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Foreword

An eminent professor of logic once said to me, “Why do you bother devising all
those little predicate calculus theories? We already know that first-order pred-
icate calculus is capable of expressing almost anything, so what is the point?”
This question typifies the attitude of a certain breed of logician, for whom the
quintessence of intellectual endeavour is the study of the metalevel properties of
various formalisms—their expressive power, their computational limitations, and
the relationships between one formalism and another. Without doubt such work
is, from an academic point of view, noble and worthwhile. So [ did wonder, for sev-
eral minutes, whether the eminent logician was perhaps right. But then it occurred
to me that no one ever says, “Why do you bother giving your undergraduates all
those little programming exercises? We already know that Turing machines can
compute almost anything, so what is the point?”

The point, of course, isthat the gap between believing something to be possible
and knowing how to achieve it is very wide indeed. Thereis an art to programming,
and learning how to do it well takes many years. If the eminent logician had
not retired to his office before allowing me a return blow, [ would have replied
that what goes for programming also goes for logic: There is an art to the use of
logic for knowledge representation, and learning it requires much practise. So it is
surprising that more books aimed at teaching this art do not exist. Fortunately, we
can now add to this small corpus the admirable volume by Erik Mueller that you are
hopefully about to read. But this book is more than just a guide to building complex
representations of knowledge in logic because its target is an area that might be
thought of as the nemesis of artificial intelligence, namely common sense.
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Foreword

One of the starkest lessons of Al research in the twentieth century was that
it is those aspects of human behaviour that we most take for granted that are the
hardest to emulate on a computer. A two-year-old child who finds a chocolate bar
hidden in his mother’s bag is performing a feat of common sense that our most
sophisticated Al systems would be utterly incapable of matching. It is true that
we now have programs that can defeat chess grandmasters—but only at chess. To
a cognitive scientist, the most remarkable thing about a chess grandmaster is that,
having played a great game of chess, she can then go and make a cup of tea. The very
same biological apparatus that has mastered chess had long beforehand mastered
the everyday physical world of solids, liquids, gravity, surfaces, and shapes, not to
mention the everyday social world of interaction with her peers.

What is the right way to approach the daunting problem of endowing comput-
ersand robots with common sense? There's no shortage of opinions on this question
among Al researchers and cognitive scientists. Perhaps we should be inspired by
biology. Perhaps we should imitate evolution. Perhaps we should eschew nature
and instead embrace mathematical formalisms such as logic. If we were empirical
scientists, there would be a right and a wrong answer, whether or not we yet knew
which was which. But insofar as we are engineers, there can be many right answers.
With a mere half century of thinking behind us—a very short time in the history
of ideas—we still do not know how far the symbolic approach exemplified by this
book can take us towards human-level artificial intelligence. But we do know that
the symbolic approach makes for elegant designs with provable properties in a
wide range of application areas where systems with a little extra intelligence have
the edge. So Erik Mueller's book is necessary and timely, and I hope it gains the
wide readership it deserves.

Murray Shanahan
Imperial College London
July 2005



Preface

Commonsense reasoning is the sort of reasoning we all perform about the everyday
world. We can predict that, if a person enters a kitchen, then afterward the person
will be in the kitchen. Or that, if someone who is holding a newspaper walks into
a kitchen, then the newspaper will be in the kitchen. Because we make inferences
such as these so easily, we might get the impression that commonsense reasoning
is a simple thing. But it is very complex.

Reasoning about the world requires a large amount of knowledge about the
world and the ability to use that knowledge. We know that a person cannot be in
two placesat once, that a person can move from one location to another by walking,
and that an object moves along with a person holding it. We have knowledge about
objects, events, space, time, and mental states and can use that knowledge to make
predictions, explain what we observe, and plan what to do.

This book addresses the following question: How do we automate common-
sense reasoning? In the last few decades, much progress has been made on this
question by artificial intelligence researchers. This book provides a detailed account
of this progress and a guide to automating commonsense reasoning using logic. We
concentrate on one formalism, the event calculus, that incorporates many of the
discoveries of the field. Although the event calculus is defined by a handful of
first-order logic axioms, it enables reasoning about a wide range of commonsense
phenomena.

Why Commonsense Reasoning?

Why study commonsense reasoning? The first reason for studying commonsense
reasoning is practical. Automated commonsense reasoning has many applications

XiX



Preface

ranging from intelligent user interfaces and natural language processing to robotics
and vision. Commonsense reasoning can be used to make computers more human-
aware, easier to use, and more flexible.

The second reason for studying commonsense reasoning is scientific. Com-
monsense reasoning is a core capability of intelligence that supports many other
high-level capabilities. The ability to understand what is happening in a story, for
example, crucially involves commonsense reasoning. By studying commonsense
reasoning we can gain a greater understanding of what intelligence is.

Approach

The approach to commonsense reasoning taken in this book is not shared by all
researchers. My approach can be characterized by the following assumptions.

[ assume, along with most cognitive scientists, that commonsense reason-
ing involves the use of representations and computational processes that
operate on those representations.

[ assume along with researchers in symbolic artificial intelligence, that these
representations are symbolic.

[ assume, along with researchers in logic-based artificial intelligence, that
commonsense knowledge is best represented declaratively rather than
procedurally.

[ use the declarative language of many-sorted first-order logic.

I do not claim that the methods for commonsense reasoning presented in this
book are the methods used by humans. This book presents one way of automat-
ing commonsense reasoning. How humans perform commonsense reasoning is an
interesting topic, but it is not the topic of this book. There is evidence both for
and against the use of logic in human reasoning.

Intended Audience

This book is intended for use by researchers and students in the areas of computer
science, artificial intelligence, mathematics, and philosophy. It is also intended
for use by software designers wishing to incorporate commonsense reasoning into
their applications. The book can be used as a graduate-level textbook for courses
on commonsense reasoning and reasoning about action and change, as well as a
reference work for researchers working in these areas. [t will be of interest to those
using logic as their primary technique, as well as those using other techniques. This
book can also be used as a supplementary graduate-level or advanced undergrad-
uate textbook for courses on knowledge representation and artificial intelligence.



Preface XXi

I assume the reader has some familiarity with first-order logic, although reviews of
first-order logic are provided in Chapter 7?7 and Appendix A.

Roadmap

This book consists of 17 chapters and four appendices. The chapters are organized
into seven parts.

Part 2? describes the foundations of the event calculus.

Part [I deals with various commonsense phenomena. Chapter 3 discusses the
effects of events. Chapter 4 discusses the triggering of events by conditions.
Chapter 5 discusses the commonsense law of inertia. Chapter 6 discusses the
indirect effects of events. Chapter 7 discusses continuous change. Chapter 8
discusses concurrent events. Chapter 9 discusses nondeterministic effects
of events.

Part III deals with important commonsense domains. Chapter 10 presents
axiomatizations of relational and metric space, and discusses reasoning
about object identity, space, and time. Chapter 11 presents axiomatiza-
tions of the mental states of agents, including beliefs, goals, plans, and
emotions.

Part IV discusses default reasoning.

Part V deals with programs and applications. Chapter 13 discusses the Discrete
Event Calculus Reasoner program used to solve event calculus reasoning
problems, and Chapter 14 discusses several real-world applications.

Part VI reviews logical and nonlogical methods for commonsense reasoning
and discusses their relationship to the event calculus. Chapter 15 reviews
logical methods, and Chapter 16 reviews nonlogical methods.

Part VII presents my conclusions.

Material Covered

The skills that make up human commonsense reasoning are complex, and the
body of research related to it is large. Because no book can realistically cover
every aspect of commonsense reasoning, a choice had to be made about what this
book would cover. The coverage of this book was determined by the following
considerations.

Most instances of commonsense reasoning involve action and change because
action and change are pervasive aspects of the world. It is crucial for any method
for commonsense reasoning to deal with action and change. Therefore, a large
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part of this book is devoted to this topic. In addition to reasoning about action
and change, or the domain of time, this book covers two other significant domains
of commonsense reasoning: space and mental states, including emotions, goals,
plans, and beliefs. This book also covers default reasoning and reasoning about
object identity.

Over the last few decades, researchers have developed a number of logics for
commonsense reasoning. [t would take much time and space to cover all of these
in detail. Hence, this book concentrates on one logic, the event calculus, which
incorporates many of the features of the other logics. The reader who understands
the event calculus will be well equipped to understand the other logics. They are
closely related to the event calculus, and some are provably equivalent to the event
calculus. Chapter 15 compares the event calculus with other logics, and detailed
bibliographic notes throughout the book discuss research performed using other
logics.

Several types of commonsense reasoning are not covered by this book. Rea-
soning under uncertainty about action and change is not covered because this is
not a well-developed area. But this book does cover nondeterminism, and some
initial work on the use of probability theory for reasoning about action and change
is reviewed (in Section 16.3). Although there is a large published literature on
machine learning, relatively little research on learning commonsense knowledge
has been performed, so this is not included. The related area of analogical pro-
cessing is reviewed (in Section 16.2). Although this book covers most features of
the event calculus, it does not cover continuous change described using differen-
tial equations; this book does, however, cover continuous change described by
closed-form expressions.

Supplemental Materials

Web Site and Reasoning Programs

The book web site at www.signiform.com/csr/ contains additional material
related to this book. This includes links to event calculus reasoning programs
that can be downloaded, such as the Discrete Event Calculus Reasoner program
discussed in Chapter 13.

Exercises and Solutions

Exercises are provided at the end of Chapters 2 through 16. Solutions
to selected exercises are provided in Appendix D. Solutions to further exer-
cises are available online to instructors who have adopted this text. Register at
www.textbooks.elsevier.com for access.
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‘CHAPTER1

Introduction

This book is about commonsense reasoning, the sort of reasoning people perform
in daily life. Here are some examples of commonsense reasoning:

1.

In the living room, Lisa picked up a newspaper and walked into the
kitchen. Where did the newspaper end up? It ended up in the kitchen.

Kate set a book on a coffee table and left the living room. When she
returned, the book was gone. What happened to the book? Someone
must have taken it.

Jamie walks to the kitchen sink, puts the stopper in the drain, turns on the
faucet, and leaves the kitchen. What will happen as a result? The water
level will increase until it reaches the rim of the sink. Then the water will
start spilling onto the floor.

Kimberly turns on a fan. What will happen? The fan will start turning.
What if the fan is not plugged in? Then the fan will not start turning.

A hungry cat saw some food on a nearby table. The cat jumped onto a
chair near the table. What was the cat about to do? The cat was about to
jump from the chair onto the table in order to eat the food.

This book is concerned with understanding and describing commonsense reasoning
to such a level of detail that it can be automated, or pcrformcd automatically by a
machine such as a computer. [t reviews methods for commonsense reasoning and
describes in detail a method for commonsense reasoning using the event calculus,
an extension of first-order logic.
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1.1

1.2

What Is Commonsense Reasoning?

Commonsense reasoning is a process that involves taking information about certain
aspects of a scenario in the world and making inferences about other aspects of
the scenario based on our commonsense knowledge, or knowledge of how the world
works. Commonsense reasoning is essential to intelligent behavior and thought.
It allows us to fill in the blanks, to reconstruct missing portions of a scenario, to
ﬁgurc out what happcncd, and to prcdict what might happcn next. Commonsense
reasoning stands in contrast to various types of expert reasoning such as economic,
legal, mathematical, medical, and scientific reasoning.

Key Issues of Commonsense Reasoning

Although commonsense reasoning comes naturally to us and appears to be sim-
ple, it is actually a complex process. In this section, we examine the previously
mentioned examples of commonsense reasoning in detail. We introduce funda-
mental concepts and point out some of the key issues that must be addressed by
any method for commonsense reasoning.

Consider the first scenario.

Representation
[n the living room, Lisa picked up a newspaper ...

In order to automate commonsense reasoning about a scenario such as this, we
must first build a representation of the scenario. A representation is something that
resembles something else. For the purpose of automating commonsense reasoning,
the representation should be a data structure or a sentence of a language defined
by a formal syntax, and the representation should facilitate automated reasoning.

Objects, Properties, Events, and Time

Several fundamental entities must be represented. First, we must represent objects
in the world and agents such as persons and animals; we must represent Lisa, the
newspaper, and the living room. Second, we must represent properties of the world
that change over time; we need to represent the time-varying locations of Lisa and
the newspaper. Third, we must represent events or actions that occur in the world;
we need to represent the event of Lisa picking up the newspaper. Fourth, we must
represent time; we must represent that Lisa picked up the newspaper when she
and the newspaper were in the living room.

Object Identity

We must represent the identities of objects; we must represent the fact that Lisa
and the newspaper are not the same object.
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Reasoning

Having formed a representation of the scenario, we can then perform com-
monsense reasoning or inference. Because our goal is automation, the method
of reasoning should be expressed as an algorithm or formal rule that takes
representations as input and produces representations as output.

Representations of Commonsense Knowledge

We must construct representations of commonsense knowledge that can be used
by the reasoning method to reason about this scenario as well as other scenarios.

Effects of Events

We must be able to represent and reason about the effects of events on world
properties. We must be able to reason from a specific event and general knowledge
about the effects of events to the specific effects of the specific event. We should
be able to represent that, if a person picks up an object, then the person will be
holding that object. Given that Lisa picked up the newspaper, and this piece of
commonsense knowledge, we should be able to infer that Lisa was then holding
the newspaper.

Context-Sensitive Effects

We must be able to represent and reason about the context-sensitive effects of
events. We should be able to represent that, if a person picks up a slippery object
and is not careful, then the person will not be holding the object.

Nondeterministic Effects

We must also be able to represent and reason about events with nondeterministic
effects. We should be able to represent that if a person picks up a slippery object,
then the person may or may not be holding the object.

Concurrent Events

We must be able to represent and reason about concurrent events. We should
be able to represent that certain concurrent events are impossible; for example,
a person cannot walk into two rooms simultaneously. We must be able to reason
about concurrent events with cumulative or canceling effects. For example, if a
shopping cart is pushed, it moves forward. If it is pulled, it moves backward.
But if it is simultaneously pulled and pushed, then it moves neither forward nor
backward; instead, it spins around.
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Space

...and walked into the kitchen.

In order to automate commonsense reasoning, we must be able to deal with space.
We must represent the knowledge that, after a person walks into a room, the

person will be in that room. From this knowledge and the fact that Lisa walked
into the kitchen, we should be able to infer that afterward Lisa was in the kitchen.

Indirect Effects

Where did the newspaper end up? It ended up in the kitchen.

In order to make this inference, we must be able to reason about the indirect effects
or ramifications of events. We know that, if a person is holding an object, then the

object moves along with the person.
Next, we consider the second scenario.

Kate set a book on a coffee table ...

We must represent the effect of setting an object on another object, and we should
be able to reason that, after Kate set the book on the coffee table, the book was
on the coffee table.

Preconditions

We should also be able to infer that before Kate set the book on the table, she
was holding the book and she was near the tablc; we must be able to represent
and reason about the preconditions of actions or events. We need to represent two
preconditions of a person placing an object onto a surface: (1) the person must be
holding the object, and (2) the person must be near the surface.

...and left the living room.
We should be able to infer that after Kate left the living room, she was no longer

in the living room.

Commonsense Law of Inertia

We should also be able to infer that the book was still on the table in the living
room after she left.

When she returned, ...
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We should be able to infer that after Kate returned, the book was probably still on

the table in the living room. That is, unless a person or animal moved the book, or

some natural phenomenon such as an earthquake occurred, the book was where

Kate left it. This property of the commonsense world, that things tend to stay the

same unless affected by some event, is known as the commonsense law of inertia.
But we learn that the book was no longer in the living room:

...the book was gone.

In this case we should be able to infer that someone took the book out of the room
(or a natural phenomenon occurred):

What happened to the book? Someone must have taken it.

Next, we consider the third scenario.

Delayed Effects and Continuous Change

Jamie walks to the kitchen sink, puts the stopper in the drain, turns on the faucet,
and leaves the kitchen.

We have so far seen that it is necessary for us to be able to represent and reason
about the immediate effects of events, such as putting a stopper in a drain and
turning on a faucet. Thus, we should be able to infer that the stopper is in the
drain, the faucet is running, and the sink is filling. In addition, we should be able
to represent and reason about the delayed effects of events:

What will happen as a result? The water level will increase until it reaches the rim
of the sink. Then the water will start spilling onto the floor.

Making these inferences involves representing and reasoning about continuous
change. We should be able to represent that if a faucet is turned on with the
stopper in place, then the water level will increase with time.

Release from the Commonsense Law of Inertia

Recall that the commonsense law of inertia states that things stay the same unless
affected by some event. But notice that the water level continues to change after
the event of turning on the faucet. Therefore we must be able to represent that,
after the faucet is turned on, the water level is released from the commonsense
law of inertia and is permitted to vary. We must further represent that the water
level is proportional to the time elapsed since the faucet was turned on.
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Triggered Events

In order to reason about this scenario, we must also be able to represent and reason
about triggered events. The water level does not increase endlessly. When a sink is
filling and the water reaches the rim of the sink, the sink will overflow. We should
be able to represent and reason that when a sink overflows, the water starts spilling
onto the floor and the water level stops increasing. At this point, the water level
will again be subject to the commonsense law of inertia.

Consider the fourth scenario.

Default Reasoning

When we perform commonsense reasoning, we rarely have complete information.
We are unlikely to know the state of affairs down to the last detail, everything
about the events that are occurring, or everything about the way the world works.
Therefore, when we perform commonsense reasoning, we must jump to conclu-
sions. Yet, if new information becomes available that invalidates those conclusions,
then we must also be able to take them back. Reasoning in which we reach conclu-
sions and retract those conclusions when warranted is known as default reasoning.
In the fourth scenario,

Kimberly turns on a fan. What will happen? The fan will start turning.

How can the method for commonsense reasoning conclude that the fan will start
turning? In fact, the fan might not start turning if the fan is broken, if the fan is not
pluggedin, and so on. The world is filled with exceptions such as these. The method
must be able to assume that things are as normal and conclude that the fan will

start turning. If it is later learned that the fan is not plugged in, then the conclusion
should be revised:

What if the fan is not plugged in? Then the fan will not start turning.

Two special cases of default reasoning are required for reasoning about events.
First, although we are told that a fan is turned on, we do not know what other
events occur. We do not know whether, for example, some other person is simul-
taneously attempting to turn off the fan. The method for commonsense reasoning
must assume that this is not the case; that is, it must be assumed by default that
unexpected events do not occur.

Second, although we know that a fan will start turning after it is turned
on, we do not know what the other results of turning on the fan might be.
Perhaps turning on the fan also unlocks a nearby door. The method for common-
sense reasoning must assume by default that events do not have unexpected
effects.

Next, we consider the fifth scenario.
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Mental States

A hungry cat saw some food on a nearby table.

We must represent the piece of commonsense knowledge that if an agent has an
unsatisfied goal, then the agent will form a plan to achieve that goal. In this case,
if an animal has the goal to eat and has the belief that food is nearby, then the
animal will form the plan to go to the food and eat it.

The cat jumped onto a chair near the table.

We must further represent that agents act on their plans. We should be able to
infer that jumping onto a chair is part of the cat’s plan to eat.

What was the cat about to do? The cat was about to jump from the chair onto the
table in order to eat the food.

Based on the knowledge that agents act on their plans, we should be able to infer
that the cat will complete the plan. After the cat eats the food, we should infer
that the plan is completed. We may also then infer that the goal to eat is satisfied.

Reasoning Types

A method for automated commonsense reasoning must support several types of
commonsense reasoning. The first is temporal projection or prediction, in which
we start with an initial state and some events and then reason about the state that
results from the events. The examples of Lisa walking into the kitchen, the kitchen
sink overflowing, and the cat eating the food all involve temporal projection. The
second type of reasoning is abduction, in which we start with an initial state and a
final state and then reason about the events that lead from the initial state to the
final state. The example of Kate's book disappearing involves abduction. The third
type of reasoning is postdiction, in which we start with some events that lead to a
state and then reason about the state prior to the events. If we are told that Lisa
picked up a newspaper and was then holding the newspaper, we may reason that
Lisa was not previously holding the newspaper.

1.2.1 Summary
Any method for automated commonsense reasoning must address the following.

Representation. The method must represent scenarios in the world and must
represent commonsense knowledge about the world.

Commonsense entities. The method must represent objects, agents, time-
varying properties, events, and time.
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Commonsense domains. The method must represent and reason about time,
space, and mental states. The method must deal with object identity.

Commonsense phenomena. The method must address the commonsense law
of inertia, release from the commonsense law of inertia, concurrent events
with cumulative and canceling effects, context-sensitive effects, contin-
uous change, delayed effects, indirect effects, nondeterministic effects,
preconditions, and triggered events.

Reasoning. The method must specify processes for reasoning using represen-
tations of scenarios and representations of commonsense knowledge. The
method must support default reasoning, temporal projection, abduction,
and postdiction.

Brief History of Commonsense Reasoning

Artificial intelligence researchers have been trying to invent ways of automating
commonsense reasoning since the inception of the field in 1956. Work on com-
monsense reasoning can be divided into two categories: logical and nonlogical.
Logical methods are reviewed in detail in Chapter 15, and nonlogical methods
are reviewed in Chapter 16. In this section, we present a brief history of work on
logical and nonlogical methods.

Logical Methods

In 1958, John McCarthy proposed using logic to give computer programs common
sense. In the 1960s, he and Patrick J. Hayes introduced the situation calculus, a
logical formalism for commonsense reasoning. In the 1970s, the crucial role of
defaults in commonsense reasoning was recognized, and researchers began to for-
malize methods for default reasoning. Important formalisms for default reasoning
such as circumscription and default logic appeared around 1980.

Taking their inspiration from the situation calculus, Robert Kowalski and
Marek Sergot introduced the event calculus in 1986. In the late 1980s, several
other logical formalisms began to appear, including the features and fluents
framework, action languages, and the fluent calculus.

Since the early 1990s, logic-based commonsense reasoning has been the
focus of intense activity. Researchers proposed a number of benchmark prob-
lems designed to expose issues of commonsense reasoning not yet addressed by
the available formalisms. This led to a considerable evolution of the formalisms.

In this book, we use a version of the event calculus developed in the 1990s by
Murray Shanahan and Rob Miller and a version that is equivalent for integer time,
called the discrete event calculus. The event calculus has benefited enormously
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Table 1.1 Benchmark problems leading to the addition of features to the event calculus

Benchmark problem

Commonsense
phenomena

Event calculus
features added

Bus ride scenario
(Kartha, 1994)
Chessboard scenario

due to Raymond Reiter
(Kartha and Lifschitz, 1994)

Commuter scenario
(Shanahan, 1999a)
Kitchen sink scenario
(Shanahan, 1990)

Russian turkey scenario

(Sandewall, 1994)
Soup bowl scenario

(Gelfond, Lifschitz, and

Rabinov, 1991)
Stolen car scenario
(Kautz, 1986)

Stuffy room scenario

(Ginsberg and Smith, 1988a)

Thielscher’s circuit
(Thielscher, 1996)

Walking turkey scenario
due to Matthew L. Ginsberg

(Baker, 1991)

Yale shooting scenario
(Hanks and McDermott, 1987)

Nondeterministic
effects
Nondeterministic
effects

Compound events

Continuous change,
triggered events

Nondeterministic
effects
Concurrent events

Explanation

Indirect effects

Indirect effects

Indirect effects

Commonsense
law of inertia

Disjunctive event axioms

(Shanahan, 1997b)
Determining fluents
(Shanahan, 1997b)

Three-argument Happens

(Shanahan, 1999a)
Trajectory axioms,
trigger axioms
(Shanahan, 1990)
Release axioms
(Shanahan, 1997b)

Cumulative effect axioms
(R. Miller and Shanahan, 1999)

Abduction
(Shanahan, 1997b)
State constraints,

primitive and derived fluents

(Shanahan, 1997b)
Causal constraints
(Shanahan, 1999b)
Effect constraints

(Shanahan, 1997b)

Circumscription,
forced separation
(Shanahan, 1997b)

from the investigation of benchmark problems. Table 1.1 shows some of the
benchmark problems that led to the addition of features to the event calculus.

Nonlogical Methods

Starting in the early 1970s, Roger Schank, Robert Abelson, and their colleagues
and students developed a number of knowledge structures and inference meth-
ods for use in natural language understanding systems. A notation known as
conceptual dependency (CD) was proposed for representing actions and states.
Knowledge structures called scripts were introduced to represent stereotypical
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activities such as attending a birthday party. A taxonomy of human plans and goals
was developed, and representations for the themes of stories were introduced.

Starting in the late 1970s, researchers working in the area of qualitative rea-
soning developed techniques for automated reasoning about physical mechanisms
such as bathtubs, clocks, electrical circuits, pressure regulators, sliding blocks, and
water tanks. Physical devices are described using a modeling language, and simu-
lation algorithms are used to perform reasoning. These techniques are useful for
commonsense reasoning in the physical domain. Some of the techniques have been
recast in first-order logic.

Beginning in the early 1980s, researchers developed methods for analogical
processing. These methods can be used to find an analogy between a familiar
domain and a novel domain and then to use the analogy to generate candidate
inferences about the novel domain. Analogical processing is not a complete method
for commonsense reasoning, because candidate inferences must still be evaluated
and repaired using other commonsense reasoning techniques.

Probability theory has a long history and is well suited to default reasoning.
Since the late 1980s, some work has been performed on using probabilistic rea-
soning for reasoning about action and change, but this approach is not as well
developed as the logical approach. The logical and probabilistic approaches are
closely related, and the integration of logic and probability theory is an active area
of research.

Starting in the early 1970s, the society of mind theory was developed by
Marvin Minsky and his colleagues and students. This theory views human common
sense as a vast collection of skills involving multiple representation and reasoning
techniques. Unlike most other approaches, this approach places a great emphasis
on procedural representations of knowledge and on the ways that procedures can
monitor and influence one another.

The Event Calculus

The event calculus addresses all the key issues of commonsense reasoning described
in Section 1.2. Using the event calculus we can represent commonsense knowledge,
represent scenarios, and use the knowledge to reason about the scenarios.

Events, Fluents, and Timepoints

The basic notions of the event calculus are as follows. An event represents an
event or action that may occur in the world, such as a person picking up a glass.
We use the words event and action interchangeably. A fluent represents a time-
varying property of the world, such as the location of a physical object. A timepoint
represents an instant of time, such as 9:30 Am Greenwich Mean Time on November
13, 2007. The event calculus uses linear time, in which time is considered to be
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a line, rather than the branching time of the situation calculus, in which time is
considered to be a tree.

An event may occur or happen at a timepoint. A fluent has a truth value at
a timepoint or over a timepoint interval; the possible truth values are true and
false. After an event occurs, the truth values of the fluents may change. We have
commonsense knowledge about the effects of events on fluents. Specifically, we
have knowledge about events that initiate fluents and events that terminate fluents.
For example, we know that the event of picking up a glass initiates the fluent of
holding the glass and that the event of setting down a glass terminates the fluent
of holding the glass. We represent these notions in first-order logic as follows.

HoldsAt(f, t) represents that fluent f is true at timepoint .
Happens(e, t) represents that event e occurs at timepoint t.

Initiates(e, f, t) represents that, if event e occurs at timepoint ¢, then fluent
f will be true after ¢.

Terminates(e, f, t) represents that, if event e occurs at timepoint t, then fluent

f will be false after t.

1.4.2 A Simple Example

Here is a simple example of how the event calculus works. We use a simplified
version of the event calculus, consisting of the following single axiom:

(Happens(e, t;) A Initiates(e, f, t)) A t) <t A (1
—3e, t (Happens(e, t) A t] < t At < t2 A Terminates(e, f, 1)) =
HoldsAt(f, t2)

This axiom states that if an event occurs and the event is known to initiate a
particular fluent, then that fluent will be true from just after the moment the
event occurs, until and including the moment an event occurs that is known to
terminate the fluent.

Now let us see how this axiom can be used to solve a simple common-
sense reasoning problem, using one event and one fluent. The event WakeUp(p)
represents that person p wakes up, and the fluent Awake(p) represents that person
p is awake. Our commonsense knowledge consists of the following.

If a person wakes up, then the person will be awake:
Initiates(e, f, t) < 3p (e = WakeUp(p) A f = Awake(p)) (1.2)
If a person falls asleep, then the person will no longer be awake:

Terminates(e, f,t) < 3p (e = FallAsleep(p) n f = Awake(p)) (1.3)
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Now suppose we have the following scenario. Nathan is not awake at timepoint O:

—HoldsAt(Awake(Nathan), 0) (1.4)

The only known event is that Nathan wakes up at timepoint 1:
Happens(e, t) & e = WakeUp(Nathan) nt = 1 (1.5)

From this commonsense knowledge and scenario, and event calculus axiom (1.1),
we can deduce that Nathan is awake at timepoint 3. That is, we can prove

(1.1) A (1.2) A (1.3) A (1.4) A (1.5) = HoldsAt(Awake(Nathan), 3)

The proof runs as follows. From (1.3) and (1.5), we have —3e, t (Happens(e, t)A
1 <t At < 3 A Terminates(e, Awake(Nathan), t)). From this, (1.1), (1.2), (1.5),
and 1 < 3, we have HoldsAt( Awake(Nathan), 3), as required.

Adding commonsense knowledge and event occurrences to this formalization
requires us to modify (1.2), (1.3), and (1.5). Later, in Sections 2.6 and 2.7, we
show how circumscription allows us to add commonsense knowledge and event
occurrences simply by adding axioms.

Automated Event Calculus Reasoning

In the logic-based approach to commonsense reasoning, knowledge is repre-
sented declaratively as logical formulas rather than procedurally as computer code.
Using a declarative knowledge representation has two main advantages. First, the
same knowledge can be used for different types of commonsense reasoning such
as temporal projection, abduction, and postdiction. If a procedural knowledge
representation is used, knowledge must often be duplicated for each type of com-
monsense reasoning. Second, using a declarative knowledge representation allows
us to use the latest, off-the-shelf, automated, theorem-proving techniques to solve
reasoning problems. If a procedural knowledge representation is used, reasoning
techniques must often be built from scratch or reinvented.

Of course, entailment in first-order logic is undecidable: There is no algorithm
that, given arbitrary formulas of first-order logic ¥ and 7, will eventually respond
“yes” if ¥ entails 7 and “no” if ¥ does not entail m. First-order logic entailment
is only semidecidable: There are algorithms that, given arbitrary formulas of first-
order logic ¥ and 7, will respond “yes” if ¥ entails ; if ¥ does not entail =,
the algorithms may eventually respond “no” or may never terminate. It turns out,
however, that many real-world reasoning problems in the event calculus can be
solved efficiently by computer programs.

Several programs that perform automated reasoning in the event calculus have
been constructed, as listed in Table 1.2. The Discrete Event Calculus Reasoner is
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Table 1.2 Event calculus reasoning programs

Description Technigue Reasoning types

Event calculus planner Abductive logic Abduction

(Shanahan, 2000a, 2000b) programming

Event calculus planner Propositional Abduction

(Shanahan and Witkowski, 2004) satisfiability

Discrete Event Calculus Reasoner Propositional Deduction,

(Mueller, 20044, 2004b) satisfiability abduction,
postdiction,
model finding

Discrete event calculus First-order logic Deduction

theorem prover automated theorem

(Mueller and Sutcliffe, 2005a, 2005b; proving

Sutcliffe and Suttner, 2005)

discussed in detail in Chapter 13. These programs rely on various solvers and
provers, namely, logic programming languages, satisfability (SAT) solvers, and
first-order automated theorem provers. Improving the efficiency of these solvers
and provers is a major focus of activity. As better solvers and provers are developed,
they can be plugged into event calculus reasoning programs.

The SAT approach is particularly effective. A SAT solver takes as input a set
of Boolean variables and a propositional formula over those variables and produces
as output zero or more models or satisfying truth assignments, truth assignments
for the variables such that the formula is true. SAT solvers take a propositional
formula in conjunctive normal form: a conjunction of clauses where each clause is
a disjunction of literals and where each literal is a variable or a negated variable.
In order to use a SAT solver to solve an event calculus problem, formulas of first-
order logic must be transformed into formulas of the propositional calculus. This is
accomplished by restricting the problem to a finite universe. Although entailment
in the propositional calculus is decidable, it is NP-complete, or believed in the worst
case, to take a number of steps that is exponential on the size of the problem. But,
in practice, real-world SAT problems consisting of well over 10,000 variables can
be solved efficiently.

Bibliographic Notes

People have long sought to describe and capture commonsense reasoning.
Logic was developed to characterize valid reasoning (Kneale and Kneale, 1962,
pp. 738-739). The advent of computers led to the field of artificial intelligence
and to a call by McCarthy (1959) to use logic to build computer programs with
common sense. Computer science and artificial intelligence drove the development
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of new logics (Gabbay and Guenthner, 2001, p. vii). Crevier (1993), Russell and
Norvig (2003, pp. 16-27), and McCorduck (2004) provide histories of the field
of artificial intelligence.

Book-length treatments of commonsense reasoning are provided by Hobbs
and Moore (1985), Minsky (1986), E. Davis (1990), Lenat and Guha (1990),
Lifschitz (1990a), Thanassas (1992), and Reiter (2001). Books on the related area
of knowledge representation are by Reichgelt (1991), Baral (2003), and Brachman
and Levesque (2004). Textbooks on artificial intelligence are by Nilsson (1998)
and Russell and Norvig (2003).

The ability to perform commonsense reasoning starts to develop early in life.
Several-month-old infants are able to reason using pieces of commonsense knowl-
edge such as that a moving object must follow an unbroken path over time, an
object cannot pass through another object, the parts of an object move together,
and unsupported objects fall (Baillargeon, 1995; Spelke, Vishton, and von Hofsten,
1995).

Thagard (1996) reviews the basic notions of representations and computa-
tional processes that operate on those representations. Our list of key issues of
commonsense reasoning follows those of other researchers. McCarthy (1984b,
pp. 131-135) presents important aspects of commonsense capability. He considers
reasoning about action and change to be a central aspect, writing that “the most
salient commonsense knowledge concerns situations that change in time as a result
of events” (p. 131). McCarthy also mentions other key aspects: knowledge about
knowledge; knowledge about objects, space, beliefs, goals, intentions, and com-
monsense physics; logical inference; obtaining facts by observation; and default rea-
soning. For E. Davis (1990), the important areas are plausible reasoning, quantities
and measurements, time, space, physics, minds, plans and goals, and society.

The assumptions of logic-based artificial intelligence are elaborated by Nilsson
(1991). Whether logic is the right approach to commonsense reasoning has been
hotly debated (Minsky, 1974, 1986, 1991b; Hayes, 1977; Kolata, 1982; R. C.
Moore, 1982; Israel, 1985; McDermott, 1987; McCarthy and Lifschitz, 1987,
Ginsberg, 1991; Nilsson, 1991; Birnbaum, 1991). The following advantages of
logic have been pointed out:

m Logic can be used to represent any domain (R. C. Moore, 1982, p. 430).

m Via model theory, logic provides an account of the meaning of logical

formulas (Hayes, 1977, pp. 559-561; Nilsson, 1991, pp. 34-40).

m Logic allows the representation of incomplete information (R. C. Moore,
1995, p. 7).

The following alleged disadvantages of logic have been pointed out:

s Logic focuses on deductive reasoning, and not all reasoning is deductive

(McDermott, 1987, pp. 151-152; Birnbaum, 1991, pp. 59, 70-71). But
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note that deduction is not the only type of reasoning that can be performed
with logic; other types of reasoning such as abduction can be performed

(Shanahan, 1997b, pp. 32-33).

m Logic is preoccupied with consistency, and anything can be deduced from
a contradiction (Minsky, 1974, pp. 76-78; Hewitt, 1987, pp. 185-186;
Birnbaum, 1991, p. 63). But note that logics have been developed without
this property, such as paraconsistent logic (Priest, 2002) and active logic
(Elgot-Drapkin and Perlis, 1990; Elgot-Drapkin, Kraus, Miller, Nirkhe, and
Perlis, 1999). Also note that a logical theory can be revised by subtracting
axioms as well as adding them (Hayes, 1979, pp. 54-55; (Israel, 1980,
p. 101); 1985, pp. 436-437). See also the discussion of Bibel and Nicolas
(1989, pp. 18-22).

m Logical reasoning is computationally inefficient (Minsky, 1974, p. 76;
Birnbaum, 1991, p. 72). But note that the efficiency of theorem-proving
systems is constantly being improved (Sutcliffe and Suttner, 2003; Le Berre
and Simon, 2004).

The role of logic in human reasoning has been vigorously debated. Henle (1962),
Braine (1978), Rips (1983, 1994), Braine and O'Brien (1998), and others argue
that humans use a mental logic in which inference rules similar to those of
the natural deduction of formal logic are applied and present experimental evi-
dence supporting this theory. Other researchers disagree. Johnson-Laird (1983,
1993) proposes and presents experimental evidence for a mental models approach
in which humans reason by building, updating, and evaluating models in the
mind.

McCarthy (1963, 1968) and McCarthy and Hayes (1969) introduced the sit-
uation calculus. Kowalski and Sergot (1986) introduced the original event calculus
within the framework of logic programming (Kowalski, 1979). The event calculus
was reformulated in classical first-order logic by Shanahan (1995a, 1996, 1997b,
1999a, 1999b). R. Miller and Shanahan (1999, 2002) introduced several alterna-
tive formulations of the classical logic event calculus. Mueller (2004a) introduced
the discrete event calculus. An introduction to the classical logic event calculus is
provided by Shanahan (1999a). Symposia on logical formalizations of common-
sense reasoning are regularly held (Mcllraith, Peppas, and Thielscher, 2005), as
are conferences on knowledge representation and reasoning (Dubois, Welty, and
Williams, 2004).

Lifschitz (1989) created a list of commonsense reasoning benchmark pro-
blems, following a suggestion by John McCarthy. E. Davis (1990, pp. 4-12)
presents a methodology for formalization of commonsense reasoning based on the
use of benchmark problems. Sandewall (1994) proposes a systematic methodol-
ogy for assessing entailment methods, which we discuss in the Bibliographic Notes
of Chapter 15. McCarthy (1998a) argues that the field of artificial intelligence
needs an equivalent to drosophilae, the fruit flies biologists use to study genetic
mutations because of their short generation time. A list of unsolved benchmark
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problems and a few solved ones is maintained by Leora Morgenstern (Morgenstern
and Miller, 2004).

Conceptual dependency, scripts, plans, goals, and themes are discussed by
Schank and Abelson (1977), Schank and Riesbeck (1981), and Dyer (1983).
Bibliographic notes for nonlogical methods are provided in Chapter 16.

The kitchen sink scenario is from Shanahan (1990; 1997b, pp. 326-329;
1999a, pp. 426-428). This scenario can be traced back to Siklossy and Dreussi
(1973, pp. 426, 429) and Hendrix (1973, pp. 149, 159-167), who used the
example of filling a bucket with water. McDermott (1982, pp. 129-133, 135-138)
used the example of water flowing into a tank, and Hayes (1985, pp. 99-103) used
the example of filling a bath.

The shopping cart example is from Shanahan (1997b, pp. 302-304). The
hungry cat scenario is from Winikoff, Padgham, Harland, and Thangarajah (2002).

The distinction between declarative and procedural (or imperative) knowledge
representation is discussed by McCarthy (1959, pp. 79-80), Winograd (1975),
Hayes (1977), Winston (1977, pp. 390-392), and Genesereth and Nilsson (1987,
pp- 2-4). Winograd (1975, p. 186) and McCarthy (1988, p. 299) suggest that
declarative representations are more flexible. They point out that a fact represented
declaratively can be used for many purposes, even unanticipated ones, whereas a
fact represented procedurally has to be represented differently for each purpose.

The undecidability of first-order logic entailment, satisfiability, and validity
is due to Church (1936/2004) and Turing (1936/2004). The semidecidabil-
ity of first-order logic entailment, unsatisfiability, and validity is due to Godel
(1930/1967). It is useful to keep in mind the following relationships among
entailment, satisfiability, and validity:

m ¥ entails 7 if and only if ¥ A =7 is unsatisfiable.
m ¥ entails 7 if and only if =y v 7 is valid.

m Y entails  if and only if ¥ = 7 is valid.

= ¢ isvalid if and only if =¥ is unsatishable.

Automated theorem proving is treated in detail by Robinson and Voronkov
(2001a, 2001b). SAT solvers are discussed by Du, Gu, and Pardalos (1997).
Automated theorem-proving system competitions (Sutcliffe and Suttner, 2003)
and SAT system competitions (Le Berre and Simon, 2004) are regularly held.
The use of SAT solving for planning was proposed by Kautz and Selman (1992,
1996). The use of SAT solving in the event calculus was introduced by Shanahan
and Witkowski (2004). Runtime statistics for the solution of some event calcu-
lus reasoning problems using SAT are given by Mueller (2003, 2004b, 2004c).
NP-completenessisdiscussed by Garey and Johnson (1979). The NP-completeness
of propositional satisfiability was proved by Cook (1971) and Levin (1973). The
growth in the capabilities of SAT solvers is discussed by Selman, Kautz, and
McAllester (1997), Kautz and Selman (2003), and Dechter (2003, pp. 186-188).
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CHAPTER 2

2.1

2.1.7

The Event Calculus

In this chapter, we present the foundations of the event calculus, a formalism
for commonsense reasoning. We review first-order logic and describe some nota-
tional conventions. We discuss the basics of the event calculus and we present
axiomatizations of the event calculus (EC) and the discrete event calculus (DEC).
We discuss how to choose which axiomatization to use. We present reification,
which is needed to represent statements about events and fluents in first-order
logic. We discuss unique names axioms, conditions, circumscription, and domain
descriptions, and we describe the types of reasoning that can be performed using
the event calculus.

First-Order Logic

The event calculus is based on first-order logic, which consists of a syntax, seman-
tics, and proof theory. The version of first-order logic used in this book is described
in detail in Appendix A. Here we provide a summary.

Syntax of First-Order Logic

A language £ of first-order logic is specified by disjoint sets of predicate symbols,
function symbols, constants, and variables. Each predicate and function symbol
has an arity. If the arity of a symbol is n, then we say that the symbol is n-ary.

A term is a constant, a variable, or, recursively, ¢(11,..., 7.), where ¢ is an
n-ary function symbol and 7y, ..., 7, are terms.
An atom is p(11,..., Ta), where p is an n-ary predicate symbol and 11,..., 14

are terms, or 7] = 12, where 7] and > are terms.

19
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A formula is an atom, or, recursively, —a, a A B, a V B, @ = B, o & £,
Jvy,..., v, or Yvy,..., v, where @ and B are formulas and vy,..., v, are
variables.

The scope of the quantifier Jv in the formula v« is @, and the scope of Vv
in Vv o is @. An occurrence of a variable in a formula that is within the scope of
a quantifier is bound; otherwise, it is free. A sentence is a formula that contains no
free occurrences of variables.

For example, suppose we specify a language with the predicate symbols Walk
(arity 3), Happy (arity 1), and Sad (arity 1); the function symbol Cos (arity 1); the
constants Lisa, Kitchen, LivingRoom, 0, and 1; and the variable a. Then 0, Cos(0),
and Cos(Cos(0)) are terms; Walk(Lisa, Kitchen, LivingRoom) and Cos(0) = 1 are
atoms; and Happy(a) = —Sad(a) is a formula. The following are sentences:

Walk(Lisa, Kitchen, LivingRoom)
Cos(0) =1
Ya (Happy(a) = —Sad(a))

Semantics of First-Order Logic

The semantics of a language £ of first-order logic defines the meaning of a formula
of L asthe set of models of the formula or the set of structures in which the formula
is true. For example, one model of the formula P(A, B) A P(B, C) is the structure
consisting of the following:

m the domain {A, B, C}

m the mapping from constants to elements of the domain A — A, B = B,
Cr— C

= the mapping from predicate symbols to relations P+ {{A, B), (B, C))}

The set {{A,B), (B, C)} is called the extension of P in the structure. If a formula =
is true in all models of a formula ¥/, then we write ¥ |= 7 and say that ¥ entails .

Proof Theory

The proof theory defines a proof of a formula 7 given a formula ¥ as a sequence of
formulas such that

m The last formula is .

m Fach formula is either a logical axiom, v, or a formula derived from
previous formulas using an inference rule.
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An example of an inference rule is modus ponens, which states that, from « and
a = B, we may derive 8. If a proof of a formula 7, given a formula ¢ exists, then
we write ¥ - 7 and say that y is provable from =.

Many-Sorted First-Order Logic

The event calculus uses an extension of first-order logic called many-sorted first-
order logic. We specify a set of sorts, and for each sort, a possibly empty set of
subsorts. We specify the sort of each constant, variable, and function symbol and
the sort of each argument position of each predicate and function symbol. Every
term, atom, formula, and sentence must satisfy the sort specifications.

For example, suppose we specify the following. We have agent, person, and
room sorts. The person sort is a subsort of the agent sort. The sort of Lisa is the
person sort, and the sorts of Kitchen and LivingRoom are the room sort. The sort
of the first argument position of Walk is the agent sort, and the sorts of the second
and third argument positions of Walk are the room sort. Then the following is a
formula and sentence:

Walk(Lisa, Kitchen, LivingRoom)

We assume a real number sort and appropriate functions and predicates such as

Plus (4) and LessThan (<). See Appendix A for details.

Notational Conventions

In this book we use several notational conventions.

Case Conventions

Predicate symbols, function symbols, and nonnumeric constants start with an
uppercase letter. Examples of predicate symbols are Walk and InRoom, exam-
ples of function symbols are Distance and Cos, and examples of constants are Lisa,
Nathan, —4, 1, and 7. Variables start with a lowercase letter. Examples of variables
area, b, by, and b>.

Implicit Universal Quantification

Free variables are implicitly universally quantified. For example, P(x,y,z) A
Ju R(u, x) is an abbreviation for ¥x, v,z (P(x, v, z) A 3uR(u, x)).

Conjunctions and Disjunctions

The expression A\!_; I';stands for 'y A--- AT, and \/]_; I'; stands for '} v - - v T,.



22

CHAPTER 2 The Event Calculus

2.2

2.2.7

Running Exclusive OR (XOR) Notation

The expression @] V az V @3 means that exactly one of «a), a2, and a3 is true,
which is equivalent neither to (@] V @2) Va3 nor to a V (a2 Va3). In general,
@] V -+ Vay, stands for the conjunction of &) V -+ V @, and o; = —a; for every
i,je{l,...,n}such thati # j. Thus, @) V @3 V a3 stands for

(o) Vaz vVasz) A

(a1 = —az) A (a1 = —a3) A
(a2 = —a1) A (a2 = —a3) A
(@3 = —a1) A (a3 = —az)

Definitions of Abbreviations

. def . L. . def
The notation '} = I'; defines I'j asan abbreviation for I'>. Thatis, I') = I'; means
that all occurrences of the expression I'} are to be replaced with the expression I'5.

Event Calculus Basics

This section discusses the sorts and predicates of the event calculus, and the
possible states of a fluent.

Event Calculus Sorts

The event calculus uses the following sorts:

m an event sort, with variables e, ej, ez, ...
n a fluent sort, with variables f, f1, f5, ...

m a timepoint sort, which is a subsort of the real number sort, with variables
t, tl, t.j_: s

2.2.2 Event Calculus Predicates

The predicates of the event calculus are as follows.

Happens(e, t): Event e happens or occurs at timepoint ¢.

HoldsAt(f, t): Fluent f is true at timepoint t. If =HoldsAt(f,t), then we say
that f is false at t.
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Released At(f, t): Fluent f is released from the commonsense law of inertia at
timepoint t. [f =ReleasedAt(f, t), then we say that f is not released from the
commonsense law of inertia at t. The commonsense law of inertia states
that a fluent’s truth value persists unless the fluent is affected by an event.
When a fluent is released from this law, its truth value can fluctuate. We
discuss the commonsense law of inertia in detail in Chapter 5.

Initiates(e, f, t): Event e initiates fluent f at timepoint ¢. If e occurs at t, then
f will be true and not released from the commonsense law of inertia after
t. If Happens(e, t) and Initiates(e, f, t), then we say that f is initiated by an
event e that occurs at .

Terminates(e, f, t): Event e terminates fluent f at timepoint t. If e occurs at t,
then f will be false and not released from the commonsense law of iner-
tia after t. If Happens(e,t) and Terminates(e,f,t), then we say that f is
terminated by an event e that occurs at ¢.

Releases(e, f, t): Event e releases fluent f at timepoint . If e occurs at t, then
fluent f will be released from the commonsense law of inertia after t. If
Happens(e, t) and Releases(e, f, t), then we say that f is released by an event
e that occurs at t.

Trajectory(fi, t1, f>,t2): If fluent f] is initiated by an event that occurs at
timepoint ¢, and t; > 0, then fluent f> will be true at timepoint t] + t5.

AntiTrajectory(f1, t1, f>, t2): If fluent f] is terminated by an event that occurs at
timepoint t;, and t; > 0, then fluent f> will be true at timepoint t; + t;.

2.2.3 States of a Fluent

In any given model, a fluent f can be in one of the following four states at a
timepoint ¢:

true and released HoldsAt(f, t) A Released At(f, t)

true and not released HoldsAt(f, t) A —Released At(f, t)
false and released —HoldsAt(f, t) A ReleasedAt(f, t)

false and not released —HoldsAt(f,t) A —Released At(f, t)

2.3 Event Calculus Axiomatizations

This section presents and describes two axiomatizations: EC and DEC. We give
a short explanation of each axiom or definition as it is presented. Much of the
remainder of the book is devoted to exploring the behavior and uses of these
axioms and definitions in detail.
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2.3.1 The (Continuous) Event Calculus

EC consists of 17 axioms and definitions. We divide them into several groups.

Clipped, Declipped, Stopped, and Started

Some abbreviations relating to the initiation and termination of fluents are

defined.
DEFINITION A fluent is clipped between timepoints t; and 7 if and only if the fluent is
EC1 terminated by some event that occurs at or after t; and before t;.

Clipped(t1, f, t2) o Je, t (Happens(e, t) A t) < t < t2 A Terminates(e, f, t))

DEFINITION A fluent is declipped between timepoints t; and t; if and only if the fluent is
ECz initiated by some event that occurs at or after t; and before ¢;.

Declipped(ty,f,t2) o Je, t (Happens(e, t) A t] <t < tz A Initiates(e, f, t))

DEFINITION A fluent is stopped between timepoints t; and t7 if and only if the fluent is
EC3 terminated by some event that occurs after t; and before 15.

Stoppedin(t, f, t2) & Je, t (Happens(e, t) A t] < t < t2 A Terminates(e, f, t))

DEFINITION A fluent is started between timepoints t; and t; if and only if the fluent is
EC4 initiated by some event that occurs after t; and before t5.

StartedIn(t), f, t2) dg‘ Je,t (Happens(e, t) A t) <t <ty A Initiates(e, f, t))

Trajectory and AntiTrajectory

The behavior of trajectories is defined.

AXIOM If Trajectory(fi,t1,f2,t2), 0 < t2, fi is initiated by some event that occurs at
EC5 t, and f] is not stopped between t| and t; + t3, then f> is true at 1} + t5.

(Happens(e, t1) A Initiates(e, fi, 11) A0 < 12 A
Trajectory(f1, 11, f2, ©2) A =StoppedIn(11, f1, 11 + 12)) =
HoldsAt(f>, t1 + t2)
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AXIOM If AntiTrajectory(fi, t1,f2,t2), 0 < t2, f1 is terminated by some event that
EC6 occurs at t1, and f is not started between t; and t| + t2, then f> is true at
t + 2.

(Happens(e, t) A Terminates(e, f1,1;) A0 < 15 A
AntiTrajectory(fi, t1, o, t2) A =StartedIn(t1,f1, t) + t2)) =
HOIdSAtUz, t + tz]

Inertia of HoldsAt

The commonsense law of inertia is enforced for the truth values of fluents.

DEFINITION A fluent persists between timepoints t] and ¢; if and only if the fluent is not
EC7 released from the commonsense law of inertia at any timepoint after t; and at
or before t>.

PersistsBetween(t,, f, t2) déf =3t (Released At(f,t) nt) <t < 17)

DEFINITION A fluent is released between timepoints t; (inclusive) and ¢; if and only if the
EC8 fluent is released by some event that occurs at or after t; and before t>.

ReleasedBetween(ty, f, t2) o Je, t (Happens(e, t) A t) <t <t A
Releases(e, f, t))

AXIOM If a fluent is true at timepoint ¢; and the fluent persists and is not clipped
ECS between t; and some later timepoint 2, then the fluent is true at t>.

(HoldsAt(f,t1) A t1 < ta A PersistsBetween(ty, f, t2) A

—Clipped(ty, f, t2)) = HoldsAt( f, t2)

AXIOM If a fluent is false at timepoint t; and the fluent persists and is not declipped
EC10 between t; and some later timepoint t3, then the fluent is false at 7.

(—=HoldsAt(f, t|) A t; < tz A PersistsBetween(t1, f, t2) A
—Declipped(t), f, t2)) = —HoldsAt(f, t2)

Inertia of ReleasedAt

A form of inertia is also enforced for Released At.
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AXIOM
EC11

AXIOM
EC12

DEFINITION

EC13

AXIOM
EC14

AXIOM
EC15

If a fluent is released from the commonsense law of inertia at timepoint t; and
the fluent is neither clipped nor declipped between ¢} and some later timepoint
t>, then the fluent is released from the commonsense law of inertia at t>.

(ReleasedAt(f,t)) A t1 < t2 A =Clipped(t), f, t2) A =Declipped(t),f,12)) =
Released At(f, t2)

If a fluent is not released from the commonsense law of inertia at timepoint
and the fluent is not released between t; (inclusive) and some later timepoint
t>, then the fluent is not released from the commonsense law of inertia at 5.

(=Released At(f, 1) At} < t; A =ReleasedBetween(t, f, t2)) =
—Released At(f, )

Influence of Events on Fluents

Event occurrences influence the states of fluents.

A fluent is released between timepoints ¢} (not inclusive) and t> if and only if
the fluent is released by some event that occurs after t; and before t>.

ReleasedIn(ty, f, t2) & Je, t (Happens(e, t) A t] <t < t> A Releases(e, f, t))

If a fluent is initiated by some event that occurs at timepoint t] and the fluent is
neither stopped nor released between t| (notinclusive) and some later timepoint
t, then the fluent is true at t;.

(Happens(e, t1) A Initiates(e,f, t]) A t] < 12 A
=StoppedIn(t, f, t2) A =ReleasedIn(t|, f, t2)) =
HoldsAt( f, t2)

If a fluent is terminated by some event that occurs at timepoint #; and the
fluent is neither started nor released between t] (not inclusive) and some later
timepoint t», then the fluent is false at 5.

(Happens(e, t)) A Terminates(e,f, 1)) A1) < 12 A
=StartedIn(t),f, t2) A =ReleasedIn(t,f,12)) =
—HoldsAt(f, t7)
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AXIOM If a fluent is released by some event that occurs at timepoint t] and the fluent is
EC16 neither stopped nor started between t; and some later timepoint t2, then the
fluent is released from the commonsense law of inertia at 5.

(Happens(e, t1) A Releases(e, f,t1) At < t2 A
—StoppedIn(ty, f, t2) A =StartedIn(ty, f, ) =
Released At(f, t2)

AXIOM If a fluentisinitiated or terminated by some event that occurs at timepoint t; and
EC17 the fluent is not released between t (not inclusive) and some later timepoint
t2, then the fluent is not released from the commonsense law of inertia at t>.
(Happens(e, t1) A (Initiates(e, f, t1) v Terminates(e, f, 1)) A
t) < tz A =ReleasedIn(t), f, 7)) =
—ReleasedAt(f, t>)

We use EC to mean the conjunction of the event calculus axioms ECS5, EC6,
EC9, ECI10, EC11, EC12, EC14, EC15, ECI16, and EC17. The definitions EC1,
EC2, EC3, EC4, EC7, EC8, and EC13 are incorporated into EC.

Note that we distinguish between definitions and axioms. ECI1, for example,
is called a definition and not an axiom because Clipped is not a predicate symbol
of the first-order language. EC1 merely defines Clipped(t), f, t2) as an abbreviation
for e, t (Happens(e, t) At} <t < t» A Terminates(e, f,t)). An axiomatization that
supports event occurrences with duration is presented in Appendix C.

2.3.2 The Discrete Event Calculus

DEC restricts the timepoint sort to the integers. It consists of 12 axioms and

definitions.
Stopped and Started
The definitions of Stoppedin and StartedIn are the same as in EC.
DEFINITION StoppedIn(ty, f, t2) o Je, t (Happens(e, t) Aty < t < t2 ATerminates(e, f, t))
DEC1
DEFINITION StartedIn(ty, f, t2) o Je, t (Happens(e, t) A t) < t < t A Initiates(e, f, 1))
DEC2

Trajectory and AntiTrajectory

The axioms for trajectories are the same as in EC.
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AXIOM
DEC3

AXIOM
DEC4

AXIOM
DECS

AXIOM
DEC6H

(Happens(e, t1) A Initiates(e, fi, 1)) A0 < t2 A

Trajectory(fi, t1, f2, t2) A —~StoppedIn(ty, fi, t1 + 2)) =
HozdSAt(fz, t) +12)

(Happens(e, t1) A Terminates(e,f, 1) A0 <t A
AntiTrajectory(fy, 11, f2, t2) A =StartedIn(t), fi, t) + 12)) =
HOIdSAI(fz, t + 12)

Inertia of HoldsAt

The commonsense law of inertia is enforced for HoldsAt.

If a fluentis true at timepoint ¢, the fluentis not released from the commonsense
law of inertia at t + 1, and the fluent is not terminated by any event that occurs
at t, then the fluentis true atr + 1.

(HoldsAt(f, t) A —Released At(f,t + 1) A
—3e (Happens(e, t) A Terminates(e, f,t))) =
HoldsAt(f,t 4+ 1)

If a fluent is false at timepoint ¢, the fluent is not released from the common-
sense law of inertia at t + 1, and the fluent is not initiated by any event that
occurs at t, then the fluent is falseatt + 1.

(—=HoldsAt(f, t) A =Released At(f,t + 1) A
—3e (Happens(e, t) A Initiates(e, f, t))) =
=HoldsAt(f,t + 1)

Inertia of ReleasedAt

Inertia is enforced for Released At.
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AXIOM If a fluent is released from the commonsense law of inertia at timepoint t and
DEC7 the fluent is neither initiated nor terminated by any event that occurs at ¢, then
the fluent is released from the commonsense law of inertia at ¢t + 1.

(Released At(f, t) A
—3Je (Happens(e, t) A (Initiates(e, f, t) v Terminates(e, f, t)))) =
ReleasedAt(f,t + 1)

AXIOM If a fluent is not released from the commonsense law of inertia at timepoint ¢
DEC8 and the fluent is not released by any event that occurs at t, then the fluent is
not released from the commonsense law of inertia att + 1.

(—ReleasedAt(f, t) A —=3e (Happens(e, t) A Releases(e, f, t))) =
—Released At(f,t + 1)

Influence of Events on Fluents

Event occurrences influence the states of fluents.

AXIOM If a fluent is initiated by some event that occurs at timepoint ¢, then the fluent
DEC9 istrueatt+ 1.

(Happens(e, t) A Initiates(e, f, 1)) = HoldsAt(f,t + 1)

AXIOM If a fluent is terminated by some event that occurs at timepoint ¢, then the
DEC10 fluent is false at t + 1.

(Happens(e, t) A Terminates(e, f, t)) = —HoldsAt(f,t + 1)
AXIOM If a fluent is released by some event that occurs at timepoint ¢, then the fluent

DECT1 is released from the commonsense law of inertiaat ¢t + 1.

(Happens(e, t) A Releases(e, f,t)) = ReleasedAt(f,t+ 1)

AXIOM If a fluent is initiated or terminated by some event that occurs at timepoint ¢,
DEC12 then the fluent is not released from the commonsense law of inertiaat t 4+ 1.

(Happens(e, t) A (Initiates(e, f, t) v Terminates(e, f, t))) =
=ReleasedAt(f,t + 1)
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2.3.3

2.4

We use DEC to mean the conjunction of the discrete event calculus axioms
DEC3 through DEC12. The definitions DEC1 and DEC2 are incorporated into
DEC. DEC is logically equivalent to EC if we restrict the timepoint sort to the
integers. A proof of the equivalence of DEC and EC for integer time is provided
in Appendix B.

Choosing between the Event Calculus and the Discrete
Event Calculus

In this book we freely alternate between EC and DEC. We offer the following
guidance for choosing between EC and DEC when we are attempting to solve a
given commonsense reasoning problem:

m DEC can be used in most cases (as can EC).
m Ifinteger time is sufficient to model the problem, then DEC can be used.

s [f continuous time is required to model the problem, then EC must be
used.

m If continuous change is being modeled, then EC must be used, although
DEC can be used to model the discrete version of continuous change known
as gradual change. For details, see Chapter 7.

m If the truth values of fluents are to be determined at every timepoint in
{0,1,2,...,n} for some n = 0, then it is convenient to use DEC, which
proceeds timepoint by timepoint except in the case of gradual change.

m If the truth values of fluents are to be determined only at a few timepoints
in {0,1,2,...,n}, then it is convenient to use EC, which facilitates the
application of the commonsense law of inertia to a span of timepoints.

It should be pointed out that the discrete event calculus restricts the timepoint
sort only to the integers. Other sorts are not restricted in this fashion. Notably,
the real number sort may be used in DEC (but not in the Discrete Event Calculus
Reasoner implementation of DEC).

Reification

In first-order logic, we express the atemporal proposition that Nathan is in the
living room using an atom such as

InRoom(Nathan, LivingRoom)

In the event calculus, we wish to write a temporal proposition, such as

Holds(InRoom(Nathan, LivingRoom), 1) 2.1)
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But for (2.1) to be a formula of first-order logic, InRoom(Nathan, LivingRoom)
must be a term and not an atom.

We therefore use the technique of reification, which in general consists of
making a formula of a first-order language £, into a term of another first-order
language £5. We make atoms of £ into terms of £3. We treat a predicate symbol
in £ such as I[nRoom as a function symbol in £5 whose sort is fluent. Then in £5,
InRoom(Nathan, LivingRoom) is a term.

Similarly we would like to represent temporal propositions involving events
such as

Happens(PickUp(Nathan, Glass), 1)

We treat PickUp as a function symbol whose sort is event. Then PickUp
(Nathan, Glass) is a term.

DEFINITION A fluent term is a term whose sort is fluent, an event term is a term whose
2.1 sort is event, and a timepoint term is a term whose sort is timepoint.

2.4.17 Unique Names Axioms

Consider the following event terms:

PickUp(Nathan, Glass)
SetDown(Ryan, Bowl )

Nothing says that these do not denote the same event. But we would like them to
denote distinct events, because PickUp and SetDown represent different types of
actions. Further, consider the following event terms:

PickUp(Nathan, Glass1)
PickUp(Nathan, Glass2)

Again, nothing says that these do not denote the same event. In fact, they might
denote the same event if Glassl and Glass2 denote the same physical object.

We formalize our intuitions about when fluent and event terms denote dis-
tinct objects using unique names axioms. These are defined using the following

U notation.
DEFINITION If ¢1,..., ¢ are function symbols, then Ulg,, ..., ¢;] is an abbreviation for
22 the conjunction of the formulas
¢i'(x11" ‘rxm] 72 ¢}(yl. “:yﬂ]
where m is the arity of ¢;, n is the arity of ¢;, and x1,...,x,,, and yy,..., ¥,

are distinct variables such that the sort of x; is the sort of the [th argument
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DEFINITION
2.3

position of ¢; and the sort of y; is the sort of the [th argument position of ¢;,
foreach 1 < i <j <k, and the conjunction of the formulas

Bi(x1, .- xm) = diV1, -, Ym) 2 XI=YIA - AXip = Ym
wherem is the arity of ¢; and x1, ..., x,n, andyy, ..., ¥, aredistinct variables

such that the sort of x; and y; is the sort of the Ith argument position of ¢;, for
eachl <i < k.

If ¢1, ..., ¢, are function symbols, then Ul¢y,..., ¢,] is a unique names
axiom.

2.5 Conditions

DEFINITION
2.4

DEFINITION
2.5

2.6

We use conditions within many types of event calculus formulas such as action
precondition axioms, effect axioms, state constraints, and trigger axioms.

If 7y and 2 are terms, then 1) < 12, 1) < 12, 7] = 72, T] = T2, T] > 72, and
7] # T2 are comparisons.

A condition is defined inductively as follows:

m A comparison is a condition.

m If Bis a fluent term and 1 is a timepoint term, then HoldsAt(8, t) and
—HoldsAt(8, t) are conditions.

m If 1 and y> are conditions, then y1 A y2 and y; v y2 are conditions.
m [If vis avariable and y is a condition, then 3v y is a condition.
m Nothing else is a condition.

(Inductive definitions are explained in Appendix A.)

Circumscription

In the event calculus, we use logical formulas such as the following to describe the
effects of events and the events that occur:

Initiates(SwitchOn, LightOn, t) (2.2)
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Terminates(SwitchOff, LightOn, t) (2.3)
Happens(SwitchOn, 3) 2.4)

But these formulas say nothing about which effects events do not have and about
which events do not occur. For example, the following could also be the case:

Initiates(SwitchOn, WaterBoiling, t) (2.5)
Happens(SwitchOff, 6) (2.6)

As mentioned in Chapter 1, we must be able to assume by default that there
are no such unexpected effects and that no such unexpected events occur. To
do this, the event calculus uses a technique introduced by John McCarthy called
circumscription. Specifically, the event calculus uses circumscription to minimize
the extension of predicates such as Happens, Initiates, and Terminates.

The circumscription of Initiates in (2.2), written CIRC[(2.2); Initiates], is

(e = SwitchOn A f = LightOn) & Initiates(e, f, t) 2.7)
CIRC[(2.3); Terminates) is
(e = SwitchOff A f = LightOn) & Terminates(e, f, ) (2.8)
CIRC[(2.4); Happens] is
(e = SwitchOn A t = 3) & Happens(e, t) (2.9)

A formal definition of circumscription is provided in Appendix A.

Nonmonotonic Reasoning

First-order logic entailment is monotonic: If ¢ = m, then ¥ A ¢’ = 7 for every
¥'; also, if ¥ = m, then ¥ A ¢' F 7 for every ¥'. Circumscription allows us to
perform nonmonotonic reasoning: If the circumscription of ¥ entails 7, then it is
not necessarily the case that the circumscription of ¥ A ¥ entails 7.

Suppose that the only known event occurrence is given by (2.4). Then from
(2.7), (2.8), (2.9), and other appropriate axioms, we can conclude that the light
is on at timepoint /:

HoldsAt(LightOn, 7)

Now suppose that, in addition to (2.4), the event (2.6) is known to occur. The
circumscription CIRC[(2.4) A (2.6); Happens] is

(e = SwitchOn A t = 3) Vv (e = SwitchOff A t = 6) & Happens(e, t)

From this, (2.7), and (2.8), we can no longer conclude that the light is on at
timepoint 7. In fact, we can conclude that the light is not on at that timepoint.
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2.6.1 Computing Circumscription

In general, computing circumscription is difficult. In many cases, however, we
can compute circumscription by applying the following two theorems. The
first theorem provides a method for computing circumscription using predicate

completion.
THEOREM Let p be an n-ary predicate symboland A(x,, ..., x,) be a formula whose only
2.1 free variables are x),...,x,. If A(x),...,x,) does not contain p, then the
basic circumscription CIRC[Vx1, ..., x, (A(x1, ..., %0) = p(x1,...,%0)); £]
is equivalent to ¥x1, ..., x, (A(x], ..., %) < p(x1,..., %))
Proof See the proof of Proposition 2 of Lifschitz (1994). | |

Thus, we may compute circumscription of p in a formula by (1) rewriting the
formula in the form

Var, o (AL %) = P31, %))
where A(xy,...,x,) does not contain p, and (2) applying Theorem 2.1.

The second theorem provides a method for computing parallel circumscription
or the circumscription of several predicates. First a definition is required.

DEFINITION A formula A is positive relative to a predicate symbol p if and only if all
26 occurrences of p in A are in the range of an even number of negations in an
equivalent formula obtained by eliminating = and < from A. We eliminate
= from a formula by replacing all instances of (¢ = B) with (-« v B).
We eliminate < from a formula by replacing all instances of (¢ < ) with

((ma v B) A (=B V «)). (See Exercise 3.)

THEOREM Let o1, ..., pn be predicate symbols and A be a formula. If A is positive relative
2.2 to every p;, then the parallel circumscription CIRC[A: p1, ..., ps] is equivalent
to the conjunction of the basic circumscriptions /\_; CIRC[A; p;].

Proof See the proof of Proposition 14 of Lifschitz (1994). |

2.6.2 Example: Circumscription of Happens

Let A = Happens(E1, T1) AnHappens(E2, T2). We compute CIRC[A; Happens) by
rewriting A as the logically equivalent formula

(e=EInt=TI)v (e=E2nt="T2)= Happens(e, t)
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and then applying Theorem 2.1, which gives

(e=Elnt=TI)v (e=E2At=T2) & Happens(e,t)

2.6.3 Example: Circumscription of Initiates

Let ¥ = Initiates(E1(x), F1(x),t) A Initiates(E2(x,v), F2(x,v),t). We compute
CIRCI[Z; Initiates] by rewriting X as

Ix(e=EI(x)Af =Fl(x)) Vv
Ix,y(e = E2(x,y) A f = F2(x,vy)) =
Initiates(e, f, t)

and then applying Theorem 2.1, which gives

Ix(e=EI(x)Af =Fl(x)) Vv
Ix,v(e = E2(x,yv) nf = F2(x,y)) &
Initiates(e, f, t)

Numerous examples of computing circumscription are given in the remainder of

this book.

2./ Domain Descriptions

We solve commonsense reasoning problems by creating an event calculus domain
description. A domain description consists of the following:

m a collection of axioms describing the commonsense domain or domains of
interest, called an axiomatization

m observations of world properties at various times

m a narrative of known world events

In general, we should aim for elaboration-tolerant axiomatizations that can
easily be extended to handle new scenarios or phenomena. John McCarthy defines
a formalism as elaboration tolerant to the degree that it is easy to extend knowl-
edge represented using the formalism. Elaboration-tolerant formalisms allow an
axiomatization to be extended through the addition of new axioms rather than
by performing surgery on existing axioms. Circumscription helps provide elabo-
ration tolerance in the event calculus because it enables the incorporation of new
event effects and occurrences by adding axioms. The types of axioms we may use
to describe commonsense domains are summarized in Table 2.1 and described in
detail in the rest of this book.

Observations consist of HoldsAt and Released At formulas.
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Table 2.1 Event calculus formulas used for commonsense reasoning?

The Event Calculus

Formula Form Defined in
Unigue names axiom [Q] Uley, ..., onl Section 2.4.1
Observation [I] HoldsAt(8, ) or Section 2.7

Released At(B, )
Event occurrence Happens(a, T) Section 2.7
formula [A4]
Temporal ordering T <12, 7] ST2,T] =12, ... Section 2.7
formula [A]
Positive effect axiom [Z] y = Initiates(a, B, T) Section 3.1
Negative effect axiom [Z] y = Terminates(w, 8, 7) Section 3.1
Fluent precondition axiom [X] y = (o, B, 1) Section 3.3.1
Action precondition axiom [W] Happens(a, 1) = ¥ Section 3.3.2
State constraint [W] Y1, ¥l = ¥2.0ry] < 12 Section 3.4
Trigger axiom [A] y = Happens(«, T) Section 4.1
Release axiom [£] y = Releases(a, 8, 1) Section 5.3
Effect constraint [£] y Amy(a, B, 7) = ma(a, B2, 7) Section 6.4
Causal constraint [A5] a(B, ) A Section 6.5

(B, T) A AP, T) =

Happens(g, t)
Trajectory axiom [IT] y = Trajectory(8], 71, B2, 12) Section 7.1
Antitrajectory axiom [I1] y = AntiTrajectory(p, 11, B2, 72) Section 7.2
Event occurrence Happens(a), t) Ay = Section 8.1.2
constraint [W] (—)Happens(az, 1)
Positive cumulative y A Happens(a), T) A -+ A Section 8.2
effect axiom [£] Happens(an, ) =

Initiates(a, B8, 7)
Negative cumulative y A Happens(ay, t) A - A Section 8.2
effect axiom [Z] Happens(ay, ) =

Terminates(a, 8, 1)
Disjunctive event Happens(a, t) = Section 9.2
axiom [As] Happens(ap, ) v -V

Happens(ay, t)
Cancellation axiom [®] y = Ab(..., 1) Section 12.3
Qa, ay, ..., an = event terms; B, By, ..., Pu = fluent terms, y, y1, 2 = conditions, m, 71, ..., mu = Initiates or

Terminates, o = Stopped or Started, r, t|, v, = timepoint terms, ¢y, ..., ¢, = function symbols.
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2.7 Domain Descriptions

I

If g is a fluent term and 7 is a timepoint term, then HoldsAt(8,t) and

Released At( B, T) are observations.

A narrative consists of event occurrence formulas and temporal ordering formulas
that constrain their order.

If « is an event term and 7 is a timepoint term, then Happens(a, t) is an event

occurrence formula.

If 1 and 77 are timepoint terms, then 1) < o, 1) < 12, 1] = 12, T] = 12,

T] > 12, and 1] # 17 are timepoint comparisons.
A temporal ordering formula is a conjunction of timepoint comparisons.

We now define a domain description.

An event calculus domain description is given by

CIRC[Z; Initiates, Terminates, Releases] n
CIRC[A] A Az; Happens] A
CIRC[O; Aby,..., Ab,JAQ AV ATIAT AE

where

m X is a conjunction of positive effect axioms, negative effect axioms, release
axioms, effect constraints, positive cumulative effect axioms, and negative

cumulative effect axioms.

m A is a conjunction of event occurrence formulas and temporal ordering

formulas (the narrative).

m A is a conjunction of trigger axioms, causal constraints, and disjunctive

event axioms.
m O is a conjunction of cancellation axioms containing Aby, ..., Ab,.

m  Q is a conjunction of unique names axioms.

m W is a conjunction of state constraints, action precondition axioms, and

event occurrence constraints.
m [T is a conjunction of trajectory axioms and antitrajectory axioms.
m [ is a conjunction of observations.

m E is a conjunction of event calculus axioms such as EC or DEC.

The axiomatization consists of £, A>, ©, , ¥, I1, and E, the observations con-
sist of I', and the narrative consists of Aj. We write A to mean the conjunction

of Ay and As.
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2.7.1

PROPOSITION
2.1

Event calculus reasoning is nonmonotonic, because event calculus domain
descriptions make use of circumscription.

Example: Sleep

Letusrevisit the example in Section 1.4.2. We use an agent sort with the variable a.
The event WakeUp(a) represents that agent a wakes up, the event FallAsleep(a)
represents that agent a falls asleep, and the fluent Awake(a) represents that agent
a is awake.

Our axiomatization consists of several axioms. We use a positive effect axiom
to represent that, if an agent wakes up, then the agent will be awake:

Initiates(WakeUp(a), Awake(a), t) (2.10)

We use a negative effect axiom to represent that, if an agent falls asleep, then the
agent will no longer be awake:

Terminates(FallAsleep(a), Awake(a), t) (2.11)

We have the following observations and narrative. At timepoint 0, Nathan is not
awake and this fact is subject to the commonsense law of inertia:

—HoldsAt(Awake(Nathan),0) (2.12)
—Released At( Awake(Nathan), 0) (2.13)

We have anarrative consisting of a single event occurrence. Attimepoint 1, Nathan
wakes up:

Happens(WakeUp(Nathan), 1) (2.14)

Given these axioms and the conjunction of axioms EC, we can show that Nathan
will be awake at, say, timepoint 3. The Halmos symbol B is used to indicate the
end of a proof.

Let £ = (2.10) A (2.11), A = (2.14), @& = U[WakeUp, FallAsleep], and
I'=(2.12) A (2.13). Then we have

CIRC[X; Initiates, Terminates, Releases] n CIRC[A; Happens] A
QAT AEC E HoldsAt( Awake(Nathan), 3)
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Proof From CIRC[X; Initiates, Terminates, Releases], Theorem 2.2, and Theorem 2.1,
we have

(Initiates(e, f,t) < Ja (e = WakeUp(a) A f = Awake(a))) A (2.15)

(Terminates(e, f,t) < 3a (e = FallAsleep(a) n f = Awake(a))) A
—Releases(e, f, t)

From CIRC[A; Happens] and Theorem 2.1, we have
Happens(e,t) & (e = WakeUp(Nathan) At = 1) (2.16)

From (2.16) and EC3, we have =Stoppedin(1, Awake(Nathan),3). From
(2.16) and EC13, we have —ReleasedIn(1, Awake(Nathan),3). From (2.16),
(2.15), 1 < 3, —StoppedIn(l, Awake(Nathan),3), —ReleasedIn(1, Awake
(Nathan), 3), and EC14, we have HoldsAt(Awake(Nathan), 3). |

We can also show that Nathan will be awake at timepoint 3 using the
conjunction of axioms DEC.

PROPOSITION let & = (2.10) A (2.11), A = (2.14), Q = U[WakeUp, FallAsleep], and
22 I' =(2.12) A (2.13). Then we have

CIRC[X; Initiates, Terminates, Releases] n CIRC[A; Happens] A
Q AT A DEC = HoldsAt( Awake(Nathan), 3).

Proof From CIRC[X; Initiates, Terminates, Releases], Theorem 2.2, and Theorem 2.1,
we have

(Initiates(e, f,t) < Ja (e = WakeUp(a) A f = Awake(a))) A (2.17)
(Terminates(e, f,t) < 3a(e = FallAsleep(a) A f = Awake(a))) A
—Releases(e, f, t)

From CIRC[A; Happens] and Theorem 2.1, we have
(e = WakeUp(Nathan) nt = 1) & Happens(e, t) (2.18)

Using DEC, we proceed one timepoint at a time. From (2.17), we have
—3e (Happens(e, 0) A Releases(e, Awake(Nathan),0)). From this, (2.13), and
DECS8, we have

—Released At( Awake(Nathan), 1) (2.19)
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From (2.17), (2.18), and DEC9, we have

HoldsAt( Awake(Nathan), 2) (2.20)

From (2.17), we have —3e (Happens(e, 1) n Releases(e, Awake(Nathan), 1)).
From this, (2.19), and DEC8, we have

—Released At( Awake(Nathan), 2) (2.21)

From (2.18), we have =3e (Happens(e, 2) A Terminates(e, Awake(Nathan), 2)).
From this, (2.20), (2.21), and DEC5, we have HoldsAt( Awake(Nathan),3). R

Inconsistency

Inconsistency can arise in a domain description in a number of ways. Here are some
common ways in which inconsistency can arise using the EC and DEC axioms.

Simultaneously initiating and terminating a fluent producesinconsistency. For
example, given

Initiates(E(0), F(0), t)
Terminates(E(0), F(0), t)
Happens(E(O1),0)

we can show both HoldsAt(F(O1), 1) and —=HoldsAt(F(O1),1).
Simultaneously releasing and initiating or terminating a fluent produces
inconsistency. For example, from

Releases(E(0), F(0), t)
Initiates(E (o), F(o0), t)
Happens(E(O1),0)

we can show both ReleasedAt(F(O1), 1) and —Released At(F(O1), 1).
Inconsistency can arise from the use of effect axioms and state constraints. For
example, given

Initiates(E (o), F1(0), t) (222)
HoldsAt(F1(0),t) < HoldsAt(F2(o),t) (2.23)
—HoldsAt(F2(O1),0) (2.24)
—ReleasedAt(F2(O1), 1) (2.25)

Happens(E(O1),0) 2.26)



2.8 Reasoning Types 41

—

we can show both =HoldsAt(F2(O1), 1), from (2.24), (2.25), and other appro-
priate axioms, and HoldsAt(F2(O1), 1), from (2.26), (2.22), (2.23), and other
appropriate axioms.

2.8 Reasoning Types

Several types of reasoning may be performed using the event calculus, such
as deduction, abduction, postdiction, and model finding. The Discrete Event
Calculus Reasoner program discussed in Chapter 13 can perform all these rea-
soning types. For the purposes of the definitions in this section, let £, A}, A>, ©,
Q, ¥, I, I', and E be formulas as defined in Section 2.7, A be a conjunction of A
and As, and I’ be a conjunction of observations.

2.8.1 Deduction and Temporal Projection

Deduction or temporal projection consists of determining the state that results from
performing a sequence of actions. For example, given that a fan is set on a table
and turned on, deduction or temporal projection determines that the fan is on the
table and turning.

DEFINITION A deduction or temporal projection problem consists of determining
2.12 whether it is the case that

CIRC[ Z; Initiates, Terminates, Releases] n CIRC[A; Happens] A
CIRC[®: Aby,..., Aby)] AQAWATIATAEET

Propositions 2.1 and 2.2 are deduction problems. From the fact that Nathan
woke up, we can deduce that afterward he was awake. Deduction can be performed
by the Discrete Event Calculus Reasoner as discussed in Section 13.3.1.

2.8.2 Abduction and Planning

Abduction consists of determining what events might lead from an initial state
to a final state. Similarly, planning consist of generating a sequence of actions to
bring about a final state, called a goal, starting from an initial state. Suppose that
the initial state is that Nathan is in his bedroom on the second floor and that the
goal or final state is that Nathan is outside his house. Abduction or planning will
produce a sequence of actions in which Nathan walks out of his bedroom, walks
downstairs, opens the front door, and walks outside.
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let d =

CIRC[Z; Initiates, Terminates, Releases] A CIRC[A| A Ay; Happens] A
CIRC[O; Aby, ..., Aby)AQ AV ATIAT AE

An abduction or planning problem consists of taking X, A, ©, Q, ¥, I1, T,
'’ (the goal) and E as input and producing as output zero or more A (called
plans for I'’) such that @ is consistent and @ = I'.

Example: Sleep Abduction

Given that Nathan was not awake and then he was awake, we can abduce that he
woke up. Abduction can be performed using Shanahan's event calculus planner,
which is written in Prolog. We create a file called s1eep.pl containing the following:

axiom(initiates(wake_up(X),awake(X),T),[]).
axiom(terminates(fall_asleep(X),awake(Y),T),[]).
axiom(initially(neg(awake(nathan))),[]).
abducible (dummy) .

executable(wake_up(X)).

executable(fall _asleep(X)).

We start Prolog and load the event calculus planncr and s1 eep.pl:
Welcome to SWI-Prolog (Version 5.0.10)

Copyright (c) 1990-2002 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free

software, and you are welcome to redistribute it under certain
conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- Toad_files(['gensym.pl', 'plannerd2.txt', 'sleep.pl']).
We then issue the following query:

?- abdemo([holds_at(awake(nathan),t)],R).
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The event calculus planner produces the following plan:

R = [[happens(wake up(nathan), tl1, t1)], [before(tl, t)]]
Yes
?7-

Abduction can also be performed by the Discrete Event Calculus Reasoner as
discussed in Section 13.3.2.

2.8.4 Postdiction

Postdiction consists of determining the initial state given a sequence of events and
a final state. For example, given that Nathan threw a ball and the ball was fly-
ing toward the wall, postdiction determines that Nathan was previously holding
the ball.

DEFINITION Let d =
214

CIRC[X; Initiates, Terminates, Releases] n CIRC[A; Happens] A
CIRC[®: Aby, ..., Ab I AQAYATIAT AE

A postdiction problem consists of taking £, A, ©, Q, ¥, I1, E, and I'" as
input, and producing as output zero or more I' such that @ is consistent and
P =T

For example, postdiction allows us to determine that Nathan was asleep before he
woke up. We add the following action precondition axiom:

Happens(WakeUp(a), t) = —HoldsAt(Awake(a), t) (2.27)

We do not know whether Nathan was asleep at timepoint 1. We know that Nathan
woke up at timepoint 1:

Happens(WakeUp(Nathan), 1)
From this and (2.27), we conclude that Nathan was asleep at timepoint 1:
—HoldsAt( Awake(Nathan), 1)

Postdiction can be performed by the Discrete Event Calculus Reasoner as discussed

in Section 13.3.3.
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Model Finding

Model finding consists of generating models from states and events. For example,
given that Nathan went to sleep and sleeping occurs at home or at a hotel, model
finding produces models in which Nathan sleeps at home and models in which
Nathan sleeps at a hotel.

A model finding problem consists of taking £, A, ©, @, W, I1, I', and E as
input, and producing as output zero or more structures M such that

M = CIRC[Z; Initiates, Terminates, Releases] A CIRC[A; Happens] A
CIRC[O©; Aby, ..., Ab, ] A QAVATIATAE

Model finding can be performed by the Discrete Event Calculus Reasoner as
discussed in Section 13.3.4.

Bibliographic Notes

Event Calculus Basics and Axioms

McCarthy (1963) defined a fluent as “a predicate or function whose argument is
a situation.” He borrowed the term from Newton (1670/1969, pp. 72-73), who
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Newton’s fluents and fluxions. The running exclusive or (xor) notation is from
Hayes (1985, p. 72) and E. Davis (1990, p. 32). Bibliographic notes for first-order
logic are provided in Appendix A.

The conjunction of axioms EC and associated definitions are taken from a
paper by R. Miller and Shanahan (1999), which was later revised and expanded
(R. Miller and Shanahan, 2002). The conjunction of axioms EC consists of axioms
and definitions from the following sections of both versions of the paper:

m Section 2, which provides the basic classical logic axiomatization of the
event calculus

m Section 3.2, which revises the axioms and definitions of Section 2 for a
version of the event calculus in which initiating and terminating a fluent at
the same time produces inconsistency

m Section 3.5, which adds axioms to those of Section 2 to support gradual
change

m Section 3.7, which revises the axioms and definitions of Section 2 for a
version of the event calculus in which fluents may be released from the
commonsense law of inertia
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The conjunction of axioms DEC was introduced by Mueller (2004a). R. Miller
and Shanahan (2002, p. 452) provide a list of the many formulations of the event
calculus in forms of logic programming, in classical logic, in modal logic, and as
action languages.

Figures 2.1 and 2.2 show the evolution of the classical logic event calculus.
The forced separation version of the event calculus is the first version that largely
resembles the version used in this book. It is called forced separation because
the axioms of the event calculus are outside the scope of any circumscription, a
technique that can be traced back to the filtered preferential entailment or filtering
of Sandewall (1989b, 1994). Table 2.2 shows the evolution of the axiom that
determines when a fluent is true.

Reification

McCarthy (1987) defines reification as “making objects out of sentences and other
entities” (p. 1034). McCarthy (1979) introduces reification in order to reason
about knowledge and belief in first-order logic. He introduces terms to rep-
resent concepts such as “‘Mike’s telephone number’ in the sentence 'Pat knows
Mike’s telephone number’'” (p. 129). He uses the convention that concept sym-
bols start with an uppercase letter; thus, Mike represents the concept of Mike,
mike represents Mike himself, Telephone(Mike) represents the concept of Mike’s
telephone number, telephone(mike) represents Mike's telephone number itself,
know(pat, Telephone(Mike)) represents that Pat knows Mike's telephone number,
and dial(pat, telephone(mike)) represents that Pat dials Mike's telephone number.
The notion of reification was present in the original situation calculus of McCarthy
and Hayes (1969). The reified notation raining(x)(s) and the nonreified notation
raining(x, s) are both given as ways of representing that the fluent raining(x) is
true in situation s (p. 478). The action notation opens(sf, k) is used within an
axiom schema (p. 480). Hayes (1971, p. 511) considers symbols such as Move
and CLIMB to represent functions that return actions. Kowalski (1979) introduces
into the situation calculus the notation Holds(f,s) (p. 134), which represents that
fluent f is true in situation f.

Lifschitz (1987a, pp. 48-50) introduces techniques for reification in the sit-
uation calculus. These techniques are incorporated into the event calculus by
Shanahan (1995a, p. 257; 1997b, pp. 37-38, 58). Lifschitz uses a many-sorted
logic with sorts for actions, fluents, situations, and truth values. HHe uses the
predicate holds(f,s) (p. 39) to represent that fluent f is true in situation s. He
introduces fluent function symbols to represent functions that return fluents, and
action function symbols to represent functions that return actions. For example,
paint(Blocky, Blue) is an action term in which paint is an action function symbol
(p. 48).

Following Reiter's (1980a) introduction of “axioms specifying that all constants
are pairwise distinct” (p. 248), and a proposal of McCarthy (1986, pp. 96-97),
Lifschitz (1987a, pp. 44, 50) introduces the U notation for defining unique names
axioms. A system that assumes unique names axioms is said to use the unique
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e

10.

Original logic programming version of the event calculus (Kowalski and Sergot,
1986)

Simplified version of the event calculus (Kowalski, 1986, 1992); introduces
Happens

Simplified version of the event calculus (Eshghi, 1988)

Simplified event calculus (Shanahan, 1989)

Simplified event calculus (Shanahan, 1990, sec. 1)

(a) Continuous change (sec. 5)

Simplified event calculus (Shanahan, 1997b, sec. 13.1)

(a) Continuous change (sec. 13.3)

Circumscriptive event calculus (Shanahan, 1995a, sec. 3; Shanahan, 1997b,
sec. 14.3); first classical logic version of the event calculus

(a) State constraints and ramifications (Shanahan, 1995a, sec. 7; Shanahan,
1997b, sec. 15.1)

(b) Nondeterministic effects (Shanahan, 1995a, sec. 8; Shanahan, 1997b,
sec. 15.2)

(¢) Release from commonsense law of inertia (Shanahan, 1997b, sec. 15.3)

(d) Concurrent events (Shanahan, 1995a, sec. 9; Shanahan, 1997b,
sec. 15.4)

(e) Continuous change (Shanahan, 1995a, sec 10; Shanahan, 1997b,
sec. 15.5)

Event calculus using forced separation (Shanahan, 1996, sec. 2); includes Releases
but no Initiallyy

(a) Continuous change (sec. 3)

Event calculus using forced separation (R. Miller and Shanahan, 1996, sec. 3);
includes Releases, InitialisedTrue, and InitialisedFalse

(a) Continuous change described using differential equations (sec. 3); treats
continuously varying parameters and discontinuities

Event calculus using forced separation (Shanahan, 1997b, sec. 16.3)

(a) State constraints and ramifications (pp. 323-325)
(b) Continuous change (sec. 16.4)

Figure 2.1 Evolution of the classical logic event calculus (1986-1997).

names assumption (Genesereth and Nilsson, 1987, p. 120). Pirri and Reiter (1999)
provide a rich formalization of the situation calculus. They use a many-sorted
second-order logic (p. 326), action function symbols to represent functions that
return actions (p. 327), and unique names axioms for action function symbols

(p- 331). They use a nonreified notation for fluents (p. 327).
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1. Eventcalculus (Shanahan, 1998a, 2004); slightly different set of axioms; equivalent
to event calculus using forced separation with continuous change

2. Eventcalculus (Shanahan, 1999b); makes extensions to the forced separation event
calculus to deal with the ramification problem

(a) State constraints (sec. 2)
(b) Effect constraints (sec. 3)
(c) Causal constraints (sec. 4); adds Initiated, Terminated, Started, and Stopped

3. Full event calculus (Shanahan, 1999a, sec. 3.1); forced separation version with
three-argument Happens (R. Miller and Shanahan, 1994) to represent event
occurrences with duration

(a) Causal constraints (Shanahan, 1999a, sec. 4.2)
(b) Concurrent events and continuous change (sec. 5); adds Cancels,
Cancelled, and Trajectory predicates

4. Classical logic event calculus (R. Miller and Shanahan, 1999); forced separation
version with more variations

(a) Narrative information and planning (sec. 2.3)

(b) Nonnegative time (sec. 3.1)

(c) Initiating and terminating a fluent at the same time produces inconsistency
(sec. 3.2)

(d) Action preconditions (sec. 3.3)

(e) Frame and nonframe fluents (sec. 3.4)

(f) Continuous change (sec. 3.5)

(g) Event occurrences with duration (sec. 3.6)

(h) Release from commonsense law of inertia (sec. 3.7)

(i) Mathematical modeling (sec. 3.8)

5. Discrete event calculus (Mueller, 2004a)

Figure 2.2 Evolution of the classical logic event calculus (1998-2004).

In addition to the situation calculus and the event calculus, several other logics
have been proposed that use reified fluents or events. McDermott (1982) intro-
duces a temporal logic for reasoning about action in which (T s p) represents
that fact p is true in state s (p. 108) and (Occ sl s2 e) represents that event e
occurs over the interval specified by sI and s2 (p. 110). A fact such as (ON A B)
denotes the set of states in which A is on B, and an event such as (MOVE A B)
denotes the set of intervals over which A is moved to B. Shoham (1987, pp. 96-99;
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Table 2.2 Evolution of the HoldsAt axiom

Version

HoldsAt Axiom

Original event calculus
(Kowalski and Sergot, 1986)
Event calculus

(Kowalski, 1986, 1992)

Event calculus

(Eshghi, 1988)
Simplified event calculus
(Shanahan, 1989)

Simplified event calculus
(Shanahan, 1990, sec. 1)

Simplified event calculus
(Shanahan, 1997b, sec. 13.1)

Circumscriptive event calculus
(Shanahan, 1995a, sec. 3)
Event calculus

(Shanahan, 1996, sec. 2)

Full event calculus
(Shanahan, 199943, sec. 3.1)

Discrete event calculus
(Mueller, 2004a)

Holds(after(e u)) if Initiates(e u)

HoldsAt(r n) if Happens(e) and
Initiates(e r) and e < n and

not 3e* [Happens(e*) and
Terminates(e* r) and e < e* and e* < n]
holds(f, e2) « initiates(el, f),

el < e2, persists(f,el, e3), e2 < e3
holds-at(P, T) if

happens(E) and E < T and
initiates(E, P) and not clipped(E, P, T)
holds-at(P, T2) if

happens(E) and

time(E, T1) and T1 < T2 and
initiates(E, P) and not clipped(T1, P, T2)
HoldsAt(f,12) «

Happens(a, t1) »

Initiates(a, f, t1) At]l <12 A

not Clipped(t1,f,12)

HoldsAt(p,t) <

Vs State(t, s) A HoldsIn(p, s)]
HoldsAt(f, 12) «

Happens(a, t1) A

Initiates(a, f,t1) At]l <12 A
—Clipped(t1,f,12)

HoldsAt(f, t3) «

Happens(a,t1,t2) A

Initiates(a, f,t1) 712 <13 A
—Clipped(t1,f,13)

Happens(e, t) A Initiates(e, f, t) =
HoldsAt(f,t 4+ 1)
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1988, pp. 43-46) introduces a logic in which TRUE(t), t2, r(ay, ..., a,)) repre-
sents that r(ay, ..., ay) is true during the interval specified by t; and t;. Bacchus,
Tenenberg, and Koomen (1991, pp. 100-102) compare reified and nonreified tem-
poral logics. Ma and Knight (2001) review the use of reification in several temporal
logics.

Time Intervals

Allen (1983) introduces a temporal representation based on time intervals. He
defines a number of relations that may hold between intervals of time, such as
before, equal, meets, overlaps, during, starts, and finishes. Allen (1984) introduces
an interval-based temporal logic in which HOLDS(p, t) represents that property p
is true during interval t (p. 128) and OCCUR(e, t) represents that event e occurs
over interval t (pp. 132-133). The property p may contain logical connectives and
quantifiers (p. 130).

In the event calculus, fluents are true at timepoints rather than time intervals.
Following Shoham (1987, p. 94) and E. Davis (1990, p. 150), we may define
a time interval as the set of timepoints that fall in the interval. Let the function
Start(i) represent the start timepoint of interval i, the function End(i) represent
the end timepoint of interval i, and the predicate In(t, i) represent that timepoint
¢ falls in the interval i. We define In in terms of Start and End:

In(t,i) & Start(i) <t < End(i)
We may then represent that a fluent f is true over an interval i:
In(t, i) = HoldsAt(f,t)

E. Davis (1990, p. 153) shows that Allen’s (1983) relations over intervals can be
defined in terms of Start and End. For example:

Before(iy,i2) < End(iy) < Start(iz)
Equal(iy, i2) & (Start(i)) = Start(iz) A End(i)) = End(i2))
Meets(i|, i2) < End(iy) = Start(iz)

Nonmonotonic Reasoning

Minsky (1974, p. 75) criticized the monotonicity of logic, which led (Minsky,
1991b, p. 378; Israel, 1985) to the development of nonmonotonic reasoning meth-
ods (Bobrow, 1980). Minsky (1974) used the word monotonicity after a suggestion
from Vaughan R. Pratt (McDermott and Doyle, 1980, p. 44). Previously, Hayes
(1973) called this the “extension property” (p. 46), and Minsky (1961) noted

that “in a mathematical domain a theorem, once proved, remains true when one
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29

2.1
2.2

2.3

2.4

2.5

2.6

Exercises

List at least five models of the formula P(A, B) A P(B, C).

Suppose Awake(a) and Asleep(a) are functions. What conjunction of formulas
does the expression U[Awake, Asleep] stand for?

Give some examples of formulas that are positive relative to a predicate Q and
some that are not positive relative to Q.

Compute the circumscription of R in the conjunction of the following formulas:

P(x) A Q(x) = R(x)
R(A)
R(B)

(Research Problem) Investigate the combination of the event calculus and the
contexts of McCarthy (1987, 1993) and Guha (1992). Introduce a sort for contexts
and a predicate ist(c, f) that represents that formula f is true in context ¢. See also

the proposal of F. Giunchiglia and Ghidini (1998).

(Research Problem) Investigate how contexts could be used to facilitate the use of
multiple representations in the event calculus.
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DEFINITION
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The Effects of Events

Events change the state of the world. When an event occurs, some properties of
the world that are false become true and some properties of the world that are
true become false. This chapter is concerned with the representation of the effects
of events on world properties. We discuss positive and negative effect axioms,
commonly used effect axiom idioms, preconditions, and state constraints.

Positive and Negative Effect Axioms

In the event calculus, the effects of events are described by two predicates. The
predicate Initiates(, B, T) represents that, if an event @ occurs at timepoint 7, then
fluent B8 will be true after . The predicate Terminates(a, 8, T) represents that, if
an event & occurs at timepoint 7, then fluent 8 will be false after r. We represent
the effects of events using effect axioms.

The changes produced by an event may depend on the context in which
the event occurs; an event may have one effect in one context and another
effectin another context. Therefore, effect axioms contain conditions representing
contexts.

If ¥ is a condition representing the context, « is an event term, B is a fluent
term, and 1 is a timepoint term, then

y = Initiates(«, 8, 1)

is a positive effect axiom. This represents that, if ¥ is true and « occurs at t,
then g8 will be true after t.

55
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_l_

Init Term
T T = T T ® T
-1 0 1 2 3 4 5
Figure 3.1 Truth value of a fluent in EC.
Init Term
I T T ’ ’ ’ I
-1 0 1 2 3 4 5

Figure 3.2 Truth value of a fluent in DEC.

DEFINITION
3.2

3.1.1

If ¥ is a condition representing the context, « is an event term, 8 is a fluent
term, and 1 is a timepoint term, then

vy = Terminates(a, B, 7)

is a negative effect axiom. This represents that, if y is true and « occurs at
7, then B will be false after .

Using the conjunction of axioms EC, a fluent is true (false) for times greater
than the time of the initiating (terminating) event. Using the conjunction of axioms
DEC, a fluent is true (false) starting one timepoint after the time of the initiat-
ing (terminating) event. For example, suppose we have Initiates(Init, Fluent, 1),
Happens(Init, 1), Terminates(Term, Fluent, t), and Happens(Term,4). Figure 3.1
shows when Fluent is true using the conjunction of axioms EC; Figure 3.2 shows
when Fluent is true using DEC.

Example: Telephone

We perform complex commonsense reasoning about the effects of events when-
ever we use a telephone. The behavior of a phone is highly context-sensitive.
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HoldsAt(Connected(py, p2),1) = (3.18)
Initiates(SetDown(a, p)), Disconnected(p3), t)

HoldsAt(Connected(p, p2),t) = (3:19)
Terminates(SetDown(a, py), Connected(p), p2), t)

Similarly, if phone p; is connected to phone p> and an agent sets down p>, then
p2 will be idle, p; will be disconnected, and p; will no longer be connected to p>:

HoldsAt(Connected(p, p2),t) = (3.20)
Initiates(SetDown(a, p2), Idle(p>), t)

HoldsAt(Connected(py, p2),t) = (3.21)
Initiates(SetDown/(a, p3), Disconnected(p), t)

HoldsAt(Connected(py, p2),t) = (3.22)
Terminates(SetDown(a, p>), Connected(p1, p2), t)

If an agent sets down a phone that is disconnected, then the phone will be idle and
the phone will no longer be disconnected:

HoldsAt(Disconnected(p), t) = (3.23)
Initiates(SetDown(a, p), Idle(p), t)

HoldsAt(Disconnected(p), t) = (3.24)
Terminates(SetDown(a, p), Disconnected(p), t)

Let us now use this axiomatization to solve a particular reasoning problem. We
start by specifying some observations. At timepoint 0, all phones are idle, no
phones have a dial tone or busy signal, no phones are ringing other phones, no
phones are connected to other phones, and no phones are disconnected:

HoldsAt(Idle(p), 0) (325)
=HoldsAt(DialTone(p), 0) (3.26)
—HoldsAt(BusySignal(p), 0) (3.27)
—HoldsAt(Ringing(p1, p2), 0) (3.28)
—HoldsAt(Connected(py, p2), 0) (3.29)

=HoldsAt(Disconnected(p), 0) (3.30)
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We specify that fluents are never released from the commonsense law of inertia:

We specify a narrative. One agent picks up the phone and dials another agent, and

—Released At(f, t) (3.31)

then the other agent answers:

PROPOSITION

3.1

Proof

Happens(PickUp(Agentl, Phonel),0) (3.32)
Happens(Dial(Agentl, Phonel, Phone2), 1) (3.33)
Happens(PickUp(Agent2, Phone2), 2) (3.34)

We can then show that the two agents will be connected.

Let Z be the conjunction of (3.1) through (3.24). Let A = (3.32) A (3.33) A
(3.34). Let @ = U[PickUp, SetDown, Dial] ~ U[ldle, DialTone, Ringing],
BusySignal, Connected, Disconnected]. Let I' be the conjunction of (3.25)
through (3.31). Then we have

CIRC[ Z; Initiates, Terminates, Releases] n CIRC[A; Happens] A
Q AT A DEC & HoldsAt(Connected(Phonel, Phone2), 3)

From CIRC[X; Initiates, Terminates, Releases], Theorem 2.2, and Theorem 2.1,
we have

Initiates(e, f, t) & (3.35)

Ja,p (e = PickUp(a, p) A f = DialTone(p) » HoldsAt(Idle(p),t)) v
Ja,p (e = SetDown(a, p) A f = Idle(p) A HoldsAt(DialTone(p),t)) v
3a,p1, p2 (e = Dial(a, p1, p2) A

f = Ringing(p1, p2) A

HoldsAt(DialTone(p;),t) A

HoldsAt(Idle(p>), 1)) v

3a,p1,p2 (e = Dial(a, p1, p2) A

f = BusySignal(p)

HoldsAt(DialTone(p1),t) A

—HoldsAt(Idle(p>),t)) v

Ja,p (e = SetDown(a, p) A f = Idle(p) n HoldsAt(BusySignal(p),t)) v
da, py, p2 (e = SetDown(a, p)) A

f=Idle(pr) A

HoldsAt(Ringing(py,p2), 1)) vV

da, py, p2 (e = SetDown(a, p)) A

f = Idle(p>) A



HoldsAt(Ringing(py, p2), 1)) v
Ja, p1, p2 (e = PickUp(a, p2) A

f = Connected(py,p2)

HoldsAt(Ringing(p1, p2),t)) v
da, p1, p> (e = SetDown(a, p1) A

f = Idle(pr) A

HoldsAt(Connected(py, p2),t)) v
da, p1,p2 (e = SetDown(a, py) A

f = Disconnected(p2) n

HoldsAt(Connected(py, p2),t)) v
Ja, p1,p2 (e = SetDown(a, p2) A

f = Idle(p2) A

HoldsAt(Connected(py, p2),t)) Vv
Ja, p1, p2 (e = SetDown(a, p2) A

f = Disconnected(p,)

HoldsAt(Connected(p,, p2),t)) v
da, p (e = SetDown(a, p) » f = ldle(p) n HoldsAt(Disconnected(p), t))

Terminates(e, f,t) <

Ja, p (e = PickUp(a, p) A f = Idle(p) A HoldsAt(Idle(p), t)) v
Ja, p (e = SetDown(a, p) A f = DialTone(p) A HoldsAt(DialTone(p),t)) v
3a,p1,p2 (e = Dial(a, py, p2)

f = DialTone(p)) A
HoldsAt(DialTone(p1), t) A
HoldsAt(Idle(p>),t)) v
da,p1,p2

(e = Dial(a, p1, p2) A

f = Idle(p2) A
HoldsAt(DialTone(p,),t) A
HoldsAt(Idle(p-),t)) v

Ja, p1, p2

(e = Dial(a, p1, p2) A

f = DialTone(p;) A
HoldsAt(DialTone(p,),t) A
—=HoldsAt(Idle(p>), t)) v

3.1 Positive and Negative Effect Axioms

61

(3.36)

da, p (e = SetDown(a, p) A f = BusySignal(p) n HoldsAt(BusySignal(p),t)) v
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3a, p1, p2 (e = SetDown(a, p1) A f = Ringing(p1,p2) A
HoldsAt(Ringing(py, p2),t)) v
3a, p1, p2 (e = PickUp(a, p2) A
f = Ringing(py, p2) A
HoldsAt(Ringing(py, p2), 1)) v
3a, p1, p2 (e = SetDown(a, p1) A
f = Connected(py, p2) n
HoldsAt(Connected(p), p2),t)) Vv
3a, p1, p2 (e = SetDown(a, p2) A
f = Connected(p,, p2) »
HoldsAt(Connected(py, p2),t)) v
Ja, p (e = SetDown(a, p) A
f = Disconnected(p) A
HoldsAt(Disconnected(p), t))

—Releases(e, f, t) (3.37)
From CIRC[A; Happens] and Theorem 2.1, we have
Happens(e, t) < (3.38)
(e = PickUp(Agent1, Phonel) nt = 0) v
(e = Dial(Agentl, Phonel, Phone2) nt = 1) v
(e = PickUp(Agent2, Phone2) n t = 2)

From (3.32) (which follows from (3.38)), (3.25), (3.1) (which follows from
(3.35)), and DEC9, we have

HoldsAt(DialTone(Phonel), 1) (3.39)

From (3.38) and (3.36), we have —3e(Happens(e,0) A Terminates(e, Idle
(Phone2),0)). From this, (3.25), (3.31), and DEC5, we have

HoldsAt(Idle(Phone2), 1) (3.40)

From (3.33) (which follows from (3.38)), (3.39), (3.40), (3.5) (which follows
from (3.35)), and DEC9, we have HoldsAt(Ringing(Phonel, Phone2), 2). From
this, (3.34) (which follows from (3.38)), (3.15) (which follows from (3.35)), and
DECS, we have HoldsAt(Connected(Phonel, Phone2), 3). [ |
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Effect Axiom Idioms
In this section, we present several commonly used idioms involving effect axioms.

Setting and Resetting

One event sets a fluent; another event resets the fluent. If o is set, then o will be
on, whereas, if o is reset, then o will no longer be on:

Initiates(Set(0), On(o), t)
Terminates(Reset(o), On(o), t)

Flipping

An event flips the truth value of a fluent. If 0 is not on and o is flipped, then o will
be on, but, if 0 is on and o is flipped, then o will no longer be on:

—HoldsAt(On(o), t) = Initiates(Flip(0), On(o0), t)
HoldsAt(On(o0), t) = Terminates(Flip(o), On(o), t)

Selection

An event selects from among a number of values. If the value is v} and the value
vy is selected, then the value will be v and will no longer be vy:

Initiates(Select(o, v2), Value(o, v2), t)

HoldsAt(Value(o, v1),t) Av) # v2 =
Terminates(Select(o, v2), Value(o, v1), t)

We may wish to represent explicitly that a value is changed from one value to
another:

Initiates(Change(o, vy, v2), Value(o, v7), t)

HoldsAt(Value(o, v1),t) Avy # v2 =
Terminates(Change(o, vy, v2), Value(o,v1), t)
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333

PROPOSITION
3.2

By contraposition this is equivalent to =y = —Happens(«, t). Thus, if an event
occurs whose action precondition is not true, then inconsistency arises.

Action precondition axioms provide an elaboration-tolerant way of express-
ing qualifications. Whenever we wish to add a qualification, we may simply
add an action precondition axiom. Fluent precondition axioms can also be made
elaboration tolerant by using default reasoning, as discussed in Section 12.4.

Example: Walking through a Door

Suppose that in order for an agent to walk through a door, the agent must be near
the door:

Happens(WalkThroughDoor(a,d), t) = HeldsAt(Near(a,d), t) (3.41)

Suppose further that Nathan is not near a door and walks through a door:

=HoldsAt(Near(Nathan, Door), 1) (3.42)
Happens(WalkThroughDoor(Nathan, Door), 1) (3.43)

We then get inconsistency.

The conjunction of (3.41), (3.42), and (3.43) is inconsistent.

Proof From (3.43) and (3.41), we have HoldsAt(Near(Nathan, Door), 1), which

3.4

DEFINITION
35

contradicts (3.42). |

State Constraints

Some properties of the world follow other properties in a lawlike fashion. We
represent relationships that hold among properties over all timepoints using state
constraints.

If y1 and y2 are conditions, then y1, ¥y1 = y2, and y; & 1y are state
constraints.

Table 3.1 shows some typical state constraints involving one, two, and three
or more fluents. In this section, we describe some sample uses of state constraints.

Irreflexive and Antisymmetric Relation

Suppose we have a fluent On(o1, 02), which represents that an object o] is on top of
an object 0. We can use state constraints to specify that On denotes an irreflexive
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State constraint

Axiom

Reflexive relation
Irreflexive relation
Symmetric relation

Antisymmetric relation
Transitive relation
Intransitive relation
Trichotomous relation
Total relation
Functional relation
Surjective relation
Injective relation

Negation

Converse

Composite

Union

Intersection

Exactly one

HoldsAt(R(a, a), t)

—HoldsAt(R(a, a), t)

HoldsAt(R(a,b),t) = HoldsAt(R(b, a), t)
HoldsAt(R(a,b),t) na # b=

—HoldsAt(R(b, a), t)

HoldsAt(R(a, b), t) A HoldsAt(R(b, c), t) =
HoldsAt(R(a, c),t)

HoldsAt(R(a, b), t) n HoldsAt(R(b, ), t) =
—HoldsAt(R(a,c), t)

HoldsAt(R(a, b),t) v HoldsAt(R(b,a),t) Vv a=b
3b HoldsAt(R(a, b), t)

HoldsAt(R(a, b), t) A HoldsAt(R(a,c),t) = b=c
Ja HoldsAt(R(a,b),t)

HoldsAt(R(a, c), t) A HoldsAt(R(b,c),t) = a=b
HoldsAt(R(ay, ..., an),t) <

—HoldsAt(S(ay, ..., an),t)

HoldsAt(R(a, b), t) < HoldsAt(S(b, a), t)
HoldsAt(R(a, b), t) n HoldsAt(S(b, c), t) <
HoldsAt(T(a,c), t)

HoldsAt(R(ay, ..., an), t) <
HoldsAt(S1(ay,...,an),t)V -V
HoldsAt(S(ay, ..., an), 1)

HoldsAt(R(ay, ..., an),t) &
HoldsAt(S1(ay,...,an), ) A+ A

HoldsAt(S(ay, ..., an),t)
HoldsAt(Ry(ay,...,an), ) V-V
HoldsAt(Ry(ay, ..., an),1)

and antisymmetric relation. That is, an object can never be on top of itself:

—HoldsAt(On(oe, o), t)

and, if one object o] is on top of another object 03, then 07 cannot also be on top

of 01:

HoldsAt(On(o,02),t) A 0] # 02 = =HoldsAt(On(02,01),1t)
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Functional and Total Relation

Consider a fluent At(o,[), which represents that object o is located at location [.
We may specify that At denotes a functional and total relation. An object is in at
most one location at a time:

HoldsAt(At(o, 1)), t) A HoldsAt(At(o, 1), t) = ) =1
and, at all times, every object has a location:
3l HoldsAt(At(o, 1), t)

State constraints can be used to address the qualification problem, as demon-
strated in the following example: Let Occupies(p, s) represent that a chess piece p
occupies a square s of a chessboard. We wish to represent that it is not possible to
move a piece onto a square that is already occupied. We may do this by specifying
that Occupies denotes an injective relation. That is, at most one piece occupies a
square at a time:

HoldsAt(Occupies(p, s), t) A HoldsAt(Occupies(pz, s),t) = p1 = p2

A state constraint used to represent a qualification that prevents an event
from occurring is called a qualification constraint. State constraints provide an
elaboration-tolerant way of expressing qualifications because, whenever we wish
to add a qualification, we may simply add a state constraint.

Negation

We may wish to specify that one fluent represents the negation of another fluent.
An example is the fact that a device is off if and only if it is not on:

HoldsAt(Off(d), t) <& —HoldsAt(On(d), )

Intersection
A light is lit if and only if it is on and not broken:

HoldsAt(Lit(l), t) < HoldsAt(On(l), t) A —HoldsAt(Broken(l), )

Exactly One
At all times, a person is either lying, sitting, or standing:

HoldsAt(Lying(p), t) v (3.44)
HoldsAt(Sitting(p), t) v
HoldsAt(Standing(p), t)
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Example: Telephone Revisited

An important use of state constraints is to simplify the specification of initial con-
ditions. We can use state constraints to tighten up the telephone axiomatization
given in Section 3.1.1.

We add several axioms. A phone cannot be ringing itself:

—HoldsAt(Ringing(p, p), t) (3.45)

If phone p; is ringing phone p2, then p> cannot be ringing p1:

HoldsAt(Ringing(p1, p2),t) A p1 # p2 = (3.46)
—HoldsAt(Ringing(p2, p1), t)

A phone cannot be connected to itself:
=HoldsAt(Connected(p, p), t) (3.47)

If phone p; is connected to phone p3, then p> cannot be connected to p;:

HoldsAt(Connected(py, p2), t) A p1 # p2 = (3.48)
—HoldsAt(Connected(p>, p1), t)

At any time, a phone either is idle, has a dial tone, has a busy signal, is ringing
another phone, is being rung by another phone, is connected to another phone, or
is disconnected:

HoldsAt(Idle(p), t) v (3.49)
HoldsAt(DialTone(p), t) v
HoldsAt(BusySignal(p), t) v
3p1 HoldsAt(Ringing(p, p1), t) Vv
3p1 HoldsAt(Ringing(p1, p), t) Vv
3p1 HoldsAt(Connected(p, p1),t) Vv
3p1 HoldsAt(Connected(p, p), t) Vv
HoldsAt(Disconnected(p), t)

These state constraints simplify specification of initial conditions. For example,

from HoldsAt(Idle(Phonel), 0), HoldsAt(Idle(Phone2),0), (3.45), (3.46), (3.47),



70 CHAPTER 3  The Effects of Events

_l_

(3.48), and (3.49), we have all of the following:

—HoldsAt(DialTone(Phonel), 0)
—HoldsAt(BusySignal(Phonel), 0)
=HoldsAt(Ringing(Phonel, Phonel),0)
—HoldsAt(Ringing(Phonel, Phone2),0)
—HoldsAt(Connected(Phonel, Phonel), 0)
=HoldsAt(Connected(Phonel, Phone2),0)
—HoldsAt(Disconnected(Phonel), 0)
—HoldsAt(DialTone(Phone2), 0)
—HoldsAt(BusySignal(Phone2), 0)
—HoldsAt(Ringing(Phone2, Phone2),0)
—HoldsAt(Ringing(Phone2, Phonel),0)
—HoldsAt(Connected(Phone2, Phone2),0)
—HoldsAt(Connected(Phone2, Phonel), 0)
—HoldsAt(Disconnected(Phone?), 0)

Therefore, we no longer have to specify these initial conditions explicitly.

Bibliographic Notes

GPS

An early problem-solving program was GPS (Newell and Simon, 1961). GPS uses
subgoaling to find a sequence of operators that transforms an object from an initial
state into a goal state. The subgoal to transform an object a into an object b is
achieved as follows:

If a and b are the same, return with success.
Find a difference d between a and b.

Invoke subgoal to reduce d between a and b, producing a’.

W N =

Recursively invoke subgoal to transform a’ into b.
The subgoal to reduce d between a and b is achieved as follows:

1. Select relevant operator (action) o.

2. Invoke subgoal to apply o to a, producing a’.
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Preconditions

The distinction between action preconditions and fluent preconditions is from
R. Miller and Shanahan (2002, p. 464). Baral (1995) makes a similar distinc-
tion between an “executability condition of an action” and “preconditions of
effects” (p. 2017). Our representation of an action precondition axiom is from
Shanahan and Witkowski (2004). This representation must be used with caution
when solving abduction or planning problems, as pointed out by R. Miller and
Shanahan (2002, p. 465): If the initial situation is not completely specified, then
Happens(event, time) becomes a plan for achieving the precondition.

State Constraints

McCarthy and Hayes (1969, p. 478) give the following transitive law in the
situation calculus:

Vx.Vy.Vz . Vs.in(x,y,s) Adn(y, z,5) D in(x, z,s)

Green (1969) introduces a kind of axiom that represents “an implication that holds
for a fixed state” (p. 78). State constraints (Genesereth and Nilsson, 1987, p. 267)
are also called “domain constraints” (Ginsberg and Smith, 1987a, p. 237); E. Davis
(1990) calls state constraints “state coherence axioms” (p. 193). Such constraintsin
the event calculus are discussed by Shanahan (1995a, pp. 255, 262; 1996, p. 685;
1997b, pp. 11, 39-40, 275, 285-286, 323-324; 1999a, pp. 417-419). Reiter
(2001, pp. 401-406) discusses the treatment of state constraints in the situation
calculus. Doherty, Gustafsson, Karlsson, and Kvarnstrom (1998, p. 16) discuss
domain constraints in temporal action logics. Gustafsson and Doherty (1996) call
state constraints that mention multiple timepoints “transition constraints” (p. 92).
They give an example that in the event calculusis represented as

—HoldsAt(Alive(a), t) = —HoldsAt(Alive(a),t + 1)

Exercises

Write an axiom to formalize that a person who eats is no longer hungry.

Write an axiom to formalize the following. If two agents are in the same room,
the first agent is listening to the second agent, and the first agent tells the second
agent a fact, then the second agent will know that fact.

Using the axiom written in Exercise 3.2, prove that, if Nathan and Ryan are in the
same room, Ryan is listening to Nathan, and Nathan tells Ryan a particular fact,
then Ryan will know that fact.
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3.4 Formalize thatif an agent is outside, it is cold outside, and the agent is not wearing

35

3.6

3.7

3.8
3.9

3.10

3.1

3.12

a coat, then the agent is cold. Incorporate other weather conditions such as rain.
Include axioms for putting on and taking off a coat.

Formalize the opening of a book to a particular page number and the closing of

a book.

Formalize the formation and dissolution of interpersonal relationships such as
friendship and marriage (Schank and Abelson, 1977; Dyer, 1983).

Simple axioms for waking up and falling asleep are given in Section 2.7.1. Create
a more detailed formalization of the human sleep cycle. Incorporate getting out of
bed, getting tired, lying in bed, and waiting to fall asleep.

Formalize lighting and putting out a fire.

State constraint (3.44) says that a person is either lying, sitting, or standing. Add
appropriate event predicates, fluent predicates, and axioms to formalize lying down
on something, sitting down on something, and standing up.

Write state constraints relating various expressions for time of day, such as daytime,
nighttime, morning, afternoon, and evening.

Are there any bugs in the formalization of a telephone in Sections 3.1.1 and 3.4.1?
Consider the following scenarios:

m Two agents dial one another simultaneously.
m One agent dials another agent at the same instant that the other agent picks

up the phone.

Prove Proposition 3.1 using the conjunction of axioms EC instead of the conjunc-
tion of axioms DEC.
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4.1.1

The Triggering of Events

So far we have addressed that when an event occurs, a fluent changes its truth
value. What about the opposite? That is, when a fluent changes its truth value, an
event occurs; more generally, when a particular condition becomes true, an event
occurs. We call such an event a triggered event. An example of a triggered event is
a ball bouncing off of a wall when it reaches the wall. This chapter addresses the
triggering of events in response to conditions; we also discuss triggered fluents.

Trigger Axioms

We specify when a triggered event occurs using a trigger axiom.

If ¥ is a condition, « is an event term, and 7 is a timepoint term, then

y = Happens(a, )

is a trigger axiom.

Example: Alarm Clock

Whenever we use an alarm clock, we perform commonsense reasoning about trig-
gered events. The alarm going off is a triggered event, and we can formalize the
operation of an alarm clock using trigger axioms.

We start with some effect axioms. If a clock’s alarm time is | and an agent
sets the clock’s alarm time to t7, then the clock’s alarm time will be t; and will no
longer be ty:

HoldsAt(AlarmTime(c, t)),t) A t] £ t2 = (4.1)
Initiates(SetAlarmTime(a, c, t2), AlarmTime(c, t2), t)

75
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HoldsAt(AlarmTime(c, t), t) A t) # t2 = (4.2)
Terminates(SetAlarmTime(a, c, t), AlarmTime(c, t1), 1)

If an agent turns on a clock’s alarm, then it will be on:
Initiates( TurnOnAlarm(a, ¢), AlarmOn(c), t) (4.3)
If an agent turns off a clock’s alarm, then it will no longer be on:
Terminates( TurnOffAlarm(a, c), AlarmOn(c), t) (4.4)
If an alarm starts beeping, then it will be beeping:
Initiates(StartBeeping(c), Beeping(c), t) (4.5)
If an agent turns off a clock’s alarm, then the clock will no longer be beeping:
Terminates(TurnOffAlarm(a, c), Beeping(c), t) (4.6)

We have a state constraint that says that a clock has a unique alarm time at any
given time:

HoldsAt(AlarmTime(c, t), t) A HoldsAt(AlarmTime(c, t2),t) = t; = t2 (4.7)

Now we use a trigger axiom. If a clock’s alarm time is the present moment and the
alarm is on, then the clock starts beeping:

HoldsAt(AlarmTime(c, t), t) A HoldsAt(AlarmOn(c), t) = (4.8)
Happens(StartBeeping(c), t)

Let us use the following observations and narrative. At timepoint 0, the alarm
is not on, the alarm is not beeping, and the alarm time is set to 10:

—HoldsAt( AlarmOn(Clock), 0) (4.9)
—HoldsAt({Beeping(Clock), 0) (4.10)
HoldsAt{ AlarmTime(Clock, 10),0) (4.11)
—Released At( f, t) (4.12)

At timepoint 0, Nathan sets the alarm clock for timepoint 2; and at timepoint 1,
he turns on the alarm:

Happens(SetAlarmTime(Nathan, Clock, 2), 0) (4.13)
Happens(TurnOnAlarm(Nathan, Clock), 1) (4.14)

We can then show that the alarm clock will be beeping at timepoint 3.
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PROPOSITION let ¥ = (4.1) A (4.2) A (43) A (4.4) A (4.5) A (4.6), A = (4.8) A
41 (4.13) A (4.14), @ = UlSetAlarmTime, TurnOnAlarm, TurmOffAlarm,
StartBeeping] n U[AlarmTime, AlarmOn, Beeping], ¥ = (4.7), and ' =

(4.9) A (4.10) A (4.11) A (4.12). Then we have

CIRC[Z; Initiates, Terminates, Releases] n CIRC[A; Happens] A
QAW AT ADEC = HoldsAt(Beeping(Clock), 3)

Proof From CIRC[X; Initiates, Terminates, Releases], Theorem 2.2, and Theorem 2.1,
we have

Initiates(e, f, 1) & (4.15)
da,c, t1,t2 (e = SetAlarmTime(a,c, tz) A

f = AlarmTime(c, t2) A

HoldsAt(AlarmTime(c, t)),t) A

t # )V

3a, ¢ (e = TurnOnAlarm(a, c) A f = AlarmOn(c)) v

3c (e = StartBeeping(c) A f = Beeping(c))

Terminates(e, f, t) < (4.16)
Ja,c,t1, t2 (e = SetAlarmTime(a,c, t2) A

f = AlarmTime(c, t;) A

HoldsAt(AlarmTime(c, t)),t) A

h # )V

3a, ¢ (e = TurnOffAlarm(a, c) A f = AlarmOn(c)) v

da, ¢ (e = TurnOffAlarm(a, c) A f = Beeping(c))

—Releases(e, f, t) (4.17)

From CIRC[A; Happens] and Theorem 2.1, we have
Happens(e, t) < (4.18)
Jc (e = StartBeeping(c) A
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account, then a service fee is charged to the account:

HoldsAt(Balance(a, x), t) A (4.27)
x < MinimumBalance(a) A
—HoldsAt(ServiceFeeCharged(a), t) =
Happens(ChargeServiceFee(a), t)

When a service fee is charged to an account, a note is made of this fact so that
the account is not repeatedly charged:

Initiates(ChargeServiceFee(a), ServiceFeeCharged(a), t) (4.28)

This is reset once each month:

EndOfMonth(t) = Happens(MonthlyReset(a), t) (4.29)
Terminates(MonthlyReset(a), ServiceFeeCharged(a), t) (4.30)

If a service fee is charged to an account, then the balance of the account decreases
by the amount of the service fee:

HoldsAt(Balance(a, x),t) = (4.31)
Initiates(ChargeServiceFee(a), Balance(a, x — ServiceFee(a)), t)

HoldsAt(Balance(a, x), t) = (4.32)
Terminates(ChargeServiceFee(a), Balance(a, x), t)

Let us use the following observations and narrative about two bank accounts.
Initially, a service fee has not been charged to the first account, the balance in both
accounts is 1000, the minimum balance of the first account is 500, and the service
fee of the first account is 5:

—HoldsAt(ServiceFeeCharged( Accountl),0) (4.33)
HoldsAt(Balance( Accountl, 1000),0) (4.34)
HoldsAt(Balance( Account2,1000), 0) (4.35)

MinimumBalance( Accountl) = 500 (4.36)
ServiceFee( Accountl) = 5 (4.37)
—ReleasedAt(f, t) (4.38)

Two transfers are made from the first account to the second account. A transfer
of 200 is made and then a transfer of 400 is made:

Happens(Transfer( Accountl, Account2,200), 0) (4.39)
Happens(Transfer( Accountl, Account2,400), 1) (4.40)
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We can show that, after these transfers, the balance in the first account will be 395.

PROPOSITION let X = (4.22) A (4.23) A (4.24) A (4.25) A (4.28) A (4.30) A (4.31) A
4.2 (4.32), A = (4.27) A (4.29) A (4.39) A (4.40), @ = Ul[Transfer,
ChargeServiceFee, MonthlyReset] A U[Balance, ServiceFeeCharged], ¥ =
(4.26), and I' = (4.33) A (4.34) A (4.35) A (4.36) A (4.37) A (4.38). Then

we have

CIRC[ Z; Initiates, Terminates, Releases] n CIRC[A; Happens] A
QAW AT ADEC = HoldsAt(Balance( Accountl, 395), 3)

Proof From CIRC[X; Initiates, Terminates, Releases], Theorem 2.2, and Theorem 2.1,
we have
Initiates(e, f, 1) & (4.41)
Jay, az,x1,x2,x3 (e = Transfer(ay, az, x3) A
f = Balance(az,x; + x3) A
HoldsAt(Balance(ay, x1),t) A
HoldsAt(Balance(as, x>), t) A
x3>0A%x > x3) Vv
Jay, az, x1,x2,x3 (e = Transfer(ay, az, x3) A
f = Balance(ay, x1 — x3) A
HoldsAt(Balance(a, x1),t) A
HoldsAt(Balance(as, x3),t) A
x3>0Ax = 2a3)V
Ja (e = ChargeServiceFee(a) A f = ServiceFeeCharged(a)) v
Ja, x (e = ChargeServiceFee(a) n
f = Balance(a, x — ServiceFee(a)) A
HoldsAt(Balance(a, x), t))

Terminates(e, f, t) < (4.42)
Jay, az,x1,x2,x3 (e = Transfer(ay, az, x3) A

f = Balance(aa, x2) A

HoldsAt(Balance(a,, x1),t) A

HoldsAt(Balance(az, x2),t) A

x3 >0 x Zx3]\/
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Jay, a2, x1,x2,x3 (e = Transfer(a), az,x3) A

f = Balance(ay,x)) n

HoldsAt(Balance(ay, x)),t) A

HoldsAt(Balance(az, x2),t) A

x3>0Ax] = x3) Vv

Ja (e = MonthlyReset(a) A f = ServiceFeeCharged(a)) v
3a, x (e = ChargeServiceFee(a) n

f = Balance(a, x) A

HoldsAt(Balance(a, x), t))

—Releases(e, f,t) (4.43)
From CIRC[A; Happens] and Theorem 2.1, we have

Happens(e, t) < (4.44)
3a, x (e = ChargeServiceFee(a) N

HoldsAt(Balance(a, x),t) A

x < MinimumBalance(a) A

—HoldsAt(ServiceFeeCharged(a), t)) v

Ja (e = MonthlyReset(a) A EndOfMonth(t)) v

(e = Transfer(Accountl, Account2,200) At = 0) v

(e = Transfer( Accountl, Account2, 400) A t = 1)

From (4.39) (which follows from (4.44)), (4.34), (4.35), 200 = 0, 1000 = 200,
(4.24) (which follows from (4.41)), and DEC9, we have

HoldsAt(Balance( Accountl, 800), 1) (4.45)

From (4.39) (which follows from (4.44)), (4.34), (4.35), 200 = 0, 1000 = 200,
(4.22) (which follows from (4.41)), and DEC9, we have

HoldsAt(Balance( Account2,1200), 1) (4.46)

From (4.26), (4.34), (4.36), -(1000 < 500), and (4.44), we have
—Happens(ChargeServiceFee( Account1),0). From this, (4.44), and (4.41), we
have —3e (Happens(e, 0) A Initiates(e, ServiceFeeCharged(Accountl),0)). From
this, (4.33), (4.38), and DEC6, we have

—HoldsAt(ServiceFeeCharged(AccountI), 1) (4.47)
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From (4.40) (which follows from (4.44)), (4.45), (4.46), 400 = 0, 800 = 400,
(4.24) (which follows from (4.41)), and DEC9, we have

HoldsAt(Balance( Accountl, 400), 2) (4.48)

From (4.26), (4.45), (4.36), —(800 < 500), and (4.44), we have
—Happens(ChargeServiceFee( Account1), 1). From this, (4.44), and (4.41), we
have —3e (Happens(e, 1) A Initiates(e, ServiceFeeCharged( Account1),1)). From
this, (4.47), (4.38), and DEC6, we have

—HoldsAt(ServiceFeeCharged( Accountl), 2)

From this, (4.48), (4.36), 400 < 500, and (4.27) (which follows
from (4.44)), we have Happens(ChargeServiceFee(Accountl),2). From this,
(4.48), (4.37), (4.31) (which follows from (4.41)), and DEC9, we have
HoldsAt(Balance( Accountl, 395), 3). |

Triggered Fluents

So far, we have discussed how a trigger axiom is used to represent that a certain

event occurs when a certain condition becomes true. What if we would like to

represent that a fluent becomes true (or false) when a condition becomes true? This

cannot be represented directly in the event calculus. Instead, we must introduce an

event that is triggered by the condition and that initiates or terminates the fluent.
Thus, we represent that the condition y initiates a fluent 8 as follows:

y = Happens(a, 1)
Initiates(a, B8, t)

We represent that the condition y terminates a fluent 8 as follows:

vy = Happens(a, 1)

Terminates(w, 8, 1)

Bibliographic Notes

Shanahan (1990) introduced an early form of the trigger axiom into a simpli-
fied version of the original event calculus (Kowalski and Sergot, 1986). Shanahan
(1995a, pp. 268-272; 1997b, pp. 305-313) uses a predicate Triggers(s, e) to rep-
resent that an event e occurs in state s. Trigger axioms in the form used in this
book were introduced by Shanahan (1996, p. 685) and are discussed in detail by
Shanahan (1997b, pp. 258-265, 325-329). The method for representing triggered
fluents is from Morgenstern (2001, p. 353).
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4.1

4.2

4.3

4.4

4.5

4.6

Proposals for incorporating triggered events into the situation calculus have
been made by Pinto (1994), R. Miller (1996), and Reiter (1996). See the discussion
in the Bibliographic Notes of Chapter 15. Pinto (1998a) uses triggered events in the
situation calculus to represent the starting and stopping of current in an electrical
circuit,

Tran and Baral (2004b) incorporate triggered events into an action language
inspired by A (Gelfond and Lifschitz, 1993), implement the language in AnsProlog
(Baral, 2003), and apply triggered events to the modeling of molecular interactions
in cells. The triggering rule (Tran and Baral, 2004b, p. 555)

g1,...,8n n_triggers b

represents that action b normally occurs when conditions g1, ..., gy are true. The
inhibition rule (p. 555)

hy,..., h; inhibits ¢

represents that action ¢ does not occur when conditions hy, ..., kj are true.
Triggered events are represented in action language C+ (Giunchiglia et al.,
2004) using action dynamic laws of the form (p. 70)

caused F if G

where F is an action and G is a condition. C+ is discussed in Section 15.3.1 .

Exercises

Add asnooze alarm to the alarm clock axiomatization in Section 4.1.1. If when the
alarm is beeping an agent presses the snooze button, then the alarm stops beeping
and starts beeping again after nine timepoints.

Use the extended alarm clock axiomatization in Exercise 1 to prove that, if a
particular alarm clock is set, the clock starts beeping at the appropriate time, and
an agent hits the snooze button, then the alarm stops beeping after that time and
is beeping 10 timepoints later.

Rework the axiomatization in Section 4.2.1 so that a monthly fee is charged at the
end of each month rather than immediately.

Formalize the operation of a mousetrap. Prove that a mouse entering the trap is
caught.

Formalize a price notification service for traders of financial instruments. When
the price of a financial instrument falls below or rises above a certain level, the
service informs the trader. Prove that, if the trader requests notification of when
stock XYZ falls below 100, then when the stock falls below that level the service

informs the trader.

Formalize that you introduce yourself when meeting someone for the first time.
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PROPOSITION fX=(51),A=(54)A(57),2=(55), T =(52)A(5.3),and CFA =
5.3 (5.6), then Z A A A Q AT A CFA is inconsistent.

Proof From (5.2), (5.4), (5.5), and (5.6), we have

—HoldsAt(On(Lightl), 1) (5.8)
From (5.1) and (5.7), we have HoldsAt(On(LightI), 1), which contradicts
(5.8). n

Notice also that, if we remove (5.4), then we are unable to conclude
—HoldsAt(On(Lightl), 1). Classical frame axioms were developed for use within
the situation calculus (see Section 15.1). They are only useful in the event calculus
if exactly one event occurs at each timepoint.

5.1.3 Explanation Closure Axioms

Another type of axiom, an explanation closure axiom, represents that a given fluent
does not change unless certain events occur. For example, we represent that, if a
light is off and the light is not turned on, then the light will still be off:

—HoldsAt(On(l),t) A (5.9)
—=Happens(TurnOn(l), t) =
=HoldsAt(On(l), t + 1)

If we had
—Happens( TurnOn(Lightl), 0)

then we could show —HoldsAt(On(Lightl), 1) from (5.2) and (5.9). But this does
not yet follow from the domain description. An additional mechanism is required
to limit events to those that are known to have occurred.

5.1.4 Minimizing Event Occurrences

We use the mechanism of circumscription described in Section 2.6 to minimize
event occurrences, by minimizing the extension of the Happens predicate. This
gives us the desired result. If the first and second lights are initially off and the
second light is turned on, then the first light will still be off:

PROPOSITION let = (5.1), A = (54), @ = (5.5), I' = (52) A (5.3), and
5.4 ECA = (5.9). Then we have £ A CIRC[A; Happens) n Q2 A T" A ECA &
=HoldsAt(On(Lightl), 1).
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Proof From CIRC[A; Happens] and Theorem 2.1, we have

515

Happens(e, t) < (e = TurnOn(Light2) A t = 0)

From this and (5.5), we have =Happens(TurnOn(Light1),0). From this, (5.2),
and (5.9), we have —=HoldsAt(On(Light1),1). |

Introduction of Initiates Predicate

So far, this method requires us to enumerate all explanation closure axioms
for the domain such as (5.9). We can avoid this by introducing the predicate
Initiates(e, f, t), which represents that, if event e occurs at timepoint ¢, then fluent
f will be true at t + 1:

Happens(e, t) A Initiates(e, f, t) = (5.10)
HoldsAt(f,t + 1)

We can then generalize the explanation closure axiom (5.9) into:

=HoldsAt(f,t) A (5.11)
—3e (Happens(e, t) A Initiates(e, f, t)) =
=HoldsAt(f,t + 1)

Now suppose that instead of (5.1), we have
Initiates( TurnOn(1), On(l), 1)

In order to show —HoldsAt(On(Lightl), 1) from —HoldsAt(On(Lightl),0), we

must show
—3e (Happens(e, 0) A Initiates(e, On(LightI), 0))
From the circumscription of Happens in (5.4), we have
Happens(e,0) & e = TurnOn(Light2)
Thus we require:
=Initiates( TurnOn(Light2), On(LightI), 0)

But this does not yet follow from the domain description. We require a method
to limit the effects of events to those that are known.
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5.1.6 Minimizing Event Effects

Again we use circumscription, this time to minimize the effects of events, by
minimizing the extension of Initiates. We can again show, this time using Initiates,
that after turning on the second light, the first light will still be off:

PROPOSITION let ¥ = (5.12), A = (54), 2 = (55), T = (5.2) A (5.3), and D1 =
55 (5.10) A (5.11). Then we have CIRCI[X; Initiates] A CIRC[A; Happens] A
QAT ADI | —HoldsAt(On(Lightl), 1).

Proof From CIRC[Z; [nitiates] and Theorem 2.1, we have
Initiates(e, f,t) < 3l (e = TurnOn(l) A f = On(1)) (5.12)
From CIRC[A; Happens] and Theorem 2.1, we have
Happens(e, t) < (e = TurnOn(Light2) At = 0) (5.13)
From (5.12) and (5.5), we have
—Initiates( TurnOn(Light2), On(Light1), 0)
From this and (5.13), we have
—3e (Happens(e, 0) A Initiates(e, On(Light1), 0))

From this, (5.2), and (5.11), we have —HoldsAt(On(Light1), 1). [ ]

These are the beginnings of the discrete event calculus. The axiom (5.11) is

similar to DEC6, and (5.10) is the same as DEC9.

5.1.7 Introduction of Terminates Predicate

Alongsimilar lines, we introduce the predicate Terminates(e, f, t), which represents
that, if event e occurs at timepoint ¢, then fluent f will be false at t + 1. We have
an axiom similar to DECS and one that is the same as DEC10:
HoldsAt(f, t) ~ (5.14)
—3Je (Happens(e, t) A Terminates(e, f, t)) =
HoldsAt(f,t + 1)

Happens(e, t) A Terminates(e,f, t) = (5.15)
—HoldsAt(f,t + 1)
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5.1.8

5.2

5.2.1

Discussion

The effects of events are enforced by (5.10) and (5.15), whereas the commonsense
law of inertia is enforced by (5.11) and (5.14). In the conjunction of axioms EC,
the effects of events are enforced by EC14 and EC15, whereas the commonsense
law of inertia is enforced by EC9, EC10, EC14, and EC15. For instance, EC14
specifies that a fluent f that is initiated by an event that occurs at timepoint t;
is true at timepoint t» > t; provided that =Stoppedin(ty,f,t2), which by EC3 is
equivalent to

—3e, t (Happens(e,t) A t1 <t < to A Terminates(e, f, t))

Notice that EC14 and EC15 enforce both the effects of events and the com-
monsense law of inertia. EC14 and EC15 enforce the commonsense law of inertia
after a fluent has been initiated or terminated by an occurring event, whereas EC9
and EC10 enforce the commonsense law of inertia in all cases. If, for example, the
truth value of a fluent is known at timepoint ¢, then EC9 and EC10 can be used
to determine the truth value of the fluent after timepoint ¢.

Some redundancy exists between, say, EC9 and EC14, because after a fluent
is initiated by an occurring event, both EC9 and EC14 specify that the fluent is
true until it is terminated by an occurring event. This redundancy is not present in
the conjunction of axioms DEC.

Representing Release from the Commonsense Law
of Inertia

We may not always wish the commonsense law of inertia to be in force. In this
section, we describe how fluents can be released from the commonsense law of
inertia and then, at a later time, can again be made subject to this law.

Example: Yale Shooting Scenario

We start by considering the example of shooting a turkey. If a gun is loaded at
timepoint 1 and used to shoot a turkey at timepoint 3, then the gun will fire
and the turkey will no longer be alive. This simple example assumes that the
shooter does not miss. In this case, the fact that the gun is loaded is subject to the
commonsense law of inertia.

This example is due to Steve Hanks and Drew McDermott. If an agent loads
a gun, then the gun will be loaded:

Initiates(Load(a, g), Loaded(g), t) (5.16)
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If a gun is loaded and agent a) shoots the gun at agent a3, then a> will no longer
be alive:

HoldsAt(Loaded(g), t) = (5.17)
Terminates(Shoot(a1, az, g), Alive(az), t)

If a gun is loaded and an agent shoots the gun, then the gun will no longer be

loaded:

HoldsAt(Loaded(g),t) = (5.18)
Terminates(Shoot(ay, az, g), Loaded(g), t)

Consider the following observations and narrative. Initially, the turkey is alive
and the gun is not loaded:

HoldsAt( Alive(Turkey), 0) (5.19)
—HoldsAt(Loaded(Gun), 0) (5.20)

Nathan loads the gun at timepoint 0, waits at timepoint 1, and shoots the turkey
at timepoint 2:

Happens(Load(Nathan, Gun), 0) (5.21)
Happens(Wait(Nathan), 1) (5.22)
Happens(Shoot(Nathan, Turkey, Gun), 2) (5.23)

We can then show that the turkey will no longer be alive at timepoint 3.

PROPOSITION let ¥ = (5.16) A (5.17) A (5.18), A = (5.21) A (5.22) A (5.23), @ =
56 UlLoad, Wait, Shoot] A U[Loaded, Alive], and T = (5.19) A (5.20), and
D2 = (5.10) A (5.11) A (5.14) A (5.15). Then we have

CIRC[ Z; Initiates, Terminates, Releases] A CIRC[A; Happens] A
QAT A D2 = —HoldsAt( Alive( Turkey), 3)

Proof See Exercise 3. [ ]

5.2.2 Releasing from Inertia

By contrast, consider a gun that is loaded at timepoint 1 and whose chamber is
spun at timepoint 2. [f the trigger is pulled at timepoint 3, then the gun may or may
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Notice that given axioms (5.15), (5.27), and (5.29), axiom (5.18) ensures that,
after a loaded gun is fired, the gun is no longer loaded and Loaded(Gun) is no
longer released from the commonsense law of inertia.

The fluent term Alive( Turkey) is subject to the commonsense law of inertia at
all times:

—Released At( Alive( Turkey), t) (5.32)
Only initially is Loaded(Gun) subject to the commonsense law of inertia:
—Released At(Loaded(Gun), 0) (5.33)

We can then show that there are two possible outcomes: (1) If the gun is
loaded at timepoint 2, then the turkey will no longer be alive at timepoint 3, and
(2) if the gun is not loaded at timepoint 2, then the turkey will still be alive at
timepoint 3.

PROPOSITION let ¥ = (5.16) A (5.17) A (5.18) A (5.30), A = (5.21) A (5.31) A (5.23),
57 Q = UlLoad, Spin, Shoot] A U[Loaded, Alive], and I' = (5.19) A (5.20) A
(5.32) A (5.33), and D3 = (5.10) A (5.15) A (5.24) A (5.25) A (5.26) A
(5.27) A (5.28) A (5.29). Then we have
CIRC[X; Initiates, Terminates, Releases] A (5.34)
CIRC[A; Happens] A 2 A T A D3 A HoldsAt( Loaded(Gun), 2)
= —HoldsAt( Alive( Turkey), 3)
as well as
CIRC[ Z; Initiates, Terminates, Releases] A (5.35)
CIRC[A; Happens] A @ A T A D3 A =HoldsAt(Loaded(Gun), 2)
l= HoldsAt( Alive( Turkey), 3)
Proof See Exercise 4. ]

5.3

In the Russian turkey scenario, release from the commonsense law of inertia is
used to model nondeterminism. Nondeterminism is discussed further in Chapter 9.
Release from the commonsense law of inertia is also useful for representing indirect
effects (discussed in Chapter 6) and continuous change (discussed in Chapter 7).

Release Axioms

A fluent is released from the commonsense law of inertia as follows.
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If ¥ is a condition, & is an event term, g is a fluent term, and 7 is a timepoint
term, then

y = Releases(a, B, T)

is a release axiom. This represents that, if ¥ is true and « occurs at 7, then g
will be released from the commonsense law of inertia after t.

A fluent is again made subject to the commonsense law of inertia as follows.
We represent that, if y is true and a occurs at 7, then g will no longer be released
from the commonsense law of inertia after T using a positive or negative effect
axiom:

y = Initiates(«, B, T)
y = Terminates(a, B8, 7)

In the Inititates case, the fluent will become true and not released; in the Terminates
case, the fluent will become false and not released.

In EC, a fluent is released for times greater than the time of the releasing event
and is not released for times greater than the time of the initiating or terminating
event. In DEC, a fluent is released starting one timepoint after the time of the
releasing event and is not released starting one timepoint after the time of the ini-
tiating or terminating event. For example, suppose we have Releases(Rel, Fluent, t),
Happens(Rel, 1), Initiates(Init, Fluent, t), and Happens(Init,4). Figure 5.1 shows
when Fluent is released using the conjunction of axioms EC; Figure 5.2 shows
when Fluent is released using DEC.

Bibliographic Notes

Frame Problem

The frame problem was first described by McCarthy and Hayes (1969, p. 487).
According to Shanahan (1997b), “McCarthy relates that he was reading a book on
geometry at the time he coined the term ‘frame problem’, and that he thought of

Rel Init

— -
= Y -—

Figure 5.1 Released fluent in EC.
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Rel Init
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Figure 5.2 Released fluent in DEC.

the frame problem as analogous to that of choosing a co-ordinate frame” (p. 25).
Hayes (1971) defines a frame as “a classification of statements into groups which are
independent in the sense that an action may alter members of one group without
affecting any of the other groups” (p. 497). See also the discussions of McCarthy
(1977, p. 1040) and Lifschitz (1990b, p. 366). An introduction to the frame
problem is provided by Shanahan (2002), and a modern book-length treatment is
provided by Shanahan (1997b). Earlier book-length discussions are provided by
Brown (1987), Pylyshyn (1987), and Ford and Pylyshyn (1996).

Frame Axioms

Frame axioms were introduced by McCarthy and Hayes (1969, pp. 484-485).
Hayes (1971) was apparently the first to call them “‘frame’ axioms” (p. 514). We
use the term classical frame axiom from Kautz and Selman (1996, p. 1197) to
distinguish the frame axioms of McCarthy and Hayes from explanation closure
axioms. Classical frame axioms were originally written in the situation calculus.
Using Reiter's notation, a sample classical frame axiom is:

on(da, s) Ady #da D on(da, do(turn_off(d1), s))
Using Shanahan’s notation, the same axiom is written as:

Holds(On(d>),s) A dy # d» — Holds(On(d>), Result(TurnOff(d,), s))

To handle e events and f fluents, on the order of 2 . e . f classical frame axioms are
required (Reiter, 2001, p. 22).

Kowalski (1974; 1979, pp. 133-146) introduces a way of combining classi-
cal frame axioms that relies on representing that fluent F(x),...,x,) is true in
situation o as Holds(F(x1, ..., x,), o) rather than F(xj, ..., x,, o). See the discus-
sions of Nilsson (1980, pp. 311-315) and Shanahan (1997b, pp. 231-241). Using

Shanahan’s notation, suppose we have the effect axiom:
—Holds(On(d), Result( TurnOff(d), s))

We can then use a single frame axiom:

Holds(f,s) A f # On(d) — Holds(f, Result( TurnOff(d), s))
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instead of several frame axioms:

Holds(On(d>), s) A dy # d2 — Holds(On(d>), Result( TurnOff(d1), s))
Holds(Broken(d,), s) — Holds(Broken(d,), Result(TurmOff(d1), s))

Explanation closure axioms were first proposed by Haas (1987), who called
them “domain-specific frame axioms” (p. 343). They were further developed and
named “explanation-closure” axioms by Schubert (1990, p. 25). E. Davis (1990)
proposed similar axioms for “framing primitive events by fluents” (p. 206). Using
Reiter’s situation calculus notation, a sample explanation closure axiom is:

on(d, s) A —on(d, do(a, s)) D a = turn_off(d)
which corresponds to the single effect axiom:
—on(d, do(turm_off(d), s))

Pednault (1989) proposed two constraints to facilitate the generation of classical
frame axioms: (1) separate effect axioms must be written for each fluent, and
(2) the effects of actions must be completely specified by the effect axioms.
Synthesizing the proposals of Haas, Schubert, E. Davis, and Pednault, Reiter
(1991; 2001, pp. 28-32) provided a method for automatically constructing expla-
nation closure axioms given a set of effect axioms. To handle f fluents, on the order
of 2. f explanation closure axioms are required (Reiter, 2001, p. 27). Explanation
closure axioms were first used in the event calculus by Shanahan and Witkowski
(2004). Axioms DEC5, DEC6, DEC7, and DECS, which resemble explanation
closure axioms extended to allow fluents to be released from the commonsense
law of inertia, were introduced by Mueller (2004a). Our review of classical frame
axioms and explanation closure axioms is loosely based on that of Ernst, Millstein,
and Weld (1997, pp. 1170-1171). The form of explanation closure axiom we give,

HoldsAt(F, t) A =Happens(E|, t) A - - A =Happens(E,, t) =
HoldsAt(F,t+ 1)

is logically equivalent to the form usually given:

HoldsAt(F, t) A =HoldsAt(F,t + 1) =
Happens(Ey,t) v -- - v Happens(Ey, t)

Shanahan (1996, pp. 684-685; 1997b, pp. 315-330) introduced the forced
separation version of the event calculus in which Inititates, Terminates, and Releases
are circumscribed separately from Happens and the observation (HoldsAt) for-
mulas and event calculus axioms are outside the scope of any circumscription.



98

CHAPTER 5 The Commonsense Law of Inertia

The technique of forced separation derives from the following previous pro-
posals: (1) the filtered preferential entailment or filtering of Sandewall (1989b;
1994, pp. 213-215, 242-243), in which minimization is applied to effect
axioms (“action laws”) but not to observation formulas, which in turn derives
from the preferential entailment of (Shoham 1988, p. 76); (2) the proposal
of Crawford and Etherington (1992) to separate the description of the sys-
tem from the observations; (3) the extension of Sandewall's techniques by
Doherty and Lukaszewicz (1994) and Doherty (1994), in which circumscrip-
tion is applied to schedule statements involving the Occlude predicate but not to
observation statements or to the nochange axiom, as discussed in Section 15.2.1;
(4) the method of Kartha and Lifschitz (1995), in which circumscription is
applied to effect axioms and state constraints but not to observation formu-
las (Shanahan, 1997b, pp. 315-318); and (5) the method of Lin (1995), in
which the Caused predicate is minimized using circumscription or predicate
completion.

E. Davis (1990) discusses the need for axioms of “nonoccurrence of extraneous
events” (p. 208) when using explanation closure axioms. The rationale for the use
of circumscription over less powerful methods is given by Shanahan (1998b):

We could use negation-as-failure (or rather, say, predicate completion). Using
circumscription does allow for the addition of, for example, disjunctive facts, how-
ever. Predicate completion is only defined for a certain class of theories. Event [sic]
though this class encompasses most of what we're interested in, there doesn’t seem
any point in ruling out exceptions. (p. 329)

Commonsense Law of Inertia

The phrase commonsense law of inertia was originated by John McCarthy (personal
communication, May 18, 2005; Lifschitz, 1987¢, p. 186). The phrase appears to
have been first used in print by Lifschitz (1987a, p. 45; 1987c¢, p. 186). Hanks and
McDermott (1987) mention the “inertia of the world” (p. 395) and attribute the
phrase “inertial property of facts” (p. 394) to John McCarthy. Fluents subject to
the commonsense law of inertia are sometimes called “frame fluents” (Lifschitz,
1990b, p. 370; R. Miller and Shanahan, 2002, p. 471) or are said to be “in the
frame” (Lifschitz, 1990b, p. 369; R. Miller and Shanahan, 2002, p. 474) or to
“belong to the frame” (R. Miller and Shanahan, 1996, p. 67).

Yale Shooting Scenario

The Yale shooting scenario was introduced by Hanks and McDermott (1985; 1986;
1987, pp. 387-390), who use the scenario to point out problems with McCarthy's
(1984a, 1986) initial attempt at solving the frame problem using circumscription.
The scenario and the various treatments of it are discussed at length by Shanahan
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6.1

6.1.1

Indirect Effects of Events

Suppose that a book is sitting on a table in a living room and an agent is in the
living room. Normally, when the agent walks out of the room, the book remains
in the living room; but, if the agent picks up the book and walks out of the living
room, then the book is no longer in the living room. That is, an indirect effect or
ramification of the agent walking out of the living room is that the book the agent
is holding changes location. The problem of representing and reasoning about the
indirect effects of events is known as the ramification problem. This chapter presents
several methods for representing indirect effects and dealing with the ramification
problem in the event calculus. We discuss the use of effect axioms, primitive
and derived fluents, release axioms and state constraints, effect constraints, causal
constraints, and trigger axioms.

Effect Axioms

One way of representing indirect effects is to represent them the same way that
direct effects are represented, namely, using positive and negative effect axioms.

Example: Carrying a Book
An agent picks up a book; the book then moves along with the agent. We start
with the following spatial theory. If an agent walks from room r] to room 7>, then
the agent will be in r> and will no longer be in 7;:

Initiates(Walk(a, ry, r2), InRoom(a, r2), t) (6.1)

r1 # r2 = Terminates(Walk(a, ry, r2), InRoom(a, ), t) (6.2)

101
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An object is in one room at a time:

HoldsAt(InRoom(o, 1), t) A HoldsAt(InRoom(o, r;), t) = (6.3)
?‘1 = r2
If an agent is in the same room as an object and the agent picks up the object, then
the agent will be holding the object:
HoldsAt(InRoom(a, r), t) A HoldsAt(InReom(o, 7), t) = (6.4)
Initiates(PickUp(a, o), Holding(a, 0), t)
If an agent is holding an object and the agent lets go of the object, then the agent
will no longer be holding the object:
HoldsAt(Holding(a, 0), t) = (6.5)
Terminates(LetGoOf{a, o), Holding(a, o), t)

We then represent the indirect effects of walking while holding an object using
positive and negative effect axioms. If an agent is holding an object and the agent
walks from room ] to room 77, then the object will be in r; and will no longer be
in ry:

HoldsAt(Holding(a, o), t) = (6.6)
Initiates(Walk(a, ry, r2), InRoom(o, r2), t)

HoldsAt(Holding(a, 0),t) A1) # 12 = (6.7)
Terminates(Walk(a, r), r2), InReom(o, ), 1)

Now consider the following observations and narrative. Nathan and the book
start out in the living room:

—Released At(f, t) (6.8)
HoldsAt(InRoom(Nathan, LivingRoom), 0) (6.9)
HoldsAt(InRoom(Book, LivingRoom), 0) (6.10)

Nathan picks up the book and walks into the kitchen:

Happens(PickUp(Nathan, Book), 0) (6.11)
Happens(Walk(Nathan, LivingRoom, Kitchen), 1) (6.12)

We also have
LivingRoom # Kitchen (6.13)

We can then show that the book will be in the kitchen.
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PROPOSITION let X = (6.1) A (6.2)A(6.4)A(6.5)A (6.6)A(6.7), A= (6.11)A(6.12),
6.1 Q = U[Walk, PickUp, LetGoOf|AU[InRoom, Holding] A (6.13), ¥ = (6.3),
andI' = (6.8) A (6.9) A (6.10). Then we have

CIRCIZ; Initiates, Terminates, Releases] n CIRC[A; Happens] A
QAW AT AEC = HoldsAt(InRoom(Book, Kitchen), 2)

Proof From CIRC[Z; Initiates, Terminates, Releases], Theorem 2.2, and Theorem 2.1,
we have

Initiates(e, f, t) < (6.14)

Ja,ry,r2 (e = Walk(a, r),r2) A f = InRoom(a, r2)) v
3a, 0,7 (e = PickUp(a, o) A

f = Holding(a, o) A

HoldsAt(InRoom(a, r),t) A

HoldsAt(InRoom(o, 1), t)) v

da,0,r),r2 (e = Walk(a, ry,r2) A

f = InRoom(o, r2) A

HoldsAt(Holding(a, o), t))

Terminates(e, f,t) & (6.15)

da,ry,r: (e = Walk(a,r),r2) A
f = InRoom(a, ) A

r #E 1)V

Ja, 0 (e = LetGoOf(a, 0)

f = Holding(a, 0) A
HoldsAt(Holding(a, 0),t)) v
da,o,r,r: (e = Walk(a,ry, ) A
f = InRoom(o,r) A
HoldsAt(Holding(a, 0),t) A

) #12)

—Releases(e, f, 1) (6.16)
From CIRC[A; Happens] and Theorem 2.1, we have

Happens(e, t) < (6.17)
(e = PickUp(Nathan, Book) At = 0) v
(e = Walk(Nathan, LivingRoom, Kitchen) A t = 1)



