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Preface

We have to look for routes of power our teachers never
imagined, or were encouraged to avoid.

—Thomas Pynchon, Gravity’s Rainbow

THE EMERGING TAPESTRY of complex systems research is being formed
by localized individual efforts that are becoming subsumed as part of a
greater pattern that holds a beauty and coherence that belies the lack of
an omniscient designer. As in Navajo weaving, efforts on one area of this
tapestry are beginning to meld into one another, leaving only faint “lazy
lines” to mark the event. The ideas presented in this book contain various
parts of this weaving; some are relatively complete, whereas others are
creative investigations that may need to be removed from the warp and
started anew. We suspect that, like the Navajo weavers of old, we will
also introduce a few errors—though perhaps not intentionally—that will
be more than sufficient to maintain our humility.

More than a decade ago, a wonderful coincidence of people, ideas,
tools, and scientific entrepreneurship converged at the Santa Fe Institute.
Those of us who participated in this event were blessed to partake in a
burst of scientific creativity that facilitated a new wave in the sciences of
complex systems. At that time, discussions about the central problems
and approaches in fields such as biology, chemistry, computer science,
economics, and physics made it clear that there was a common set
of questions that would require a willingness to transcend the usual
disciplinary boundaries if answers were to be forthcoming. Since that
time, a growing community of scholars has been actively involved in
developing the theory of complex adaptive social systems.

Although research in the area of complex adaptive social systems is
still in its formative stages, now is a good time to take stock of these
efforts. Along with documenting much of what we have learned over the
past decade, we will also be a bit exploratory, both retrospectively trying
to figure out why our initial intuitions about the importance of this area
were justified and prospectively suggesting where the new frontiers are
likely to be found.

During the past decade we have hosted an annual graduate workshop
in computational modeling. In these workshops, we collaborated with
a diverse set of graduate students who are interested in applying
new computational modeling techniques to key problems in the social
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sciences. Many of the topics presented throughout this book are the result
of discussions during these workshops.

Contrary to the sentiments in Pynchon’s quotation, we have been
blessed with some very imaginative and prescient teachers. For Miller,
Ken Boulding planted the initial meme that suggested that both biological
and social systems hold a deep similarity needing scientific investigation.
Ted Bergstrom and Hal Varian generously indulged and guided Miller’s
efforts during graduate school in investigating the behavior of artificial
adaptive agents in games. Bob Axelrod, John Holland, and Carl Simon
were also sources of encouragement, ideas, and wisdom at that time.
During the early days of the Santa Fe Institute, an outstanding group of
scholars gathered together to work on complex systems, including Phil
Anderson, Ken Arrow, Brian Arthur, George Cowan, Jim Crutchfield,
Doyne Farmer, Walter Fontana, Murray Gell-Mann, Erica Jen, Stu
Kauffman, David Lane, Blake LeBaron, Norman Packard, Richard
Palmer, John Rust, and Peter Stadler, all of whom have contributed in
various ways to the ideas presented here. Miller’s colleagues at Carnegie
Mellon University, in particular Greg Adams, Wes Cohen, Robyn Dawes,
George Loewenstein, John Patty, and especially Steven Klepper, have been
a continual source of ideas and encouragement, as has been Herb Simon,
whose contributions to complex systems and social science will continue
to inspire and craft research efforts far into the future.

For Page, his graduate adviser Stan Reiter organized a group of
students to investigate research on learning, adaptation, and communica-
tion, and these discussions eventually led him to the Santa Fe Institute to
learn more about complex systems. At that time, a lively and ongoing
collaboration that focused on computational political economy was
started among the authors and Ken Kollman. While at the California
Institute of Technology, Page benefited from many discussions about
mathematics, theory, complexity, and experiments, with Mike Alvarez,
John Ledyard, Richard McKelvey, Charlie Plott, and Simon Wilkie.
Page’s current colleagues in the Center for the Study of Complex Systems
at the University of Michigan, including Bob Axelrod, Jenna Bednar,
Dan Brown, Michael Cohen, Jerry Davis, John Holland, Mark Newman,
Mercedes Pascual, Rick Riolo, Carl Simon, and Michael Wellman, as well
as his collaborator Lu Hong, have also been extremely influential.

The authors wish to thank various students and seminar participants
across the world who have been kind enough to give us additional
insights into these ideas. In particular, Aaron Bramson, Scott deMarchi,
and Jonathan Lafky provided some detailed input. Chuck Myers at
Princeton University Press has also provided wonderful encourage-
ment and direction, and Brian MacDonald thoughtfully copyedited the
manuscript.
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Some of the nicest examples of interesting complex social systems
have emerged in our home institutions. We are grateful to the research
infrastructure of the Santa Fe Institute, Carnegic Mellon University,
and the University of Michigan. In particular, we would like to thank
Susan Ballati, Ronda Butler-Villa, Bob Eisenstein, Ellen Goldberg, Ginny
Greninger, George Gumerman, Ginger Richardson, Andi Sutherland,
Della Ulibarri, Laura Ware, Geoffrey West, and Chris Wood at the Santa
Fe Institute; Michele Colon, Carole Deaunovich, Amy Patterson, Rosa
Stipanovic, and Julie Wade at Carnegie Mellon University; and Mita
Gibson and Howard Qishi at the University of Michigan.
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CHAPTER 1

Introduction

The goal of science is to make the wonderful and complex
understandable and simple—but not less wonderful.
—Herb Simon, Sciences of the Artificial

The process of scientific discovery is, in effect, a continual
flight from wonder.
—Albert Einstein, Autobiographical Notes

ADAPTIVE SOCIAL SYSTEMS are composed of interacting, thoughtful (but
perhaps not brilliant) agents. It would be difficult to date the exact
moment that such systems first arose on our planet—perhaps it was
when early single-celled organisms began to compete with one another
for resources or, more likely, much earlier when chemical interactions
in the primordial soup began to self-replicate. Once these adaptive
social systems emerged, the planet underwent a dramatic change where,
as Charles Darwin noted, “from so simple a beginning endless forms
most beautiful and most wonderful have been, and are being, evolved.”
Indeed, we find ourselves at the beginning of a new millennium being not
only continually surprised, delighted, and confounded by the unfolding
of social systems with which we are well acquainted, but also in the
enviable position of creating and crafting novel adaptive social systems
such as those arising in computer networks.

What it takes to move from an adaptive system to a complex adaptive
system is an open question and one that can engender endless debate. At
the most basic level, the field of complex systems challenges the notion
that by perfectly understanding the behavior of each component part of
a system we will then understand the system as a whole. One and one
may well make two, but to really understand two we must know both
about the nature of “one” and the meaning of “and.”

The hope is that we can build a science of complexity (an obvious mis-
nomer, given the quest for simplicity that drives the scientific enterprise,
though alternative names are equally egregious). Rather than venturing
further on the well-trodden but largely untracked morass that attempts to
define complex systems, for the moment we will rely on Supreme Court
Justice Stewart’s words in his concurring decision on a case dealing with
obscenity (Jacobellis v. Ohio, 1964): “I shall not today attempt further
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The science of complex systems is a rapidly evolving area, in terms
of both domains and methods. The interest in this area, as well as its
rapid subsequent diffusion, has been rather remarkable (especially in a
field like economics, where, as Paul Samuelson (1999, xi) once remarked,
“science advances funeral by funeral”). We intend for this book both to
summarize some key past contributions as well as to lay out an agenda
for the future. Any such agenda will require the efforts of many scientists,
and we hope to provide sufficient insights and practical guidance so that
others can productively join in this research effort.

The tools and ideas emerging from complex systems research com-
plement existing approaches, and they should allow us to build much
better theories about the world when they are carefully integrated with
existing techniques. Some of the discussions in this book surround basic
issues in good scientific modeling. Having a good understanding of these
issues is certainly a prerequisite for anyone interested in pursuing work
in this area, and unfortunately explicit discussions of modeling are rarely
encountered by most scholars.

The book’s central theme, “The Interest in Between,” has two mean-
ings. The first relates to the level and techniques we use to illustrate the
core material in complex adaptive social systems. The second concerns
the scientific space that this area occupies.

Complex systems has become both a darling of the popular press
and a rapidly advancing scientific field. Unfortunately, this creates a
gap between popular accounts that rely on amorphous metaphors and
cutting-edge research that requires a technical background. Here we
hope to provide a point of entry that lies between metaphor and
technicalities. Our work focuses on simple examples that are accessible,
yet also contain much deeper foundational insights. This approach is
analogous to learning game theory by studying the Prisoner’s Dilemma
or the Centipede game. While game theory rests on a very abstract and
technical foundation—fixed points, hemicontinuous correspondences,
and the like—most of the core insights are contained in the analysis of
these simple games. In a similar spirit, here we rely on simple models and
examples to convey the key ideas. These illustrations will exist in between
metaphor and abstract mathematics, in between the flowery language
that has taken hold in the press and concrete computations, We view this
“in-between” as a good point of entry into the material and hope that it
gives readers the ability and interest to dig deeper into the field as they
see fit.

We have strived to make this book accessible to both academics and the
sophisticated lay reader. Whether you are a graduate student or faculty
member in the social sciences trying to understand better what complex
systems is about and how it could be used, an engineer hoping to improve
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your models of processes by using social agents, or someone interested in
business, economics, or politics who wants a deeper understanding of the
causes and implications of complexity, you should find this book useful
and approachable.

Ultimately the study of complex systems illuminates the interest in
between the usual scientific boundaries.

It is the interest in between various fields, like biology and eco-
nomics and physics and computer science. Problems like organization,
adaptation, and robustness transcend all of these fields. For example,
issues of organization arise when biologists think about how cells form,
economists study the origins of firms, physicists look at how atoms align,
and computer scientists form networks of machines.

It is the interest in between the usual extremes we use in modeling. We
want to study models with a few agents, rather than those with only one
or two or infinitely many. We want to understand agents that are neither
extremely brilliant nor extremely stupid, but rather live somewhere in the
middle.

It is the interest in between stasis and utter chaos. The world tends not
to be completely frozen or random, but rather it exists in between these
two states. We want to know when and why productive systems emerge
and how they can persist.

It is the interest in between control and anarchy. We find robust
patterns of organization and activity in systems that have no central
control or authority. We have corporations—or, for that matter, human
bodies and beehives—that maintain a recognizable form and activity over
long periods of time, even though their constituent parts exist on time
scales that are orders of magnitude less long lived.

It is the interest in between the continuous and the discrete. The
behavior of systems as we transition between the continuous and discrete
is often surprising. Many systems do not smoothly move between these
two realms, but instead exhibit quite different patterns of behavior, even
though from the outside they seem so “close.”

It is the interest in between the usual details of the world. We need to
find those features of the world where the details do not matter, where
large equivalence classes of structure, action, and so on lead to a deep
sameness of being,

The science of complex systems and its ability to explore the interest
in between is especially relevant for some of the most pressing issues of
our modern world. Many of the opportunities and challenges before us—
globalization, sustainability, combating terrorism, preventing epidemics,
and so on—are complex. Each of these domains consists of a set of
diverse actors who dynamically interact with one another awash in a sea
of feedbacks. To understand, and ultimately to harness, such complexity
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will require a sustained and imaginative effort on the part of researchers
across the sciences.

Kenneth Boulding summarized science as consisting of “testable and
partially tested fantasies about the real world.” The science of complex
systems is not a new way of doing science but rather one in which new
fantasies can be indulged.



CHAPTER 2

Complexity in Social Worlds

I adore simple pleasures. They are the last refuge of the
complex.

—Oscar Wilde, The Picture of Dorian Gray

When a distinguished but elderly scientist states that
something is possible, he is almost certainly right. When he
states that something is impossible, he is very probably
wrong.

—Arthur C. Clarke, Report on Planet Three

WE ARE SURROUNDED by complicated social worlds. These worlds are
composed of multitudes of incommensurate elements, which often make
them hard to navigate and, ultimately, difficult to understand. We would,
however, like to make a distinction between complicated worlds and
complex ones. In a complicated world, the various elements that make up
the system maintain a degree of independence from one another, Thus,
removing one such element (which reduces the level of complication)
does not fundamentally alter the system’s behavior apart from that which
directly resulted from the piece that was removed. Complexity arises
when the dependencies among the elements become important. In such a
system, removing one such element destroys system behavior to an extent
that goes well beyond what is embodied by the particular element that is
removed.

Complexity is a deep property of a system, whereas complication is
not. A complex system dies when an element is removed, but complicated
ones continue to live on, albeit slightly compromised. Removing a seat
from a car makes it less complicated; removing the timing belt makes it
less complex (and useless). Complicated worlds are reducible, whereas
complex ones are not.

While complex systems can be fragile, they can also exhibit an unusual
degree of robustness to less radical changes in their component parts.
The behavior of many complex systems emerges from the activities of
lower-level components. Typically, this emergence is the result of a very
powerful organizing force that can overcome a variety of changes to the
lower-level components. In a garden, if we eliminate an insect the vacated
niche will often be filled by another species and the ecosystem will
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continue to function; in a market, we can introduce new kinds of traders
and remove old traders, vet the system typically maintains its ability to
set sensible prices. Of course, if we are too extreme in such changes, say,
by eliminating a keystone species in the garden or all but one seller in the
market, then the system’s behavior as we know it collapses.

When a scientist faces a complicated world, traditional tools that rely
on reducing the system to its atomic elements allow us to gain insight.
Unfortunately, using these same tools to understand complex worlds
fails, because it becomes impossible to reduce the system without killing
it. The ability to collect and pin to a board all of the insects that live in
the garden does little to lend insight into the ecosystem contained therein.

The innate features of many social systems tend to produce complexity.
Social agents, whether they are bees or people or robots, find themselves
enmeshed in a web of connections with one another and, through a
variety of adaptive processes, they must successfully navigate through
their world. Social agents interact with one another via connections.
These connections can be relatively simple and stable, such as those
that bind together a family, or complicated and ever changing, such as
those that link traders in a marketplace. Social agents are also capable of
change via thoughtful, but not necessarily brilliant, deliberations about
the worlds they inhabit. Social agents must continually make choices,
either by direct cognition or a reliance on stored (but not immutable)
heuristics, about their actions. These themes of connections and change
are ever present in all social worlds.

The remarkable thing about social worlds is how quickly such con-
nections and change can lead to complexity. Social agents must predict
and react to the actions and predictions of other agents. The various
connections inherent in social systems exacerbate these actions as agents
become closely coupled to one another. The result of such a system is that
agent interactions become highly nonlinear, the system becomes difficult
to decompose, and complexity ensues.

2.1 THE STANDING OVATION PROBLEM

To begin our exploration of complex adaptive social systems we consider
a very simple social phenomenon: standing ovations (Schelling, 1978;
Miller and Page, 2004). Standing ovations, in which waves of audience
members stand to acknowledge a particularly moving performance,
appear to arise spontaneously.! Although in the grand scheme of things

IThere are circumstances, such as the annual State of the Union address before the U.S.
Congress, where such behavior is a bit more orchestrated.
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Figure 2.1. Two views of modeling the standing ovation. In its simplest

form, the model requires that everyone shares the same seat in the auditorium
(left), while the more elaborate model (right) allows space, friendship
connections, and physical factors like vision to play a vital role in the system.
While the simple model might rely on traditional tools like formal mathematics
and statistics, the more elaborate model may require new techniques like
computational models using agent-based objects to be fully realized.

The dynamics of the model also becomes more complicated. In
the original model, we had an initial decision to stand, followed by
a second decision based on how many people stood initially. After this
second decision, the model reached an equilibrium where either the
original group remained standing or everyone was up on their feet.
The new model embodies a much more elaborate (and likely realistic)
dynamics. In general, it will not be the case that the model attains an
equilibrium after the first two rounds of updating. Typically, the first
round of standing will induce others to stand, and this action will cause
others to react; in this way, the system will display cascades of behavior
that may not settle down anytime soon.

These two modeling approaches illuminate the world in very different
ways. In the first model either fewer than o percent stand or everyone
does; in the second it is possible to have any percentage of people left
standing. In the first model the outcome is determined after two periods;
in the second cascades of behavior wash over the auditorium and often
reverberate for many periods. In the first model everyone’s influence
is equal; in the second influence depends on friendships and even seat
location. Oddly, the people in the front have the most visual influence
on others yet also have the least visual information, whereas those in
the back with the most information have the least influence (think of the
former as celebrities and the latter as academics).
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The second model provides a number of new analytic possibilities. Do
performances that attract more groups lead to more ovations? How does
changing the design of the theater by, say, adding balconies, influence
ovations? If you want to start an ovation, where should you place your
shills? If people are seated based on their preferences for the performance,
say, left or right side of the aisle or more expensive seats up front, do you
see different patterns of ovations?

Although standing ovations per se are not the most pressing of social
problems, they are related to a large class of important behaviors that
is tied to social contagion. In these worlds, people get tied to, and
are influenced by, other people. Thus, to understand the dynamics of
a disease epidemic, we need to know not only how the disease spreads
when one person contacts another but also the patterns that determine
who contacts whom over time. Such contagion phenomena drive a
variety of important social processes, ranging from crime to academic
performance to involvement in terrorist organizations.

2.2 WHAT’s THE Buzz?

Heterogeneity is often a key driving force in social worlds. In the
Standing Ovation problem, the heterogeneity that arose from where
people sat and with whom they associated resulted in a model rich
in behavioral possibilities. If heterogeneity is a key feature of complex
systems, then traditional social science tools—with their emphases on
average behavior being representative of the whole—may be incomplete
or even misleading.

In many social scenarios, differences nicely cancel one another out.
For example, consider tracking the behavior of a swarm of bees. If you
observe any one bee in the swarm its behavior is pretty erratic, making an
exact prediction of that bee’s next location nearly impossible; however,
keep your eye on the center of the swarm—the average—and you can
detect a fairly predictable pattern. In such worlds, assuming behavior
embodied by a single representative bee who averages out the flight paths
of all of the bees within the swarm both simplifies and improves our
ability to predict the future.

2.2.1 Stay Cool

While differences can cancel out, making the average a good predictor
of the whole, this is not always the case. In complex systems we often
see differences interacting with one another, resulting in behavior that
deviates remarkably from the average.
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To see why, we can return to our bees. Genetic diversity in bees
produces a collective benefit that plays a critical function in maintaining
hive temperature (Fischer, 2004). For honey bees to reproduce and grow,
they must maintain the temperature of their hive in a fairly narrow range
via some unusual behavioral mechanisms. When the hive gets too cold,
bees huddle together, buzz their wings, and heat it up. When the hive gets
too hot, bees spread out, fan their wings, and cool things down.

Each individual bee’s temperature thresholds for huddling and fanning
are tied to a genetically linked trait. Thus, genetically similar bees all feel
a chill at the same temperature and begin to huddle; similarly, they also
overheat at the same temperature and spread out and fan in response.

Hives that lack genetic diversity in this trait experience unusually
large fluctuations in internal temperatures. In these hives, when the
temperature passes the cold threshold, all the bees become too cold at
the same time and huddle together. This causes a rapid rise in temperature
and soon the hive overheats, causing all the bees to scatter in an
over ambitious attempt to bring down the temperature. Like a house
with a primitive thermostat, the hive experiences large fluctuations of
temperature as it continually over- and undershoots its ideals.

Hives with genetic diversity produce much more stable internal
temperatures. As the temperature drops, only a few bees react and
huddle together, slowly bringing up the temperature. If the temperature
continues to fall, a few more bees join into the mass to help out. A
similar effect happens when the hive begins to overheat. This moderate
and escalating response prevents wild swings in temperature. Thus, the
genetic diversity of the bees leads to relatively stable temperatures that
ultimately improve the health of the hive.

In this example, considering the average behavior of the bees is very
misleading. The hive that lacked genetic diversity—essentially a hive of
averages—behaves in a very different way than the diverse hive. Here,
average behavior leads to wide temperature fluctuations whereas hetero-
geneous behavior leads to stability. To understand this phenomenon, we
need to view the hive as a complex adaptive system and not as a collection
of individual bees whose differences cancel out one another.

2.2.2 Attack of the Killer Bees

We next wish to consider a model of bees attacking a threat to the
hive.” Some bees go through a maturation stage in which they guard the

3This is a simplified version of models of human rioting constructed by Grannoveter
(1978) and Lohmann (1993). Unlike the previous example, the direct applicability to bees
is more speculative on our part.



16 ¢ Chapter 2

entrances to the hive for a short period of time. When a threat is sensed,
the guard bees initiate a defensive response (from flight, to oriented flight,
to stinging) and also release chemical pheromones into the air that serve
to recruit other bees into the defense.

To model such behavior, assume that there are one hundred bees
numbered 1 through 100. We assume that each bee has a response
threshold, R;, that gives the number of pheromones required to be in
the air before bee i joins the fray (and also releases its pheromone).
Thus, a bee with R, = 5 will join in once five other bees have done
so. Finally, we assume that when a threat to the hive first emerges,
R Dbees initiate the defensive response (to avoid some unnecessary
complications, let these bees be separate from the one hundred bees we
are watching). Note that defensive behavior is decentralized in a bechive:
it is initiated by the sentry activities of the individual guard bees and per-
petuated by each of the remaining bees based only on local pheromone
sensing.

We consider two cases. In the first case, we have a homogeneous hive
with R; = 50.5 for all i. In the second case, we allow for heterogeneity
and let R; = i for all 7. Thus, in this latter case each bee has a different
response threshold ranging from one to one hundred. Given these two
worlds, what will happen?

In the homogeneous case, we know that a full-scale attack occurs if
and only if R > 50. That is, if more than fifty bees are in the initial
wave, then all of the remaining one hundred will join in; otherwise the
remaining bees stay put. In the heterogeneous case, a full-scale atrack
ensues for any R > 1. This latter result is easy to see, because once at
least one bee attacks, then the bee with threshold equal to one will join
the fray, and this will trigger the bee with the next highest threshold to
join in, and so on.

Again, notice how average behavior is misleading. The average thresh-
old of the heterogeneous hive is identical to that of the homogeneous
hive, yet the behaviors of the two hives could not be more different.
It is relatively difficult to get the homogeneous hive to react, while the
heterogeneous one is on a hair trigger. Without explicitly incorporating
the diversity of thresholds, it is difficult to make any kind of accurate
prediction of how a given hive will behave.

2.2.3 Averaging Out Average Behavior

Note that the two systems we have explored, regulating temperature and
providing defense, have very different behaviors linked to heterogeneity.
In the temperature system, heterogeneity leads to stability. That is,
increased heterogeneity improves the ability of the system to stabilize



