il

O 00N O

Part Il
10
11
12
13

Part IV
14
15
16
17
18
19

Laying the Foundation

Welcome to Software Construction 3
Metaphors for a Richer Understanding of Software Development. 9
Measure Twice, Cut Once: Upstream Prerequisites. 23
Key Construction Decisionscoiiiiiiiiiiiiinnnnnn.. 61

Creating High-Quality Code

Designin Constructionottt iiineneenn. 73
Working Classesottt e 125
High-Quality Routines. ittt 161
Defensive Programmingouuiiiiiiniinennnnennnn. 187
The Pseudocode Programming Process. 215
Variables

General Issues in Using Variables. 237
The Power of Variable Names 259
Fundamental Data Typescoouiiiiiiiiiin ... 291
Unusual Data Typesottt e it e e 319
Statements

Organizing Straight-LineCode. 347
Using Conditionals. i 355
Controlling LooPps ... ovv it e 367
Unusual Control Structures. i 391
Table-Driven Methods. i i 411
General Control Issues. ittt 431

vii

viii

Part V
20
21
22
23
24
25
26

Part VI
27
28
29
30

Part VII
31
32
33
34
35

Table of Contents

Code Improvements

The Software-Quality Landscape. 463
Collaborative Construction.o, 479
DeveloperTestingottt i i iie 499
Debugging e e 535
Refactoringo e e e e 563
Code-Tuning Strategies.ttt 587
Code-Tuning Techniques it iiiinininannn. 609
System Considerations

How Program Size Affects Construction 649
Managing Construction i it 661
Integration e 689
Programming Tools. ... it it ii i 709
Software Craftsmanship

Layoutand Style. 729
Self-DocumentingCode oottt 777
Personal Character.........t 819
Themes in Software Craftsmanship........... 837
Where to Find More Information 855

Table of Contents

Preface e e e e e Xix
Acknowledgments. oottt i i i e e e a e Xxvii

List of Checklistst s XXix

List of Tables.ot i i e it i e e e XXXi

List Of Figures. i i e ettt e ettt a s XXXiii

part | Laying the Foundation

1 Welcome to Software Constructiono, 3
1.1 What s Software Construction?. 3

1.2 Why Is Software Construction Important?. 6
13HowtoRead ThisBook.............. i, 8

2 Metaphors for a Richer Understanding of Software Development. 9
2.1 The Importance of Metaphors. i 9

2.2 How to Use Software Metaphors. o i i 11

2.3 Common Software Metaphors. 13

3 Measure Twice, Cut Once: Upstream Prerequisites. 23
3.1 Importance of Prerequisites. 24

3.2 Determine the Kind of Software You're Working On. 31

3.3 Problem-Definition Prerequisite i 36

3.4 Requirements Prerequisite e 38

3.5 Architecture Prerequisite e 43

3.6 Amount of Time to Spend on Upstream Prerequisites 55

4 Key Construction Decisions oiiiiiiiiinenn.... 61
4.1 Choice of Programming Language.o 61

4.2 Programming ConVeNtioNSttt e i e 66

4.3 Your Location on the Technology Wave i, 66

4.4 Selection of Major Construction Practices. ..., .. 69

X Table of Contents

part I Creating High-Quality Code

5 DesigninConstruction...............coviiiiinennennannaa... 73

5.1 Design Challenges. .. oot e e 74
5.2 Key Design Concepts 77
5.3 Design Building Blocks: Heuristics i 87
5.4 Design PractiCes.t 110
5.5 Comments on Popular Methodologies, 118
6 Working Classesooitin ittt e e it 125
6.1 Class Foundations: Abstract Data Types (ADTs), 126
6.2 Good Class Interfaces i e 133
6.3 Design and Implementation Issues. o i i 143
6.4 Reasons to Create a Class. ot e 152
6.5 Language-Specific Issues e 156
6.6 Beyond Classes: Packages 156
7 High-Quality Routines.ottt 161
7.1 Valid Reasonsto CreateaRoutine, 164
7.2 Design atthe Routine Level. i e 168
7.3 Good Routing Namesottt s 171
74 How Long CanaRoutine Be? 173
7.5 How to Use Routine Parameters.o 174
7.6 Special Considerations in the Use of Functions 181
7.7 Macro Routines and Inline ROUtines.ooiiiitiiii e, 182
8 Defensive Programming.ottt iinninnenn .. 187
8.1 Protecting Your Program from Invalid Inputs. 188
8.2 At ONS o o e 189
8.3 Error-Handling Techniques 194
B4 EXCEPTIONS. . o oo e 198
8.5 Barricade Your Program to Contain the Damage Caused by Errors.......... 203
8.6 Debugging Aids. 205
8.7 Determining How Much Defensive Programming to Leave in
Production Code 209

8.8 Being Defensive About Defensive Programming.......................... 210

Table of Contents xi

9 The Pseudocode Programming Process. 215
9.1 Summary of Steps in Building Classes and Routines 216
9.2 Pseudocode for Pros 218
9.3 Constructing Routines by Usingthe PPP 220
9.4 Alternatives tothe PPP e 232

Part Il Variables

10 General Issues in Using Variables. 237
101 Data Literacy. . . oo 238
10.2 Making Variable Declarations Easy 239
10.3 Guidelines for Initializing Variables. L 240
104 SCOPE . . oo 244
10,5 PerSiStENCE L.t e 251
10.6 Binding Time. . o oot 252
10.7 Relationship Between Data Types and Control Structures 254
10.8 Using Each Variable for Exactly One Purpose............................ 255
11 The Power of VariableNames, 259
11.1 Considerations in Choosing Good Names.o, 259
11.2 Naming Specific Typesof Data e 264
11.3 The Power of Naming Conventions i, . 270
11.4 Informal Naming Conventionso it . 272
11.5 Standardized Prefixest 279
11.6 Creating Short Names That Are Readable............ 282
117 Kinds of Namesto Avoido e 285
12 Fundamental Data Typesot iiinenn... 291
121 Numbersin General. i e 292
12 2 INtegerS o e 293
12.3 Floating-Point NUmMbers. o e e 295
12.4 Characters and StriNgS .. .ot e 297
125 Boolean Variables e 301
12,6 Enumerated TYPeS. . .ttt e 303
127 Named Constantso 307
L 8 AT Y. o o 310

12.9 Creating Your Own Types (Type Aliasing)coo i 311

xii

13

Table of Contents

Unusual Data Types.t ettt 319
130 SErUCEUNES . . 319
13 2 POINEerS. o 323
133 Global Data 335

Part IV Statements

14

15

16

17

18

19

Organizing Straight-LineCodet 347
14.1 Statements That Must Be in a SpecificOrder............................ 347
14.2 Statements Whose COrder Doesn't Matter. 351

Using Conditionals.cciiiiiiiiiie i iiianannns 355
18 i Statements ... 355
15.2 case Statements. oot e 361

Controlling Loops e 367
16.1 Selecting the Kind of LOOpo 367
16.2 Controlling the Loopo e 373
16.3 Creating Loops Easily—From the Inside Qut 385
16.4 Correspondence Between Loopsand Arraysciiiivn... 387

Unusual Control Structures i, 391
17.1 Multiple Returns froma Routineo 391
17,2 RECUISION ot e e e e e 393
17.3 GOt0 . oo 398
17.4 Perspective on Unusual Control Structures. 408

Table-Driven Methods. 411
18.1 General Considerations in Using Table-Driven Methods 411
182 Direct Access Tableso i 413
18.3 Indexed Access Tables i e 425
18.4 Stair-Step Access Tables. 426
18.5 Other Examples of Table Lookups ... 429

General Control Issues.o ittt 431
19.1 Boolean EXpressions 431

19.2 Compound Statements (Blocks) e 443

Part V

20

21

22

23

Table of Contents xiii

19.3 NUll Statementso e 444
19.4 Taming Dangerously Deep Nesting e 445
19.5 A Programming Foundation: Structured Programming 454
19.6 Control Structures and Complexity. 456

Code Improvements

The Software-Quality Landscape.............. ..., 463
20.1 Characteristics of Software Quality.........., 463
20.2 Techniques for Improving Software Quality 466
20.3 Relative Effectiveness of Quality Techniques............................. 469
20.4 When to Do Quality AssUranCettt 473
20.5 The General Principle of Software Quality. 474

Collaborative Construction.ttt 479
21.1 Overview of Collaborative Development Practices 480
21.2 Pair Programmingottt e e e e e 483
21.3 Formal Inspections. 485
21.4 Other Kinds of Collaborative Development Practices 492

Developer Testingottt 499
22.1 Role of Developer Testing in Software Quality........................... 500
22.2 Recommended Approach to Developer Testing 503
223 Bag of Testing Trickst e e 505
224 Typical Brrors ... 517
22.5 Test-Support TOOIs.o 523
226 Improving Your Testingottt 528
22.7 Keeping Test Recordst 529

Debugging i e 535
23.1 Overview of Debugging ISSUES e 535
23.2Finding a Defect. i e 540
233 Fixing a Defect e 550
23.4 Psychological Considerations in Debugging.................oiiiein.., 554

23.5 Debugging Tools—OQbvious and Not-So-Obvious. 556

Xiv Table of Contents

24 Refactoringcooiiiii i e e 563
24.1 Kinds of Software Evolution. 564
24.2 Introduction to Refactoring.o 565
24.3 Specific Refactorings. e 571
24.4 Refactoring Safelyo e 579
24.5 Refactoring Strategieso e 582
25 Code-Tuning Strategies.oiiiiiiiiniieiiiiiiinnen.n. 587
25.1 Performance OVeIVIEWottt e et 588
25.2 Introductionto Code TUNINGot 591
25.3 Kinds of Fat and Molasses e 597
254 MeasUremMeNnt.t e e 603
255 teration ... 605
25.6 Summary of the Approachto Code Tuning 606
26 Code-Tuning Techniques iiiiiiiiiiiinn.n. 609
26, L LOgiC o e e 610
307 e Yo o 616
26.3 Data Transformations.ot e e 624
26,4 EXPressiONS . ..ot 630
26.5 ROULINGS ... 639
26.6 Recoding in a Low-Level Language 640
26.7 The More Things Change, the More They Stay the Same 643

part vi System Considerations

27 How Program Size Affects Construction 649
27.1 Communication and SizZe. ... e 650
27.2 Range of Project Sizes oo e 651
27.3 Effect of Project Size on Errors 651
27 .4 Effect of Project Size on Productivity. 653

27.5 Effect of Project Size on Development Activities......................... 654

Table of Contents XV

28 Managing Constructionc.coiiiiiiiiiiinennennnnn. 661
28.1 Encouraging Good Coding. vvt et e 662
28.2 Configuration Management.ttt 664
28.3 Estimating a Construction Schedule. 671
284 Measurement 677
28.5 Treating Programmers as People i 680
28.6 Managing Your Manager. ittt 686
29 Integrationttt i e 689
29.1 Importance of the Integration Approach., 689
29.2 Integration Frequency—Phased or Incremental?......................... 691
29.3 Incremental Integration Strategies i 694
29.4 Daily Build and Smoke Test 702
30 Programming Tools........ i 709
301 Design Toolso 710
30.2 Source-Code TOOIS.ot 710
30.3 Executable-Code TOOIS oot 716
30.4 Tool-Oriented Environmentst e 720
30.5 Building Your Own Programming Tools i, 721
30.6 Tool Fantasyland i e 722

part vil Software Craftsmanship

31 Layoutand Style. e 729
311 Layout Fundamentals 730
31.2 Layout TeChNiqUeS.ottt e e e e 736
313 Layout Styles.t e 738
31.4 Laying Out Control Structures. ...t e 745
315 Laying Out Individual Statements. i 753
31.6 Laying Out Commentst e 763
31.7 Laying OUt ROULINeS . ..o e e 766

31.8 Laying Out Classes. . ..o ve ettt e 768

xvi Table of Contents

32 Self-DocumentingCode ...ttt 777
321 External Documentation 777
32.2 Programming Style as Documentation L 778
323 ToCommentor NottoComment 781
32.4 Keys to Effective Comments 785
32.5 Commenting Techniques. e 792
326 IEEE Standardso 813
33 Personal Character.ttt 819
33.1 Isn't Personal Character Off the Topic?................ .. il 820
33.2 Intelligence and Humility. 821
33 3 CUNIOSIY oottt e e 822
334 Intellectual Honesty i e 826
33.5 Communication and Cooperationoo it 828
33.6 Creativity and Discipline. o 829
337 LaZINesSS . .. 830
33.8 Characteristics That Don't Matter As Much As You Might Think 830
3309 HabItS . . 833
34 Themes in Software Craftsmanship. 837
34.1 Conquer Complexity. 837
342 Pick YOUF PrOCESS. . .. v e e e et e e e e e e 839
34.3 Write Programs for People First, Computers Second 841
34.4 Program into Your Language, Notin It........... 843
34.5 Focus Your Attention with the Help of Conventions. 844
34.6 Program in Terms of the Problem Domain.............................. 845
34.7 Watch for Falling Rocks o 848
34.8 lterate, Repeatedly, Again and Again i, 850

34.9 Thou Shalt Rend Software and Religion Asunder 851

Table of Contents xvii

35 Where to Find More Information 855

35.1 Information About Software Construction 856
35.2 Topics Beyond Construction i 857
353 Periodicals. o 859
35.4 A Software Developer's Reading Plan., 860
35.5 Joining a Professional Organization............. 862
Bibliography. oo e et e e 863
3T = G 885

Copyrighted m

Copyrighted material

Preface

The gap between the best software engineering practice and the average practice
is very wide—perhaps wider than in any other engineering discipline. A tool that
disseminates good practice would be important.

—Fred Brooks

My primary concern in writing this book has been to narrow the gap between the
knowledge of industry gurus and professors on the one hand and common commer-
cial practice on the other. Many powerful programming techniques hide in journals

and academic papers for years before trickling down to the programming public.

Although leading-edge software-development practice has advanced rapidly in recent
years, common practice hasn’t. Many programs are still buggy, late, and over budget,
and many fail to satisfy the needs of their users. Researchers in both the software
industry and academic settings have discovered elfective practices that eliminate most
of the programming problems that have been prevalent since the 1970s. Because
these practices aren’t often reported outside the pages of highly specialized technical
journals, however, most programming organizations aren’t yet using them today.
Studies have found that it typically takes 5 to 15 years or more for a research develop-
ment to make its way into commercial practice (Raghavan and Chand 1989, Rogers
1995, Parnas 1999). This handbook shortcuts the process, making key discoveries
available to the average programmer now.

Who Should Read This Book?

The research and programming experience collected in this handbook will help you
to create higher-quality software and to do your work more quickly and with fewer
problems. This book will give you insight into why you've had problems in the past
and will show you how to avoid problems in the future. The programming practices
described here will help you keep big projects under control and help you maintain
and modify software successfully as the demands of your projects change.

Experienced Programmers

This handbook serves experienced programmers who want a comprehensive, easy-to-
use guide to software development. Because this book focuses on construction, the
most familiar part of the software life cycle, it makes powerlul software development
techniques understandable to self-taught programmers as well as to programmers
with formal training.

Xix

XX Preface

Technical Leads

Many technical leads have used Code Complete to educate less-experienced program-
mers on their teams. You can also use it to fill your own knowledge gaps. If you're an
experienced programmer, you might not agree with all my conclusions (and I would be
surprised if you did), but if you read this book and think about each issue, only rarely
will someone bring up a construction issue that you haven’t previously considered.

Self-Taught Programmers

Students

Where Else

If you haven’t had much formal training, you're in good company. About 50,000 new
developers enter the profession each year (BLS 2004, Hecker 2004), but only about
35,000 software-related degrees are awarded each year (NCES 2002). From these fig-
ures it's a short hop to the conclusion that many programmers don'’t receive a formal
education in software development. Self-taught programmers are found in the emerg-
ing group of professionals—engineers, accountants, scientists, teachers, and small-
business owners—who program as part of their jobs but who do not necessarily view
themselves as programmers. Regardless of the extent of your programming educa-
tion, this handbook can give you insight into effective programming practices.

The counterpoint to the programmer with experience but little formal training is the
fresh college graduate. The recent graduate is often rich in theoretical knowledge but
poor in the practical know-how that goes into building production programs. The
practical lore of good coding is often passed down slowly in the ritualistic tribal
dances of software architects, project leads, analysts, and more-experienced program-
mers. Even more often, it's the product of the individual programmer’s trials and
errors. This book is an alternative to the slow workings of the traditional intellectual
potlatch. Tt pulls together the helpful tips and effective development strategies previ-
ously available mainly by hunting and gathering from other people’s experience. It’s a
hand up for the student making the transition from an academic environment to a
professional one.

Can You Find This Information?

This book synthesizes construction techniques from a variety of sources. In addition
to being widely scattered, much of the accumulated wisdom about construction has
resided outside written sources for years (Hildebrand 1989, McConnell 1997a).
There is nothing mysterious about the effective, high-powered programming tech-
niques used by expert programmers. In the day-to-day rush of grinding out the latest
project, however, few experts take the time to share what they have learned. Conse-

Preface xxi

quently, programmers may have difficulty finding a good source of programming
information.

The techniques described in this book fill the void after introductory and advanced
programming texts. After you have read Introduction to Java, Advanced Java, and
Advanced Advanced Java, what book do you read to learn more about programming?
You could read books about the details of Intel or Motorola hardware, Microsoft Win-
dows or Linux operating-system functions, or another programming language—you
can’t use a language or program in an environment without a good reference to such
details. But this is one of the few books that discusses programming per se. Some of
the most beneficial programming aids are practices that you can use regardless of the
environment or language you're working in. Other books generally neglect such prac-
tices, which is why this book concentrates on them.

The information in this book is distilled from many sources, as shown below. The
only other way to obtain the information you'll find in this handbook would be to
plow through a mountain of books and a few hundred technical journals and then
add a significant amount of real-world experience. If you've already done all that, you
can still benefit from this book’s collecting the information in one place for easy refer-
ence.

Key Benefits of This Handbook

Whatever your background, this handbook can help you write better programs in less
time and with fewer headaches.

Complete software-construction reference This handbook discusses general aspects
of construction such as software quality and ways to think about programming. Tt gets
into nitty-gritty construction details such as steps in building classes, ins and outs of
using data and control structures, debugging, refactoring, and code-tuning tech-
niques and strategies. You don’t need to read it cover to cover to learn about these top-
ics. The book is designed to make it easy to find the specific information that interests
you.

xxii

Preface

Ready-to-use checklists This book includes dozens of checklists you can use to
assess your software architecture, design approach, class and routine quality, variable
names, control structures, layout, test cases, and much more.

State-of-the-art information This handbook describes some of the most up-to-date
techniques available, many of which have not yet made it into common use. Because
this book draws from both practice and research, the techniques it describes will
remain useful for years.

Larger perspective on software development This book will give you a chance to rise
above the [ray of day-to-day fire fighting and figure out what works and what doesn’t.
Few practicing programmers have the time to read through the hundreds of books
and journal articles that have been distilled into this handbook. The research and real-
world experience gathered into this handbook will inform and stimulate your think-
ing about your projects, enabling you to take strategic action so that you don’t have to
fight the same battles again and again.

Absence of hype Some software books contain 1 gram of insight swathed in 10
grams of hype. This book presents balanced discussions of each technique’s strengths
and weaknesses. You know the demands of your particular project better than anyone
else. This book provides the objective information you need to make good decisions
about your specific circumstances.

Concepts applicable to most common languages This book describes techniques
you can use to get the most out of whatever language you're using, whether it's C++,
C#, Java, Microsoft Visual Basic, or other similar languages.

Numerous code examples The book contains almost 500 examples of good and bad
code. I've included so many examples because, personally, I learn best from exam-
ples. I think other programmers learn best that way too.

The examples are in multiple languages because mastering more than one language is
often a watershed in the career of a professional programmer. Once a programmer
realizes that programming principles transcend the syntax of any specific language,
the doors swing open to knowledge that truly makes a difference in quality and pro-
ductivity.

To make the multiple-language burden as light as possible, I've avoided esoteric lan-
guage features except where they're specifically discussed. You don’t need to under-
stand every nuance of the code fragments to understand the points they're making. If
you focus on the point being illustrated, you'll find that you can read the code regard-
less of the language. I've tried to make your job even easier by annotating the signifi-
cant parts of the examples.

Access to other sources of information This book collects much of the available
information on software construction, but it's hardly the last word. Throughout the

cc2e.com/1234

Preface xxiii

chapters, “Additional Resources” sections describe other books and articles you can
read as you pursue the topics you find most interesting.

Book website Updated checklists, books, magazine articles, Web links, and other
content are provided on a companion website at cc2e.com. To access information
related to Code Complete, 2d ed., enter ccZe.com/ followed by a four-digit code, an
example of which is shown here in the left margin. These website references appear
throughout the book.

Why This Handbook Was Written

The need for development handbooks that capture knowledge about effective devel-
opment practices is well recognized in the software-engineering community. A report
of the Computer Science and Technology Board stated that the biggest gains in soft-
ware-development quality and productivity will come from codifying, unifving, and
distributing existing knowledge about elfective soltware-development practices
(CSTB 1990, McConnell 1997a). The board concluded that the strategy for spreading
that knowledge should be built on the concept of software-engineering handbooks.

The Topic of Construction Has Been Neglected

At one time, software development and coding were thought to be one and the same.
But as distinct activities in the sofm-'are—developmenl life cycle have been identified,
some of the best minds in the field have spent their time analyzing and debating meth-
ods ol project management, requirements, design, and testing. The rush to study
these newly identified areas has left code construction as the ignorant cousin of soft-
ware development.

Discussions about construction have also been hobbled by the suggestion that treat-
ing construction as a distinct software development activity implies that construction
must also be treated as a distinct phase. In reality, software activities and phases don’t
have to be set up in any particular relationship to each other, and it’s useful to discuss
the activity of construction regardless of whether other software activities are per-
formed in phases, in iterations, or in some other way.

Construction Is Important

Another reason construction has been neglected by researchers and writers is the mis-
taken idea that, compared to other software-development activities, construction is a
relatively mechanical process that presents little opportunity for improvement. Noth-
ing could be further from the truth.

Xxiv Preface

Code construction typically makes up about 65 percent of the effort on small projects
and 50 percent on medium projects. Construction accounts for about 75 percent of

the errors on small projects and 50 to 75 percent on medium and large projects. Any
activity that accounts for 50 to 75 percent of the errors presents a clear opportunity

for improvement. (Chapter 27 contains more details on these statistics.)

Some commentators have pointed out that although construction errors account for a
high percentage of total errors, construction errors tend to be less expensive to fix
than those caused by requirements and architecture, the suggestion being that they
are therefore less important. The claim that construction errors cost less to fix is true
but misleading because the cost of not fixing them can be incredibly high. Researchers
have found that small-scale coding errors account for some of the most expensive soft-
ware errors of all time, with costs running into hundreds of millions of dollars (Wein-
berg 1983, SEN 1990). An inexpensive cost to fix obviously does not imply that fixing
them should be a low priority.

The irony of the shift in focus away from construction is that construction is the only
activity that's guaranteed to be done. Requirements can be assumed rather than devel-
oped; architecture can be shortchanged rather than designed; and testing can be
abbreviated or skipped rather than fully planned and executed. But if there’s going to
be a program, there has to be construction, and that makes construction a uniquely
fruitful area in which to improve development practices.

No Comparable Book Is Available

When art critics get together
they talk about Form and
Structure and Meaning.
When artists get together
they talk about where you
can buy cheap turpentine.
—pPablo Picasso

In light of construction’s obvious importance, I was sure when 1 conceived this book
that someone else would already have written a book on effective construction prac-
tices. The need for a book about how to program effectively seemed obvious. But I
found that only a few books had been written about construction and then only on
parts of the topic. Some had been written 15 years or more earlier and employed rel-
atively esoteric languages such as ALGOL, PL/1, Ratfor, and Smalltalk. Some were
written by professors who were not working on production code. The professors
wrote about techniques that worked for student projects, but they often had little idea
of how the techniques would play out in full-scale development environments. Still
other books trumpeted the authors’ newest [avorite methodologies but ignored the
huge repository of mature practices that have proven their effectiveness over time.

In short, I couldn’t find any book that had even attempted to capture the body of prac-
tical techniques available from professional experience, industry research, and aca-
demic work. The discussion needed to be brought up to date [or current
programming languages, object-oriented programming, and leading-edge develop-
ment practices. It seemed clear that a book about programming needed to be written
by someone who was knowledgeable about the theoretical state of the art but who
was also building enough production code to appreciate the state of the practice. I

Preface XXV

conceived this book as a full discussion of code construction—from one programmer
to another.

Author Note

I welcome your inquiries about the topics discussed in this book, your error reports,
or other related subjects. Please contact me at stevemcc@construx.com, or visit my
website at www.stevencconnell.com.

LTialt.

mspinput@microsoft.com

Copyrighted material

Acknowledgments

Abook is never really written by one person (at least none of my books are). A second edition
is even more a collective undertaking.

I'd like to thank the people who contributed review comments on significant portions of the
book: Hakon Agﬁstsson, Scott Ambler, Will Barns, William D. Bartholomew, Lars Bergstrom,
lan Brockbank, Bruce Butler, Jay Cincotta, Alan Cooper, Bob Corrick, Al Corwin, Jerry Deville,
Jon Eaves, Edward Estrada, Steve Gouldstone, Owain Griffiths, Matthew Harris, Michael
Howard, Andy Hunt, Kevin Hutchison, Rob Jasper, Stephen Jenkins, Ralph Johnson and his
Software Architecture Group at the University of Illinois, Marek Konopka, Jelf Langr, Andy
Lester, Mitica Manu, Steve Mattingly, Gareth McCaughan, Robert McGovern, Scott Meyers,
Gareth Morgan, Matt Peloquin, Bryan Pflug, Jeffrey Richter, Steve Rinn, Doug Rosenberg,
Brian St. Pierre, Diomidis Spinellis, Matt Stephens, Dave Thomas, Andy Thomas-Cramer, John
Vlissides, Pavel Vozenilek, Denny Williford, Jack Woolley, and Dee Zsombor.

Hundreds of readers sent comments about the first edition, and many more sent individual
comments about the second edition. Thanks to everyone who took time to share their reac-
tions to the book in its various forms.

Special thanks to the Construx Soltware reviewers who lormally inspected the entire manu-
script: Jason Hills, Bradey Honsinger, Abdul Nizar, Tom Reed, and Pamela Perrott. I was truly
amazed at how thorough their review was, especially considering how many eyes had scruti-
nized the book before they began working on it. Thanks also to Bradey, Jason, and Pamela for
their contributions to the cc2e.com website.

Working with Devon Musgrave, project editor for this book, has been a special treat. I've
worked with numerous excellent editors on other projects, and Devon stands out as espe-
cially conscientious and easy to work with. Thanks, Devon! Thanks to Linda Engleman who
championed the second edition; this book wouldn’t have happened without her. Thanks also
to the rest of the Microsolt Press staff, including Robin Van Steenburgh, Elden Nelson, Carl
Diltz, Joel Panchot, Patricia Masserman, Bill Myers, Sandi Resnick, Barbara Norfleet, James
Kramer, and Prescott Klassen.

I'd like to remember the Microsoft Press staff that published the first edition: Alice Smith,
Arlene Myers, Barbara Runyan, Carel Luke, Connie Little, Dean Holmes, Eric Stroo, Erin
O'Connor, Jeannie McGivern, Jeff Carey, Jennifer Harris, Jennifer Vick, Judith Bloch,
Katherine Erickson, Kim Eggleston, Lisa Sandburg, Lisa Theobald, Margarite Hargrave, Mike
Halvorson, Pat Forgette, Peggy Herman, Ruth Pettis, Sally Brunsman, Shawn Peck, Steve Mur-
ray, Wallis Bolz, and Zaafar Hasnain.

Xxvii

xxviii

Acknowledgments

Thanks to the reviewers who contributed so significantly to the first edition: Al Corwin, Bill
Kiestler, Brian Daugherty, Dave Moore, Greg Hitchcock, Hank Meuret, Jack Woolley, Joey
Wyrick, Margot Page, Mike Klein, Mike Zevenbergen, Pat Forman, Peter Pathe, Robert L.
Glass, Tammy Forman, Tony Pisculli, and Wayne Beardsley. Special thanks to Tony Garland
for his exhaustive review: with 12 vears’ hindsight, I appreciate more than ever how excep-
tional Tony’s several thousand review comments really were.

Checklists

Requirements 42

Architecture 54

Upstream Prerequisites 59

Major Construction Practices 69

Design in Construction 122

Class Quality 157

High-Quality Routines 185

Defensive Programming 211

The Pseudocode Programming Process 233
General Considerations In Using Data 257
Naming Variables 288

Fundamental Data 316

Considerations in Using Unusual Data Types 343
Organizing Straight-Line Code 353

Using Conditionals 365

Loops 388

Unusual Control Structures 410
Table-Driven Methods 429
Control-Structure Issues 459

A Quality-Assurance Plan 476

Effective Pair Programming 484

Effective Inspections 491

Test Cases 532

Debugging Reminders 559

Reasons to Refactor 570

Summary of Refactorings 577

Refactoring Safely 584

Code-Tuning Strategies 607

Code-Tuning Techniques 642

XXixX

XXX Checklists

Configuration Management 669
Integration 707

Programming Tools 724

Layout 773

Self-Documenting Code 780
Good Commenting Technique 816

Tables

Table 3-1 Average Cost of Fixing Defects Based on When They're Introduced and
Detected 29

Table 3-2 Typical Good Practices for Three Common Kinds of Software Projects 31
Table 3-3 Effect of Skipping Prerequisites on Sequential and Iterative Projects 33
Table 3-4 Effect of Focusing on Prerequisites on Sequential and Iterative Projects 34

Table 4-1 Ratio of High-Level-Language Statements to Equivalent C Code 62
Table 5-1 Popular Design Patterns 104

Table 5-2 Design Formality and Level of Detail Needed 116

Table 6-1 Variations on Inherited Routines 145

Table 8-1 Popular-Language Support for Exceptions 198

Table 11-1 Examples of Good and Bad Variable Names 261

Table 11-2 Variable Names That Are Too Long, Too Short, or Just Right 262
Table 11-3 Sample Naming Conventions for C++ and Java 277

Table 11-4 Sample Naming Conventions for C 278

Table 11-5 Sample Naming Conventions for Visual Basic 278

Table 11-6 Sample of UDTs for a Word Processor 280

Table 11-7 Semantic Prefixes 280

Table 12-1 Ranges for Different Types of Integers 294

Table 13-1 Accessing Global Data Directly and Through Access Routines 341
Table 13-2 Parallel and Nonparallel Uses of Complex Data 342

Table 16-1 The Kinds of Loops 368

Table 19-1 Transformations of Logical Expressions Under DeMorgan’s Theorems 436
Table 19-2 Techniques for Counting the Decision Points in a Routine 458
Table 20-1 Team Ranking on Each Objective 469

Table 20-2 Defect-Detection Rates 470

Table 20-3 Extreme Programming’s Estimated Defect-Detection Rate 472
Table 21-1 Comparison of Collaborative Construction Techniques 495

Table 23-1 Examples of Psychological Distance Between Variable Names 556
Table 25-1 Relative Execution Time of Programming Languages 600

Table 25-2 Costs of Common Operations 601

XXXi

xxxii

Tables

Table 27-1
Table 27-2
Table 28-1
Table 28-2
Table 28-3

Project Size and Typical Error Density 652
Project Size and Productivity 653

Factors That Influence Software-Project Effort 674
Useful Software-Development Measurements 678

One View of How Programmers Spend Their Time

68l

Figures
Figure 1-1
Figure 1-2

Figure 2-1
Figure 2-2
Figure 2-3

Figure 2-4
Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5
Figure 3-6

Figure 3-7

Figure 5-1

Construction activities are shown inside the gray circle. Construction
focuses on coding and debugging but also includes detailed design, unit
testing, integration testing, and other activities. 4

This book focuses on coding and debugging, detailed design, construction
planning, unit testing, integration, integration testing, and other activities in
roughly these proportions. 5

The letter-writing metaphor suggests that the software process relies on

expensive trial and error rather than careful planning and design. 14
It's hard to extend the farming metaphor to software development
appropriately. 15

The penalty for a mistake on a simple structure is only a little time and
maybe some embarrassment. 17

More complicated structures require more careful planning. 18

The cost to fix a defect rises dramatically as the time from when it’s intro-
duced to when it’s detected increases. This remains true whether the
project is highly sequential (doing 100 percent of requirements and design
up front) or highly iterative (doing 5 percent of requirements and design
up front). 30

Activities will overlap to some degree on most projects, even those that are
highly sequential. 35

On other projects, activities will overlap for the duration of the project. One
key to successful construction is understanding the degree to which prereq-

uisites have been completed and adjusting your approach accordingly. 35

The problem definition lays the foundation for the rest of the programming
process. 37

Be sure you know what you're aiming at before you shoot. 38

Without good requirements, you can have the right general problem but
miss the mark on specific aspects of the problem. 39

Without good software architecture, you may have the right problem but the
wrong solution. It may be impossible to have successful construction. 44

The Tacoma Narrows bridge—an example of a wicked problem. 75

-
-
=

XXX

XXXiv

Figures

Figure 5-2

Figure 5-3
Figure 5-4

Figure 5-5

Figure 5-6

Figure 5-7

Figure 5-8

Figure 5-9

Figure 5-10

Figure 8-1

Figure 8-2

Figure 9-1

Figure 9-2

Figure 9-3

Figure 10-1

Figure 10-2
Figure 10-3

The levels of design in a program. The system (1) is first organized into sub-
systems (2). The subsystems are further divided into classes (3), and the
classes are divided into routines and data (4). The inside ol each routine is
also designed (5). 82

An example ol a system with six subsystems. 83

An example of what happens with no restrictions on intersubsystem
communications. 83

With a few communication rules, you can simplify subsystem interactions
significantly. 84

This billing system is composed of four major objects. The objects have been
simplified for this example. 88

Abstraction allows you to take a simpler view of a complex concept. 90

Encapsulation says that, not only are you allowed to take a simpler view of a
complex concept, you are not allowed to look at any of the details of the
complex concept. What you see is what you get—it’s all you get! 91

A good class interface is like the tip of an iceberg, leaving most of the class
unexposed. 93

G. Polya developed an approach to problem solving in mathematics that’s
also useful in solving problems in software design (Polya 1957). 109

Part of the Interstate-90 floating bridge in Seattle sank during a storm
because the flotation tanks were left uncovered, they filled with water, and
the bridge became too heavy to float. During construction, protecting your-
sell against the small stuff matters more than you might think. 189

Defining some parts of the software that work with dirty data and some that
work with clean data can be an effective way to relieve the majority of the
code of the responsibility for checking for bad data. 204

Details of class construction vary, but the activities generally occur in the
order shown here. 216

These are the major activities that go into constructing a routine. They're
usually performed in the order shown. 217

You'll perform all of these steps as you design a routine but not necessarily
in any particular order. 225

“Long live ime” means that a variable is live over the course of many state-
ments. “Short live time” means it’s live for only a few statements. “Span”
refers to how close together the references to a variable are. 246

Sequential data is data that's handled in a defined order. 254

Selective data allows you to use one piece or the other, but not both. 255

Figure 10-4
Figure 13-1

Figure 13-2

Figure 14-1

Figure 14-2

Figure 17-1

Figure 18-1

Figure 18-2

Figure 18-3
Figure 18-4

Figure 18-5

Figure 19-1
Figure 20-1

Figure 20-2

Figure 22-1

Figure 22-2

Figure 23-1

Figure 24-1

Figures XXXV

Iterative data is repeated. 255

The amount of memory used by each data type is shown by double
lines. 324

An example of a picture that helps us think through the steps involved in
relinking pointers. 329

If the code is well organized into groups, boxes drawn around related sec-
tions don’t overlap. They might be nested. 352

If the code is organized poorly, boxes drawn around related sections
overlap. 353

Recursion can be a valuable tool in the battle against complexity—when used
to attack suitable problems. 394

As the name suggests, a direct-access table allows you to access the table ele-
ment you're interested in directly. 413

Messages are stored in no particular order, and each one is identified with a
message [D. 417

Aside from the Message 1D, each kind of message has its own format. 418

Rather than being accessed directly, an indexed access table is accessed via
an intermediate index. 425

The stair-step approach categorizes each entry by determining the level at
which it hits a “staircase.” The “step” it hits determines its category. 426

Examples of using number-line ordering for boolean tests. 440

Focusing on one external characteristic of software quality can affect other
characteristics positively, adversely, ornot atall. 466

Neither the fastest nor the slowest development approach produces the soft-
ware with the most delects. 475

As the size of the project increases, developer testing consumes a smaller
percentage of the total development time. The elfects of program size are
described in more detail in Chapter 27, “How Program Size Affects
Construction.” 502

As the size of the project increases, the proportion of errors committed dur-
ing construction decreases. Nevertheless, construction errors account for
45-75% of all errors on even the largest projects. 521

Try to reproduce an error several different ways to determine its exact
cause. 545

Small changes tend to be more error-prone than larger changes (Weinberg

1983). 581

Figures

Figure 24-2

Figure 24-3

Figure 27-1

Figure 27-2

Figure 27-3

Figure 27-4

Figure 28-1

Figure 28-2

Figure 29-1

Figure 29-2

Figure 29-3

Your code doesn’t have to be messy just because the real world is messy.
Concelve your system as a combination of ideal code, interfaces from the
ideal code to the messy real world, and the messy real world. 583

One strategy for improving production code is to refactor poorly written leg-
acy code as you touch it, so as to move it to the other side of the “interface to
the messy real world.” 584

The number of communication paths increases proportionate to the square
ol the number of people on the team. 650

As project size increases, errors usually come more from requirements and
design. Sometimes they still come primarily from construction (Boehm
1981, Grady 1987, Jones 1998). 652

Construction activities dominate small projects. Larger projects require
more architecture, integration work, and system testing to succeed. Require-
ments work is not shown on this diagram because requirements effort is not
as directly a function of program size as other activities are (Albrecht 1979;
Glass 1982; Boehm, Gray, and Seewaldt 1984; Boddie 1987; Card 1987
McGarry, Waligora, and McDermott 1989; Brooks 1995; Jones 1998; Jones
2000; Boehm et al. 2000). 654

The amount of soltware construction work is a near-linear function of
project size. Other kinds of work increase nonlinearly as project size
Increases. 655

This chapter covers the software—managemenl topics related to
construction. 661

Estimates created early in a project are inherently inaccurate. As the project
progresses, estimates can become more accurate. Reestimate periodically
throughout a project, and use what you learn during each activity to improve
your estimate for the next activity. 673

The football stadium add-on at the University of Washington collapsed

because it wasn’t strong enough to support itself during construction. It
likely would have been strong enough when completed, but it was con-

structed in the wrong order—an integration error. 690

Phased integration is also called “big bang” integration for a good
reason! 691

Incremental integration helps a project build momentum, like a snowball
going down a hill. 692

Figure 29-4

Figure 29-5

Figure 29-6

Figure 29-7

Figure 29-8

Figure 29-9

Figure 29-10

Figure 29-11

Figure 29-12

Figure 34-1

Figures xxxvii

In phased integration, you integrate so many components at once that it’s
hard to know where the error is. [t might be in any of the components or in
any of their connections. In incremental integration, the error is usually
either in the new component or in the connection between the new compo-
nent and the system. 693

In top-down integration, you add classes at the top first, at the bottom
last. 695

As an alternative to proceeding strictly top to bottom, you can integrate from
the top down in vertical slices. 696

In bottom-up integration, you integrate classes at the bottom first, at the top
last. 697

As an alternative to proceeding purely bottom to top, you can integrate from
the bottom up in sections. This blurs the line between bottom-up integration
and feature-oriented integration, which is described later in this

chapter. 698

In sandwich integration, you integrate top-level and widely used bottom-
level classes first and you save middle-level classes for last. 698

In risk-oriented integration, you integrate classes that you expect to be most
troublesome first; you implement easier classes later. 699

In feature-oriented integration, you integrate classes in groups that make up
identifiable features—usually, but not always, multiple classes at a
time. 700

In T-shaped integration, you build and integrate a deep slice of the system to
verify architectural assumptions and then you build and integrate the
breadth of the system to provide a framework for developing the remaining
functionality. 701

Programs can be divided into levels of abstraction. A good design will allow
you to spend much of your time focusing on only the upper layers and ignor-
ing the lower layers. 846

Part |
Laying the Foundation

Copyrighted material

cc2e.com/0178

Chapter 1

Welcome to Software
Construction

Contents

B 1.1 What Is Software Construction?: page 3
B 1.2 Why Is Software Construction Important?: page 6

® 1.3 How to Read This Book: page 8

Related Topics

B Who should read this book: Preface
B Benefits of reading the book: Preface

B Why the book was written: Preface

You know what “construction” means when it’s used outside software development.
“Construction” is the work “construction workers” do when they build a house, a
school, or a skyscraper. When you were younger, you built things out of “construction
paper.” In common usage, “construction” refers to the process of building. The con-
struction process might include some aspects of planning, designing, and checking
your work, but mostly “construction” refers to the hands-on part of creating something.

1.1 What Is Software Construction?

Developing computer software can be a complicated process, and in the last 25 years,
researchers have identified numerous distinct activities that go into software develop-
ment. They include

Problem definition

Requirements development

Construction planning

Software architecture, or high-level design
Detailed design

Coding and debugging

Unilt testing

Chapter 1: Welcome to Software Construction

Integration testing
Integration

System testing

Correclive maintenance

If you've worked on informal projects, you might think that this list represents a lot of
red tape. If you've worked on projects that are too formal, you know that this list rep-
resents a lot of red tape! It's hard to strike a balance between too little and too much
formality, and that’s discussed later in the book.

If you've taught yourself to program or worked mainly on informal projects, you might
not have made distinctions among the many activities that go into creating a software

product. Mentally, you might have grouped all of these activities together as “program-
ming.” If you work on informal projects, the main activity you think of when you think
about creating software is probably the activity the researchers refer to as “construction.”

This intuitive notion of “construction” is fairly accurate, but it suffers from a lack of
perspective. Putling construction in its context with other activities helps keep the
[ocus on the right tasks during construction and appropriately emphasizes important
nonconstruction activities. Figure 1-1 illustrates construction’s place related to other
soltware-development activities.

Problem
Definition

Figure 1-1 Construction activities are shown inside the gray circle. Construction focuses on
coding and debugging but also includes detailed design, unit testing, integration testing,
and other activities.

KEY POINT

1.1 What Is Software Construction? 5

As the figure indicates, construction is mostly coding and debugging but also involves
detailed design, construction planning, unit testing, integration, integration testing,
and other activities. If this were a book about all aspects of software development, it
would feature nicely balanced discussions of all activities in the development process.
Because this is a handbook of construction techniques, however, it places a lopsided
empbhasis on construction and only touches on related topics. If this book were a dog,
it would nuzzle up to construction, wag its tail at design and testing, and bark at the
other development activities.

n w

Construction is also sometimes known as “coding” or “programming.” “Coding” isn’t
really the best word because it implies the mechanical translation of a preexisting
design into a computer language; construction is not at all mechanical and involves
substantial creativity and judgment. Throughout the book, I use “programming” inter-

changeably with “construction.”

In contrast to Figure 1-1's flat-earth view of soltware development, Figure 1-2 shows
the round-earth perspective of this book.

——

Figure 1-2 Ihis book tocuses on coding and debugging, detailed design, construction
planning, unit testing, integration, integration testing, and other activities in roughly these
proportions.

Figure 1-1 and Figure 1-2 are high-level views of construction activities, but what
about the details? Here are some of the specilic tasks involved in construction:

B Verifying that the groundwork has been laid so that construction can proceed
successfully

B Determining how your code will be tested

Chapter 1: Welcome to Software Construction

Designing and writing classes and routines
Creating and naming variables and named constants
Selecting control structures and organizing blocks of statements

Unit testing, integration testing, and debugging your own code

Reviewing other team members’ low-level designs and code and having them
review yours

Polishing code by ca'refuﬂy formatting and commenting it

Integrating software components that were created separately

Tuning code to make it faster and use fewer resources

For an even fuller list of construction activities, look through the chapter titles in the
table of contents.

With so many activities at work in construction, you might say, “OK, Jack, what activ-
ities are not part of construction?” That’s a [air question. Important nonconstruction
activities include management, requirements development, software architecture,
user-interface design, system testing, and maintenance. Each of these activities affects
the ultimate success of a project as much as construction—at least the success ol any
project that calls for more than one or two people and lasts longer than a few weeks.
You can find good books on each activity; many are listed in the “Additional
Resources” sections throughout the book and in Chapter 35, “Where to Find More
Information,” at the end of the book.

1.2 Why Is Software Construction Important?

Since you're reading this book, you probably agree that improving software quality
and developer productivity is important. Many of today’s most exciting projects use
software extensively. The Internet, movie special effects, medical life-support systems,
space programs, aeronautics, high-speed financial analysis, and scientific research are
a few examples. These projects and more conventional projects can all benefit from
improved practices because many of the fundamentals are the same.

If you agree that improving software development is important in general, the question
for you as a reader of this book becomes, Why is construction an important focus?

Cross-Reference For details
on the relationship between
project size and the percent-
age of time consumed by
construction, see "Activity
Proportions and Size" in Sec-
tion 27.5.

Cross-Reference For dataon
variations among program-
mers, see “Individual Varia-
tion” in Section 28.5.

KEY POINT

1.2 Why Is Software Construction Important? 7
Here’s why:

Construction is a large part of software development Depending on the size of the
project, construction typically takes 30 to 80 percent of the total time spent on a
project. Anything that takes up that much project time is bound to affect the success
ol the project.

Construction is the central activity in software development Requirements and
architecture are done before construction so that you can do construction effectively.
System testing (in the strict sense of independent testing) is done after construction
to verify that construction has been done correctly. Construction is at the center of the
software-development process.

With a focus on construction, the individual programmer’s productivity can improve
enormously A classic study by Sackman, Erikson, and Grant showed that the pro-
ductivity of individual programmers varied by a [actor of 10 to 20 during construction
(1968). Since their study, their results have been confirmed by numerous other stud-
ies (Curtis 1981, Mills 1983, Curtis et al. 1986, Card 1987, Valett and McGarry 1989,
DeMarco and Lister 1999, Boehm et al. 2000). This book helps all programmers learn
techniques that are already used by the best programmers.

Construction’s product, the source code, is often the only accurate description of the
software In many projects, the only documentation available to programmers is the
code itsell. Requirements specifications and design documents can go out of date, but
the source code is always up to date. Consequently, it’s imperative that the source
code be of the highest possible quality. Consistent application of techniques for
source-code improvement makes the difference between a Rube Goldberg contraption
and a detailed, correct, and therefore informative program. Such techniques are most
effectively applied during construction.

Construction is the only activity that’s guaranteed to be done The ideal software
project goes through careful requirements development and architectural design
before construction begins. The ideal project undergoes comprehensive, statistically
controlled system testing after construction. Imperfect, real-world projects, however,
often skip requirements and design to jump into construction. They drop testing
because they have too many errors to fix and they’ve run out of time. But no matter
how rushed or poorly planned a project is, you can’t drop construction; it's where the
rubber meets the road. Improving construction is thus a way of improving any soft-
ware-development effort, no matter how abbreviated.

8 Chapter 1: Welcome to Software Construction

1.3 How to Read This Book

Key Points

This book is designed to be read either cover to cover or by topic. If you like to read
books cover to cover, you might simply dive into Chapter 2, “Metaphors for a Richer
Understanding of Software Development.” If you want to get to specific programming
tips, you might begin with Chapter 6, “Working Classes,” and then follow the cross ref-
erences to other topics you [ind interesting. If you're not sure whether any of this applies
to you, begin with Section 3.2, “Determine the Kind of Software You're Working On.”

B Software construction is the central activity in software development; construc-
tion is the only activity that’s guaranteed to happen on every project.

B The main activities in construction are detailed design, coding, debugging, inte-
gration, and developer testing (unit testing and integration testing).

B Other common terms for construction are “coding” and “programming.”
B The quality of the construction substantially affects the quality of the software.

In the final analysis, your understanding of how to do construction determines
how good a programmer you are, and that’s the subject of the rest of the book.

cc2e.com/0278

Chapter 2

Metaphors for a Richer
Understanding of Software
Development

Contents

m 2.1 The Importance of Metaphors: page 9
B 2.2 How to Use Software Metaphors: page 11

B 2.3 Common Software Me[aphors: page 13

Related Topic
B Heuristics in design: “Design Is a Heuristic Process” in Section 5.1

Computer science has some of the most colorful language of any field. In what other
field can you walk into a sterile room, carefully controlled at 68°F, and find viruses,
Trojan horses, worms, bugs, bombs, crashes, flames, twisted sex changers, and fatal
errors?

These graphic metaphors describe specific software phenomena. Equally vivid meta-
phors describe broader phenomena, and you can use them to improve your under-

standing of the software—developm ent process.

The rest of the book doesn’t directly depend on the discussion of metaphors in this
chapter. Skip it if you want to get to the practical suggestions. Read it if you want to
think about software development more clearly.

2.1 The Importance of Metaphors

Important developments often arise out of analogies. By comparing a topic you under-
stand poorly to something similar you understand better, you can come up with
insights that resultin a better understanding of the less-familiar topic. This use of met-
aphor is called “modeling.”

The history of science is full of discoveries based on exploiting the power of meta-
phors. The chemist Kekulé had a dream in which he saw a snake grasp its tail in its
mouth. When he awoke, he realized that a molecular structure based on a similar ring
shape would account for the properties of benzene. Further experimentation con-
firmed the hypothesis (Barbour 1966).

10 Chapter 2: Metaphors for a Richer Understanding of Software Development

The kinetic theory of gases was based on a “billiard-ball” model. Gas molecules were
thought to have mass and to collide elastically, as billiard balls do, and many useful
theorems were developed from this model.

The wave theory of light was developed largely by exploring similarities between light
and sound. Light and sound have amplitude (brightness, loudness), frequency (color,
pitch), and other properties in common. The comparison between the wave theories
of sound and light was so productive that scientists spent a great deal of effort looking
for a medium that would propagate light the way air propagates sound. They even
gave itaname —"ether’—but they never found the medium. The analogy that had been
so [ruitful in some ways proved to be misleading in this case.

In general, the power of models is that they’re vivid and can be grasped as conceptual
wholes. They suggest properties, relationships, and additional areas of inquiry. Some-
times a model suggests areas of inquiry that are misleading, in which case the meta-
phor has been overextended. When the scientists looked [or ether, they overextended
their model.

As you might expect, some metaphors are better than others. A good metaphor is sim-
ple, relates well to other relevant metaphors, and explains much of the experimental
evidence and other observed phenomena.

Consider the example of a heavy stone swinging back and forth on a string. Before
Galileo, an Aristotelian looking at the swinging stone thought that a heavy object
moved naturally from a higher position to a state of rest at a lower one. The Aristote-
lian would think that what the stone was really doing was falling with difficulty. When
Galileo saw the swinging stone, he saw a pendulum. He thought that what the stone
was really doing was repeating the same motion again and again, almost perfectly.

The suggestive powers of the two models are quite different. The Aristotelian who saw
the swinging stone as an object falling would observe the stone’s weight, the height to
which it had been raised, and the time it took to come to rest. For Galileo’s pendulum
model, the prominent factors were different. Galileo observed the stone’s weight, the
radius of the pendulum’s swing, the angular displacement, and the time per swing.
Galileo discovered laws the Aristotelians could not discover because their model led
them to look at different phenomena and ask different questions.

Metaphors contribute to a greater understanding of software-development issues in
the same way that they contribute to a greater understanding ol scientific questions.
In his 1973 Turing Award lecture, Charles Bachman described the change from the
prevailing earth-centered view of the universe to a sun-centered view. Ptolemy’s earth-
centered model had lasted without serious challenge for 1400 years. Then in 1543,
Copernicus introduced a heliocentric theory, the idea that the sun rather than the
earth was the center of the universe. This change in mental models led ultimately to
the discovery ol new planets, the reclassification of the moon as a satellite rather than
as a planet, and a different understanding of humankind’s place in the universe.

The value of metaphors
should not be underesti-
mated. Metaphors have the
virtue of an expected behav-
ior that is understood by all.
Unnecessary communication
and misunderstandings are
reduced. Learning and edu-
cation are quicker. In effect,
metaphors are a way of
internalizing and abstracting
concepts, allowing one’s
thinking to be on a higher
plane and low-level mistakes
to be avoided.

—Fernando J. Corbaté

2.2 How to

KEY POINT

2.2 How to Use Software Metaphors 11

Bachman compared the Ptolemaic-to-Copernican change in astronomy to the change
in computer programming in the early 1970s. When Bachman made the comparison
in 1973, data processing was changing from a compu[er—cenlered view of information
systems to a database-centered view. Bachman pointed out that the ancients of data
processing wanted to view all data as a sequential stream of cards flowing through a
computer (the computer-centered view). The change was to focus on a pool of data on
which the computer happened to act (a database-oriented view).

Today it’s difficult to imagine anyone thinking that the sun moves around the earth.
Similarly, it's difficult to imagine a programmer thinking that all data could be viewed
as a sequential stream of cards. In both cases, once the old theory has been discarded,
it seems incredible that anyone ever believed it at all. More fantastically, people who
believed the old theory thought the new theory was just as ridiculous then as you
think the old theory is now.

The earth-centered view of the universe hobbled astronomers who clung to it after a
better theory was available. Similarly, the computer-centered view of the computing
universe hobbled computer scientists who held on to it after the database-centered
theory was available.

It's tempting to trivialize the power of metaphors. To each of the earlier examples, the
natural response is to say, “Well, of course the right metaphor is more useful. The
other metaphor was wrong!” Though that’s a natural reaction, it's simplistic. The his-
tory of science isn’t a series of switches from the “wrong” metaphor to the “right” one.
It's a series of changes from “worse” metaphors to “better” ones, from less inclusive to
more inclusive, from suggestive in one area to suggestive in another.

In fact, many models that have been replaced by better models are still useful. Engineers
still solve most engineering problems by using Newtonian dynamics even though, the-
oretically, Newtonian dynamics have been supplanted by Einsteinian theory.

Software development is a younger field than most other sciences. It's not yet mature

enough to have a set of standard metaphors. Consequently, it has a profusion of com-
plementary and conflicting metaphors. Some are better than others. Some are worse.

How well you understand the metaphors determines how well you understand soft-

ware development.

Use Software Metaphors

A software metaphor is more like a searchlight than a road map. It doesn’t tell you
where to [ind the answer; it tells you how to look [or it. A metaphor serves more as a
heuristic than it does as an algorithm.

An algorithm is a set of well-defined instructions for carrying out a particular task. An
algorithm is predictable, deterministic, and not subject to chance. An algorithm tells

12 Chapter 2: Metaphors for a Richer Understanding of Software Development

Cross-Reference For details
on how to use heuristics in
designing software, see
“Design Is a Heuristic Pro-
cess” in Section 5.1.

you how to go from point A to point B with no detours, no side trips to points D, E,
and F, and no stopping to smell the roses or have a cup of joe.

A heuristic is a technique that helps you look for an answer. Its results are subject to

chance because a heuristic tells you only how to look, not what to find. It doesn’t tell
you how to get directly from point A to point B; it might not even know where point A
and point B are. In effect, a heuristic is an algorithm in a clown suit. IU’s less predict-

able, it’s more fun, and it comes without a 30-day, money-back guarantee.

Here is an algorithm for driving to someone’s house: Take Highway 167 south to Puy-
allup. Take the South Hill Mall exit and drive 4.5 miles up the hill. Turn right at the
light by the grocery store, and then take the first left. Turn into the driveway of the
large tan house on the left, at 714 North Cedar.

Here’s a heuristic for getting to someone’s house: Find the last letter we mailed you.

Drive to the town in the return address. When you get to town, ask someone where

our house is. Everyone knows us—someone will be glad to help you. If you can't find
anyone, call us from a public phone, and we’ll come get you.

The difference between an algorithm and a heuristic is subtle, and the two terms over-
lap somewhat. For the purposes ol this book, the main difference between the two is
the level of indirection from the solution. An algorithm gives you the instructions
directly. A heuristic tells you how to discover the instructions for yourself, or at least
where to look for them.

Having directions that told you exactly how to solve your programming problems
would certainly make programming easier and the results more predictable. But pro-
gramming science isn’t yet that advanced and may never be. The most challenging
part of programming is conceptualizing the problem, and many errors in program-
ming are conceptual errors. Because each program is conceptually unique, it’s difficult
or impossible to create a general set of directions that lead to a solution in every case.
Thus, knowing how to approach problems in general is at least as valuable as knowing
specific solutions for specific problems.

How do vou use software metaphors? Use them to give you insight into your program-
ming problems and processes. Use them to help you think about your programming
activities and to help you imagine better ways of doing things. You won't be able to
look at a line of code and say that it violates one of the metaphors described in this
chapter. Over time, though, the person who uses metaphors to illuminate the soft-
ware-development process will be perceived as someone who has a better understand-
ing of programming and produces better code faster than people who don’t use them.

2.3 Common Software Metaphors 13

2.3 Common Software Metaphors

A confusing abundance of metaphors has grown up around software development.
David Gries says writing software is a science (1981). Donald Knuth says it’s an art
(1998). Watts Humphrey says it's a process (1989). P. J. Plauger and Kent Beck say it's
like driving a car, although they draw nearly opposite conclusions (Plauger 1993,
Beck 2000). Alistair Cockburn says it’s a game (2002). Eric Raymond says it’s like a
bazaar (2000). Andy Hunt and Dave Thomas say it’s like gardening. Paul Heckel says
it's like filming Snow White and the Seven Dwarfs (1994). Fred Brooks says that it’s like
farming, hunting werewolves, or drowning with dinosaurs in a tar pit (1995). Which
are the best metaphors?

Software Penmanship: Writing Code

Bl

HARD DATA

The most primitive metaphor for software development grows out of the expression
“writing code.” The writing metaphor suggests that developing a program is like writing
a casual letter—you sit down with pen, ink, and paper and write it from start to finish. Tt

doesn’t require any formal planning, and you figure out what you want to say as you go.
4 4 4 4

Many ideas derive from the writing metaphor. Jon Bentley says you should be able to
sit down by the fire with a glass of brandy, a good cigar, and your favorite hunting dog
to enjoy a “literate program” the way you would a good novel. Brian Kernighan and
P.]. Plauger named their programming-style book The Elements of Programming Style
(1978) after the writing-style book The Elements of Style (Strunk and White 2000).

Ll

Programmers often talk about “program readability.

For an individual’s work or for small-scale projects, the letter-writing metaphor works
adequately, but for other purposes it leaves the party early—it doesn't describe soft-
ware development fully or adequately. Writing is usually a one-person activity,
whereas a software project will most likely involve many people with many different
responsibilities. When you finish writing a letter, you stuff it into an envelope and mail
it. You can’t change it anymore, and for all intents and purposes it's complete. Soft-
ware isn't as difficult to change and is hardly ever fully complete. As much as 90 per-
cent of the development effort on a typical software system comes after its initial
release, with two-thirds being typical (Pigoski 1997). In writing, a high premium is
placed on originality. In soltware construction, trying to create truly original work is
often less effective than focusing on the reuse of design ideas, code, and test cases
from previous projects. In short, the writing metaphor implies a software-develop-
ment process that's too simple and rigid to be healthy.

14 Chapter 2: Metaphors for a Richer Understanding of Software Development

Plan to throw one away; you
will, anyhow.
—Fred Brooks

If you plan to throw one
away, you will throw away
wo.

—Craig Zerouni

Unfortunately, the letter-writing metaphor has been perpetuated by one of the most

popular software books on the planet, Fred Brooks’s The Mythical Man-Month (Brooks
1995). Brooks says, “Plan to throw one away; you will, anyhow.” This conjures up an
image ol a pile ol half-written dralts thrown into a wastebasket, as shown in Figure 2-1.

Figure 2-1 The letter-writing metaphor suggests that the software process relies on expen-
sive trial and error rather than careful planning and design.

Planning to throw one away might be practical when you're writing a polite how-do-
you-do to your aunt. But extending the metaphor of “writing” software to a plan to
throw one away is poor advice for software development, where a major system
already costs as much as a 10-story office building or an ocean liner. It’s easy to grab
the brass ring if you can afford to sit on your favorite wooden pony for an unlimited
number of spins around the carousel. The trick is to get it the first time around—or to
take several chances when they're cheapest. Other metaphors better illuminate ways
of attaining such goals.

Software Farming: Growing a System

"
i
@, M
. WS

KEY POINT

Further Reading For an
illustration of a different
farming metaphor, one that's
applied to software mainte-
nance, see the chapter “On
the Origins of Designer Intu-
ition” in Rethinking Systems
Analysis and Design (Wein-
berg 1988).

In contrast to the rigid writing metaphor, some software developers say you should
envision creating software as something like planting seeds and growing crops. You
design a piece, code a piece, test a piece, and add it to the system a little bit at a time.
By taking small steps, you minimize the trouble you can get into at any one time.

Sometimes a good technique is described with a bad metaphor. In such cases, try to
keep the technique and come up with a better metaphor. In this case, the incremental
technique is valuable, but the farming metaphor is terrible.

The idea of doing a little bit at a time might bear some resemblance to the way crops
grow, but the farming analogy is weak and uninformative, and it’s easy to replace with
the better metaphors described in the following sections. 1t's hard to extend the farm-
ing metaphor bevond the simple idea of doing things a little bit at a time. If you buy
into the farming metaphor, imagined in Figure 2-2, you might find yourself talking
about [ertilizing the system plan, thinning the detailed design, increasing code yields
through effective land management, and harvesting the code itself. You'll talk about

2.3 Common Software Metaphors 15

rotating in a crop of C++ instead of barley, of letting the land rest for a year to increase
the supply of nitrogen in the hard disk.

The weakness in the software-farming metaphor is its suggestion that you don’t have
any direct control over how the software develops. You plant the code seeds in the
spring. Farmer’s Almanac and the Great Pumpkin willing, you'll have a bumper crop of
code in the fall.

N ~
0L 7T e

Figure 2-2 It's hard to extend the farming metaphor to software development
appropriately.

Software Oyster Farming: System Accretion

Cross-Reference For details
on how to apply incremental
strategies to system integra-
tion, see Section 29.2, “Inte-
gration Frequency—Phased
or Incremental?”

Sometimes people talk about growing software when they really mean software accre-
tion. The two metaphors are closely related, but software accretion is the more insight-
ful image. “Accretion,” in case you don’t have a dictionary handy, means any growth or
increase in size by a gradual external addition or inclusion. Accretion describes the
way an oyster makes a pearl, by gradually adding small amounts of calcium carbonate.
In geology, “accretion” means a slow addition to land by the deposit of waterborne
sediment. In legal terms, “accretion” means an increase of land along the shores of a
body of water by the deposit of waterborne sediment.

This doesn’t mean that you have to learn how to make code out of waterborne sedi-
ment; it means that you have to learn how to add to your software systems a small

" oW

amount at a time. Other words closely related to accretion are “incremental,” “itera-

adaptive,” and “evolutionary.” Incremental designing, building, and testing are

ENG

tive,
some of the most powerful software-development concepts available.

In incremental development, you first make the simplest possible version of the sys-
tem that will run. It doesn’t have to accept realistic input, it doesn’t have to perform

realistic manipulations on data, it doesn’t have to produce realistic output—it just has
to be a skeleton strong enough to hold the real system as it's developed. It might call
dummy classes for each of the basic functions you have identified. This basic begin-

ning is like the oyster’s beginning a pearl with a small grain of sand.

After you've formed the skeleton, little by little you lay on the muscle and skin. You
change each ol the dummy classes Lo real classes. Instead ol having your program

16 Chapter 2: Metaphors for a Richer Understanding of Software Development

pretend to accept input, you drop in code that accepts real input. Instead of having
your program pretend to produce output, you drop in code that produces real output.
You add a little bit of code at a time until you have a fully working system.

The anecdotal evidence in favor of this approach is impressive. Fred Brooks, who in
1975 advised building one to throw away, said that nothing in the decade after he
wrote his landmark book The Mythical Man-Month so radically changed his own
practice or its effectiveness as incremental development (1995). Tom Gilb made the
same point in his breakthrough book, Principles of Software Engineering Management
(1988), which introduced Evolutionary Delivery and laid the groundwork for much
of today’s Agile programming approach. Numerous current methodologies are based
on this idea (Beck 2000, Cockburn 2002, Highsmith 2002, Reifer 2002, Martin
2003, Larman 2004).

As ametaphor, the strength of the incremental metaphor is thatit doesn’t overpromise.
It's harder than the farming metaphor to extend inappropriately. The image of an oyster
forming a pearl is a good way to visualize incremental development, or accretion.

Software Construction: Building Software

@‘-r—-
b M|,
. RN
KEY POINT

The image of “building” software is more useful than that of “writing” or “growing”
software. It's compatible with the idea of software accretion and provides more
detailed guidance. Building software implies various stages of planning, preparation,
and execution that vary in kind and degree depending on what's being built. When
you explore the metaphor, you find many other parallels.

Building a four-foot tower requires a steady hand, a level surface, and 10 undamaged
beer cans. Building a tower 100 times that size doesn’t merely require 100 times as
many beer cans. It requires a different kind of planning and construction altogether.

If you're building a simple structure—a doghouse, say—you can drive to the lumber
store and buy some wood and nails. By the end of the afternoon, you'll have a new
house for Fido. If you forget to provide for a door, as shown in Figure 2-3, or make
some other mistake, it's not a big problem; you can fix it or even start over from the
beginning. All you've wasted is part of an afternoon. This loose approach is appropri-
ate for small software projects too. If you use the wrong design for 1000 lines of code,
you can refactor or start over completely without losing much.

2.3 Common Software Metaphors 17

Figure 2-3 Ihe penailty for a mistake on a simple structure Is only a little time and maybe
some embarrassment.

If you're building a house, the building process is more complicated, and so are the
consequences of poor design. First you have to decide what kind of house you want to
build—analogous in software development to problem definition. Then you and an
architect have to come up with a general design and get it approved. This is similar to
software architectural design. You draw detailed blueprints and hire a contractor. This
is similar to detailed software design. You prepare the building site, lay a foundation,
frame the house, put siding and a rool on it, and plumb and wire it. This is similar o
software construction. When most of the house is done, the landscapers, painters,
and decorators come in to make the best of your property and the home you've built.
This is similar to software optimization. Throughout the process, various inspectors
come to check the site, foundation, frame, wiring, and other inspectables. This is sim-

ilar to software reviews and inspections.

Greater complexity and size imply greater consequences in both activities. In building
a house, materials are somewhat expensive, but the main expense is labor. Ripping
out a wall and moving it six inches is expensive not because you waste a lot of nails
but because you have to pay the people for the extra time it takes to move the wall. You
have to make the design as good as possible, as suggested by Figure 2-4, so that you
don’t waste time fixing mistakes that could have been avoided. In building a software
product, materials are even less expensive, but labor costs just as much. Changing a
report format is just as expensive as moving a wall in a house because the main cost
component in both cases is people’s time.

18

Chapter 2: Metaphors for a Richer Understanding of Software Development

Figure 2-4 More complicated structures require more careful planning.

What other parallels do the two activities share? In building a house, you won'’t try to
build things you can buy already built. You'll buy a washer and dryer, dishwasher,
refrigerator, and [reezer. Unless you're a mechanical wizard, you won’t consider build-
ing them yoursell. You'll also buy prefabricated cabinets, counters, windows, doors,
and bathroom fixtures. If you're building a software system, vou'll do the same thing.
You’ll make extensive use of high-level language features rather than writing your own
operating-system-level code. You might also use prebuilt libraries of container classes,
scientific functions, user interface classes, and database-manipulation classes. It gen-
erally doesn’t make sense to code things you can buy ready-made.

If you're building a fancy house with first-class furnishings, however, you might have
your cabinets custom-made. You might have a dishwasher, refrigerator, and freezer
built in to look like the rest of your cabinets. You might have windows custom-made in
unusual shapes and sizes. This customization has parallels in software development.
If you're building a first-class software product, you might build your own scientific
functions for better speed or accuracy. You might build your own container classes,
user interface classes, and database classes to give your system a seamless, perfectly
consistent look and feel.

Both building construction and software construction benefit from appropriate levels
of planning. If you build software in the wrong order, it’s hard to code, hard to test,

and hard to debug. It can take longer to complete, or the project can fall apart because
everyone's work is too complex and therefore too confusing when it’s all combined.

Careful planning doesn’t necessarily mean exhaustive planning or over-planning. You
can plan out the structural supports and decide later whether to put in hardwood
floors or carpeting, what color to paint the walls, what roofing material to use, and so

Further Reading For some
good comments about

extending the construction
metaphor, see "What Sup-

2.3 Common Software Metaphors 19

on. A well-planned project improves your ability to change your mind later about
details. The more experience you have with the kind of software you're building, the
more details you can take for granted. You just want to be sure that you plan enough
so that lack of planning doesn’t create major problems later.

The construction analogy also helps explain why different software projects benelit
from different development approaches. In building, you’d use different levels of plan-
ning, design, and quality assurance if you're building a warehouse or a toolshed than if
you're building a medical center or anuclear reactor. You'd use still different approaches
for building a school, a skyscraper, or a three-bedroom home. Likewise, in software you
might generally use {lexible, lightweight development approaches, but sometimes you'll
need rigid, heavyweight approaches to achieve safety goals and other goals.

Making changes in the software brings up another parallel with building construc-
tion. To move a wall six inches costs more if the wall is load-bearing than if it's merely
a partition between rooms. Similarly, making structural changes in a program costs
more than adding or deleting peripheral features.

Finally, the construction analogy provides insight into extremely large soltware projects.
Because the penalty for failure in an extremely large structure is severe, the structure has
to be over-engineered. Builders make and mspect their plans carefully. They build in
margins of salety; it’s better to pay 10 percent more for stronger material than to have a
skyscraper fall over. A great deal of attention is paid to timing. When the Empire State
Building was built, each delivery truck had a 15-minute margin in which to make its
delivery. If a truck wasn’t in place at the right time, the whole project was delayed.

Likewise, for extremely large software projects, planning of a higher order is needed
than for projects that are merely large. Capers Jones reports that a software system
with one million lines of code requires an average of 69 kinds of documentation
(1998). The requirements specification for such a system would typically be about
4000-5000 pages long, and the design documentation can easily be two or three
times as extensive as the requirements. [t’s unlikely that an individual would be able
to understand the complete design for a project of this size—or even read it. A greater
degree of preparation is appropriate.

We build software projects comparable in economic size to the Empire State Building,
and technical and managerial controls of similar stature are needed.

The building-construction metaphor could be extended in a variety ol other directions,
which is why the metaphor is so powerful. Many terms common in software develop-
ment derive from the building metaphor: software architecture, scaffolding, construe-

ports the Roof?” (Starr 2003). tion, foundation classes, and tearing code apart. You'll probably hear many more.

20 Chapter 2: Metaphors for a Richer Understanding of Software Development

Applying Software Techniques: The Intellectual Toolbox

KEY POINT

Cross-Reference For details
on selecting and combining
methods in design, see Sec-
tion 5.3, “Design Building
Blocks: Heuristics."

People who are effective at developing high-quality software have spent years accumu-
lating dozens of techniques, tricks, and magic incantations. The techniques are not
rules; they are analytical tools. A good craftsman knows the right tool for the job and
knows how to use it correctly. Programmers do, too. The more you learn about pro-
gramming, the more you [ill your mental toolbox with analytical tools and the knowl-
edge of when to use them and how to use them correctly.

In software, consultants sometimes tell you to buy into certain software-development
methods to the exclusion of other methods. That’s unfortunate because if you buy
into any single methodology 100 percent, you'll see the whole world in terms of that
methodology. In some instances, you'll miss opportunities to use other methods bet-
ter suited to your current problem. The toolbox metaphor helps to keep all the meth-
ods, techniques, and tips in perspective—ready for use when appropriate.

Combining Metaphors

[8‘-r—-
b M
Pt
KEY POINT

Because metaphors are heuristic rather than algorithmic, they are not mutually exclu-
sive. You can use both the accretion and the construction metaphors. You can use
writing if you want to, and you can combine writing with driving, huming for were-
wolves, or drowning in a tar pit with dinosaurs. Use whatever metaphor or combina-
tion of metaphors stimulates your own thinking or communicates well with others on
your team.

Using metaphors is a fuzzy business. You have to extend them to benefit from the
heuristic insights they provide. But if you extend them too far or in the wrong direc-
tion, they’ll mislead you. Just as you can misuse any powerful tool, you can misuse
metaphors, but their power makes them a valuable part of your intellectual toolbox.

Additional Resources

cc2e.com/0285

Among general books on metaphors, models, and paradigms, the touchstone book is
by Thomas Kuhn.

Kuhn, Thomas S. The Structure of Scientific Revolutions, 3d ed. Chicago, IL: The Univer-
sity of Chicago Press, 1996. Kuhn's book on how scientific theories emerge, evolve, and
succumb to other theories in a Darwinian cycle set the philosophy of science on its ear
when it was first published in 1962. 1t’s clear and short, and it’s loaded with interesting
examples of the rise and fall of metaphors, models, and paradigms in science.

Floyd, Robert W. “The Paradigms of Programming.” 1978 Turing Award Lecture.
Communications of the ACM, August 1979, pp. 455-60. This is a [ascinating discus-

sion of models in software development, and Floyd applies Kuhn's ideas to the topic.

Chapter 3

Measure Twice, Cut Once:
Upstream Prerequisites

cc2e.com/0309 Contents

B 3.1 Importance of Prerequisites: page 24

3.2 Determine the Kind of Software You're Working On: page 31
3.3 Problem-Delinition Prerequisite: page 36

3.4 Requirements Prerequisite: page 38

3.5 Architecture Prerequisite: page 43

3.6 Amount of Time to Spend on Upstream Prerequisites: page 55

Related Topics

Key construction decisions: Chapter 4
Effect of project size on construction and prerequisites: Chapter 27

Relationship between quality goals and construction activities: Chapter 20

Managing construction: Chapter 28
B Design: Chapter 5

Before beginning construction of a house, a builder reviews blueprints, checks that all
permits have been obtained, and surveys the house’s foundation. A builder prepares
for building a skyscraper one way, a housing development a different way, and a dog-
house a third way. No matter what the project, the preparation is tailored to the
project’s specific needs and done conscientiously before construction begins.

This chapter describes the work that must be done to prepare for software construc-
tion. As with building construction, much of the success or failure of the project has
already been determined before construction begins. If the foundation hasn’t been
laid well or the planning is inadequate, the best you can do during construction is to
keep damage to a minimum.

The carpenter’s saying, “Measure twice, cut once” is highly relevant to the construc-
tion part of software development, which can account for as much as 65 percent of the
total project costs. The worst software projects end up doing construction two or

23

24

Chapter 3: Measure Twice, Cut Once: Upstream Prerequisites

three times or more. Doing the most expensive part of the project twice is as bad an
idea in software as it is in any other line of work.

Although this chapter lays the groundwork for successful software construction, it
doesn’t discuss construction directly. If you're feeling carnivorous or you're already
well versed in the soltware-engineering life cycle, look for the construction meat
beginning in Chapter 5, “Design in Construction.” If you don’t like the idea of pre-
requisites to construction, review Section 3.2, “Determine the Kind of Software
You're Working On,” to see how prerequisites apply to your situation, and then take
alook at the data in Section 3.1, which describes the cost of not doing prerequisites.

3.1 Importance of Prerequisites

Cross-Reference Paying

attention to quality is also
the best way to improve pro-

ductivity. For details, see

Section 20.5, “The General

Principle of Software

Quality”

KEY POINT

A common denominator of programmers who build high-quality software is their use
of high-quality practices. Such practices emphasize quality at the beginning, middle,
and end ol a project.

If you emphasize quality at the end of a project, you emphasize system testing. Testing
is what many people think of when they think of software quality assurance. Testing,
however, is only one part of a complete quality-assurance strategy, and it’s not the
most inlluential part. Testing can’t detect a [law such as building the wrong product or
building the right product in the wrong way. Such flaws must be worked out earlier
than in testing—before construction begins.

If you emphasize quality in the middle of the project, you emphasize construction
practices. Such practices are the focus of most of this book.

If you emphasize quality at the beginning of the project, you plan for, require, and
design a high-quality product. If you start the process with designs for a Pontiac Aztek,
you can test it all you want to, and it will never turn into a Rolls-Royce. You might
build the best possible Aztek, but if you want a Rolls-Royce, you have to plan from the
beginning to build one. In software development, you do such planning when you

define the problem, when you specify the solution, and when you design the solution.

Since construction is in the middle of a software project, by the time you get to con-
struction, the earlier parts of the project have already laid some of the groundwork for
success or failure. During construction, however, you should at least be able to deter-
mine how good your situation is and to back up il you see the black clouds of failure
looming on the horizon. The rest of this chapter describes in detail why proper prep-
aration is important and tells you how to determine whether you're really ready to

begin construction.

3.1 Importance of Prerequisites 25

Do Prerequisites Apply to Modern Software Projects?

The methodology used
should be based on choice of
the latest and best, and not
based on ignorance. It
should also be laced liberally
with the old and dependable.
—Harlan Mills

KEY POINT

Some people have asserted that upstream activities such as architecture, design, and
project planning aren’t useful on modern software projects. In the main, such asser-
tions are not well supported by research, past or present, or by current data. (See the
rest of this chapter for details.) Opponents of prerequisites typically show examples of
prerequisites that have been done poorly and then point out that such work isn’t
effective. Upstream activities can be done well, however, and industry data from the
1970s to the present day indicates that projects will run best if appropriate prepara-
tion activities are done before construction begins in earnest.

The overarching goal of preparation is risk reduction: a good project planner clears

major risks out of the way as early as possible so that the bulk of the project can pro-
ceed as smoothly as possible. By [ar the most common project risks in software devel-
opment are poor requirements and poor project planning, thus preparation tends to

focus on improving requirements and Pproject plans.

Preparation for construction is not an exact science, and the specific approach to risk
reduction must be decided project by project. Details can vary greatly among projects.
For more on this, see Section 3.2.

Causes of Incomplete Preparation

Further Reading For a
description of a professional
development program that
cultivates these skills, see
Chapter 16 of Professional
Software Development
(McConnell 2004).

cc2e.com/0316

You might think that all professional programmers know about the importance of
preparation and check that the prerequisites have been satisfied before jumping into
construction. Unfortunately, that isn't so.

A common cause of incomplete preparation is that the developers who are assigned to
work on the upstream activities do not have the expertise to carry out their assignments.
The skills needed to plan a project, create a compelling business case, develop compre-
hensive and accurate requirements, and create high-quality architectures are far from
trivial, but most developers have not received training in how to perform these activities.
When developers don’t know how to do upstream work, the recommendation to “do
more upstream work” sounds like nonsense: If the work isn't being done well in the first
place, doing more of it will not be useful! Explaining how to perform these activities is
beyond the scope of this book, but the “Additional Resources” sections at the end of this
chapter provide numerous options for gaining that expertise.

Some programmers do know how to perform upstream activities, but they don’t prepare
because they can'’t resist the urge to begin coding as soon as possible. If you feed your

26 Chapter 3: Measure Twice, Cut Once: Upstream Prerequisites

Further Reading For many
entertaining variations on
this theme, read Gerald
Weinberg's classic, The Psy-
chology of Computer Pro-
gramming (Weinberg 1998).

horse at this trough, I have two suggestions. Suggestion 1: Read the argument in the next
section. It may tell you a few things you haven’t thought of. Suggestion 2: Pay attention to
the problems you experience. It takes only a few large programs to learn that you can
avoid a lot of stress by planning ahead. Let your own experience be your guide.

A flinal reason that programmers don’t prepare is that managers are notoriously
unsympathetic to programmers who spend time on construction prerequisites. Peo-
ple like Barry Boehm, Grady Booch, and Karl Wiegers have been banging the require-
ments and design drums for 25 years, and you'd expect that managers would have
started to understand that software development is more than coding.

A few years ago, however, I was working on a Department of Defense project that was
focusing on requirements development when the Army general in charge of the
project came for a visit. We told him that we were developing requirements and that
we were mainly talking to our customer, capturing requirements, and outlining the
design. He insisted on seeing code anyway. We told him there was no code, but he
walked around a work bay of 100 people, determined to catch someone program-
ming. Frustrated by seeing so many people away from their desks or working on
requirements and design, the large, round man with the loud voice finally pointed to
the engineer sitting next to me and bellowed, “What's he doing? He must be writing
code!” In fact, the engineer was working on a document-formatting utility, but the gen-
eral wanted to find code, thought it looked like code, and wanted the engineer to be
working on code, so we told him it was code.

This phenomenon is known as the WISCA or WIMP syndrome: Why Isn’t Sam Cod-
ing Anything? or Why Isn’t Mary Programming?

If the manager of your project pretends to be a brigadier general and orders you to
start coding right away, it’s easy to say, “Yes, Sir!” (What’s the harm? The old guy must
know what he’s talking about.) This is a bad response, and you have several better
alternatives. First, you can flatly refuse to do work in an ineffective order. If your rela-
tionships with your boss and your bank account are healthy enough for you to be able
to do this, good luck.

A second questionable alternative is pretending to be coding when you're not. Put an
old program listing on the corner of your desk. Then go right ahead and develop your
requirements and architecture, with or without your boss’s approval. You'll do the
project faster and with higher-quality results. Some people find this approach ethi-
cally objectionable, but from your boss’s perspective, ignorance will be bliss.

Third, you can educate your boss in the nuances of technical projects. This is a good
approach because it increases the number of enlightened bosses in the world. The
next subsection presents an extended rationale for taking the time to do prerequisites
before construction.

3.1 Importance of Prerequisites 27

Finally, you can find another job. Despite economic ups and downs, good program-
mers are perennially in short supply (BLS 2002), and life is too short to work in an
unenlightened programming shop when plenty of better alternatives are available.

Utterly Compelling and Foolproof Argument for Doing Prerequisites
Before Construction

KEY POINT

Suppose you've already been to the mountain of problem definition, walked a mile
with the man of requirements, shed your soiled garments at the fountain of architec-
ture, and bathed in the pure waters of preparedness. Then you know that before you
implement a system, you need to understand what the system is supposed to do and
how it's supposed to do it.

Part of your job as a technical employee is to educate the nontechnical people around
you about the development process. This section will help you deal with managers
and bosses who have not yet seen the light. It's an extended argument for doing
requirements and architecture—getting the critical aspects right—before you begin cod-
ing, testing, and debugging. Learn the argument, and then sit down with your boss

and have a heart-to-heart talk about the programming process.

Appeal to Logic

Onme of the key ideas in effective programming is that preparation is important. It
makes sense that before you start working on a big project, you should plan the
project. Big projects require more planning; small projects require less. From a man-
agement point of view, planning means determining the amount of time, number of
people, and number of computers the project will need. From a technical point of
view, planning means understanding what you want to build so that you don’t waste
money building the wrong thing. Sometimes users aren't entirely sure what they want
at first, so it might take more effort than seems ideal to find out what they really want
But that’s cheaper than building the wrong thing, throwing it away, and starting over.

It's also important to think about how to build the system before you begin to build it.
You don’t want to spend a lot of time and money going down blind alleys when

there’s no need to, especially when that increases costs.

Appeal to Analogy

Building a software system is like any other project that takes people and money. If
you're building a house, you make architectural drawings and blueprints before you
begin pounding nails. You'll have the blueprints reviewed and approved belore you
pour any concrete. Having a technical plan counts just as much in software.

30

Chapter 3: Measure Twice, Cut Once: Upstream Prerequisites

HARD DATA

Phase in Which a
Defect 1s Introduced

Requirement:
Architectu

Construct

Construction Post-Release

Requirements
4 System lest

Architecture
Phase in Which a Defect 1s Detected

Figure 3-1 The cost to fix a defect rises dramatically as the time from when it's introduced

to when it's detected increases. This remains true whether the project is highly sequential

(doing 100 percent of requirements and design up front) or highly iterative (doing 5 percent
of requirements and design up front).

The average project still exerts most ol its delect-correction ellort on the right side ol Fig-
ure 3-1, which means that debugging and associated rework takes about 50 percent of
the time spent in a typical sofltware development cycle (Mills 1983; Boechm 1987a; Coo-
per and Mullen 1993; Fishman 1996; Haley 1996; Wheeler, Brykczynski, and Meeson
1996; Jones 1998; Shull et al. 2002; Wiegers 2002). Dozens of companies have found
that simply focusing on correcting defects earlier rather than later in a project can cut
development costs and schedules by factors of two or more (McConnell 2004). This is
a healthy incentive to find and fix your problems as early as you can.

Boss-Readiness Test

When you think your boss understands the importance of working on prerequisites
before moving into construction, try the test below to be sure.

Which of these statements are self-fulfilling prophecies?

B We'd better start coding right away because we’re going to have a lot of debug-
ging to do.

B We haven't planned much time for testing because we're not going to find many
defects.

3.2 Determine the Kind of Software You're Working On 31

B We've investigated requirements and design so much that I can’t think of any
major problems we’ll run into during coding or debugging.

All of these statements are se]f—fu]filling prophecies. Aim for the last one.

If you're still not convinced that prerequisites apply to your project, the next section

will help you decide.

3.2 Determine the Kind of Software You're Working On

Capers Jones, Chief Scientist at Software Productivity Research, summarized 20 years
ol software research by pointing out that he and his colleagues have seen 40 dilferent
methods for gathering requirements, 50 variations in working on software designs,
and 30 kinds of testing applied to projects in more than 700 different programming
languages (Jones 2003).

Dillerent kinds of software projects call for different balances between preparation
and construction. Every project is unique, but projects do tend to fall into general
development styles. Table 3-2 shows three of the most common kinds of projects and
lists the practices that are typically best suited to each kind of project.

Table 3-2 Typical Good Practices for Three Common Kinds of Software Projects

Kind of Software

Mission-Critical Embedded

Business Systems Systems Life-Critical Systems
Typical Internet site Embedded software Avionics software
applications Intranet site Games Embedded software

Inventory Internet site Medical devices

management Packaged software Operating systems

Games Software tools Packaged software

Management Web services

information systems

Payroll system

Life-cycle Agile development Staged delivery Staged delivery

models (E>v<treme Progfamf Evolutionary Spiral development
ming, Scrum, time- deliver))
box development, . y Evolutionary delivery
and so on) Spiral development

Evolutionary
prototyping

32

Chapter 3: Measure Twice, Cut Once: Upstream Prerequisites

Table 3-2 Typical Good Practices for Three Common Kinds of Software Projects

Kind of Software

Business Systems

Mission-Critical
Systems

Embedded
Life-Critical Systems

Planning and
management

Incremental project
planning
As-needed test and
QA planning

Informal change
control

Basic up-front
planning

Basic test planning

As-needed QA
planning

Formal change
control

Extensive up-front
planning

Extensive test
planning
Extensive QA
planning

Rigorous change
control

Requirements

Informal require-
ments specification

Semiformal require-
ments specification

As-needed require-
ments reviews

Formal requirements
specification

Formal requirements
inspections

Design

Design and coding
are combined

Architectural design

Informal detailed
design

As-needed design
reviews

Architectural design

Formal architecture
inspections

Formal detailed
design

Formal detailed
design inspections

Construction

Pair programming
or individual coding
Informal check-in
procedure or no
check-in procedure

Pair programming
or individual coding

Informal check-in
procedure

As-needed code
reviews

Pair programming or
individual coding

Formal check-in
procedure

Formal code
inspections

Testing
and QA

Developers test
their own code
Test-first
development
Little or no testing
by a separate test
group

Developers test
their own code

Test-first
development

Separate testing
group

Developers test their
own code

Test-first
development

Separate testing
group
Separate QA group

Deployment

Informal deploy-
ment procedure

Formal deployment
procedure

Formal deployment
procedure

On real projects, you'll find infinite variations on the three themes presented in this
table; however, the generalities in the table are illuminating. Business systems projects
tend to benefit from highly iterative approaches, in which planning, requirements,

3.2 Determine the Kind of Software You're Working On 33

and architecture are interleaved with construction, system testing, and quality-assur-
ance activities. Life-critical systems tend to require more sequential approaches—
requirements stability is part of what's needed to ensure ultrahigh levels of reliability.

Iterative Approaches’ Effect on Prerequisites

Some writers have asserted that projects that use iterative techniques don’t need to
focus on prerequisites much at all, but that point of view is misinformed. Iterative
approaches tend to reduce the impact of inadequate upstream work, but they don't
eliminate it. Consider the examples shown m Table 3-3 of projects that don’t focus on
prerequisites. One project is conducted sequentially and relies solely on testing to dis-
cover defects; the other is conducted iteratively and discovers defects as it progresses.
The first approach delays most defect correction work to the end of the project, making
the costs higher, as noted in Table 3-1. The iterative approach absorbs rework piecemeal
over the course of the project, which makes the total cost lower. The data in this table
and the next is for purposes of illustration only, but the relative costs of the two general
approaches are well supported by the research described earlier in this chapter.

Table 3-3 Effect of Skipping Prerequisites on Sequential and Iterative Projects

Approach #1: Sequential Approach #2: Iterative

Approach Without Approach Without

Prerequisites Prerequisites
Project Completion Cost of Cost of
Status Cost of Work Rework Cost of Work Rework
20% $100,000 $0 $100,000 $75,000
40% $100,000 $0 $100,000 $75,000
60% $100,000 $0 $100,000 $75,000
80% $100,000 $0 $100,000 $75,000
100% $100,000 $0 $100,000 $75,000
End-of-Project
Rework $0 $500,000 $0 $0
TOTAL $500,000 $500,000 $500,000 $375,000
GRAND TOTAL $1,000,000 $875,000

The iterative project that abbreviates or eliminates prerequisites will differ in two
ways from a sequential project that does the same thing. First, average defect correc-
tion costs will be lower because defects will tend to be detected closer to the time
they were inserted into the soltware. However, the delects will still be detected late
in each iteration, and correcting them will require parts of the software to be
redesigned, recoded, and retested—which makes the defect-correction cost higher
than it needs to be.

34 Chapter 3: Measure Twice, Cut Once: Upstream Prerequisites

)

S

|

et
KEY POINT

Cross-Reference For details

an how to adapt your devel-

opment approach for pro-
grams of different sizes, see
Chapter 27, "How Program
Size Affects Construction.”

Second, with iterative approaches costs will be absorbed piecemeal, throughout the
project, rather than being clustered at the end. When all the dust settles, the total cost
will be similar but it won’t seem as high because the price will have been paid in small

installments over the course of the project, rather than paid all at once at the end.

As Table 3-4 illustrates, a focus on prerequisites can reduce costs regardless of
whether you use an iterative or a sequential approach. Iterative approaches are usually
a better option for many reasons, but an iterative approach that ignores prerequisites
can end up costing significantly more than a sequential project that pays close atten-
tion to prerequisites.

Table 3-4 Effect of Focusing on Prerequisites on Sequential and Iterative
Projects

Approach #3: Sequential Approach #4: Iterative

Approach with Prerequisites Approach with Prerequisites
Project completion Cost of Cost of
status Cost of Work Rework Cost of Work Rework
20% $100,000 $20,000 $100,000 $10,000
40% $100,000 $20,000 $100,000 $10,000
60% $100,000 $20,000 $100,000 $10,000
80% $100,000 $20,000 $100,000 $10,000
100% $100,000 $20,000 $100,000 $10,000
End-of-Project
Rework $0 $0 %0 $0
TOTAL $500,000 $100,000 $500,000 $50,000
GRAND TOTAL $600,000 $550,000

As Table 3-4 suggested, most projects are neither completely sequential nor com-
pletely iterative. It isn't practical to specify 100 percent of the requirements or design
up front, but most projects find value in identifying at least the most critical require-
ments and architectural elements early.

One common rule of thumb is to plan to specify about 80 percent of the requirements
up front, allocate time for additional requirements to be specified later, and then prac-
tice systematic change control to accept only the most valuable new requirements as
the project progresses. Another alternative is to specify only the most important 20
percent of the requirements up front and plan to develop the rest of the software in
small increments, specifying additional requirements and designs as you go. Figures
3-2 and 3-3 reflect these different approaches.

3.3 Problem-Definition Prerequisite 37

A problem definition defines what the problem is without any reference to possible
solutions. It’s a simple statement, maybe one or two pages, and it should sound like a
problem. The statement “We can’t keep up with orders for the Gigatron” sounds like
a problem and is a good problem definition. The statement “We need to optimize our
automated data-entry system to keep up with orders for the Gigatron” is a poor prob-
lem definition. It doesn’t sound like a problem; it sounds like a solution.

As shown in Figure 3-4, problem definition comes before detailed requirements work,
which is a more in-depth investigation of the problem.

Figure 3-4 1he problem detinition lays the foundation for the rest of the programming
process.

The problem definition should be in user language, and the problem should be
described from a user’s point of view. It usually should not be stated in technical com-
puter terms. The best solution might not be a computer program. Suppose you need
a report that shows your annual profit. You already have computerized reports that
show quarterly profits. If you're locked into the programmer mindset, you'll reason
that adding an annual report to a system that already does quarterly reports should be
easy. Then you'll pay a programmer to write and debug a time-consuming program
that calculates annual profits. If you're not locked mto the programmer mindset,
you'll pay your secretary to create the annual [igures by taking one minute to add up
the quarterly figures on a pocket calculator.

The exception to this rule applies when the problem is with the computer: compile
times are too slow or the programming tools are buggy. Then it's appropriate to state
the problem in computer or programmer terms.

As Figure 3-5 suggests, without a good problem definition, you might put effort into
solving the wrong problem.

38 Chapter 3: Measure Twice, Cut Once: Upstream Prerequisites

KEY POINT

rigure 3-3 DBe sure you Know wndtl youre aiming at peiore you snoot.

The penalty for failing to define the problem is that you can waste a lot of time solving
the wrong problem. This is a double-barreled penalty because you also don’t solve the
right problem.

3.4 Requirements Prerequisite

Requirements describe in detail what a software system is supposed to do, and they
are the first step toward a solution. The requirements activity is also known as
“requirements development,” “requirements analysis,” “analysis,” “requirements defi-
nition,” “software requirements,” “specification,

»

functional spec,” and “spec.”

Why Have Official Requirements?

KEY POINT

An explicit set of requirements is important for several reasons.

Explicit requirements help to ensure that the user rather than the programmer drives
the system’s functionality. Il the requirements are explicit, the user can review them
and agree to them. If they're not, the programmer usually ends up making require-
ments decisions during programming. Explicit requirements keep you from guessing
what the user wants.

Explicit requirements also help to avoid arguments. You decide on the scope of the
system before you begin programming. If you have a disagreement with another pro-
grammer about what the program is supposed to do, you can resolve it by looking at
the written requirements.

Paying attention to requirements helps to minimize changes to a system after develop-
ment begins. If you find a coding error during coding, you change a few lines of code
and work goes on. If you find a requirements error during coding, you have to alter
the design to meet the changed requirement. You might have to throw away part of the
old design, and because it has to accommodate code that’s already written, the new
design will take longer than it would have in the first place. You also have to discard

HARD DATA

3.4 Requirements Prerequisite 39

code and test cases affected by the requirement change and write new code and test
cases. Even code that's otherwise unaffected must be retested so that you can be sure

the changes in other areas haven't introduced any new errors.

As Table 3-1 reported, data from numerous organizations indicates that on large
projects an error in requirements detected during the architecture stage is typically 3
times as expensive to correct as it would be if it were detected during the requirements
stage. If detected during coding, it's 5-10 times as expensive; during system test, 10
times; and post-release, a whopping 10-100 times as expensive as it would be if it were
detected during requirements development. On smaller projects with lower adminis-
trative costs, the multiplier post-release is closer to 5-10 than 100 (Boehm and Turner
2004). In either case, it isn’t money you’d want to have taken out of your salary.

Specifying requirements adequately is a key to project success, perhaps even more
important than effective construction techniques. (See Figure 3-6.) Many good books
have been written about how to specify requirements well. Consequently, the next few
sections don't tell you how to do a good job of specifying requirements, they tell you
how to determine whether the requirements have been done well and how to make
the best of the requirements you have.

<

\

Figure 3-6 Without good requirements, you can have the right general problem but miss
the mark on specific aspects of the problem.

The Myth of Stable Requirements

Requirements are like water. - Stable requirements are the holy grail of software development. With stable require-

They're easier to build on
when they're frozen.
—Anonoymous

ments, a project can proceed from architecture to design to coding to testing in a way
that’s orderly, predictable, and calm. This is software heaven! You have predictable
expenses, and you never have to worry about a feature costing 100 times as much to
implement as it would otherwise because your user didn’t think of it until you were
[inished debugging.

40 Chapter 3: Measure Twice, Cut Once: Upstream Prerequisites

HARD DATA

[t's fine to hope that once your customer has accepted a requirements document, no
changes will be needed. On a typical project, however, the customer can’t reliably
describe what is needed belore the code is written. The problem isn’t that the custom-
ers are a lower life form. Just as the more you work with the project, the better you
understand it, the more they work with it, the better they understand it. The develop-
ment process helps customers better understand their own needs, and this is a major
source of requirements changes (Curtis, Krasner, and Iscoe 1988; Jones 1998; Wieg-
ers 2003). A plan to follow the requirements rigidly is actually a plan not to respond
to your custormer.

How much change is typical? Studies at IBM and other companies have found that the
average project experiences about a 25 percent change in requirements during devel-
opment (Boehm 1981, Jones 1994, Jones 2000), which accounts for 70 to 85 percent
of the rework on a typical project (Leffingwell 1997, Wiegers 2003).

Maybe you think the Pontiac Aztek was the greatest car ever made, belong to the Flat
Earth Society, and make a pilgrimage to the alien landing site at Roswell, New Mexico,
every four years. If you do, go ahead and believe that requirements won’t change on

your projects. If, on the other hand, you've stopped believing in Santa Claus and the
Tooth Fairy, or at least have stopped admitting it, you can take several steps to mini-

mize the impact of requirements changes.

Handling Requirements Changes During Construction

Y

b ™

e, N
KEY POINT

Here are several things you can do to make the best of changing requirements during
construction:

Use the requirements checklist at the end of the section to assess the quality of your
requirements 1If your requirements aren’t good enough, stop work, back up, and
make them right before you proceed. Sure, it feels like you're getting behind i[you stop
coding at this stage. But if you're driving from Chicago to Los Angeles, is it a waste of
time to stop and look at a road map when you see signs for New York? No. If you're
not heading in the right direction, stop and check your course.

Make sure everyone knows the cost of requirements changes Clients get excited
when they think of a new feature. In their excitement, their blood thins and runs to
their medulla oblongata and they become giddy, forgetting all the meetings you had to
discuss requirements, the signing ceremony, and the completed requirements docu-
ment. The easiest way to handle such feature-intoxicated people is to say, “Gee, that

Cross-Reference For details
on handling changes to
design and code, see Section
28.2, "Configuration
Management.'

Cross-Reference For details
on iterative development
approaches, see “lterate” in
Section 5.4 and Section 29.3,
“Incremental Integration
Strategies.”

Further Reading For details
on development approaches
that support flexible require-
ments, see Rapid Develop-
ment (McConnell 1996).

Cross-Reference For details
on the differences between
formal and informal projects
(often caused by differences
in project size), see Chapter
21, "How Program Size
Affects Construction.”

3.4 Requirements Prerequisite 41

sounds like a great idea. Since it’s not in the requirements document, I'll work up a
revised schedule and cost estimate so that you can decide whether you want to do it
now or later.” The words “schedule” and “cost” are more sobering than coffee and a

cold shower, and many “must haves” will quickly turn into “nice to haves.”

If your organization isn’t sensitive to the importance of doing requirements first, point
out that changes at requirements time are much cheaper than changes later. Use this
chapter’s “Utterly Compelling and Foolproof Argument for Doing Prerequisites Before
Construction.”

Set up a change-control procedure 1[your client’s excitement persists, consider
establishing a formal change-control board to review such proposed changes. It’s all
right for customers to change their minds and to realize that they need more capabil-
ities. The problem is their suggesting changes so frequently that you can’t keep up.
Having a built-in procedure for controlling changes makes everyone happy. You're
happy because you know that you'll have to work with changes only at specilic times.
Your customers are happy because they know that you have a plan for handling their
input.

Use development approaches that accommodate changes Some development
approaches maximize your ability to respond to changing requirements. An evolution-
ary prototyping approach helps you explore a system’s requirements before you send
your forces in to build it. Evolutionary delivery is an approach that delivers the system
in stages. You can build a little, get a little feedback from your users, adjust your design
a little, make a few changes, and build a little more. The key is using short develop-
ment cycles so that you can respond to your users quickly.

Dump the project 1f the requirements are especially bad or volatile and none of the
suggestions above are workable, cancel the project. Even if you can’t really cancel the
project, think about what it would be like to cancel it. Think about how much worse it
would have to get before you would cancel it. If there’s a case in which you would dump
it, at least ask yourself how much difference there is between your case and that case.

Keep your eye on the business case for the project Many requirements issues disap-
pear before your eyes when you refer back to the business reason for doing the project.
Requirements that seemed like good ideas when considered as “features” can seem like
terrible ideas when you evaluate the “incremental business value.” Programmers who
remember to consider the business impact of their decisions are worth their weight in
gold—although I'll be happy to receive my commission for this advice in cash.

44

Chapter 3: Measure Twice, Cut Once: Upstream Prerequisites

KEY POINT

HARD DATA

design—architecture refers to design constraints that apply systemwide, whereas high-
level design refers to design constraints that apply at the subsystem or multiple-class
level, but not necessarily systemwide.

Because this book is about construction, this section doesn’t tell you how to develop
a software architecture; it focuses on how to determine the quality of an existing archi-
tecture. Because architecture is one step closer to construction than requirements,
however, the discussion of architecture is more detailed than the discussion of
requirements.

Why have architecture as a prerequisite? Because the quality of the architecture deter-
mines the conceptual integrity of the system. That in turn determines the ultimate
quality of the system. A well-thought-out architecture provides the structure needed to
maintain a system’s conceptual integrity [rom the top levels down to the bottom. It
provides guidance to programmers—at a level of detail appropriate to the skills of the
programmers and to the job at hand. It partitions the work so that multiple develop-
ers or multiple development teams can work independently.

Good architecture makes construction easy. Bad architecture makes construction
almost impossible. Figure 3-7 illustrates another problem with bad architecture.

Figure 3-7 Without good software architecture, you may have the right problem but the
wrong solution. It may be impossible to have successful construction.

Architectural changes are expensive to make during construction or later. The time
needed to fix an error in a software architecture is on the same order as that needed to
fix a requirements error—that is, more than that needed to fix a coding error (Basili
and Perricone 1984, Willis 1998). Architecture changes are like requirements changes
in that seemingly small changes can be farreaching. Whether the architectural
changes arise from the need to fix errors or the need to make improvements, the ear-
lier you can identily the changes, the better.

46 Chapter 3: Measure Twice, Cut Once: Upstream Prerequisites

Cross-Reference For details
on class design, see Chapter
6, "Working Classes

Cross-Reference For details
on working with variables,
see Chapters 10 through 13.

The communication rules for each building block should be well defined. The archi-
tecture should describe which other building blocks the building block can use
directly, which it can use indirectly, and which it shouldn’t use at all.

Major Classes

The architecture should specily the major classes to be used. It should identify the
responsibilities of each major class and how the class will interact with other classes.
It should include descriptions of the class hierarchies, of state transitions, and of
object persistence. If the system is large enough, it should describe how classes are
organized into subsystems.

The architecture should describe other class designs that were considered and give
reasons for preferring the organization that was chosen. The architecture doesn’t need
to specily every class in the system. Aim [or the 80/20 rule: specily the 20 percent of
the classes that make up 80 percent of the system’s behavior (Jacobsen, Booch, and
Rumbaugh 1999; Kruchten 2000).

Data Design

The architecture should describe the major [iles and table designs to be used. It
should describe alternatives that were considered and justify the choices that were
made. If the application maintains a list of customer IDs and the architects have cho-
sen to represent the list of IDs using a sequential-access list, the document should
explain why a sequential-access list is better than a random-access list, stack, or hash
table. During construction, such information gives you insight into the minds of the
architects. During maintenance, the same insight is an invaluable aid. Without it,
you're watching a foreign movie with no subtitles.

Data should normally be accessed directly by only one subsystem or class, except
through access classes or routines that allow access to the data in controlled and
abstract ways. This is explained in more detail in “Hide Secrets (Information Hiding)”
in Section 5.3.

The architecture should specify the high-level organization and contents of any data-
bases used. The architecture should explain why a single database is preferable to
multiple databases (or vice versa), explain why a database is preferable to flat files,
identify possible interactions with other programs that access the same data, explain
what views have been created on the data, and so on.

Business Rules

If the architecture depends on specific business rules, it should iclentify them and
describe the impact the rules have on the system’s design. For example, suppose the
system is required to follow a business rule that customer information should be no

52 Chapter 3: Measure Twice, Cut Once: Upstream Prerequisites

Cross-Reference For details
on handling changes sys-

tematically, see Section 28.2,
“Configuration Management.’

Design bugs are often subtle
and occur by evolution with
early assumptions being for-
gotten as new features or
uses are added to a system.
—Fernando J. Corbatd

Cross-Reference For a full
explanation of delaying
commitment, see "Choose
Binding Time Consciously”in
Section 5.3.

Cross-Reference For more
information about how qual-
ity attributes interact, see
Section 20.1, “"Characteristics
of Software Quality”

Reuse Decisions

If the plan calls for using preexisting software, test cases, data formats, or other mate-
rials, the architecture should explain how the reused software will be made to con-
form to the other architectural goals—if it will be made to conform.

Change Strategy

Because building a software product is a learning process for both the programmers
and the users, the product is likely to change throughout its development. Changes
arise [rom volatile data types and [ile formats, changed functionality, new features, and
so on. The changes can be new capabilities likely to result from planned enhance-
ments, or they can be capabﬂi[ies that didn’t make it into the first version of the sys-
tem. Consequently, one of the major challenges facing a software architect is making
the architecture flexible enough to accommodate likely changes.

The architecture should clearly describe a strategy for handling changes. The architec-
ture should show that possible enhancements have been considered and that the
enhancements most likely are also the easiest to implement. If changes are likely in
input or output formats, style of user interaction, or processing requirements, the
architecture should show that the changes have all been anticipated and that the
effects of any single change will be limited to a small number of classes. The architec-
ture’s plan for changes can be as simple as one to put version numbers in data files,
reserve fields for future use, or design files so that you can add new tables. If a code
generator is being used, the architecture should show that the anticipated changes are
within the capabilities of the code generator.

The architecture should indicate the strategies that are used to delay commitment. For
example, the architecture might specify that a table-driven technique be used rather
than hard-coded if tests. [t might specify that data for the table is to be kept in an exter-
nal file rather than coded inside the program, thus allowing changes in the program
without recompiling.

General Architectural Quality

A good architecture specification is characterized by discussions of the classes in the
system, of the information that’s hidden in each class, and of the rationales for includ-
ing and excluding all possible design alternatives.

The architecture should be a polished conceptual whole with few ad hoc additions.
The central thesis of the most popular software-engineering book ever, The Mythical
Man-Month, is that the essential problem with large systems is maintaining their con-
ceptual integrity (Brooks 1995). A good architecture should fit the problem. When
you look at the architecture, you should be pleased by how natural and easy the solu-
tion seems. It shouldn’t look as if the problem and the architecture have been forced
together with duct tape.

Part VII
Software Craftsmanship

Index

Symbols and Numbers

* (pointer declaration symbol), 332,
334-335,763

& (pointer reference symbol), 332

~> (pointer symbol), 328

80/20 rule, 592

A

abbreviation of names, 283-285
abstract data types. See ADTs
Abstract Factory pattern, 104
abstraction
access routines for, 340-342
ADTs for. See ADTs
air lock analogy, 136
checklist, 157
classes for, 152, 157
cohesion with, 138
complexity, [or handling, 839
consistent level for class
interfaces, 135-136
defined, 89
erosion under modification
problem, 138
evaluating, 135
exactness goal, 136-137
forming consistently, 89-90
good example [or class interfaces,
133-134
guidelines for creating class
interfaces, 135-138
high-level problem domain terms,
847
implernen[alion structures,
low-level, 846
inconsistent, 135-136, 138
interfaces, goals for, 133-138
levels of, 845-847
opposites, pairs of, 137
OS level, 846
patterns for, 103
placing items in inheritance trees,
146
poor example for class interfaces,
134-135
problem domain terms, low-level,
846
programming-language level, 846
routines for, 164

access routines
abstraction benefit, 340
abstraction, level of, 341-342
advantages of, 339-340
barricaded variables benefit, 339
centralized control from, 339
creating, 340
g_prefix guideline, 340
information hiding benefit, 340
lack of support for, overcoming,
340-342
locking, 341
parallelism from, 342
requiring, 340
accidental problems, 77-78
accreting a system metaphor, 15-16
accuracy, 464
Ada
description of, 63
parameter order, 174-175
adaptability, 464
Adapter pattern, 104
addition, dangers of, 295
ADTs (abstract data types)
abstraction with, 130
access routines, 339-342
benefits of, 126-129
changes not propagating benefit,
128
classes based on, 133
cooling system example, 129-130
data, meaning of, 126
defined, 126
documentation benefit, 128
explicit instancing, 132
files as, 130
guidelines, 130-131
hiding information with, 127
instancing, 132
implicit instancing, 132
interfaces, making more
informative, 128
low-level data types as, 130
media independence with, 131
multiple instances, handling,
131-133
need for, example of, 126-127
non-object-oriented languages
with, 131-133
objects as, 130

operations examples, table of,
129-130
passing of data, minimization of,
128
performance improvements with,
128
purpose of, 126
real-world entities, working with,
128-129
representation question, 130
simple items as, 131
verification of code benefit, 128
agile development, 58, 658
algebraic identities, 630
algorithms
commenting, 809
heuristics compared to, 12
metaphors serving as, 11-12
resources on, 607
routines, planning for, 223
aliasing, 311-316
analysis skills development, 823
approaches to development
agile development, 58, 658
bottom-up approaches, 112-113,
697-698
Extreme Programming, 58,
471-472,482,708, 856
importance of, 839-841
iterative approach. See iteration in
development
premature optimization problem,
840
quality control, 840. See also
quality of software
resources for, 58-59
sequential approach, 35-36
team processes, 839-840
top-down approaches, 111-113,
694-696
architecture
building block definition, 45
business rules, 46
buying vs. building components,
51
changes, 44,52
checklist for, 54-55
class design, 46
commitment delay strategy, 52
conceptual integrity of, 52

arithmetic expressions

architecture, continued

data design, 46

defined, 43

error handling, 49-50

fault tolerance, 50

GUIs, 47

importance of, 44

input/output, 49

internationalization planning, 48

interoperability, 48

key point for, 60

localization planning, 48

machine independence, 53

overengineering, 51

percent of total activity, by size of
project, 654-655

performance goals, 48

performance-oriented, 590

prerequisite nature of, 44

program organization, 45-46

quality, 52-53, 55

resource management, 47

resources on developing, 57

reuse decisions, 52

risky areas, identifying, 53

scalability, 48

security design, 47

technical [easibility, 51

time allowed for, 56

user interface design, 47

validation design, 50

arithmetic expressions

misleading precedence example,
733

magnitudes, greatly different, 295

multiplication, changing to
addition, 623-624

rounding errors, 297

arrays

C language macro for, 311

checklist, 317

containers as an alternative, 310

costs of operations, 602

cross-talk, 311

defined, 310

dimensions, minimizing,
625-626

end points, checking, 310

foreach loops with, 372

indexes of, 310-311

layout of references, 754

loops with, 387-388

multidimensional, 310

naming conventions for, 280-281

performance tuning, 593-594,
603-604
refactoring, 572
references, minimizing, 626-627
semantic prefixes for, 280-281
sentinel tests for loops, 621-623
sequential access guideline, 310
assembly language
description of, 63
listing tools, 720
recoding to, 640-642
asserlions
aborting program recommended,
206
arguments for, 189
assumptions to check, list of, 190
barricades, relation to, 205
benefits of, 189
building your own mechanism
for, 191
C++ example, 191
dangerous use of example, 192
deflined, 189
dependencies, checking for, 350
error handling with, 191, 193-194
executable code in, 191-192
guidelines for, 191-193
Java example of, 190
postcondition verification,
192-193
precondition verification,
192-193
removing from code, 190
resources for, 212
Visual Basic examples, 192-194
assignment statements, 249, 758
author role in inspections, 486
auto_ptrs, 333
automated testing, 528-529

B

backup plans, 669, 670

bad data, testing for, 514-515

barricades
assertions, relation to, 205
class-level, 204
input data conversions, 204
interfaces as boundaries, 203
operating room analogy, 204
purpose of, 203

base classes
abstract overridable routines, 145
abstraction aspect of, 89
coupling, too tight, 143

Liskov Substitution Principle,
144-145
overridable vs. non-overridable
routines, 145-146
protected data, 143
routines overridden to do
nothing, 146-147
single classes [rom, 146
Basic, 65. See also Visual Basic
basis testing, structured, 503,
505-509
BCD (binary coded decimal) type,
297
BDUF (big design up front), 119
beauty, 80
begin-end pairs, 742-743
bibliographies, software, 858
big-bang integration, 691
big design up front (BDUF), 119
binary searches, 428
binding
in code, 252
compile time, 252-253
heuristic design with, 107
just in time, 253
key point, 258
load time, 253
run time, 253
variables, timing of, 252-254
black-box testing, 500
blank lines for formatting, 747-748,
765-766
blocks
braces writing rule, 443
CoOmIments on, 795-796
conditionals, clarifying, 443
defined, 443
emulated pure layout style,
740-743
pure, layout style, 738-740
single statements, 748-749
Book Paradigm, 812-813
boolean expressions
0, comparisons to, 441442
Os and 1s as values, 432
breaking into partial tests, 433
C languages syntax, 442-443
characters, comparisons to zero,
441
checklist for, 459
constants in comparisons,
442-443
decision tables, moving to, 435
DeMorgan’s Theorems, applying,
436-437

evaluation guidelines, 438-440

functions, moving to, 434-435

identifiers for, 431-433

if statements, negatives in,
435-436

implicit comparisons, 433

Java syntax, 439, 443

layout guidelines, 749-750

logical identities, 630

negatives in, 435-437

numeric, structuring, 440-441

parentheses for clarifying,
437-438

pointers, comparisons with, 441

positive form recommended,
435-437

refactoring, 572

short circuit evaluation, 438-440

simplifying, 433-435

variables in. See boolean variables

zero, comparisons Lo, 441-442
boolean [unctions
creating [rom expressions,
434-435
if statements, used in, 359
boolean tests
breaking into partial tests, 433
hiding with routines, 165
simplifying, 301-302
zero, comparisons Lo, 441442
boolean variables
0s and 1s as values, 432
C, creating data type, 302-303
checklist, 317
documentation with, 301
enumerated types as alternative,
304
expressions with. See boolean
expressions
identifiers for, 431-433
naming, 268-269
simplifying tests with, 301-302
zeros and ones as values, 432
boss readiness test on prerequisites,
30-31
bottom-up approach to design,
112-113
bottom-up integration, 697-698
boundary analysis, 513-514
braces
block layout with, 740-743
styles compared, 734
break statements
C++ loops, 371-372
caution about, 381
guidelines, 379-380

labeled, 381
multiple in one loop, 380
nested-il simplification with,
+46-447
while loops with, 379
bridge failure, Tacoma Narrows, 74
Bridge pattern, 104
brute-force debugging, 548-549
buffer overruns, 196
bugs. See debugging; defects in code;
errors
build tools, 716-717. See also
compilers
building metaphor, 16-19
building vs. buying components, 18
builds, daily. See daily build and
smoke tests
business rules
architecture prerequisites, 46
change, identifying areas of, 98
good practices table for, 31-32
subsystem design, 85
buying components, 18, 51

C
C language
ADTs with, 131
boolean expression syntax,
442443
description of, 64
naming conventions for, 275, 278
pointers, 334-335
string data types, 299-301, 317
string index errors, 299-300
Ci, 64
CH++
assertion example, 191
boolean expression syntax,
442-443
debugging stubs with, 208-209
description of, 64
DoNothing() macros, 444-445
exceptions in, 198-199
inline routines, 184-185
interface considerations, 139-141
layout recommended, 745
macro routines, 182-184
naming conventions for, 275-277
null statements, 444-445
parameters, by reference vs. by
value, 333
pointers, 325, 328-334, 763
preprocessors, excluding debug
code, 207-208
resources for, 159

character, personal 887

side effects, 759-761
source files, layout in, 773
caching, code tuning with, 628-629
Capability Maturity Model (CMM),
491
capturing design work, 117-118
Cardinal Rule of Software Evolution,
565
CASE (computer-aided software
engineering) tools, 710
case statements
alpha ordering, 361
checklist, 365
debugging, 206
default clauses, 363
drop-throughs, 363-365
end of case statements, 363-365
endline layout, 751-752
error detection in, 363
frequency of execution ordering,
361, 612-613
il statements, comparing
performance with, 614
key points, 366
language support for, 361
nested ifs, converting from,
448-449, 451
normal case first rule, 361
numeric ordering, 361
ordering cases, 361
parallel modifications to, 566
phony variables, 361-362
polymorphism preferable to,
147-148
redesigning, 433
refactoring, 566,573
simple action guideline, 361
table-driven methods using,
421-422
change control. See conliguration
management
character arrays, 299-300. See also
string data types
character data types
arrays vs. string pointers, 299
C language, 299-301
character sets, 298
checklist, 316-317
conversion strategies, 299
magic (literal) characters,
297-298
Unicode, 298, 299
character, personal
analysis skills, 823
communication skills, 828

checklists

character, personal, continued

compiler messages, treatment of,
826-827

computer-science graduates, 829

cooperation skills, 828

creativity, 829, 857

curiosity, 822-825

development process awareness,
822

discipline, 829

estimations, 827-828

experience, 831-832

experimentation, 822-823

gonzo programming, 832

habits, 833-834

humility, 821, 826, 834

importance of, 819-820

intellectual honesty, 826-828

intelligence, 821

judgment, 848

key points, 835

laziness, 830

mistakes, admitting to, 826

persistence, 831

practices compensating for
weakness, 821

problem solving, 823

professional development,
§24-825

reading, 824

religion in programming, harmful
elfects of, 851-853

resources on, 834-835

status reporting, 827

successful projects, learning from,
823-824

checklists

abstraction, 157

architecture, 54-55

arrays, 317

backups, 670

boolean expressions, 459

case statements, 365

character data types, 316-317

classes, 157-158, 233-234,
578-579, 774,780

coding practices, 69

code tuning, 607-608, 642-643

comments, 774, 816-817

conditional statements, 365

configuration management,
669-670

constants, 317

construction practices, 69-70

control structures, 459, 773, 780

daily build and smoke tests, 707
data organization, 780
data types, 316-318
debugging, 559-561
defects, 489, 559-560
defensive programming, 211-212
design, 122-123, 781
documentation, 780-781,
816-817
encapsulation, 158
enumerated types, 317
fixing defects, 560
formal inspections, 489, 491-492
formatting, 773-774
goto statements, 410
il statements, 365
inheritance, 158
initialization, 257
integration, 707
interfaces, 579
layout, 773-774
list of, xxix—xxx
loops, 388-389
names, 288-289, 780
pair programming, 484
parameters, 185
performance tuning, 607-608
pointers, 344
Pprerequisites, 59
pseudocoding, 233-234
programming tools, 724-725
quality assurance, 42-43, 70, 476
refactoring, 570, 577-579, 584
requirements, 40, 42-43
routines, 185, 774, 780
speed, tuning for, 642-643
statements, 774
straight-line code, 353
strings, 316-317
structures, 343
table-driven methods, 429
testing, 503, 532
tools, 70
type creation, 318
variables, 257-258, 288-289,
343-344

circular dependencies, 95

classes
abstract data types. See ADTs
abstract objects, modeling, 152
abstraction checklist, 157
alternates to PPP, 232-233
architecture prerequisites, 46
assumplions about users, 141
base. See base classes

bidirectional associations, 577

calls to, refactoring, 575

case statements vs. inheritance,
147-148

centralizing control with, 153

changes, limiting effects of, 153

checklists, 157-158, 774, 780

coding routines [rom
pseudocode, 225-229

cohesion as refactoring indicator,
566

complexity issues, 152-153

constant values returned, 574

constructors, 151-152

containment, 143-144

coupling considerations,
100-102, 142-143

data-free, 155

deep inheritance trees, 147

defined, 125

delegation vs. inheritance,
refactoring, 576

descendants, refactoring indicator
for, 567

designing, 86, 216, 220-225, 233

disallowing functions and
operators, 150

documenting, 780, 810

encapsulation, 139-143, 158

extension, refactoring with, 576

factoring, benefit of, 154

files containing, 771-772

foreign routines, refactoring with,
576

formalizing contracts for
interfaces, 106

formatting, 768-771

friend, encapsulation violation
concern, 141

functions in. See functions;
routines

global data, hiding, 153

god classes, 155

hacking approach to, 233

hiding implementation details,
153

implementation checklist, 158

indirect calls to other classes, 150

information hiding, 92-93

inheritance, 144-149, 158

initializing members, 243

integration, 691, 694, 697

irrelevant classes, 155

is a relationships, 144

key points for, 160, 234

language-specific issues, 156

layout of, 768-771

limiting collaboration, 150

Liskov Substitution Principle,
144-145

member variables, naming, 273,
279

methods of. See routines

minimizing accessibility rule, 139

mixins, 149

modeling real-world objects, 152

multiple per file, layout of,
769-770

naming, 277, 278

number of members, 143

number of routines, 150

object names, diflerentiating [rom,
272-273

objects, contrasted with, 86

overformatting, 770

overriding routines, 145-146, 156

packages, 155-157

parallel modifications refactoring
indicator, 566

planning for program families,
154

private vs. protected data, 148

private, declaring members as,
150

procedures in. See routines

protected data, 148

pseudocode for designing,
232-234

public members, 139, 141, 576

read-time convenience rule, 141

reasons for creating, 152-156

refactoring, 155, 574-576,
578-579,582

resources, 159

reusability benefit of, 154

review and test step, 217

routine construction step, 217

routines in. See routines

routines, unused, 146-147, 576

semantic violations of
encapsulation, 141-142

Set() routines, unnecessary, 576

similar sub and superclasses, 576

single-instance, 146

singleton property, enforcing, 151

steps in creating, 216-217

streamlining parameter passing,
153

subclasses, 165, 575

superclasses for common code,
575
test-first development, 233
testing with stub objects, 523
unidirectional associations, 577
visibility of, 93
warning signs for, 848, 849
class-hierarchy generators, 713
cleanup steps, PPP, 232
cleanroom development, 521
CMM (Capability Maturity Model),
491
Cobol, 64
code coverage testing, 506
code libraries, 222, 717

code quality analysis tools, 713-714

code reading method, 494
code tuning

80/20 rule, 592

advantages from, 591

algebraic identities, 630

appeal of, 591-592

arrays, 593-594, 603-604,
625-627

assembler, listing tools, 720

assembler, recoding to, 640-642

bottleneck identification, 594

caching data, 628-629

checklists, 607-608, 642-643

comparing logic structures, 614

competing objectives dilemma,
595

compiler considerations, 590,
596-597

converting data types, 635

correctness, importance of,
595-596

data transformations, 624-629

data type choices, 635

database indexing, 601

defects in code, 601

defined, 591

DES example, 605-606

design view, 589-590

disadvantages of, 591

disassemblers, 720

execution profiler tools, 720

expressions, 630-639

feature specific, 595

frequency, testing in order of,
612-613

frequently used code spots, 592

hardware considerations, 591

improvements possible, 605

indexing data, 627-628

code tuning 889

inefficiency, sources of, 598-601

initializing at compile time,
632-633

inline routines, 639-640

input/output, 598-599

integers preferred to floating, 625

interpreted vs. compiled
languages, 592, 600-601

iteration of, 608, 850

jamming loops, 617-618

key points, 608, 645

language specificity, 644

lazy evaluation, 615-616

lines of code, minimizing number
of, 593-594

logic manipulation guidelines,
610-616

lookup tables for, 614-615, 635

loops, 616-624

low-level language, recoding to,
640-642

measurement to locate hot spots,
603-604, 644

memory vs. file operations,
598-599

minimizing work inside loops,
620-621

multiplication, changing to
addition, 623-624

nested loop order, 623

old wives’ tales, 593-596

operating system considerations,
590

operation speeds, presumptions
about, 594

operations, costs of common,
601-603

optimizing as you go, 594-595

overview of, 643-644

paging operations, 599

Pareto Principle, 592

precomputing results, 635-638

program requirements view of,
589

refactoring, compared to, 609

resource goals, 590

resources on, 606-607, 644-045

right shifting, 634

routines, 590, 639-640

sentinel tests for loops, 621-623

short-circuit evaluation, 610

speed, importance of, 595-596

strength reduction, 623-624,
630-632

constructors

construction schedules, estimating,
continued
overview, 671
planning estimation time, 671
reduction of scope, 676
reestimating, 672
requirements specification, 672
resources for, 677
teams, expanding, 676
constructors
deep vs. shallow copies, 151-152
exceptions with, 199
guidelines for, 151-152
initializing data members, 151
refactoring, 577
singleton property, enforcing, 151
container classes, 310
containment, 88, 143
continuation lines, 754-758
continue statements, 379, 380, 381
continuous integration, 706
control structures
boolean expressions in. See
boolean expressions
case. See case statements
checklists, 459, 773, 780
commenting, 804-805, 817
complexity, contributions to,
456-459
compound statements, 443
conditional flow. See conditional
slatements
continuation lines in, 757
data types, relationship to,
254-255
documentation, 780
double indented begin-end pairs,
T46-747
golos. See goto statements
il statements. See il statements
iteration, 255, 456
key points, 460
layout styles, 745-752
loops. See loops
multiple returns from routines,
391-393
null statements, 444445
recursive. See recursion
reliability correlated with
complexity, 457
returns as. See return statements
selective data with, 254
sequential data with, 254
structured programming,
454-455

unindented begin-end pairs, 746
unusual, overview of, 408
conventions, coding,
benefits of, 844-845
checklist, 69
formatting. See layout
hazards, avoiding with, 844
predictability benelit, 844
converting data types, 635
cooperation skills, importance of,
828
correctness, 197, 463
costs. See also performance tuning
change estimates, 666
collaboration benefits, 480-481
debugging, time consumed by,
474-475
defects contributing to, 519-520
detection of defects, 472
error-prone routines, 518
estimating, 658, 828
fixing of defects, 472-473, 519
General Principle of Software
Quality, 474-475,522
pair programming vs. inspections,
480-481
resources on, 658
counted loops. See for loops
coupling
base classes to derived classes,
143
classes, too tightly, 142-143
design considerations, 100-102
flexibility of, 100-101
goals of, 100
loose, 80, 100-102
object-parameter type, 101
semantic type, 102
simple-data-parameter type, 101
simple-object type, 101
size of, 100
visibility of, 100
coverage
monitoring tools, 526
structured basis testing, 505-509
CRC (Class, Responsibility,
Collaboration) cards, 118
creativity, importance of, 829, 857
cross-reference tools, 713
curiosity, role in character, 822-825
Currency data types, 297
customization, building metaphor
for, 18

D

daily build and smoke tests
automation of, 704
benefits of, 702
broken builds, 703, 705
build groups, 704
checklist, 707
defined, 702
diagnosis benefit, 702
holding area for additions,
704-705
importance of, 706
morning releases, 705
pressure, 706
pretest requirement, 704
revisions, 704
smoke tests, 703
unsurfaced work, 702
data
architecture prerequisites, 46
bad classes, testing for, 514-515
change, identilying areas of, 99
code tuning, See data
transformations for code
tuning
combined states, 509-510
defined state, 509-510
defined-used paths, testing,
510-512
design, 46
entered state, 509
exited state, 509
good classes, testing, 515-516
killed state, 509-510
legacy, compatibility with, 516
nominal case errors, 515
test, generators for, 524-525
types. See data types
used state, 509-510
data dictionaries, 715
data flow testing, 509-512
data literacy test, 238-239
data recorder tools, 526
data structures. See structures
data transformations for code
tuning
array dimension minimization,
625-626
array reference minimization,
626-627
caching data, 628-629
floating point 1o integers, 625
indexing data, 627-628
purpose of, 624

data types
“a” prefix convention, 272
abstract data types. See ADTs
arrays. See arrays
BCD, 297
boolean. See boolean variables
change, identifying areas of, 99
characters. See character data
types
checklist, 316-318
complex. See structures
control structures, relationship to,
254-255
creating, See type creation
Currency, 297
definitions, 278
enumerated types. See
enumerated types
floating-point. See floating-point
data types
integers. See integer data types
iterative data, 255
key points for, 318
naming, 273, 277, 278
numeric. See numeric data types
overloaded primitives, 567
pointers. Se¢ pointers
refactoring to classes, 567,572
resources on, 239
selective data, 254
sequential data, 254
strings. See string data types
structures. See structures
t_ prelix convention, 272
user-defined. See type creation
variables of, differentiating from,
272-273
databases
performance issues, 601
SQL, 65
subsystem design, 85
data-level refactoring, 571-572, 577
days-in-month, determining,
413414
deallocation
goto statements for, 399
pointers, of, 326, 330, 332
Debug.Assert statements, 191-193
debugging
aids to. See debugging aids
binary searches ol code, 546
blindness, sources of, 554-555
breakpoints, 558
breaks, taking, 548
brute-force, 548-549

changes, recent, 547

checklist, 559-561

comments, misplaced, 550

common defects lists, 547

compilers as tools for, 549, 557

confessional debugging, 547-548

costs of, 29-30, 474-475

debugger tools, 526-527, 545,
556-559, 719. See also
debugging aids

defects as opportunities, 537-538

defensive. See debugging aids

defined, 535

Dilf tool, 556

execution profilers for, 557-558

expanding suspicious regions,
547

experience of programmers,
effects of, 537

finding defects, 540, 559-560

fixing defects, 550-554

guessing, 539

history of, 535-536

hypothesis testing, 543-544, 546

incremental approach, 547

ineffective approach to, 539-540

key points, 562

line numbers from compilers, 549

lint tool, 557

listing possibilities, 546

locating error sources, 543-544

logic checking tools, 557

multiple compiler messages, 550

narrowing code searches, 546

obvious fixes, 539

performance variations, 536-537

project-wide compilers settings,
557

psychological considerations,
554-556

quality of software, role in, 536

quotation marks, misplaced, 550

readability improvements, 538

recommended approach, 541

reexamining delect-prone code,
547

resources for, 561

Satan’s helpers, 539-540

scaffolding for, 558

scientific method of, 540-544

sell-knowledge from, 538

source-code comparators, 556

stabilizing errors, 542-543

superstitious approaches,
539-540

defects in code 893

symbolic debuggers, 526-527

syntax checking, 549-550, 557,
560

system debuggers, 558

test case creation, 544

testing, compared to, 500

time for, setting maximums, 549

tools for, 526-527, 545, 556-559,
719. See also debugging aids

understanding the problems, 539

unit tests, 545

varying lesl cases, 545

warnings, treating as errors, 557

debugging aids

C++ preprocessors, 207-208

case statements, 206

early introduction recommended,
206

offensive programming, 206

planning removal of, 206-209

pointers, checking, 208-209

preprocessors, 207-208

production constraints in
development versions, 203

purpose of, 205

stubs, 208-209

version control tools, 207

decision tables. See table-driven

methods

declarations

commenting, 794, 802-803, 816

const recommended, 243

declare and define near first use
rule, 242-243

define near first use rule,
242-243

final recommended, 243

formatting, 761-763

implicit declarations, 239-240

multiple on one line, 761-762

naming. See naming conventions

numerical data, commenting, 802

order of, 762

placement of, 762

pointers, 325-326, 763

using all declared, 257

Decorator pattern, 104
defects in code

classes prone to error, 517-518

classifications of, 518-520

clerical errors (typos), 519

Code Complete example,
490-491

construction, proportion
resulting from, 520-521

894 defensive programming

security issues, 212 divide and conquer technique,

trivial errors guideline, 209 111

validating input, 188 documentation, as, 781
defined data state, 509-510 documentation overkill, 117
defining variables. See declarations emergent nature of, 76
Delphi, recoding to assembler, encapsulation, 90-91

defects in code, continued
cost of detection, 472
cost of fixing, 472-473
databases of, 527
detection by various techniques,
table of, 470

distribution of, 517-518

ease of [ixing delects, 519

error checklists, 489

expected rate of, 521-522

finding, checklist, 559-560

fixing. See debugging; fixing
defects

formal inspections for detecting.
See formal inspections

intermittent, 542-543

misunderstood designs as sources
for, 519

opportunities presented by,
537-538

outside of construction domain,
519

percentage of, measurement,
469-472

performance issues, 601

programmers at fault for, 519

readability improvements, 538

refactoring after [ixing, 582

scope of, 519

sell-knowledge from, 538

size of projects, effects on,
651-653

sources of, table, 518

stabilizing, 542-543

defensive programming

assertions, 189-194

assumptions to check, list of, 190

barricades, 203-205

checklist, 211-212

debugging aids, 205-209

defined, 187

error handling for, 194-197

exceptions, 198-203, 211

friendly messages guideline, 210

gracelul crashing guideline, 210

guidelines for production code,
209-210

hard crash errors guideline, 209

important errors guideline, 209

key points for, 213

logging guideline, 210

problems caused by, 210

quality improvement techniques,
other, 188

robustness vs. correctness, 197

640-642

DeMorgan’s Theorems, applying,

436-437

dependencies, code-ordering

checker tools, 716
circular, 95

clarifying, 348-350
concept of, 347
documentation, 350
error checking, 350
hidden, 348

initialization order, 348
naming routines, 348-349
non-obvious, 348
organization of code, 348
parameters, effective, 349

design

abstractions, forming consistent,
89-90

accidental problems, 77-78

BDUF, 119

beauty, 80

bottom-up approach to design,
112-113

business logic subsystem, 85

capturing work, 117-118

central points of control, 107

change, identilying areas of,
97-99

changes, management of,
666-667

characteristics of high quality,
80-81

checklists, 122-123, 781

classes, division into, 86

collaboration, 115

communications among,
subsystems, 83-84

completion of, determining,
115-117

complexity management, 77-80

construction activity, as, 73-74

contract, by, 233

coupling considerations, 100-102

database access subsystem, 85

defined, 74

diagrams, drawing, 107

discussion, summarizing, 117

enough, determining, 118-119

essential problems, 77-78

extensibility goal, 80

formality of, determining,
115-117

formalizing class contracts, 106

goals checklist, 122-123

good practices table for, 31-32

heuristic. See heuristic design

hierarchies for, 105-106

high fan-in goal, 80

1EEE standards, 122

information hiding, 92-97, 120

inheritance, 91-92

iteration practice, 111-117

key points, 123

leanness goal, 81

level of detail needed, 115-117

levels of, 82-87

loose coupling goal, 80

low-to-medium fan-out goal, 81

maintenance goals, 80

mental limitations of humans, 79

melrics, warning signs [rom, 848

nondeterministic nature of, 76, 87

object-oriented, resource for, 119

objects, real world, finding, 87-89

packages level, 82-85

patterns, common. See patterns

performance tuning
considerations, 589-590

portability goal, 81

practice heuristics. See heuristic
design

practices, 110-118, 122

prioritizing during, 76

prototyping, 114-115

resources for, 119-121

restrictive nature of, 76

reusability goal, 80

routines, of, 86-87

sloppy process nature of, 75-76

software system level, 82

standard techniques goal, 81

standards, [EEE, 122

stratification goal, 81

strong cohesion, 105

subsystem level, 82-85

system dependencies subsystem,
85
testing for implementation, 503
tools for, 710
top-down approach, 111-113
tradeoffs, 76
UML diagrams, 118
user interface subsystem, 85
visual documentation of, 118
wicked problem nature of, 74-75
Wikis, capturing on, 117
destructors, exceptions with, 199
detailed-design documents, 778
developer testing. See testing
development processes. See
approaches to development
development standards, [EEE, 813
diagrams
heuristic design use of, 107
UML, 118
Dilf tools, 556,712
direct access tables
advantages of, 420
arrays for, 414
case statement approach,
421-422
days-in-month example, 413-414
defined, 413
design method for, 420
flexible-message-format example,
416-423
fudging keys for, 423-424
insurance rates example, 415-416
keys for, 423-424
object approach, 422-423
transforming keys, 424
disassemblers, 720
discipline, importance of, 829
discourse rules, 733
disposing of objects, 206
divide and conquer technique, 111
division, 292-293
Do loops, 369-370. See also loops
documentation
abbreviation of names, 284-285
ADTs for, 128
bad code, of, 568
Book Paradigm for, 812-813
capturing work, 117-118
checklists, 780-781, 816-817
classes, 780
comments. See comments
control structures, 780
CRC cards for, 118
dependencies, clarifying, 350

design as, 117, 781
detailed-design documents, 778
external, 777-778
Javadoc, 807, 815
key points, 817
names as, 284-285, 778-779,
780
organization of data, 780
parameter assumptions, 178
pseudocode, deriving from, 220
resources on, 815
routine parameler assumpltions,
178
routines, 780
SDFs, 778
self-documenting code, 778-781
size of projects, effects of, 657
source code as, 7
standards, IEEE, 813-814
style differences, managing, 683
UDFs, 778
visual, of designs, 118
why vs. how, 797-798
dog-and-pony shows, 495
dog tag fields, 326-327
DoNothing() macros, 444-445
DRY (Don't Repeat Yourself)
principle, 565
duplication
avoiding with routines, 164-165
code as refactoring indicator, 565

early-wave environments, 67
ease of maintenance design goal, 80
eclecticism, 851-852
editing tools
beautifiers, 712
class-hierarchy generators, 713
cross-reference tools, 713
Diff tools, 712
grep, 711
IDEs, 710-711
mterface documentation, 713
merge tools, 712
multiple-file string searches,
711-712
templates, 713
elficiency, 464
eighty/twenty (80/20) rule, 592
else clauses
boolean function calls with, 359
case statements instead of, 360
chains, in, 358-360

enumerated types 895
common cases first guideline,
359-360
correctness testing, 358
default for covering all cases, 360
gotos with, 406-407
null, 358
embedded life-critical systems,
31-32
emergent nature of design process,
76
emulated pure blocks layout style,
740-743
encapsulation
assumptions about users, 141
checklist, 158
classes, role for, 139-143
coupling classes too tightly,
142-143
downcast objects, 574
friend class concern, 141
heuristic design with, 90-91
minimizing accessibility, 139
private details in class interfaces,
139-141
public data members, 567
public members of classes, 139
public routines in interfaces
concern, 141
semantic violations of, 141-142
weak, 567
endless loops, 367, 374
endline comments, 793-795
endline layout, 743-745, 751-752,
767
enumerated types
benefits of, 303
booleans, alternative to, 304
C++,303-304, 306
changes benefit, 304
checklist, 317
comments substituting for,
802-803
creating for Java, 307
defined, 303
emulation by global variables, 338
explicit value pitfalls, 306
first entry invalid trick, 305-306
iterating through, 305
Java, creating for, 307
languages available in, 303
loop limits with, 305
naming, 269, 274, 277-279
parameters using, 303
readability [rom, 303
reliability benefit, 304

896

equality, floating-point

enumerated types, continued
standard for, 306
validation with, 304-305
Visual Basic, 303-306
equality, floating-point, 295-296
equivalence partitioning, 512
error codes, 195
error detection, doing early, 29-30
error guessing, 513
error handling. See also exceptions
architecture prerequisites, 49-50
assertions, compared to, 191
barricades, 203-205
bulfer overruns compromising,
196
closest legal value, 195
delensive programming,
techniques for, 194-197
error codes, returning, 195
error-processing routines, calling,
196
high-level design implication, 197
local handling, 196
logging warning messages, 195
messages, 49, 195-196, 210
next valid data, returning, 195
previous answers, reusing, 195
propagation design, 49
refactoring, 577
returning neutral values, 194
robustness, 51, 197
routines, designing along with,
222
shutting down, 196
validation design, 50
EITOT Messages
codes, returning, 195
design, 49
displaying, 196
friendly messages guideline, 210
errors. See also defects in code;
exceptions
classifications of, 518-520
coding,. See defects in code
dog tag lields, 326-327
exceptions. See exceptions
handling, See error handling
goto statements for processing,
401-402
sources of, table, 518
essential problems, 77-78
estimating schedules
approaches to, list of, 671
change costs, 666
control, compared to, 675

factors influencing, 674-675
level of detail for, 672
inaccuracy, character-based,
827-828
multiple techniques with
comparisons, 672
objectives, establishing, 671
optimism, 675
overview, 671
planning for estimation time, 671
redoing periodically, 672
reduction of scope, 676
requirements speciﬁcation, 672
resources for, 677
teams, expanding, 676
event handlers, 170
evolution. See software evolution
Evolutionary Delivery. See
incremental development
metaphor
exceptions. See also error handling
abstraction issues, 199-200
alternatives to, 203
base classes for, project specific,
203
C++,198-199
centralized reporters, 201-202
constructors with, 199
defensive programming checklist,
211
destructors with, 199
empty catch blocks rule, 201
encapsulation, breaking, 200
full information rule, 200
Java, 198-201
languages, table comparing,
198-199
level of abstraction rule, 199-200
library code generation of, 201
local handling rule, 199
non-exceptional conditions, 199
purpose of, 198, 199
readability of code using, 199
refactoring, 577
resources for, 212-213
standardizing use of, 202-203
Visual Basic, 198-199, 202
execution profilers, 557-558, 720
executable-code tools
build tools, 716-717
code libraries, 717
code-generation wizards, 718
compilers. See compilers
installation tools, 718
linkers, 716

preprocessors, 718-719
setup tools, 718
Exit Function, 391. See also return
statements
Exit statements. See break
statements
Exit Sub, 392-393, See also return
statemernts
exiting loops, 369-372,377-381
experience, personal, 831-832
experimental prototyping, 114-115
experimentation as learning,
822-823,852-853
exponential expressions, 631-632
expressions
boolean. See boolean expressions
constants, data types for, 635
initializing at compile time,
632-633
layout guidelines, 749-750
precomputing results, 635-638
right shifting, 634
strength reduction, 630-632
subexpression elimination,
638-639
system calls, performance of,
633-634
extensibility design goal, 80
external audits, 467
external documentation, 777-778
Extreme Programming
collaboration component of, 482
defect detection, 471-472
defined, 58
resources on, 708, 856

F
Facade pattern, 104
factorials, 397-398
factoring, 154. See also refactoring
factory methods
Factory Method pattern, 103-104
nested ifs refactoring example,
452-453
refactoring to, 577
fan-in, 80
fan-out, 81
farming metaphor, 14-15
fault tolerance, 50
feature-oriented integration,
700-701
Fibonacci numbers, 397-398
figures, list of, xxxiii

plain if-then statements, 355-357

refactoring, 573
simplification, 445-447
single-statement layout, 748-749
tables, replacing with, 413-414
types of, 355
implicit declarations, 239-240
implicit instancing, 132
in keyword, creating, 175-176
incomplete preparation, causes of,
25-27

incremental development metaphor,

15-16
incremental integration
benefits of, 693-694
bottom-up strategy, 697-698
classes, 694, 697
customer relations benefit, 694
defined, 692
disadvantages of top-down
strategy, 695-696
errors, locating, 693
feature-oriented integration,
700-701
interface specification, 695, 697
progress monitoring benefit, 693
resources on, 708
results, early, 693
risk-oriented integration, 699
sandwich strategy, 698-699
scheduling benefits, 694
slices approach, 698
steps in, 692
stralegies for, overview, 694
stubs, 694, 696
summary of approaches, 702
test drivers, 697
top-down strategy for, 694-696
T-shaped integration, 701
vertical-slice approach, 696
indentation, 737, 764-768
indexed access tables, 425-426,
428-429
indexes, supplementing data types
with, 627-628
indexes, loop
alterations, 377
checklist, 389
enumerated types for, 305
final values, 377-378
scope of, 383-384
variable names, 265
infinite loops, 367, 374
informal reviews, 467, 492-493

information hiding

access routines for, 340

ADTs for, 127

barriers to, 95-96

categories of secrets, 94

circular dependencies problem,
95

class data mistaken for global
data, 95-96

class design considerations, 93

class implementation details, 153

example, 93-94

excessive distribution problem,
95

importance of, 92

interfaces, class, 93

perlormance issues, 96

privacy rights of classes, 92-93

resources for, 120

secrets concept, 92

type creation for, 313-314

inheritance

access privileges from, 148

case statements, 147-148

checklist, 158

containment compared to, 143

decisions involved in, 144

deep trees, 147

defined, 144

design rule for, 144

functions, private, overriding, 146

guidelines, list of, 149

heuristic design with, 91-92

identilying as a design step, 88

is a relationships, 144

key points for, 160

Liskov Substitution Principle,
144-145

main goal of, 136

mixins, 149

multiple, 148-149

overridable vs. non-overridable
routines, 145-146

parallel modifications refactoring
indicator, 566

placement of common items in
tree, 146

private vs. protected data, 148

private, avoiding, 143

recommended bias against, 149

routines overridden to do
nothing, 146-147

single-instance classes, 146

similar sub and super classes, 576

integration 899

initializing variables
accumulators, 243
at declaration guideline, 241
Ca+ examPIE, 241
checklist for, 257
class members, 243
compiler settings, 243
consequences of lailing to, 240
const recommended, 243
constants, 243
counters, 243
declare and define near first use
rule, 242-243
final recommended, 243
first use guideline, 241-242
fixing defects, 553
global variables, 337
importance of, 240-241
Java example, 242-243
key point, 258
loops, variables used in, 249
parameter validity, 244
pointer problems, 241, 244,
325-326
Principle of Proximity, 242
reinitialization, 243
strings, 300
system perturbers, testing with,
527
Visual Basic examples, 241-242
initializing working memory, 244
inline routines, 184-185
input parameters, 274
input/output. S¢e [/O
inspections. See formal inspections
installation tools, 718
instancing objects
ADTs, 132
factory method, 103-104
singleton, 104, 151
integer data types
checklist, 316
costs of operations, 602
division considerations, 293
overflows, 203-295
ranges of, 294
Integrated Development
Environments (IDEs), 710-711
integration
benefits of, 690-691, 693-694
big-bang, 691
bottom-up strategy, 697-698
broken builds, 703
checklist, 707

integrity

integration, continued

classes, 691, 694, 697

continuous, 706

customer relations, 694

daily build and smoke test,
702-706

defined, 689

disadvantages of top-down
strategy, 695-696

errors, locating, 693

feature-oriented strategy, 700-701
importance of approach methods,

689-691
incremental. See incremental
integration
interface specification, 695, 697
key points, 708
monitoring, 693
phased, 691-692
resources on, 707-708
risk-oriented strategy, 699
sandwich strategy, 698-699
scheduling, 694
slices approach, 698
smoke tests, 703
strategies for, overview, 694
stubs, 694, 696
summary of approaches, 702
testing, 499, 697
top-down strategy for, 694-696
T-shaped integration, 701
unsurfaced work, 702
vertical-slice approach, 696
integrity, 464
intellectual honesty, 826-828
intellectual toolbox approach, 20
intelligence, role in character, 821
interfaces, class
abstraction aspect of, 89,
133-138, 566
calls to classes, refactoring, 575
cohesion, 138
consistent level of abstraction,
135-136
delegation vs. inheritance,
refactoring, 576
documenting, 713, 810
erosion under modification
problem, 138
evaluating abstraction of, 135
extension classes, refactoring
with, 576
formalizing as contracts, 106
good abstraction example,
133-134

guidelines for creating, 135-138
foreign routines, refactoring with,
576
inconsistency with members
problem, 138
inconsistent abstraction, example
of, 135-136
information hiding role, 93
integration, specifica[ion during,
695, 697
key points for, 160
layout of, 768
mixins, 149
objects, designing for, 89
opposites, pairs of, 137
poor abstraction example,
134-135
private details in, 139-141
programmatic preferred to
semantic, 137
public routines in interfaces
concern, 141
read-time convenience rule, 141
refactoring, 575-576, 579
routines, moving to refactor, 575
routines, unused, 576
semantic violations of
encapsulation, 141-142
unrelated information, handling,
137
interfaces, graphic. See GUls
interfaces, routine. See also
parameters of routines
commenting, 808
foreign routines, refactoring with,
576
pseudocade for, 226
public member variables, 576
routines, hiding, 576
routines, moving to refactor, 575
internationalization, 48
interoperability, 48
interpreted languages, performance
of, 600-601
invalid input. See validation
iteration, code. See also loops
foreach loops, 367, 372
iterative data, 255
iterator loops, defined, 367
lterator pattern, 104
structured programming concept
of 456
iteration in development
choosing, reasons for, 35-36
code tuning, 850

design practice, 111-117

Extreme Programming, 58

importance of, 850-851

prerequisites, 28, 33-34

sequential approach compared,
33-34

pseudocode component of, 219

J

Jjamming loops, 617-618

Java
assertion example in, 190
boolean expression syntax, 443
description of, 65
exceptions, 196-201
layout recommended, 745
live time examples, 247-248
naming conventions for, 276, 277
parameters example, 176-177
persistence of variables, 251
resources for, 159

Javadoc, 807, 815

JavaScript, 65

JUnit, 531

just in time binding, 253

K

key construction decisions. See
construction decisions

killed data state, 509-510

kinds of software projects, 31-33

L

languages, programming, See
programming language choice
Law of Demeter, 150
layout
array references, 754
assignment statement
continuations, 758
begin-end pairs, 742-743
blank lines, 737, 747-748
block style, 738-743
brace styles, 734, 740-743
C++ side effects, 759-761
checklist, 773-774
classes, 768-771
closely related statement
elements, 755-756
comments, 763-766
complicated expressions,
T49-750
consistency requirement, 735

continuing statements, 754-758

control statement continuations,
757

control structure styles, 745-752

declarations, 761-763

discourse rules, 733

documentation in code, 763-766

double indented begin-end pairs,
T46-747

emulating pure blocks, 740-743

endline layout, 743-745, 751-752

ends of continuations, 756-757

files, within, 771-773

Fundamental Theorem of
Formatting, 732

gotos, 750-751

incomplete statements, 754-755

indentation, 737

interfaces, 768

key points, 775

language-specific guidelines, 745

logical expressions, 753

logical structure, reflecting, 732,
735

mediocre example, 731-732

misleading indentation example,
732-733

misleading precedence, 733

modifications guideline, 736

multiple statements per line,
758-761

negative examples, 730-731

objectives of, 735-736

parentheses for, 738

pointers, C++, 763

pure blocks style, 738-740

readability goal, 735

religious aspects of, 735

resources on, 774-775

routine arguments, 754

routine call continuations, 756

routine guidelines, 766-768

sell-documenting code, 778-781

single-statement blocks, 748-749

statement continuation, 754-758

statement length, 753

structures, importance of,
733-734

styles overview, 738

unindented begin-end pairs, 746

violations of, commenting, 801

Visual Basic blocking style, 738

white space, 732, 736-737,
753-754

laziness, 830

lazy evaluation, 615-616

leanness design goal, 81
legal notices, 811
length of variable names, optimum,
262
levels of design
business logic subsystem, 85
classes, divisions into, 86
database access subsystem, 85
overview of, 82
packages, 82-85
routines, 86-87
software system, 82
subsystems, 82-85
system dependencies subsystem,
85
user interface subsystem, 85
libraries, code
purpose of, 717
using functionality from, 222
libraries, book. See software-
development libraries
life-cycle models
good practices table for, 31-32
development standard, 813
linked lists
deleting pointers, 330
node insertion, 327-329
pointers, isolating operations of,
325
linkers, 716
lint tool, 557
Liskov Substitution Principle (LSP),
144-145
lists
of checklists, xxix-xxx
of figures, xxxiii
of tables, xxxi-xxxii
literal data, 297-298, 308-309
literate programs, 13
live time of variables, 246-248, 459
load time, binding during, 253
localization
architecture prerequisites, 48
string data types, 298
locking global data, 341
logarithms, 632-634

logging

defensive programming guideline,

210
tools for testing, 526
logic coverage testing, 506
logical cohesion, 170
logical expressions. See also boolean
expressions
code tuning, 610-616
comparing performance of, 614

loops 9201

eliminating testing redundancy,
610-611

frequency, testing in order of,
612-613

identities, 630

layout of, 753

lazy evaluation, 615-616

lookup tables, substituting,
614-615

short-circuit evaluation, 610

loops

abnormal, 371

arrays with, 387-388

bodies of, processing, 375-376,
388

brackets recommended, 375

break statements, 371-372,
379-380, 381

checklist, 388-389

code tuning, 616-624

commenting, 804-805

completion tests, location of, 368

compound, simplifying, 621-623

continuously evaluated loops,
367. See also while loops

continuation lines in, 757

continue statements, 379, 380,
38l

counted loops, 367. See also for
loops

cross talk, 383

defined, 367

designing, process for, 385-387

do loops, 369-370

empty, avoiding, 375-376

endless loops, 367, 374

endpoint considerations,
381-382

entering, guidelines for, 373-375,
388

enumerated types for, 305

exit guidelines, 369-372,
377-381, 389

for loops, 372, 374-378,
732-733,746-747

foreach loops, 367, 372

fusion of, 617-618

goto with, 371

housekeeping statements, 376

index alterations, 377

index checklist, 389

index final values, 377-378

index variable names, 265

index scope, 383-384

infinite loops, 367, 374

loose coupling

loops, continued
initialization code for, 373, 374
iterative data structures with, 255
iterator loops, 367, 456
jamming, 617-618
key points, 389
kinds of, generalized, 367368
labeled break statements, 381
language-specilic, table of, 368
length of, 385
minimizing work inside, 620-621
multiple break statements, 380
naming variables, 382-383
nested, 382-383, 385,623
null statements, rewriting, 445
off-by-one errors, 381-382
one-flunction guideline, 376
order of nesting, 623
performance considerations, 599
pointers inside, 620
problems with, overview of, 373
pseudocode method, 385-387
refactoring, 565, 573
repeat until clauses, 377
routines in, 385
safety counters with, 378-379
scope of indexes, 383-384
sentinel tests for, 621-623
size as refactoring indicator, 565
strength reduction, 623-624
switching, 616
termination, making obvious, 377
testing redundancy, eliminating,
610-611
unrolling, 618-620
unswitching, 616-617
variable guidelines, 382-384
variable initializations, 249
variables checklist, 389
verifying termination, 377
while loops, 368-369
loose coupling
design goal, as, 80
strategies for, 100-102
low-to-medium [an-out design goal,
81
LSP (Liskov Substitution Principle),
144-145

Macintosh naming conventions, 275
macro routines. See also routines
alternatives for, 184
limitations on, 184
multiple statements in, 183

naming, 183, 277-278
parentheses with, 182-183
magazines on programming,
859-860
magic variables, avoiding, 292,
297-298, 308-309
maintenance
comments requiring, 788-791
design goal for, 80
error-prone routines, prioritizing
for, 518
fixing defects, problems from, 553
maintainability defined, 464
readability benefit for, 842
structures for reducing, 323
major construction practices
checklist, 69-70
managing construction
approaches. See approaches to
development
change control. See configuration
management
code ownership attitudes, 663
complexity, 77-79
configuration management. See
configuration management
good coding, encouraging,
662-664
inspections, management role in,
486-487
key points, 688
managers, 686
measurements, 677-680
programmers, treatment of,
680-686
readability standard, 664
resources on, 687
reviewing all code, 663
rewarding good practices, 664
schedules, estimating, 671-677
signing off on code, 663
size of projects, effects of. See size
ol projects
standards, authority to set, 662
standards, IEEE, 687, 814
two-person teams, 662
markers, defects from, 787
matrices. Se¢ arrays
mature technology environments,
67
maximum normal configurations,
515
maze recursion example, 394-396
McCabe’s complexity metric, 457,
458
measure twice, cut once, 23

measurement
advantages of, 677
arguing against, 678
goals for, 679
outlier identification, 679
resources for, 679-680
side effects of, 678
table of useful types of, 678-679
memory
allocation, error detection for, 206
corruption by pointers, 325
fillers, 244
initializing working, 244
paging operation performance
impact, 599
pointers, corruption by, 325
tools for, 527
mentoring, 482
merge tools, 712
metaphors, software
accreting a system, 15-16
algorithmic use of, 11, 12
building metaphor, 16-19
building vs. buying components,
18
combining, 20
computer-centric vs. data-centric
views, 11
customization, 18
discoveries based on, 9-10
earth centric vs. sun centric views,
10-11
examples of, 13-20
farming, 14-15
growing a system, 14-15
heuristic use of, 12
importance of, 9-11
incremental development, 15-16
key points for, 21
modeling use for, 9
overextension of, 10
oyster farming, 15-16
pendulum example, 10
power of, 10
readability, 13
relative merits of, 10, 11
simple vs. complex structures,
16-17
size of projects, 19
throwing one away, 13- 14
toolbox approach, 20
using, 11-12
writing code example, 13- 14
methodologies, 657-659. See also
approaches to development
methods. See routines

metrics reporters, 714

minimum normal configurations,
515

mission-critical systems, 31-32

mixed-language environments, 276

mixins, 149

mock objects, 523

modeling, metaphors as. See
metaphors, software

moderator role in inspections, 486

modularity

design goal of, 107
global variables, damage from,

337-338

modules, coupling considerations,
100-102

multiple inheritance, 148-149

multiple returns from routines,
391-303

multiple-file string search capability,
711-712

named constants. See constants
naming conventions
“a” prefix convention, 272
abbreviating names, 282-285
abbreviation guidelines, 282
arrays, 280-281
benefits of, 270-271
C language, 275, 278
C+, 275277
capitalization, 274, 286
case-insensitive languages, 273
characters, hard (o read, 287
checklist, 288-289, 780
class member variables, 273
class vs. object names, 272-273

common operations, for, 172-173

constants, 273-274

cross-project benefits, 270

descriptiveness guideline, 171

documentation, 284285,
778-780

enumerated types, 269, 274,
277-279

formality, degrees of, 271

files, 811

function return values, 172

global variables, 273, 342

homonyms, 286

Hungarian, 279

informal, 272-279

input parameters, 274

Java, 276, 277

key points, 289

kinds of information in names,
277

language-independence
guidelines, 272-274

length, not limiting, 171

Macintosh, 275

meanings in names, too similar,
285

misleading names, 285

misspelled words, 286

mixed-language considerations,
276

multiple natural languages, 287

numbers, differentiating solely by,
171

numerals, 286

opposites, use of, 172

parameters, 178

phonic abbreviations, 283

prefix standardization, 279-281

procedure descriptions, 172

proliferation reduction benefit,
270

pronunciation guideline, 283

purpose of, 270-271

readability, 274

relationships, emphasis of, 271

reserved names, 287

routines, 171-173, 222

semantic prefixes, 280-281

short names, 282-285, 288-289

similarity of names, too much,
285

spacing characters, 274

t_prefix convention, 272

thesaurus, using, 283

types vs. variables names,
272-273

UDT abbreviations, 279-280

variables, for. See variable names

Visual Basic, 278-279

when to use, 271

nested if statements

case statements, converting to,
448-449 451

converting to if-then-else
statements, 447-448

factoring to routines, 449-451

factory method approach,
converting to, 452-453

functional decomposition of,
450-451

object-oriented approach,
converting to, 452-453

objects 203

redesigning, 453
simplification by retesting
conditions, 445-446
simplification with break blocks,
46-447
summary of techniques for
reducing, 453-454
too many levels of, 445-454
nested loops
designing, 382-383, 385
ordering for performance, 623
nondeterministic nature of design
process, 76, 87
nonstandard language features, 98
null objects, refactoring, 573
null statements, 444-445
numbers, literal, 292
numeric data types
BCD, 297
checklist, 316
compiler warnings, 293
comparisons, 4+40-442
conversions, showing, 293
costs of operations, 602
declarations, commenting, 802
floating-point types, 295-297,
316, 602
hard coded 0s and 1s, 292
integers, 293-295
literal numbers, avoiding, 292
magic numbers, avoiding, 292
magnitudes, greatly different,
operations with, 295
mixed-lype comparisons, 293
overflows, 203-295
ranges of integers, 294
zero, dividing by, 202

o
objectives, soltware quality, 466,
468-469
object-oriented programming
hiding information. See
information hiding
inheritance. See inheritance
objects. See classes; objects
polymorphism. See
polymorphism
resources for, 119, 159
object-parameter coupling, 101
objects
ADTs as, 130
attribute identification, 88

Principle of Proximity

prerequisites, upstream, continued
choosing between iterative and
sequential approaches, 35-36
coding too early mistake, 25
compelling argument for, 27-31
data arguing for, 28-30
error detection, doing early,
29-30
goal of, 25
good practices table for, 31-32
importance of, 24
incomplete preparation, causes of,
25-27
iterative and sequential mixes,
34-35
iterative methods with, 28, 33-34
key points for, 59-60
kinds of projects, 31-33
logical argument for, 27
manager ignorance problem, 26
problem definition, 36-38
requirements development. See
requirements
risk reduction goal, 25
skills required for success, 25
time allowed for, 55-56
WIMP syndrome, 26
WISCA syndrome, 26
Principle of Proximity, 242, 351
private data, 148
problem-definition prerequisites,
36-38
problem domain, programming at,
845-847
problem-solving skills development,
823
procedural cohesion, 170
procedures. See also routines
naming guidelines for, 172
when to use, 181-182
processes, development. See
approaches to development
productivity
effects of good construction
practice, 7
industry average, 474
size of projects, effects on, 653
professional development, 824-825
professional organizations, 862
program flow
control of. See control structures
sequential. See straight-line code
program organization prerequisite,
45-46
program size. See size of projects

programmers, character of. See
character, personal
programmers, treatment of. See also
teams
overview, 680
physical environment, 684-685
privacy of offices, 684
religious issues, 683-684
resources on, 685-686
style issues, 683-684
time allocations, 681
variations in performance‘
681-683
programming conventions
choosing, 66
coding practices checklist, 69
formatting rules. See layout
programming into languages,
68-69, 843
programming language choice
Ada, 63
assembly language, 63
Basic, 65
C, 64
C#, 64
C++, 64
Cobol, 64
expressiveness of concepts, 63
familiar vs. unfamiliar languages,
62
Fortran, 64
higher- vs. lower-level language
productivity, 62
importance of, 61-63
Java, 65
JavaScript, 65
Perl, 65
PHP, 65
productivity from, 62
programming into languages,
68-69, 843
Python, 65

ratio of statements compared to C

code, table of, 62

SQL, 65

thinking, effects on, 63

Visual Basic, 65
programming tools

assembler listing tools, 720

beautifiers, 712

build tools, 716-717

building your own, 721-722

CASE tools, 710

checklist, 724-725

class-hierarchy generators, 713

code libraries, 717
code tuning, 720
code-generation wizards, 718
compilers, 716
cross-reference tools, 713
data dictionaries, 715
debugging tools, 526-527, 545,
558-559,719
dependency checkers, 716
design tools, 710
Diff tools, 712
disassemblers, 720
editing tools, 710-713
executable-code tools, 716-720
execution profiler tools, 720
fantasyland, 722-723
graphical design tools, 710
grep, 711
IDEs, 710-711
interface documentation, 713
key points, 725
linkers, 716
merge tools, 712
metrics reporters, 714
multiple-file string searches,
T11-712
preprocessors, 718-719
project-specific tools, 721-722
purpose of, 709
quality analysis, 713-714
refactoring tools, 714-715
resources on, 724
restructuring tools, 715
scripts, 722
semantics checkers, 713-714
source-code tools, 710-715
syntax checkers, 713-714
templates, 713
Lesting toals, 719
tool-oriented environments,
720-721
translators, 715
version control tools, 715
project types, prerequisites
corresponding to, 31-33
protected data, 148
prototyping, 114-115, 468
Proximity, Principle of, 242, 351
pseudocode
algorithms, researching, 223
bad, example of, 218-219
benefits from, 219-220
changing, efficiency of, 220
checking [or errors, 230-231
checklist for PPP, 233-234

classes, steps in creating, 216-217

coding below comments,
227-229
coding from, 225-229
comments from, 220, 791
data structure for routines, 224
declarations from, 226
defined, 218
designing routines, 220-225
error handling considerations,
222
example for routines, 224
functionality from libraries, 222
good, example of, 219
guidelines for effective use, 218
header comments for routines,
223
high-level comments from,
226-227
iterative refinement, 219, 225
key points for creating, 234
loop design, 385-387
naming routines, 222
performance considerations,
222-223
PPP. S5¢e PPP
prerequisites, 221
problem definition, 221
refactoring, 229
reviewing, 224-225
routines, steps in creating, 217,
223-224
testing, planning for, 222
Pseudocode Programming Process.
See PPP
psychological distance, 556
psychological set, 554-555
psychological factors. See character,
personal
public data members, 567
pure blocks layout style, 738-740
Python
description of, 65
performance issues, 600

Q

quality assurance. See also quality of

software
checklist, 70
good practices table for, 31-32
prerequisites role in, 24
requirements checklist, 42-43
quality gates, 467

quality of software

accuracy, 464

adaptability, 464

change-control procedures, 468

checklist for, 476

collaborative construction. See
collaboration

correctness, 463

costs of finding defects, 472

costs of fixing defects, 472-473

debugging, role of, 474-475, 536

detection of defects by various
techniques, table of, 470

development process assurance
activities, 467-468

efficiency, 464

engineering guidelines, 467

explicit activity for, 466

external audits, 467

external characteristics of|
463-464

Extreme Programming, 471-472

flexibility, 464

gates, 467

General Principle of Software
Quality, 474-475

integrity, 464

internal characteristics, 464-465

key points, 477

maintainability, 464

measurement of results, 468

multiple defect detection
techniques recommended,
470-471

objectives, setting, 466, 468-469

optimization conflicts, 465-466

percentage of defects
measurement, 469-472

portability, 464

programmer performance,
objectives based, 468-469

prototyping, 468

readability, 464

recommended combination for,
473

relationships of characteristics,
465-466

reliability, 464

resources for, 476

reusability, 464

reviews, 467

robustness, 464

standards, IEEE, 477, 814

testing, 465, 467, 500-502

refactoring 207

understandability, 465
usability, 463
when to do assurance of, 473

random-data generators, 525
readability
as management standard, 664
defects exposing lack of, 538
defined, 464
formatting for. See layout
importance of, 13, 841-843
maintenance benefit from, 842
naming variables for. Se¢ naming
conventions; variable names
positive effects from, 841
private vs. public programs, 842
professional development,
importance to, 825
structures, importance of,
733-734
warning sign, as a, 849
reading as a skill, 824
reading plan for software
developers, 860-862
records, refactoring, 572
recursion
alternatives to, 398
checklist, 410
defined, 393
factorials using, 397-398
Fibonacci numbers using,
397-398
guidelines for, 394
key points, 410
maze example, 394-396
safety counters for, 396
single routine guideline, 396
sorting example, 393-394
stack space concerns, 397
terminating, 396
refactoring
80/20 rule, 582
adding routines, 582
algorithms, 573
arrays, 572
backing up old code, 579
bidirectional class associations,
577
boolean expressions, 572
case stalements, 573
checklists for, 570, 577-579
checkpoints for, 580

references (&), C++

refactoring, continued

class cohesion indicator, 566

class interfaces, 575-576

classes, 566-567, 574-576,
578-579,582

code tuning, compared to, 609

collections, 572

comments on bad code, 568

complex modules, 583

conditional expressions, 573

constant values varying among
subclass, 574

constructors to factory methods,
577

data from uncontrolled sources,
576

data sets, related, as indicator, 566

data types to classes, 572

data-level, 571-572,577

defects, fixes of, 582

deflined, 565

designing code for [uture needs,
569-570

Don't Repeat Yourself principle,
565

duplicate code indicator, 565

error-prone modules, 582

expressions, 571

glabal variables, 568

GUI data, 576

if statements, 573

interfaces, 566, 575-576, 579

key points, 585

listing planned steps, 580

literal constants, 571

loops, 565,573

maintenance triggering, 583

middleman classes, 567

misuse of, 582

null objects, 573

objects, 574-576

one-at-a-time rule, 580

overloaded primitive data types,
567

parallel modifications required
indicator, 566

parameters, 566, 571, 573

PPP coding step, 229

public data members, 567

queries, 574

reasons not to, 571

records, 572

redesigning instead of, 582

relerence objects, 574

resources on, 385

reviews of, 580-581
risk levels of, 581
routines, 565-567,573-574, 578,
582
safety guidelines, 579-581, 584
setup code, 568-569
size guideline, 580
statement-level, 572-573,
577-578
strategies for, 582-584
subclasses, 567, 575
superclasses, 575
system-level, 576-577,579
takedown code, 568-569
testing, 580
to do lists for, 580
tools for, 714-715
tramp data, 567
ugly code, interfaces to, 583-584
unidirectional class associations,
577
unit tests for, 580
variables, 571
warnings, compiler, 580
references (&), C++, 332
regression testing
diff tools for, 524
defined, 500
purpose of, 528
reliability
cohesive routines, 168
deflined, 464
religious attitude toward
programming,
eclecticism, 851-852
experimentation compared to,
852-853
harmful effects of, 851-853
layout styles becoming, 735
managing people, 683-684
software oracles, 851
reports. See formal inspections
requirements
benefits of, 38-39
business cases for, 41
change-control procedures, 40-41
checklists for, 40, 42-43
coding without, 26
communicating changes in, 40-41
completeness, checklist, 43
configuration management of,
664, 666-6067
defined, 38
development approaches with, 41

development process effects on,
40
dumping projects, 41
errors in, effects of, 38-39
functional, checklist, 42
good practices table for, 31-32
importance of, 38-39
key point for, 60
nonfunctional, checklist, 42
performance tuning, 589
quality, checklist, 42-43
rate of change, typical, 563
resources on developing, 56-57
stability of, 39-40, 840
testing for, 503
time allowed for, 55-56
resource management
architecture for, 47
cleanup example, 401-402
restrictive nature of design, 76
restructuring tools, 715
retesting, See regression testing
return statements
checklist, 410
guard clauses, 392-393
key points, 410
multiple, from one routine,
391-393
readability, 391-392
resources for, 408
reusability
deflined, 464
architecture prerequisites, 52
reviewer role in inspections, 486
reviews
code reading, 494
dog-and-pony shows, 495
educational aspect of, 482
every line of code rule, 663
formal inspections, compared to,
485
formal, quality from, 467
informal, defined, 467
iteration process, place in, 850
refactoring conducting alter,
580-581
walk-throughs, 492-493
right shilting, 634
risk-oriented integration, 699
robustness
architecture prerequisites, 51
assertions with error handling,
193-194
correctness, balanced against, 197
defined, 197, 464

rounding errors, 297
routines

abstract overridable, 145

abstraction benefit, 164

abstraction with object
parameters, 179, 574

access. See access routines

algorithm selection for, 223,573

alternates to PPF, 232-233

black-box testing of, 502

blank lines in, 766

boolean test benefit, 165

calculation to function example,
166-167

calls, costs of, 601

checking for errors, 230-231

checklists, 185, 774, 780

classes, converting to, criteria for,
573

cleanup steps, 232

code tuning, 639-640

coding from pseudocode,
225-229

cohesion, 168-171

coincidental cohesion, 170

commenting, 805-809, 817

communicational cohesion, 169

compiling for errors, 230-231

complexity metric, 458

complexity reduction benelit, 164

construction step for classes, 217

continuations in call lines, 756

coupling considerations, 100-102

data states, 509

data structures for, 224

declarations, 226

defined, 161

descriptiveness guideline for
naming, 171

design by contract, 233

designing, 86, 220-225

documentation, 178, 780

downcast objects, 574

duplication benefit, 164-165

endline layout, 767

error handling considerations,
222

errors in, relation to length of, 173

event handlers, 170

fields of objects, passing to, 574

files, layout in, 772

functional cohesion, 168-169

functionality from libraries, 222

functions, special considerations
for, 181-182

hacking approach to, 233

header comments for, 223

high quality, counterexample,
161-163

high-level comments from
pseudocode, 226-227

importance of, 163

in keyword creation, 175-176

indentation of, 766-768

internal design, 87

inline, 184-185

input-modify-output parameter
order, 174-175

interface statements, 226

iterating pseudocode, 225

key points for, 186, 234

layout of, 754, 766-768

length of, guideline for, 173174

limitations, documenting, 808

logical cohesion, 170

low-quality example, 161-163

macro. See macro routines

mentally checking for errors, 230

multiple returns from, 391-393

named parameters in, 180

naming, 171-173, 222, 277-278,
567

nested deeply, 164

objects, passing to, 179, 574

out keyword creation, 175-176

overridable vs. non-overridable
routines, 145-146

overridden to do nothing,
146-147

overriding, 156

parameters. See parameters of
routines

performance considerations, 165,
222-223

pointer hiding benefit, 165

portability benefit, 165

postconditions, 221

PPP checklist for, 233-234

preconditions, 221

prerequisites, 221

problem definition, 221

procedural cohesion, 170

procedure naming guideline, 172

pseudocode writing step,
223-224

public, using in interfaces
concern, 141

queries, refactoring, 574

scope of variables 209

reasons for creating, list of, 167

refactoring, 229, 573-575, 578,
582

reliability from cohesiveness, 168

removing errors, 231

repeating steps, 232

returns from, multiple, 391-393

reviewing pseudocode, 224-225

sequence hiding benefit, 165

sequential cohesion, 168

setup code for, refactoring,
568-569

similar parameters, order for, 176

similar, refactoring, 574

simple, usefulness of, 166-167

size as refactoring indicator,
565-566

small vs. large, 166, 173-174

specification example, 221

stepping through code, 231

strength, 168

subclassing benefit, 165

temporal cohesion, 169

test-first development, 233

testing, 222,231,523

tramp data in, 567

unused, refactoring, 576

valid reasons for creating,
164-167

variable names, differentiating
from, 272

wrong class, indicator for, 566

run time, binding during, 253

S

safety counters in loops, 378-379
sandwich integration, 698-699
scaffolding
debugging with, 558
testing, 523-524, 531
scalability, 48. See also size of
projects
scientific method, classic steps in,
540
SCM (software configuration
management), 665. See also
conliguration management
schedules, estimating, See estimating
schedules
scope of variables
convenience argument, 250
defined, 244
global scope, problems with, 251

scribe role in inspections

scope of variables, continued
grouping related statements,
249-250
key point, 258
language differences, 244
live time, minimizing, 246-248
localizing references to variables,
245
loop initializations, 249
manageability argument, 251
minimizing, guidelines for,
249-251
restrict and expand tactic, 250
span of variables, 245
value assignments, 249
variable names, effects on,
262-263
scribe role in inspections, 486
scripts
programming tools, as, 722
slowness of, 600-601
SDFs (soltware development
folders), 778
security, 47
selections, code, 455
selective data, 254
self-documenting code, 778-781,
796-797
semantic coupling, 102
semantic preflixes, 280281
semantics checkers, 713-714
sentinel tests for loops, 621-623
sequences, code. See also blocks
hiding with routines, 165
order of. See dependencies,
code-ordering
structured programming concept
of, 454
sequential approach, 33-36
sequential cohesion, 168
Set() routines, 576
setup code, refactoring, 568-569
setup tools, 718
short-circuit evaluation, 438-440,
610
side effects, C++, 759-761
signing off on code, 663

simple-data-parameter coupling, 101

simple-object coupling, 101

single points of control, 308

single-statement blocks, 748-749

singleton property, enforcing, 104,
151

size of projects
activities, list of fastest growing,
655
activity types, effects on, 654-655
building metaphor for, 19
communications between people,
650
complexity, effect of, 656-657
defects created, effects on,
651-653
documentation requirements,
657
estimation errors, 656-637
formality requirements, 657
key points, 659
methodology considerations,
657-658
overview, 649
productivity, effects on, 653
ranges in, 651
resources on, 658-659
single product, multiple users,
656
single program, single user, 656
system products, 656
systems, 656
sizeof(), 335
sloppy processes, 75-76
smart pointers, 334
smoke tests, 703
software accretion metaphor, 15-16
software construction overview
activities excluded from, 6
activities in, list of, 3
centralness to development
process, 7
delined, 3-6
documentation by source code, 7
guaranteed done nature of, 7
importance of, 6-7
key points for, 8
main activities of, 4
percent of total development
process, 7
produclivit)_r, importance in, 7
programming as, 5
programming vs., 4
source code as documentation, 7
tasks in, list of, 5
software design. See design
software development [olders
(SDFs), 778
software engineering overview of
resources, 858

software evolution
background for, 563-564
Cardinal Rule of, 565
construction vs. maintenance,
564
improving vs. degrading direction
of, 564
philosophy of, 564-565
software metaphors. See metaphors,
software
software oracles, 851
software quality. See quality of
software
Software’s Primary Technical
Imperative, 92
software-development libraries
bibliographies, 858
construction, 856
magazines, 859-860
overview, 855, 857-858
reading plan, 860-862
software engineering overviews,
858
software-engineering guidelines,
67
sorting, recursive algorithm for,
303-394
source code
documentation aspect of, 7
resource for, 815
source-code tools
analyzing quality, 713-714
beautifiers, 712
class-hierarchy generators, 713
comparators, 556
cross-reference tools, 713
data dictionaries, 715
Diff tools, 712
editing tools, 710-713
grep, 711
IDEs, 710-711
interface documentation, 713
merge tools, 712
melrics reporters, 714
multiple-file string searches,
711-712
refactoring tools, 714-715
restructuring tools, 715
semantics checkers, 713-714
syntax checkers, 713-714
templates, 713
translators, 715
version control tools, 715
span, 245, 459

languages with, evaluation of,
314-315

modification benefit, 314
naming conventions, 315
Pascal example, 312-313
portability benefit, 315-316
predefined types, avoiding, 315
purpose of, 311-312
reasons for, 314
redefining predefined, 315
reliability benefit, 314
validation benefit, 314

type definitions, 278

U

UDFs (unit development folders),
778

UDT (user-defined type)
abbreviations, 279-280

UML diagrams, 118, 120

understandability, 465. See also
readability

Unicode, 288-299

unit development folders (UDFs),
778

unit testing, 499

UNIX programming environment,

720
unrolling loops, 618-620
unswitching loops, 616-617
upstream prerequisites. See
prerequisites, upstream
usability, 463
used data state, 509-510
user-defined type (UDT)
abbreviations, 279-280
user interfaces
architecture prerequisites, 47
refactoring data from, 576
subsystem design, 85

\'

validation

assumptions to check, list of, 190

data types, suspicious, 188

enumerated types for, 304-305

external data sources rule, 188

input parameters rule, 188
variable names

abbreviation guidelines, 282

accurate description rule,
260-261

bad names, examples of,
259-260, 261

boolean variables, 268-269

C language, 275, 278

C+ 263, 275-277

capitalization, 286

characters, hard to read, 287

checklist, 288-289

class member variables, 273

computed-value qualifiers,
263-264

constants, 270

enumerated types, 269

full description rule, 260-261

global, qualifiers for, 263

good names, examples of, 260,
261

homonyms, 286

Java conventions, 277

key points, 289

kinds of information in, 277

length, optimum, 262

loop indexes, 265

misspelled words, 286

multiple natural languages, 287

namespaces, 263

numerals in, 286

opposite pairs for, 264

phonic abbreviations, 283

problem orientation rule, 261

psychological distance, 556

purpose of, 240

reserved names, 287

routine names, differentiating
from, 272

scope, effects of, 262-263

similarity of names, too much,
285

specilicity rule, 261

status variables, 266-267

temporary variables, 267-268

type names, differentiating from,
272-273

Visual Basic, 279

variables

binding time for, 252-254

change, identifying areas of,
98-99

checklist [or using, 257-258

comments for, 803

counters, 243

Visual Basic 913

data literacy test, 238-239

data type relationship to control
structures, 254-255

declaring, See declarations

global. See global variables

hidden meanings, avoiding,
256-257

hybrid coupling, 256-257

implicit declarations, 239-240

initializing, 240-244, 257

iterative data, 255

key points, 258

live time, 246-248, 459

localizing references to, 245

looping, 382-384

naming, See variable names

persistence of, 251-252

Principle of Proximity, 242

public class members, 576

refactoring, 571, 576

reusing, 255-257

scope of. See scope of variables

selective data, 254

sequential data, 254

span of, 245

types of. See data types

using all declared, 257

version control

commenting, 811
debugging aid removal, 207
tools for, 668, 715

visibility. See also scope of variables

coupling criteria for, 100
classes, of, 93

vision statement prerequisites. See

problem definition
prerequisites

Visual Basic

assertion examples, 192-194

blocking style, 738

case-insensitivity, 273

description of, 65

enumerated types, 303-306

exceptions in, 198-199, 202

implicit declarations, turning off,
240

layout recommended, 745

naming conventions for, 278-279

parameters example, 180

resources for, 159

structures, 320-322

914

walk-throughs

w
walk-throughs, 492-493, 405-496
warning signs, 848-850
while loops
advantages of, 374-375
break statements, 379
do-while loops, 369
exits in, 369-372
infinite loops, 374
misconception of evaluation, 554
null statements with, 444

purpose of, 368
tests, position of, 369
white space
blank lines, 737, 747-748
defined, 732
grouping with, 737
importance of, 736
indentation, 737
individual statements with,
753-754
white-box testing, 500, 502

wicked problems, 74-75

Wikis, 117

WIMP syndrome, 26

WISCA syndrome, 26
workarounds, documenting, 800
writing metaphor for coding, 13-14

z
zero, dividing by, 292

Copyrighted mat

