Come, Let’s Play

Scenario-Based Programming
Using LSCs and the Play-Engine

#): Springer

David Harel Rami Marelly

Come, Let’s Play:

Scenario-Based Programming
Using LSCs and the Play-Engine

With 185 Figures and CD-ROM

David Harel
Rami Marelly

The Weizmann Institute of Science
Faculty of Mathematics and Computer Science
Rehovot 76100, Israel

Library of Congress Cataloging-in-Publication Data

Harel, David, 1950-

Come, let’s play: scenario-based programming using LSCs and the play-engine/

David Harel, Rami Marelly.
p.cm.
ISBN 978-3-642-62416-2 ISBN 978-3-642-19029-2 (eBook)
DOI 10.1007/978-3-642-19029-2
1. Software engineering. 2, System design. 3, Object-oriented programming (Computer
science) 4. Visual programming languages (Computer science) I. Marelly, Rami, 1967
11. Title

QA76.758.H365 2003

005.1-dc21 2003045546

ACM Computing Classification (1998): D.2, C.2.0, B.4.0, D.0, D.1.5,
D.3,1.6.5,1.6.8

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permit-
ted only under the provisions of the German copyright law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer-
Verlag. Violations are liable for prosecution under the German Copyright Law.

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Originally published by Springer-Verlag Berlin Heidelberg New York in 2003

The use of general descriptive names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: KiinkelLopka, Heidelberg
Typesetting: Camera-ready by authors
Printed on acid-free paper ~ 45/3142 GF- 543210

Contents

Part I. Prelude

1. Introduction 3
1.1 What Are We Talking About? 3
1.2 What Are We Trying to Do? 6
1.3 What’'sinthe Book?.o, 7

2. Settingthe Stage 9
2.1 Modeling and Code Generation 9
22 Requirementso 12
2.3 Inter-Object vs. Intra-Object Behavior 14
2.4 Live Sequence Charts (LSCs) oo .. 16
2.5 Testing, Verification and Synthesis 17
2.6 The Play-In/Play-Out Approach 21

3. An Example-Driven Overview............................. 25
3.1 The Sample Systemoviiiiiiiiii... 25
3.2 Playing In.o 26
3.3 Playing Out ... 39
3.4 Using Play-Out for Testing 43
3.5 Transition to Design oo i 44
3.6 TIME ..ottt e 46
3.7 Smart Play-Out 47

Part I1. Foundations

4. The Model: Object Systems............................... 55
4.1 Application TYpPes.c.ovvviriinnniiiiiiiii .. 55
4.2 Object Propertiescooiiiiiiiii i 56

4.3 And a Bit More Formally 58

XIV Contents

5. The Language: Live Sequence Charts (LSCs).............. 59
5.1 Constant LSCS. . ..ottt 60
52 Playing In. 62
5.3 The General Play-Out Scheme 65
5.4 Playing Out 68
5.5 Combining Locations and Messages.o.uu... 71
5.6 And a Bit More Formally 73
5.7 Bibliographic Notest 81
6. The Tool: The Play-Engine 83
6.1 Bibliographic NOteso'uuiiiiiuiiieiinnnnnnn.. 87
Part II1. Basic Behavi
7. Variables and Symbolic Messages 91
7.1 Symbolic Scenarios i 91
7.2 Enriching the Partial Order 94
7.3 Playing Out i 97
7.4 And a Bit More Formally 99
7.5 Bibliographic Notes i, 103
8. Assignments and Implemented Functions 105
8.1 Using Implemented Functions. 105
8.2 ASSIENIMENtS . .o\ttt e 108
83 Playing Out 111
8.4 And a Bit More Formally e 114
9. Conditions it 119
9.1 Cold Conditions. e . 119
9.2 Hot Conditionso.uooeuiaiuieiinaneuneennna... 120
93 Playing In. ... 121
94 Playing Out ...t 126
9.5 And a Bit More Formally 128
9.6 Bibliographic Notes 132
10. Branching and Subcharts 133
10.1 The If-Then-Else Construct ccoouiin.... 133
10.2 Subchartso .. 134
10.3 Nondeterministic Choicec.uuuuiiinuniuuiinen.. .. 135
104 Playing In.o e 136

105 Playing Outttt 138

Contents XV

10.6 And a Bit More Formally i, 141
10.7 Bibliographic Notes, 146

Part IV. Advanced Behavior: Multiple Charts

11. Executing Multiple Charts 149
11.1 Simultaneous Activation of Multiple Charts 149
11.2 Overlapping Chartsttt 154
11.3 And a Bit More Formally i i, 157

12. Testing with Existential Charts 159
12.1 Specifying Test Scenarios.uoeeeeeenneeeunnnann. 159
12.2 Monitoring LSCs i et 160
12.3 Recording and Replaying 163
124 On-line Testingo i 164
12.5 Executing and Monitoring LSCs in the Play-Engine 165
12.6 And a Bit More Formally 166
12.7 Bibliographic Notes 171

Part V. Advanced Behavior: Richer Constructs

13, LOOPS oot teeeaa 175
13.1 UsSing Loops . ottt e i et e e 175
13.2Playing In. oo 176
13.3Playing Outt 178
13.4 Using Variables Within Loops 179
13.5 Executing and Monitoring Dynamic Loops 181
13.6 And a Bit More Formally 183
13.7 Bibliographic Notes i 187

14. Transition to Design 189
14.1 The Design Phase 189
14.2 Incorporating Internal Objects 190
14.3 Calling Object Methods 193
144 Playing Out e 196
14.5 External Objects 198
14.6 And a Bit More Formally 201

14.7 Bibliographic Notes it ... 205

XVI Contents

15. Classes and Symbolic Instances 209
15.1 Symbolic Instances, 209
15.2 Classes and Objects ..., 210
15.3 Playing with Simple Symbolic Instances................... 212
15.4 Symbolic Instances in the Main Chart 213
15.5 Quantified Binding 215
15.6 Reusing a Scenario Prefix 216
15.7 Symbolic Instances in Existential Charts 218
15.8 An Advanced Example: NetPhone........................ 218
15.9 And a Bit More Formally 221
15.10 Bibliographic Notes 227

16. Time and Real-Time Systems 229
16.1 AnExample.... ... 229
16.2 Adding Time to LSCs, 230
16.3 Hot Timing Constraints................................. 231
16.4 Cold Timing Constraints 234
16,5 TimeBvents........., .. 235
16.6 Playing In..... ... 236
16.7 Playing Out ...t 237
16.8 Unification of Clock Ticks 239
16.9 The Time-Enriched NetPhone Example 240
16.10 And a Bit More Formally 242
16.11 Bibliographic Notes 247

17. Forbidden Elements 251
17.1 Example: A Cruise Control System 251
17.2 Forbidden Messages ...t i i 252
17.3 Generalized Forbidden Messages 255
17.4 Symbolic Instances in Forbidden Messages. 256
17.5 Forbidden Conditions0ooooiiiinn, 258
17.6 Scoping Forbidden Elements................. 262
17.7 Playing Out 264
17.8 Using Forbidden Elements with Time 266
17.9 A Tolerant Semantics for LSCso, 267
17.10 And a Bit More Formally 268

17.11 Bibliographic Notes 277

Contents XVII

Part VI. Enhancing the Play-Engine

18. Smart Play-Out (with H. Kugler) 281
181 Introduction............c.eiiiiiiieiiiniininnnnnneenn... 281
18.2 Being Smart Helps i 283
18.3 The General Approach.............. 287
184 The Translation......... oiiiiiiiiiiiniiiian. .. 289
18.5 Current Limitationsuuoroun e, 299
18.6 Satisfying Existential Charts 301
18.7 Bibliographic Notes 307

19. Inside and Outside the Play-Engine 309
19.1 The Engine’s Environment 309
19.2 Playing In. . ..o e 310
193 Playing Oubt 311
19.4 Recording Runs and Connecting External Applications 313
19.5 Additional Play-Engine Features 313

21.

20.3 What Does GUIEdit Do?ccooviiiiioo. ... 318
20.4 Incorporating Custom Controls 321
20.5 GUIEdit As a Proof of Concept 321
20.6 Bibliographic Notesot 322
Future Research Directions 323
21.1 Object Refinement and Composition...................... 323
21.2 Object Model Diagrams, Inheritance and Interfaces......... 325
21.3 Dynamic Creation and Destruction of Objects 326
21.4 Structured Properties and Types......................... 327
21.5 Linking Multiple Engines 328

Part VII. Appendices

A.

Formal Semantics of LSCs 333
A1 System Model and Events 333
A.2 LSC Specificationouuiiiiiiiineiiinannnnn. 336

A.3 Operational Semantics it .. 342

XVIIT Contents

B. XML Description of a GUI Application 357
C. The Play-Engine Interface 361

C.1 Visnal BasicCode.........ovuriiiiiiiinnannon... 361
D. The GUI Application Interface......................... ... 363

D.1 Visual Basic Code. . ..o 364
E. The Structure of a (Recorded) Run 367
References. 369

Part 1

Prelude

1. Introduction

1.1 What Are We Talking About?

What kinds of systems are we interested in? Well, first and foremost, we have
in mind computerized and computer embedded systems, mainly those that
are reactive in nature. For these reactive systems, as they are called, the
complexity we have to deal with does not stem from complex computations
or complex data, but from intricate to-and-from interaction — between the
system and its environment and between parts of the system itself.
Interestingly, reactivity is not an exclusive characteristic of man-made
computerized systems. It occurs also in biological systems, which, despite
being a lot smaller than us humans and our homemade artifacts, can also be
a lot more complicated, and it also occurs in economic and social systems,
which are a lot larger than a single human. Being able to fully understand and
analyze these kinds of systems, and possibly to predict their future behavior,
involves the same kind of thinking required for computerized reactive systems.
When people think about reactive systems, their thoughts fall very natu-
rally into the realm of scenarios of behavior. You do not find too many peo-
ple saying things like “Well, the controller of my ATM can be in waiting-for-
user-input mode or in connecting-to-bank-computer mode or in delivering-
money mode; in the first case, here are the possible inputs and the ATM’s
reactions, ...; in the second case, here is what happens, ..., etc.”. Rather,
you find them saying things like “If I insert my card, and then press this
button and type in my PIN, then the following shows up on the display, and
by pressing this other button my account balance will show”. In other words,
it has always been a lot more natural to describe and discuss the reactive
behavior of a system by the scenarios it enables rather than by the state-
based reactivity of each of its components. This is particularly true of some
of the early and late stages of the system development process — e.g., during
requirements capture and analysis, and during testing and maintenance —
and is in fact what underlies the early stage use case approach. On the other
hand, it seems that in order to implement the system, as opposed to stat-
ing its required behavior or preparing test suites, state-based modeling is

D. Harel et al., Come, Let’s Play:

© Springer-Verlag Berlin He ELL.-H\;r:_- 2003

4 1. Introduction

needed, whereby we must specify for each component the complete array of
possibilities for incoming events and changes and the component’s reactions
to them.

This is, in fact, an interesting and subtle duality. On the one hand, we
have scenario-based behavioral descriptions, which cut across the boundaries
of the components (or objects) of the system, in order to provide coherent and
comprehensive descriptions of scenarios of behavior. A sort of inter-object,
‘one story for all relevant objects’ approach. On the other hand, we have state-
based behavioral descriptions, which remain within the component, or object,
and are based on providing a complete description of the reactivity of each
one. A sort of intra-object, ‘all pieces of stories for one object’ approach.
The former is more intuitive and natural for humans to grasp and is therefore
fitting in the requirements and testing stages. The second approach, however,
has always been the one needed for implementation; after all, implementing
a system requires that each of the components or objects is supplied with its
complete reactivity, so that it can actually run, or execute. You can’t capture
the entire desired behavior of a complex system by a bunch of scenarios. And
even if you could, it wouldn’t be at all clear how you could execute such a
seemingly unrelated collection of behaviors in an orderly fashion. Figure 1.1
visualizes these two approaches.

This duality can also be explained in day-to-day terms. It is like the
difference between describing the game of soccer by specifying the complete
reactivity of each player, of the ball, of the goal's wooden posts, etc., vs.
specifying the possible scenarios of play that the game supports. As another
example, suppose we wanted to describe the ‘behavior’ of some company
office. It would be a lot more natural to describe the inter-object scenarios,
such as how an employee mails off 50 copies of a document (this could involve
the employee, the secretary, the copy machine, the mail room, etc.), how the
boss arranges a conference call with the project managers, or how information
on vacation days and sick leave is organized and forwarded to the payroll
office. Contrast this with the intra-object style, whereby we would have to
provide complete information on the modes of operation and reactivity of the
boss, the secretary, the employees, the copy machine, the mail room, etc.

We are not claiming that scenario-based behavior is technically superior
in some global sense, only that it is a lot more natural. In fact, now is a good
time to mention that mere isolated scenarios of behavior that the system
can possibly give rise to are far from adequate. In order to get significant
mileage out of scenario-based behavior, we need to be able to attach various
modalities to the scenarios we are specifying. We would like to distinguish
between scenarios that may occur and those that must, between those that
occur spontaneously and those that need some trigger to cause them to occur.

1.1 What Are We Talking About? 5

&

: N 3

— @D
E%

(a) (b

Fig. 1.1. Inter-object vs. intra-object behavior

We would like to be able to specify multiple scenarios that combine with each
other, or even with themselves, in subtle sequential and/or concurrent ways.
We want generic scenarios that can be instantiated by different objects of
the same class, we want to be able to use variables to store and retrieve
values, and we want means for specifying time. Significantly, we would also
like to be able to specify anti-scenarios, i.e., ones that are forbidden, in the
sense that if they occur there is something very wrong: either something in
the specification is not as we wanted, or else the implementation does not
correctly satisfy the specification.

Obviously, it would also be very nice if we could actually ‘see’ scenario-
based behavior in operation, before (or instead of?) spending lots of time,
energy and money on intra-object state-based modeling that leads to the
implementation. In other words, we could do with an approach to inter-object
behavior that is expressive, natural and executable.

This is what the book is about.

6 1. Introduction

1.2 What Are We Trying to Do?

We propose a powerful setup, within which one can conveniently capture
scenario-based behavior, and then execute it and simulate the system under
development exactly as if it were specified in the conventional state-based
fashion. Our work involves a language, two techniques with detailed under-
lying algorithms, and a tool. The entire approach is made possible by the
language of live sequence charts, or LSCs, which is extended here in a
number of ways, resulting in a highly expressive medium for scenario-based
behavior. The first of our two techniques involves a user-friendly and natu-
ral way to play in scenario-based behavior directly from the system’s GUI
(or some abstract version thereof, such as an object-model diagram), during
which LSCs are generated automatically. The second technique, which we
consider to be the technical highlight of our work, makes it possible to play
out the behavior, that is, to execute the system as constrained by the grand
sum of the scenario-based information. These ideas are supported in full by
our tool — the Play-Engine.

There are essentially two ways to view this book. The first — the more
conservative one — is to view it as offering improvements to the various stages
of accepted life-cycles for system development: a more convenient way to cap-
ture behavioral requirements, the ability to express more powerful scenario-
based behavior, a fully worked-out formalization of use cases, a means for
executing use cases and their instantiations, tools for the dynamic testing of
requirements prior to building the actual system model or implementation, a
highly expressive medium for preparing test suites, and a means for testing
systems by dynamic and run-time comparison of two dual-view executables.

The second way to view our work is less conservative. It calls for consid-
ering the possibility of an alternative way of programming the behavior of a
reactive system, which is totally scenario-based and inter-object in nature.
Basic to this is the idea that LSCs can actually constitute the implementa-
tion of a system, with the play-out algorithms and the Play-Engine being a
sort of ‘universal reactive mechanism’ that executes the LSCs as if they con-
stituted a conventional implementation. If one adopts this view, behavioral
specification of a reactive system would not have to involve any intra-object
modeling (e.g., in languages like statecharts) or code.

This of course is a more outlandish idea, and still requires that a num-
ber of things be assessed and worked out in more detail for it to actually
be feasible in large-scale systems. Mainly, it requires that a large amount of
experience and modeling wisdom be accumulated around this new way of
specifying executable behavior. Still, we see no reason why this ambitious
possibility should not be considered as it is now. Scenario-based behavior is

1.3 What’s in the Book? 7

what people use when they think about their systems, and our work shows
that it is possible to capture a rich spectrum of such behavior conveniently,
and to execute it directly, resulting in a runnable artifact that is as powerful
as an intra-object model. From the point of view of the user, executing such
behavior looks no different from executing any system model. Moreover, it
is hard to underestimate the advantages of having the behavior structured
according to the way the engineers invent and design it and the users compre-
hend it (for example, in the testing, maintenance and modifications stages, in
sharing the specification process with less technically oriented people, etc.).

In any case, the book concentrates on describing and illustrating the ideas
and technicalities themselves, and not on trying to convince the reader of this
or that usage thereof. How, in what role, and to what extent these ideas will
indeed become useful are things that remain to be seen.

1.3 What’s in the Book?

Besides this brief introductory chapter, Part I of the book, the Prelude, con-
tains a chapter providing the background and context for the rest of the
book, followed by a high-level overview of the entire approach, from which
the reader can get a pretty good idea of what we are doing.

Part II, Foundations, describes the underlying basics of the object model,
the LSCs language and the Play-Engine tool.

Parts III, IV and V treat in more detail the constructs of the enriched
language of LSCs, and the way they are played in and played out. Almost
every chapter in these three parts contains a section named “And a Bit
More Formally ...”, which provides the syntax and operational semantics
for the constructs described in the chapter. As we progress from chapter to
chapter, we use a blue/black type convention to highlight the additions to,
and modifications of, this formal description. (Appendix A contains the fully
accumulated syntax and semantics.)

Part VI describes extensions and enhancements, with chapters on the
innards of the Play-Engine tool, particularly the play-out algorithms, on the
GUI editor we have built to support the construction of application GUIs, on
the smart play-out module, which uses formal verification techniques to drive
parts of the execution, and on future research and development directions.

Part VII contains several technical appendices, one of which is the full
formal definition of the enriched LSCs language.

2. Setting the Stage

In this chapter we set the stage for the rest of the book, by describing some
of the main ideas in systems and software engineering research that lead
to the material developed later. We discuss visual formalisms and model-
ing languages, model execution and code generation, the connection between
structure and behavior, and the difference between implementable behav-
ior and behavioral requirements. We then go on to describe in somewhat
more detail some of the basic concepts we shall be expanding upon, such
as the inter-/intra-object dichotomy, MSCs vs. LSCs, the play-in and play-
out techniques, and the way all these fit into our global view of the system
development process.

2.1 Modeling and Code Generation

Over the years, the main approaches to high-level system modeling have
been structured-analysis and structured-design (SA/SD), and object-
oriented analysis and design (OOAD). The two are about a decade apart
in initial conception and evolution. Over the years, both approaches have
yielded visual formalisms for capturing the various parts of a system model,
most notably its structure and behavior. A recent book, [120], nicely surveys
and discusses some of these approaches.

SA/SD, which started in the late 1970s, is based on raising classic pro-
cedural programming concepts to the modeling level and using diagrams for
modeling system structure. Structural models are based on functional de-
composition and the flow of information, and are depicted using hierarchi-
cal dataflow diagrams. Many methodologists were instrumental in setting the
ground for the SA/SD paradigm, by devising the functional decomposition
and dataflow diagram framework, including DeMarco [31], and Constantine
and Yourdon [25]. Parnas’s work over the years was very influential too.

In the mid-1980s, several methodology teams enriched this basic SA/SD
model by providing a way to add state-based behavior to these efforts, us-
ing state diagrams or the richer language of statecharts (see Harel [42]).

D. Harel et al., Come, Let’s Play:

© Springer-Verlag Berlin He ELL.-H\;r:_- 2003

10 2. Setting the Stage

These teams were Ward and Mellor [117], Hatley and Pirbhai [54], and the
Statemate team [48]. A state diagram or statechart is associated with each
function or activity, describing its behavior. Several nontrivial issues had
to be worked out to properly connect structure with behavior, enabling the
modeler to construct a comprehensive and semantically rigorous model of the
system; it is not enough to simply decide on a behavioral language and then
associate each function or activity with a behavioral description.! The three
teams struggled with this issue, and their decisions on how to link structure
with behavior ended up being very similar. Careful behavioral modeling and
its close linking with system structure are especially crucial for reactive
systems [52, 93], of which real-time systems are a special case.

The first commercial tool to enable model execution and full code gen-
eration from high-level models was Statemate, built by I-Logix and released
in 1987 [48, 60]. (Incidentally, the code generated need not necessarily result
in software; it could be code in a hardware description language, leading to
hardware.) A detailed summary of the SA/SD languages for structure and
behavior, their relationships and the way they are embedded in the Statemate
tool appears in [53].

Of course, modelers need not adopt state machines or statecharts to de-
scribe behavior. There are many other possible choices, and these can also be
linked with the SA/SD functional decomposition. They include such visual
formalisms as Petri nets [101] or SDL diagrams [110], more algebraic ones
like CSP [59] or CCS [88], and ones that are closer in appearance to pro-
gramming languages, like Esterel [14] and Lustre [41]. Clearly, if one does
not want to use any such high-level formalisms, code in an appropriate con-
ventional programming language could be written directly in order to specify
the behavior of a function in an SA/SD decomposition.

The late 1980s saw the first proposals for object-oriented analysis and de-
sign (OOAD). Just like in the SA/SD approach, here too the basic idea
in modeling system structure was to lift concepts up from the program-
ming level — in this case object-oriented programming — to the modeling
level and to use visual formalisms. Inspired by entity-relationship (ER)
diagrams [21], several methodology teams recommended various forms of
class diagrams and object model diagrams for modeling system struc-
ture [16, 26, 105, 111]. To model behavior, most object-oriented modeling
approaches also adopted statecharts [42]. Each class is ‘programmed’ using a
statechart, which then serves to describe the behavior of any instance object
of that class; see, e.g., [105, 16, 44].

! This would be like saying that when you build a car all you need are the structural
things — body, chassis, wheels, etc. — and an engine, and you then merely stick the
engine under the hood and you are done.

2.1 Modeling and Code Generation 11

In the OOAD world, the issue of connecting structure and behavior is
subtler and a lot more complicated than in the SA/SD one. Classes represent
dynamically changing collections of concrete objects. Behavioral modeling
must thus address issues related to object creation and destruction, message
delegation, relationship modification and maintenance, aggregation, inheri-
tance, and so on. The links between behavior and structure must be defined
in sufficient detail and with enough rigor to support the construction of tools
that enable model execution and full code generation. See Fig. 2.1.

code

generation

model-code
associativity

object model diagrams &

statecharts

Fig. 2.1. Object-oriented system modeling with code generation

Obviously, if we have the ability to generate full code, we would eventually
want that code to serve as the basis for the final implementation. In the
OOAD world, a few tools have been able to do this. One is Rhapsody, also
from I-Logix [60], which is based on the work of Harel and Gery in [44] on
executable object modeling with statecharts. Another is ObjectTime, which
is based on the ROOM method of Selic et al. [111], and is now part of the
Rose RealTime tool from Rational [100]. There is no doubt that techniques
for this kind of ‘super-compilation’ from high-level visual formalisms down
to programming languages will improve in time. Providing higher levels of
abstraction with automated downward transformations has always been the
way to go, as long as the abstractions are ones with which the engineers who
do the actual work are happy.

12 2. Setting the Stage

In 1997, the Object Management Group (OMG) adopted as a standard
the unified modeling language (UML), put together by a large team led by
Booch, Rumbaugh and Jacobson; see [115, 106]. The class/object diagrams,
adapted from the Booch method [16] and the OMT (object modeling tech-
nique) method [105], and driven by statecharts for behavior [44], constitute
that part of the UML that specifies unambiguous, executable (and therefore
implementable) models. It has been termed XUML, for executable UML.
The UML also has several means for specifying more elaborate aspects of
system structure and architecture (for example, packages and components).
Large amounts of further information on the UML can be found in OMG’s
website [115].

2.2 Requirements

So much for modeling systems in the SA/SD and OO worlds. However, the
importance of executable models lies not only in their ability to help lead to
a final implementation, but also in testing and debugging, the basis of which
are the requirements. These constitute the constraints, desires, dreams and
hopes we entertain concerning the behavior of the system under development.
We want to make sure, both during development and when we feel develop-
ment is over, that the system does, or will do, what we intend or hope for it
to do.

Requirements can be formal (rigorously and precisely defined) or infor-
mal (written, say, in natural language or pseudocode). An interesting way
to describe high-level behavioral requirements is the idea of use cases; see
Jacobson [62]. A use case is an informal description of a collection of possible
scenarios involving the system under discussion and its external actors. Use
cases describe the observable reactions of a system to events triggered by its
users. Usually, the description of a use case is divided into the main, most fre-
quently used scenario, and exceptional scenarios that give rise to less central
behaviors branching out from the main one (e.g., possible errors, cancelling
an operation before completion, etc.). However, since use cases are high-level
and informal by nature, they cannot serve as the basis for formal testing and
verification. To support a more complete and rigorous development cycle,
use cases must be translated into fully detailed requirements written in some
formal language.

Ever since the early days of high-level programming, computer science
researchers have grappled with requirements; namely, with how to best state
what we want of a complex program or system. Notable efforts are those em-
bodied in the classic Floyd/Hoare inductive assertions method, which uses

2.2 Requirements 13

invariants, pre- and post-conditions and termination statements [12], and in
the many variants of temporal logic [82]. These make it possible to express
different kinds of requirements that are of interest in reactive systems. They
include safety constraints, which state that bad things will not happen;
for example, this program will never terminate with the wrong answer, or
this elevator door will never open between floors. They also include liveness
constraints, which state that good things must happen. For example, this
program will eventually terminate, or this elevator will open its door on the
desired floor within the allotted time limit.

A more recent way to specify requirements, which is popular in the realm
of object-oriented systems, is to use message sequence charts (MSCs),
which are used to specify scenarios as sequences of message interactions be-
tween object instances. This visual language was adopted as a standard long
ago by the International Telecommunication Union (the ITU; formerly the
CCITT) [123], and it also manifests itself in the UML as the language of
sequence diagrams (see [115]). MSCs combine nicely with use cases, since
they can specify the scenarios that instantiate the use cases. Sequence charts
thus capture the desired interrelationships between the processes, tasks, com-
ponents or object instances — and between them and the environment — in
a way that is linear or quasilinear in time.? In other words, the modeler uses
MSCs to formally visualize the actual scenarios that the more abstract and
generic use cases were intended to denote.

Objects in MSCs are represented by vertical lines, and messages between
these instances are represented by horizontal (or sometimes down-slanted)
arrows. Conditional guards, showing up as elongated hexagons, specify state-
ments that are to be true when reached. The overall effect of such a chart
is to specify a scenario of behavior, consisting of messages flowing between
objects and things having to be true along the way.

Figure 2.2 shows a simple example of an MSC for the quick-dial feature
of a cellular telephone. The sequence of messages it depicts consists of the
following: the user clicks the * key, and then clicks a digit on the Keyboard,
followed by the Send Key, which sends a Sent indication to the internal Chip.
The Chip, in turn, sends the digit to the Memory to retrieve the telephone
number associated with the clicked digit, and then sends out the number to
the external Environment to carry out a call. A signal is then received from
the environment, gnarded by a condition asserting that it is not a busy signal.

? Tasks, processes and components are mentioned here too, since although the book is
couched in the terminology of object-orientation, many of the ideas apply also to other
ways of structuring systems.

14 2. Setting the Stage

Keyboard I [Send Key

= [

| Chip | |Memmy| @

- R

| Click J

| Cick(dig!) N |
1

| Click N |

| N \

Sent() D I
| Retrieve(digit) |
: number '
| Call[number D I
| 1 signal |
I signal not busy > I
Ll R

Fig. 2.2. A message sequence chart (MSC)

2.3 Inter-Object vs. Intra-Object Behavior

The style of behavior captured by sequence charts is inter-object, to be con-
trasted with the intra-object style of statecharts. Whereas a sequence chart
captures what goes on in a scenario of behavior that takes place between
and amongst the objects, a statechart captures the full behavioral specifica-
tion for one of those objects (or tasks or processes). Statecharts thus provide
details of an object’s behavior under all possible conditions and in all the
possible ‘stories’ described previously in the inter-object sequence charts.
Two points must now be made regarding sequence charts. The first is one
of exposition: by and large, the subtle difference in the roles of sequence-based
languages for behavior and component-based ones is not made clear in the
literature. Again and again, one comes across articles and books (many of
them related to UML) in which the very same phrases are used to introduce
sequence diagrams and statecharts. At one point such a publication might say
that “sequence diagrams can be used to specify behavior”, and later it might
say that “statecharts can be used to specify behavior”. Sadly, the reader is
told nothing about the fundamental difference in nature and usage between
the two — that one is a medium for conveying requirements, i.e., the inter-
object behavior required of a model, and the other is part of the executable
model itself. This obscurity is one of the reasons many naive readers come
away confused by the multitude of diagram types in the full UML standard
and the lack of clear recommendations about what it means to specify the
behavior of a system in a way that can be implemented and executed.

2.3 Inter-Object vs. Intra-Object Behavior 15

The second point is more substantial. As a requirements language, the
many variants of MSCs, including the ITU standard [124] and the sequence
diagrams adopted in the UML [115], as well as versions enriched with timing
constraints and co-regions, and the high-level MSCs that make it possible
to combine charts using the power of regular expressions, have very limited
expressive power. Their semantics is intended to support the specification
of possible scenarios of system behavior, and is therefore usually given by a
set of simple constraints on the partial order of possible events in a system
execution: along a vertical object line higher events precede lower ones, and
the sending of a message precedes its receipt.® Virtually nothing can be said
in such diagrams about what the system will actually do when run. They
can state what might possibly occur, not what must occur. In the chart of
Fig. 2.2, for example, there is nothing to indicate whether some parts of
the scenario are mandatory. For example, can the Memory ‘decide’ not to
send back a number in response to the request from the Chip? Does the
guarding condition stating that the signal is not busy really have to be true?
What happens if it is not? If one wants to be puristic, then, under most
definitions of the semantics of message sequence charts, an empty system
-— one that doesn’t do anything in response to anything — satisfies such a
chart. Hence, just sitting back and doing nothing will make your requirements
happy. (Usually, however, there is a minimal, often implicit, requirement that
each one of the specified sequence charts should have at least one run of the
system that winds its way correctly through it.)

MSCs can be used to specify expected scenarios of behavior in the re-
quirements stage, and can be used as test scenarios that will be later checked
against the executing behavior of the final system. However, they are not
enough if we want to specify the actual behavior of a reactive system in a
scenario-based fashion. We would like to be able to say what may happen
and what must happen, and also what is not allowed to happen. The latter
gives rise to what we call anti-scenarios, in the sense that if they occur
something is very wrong: either something in the specification is not as we
wanted, or else the implementation does not correctly satisfy the specifica-
tion. We would like to be able to specify multiple scenarios that combine
with each other, or even with themselves, in subtle ways. We want to be able
to specify generic scenarios, i.e., ones that stand for many specific scenar-
ios, in that they can be instantiated by different objects of the same class.
We want variables and means for specifying real time, and so on.

3 There can also be synchronous messages, for which the two events are simultaneous.

18 2. Setting the Stage

leads to the final software or hardware, and will consist of the complete be-
havior coded for each object. In contrast, it is common to assume that the
left-hand side, the set of requirements, is not implementable or executable. A
collection of scenarios cannot be considered an implementable model of the
system: How would such a system operate? What would it do under general
dynamic circumstances? How would we decide what scenarios would be rele-
vant when some event suddenly occurs out of the blue? How should we deal
with the mandatory, the possible and the forbidden, during execution? And
how would we know what subsequent behaviors these and other modalities
of behavior might entail?

code
generation
~

- —— /Teshng
&

Jverification

methodologies
&

LSCs or temporal synthesis

logic or timing object model diagrams &
diagrams statecharts

Fig. 2.4. Conventional system development

One of the main messages of this book is that this assumption is no longer
valid. Scenario-based behavior need not be limited to requirements that will
be specified before the real executable system is built and will then be used
merely to test that system. Scenario-based behavior, we claim, can actually
be executed. Furthermore, we predict that in many cases such behavior will
become the implemented system itself. This will be illustrated and discussed
in detail as the book progresses.

For now, let us discuss the relations and transitions between the different
parts of the conventional setup of system development, as shown in Fig. 2.4.
The arrow between the use cases and the requirements is dashed for a reason:
it does not represent a ‘hard’ computerized process. Going from use cases to

2.5 Testing, Verification and Synthesis 19

formal requirements is a ‘soft’ methodological process performed manually by
system designers and engineers. It is considered an art or a craft and requires
a good understanding of the target formal requirements language and a large
amount of creativity.

The arrow going from the system model to the requirements depicts test-
ing and verifying the model against the requirements. Here is a nice way to
do testing using an automated tool.® Assume the user has specified the re-
quirements as a set of sequence diagrams, perhaps instantiating previously
prepared use cases. For simplicity, let us say that this results in a diagram
called A. Later, when the executable intra-object system model has been
specified, the user can execute it and ask that during execution the system
should automatically construct an animated sequence diagram, call it B, on
the fly. This diagram will show the dynamics of object interaction as it ac-
tually happens during execution. When this execution is completed, the tool
can be asked to compare diagrams A and B, and to highlight any inconsisten-
cies, such as contradictions in the partial order of events, or events appearing
in one diagram but not in the other. In this way, the tool helps debug the
behavior of the system against the requirements.

A recently developed tool, called TestConductor, which is integrated into
Rhapsody [60], enables a richer kind of testing using a subset of LSCs. The
test scenarios can describe scenarios of interaction between the environment
and the system under development. The tool then runs the tests, and simu-
lates the behavior of the environment by monitoring the test scenarios and
sending messages to the system on behalf of the environment, when required.
The tool determines the results of such a test by comparing the sequence dia-
grams produced by the system with those that describe the tests using visual
comparison, as described above.

Note that even these powerful ways to check the behavior of a system
model against our expectations are limited to those executions that we actu-
ally carry out. They thus suffer from the same drawbacks as classic testing
and debugging. Since a system can have an infinite number of runs, some
will always go unchecked, and it could be those that violate the requirements
(in our case, by being inconsistent with diagram A). As Dijkstra famously
put it years ago, “testing and debugging cannot be used to demonstrate the
absence of errors, only their presence”.

One remedy is to use true verification. This is not what CASE-tool people
in the 1980s often called “validation and verification”, which amounted to
little more than checking the consistency of the model’s syntax. What we
have in mind is a mathematically rigorous and precise proof that the model

¢ Rhapsody supports this technique.

20 2. Setting the Stage

satisfies the requirements, and we want this to be done automatically by a
computerized verifier. Since we would like to use highly expressive languages
like LSCs (or the analogous temporal logics [82] or timing diagrams [108]) for
requirements, this means far more than just executing the system model and
making sure that the sequence diagrams you get from the run are consistent
with those you prepared in advance. It means making sure, for example, that
the things an LSC says are not allowed to happen (the anti-scenarios) will
indeed never happen, and the things it says must happen (or must happen
within certain time constraints) will indeed happen. These are facts that, in
general, no amount of execution can fully verify.

Although general verification is a non-computable algorithmic problem,
and for finite-state systems it is computationally intractable, the idea of rig-
orously verifying programs and systems — hardware and software — has
come a long way since the pioneering work on inductive assertions in the late
1960s and the later work on temporal logic and model checking. These days
we can safely say that true verification can be carried out in many, many
cases, even in the slippery and complex realm of reactive real-time systems.

So much for the arrow denoting checking the model against the require-
ments. In the opposite direction, the transition from the requirements to a
model is also a long-studied issue. Many system development methodologies
provide guidelines, heuristics, and sometimes carefully worked-out step-by-
step processes for this. However, as good and useful as these processes are,
they are ‘soft’ methodological recommendations on how to proceed, not rig-
orous and automated methods. Here too, there is a ‘hard’, computerized way
to go: Instead of guiding system developers in informal ways to build models
according to their dreams and hopes, the idea is to automatically synthesize
an implementation model directly from those dreams and hopes, if they are
indeed implementable. (For the sake of the discussion, we assume that the
structure — for example, the division into objects or components and their
relationships — has already been determined.) This is a whole lot harder than
generating code from a system model, which is really but a high-level kind of
compilation. The duality between the inter-object scenario-based style (re-
quirements) and the intra-object state-based style (modeling) in saying what
a system does over time renders the synthesis of an implementable model
from the requirements a truly formidable task. It is not too hard to do this
for the weak MSCs, which can’t say much about what we really want the
system to do. It is a lot more difficult for far more realistic requirements
languages, such as LSCs or temporal logic.

How can we synthesize a good first approximation of the statecharts from
the LSCs? Several researchers have addressed such issues in the past, result-
ing in work on certain kinds of synthesis from temporal logic [98] and timing

2.6 The Play-In/Play-Out Approach 21

diagrams [108]. In [46], there is a first-cut attempt at algorithms for syn-
thesizing state machines and statecharts from simple LSCs. The technique
therein involves first determining whether the requirements are consistent
(i.e., whether there exists any system model satisfying them), then proving
that being consistent and having a model (being implementable) are equiva-
lent notions, and then using the proof of consistency to synthesize an actual
model. The process just outlined yields unacceptably large models in the
worst case, so that the problem cannot yet be said to have been solved sat-
isfactorily. We do believe, however, that synthesis will eventually end up like
verification — hard in principle but not beyond a practical and useful solution
in practice. This is the reason for the solid arrow in Fig. 2.4.

2.6 The Play-In/Play-Out Approach

To complete a full rigorous system development cycle we need to bridge the
gap between use cases and the more formal languages used to describe the
different scenarios. How should the more expressive requirements themselves
be specified? One cannot hope to have a general technique for synthesizing
LSCs or temporal logic from the use cases automatically, since use cases
are informal and high level. This leaves us with having to construct the
LSCs manually. Now, LSCs constitute a formal (albeit, visual) language, and
constructing them requires the skill of working in an abstract environment,
and detailed knowledge of the syntax and semantics of the language. In a
world in which we would like as much automation as possible we would like
to make this process more convenient and natural, and accessible to a wider
spectrum of people.

This problem was addressed towards the end of [43], and a higher-level ap-
proach to the problem of specifying scenario-based behavior, termed play-in
scenarios, was proposed and briefly sketched. The methodology, supported
by a tool called the Play-Engine was presented in more detail by the present
authors in [49]. The main idea of the play-in process is to raise the level of ab-
straction in requirements engineering, and to work with a look-alike version
of the system under development. This enables people who are unfamiliar
with LSCs, or who do not want to work with such formal languages directly,
to specify the behavioral requirements of systems using a high-level, intuitive
and user-friendly mechanism. These could include domain experts, applica-
tion engineers, requirements engineers, and even potential end-users.

What ‘play-in’ means is that the system’s developer (we will often call
him/her a user — not to be confused with the eventual end-users of the
system under development, which are sometimes called actors in the litera-

22 2. Setting the Stage

ture) first builds the GUI of the system, with no behavior built into it, with
only the basic methods supported by each GUI object. This is given to the
Play-Engine. In systems for which there is a meaning to the layout of hidden
objects (e.g., a board of an electrical system), the user may build the graph-
ical representation of these objects as well. In fact, for GUI-less systems, or
for sets of internal objects, we simply use the object model diagram as a
GUL In any case, the user then ‘plays’ the incoming events on the GUI, by
clicking buttons, rotating knobs and sending messages (calling functions) to
hidden objects, in an intuitive drag & drop manner. (With an object model
diagram as the interface, the user clicks the objects and/or the methods and
the parameters.) By similarly playing the GUI, often using right-clicks, the
user then describes the desired reactions of the system and the conditions
that may or must hold. As this is being done, the Play-Engine does essen-
tially two things continuously: it instructs the GUI to show its current status
using the graphical features built into it, and it constructs the corresponding
LSCs automatically. The engine queries the application GUI (that was built
by the user) for its structure and methods, and interacts with it, thus ma-
nipulating the information entered by the user and building and exhibiting
the appropriate formal version of the behavior. So much for play-in.

After playing in (a part of) the behavior, the natural thing to do is to
make sure that it reflects what the user intended to say. Instead of doing
this the conventional way, by building an intra-object model, or prototype
implementation, and using model execution to test it, we would like to test
the inter-object behavior directly. Accordingly, we extend the power of our
GUlI-intensive play methodology, to make it possible not only to specify and
capture the required behavior but to test and validate it as well. And here is
where our complementary play-out mechanism enters.

In play-out, which was first described in [49], the user simply plays the GUI
application as he/she would have done when executing a system model, or
the final system, limiting him-/herself to end-user and external environment
actions. As this is going on, the Play-Engine keeps track of the actions and
causes other actions and events to occur as dictated by the universal charts in
the specification. Here too, the engine interacts with the GUI application and
uses it to reflect the system state at any given moment. This process of the
user operating the GUI application and the Play-Engine causing it to react
according to the specification has the effect of working with an executable
model, but with no intra-object model having to be built or synthesized.

Figure 2.5 shows an enhanced development cycle, which includes the play-
in/play-out methodology inserted in the appropriate place.

We should emphasize that the behavior played out need not be merely
the scenarios that were played in. The user is not just tracing previously

3. An Example-Driven Overview

In this chapter, we overview the main ideas and principles of our work. The
purpose of the overview is to give a broad, though very high-level, view of the
LSC language, the play-in methodology for specifying inter-object scenario-
based behavior, and the play-out mechanism for executing such behavior. We
will touch upon many issues, but will not dwell on the details of the language
constructs, nor the methodology, nor the tool. The overview is presented as
a guided walk-through, using a simple example of a reactive system.

3.1 The Sample System

Consider a bakery, in which different kinds of bread, cakes and cookies are
baked in three ovens. Suppose Ms. B., the owner of the bakery, wants to
automate the bakery by adding a bakery panel that will control and monitor
the three ovens. According to the play-in approach, the first thing to do is to
ask our user, Ms. B, to describe the desired panel. In this preliminary phase, a
very high-level description, focusing on the panel’s graphical user interface
(GUI), is sufficient. The panel, coded using some rapid development language
(or a special-purpose tool, as we discuss later) is shown in Fig. 3.1. The panel

w. Bakery Control Panel =10 ||
Off Med High Off Med High Off Med High
QRS R B o R
i B L ‘
0 70 70 ‘
50 50 50 :
0 30 30

Fig. 3.1. A central panel controlling the bakery’s ovens

D. Harel et al., Come, Let’s Play:

© S]n'in:_’rr—\"a'rl:l:_{ Berlin | [ri:L'Hn'rg 2003

26 3. An Example-Driven Overview

has a main switch and a main light in its top-left corner. On the top right,
there is a console display, which is used to show textual messages. The rest
of the GUI contains three 3-state switches, three thermometers and three
warning lights. Each set of switch, thermometer and light is used to control
and monitor a different oven.

Note that this bakery panel is nothing but a graphical user interface. No
behavior is programmed into it, and all it can do is interact with the Play-
Engine tool in a rather trivial way. All the behavioral requirements of this
panel will be defined as we go along. As we progress with the example, we
may add more graphical elements to the panel and define their behavior as
well.

3.2 Playing In

Having the GUI application at hand, Ms. B. is ready to specify the required
behavior of the bakery panel. She wants to add a new LSC and give it a
name. Figure 3.2 shows the Play-Engine with the empty LSC just added.
The top blue dashed hexagon is the LSC’s prechart and the bottom solid
rectangle is its main chart. The prechart should contain a scenario, which,
if satisfied, forces the satisfaction of the scenario given in the main chart.
The relation between the prechart and the chart body can be viewed as an
action-reaction; if and when the scenario in the prechart occurs, the system
is obligated to satisfy the scenario in the main chart.

The first thing our user would like to specify is what happens when the
bakery panel is turned on. Since this is done using a switch, the action of
clicking the switch is put in the prechart, and the appropriate system re-
actions are put in the chart body. In our case, we want the system, as a
response, to turn on the light and to change the display’s color to green.

The process of specifying this behavior is very simple. First, the user clicks
the switch on the GUI, thus changing its state! from Off to On. When the
Play-Engine is notified of this event, it adds the appropriate message in the
(initially empty) prechart of the LSC from the user instance to the main
switch instance. See Fig. 3.3.

The user then moves the cursor (a dashed purple line) into the chart body
and right-clicks the light on the GUI. The engine knows the properties of the
light (in this case, there is just one) and pops up a menu, from which the user
chooses the State property and sets it to On. Figure 3.4 shows the popup
menu that is opened after the light is right-clicked, and the dialog that opens

! We use the word ‘state’ to describe a property of the switch. This should not to be
confused with the term ‘state’ from finite state machines and statecharts.

3.2 Playing In 27

& Play-In Scenario - [Panel On{ID6045)] PR a4t =10} x|
e ook (oo et ey =i8| x|

ll@| @x| slole| o>« BE [c vl 8 &lm| Slolo|m(m] |5 [0 fmx
e A

MainSwitch
Man Light
Console
Swatchl
Swatch2
Swatch3
Themo!
Themo2
Themod
Light1 "
Light2 w Bakery Control Panel =10] x|

Light3
| glwar:dﬁb‘e:l: ﬁ Q |

Off Med High Off Med High Of Med High
(T) i
ot - -

= 2 Specification
= O Use Cases iy O O O
= O On/OK
B Panel0

- hdurnoSlarli Llﬂ m ;JL]

Siatus T [osAe/02 |18 7

Fig. 3.2. An empty universal LSC in the Play-Engine

after the State property is chosen. A similar process is then carried out for
the background property of the display. After each of these actions, the engine
adds a self-message in the LSC from the instance representing the selected
object, showing the change in the property. The Play-Engine also sends a
message to the GUI application, telling it to change the object’s property in
the GUI itself so that it reflects the correct value after the actions have been
taken. Thus, when this stage is finished, the GUI shows the switch on, the
light on, and the display colored green. Figure 3.5 shows the resulting LSC
and the status of the GUI panel.

Suppose now that the user wishes to specify what happens when the switch
is turned off. In this case we want the light to turn off and the display to
change its color to white and erase any displayed characters. The user may,
of course, play in another scenario for this, but these two scenarios will be
very similar, and they are better represented in a single LSC. This can be
done using symbolic messages. We play a scenario as before, with the switch
being clicked as part of the prechart, and the system’s reactions being played
in as the chart’s body. However, this time we do it with the symbolic flag on.

28 3. An Example-Driven Overview

& e
0 =

b ClekOn)

;-

4 ORI (o]
E 9 |

Oif Med High Off Med High Off Med High
p B U b iy

b b b
= ad -
70 70 70
50 50 50
30 30 30

Fig. 3.3. The results of clicking the main switch to On

2 [ookery Control panel [T
S s -
e Click[On] _ {:) Oif Med H Store » fed High
}—— calother object
Store Time
70 70
4 50 50
[« New Value .. - E SRS X
Heference o -
€ <Funchions ()
| € varisbies ‘ O O Q
| {
1. J
Pick a value: & Value:
IUn
o
Cancel | ok |

Fig. 3.4. Changing the light state to On

When in symbolic mode, the values shown in the labels of messages are the
names of variables (or functions), rather than actual values. So the user will
now not say that the light should turn on or off as a result of the prechart,
but that it should take on the same state as the switch did in the prechart.
The Play-Engine provides a number of ways of doing this. A variable can
be selected from a table of predefined variables or, as shown in Fig. 3.6, we

3.2 Playing In

Panel On
a; ‘MahSMd'n| leL'w| IConsdc|

S et
¢ T 4;,

X : i

:(]'_"‘Tt.nnlﬂnl
(} Charvgeﬂedtgomdﬁ:eanl
-0l

LB

Off Med High OFff Med High OFff Med Hld'\

Y
O Q

T_

O

Fig. 3.5. LSC: Turning on the panel

29

can indicate that the value should be the same as in some message in the
LSC. Here X is a variable. For the second option, the user simply clicks the

Panel On/0ff

[~ Bokery Control Panel U =10/ x|
2 —
g 5__'5_0;@__{;77\ O Med Hh DI Med Hih Off Med Hih
: ; et N \
e 1 A I
7 70 0
50 50 50
n e ®
x|
e T R T o o

Fig. 3.6. Symbolic mode: the light takes on the same state as the switch

32

3. An Example-Driven Overview

Panel On/Off

$ MainSwitch| Main Light Console
% .. ChckiXs) { A\
% : 3
: {fo Tuns) |
< MainSwitch=0n >
— .
- "} __ !Change Background(Green)
3;} " IChange Backgroundwhite)
15l
T} —
i B Text
- Off Med High OFf Hed Hngl"\ Off M.
[~ Condition =lo/x| * \ hat
Temperature: -“
{ bt 70 70
0 S Cancel l
+ Cold 50 50
[~ Symbolic
Condition E xpression i e
MainSwatch=01f
Console synchionized New... O O

De{elel

Fig. 3.9. Specifying a stand-alone condition guard

A condition hexagon will be stretched along the LSC, reaching all the
instances to which it refers. To distinguish such instances from those that do
not participate in the condition’s definition or are not to be synchronized with
it, the engine draws small semicircular connectors at the intersection points
of the condition with the participating instance line. Figure 3.10 shows the
final LSC and the way conditions are rendered.

One aspect of the LSC language that contributes to its flexibility is the fact
that behaviors can be given in separate charts, and these can each describe
a fragment of a more complex behavior. When these fragments become rele-
vant during execution is a consequence of their precharts, and thus no explicit
order is imposed on the charts (in contrast to the mechanism for combining
charts in high-level MSCs, for example). So, suppose that our user has just
decided that when the switch is turned on, the three warning lights should
flicker (by changing colors from green to red and back) three times, termi-

3.2 Playing In 33

7\% MainS w«lchl Main Light | Console
T
P Chekis) o
. j:l_'___'Tman:l
ManSwitch=0n
e ’ e
- :Change Background{Green)
‘P ""iChange Background{White)
. MainSwatch=0f
o .
: A Show)

Fig. 3.10. A symbolic LSC for turning the panel on or off

nating in green. One way to capture that is to go back to the LSC shown
before and add this ‘piece’ of behavior in its correct place (i.e., in the ‘then’
part of the if-then-else construct). Alternatively, we can create another LSC,
which is activated only when the switch is turned On.

To do this, the user clicks the switch on the GUI to On while the cursor is
in the prechart, in the same way as described earlier. We now want to specify
the three-fold flickering itself. Of course, we could simply play in the six
color changes for every light. It is better, however, to use the loop construct
of LSCs. As with the if-then-else construct, a loop is inserted by clicking a
button on the toolbar, which causes a wizard to open. Figure 3.11 shows the
wizard and the LSC during the process of specifying a loop.

[~ Loop =T

e Loop Iterations
1] 2 .

" Dynamic [?)

i Chck(On]_
: v Unbound ()

il

Fig. 3.11. Specifying loops in LSCs

34 3. An Example-Driven Qverview

There are three types of loops in LSCs. This one is a fixed loop; it is
annotated by a number or a variable name, and is performed a fixed number
of times.

After selecting the desired type of loop using the loop wizard, the user
continues playing in the required behavior in the same way as before. The
loop is ended by clicking the End Loop button in the loop wizard. Figure
3.12 shows the resulting LSC. Note the special use of a cold condition in

jl"l; MainSwitch Light1 l_Lngi._J [Light3 _Jl

- Change(R éd)

L. iChange(Réd)
' o Change{Red)
o — — gy — — 3k
) SYHC)
§} " Change(Gieen) :
! : } “Change(Gteen]

:}‘ . E[hange{l:neenl

Fig. 3.12. An LSC with a fixed loop

the middle of the loop. A condition with the reserved word SYNC'is always
evaluated to true. (Actually, the reserved word TRUE could have been used
instead, but SYNC reflects better the underlying intuition.) Placing such a
condition where it is, and synchronizing the three lights with it has the effect
of synchronizing the lights and forbidding a light to change its color to green
before the others have changed their color to red.

Thinking a bit more about the bakery panel, Ms. B. now decides that she
would like to be able to probe the thermometers for their exact temperature.
To do that, some additional graphical objects should be added to the panel.
Figure 3.13 shows the modified panel. Two selectors and one Probe button
have been added. One selector is used to select a thermometer and the other
to select the units for displaying the temperature (i.e., Celsius or Fahrenheit).

We now specify the following requirement:

3.2 Playing In 35

= Bakery Control Panel e -10] x|

|- IRV
Ij:rl M.:'-»j l:hgh Ffll M.ed l-.hg.*\ I"jll M.ei)-Ih-;!'w L F
— Y :
Urats: E
70 70 70

50 50 50
30 30 30

Probe

O O O

Fig. 3.13. The modified bakery panel

When the Probe button is clicked, the console should display the tem-
perature of the thermometer selected using the thermometer selector.
The temperature should be displayed in Celsius or Fahrenheit degrees,
according to the units in the units selector.

The prechart is quite simple, and contains a single message denoting the
event of the user clicking the Probe button. In the chart body, we first want to
store the temperature of the selected thermometer. We do this using three if-
then constructs. The temperature is stored in a variable using an assignment
construct. Assignments are internal to a chart, and can be used to save values
of the properties of objects, or of functions applied to variables holding such
values. The assigned-to variable stores the value for later use in the LSC. The
expression on the right-hand side contains either a reference to a property of
some object (this is the typical usage) or a function applied to some predefined
variables. It is important to note that the assignment’s variable is local to
the containing chart and can be used in that chart only, as opposed to the
system’s state variables, which may be used in several charts. Figure 3.14
shows how an object property can be stored, by right-clicking the desired
object, choosing Store and then the desired property name. It also shows the
resulting assignment, drawn as a rectangle folded in its top-right corner. Since
after storing a value we might like to refer to it later, and for this a meaningful
name is helpful, the Play-Engine lets the user name the assigned variable; here
we use Tc (since the original temperature is given in Celsius). Figure 3.15
shows an LSC in which the variable T'c stores the required temperature.

Next, the console should display Te¢ according to the selected units. If
Celsius is selected, then T'c should be displayed as is. If Fahrenheit is selected,
the temperature should be converted. This is an example of the need to use
data manipulation algorithms and functions that are applied to specified
variables. Such functions cannot (and should not) be described using LSC-

38 3. An Example-Driven Overview

the environment reacts with the system in a way similar to the interaction
with the end-user.

Figure 3.17 shows an LSC that describes the above requirement for ther-
mometer f1. When the temperature of thermometer #1 is changed (by the

Cold Oven
Va s aaV
Console Thermol z’ ENV <
Rix I I NAAAS

g S

i+ Change(T). 1<
ST
= e

Fig. 3.17. Interacting with the external environment

environment) to some value T, and T is less than 30 degrees Celsius, then
the console displays the required warning message.

We could have created two more charts for the other two thermometers,
yet there is a more elegant way to do this. Many systems feature multiple
objects that are instances of the same class. This is one of the central maxims
of the object-oriented paradigm. For example, a communication system con-
tains many phones, a railroad control system may have not only many trains
and terminals but also many distributed controllers, etc. We would like to
be able to specify behavioral requirements in a general way, on the level of
classes and their parameterized instances, not necessarily restricting them to
concrete objects. In our example, since the three thermometers are actually
three instances of the same thermometer class, we would like to take the LSC
shown in Fig. 3.17 and generalize it so that it deals with all the thermometers
in the system. We can do this using an extension we have defined for LSCs,
involving classes and symbolic instances. A symbolic instance is associ-
ated with a class rather than with an object, and may stand for any object
that is an instance of the class. Figure 3.18 shows the generalized version of
the LSC of Fig. 3.17. In our example, a CTherm class was created and all
the thermometers were defined as instances thereof. In Fig. 3.18, the instance
representing thermometer 1 was turned into a symbolic instance, and thus
now represents any object that is an instance of class C'Therm.

Symbolic instances constitute a rather complex topic, raising several in-
teresting and non-trivial issues that we deal with later in the book.

