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PREFACE

REDUCTIONISM is the most natural thing in the world to grasp. I's simply
the belief that “a whole can be understood completely if you understand its parts,
and the nature of their ‘sum.”” No one in ber left brain conld veject veductionism.

—Douglas Hofstadter, Gidel, Escher, Bach: an Eternal Golden Braid

EDUCTIONISM HAS BEEN THE DOMINANT approach to science
Rsince the 1600s. René Descartes, one of reductionism’s earliest propo-
nents, described his own scientific method thus: “to divide all the difficulties
under examination into as many parts as possible, and as many as were required
to solve them in the best way” and “to conduct my thoughts in a given order,
beginning with the simplest and most easily understood objects, and gradually
ascending, as it were step by step, to the knowledge of the most complex.”!

Since the time of Descartes, Newton, and other founders of the modern
scientific method until the beginning of the twentieth century, a chief goal
of science has been a reductionist explanation of all phenomena in terms of
fundamental physics. Many late nineteenth-century scientists agreed with the
well-known words of physicist Albert Michelson, who proclaimed in 1894
that “it seems probable that most of the grand underlying principles have
been firmly established and that further advances are to be sought chiefly in

1. Full references for all quotations are given in the notes.



the rigorous application of these principles to all phenomena which come
under our notice.”

Of course within the next thirty years, physics would be revolutionized by
the discoveries of relativity and quantum mechanics. But twentieth-century
science was also marked by the demise of the reductionist dream. In spite
of its great successes explaining the very large and very small, fundamental
physics, and more generally, scientific reductionism, have been notably mute
in explaining the complex phenomena closest to our human-scale concerns.

Many phenomena have stymied the reductionist program: the seemingly
irreducible unpredictability of weather and climate; the intricacies and adap-
tive nature of living organisms and the diseases that threaten them; the
economic, political, and cultural behavior of societies; the growth and effects
of modern technology and communications networks; and the nature of intel-
ligence and the prospect for creating it in computers. The antireductionist
catch-phrase, “the whole is more than the sum of its parts,” takes on increas-
ing significance as new sciences such as chaos, systems biology, evolutionary
economics, and network theory move beyond reductionism to explain how
complex behavior can arise from large collections of simpler components.

By the mid-twentieth century, many scientists realized that such phe-
nomena cannot be pigeonholed into any single discipline but require an
interdisciplinary understanding based on scientific foundations that have not
yet been invented. Several attempts at building those foundations include
(among others) the fields of cybernetics, synergetics, systems science, and,
more recently, the science of complex systems.

In 1984, a diverse interdisciplinary group of twenty-four prominent scien-
tists and mathematicians met in the high desert of Santa Fe, New Mexico, to
discuss these “emerging syntheses in science.” Their goal was to plot out the
founding of a new research institute that would “pursue research on a large
number of highly complex and interactive systems which can be properly
studied only in an interdisciplinary environment” and “promote a unity of
knowledge and a recognition of shared responsibility that will stand in sharp
contrast to the present growing polarization of intellectual cultures.” Thus
the Santa Fe Institute was created as a center for the study of complex systems.

In 1984 I had not yet heard the term complex systems, though these kinds of
ideas were already in my head. I was a first-year graduate student in Computer
Science at the University of Michigan, where I had come to study artificial
ntelligence; that is, how to make computers think like people. One of my
motivations was, in fact, to understand how pesple think—how abstract rea-
soning, emotions, creativity, and even consciousness emerge from trillions of

tiny brain cells and their electrical and chemical communications. Having
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been deeply enamored of physics and reductionist goals, I was going through
my own antireductionist epiphany, realizing that not only did current-day
physics have little, if anything, to say on the subject of intelligence but that
even neuroscience, which actually focused on those brain cells, had very little
understanding of how thinking arises from brain activity. It was becoming
clear that the reductionist approach to cognition was misguided—we just
couldn’t understand it at the level of individual neurons, synapses, and the
like.

Therefore, although I didn’t yet know what to call it, the program of
complex systems resonated strongly with me. I also felt that my own field
of study, computer science, had something unique to offer. Influenced by
the early pioneers of computation, I felt that computation as an idea goes
much deeper than operating systems, programming languages, databases,
and the like; the deep ideas of computation are intimately related to the
deep ideas of life and intelligence. At Michigan I was lucky enough to
be in a department in which “computation in narural systems” was as
much a part of the core curriculum as software engineering or compiler
design.

In 1989, at the beginning of my last year of graduate school, my Ph.D.
advisor, Douglas Hofstadter, was invited to a conference in Los Alamos, New
Mexico, on the subject of “emergent computation.” He was too busy toattend,
so he sent me instead. I was both thrilled and terrified to present work at such
a high-profile meeting. It was at that meeting that I first encountered a large
group of people obsessed with the same ideas that I had been pondering. I
found that they not only had a name for this collection of ideas—complex
systems—but that their institute in nearby Santa Fe was exactly the place I
wanted to be. I was determined to find a way to get a job there.

Persistence, and being in the right place at the right time, eventually won
me an invitation to visit the Santa Fe Institute for an entire summer. The sum-
mer stretched into a year, and that stretched into additional years. I eventually
became one of the institute’s resident faculty. People from many different
countries and academic disciplines were there, all exploring different sides
of the same question. How do we move beyond the traditional paradigm of
reductionism toward a new understanding of seemingly irreducibly complex
systems?

The idea for this book came about when I was invited to give the Ulam
Memorial Lectures in Santa Fe—an annual set of lectures on complex systems
for a general audience, given in honor of the great mathematician Stanislaw
Ulam. The title of my lecture series was “The Past and Future of the Sciences
of Complexity.” It was very challenging to figure out how to introduce the
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audience of nonspecialists to the vast territory of complexity, to give them a
feel for what is already known and for the daunting amount that remains to
be learned. My role was like that of a tour guide in a large, culturally rich
foreign country. Our schedule permitted only a short time to hear about the
historical background, to visit some important sites, and to get a feel for the
landscape and culture of the place, with translations provided from the native
language when necessary.

This book is meant to be a much expanded version of those lectures—
indeed, a written version of such a tour. It is about the questions that
fascinate me and others in the complex systems community, past and present:
How is it that those systems in nature we call complex and adaptive—brains,
insect colonies, the immune system, cells, the global economy, biological
evolution—produce such complex and adaptive behavior from underlying,
simple rules? How can interdependent yet self-interested organisms come
together to cooperate on solving problems that affect their survival as a whole?
And are there any general principles or laws that apply to such phenomena?
Can life, intelligence, and adaptation be seen as mechanistic and computa-
tional? If so, could we build truly intelligent and /7zzzg machines? And if we
could, would we want to?

I have learned that as the lines between disciplines begin to blur, the
content of scientific discourse also gets fuzzier. People in the field of complex
systems talk about many vague and imprecise notions such as spontaneous
order, self-organization, and emergence (as well as “complexity” itself). A
central purpose of this book is to provide a clearer picture of what these
people are talking about and to ask whether such interdisciplinary notions
and methods are likely to lead to useful science and to new ideas for addressing
the most difficult problems faced by humans, such as the spread of disease,
the unequal distribution of the world'’s natural and economic resources, the
proliferation of weapons and conflicts, and the effects of our society on the
environment and climate.

The chapters that follow give a guided tour, flavored with my own per-
spectives, of some of the core ideas of the sciences of complexity—where they
came from and where they are going. As in any nascent, expanding, and vital
area of science, people’s opinions will differ (ro put it mildly) about what the
core ideas are, what their significance is, and what they will lead to. Thus my
perspective may differ from that of my colleagues. An important part of this
book will be spelling out some of those differences, and I'll do my best to
provide glimpses of areas in which we are all in the dark or just beginning to
see some light. These are the things that make science of this kind so stim-
ulating, fun, and worthwhile both to practice and to read about. Above all
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else, I hope to communicate the deep enchantment of the ideas and debates
and the incomparable excitement of pursuing them.

This book has five parts. In part I I give some background on the history and
content of four subject areas that are fundamental to the study of complex
systems: information, computation, dynamics and chaos, and evolution. In
parts II-IV I describe how these four areas are being woven together in the
science of complexity. I describe how life and evolution can be mimicked
in computers, and conversely how the notion of computation itself is being
imported to explain the behavior of natural systems. I explore the new science
of networks and how it is discovering deep commonalities among systems
as disparate as social communities, the Internet, epidemics, and metabolic
systems in organisms. I describe several examples of how complexity can be
measured in nature, how it is changing our view of living systems, and how
this new view might inform the design of intelligent machines. I look at
prospects of computer modeling of complex systems, as well as the perils of
such models. Finally, in che last part I take on the larger question of the search
for general principles in the sciences of complexity.

No background in math or science is needed to grasp what follows, though
I will guide you gently and carefully through explorations in both. I hope
to offer value to scientists and nonscientists alike. Although the discussion
is not technical, I have tried in all cases to make it substantial. The notes
give references to quotations, additional information on the discussion, and
pointers to the scientific literature for those who want even more in-depth
reading.

Have you been curious about the sciences of complexity? Would you like

to come on such a guided tour? Let’s begin.
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cuapter 1 | What Is Complexity?

[deas this made up of several simple ones put together, 1 call Complex; such as are
Beauty, Gratitude, a Man, an Army, the Universe.

—John Locke, An Essay Concerning Human Understanding

Brazil: The Amazon rain forest. Half a million army ants are on
the march. No one is in charge of this army; it has no commander.
Each individual ant is nearly blind and minimally intelligent, but the
marching ants together create a coherent fan-shaped mass of movement
that swarms over, kills, and efficiently devours all prey in its path. What
cannot be devoured right away is carried with the swarm. After a day
of raiding and destroying the edible life over a dense forest the size of
a football field, the ants build their nighttime shelter—a chain-mail
ball a yard across made up of the workers’ linked bodies, sheltering the
young larvae and mother queen at the center. When dawn arrives, the
living ball melts away ant by ant as the colony members once again
take their places for the day’s march.

Nigel Franks, a biologist specializing in ant behavior, has written, “The
solitary army ant is behaviorally one of the least sophisticated animals imag-
inable,” and, “If 100 army ants are placed on a flat surface, they will walk
around and around in never decreasing circles until they die of exhaustion.”
Yet put half a million of them together, and the group as a whole becomes
what some have called a “superorganism” with “collective intelligence.”



How does this come about? Although many things are known abour ant
colony behavior, scientists still do not fully understand all the mechanisms
underlying a colony’s collective intelligence. As Franks comments further, “I
have studied E. burchelli [a common species of army ant} for many years, and
for me the mysteries of its social organization still multiply faster than the
rate at which its social structure can be explored.”

The mysteries of army ants are a microcosm for the mysteries of many
natural and social systems that we think of as “complex.” No one knows
exactly how any community of social organisms—ants, termites, humans—
come together to collectively build the elaborate structures that increase the
survival probability of the community as a whole. Similarly mysterious is how
the intricate machinery of the immune system fights disease; how a group
of cells organizes itself to be an eye or a brain; how independent members
of an economy, each working chiefly for its own gain, produce complex but
structured global markets; or, most mysteriously, how the phenomena we call
“intelligence” and “consciousness” emerge from nonintelligent, nonconscious
material substrates.

Such questions are the topics of complex systems, an interdisciplinary field of
research that seeks to explain how large numbers of relatively simple entities
organize themselves, without the benefit of any central controller, intoa collec-
tive whole that creates patterns, uses information, and, in some cases, evolves
and learns. The word complex comes from the Latin root plectere: to weave,
entwine. In complex systems, many simple parts are irreducibly entwined,
and the field of complexity is itself an entwining of many different fields.

Complex systems researchers assert that different complex systems in
narture, such as insect colonies, immune systems, brains, and economies, have

much in common. Let’s look more closely.

Insect Colonies

Colonies of social insects provide some of the richest and most mysterious
examples of complex systems in nature. An ant colony, for instance, can
consist of hundreds to millions of individual ants, each one a rather simple
creature that obeys its genetic imperatives to seek out food, respond in simple
ways to the chemical signals of other ants in its colony, fight intruders, and so
forth. However, as any casual observer of the outdoors can actest, the ants in
a colony, each performing its own relatively simple actions, work together to
build astoundingly complex structures that are clearly of great importance for
the survival of the colony as a whole. Consider, for example, their use of soil,
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leaves, and twigs to construct huge nests of great strength and stability, with
large networks of underground passages and dry, warm, brooding chambers
whose temperatures are carefully controlled by decaying nest materials and the
ants’ own bodies. Consider also the long bridges certain species of ants build
with their own bodies to allow emigration from one nest site to another via tree
branches separated by great distances (to an ant, that is) (figure 1.1). Alchough
much is now understood abourt ants and their social structures, scientists still
can fully explain neither their individual nor group behavior: exactly how
the individual actions of the ants produce large, complex structures, how the
ants signal one another, and how the colony as a whole adapts to changing
circumstances (e.g., changing weather or attacks on the colony). And how
did biological evolution produce creatures with such an enormous contrast
between their individual simplicity and their collective sophistication?

The Brain

The cognitive scientist Douglas Hofstadter, in his book Gédel, Escher, Bach,
makes an extended analogy between ant colonies and brains, both being

FIGURE I.I. Ants build a
bridge with their bodies to
allow the colony to take the
shortest path across a gap.
(Photograph courtesy of
Car] Rettenmeyer.)
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complex systems in which relatively simple components with only limited
communication among themselves collectively give rise to complicated and
sophisticated system-wide (“global”) behavior. In the brain, the simple com-
ponents are cells called newrons. The brain is made up of many different types of
cells in addition to neurons, but most brain scientists believe that the actions
of neurons and the patterns of connections among groups of neurons are what
cause perception, thought, feelings, consciousness, and the other important
large-scale brain accivities.

Neurons are pictured in figure 1.2 (top). Neurons consists of three main
parts: the cell body (soma), the branches that transmit the cell’s input from
other neurons (dendyrites), and the single trunk transmitting the cell’s output
to other neurons (@xon). Very roughly, a neuron can be either in an active state
(firing) or an inactive state (nof firing). A neuron fires when it receives enough
signals from other neurons through its dendrites. Firing consists of sending an
electric pulse through the axon, which is then converted into a chemical signal
via chemicals called nexrotransmitters. This chemical signal in turn activates
other neurons through their dendrites. The firing frequency and the resulting
chemical output signals of a neuron can vary over time according to both its
input and how much it has been firing recently.

These actions recall those of ants in a colony: individuals (neurons or ants)
perceive signals from other individuals, and a sufficient summed strengch
of these signals causes the individuals to act in certain ways that produce
additional signals. The overall effects can be very complex. We saw that an
explanation of ants and their social structures is still incomplete; similarly,
scientists don’t yet understand how the actions of individual or dense networks
of neurons give rise to the large-scale behavior of the brain (figure 1.2, bottom).
They don’t understand what the neuronal signals mean, how large numbers of
neurons work together to produce global cognitive behavior, or how exactly
they cause the brain to think thoughts and learn new things. And again,
perhaps most puzzling is how such an elaborate signaling system with such
powerful collective abilities ever arose through evolution.

The Immune System

The immune system is another example of a system in which relatively
simple components collectively give rise to very complex behavior involv-
ing signaling and control, and in which adaptation occurs over time.
A photograph illustrating the immune system’s complexity is given in
figure 1.3.

6 | BACKGROUND AND HISTORY



FIGURE 1.2. Top: microscopic view of neurons, visible via staining.
Bottom: a human brain. How does the behavior at one level give rise to
that of the next level? (Neuron photograph from brainmaps.org
{http://brainmaps.org/smi32-pic.jpgl, licensed under Creative
Commons [http://creativecommons.org/licenses/by/3.0/}. Brain

photograph courtesy of Christian R. Linder.)
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FIGURE 1.3. Immune system cells attacking a cancer cell.

(Photograph by Susan Arnold, from National Cancer Institute
Visuals Online [hetp://visualsonline.cancer.gov/

details.cfm?imageid=23701.)

The immune system, like the brain, differs in sophistication in different
animals, but the overall principles are the same across many species. The
immune system consists of many different types of cells distributed over the
entire body (in blood, bone marrow, lymph nodes, and other organs). This
collection of cells works together in an effective and efficient way without any
central control.

The star players of the immune system are white blood cells, otherwise
known as lymphocytes. Each lymphocyte can recognize, via receptors on its cell
body, molecules corresponding to certain possible invaders (e.g., bacteria).
Some one trillion of these patrolling sentries circulate in the blood at a given
time, each ready to sound the alarm if it is activared—that is, if its particular
receptors encounter, by chance, a matching invader. When a lymphocyte is
activated, it secretes large numbers of molecules—antibodies—that can iden-
tify similar invaders. These antibodies go out on a seek-and-destroy mission
throughout the body. An activated lymphocyte also divides at an increased
rate, creating daughter lymphocytes that will help hunt out invaders and
secrete antibodies against them. It also creates daughter lymphocytes that will
hang around and remember the particular invader that was seen, thus giving
the body immunity to pathogens that have been previously encountered.

8 | BACKGROUND AND HISTORY



One class of lymphocytes are called B ce//s (the B indicates that they develop
in the bone marrow) and have a remarkable property: the better the match
between a B cell and an invader, the more antibody-secreting daughter cells
the B cell creates. The daughter cells each differ slightly from the mother
cell in random ways via mutations, and these daughter cells go on to create
their own daughter cells in direct proportion to how well they match the
invader. The result is a kind of Darwinian natural selection process, in which
the match between B cells and invaders gradually gets better and better,
until the antibodies being produced are extremely efficient at seeking and
destroying the culprit microorganisms.

Many other types of cells participate in the orchestration of the immune
response. 1" cells (which develop in the thymus) play a key role in regulating
the response of B cells. Macrophages roam around looking for substances that
have been tagged by antibodies, and they do the actual work of destroying the
invaders. Other types of cells help effect longer-term immunity. Still other
pares of the system guard against attacking the cells of one’s own body.

Like that of the brain and ant colonies, the immune system’s behavior arises
from the independent actions of myriad simple players with no one actually
in charge. The actions of the simple players—B cells, T cells, macrophages,
and the like—can be viewed as a kind of chemical signal-processing necwork
in which the recognition of an invader by one cell triggers a cascade of signals
among cells that put into play the elaborate complex response. As yet many
crucial aspects of this signal-processing system are not well understood. For
example, it is still to be learned what, precisely, are the relevant signals,
their specific functions, and how they work together to allow the system as a
whole to “learn” whar threats are present in the environment and to produce
long-term immunity to those threats. We do not yet know precisely how the
system avoids attacking the body; or what gives rise to flaws in the system,
such as autoimmune diseases, in which the system does attack the body; or
the detailed strategies of the human immunodeficiency virus (HIV), which
is able to get by the defenses by attacking the immune system itself. Once
again, a key question is how such an effective complex system arose in the
first place in living creatures through biological evolution.

Economies

Economies are complex systems in which the “simple, microscopic” com-
ponents consist of people (or companies) buying and selling goods, and the
collective behavior is the complex, hard-to-predict behavior of markets as

WHAT 1S COMPLEXITY? | 9



a whole, such as changes in the price of housing in different areas of the
country or flucruations in stock prices (figure 1.4). Economies are thought
by some economists to be adaptive on both the microscopic and macro-
scopic level. At the microscopic level, individuals, companies, and markets
try to increase their profitability by learning about the behavior of other indi-
viduals and companies. This microscopic self-interest has historically been
thought to push markets as a whole—on the macroscopic level—toward an
equilibrium state in which the prices of goods are set so there is no way to
change production or consumption patterns to make everyone better off. In
terms of profitability or consumer satisfaction, if someone is made better off,
someone else will be made worse off. The process by which markets obrain
this equilibrium is called market ¢fficiency. The eighteenth-century economist
Adam Smith called this self-organizing behavior of markets the “invisible
hand”: it arises from the myriad microscopic actions of individual buyers and
sellers.

Economistsare interested in how markets become efficient, and conversely,
what makes efficiency fail, as it does in real-world markets. More recently,
economists involved in the field of complex systems have tried to explain
market behavior in terms similar to those used previously in the descriptions of
other complex systems: dynamic hard-to-predict patterns in global behavior,
such as patterns of market bubbles and crashes; processing of signals and
information, such as the decision-making processes of individual buyers and
sellers, and the resulting “information processing” ability of the market as
a whole to “calculate” efficient prices; and adapration and learning, such as
individual sellers adjusting their production to adapt to changes in buyers’
needs, and the market as a whole adjusting global prices.

The World Wide Web

The World Wide Web came on the world scene in the early 1990s and has
experienced exponential growth ever since. Like the systems described above,
the Web can be thought of as a self-organizing social system: individuals, with
little or no central oversight, perform simple tasks: posting Web pages and
linking to other Web pages. However, complex systems scientists have discov-
ered that the network as a whole has many unexpected large-scale properties
involving its overall structure, the way in which it grows, how information
propagates over its links, and the coevolutionary relationships between the
behavior of search engines and the Web’s link structure, all of which lead
to what could be called “adaptive” behavior for the system as a whole. The
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FIGURE 1.4. Individual actions on a trading floor give rise to the
hard-to-predict large-scale behavior of financial markets. Top: New York
Stock Exchange (photograph from Milstein Division of US History,
Local History and Genealogy, The New York Public Library, Astor,
Lenox, and Tilden Foundations, used by permission). Bottom: Dow

Jones Industrial Average closing price, plotted monthly 1970-2008.

WHAT 1S COMPLEXITY?

II1



FIGURE 1.5. Network structure of a section of the World Wide

Web. (Reprinted with permission from M.E.J. Newman and
M. Girvin, Physical Review Letters E, 69,026113, 2004. Copyright
2004 by the American Physical Society.)

complex behavior emerging from simple rules in the World Wide Web is
currently a hot area of study in complex systems. Figure 1.5 illustrates the
structure of one collection of Web pages and their links. It seems that much
of the Web looks very similar; the question is, why?

Conmon Properties of Complex Systems

When looked at in detail, these various systems are quite different, but viewed
at an abstract level they have some intriguing properties in common:

1. Complex collective behavior: All the systems I described above consist
of large networks of individual components (ants, B cells, neurons,
stock-buyers, Web-site creators), each typically following relatively
simple rules with no central control or leader. It is the collective actions
of vast numbers of components that give rise to the complex,
hard-to-predict, and changing patterns of behavior that fascinate us.
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2. Signaling and information processing: All these systems produce and
use information and signals from both their internal and external
environments.

3. Adaptation: All these systems adapt—that is, change their behavior to
improve their chances of survival or success—through learning or
evolutionary processes.

Now I can propose a definition of the term complex system: a system in
which large networks of components with no central control and simple
rules of operation give rise to complex collective behavior, sophisti-
cated information processing, and adaptation via learning or evolution.
(Sometimes a differentiation is made between complex adaptive systems, in which
adaptation plays a large role, and nonadaptive complex systems, such as a hur-
ricane or a turbulent rushing river. In this book, as most of the systems I do
discuss are adaptive, I do not make this distinction.)

Systems in which organized behavior arises without an internal or exter-
nal controller or leader are sometimes called se/f~organizing. Since simple rules
produce complex behavior in hard-to-predict ways, the macroscopic behavior
of such systems is sometimes called emergent. Here is an alternative defini-
tion of a complex system: a system that exhibits nontrivial emergent and
self-organizing behaviors. The central question of the sciences of com-
plexity is how this emergent self-organized behavior comes about. In this
book I try to make sense of these hard-to-pin-down notions in different
contexts.

How Can Complexity Be Measured?

In the paragraphs above I have sketched some qualitative common properties
of complex systems. But more quantitative questions remain: Just how complex
is a particular complex system? That is, how do we measure complexity? Is there
any way to say precisely how much more complex one system is than another?

These are key questions, but they have not yet been answered to anyone’s
satisfaction and remain the source of many scientific arguments in the field.
As I describe in chaprer 7, many different measures of complexity have been
proposed; however, none has been universally accepted by scientists. Several
of these measures and their usefulness are described in various chapters of this
book.

But how can there be a science of complexity when there is no agreed-on
quantitative definition of complexity?
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I have two answers to this question. First, neither a single science of complexity
nor a single complexity theory exists yet, in spite of the many articles and books
that have used these terms. Second, as I describe in many parts of this book,
an essential feature of forming a new science is a struggle to define its central
terms. Examples can be seen in the struggles to define such core concepts as
information, computation, order, and fife. In this book I detail these struggles,
both historical and current, and tie them in with our struggles to understand
the many facets of complexity. This book is about cutting-edge science, but it
is also about the history of core concepts underlying this cutting-edge science.
The next four chapters provide this history and background on the concepts
that are used throughourt the book.
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cuarrer 2 | Dynamics, Chaos, and Prediction

1t makes me so happy. To be at the beginning again, knowing almost nothing. . . .
The ardinﬂry—nzed smjf which is our lives, the i/ymgj peap!e write poetry
a/mztt—f/oz{dj—ddj%dil,f—waterfallj. .. .these tbingj are fztll ()f nrystery, as
mysterions to us as the heavens were to the Greeks.. At's the best possible
time to be alive, when almost everything you thought you Enew is wrong.

—Tom Stoppard, Arcadia

YNAMICAL SYSTEMS THEORY (or dynamics) concerns the descrip-
Dtion and prediction of systems that exhibit complex changing behavior at
the macroscopic level, emerging from the collective actions of many interact-
ing components. The word dynamic means changing, and dynamical systems
are systems that change over time in some way. Some examples of dynamical
systems are

The solar system (the planets change position over time)

The heart of a living creature (it beats in a periodic fashion rather than
standing still)

The brain of a living creature (neurons are continually firing,
neurotransmitters are propelled from one neuron to another, synapse
strengths are changing, and generally the whole system is in a continual
state of flux)



The stock market
The world’s population

The global climate

Dynamical systems include these and most other systems that you probably
can think of. Even rocks change over geological time. Dynamical systems
theory describes in general terms the ways in which systems can change, what
types of macroscopic behavior are possible, and what kinds of predictions
about that behavior can be made.

Dynamical systems theory has recently been in vogue in popular science
because of the fascinating results coming from one of its intellectual offspring,
the study of chaos. However, it has a long history, starting, as many sciences
did, with the Greek philosopher Aristotle.

Early Roots of Dynamical Systems Theory

Aristotle was the author of one of the earliest recorded theories of motion,
one that was accepted widely for over 1,500 years. His theory rested on two
main principles, both of which turned out to be wrong. First, he believed
that motion on Earth differs from motion in the heavens. He asserted that on

Aristotle, 384-322 B.C.
(Ludovisi Collection)
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Earth objects move in straight lines and only when something forces them
to; when no forces are applied, an object comes to its natural resting state. In
the heavens, however, planets and other celestial objects move continuously
in perfect circles centered about the Earth. Second, Aristotle believed that
earthly objects move in different ways depending on what they are made of.
For example, he believed that a rock will fall to Earth because it is mainly
composed of the element ezrth, whereas smoke will rise because it is mostly
composed of the element «#r. Likewise, heavier objects, presumably containing
more earth, will fall faster than lighter objects.

Clearly Aristotle (like many theorists since) was not one to let experimental
results get in the way of his theorizing. His scientific method was to let logic
and common sense direct theory; the importance of testing the resulting
theories by experiments is a more modern notion. The influence of Aristotle’s
ideas was strong and continued to hold sway over most of Western science
until the sixteenth century—the time of Galileo.

Galileo was a pioneer of experimental, empirical science, along with his
predecessor Copernicus and his contemporary Kepler. Copernicus established
that the motion of the planets is centered not about the Earth but about the
sun. (Galileo got into big trouble with the Catholic Church for promoting
this view and was eventually forced to publicly renounce it; only in 1992 did
the Church officially admit that Galileo had been unfairly persecuted.) In the
early 1600s, Kepler discovered that the motion of the planets is not circular
but rather elliptical, and he discovered laws describing this elliptical motion.

Whereas Copernicus and Kepler focused their research on celestial motion,
Galileo studied motion not only in the heavens but also here on Earth by
experimenting with the objects one now finds in elementary physics courses:
pendula, balls rolling down inclined planes, falling objects, light reflected by
mirrors. Galileo did not have the sophisticated experimental devices we have
today: he is said to have timed the swinging of a pendulum by counting his
heartbeats and to have measured the eftects of gravity by dropping objects off
the leaning tower of Pisa. These now-classic experiments revolutionized ideas
about motion. In particular, Galileo’s studies directly contradicted Aristotle’s
long-held principles of motion. Against common sense, rest is zof the natural
state of objects; rather it takes force to stop a moving object. Heavy and light
objects in a vacuum fall at the same rate. And perhaps most revolutionary
of all, laws of motion on the Earth could explain some aspects of motions
in the heavens. With Galileo, the scientific revolution, with experimental
observations at its core, was definitively launched.

The most important person in the history of dynamics was Isaac New-
ton. Newton, who was born the year after Galileo died, can be said to have
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Galileo, 1564—-1642 (AIP Emilio
Segre Visual Archives, E. Scott

Barr Collection)

Isaac Newton, 1643-1727
(Original engraving by unknown
artist, courtesy AIP Emilio Segre

Visual Archives)

invented, on his own, the science of dynamics. Along the way he also had to
invent calculus, the branch of mathematics that describes motion and change.

Physicists call the general study of motion mechanics. This is a historical
term dating from ancient Greece, reflecting the classical view that all motion
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could be explained in terms of the combined actions of simple “machines”
(e.g., lever, pulley, wheel and axle). Newton's work is known today as classical
mechanics. Mechanics is divided into two areas: kinematics, which describes
how things move, and dynamics, which explains why things obey the laws
of kinematics. For example, Kepler’s laws are kinematic laws—they describe
how the planets move (in ellipses with the sun at one focus)—but not why they
move in this particular way. Newton’s laws are the foundations of dynamics:
they explain the motion of the planets, and everything else, in terms of the
basic notions of force and mass.
Newton'’s famous three laws are as follows:

1. Constant motion: Any object not subject to a force moves with
unchanging speed.

2. Inertial mass: When an object is subject to a force, the resulting change
in its motion is inversely proportional to its mass.

3. Equal and opposite forces: If object A exerts a force on object B, then
object B musr exert an equal and opposite force on object A.

One of Newton’s greatest accomplishments was to realize that these laws
applied not just to earchly objects but to those in the heavens as well. Galileo
was the first to state the constant-motion law, but he believed it applied only
to objects on Earch. Newton, however, understood that this law should apply
to the planets as well, and realized that elliptical orbits, which exhibit a con-
stantly changing direction of motion, require explanation in terms of a force,
namely gravity. Newton’s other major achievement was to state a universal
law of gravity: the force of gravity between two objects is proportional to
the product of their masses divided by the square of the distance berween
them. Newton’s insight—now the backbone of modern science—was that
this law applies everywhere in the universe, to falling apples as well as to
planets. As he wrote: “nature is exceedingly simple and conformable to her-
self. Whatever reasoning holds for greater motions, should hold for lesser
ones as well.”

Newtonian mechanics produced a picture of a “clockwork universe,” one
that is wound up with the three laws and then runs its mechanical course. The
mathemarician Pierre Simon Laplace saw the implication of this clockwork
view for prediction: in 1814 he asserted that, given Newrton’s laws and the
current position and velocity of every particle in the universe, it was possible,
in principle, to predict everything for all time. With the invention of elec-
tronic computers in the 1940s, the “in principle” might have seemed closer
to “in practice.”
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Revised Views of Prediction

However, two major discoveries of the twentieth century showed that
Laplace’s dream of complete prediction is not possible, even in principle. One
discovery was Werner Heisenberg’s 1927 “uncertainty principle” in quantum
mechanics, which states that one cannot measure the exact values of the posi-
tion and the momentum (mass times velocity) of a parricle at the same time.
The more certain one is about where a particle is located at a given time, the
less one can know about its momentum, and vice versa. However, effects of
Heisenberg’s principle exist only in the quantum world of tiny particles, and
most people viewed it as an interesting curiosity, but not one that would have
much implication for prediction at a larger scale—predicting the weather, say.

It was the understanding of chaos that eventually laid to rest the hope of
perfect prediction of all complex systems, quantum or otherwise. The defining
idea of chaos is that there are some systems——chaotic systems—in which even
minuscule uncertainties in measurements of initial position and momentum
can result in huge errors in long-term predictions of these quantities. This is
known as “sensitive dependence on initial conditions.”

In parts of the natural world such small uncertainties will not matter. If
your initial measurements are fairly but not perfectly precise, your predic-
tions will likewise be close to right if not exactly on target. For example,
astronomers can predict eclipses almost perfectly in spite of even relatively
large uncertainties in measuring the positions of planets. But sensitive depen-
dence on initial conditions says that in chaotic systems, even the tiniest errors
in your initial measurements will eventually produce huge errors in your
prediction of the future motion of an object. In such systems (and hurricanes
may well be an example) any error, no matter how small, will make long-term
predictions vastly inaccurate.

This kind of behavior is counterintuitive; in fact, for a long time many
scientists denied it was possible. However, chaos in this sense has been
observed in cardiac disorders, turbulence in fluids, electronic circuits, drip-
ping faucets, and many other seemingly unrelated phenomena. These days,
the existence of chaotic systems is an accepted fact of science.

It is hard to pin down who first realized that such systems might exist.
The possibility of sensitive dependence on initial conditions was proposed
by a number of people long before quantum mechanics was invented. For
example, the physicist James Clerk Maxwell hypothesized in 1873 that there
are classes of phenomena affected by “influences whose physical magnitude is
too small to be taken account of by a finite being, [but which] may produce
results of the highest importance.”
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Possibly the first clear example of a chaotic system was given in the late
nineteenth century by the French mathemarician Henri Poincaré. Poincaré
was the founder of and probably the most influential contriburtor to the mod-
ern field of dynamical systems theory, which is a major outgrowth of Newton’s
science of dynamics. Poincaré discovered sensitive dependence on initial con-
ditions when attempting to solve a much simpler problem than predicting the
motion of a hurricane. He more modestly tried to tackle the so-called three-
body problem: to determine, using Newton’s laws, the long-term motions
of three masses exerting gravitational forces on one another. Newton solved
the twe-body problem, but the three-body problem turned out to be much
harder. Poincaré tackled it in 1887 as part of a mathematics contest held in
honor of the king of Sweden. The contest offered a prize of 2,500 Swedish
crowns for a solution to the “many body” problem: predicting the future
positions of arbitrarily many masses attracting one another under Newton’s
laws. This problem was inspired by the question of whether or not the solar
system is stable: will the planets remain in their current orbits, or will they
wander from them? Poincaré started off by seeing whether he could solve it
for merely three bodies.

He did not completely succeed—the problem was too hard. But his
attempt was so impressive that he was awarded the prize anyway. Like Newton
with calculus, Poincaré had to invent a new branch of mathematics, algebraic
topology, to even tackle the problem. Topology is an extended form of geom-
etry, and it was in looking at the geometric consequences of the three-body
problem that he discovered the possibility of sensitive dependence on initial

conditions. He summed up his discovery as follows:

If we knew exactly the laws of nature and the situation of the uni-
verse at the initial moment, we could predict exactly the situation of
that same universe at a succeeding moment. But even if it were the
case that the natural laws had no longer any secret for us, we could
still only know the initial situation approximately. If that enabled
us to predict the succeeding situation with the same approximation,
that is all we require, and we should say that the phenomenon has
been predicted, that it is governed by laws. Bur it is not always so;
it may happen that small differences in the initial conditions produce
very great ones in the final phenomenon. A small error in the for-
mer will produce an enormous error in the latter. Prediction becomes
impossible. . ..

In other words, even if we know the laws of motion perfectly, two different
sets of initial conditions (here, initial positions, masses, and velocities for
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Henri Poincaré, 1854-1912
(AIP Emilio Segre Visual
Archives)

objects), even if they differ ina minuscule way, can sometimes produce greatly
different results in the subsequent motion of the system. Poincaré found an
example of this in the three-body problem.

It was not until the invention of the electronic computer that che scientific
world began to see this phenomenon as significant. Poincaré, way ahead of
his time, had guessed that sensitive dependence on initial conditions would
stymie attempts at long-term weather prediction. His early hunch gained
some evidence when, in 1963, the meteorologist Edward Lorenz found that
even simple computer models of weather phenomena were subject to sensitive
dependence on initial conditions. Even with today’s modern, highly complex
meteorological computer models, weather predictions are at best reasonably
accurate only to about one week in the future. It is not yet known whether
this limit is due to fundamental chaos in the weather, or how much this limit
can be extended by collecting more data and building even better models.

Linear versus Nonlinear Rabbits

Let's now look more closely at sensitive dependence on initial conditions.
How, precisely, does the huge magnification of initial uncertainties come
about in chaotic systems? The key property is nonlinearity. A linear system
is one you can understand by understanding its parts individually and then
putting them together. When my two sons and I cook together, they like to
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take turns adding ingredients. Jake puts in two cups of flour. Then Nicky
puts in a cup of sugar. The result? Three cups of flour/sugar mix. The whole
is equal to the sum of the parts.

A nonlinear system is one in which the whole is different from the sum
of the parts. Jake puts in two cups of baking soda. Nicky puts in a cup of
vinegar. The whole thing explodes. (You can try this at home.) The result?
More than three cups of vinegar-and-baking-soda-and-carbon-dioxide fizz.

The difference between the two examples is that in the first, the flour and
sugar don’t really interact to create something new, whereas in the second,
the vinegar and baking soda interact (rather violently) to create a lot of carbon
dioxide.

Linearity is a reductionist’s dream, and nonlinearity can sometimes be a
reductionist’s nightmare. Understanding the distinction between linearity
and nonlinearity is very important and worthwhile. To get a better handle
on this distinction, as well as on the phenomenon of chaos, let’s do a bit of
very simple macthematical exploration, using a classic illustration of linear
and nonlinear systems from the field of bioclogical population dynamics.

Suppose you have a population of breeding rabbits in which every year all
the rabbits pair up to mate, and each pair of rabbit parents has exactly four
offspring and then dies. The population growth, starting from two rabbicts, is
illustrated in figure 2.1.

e o

FIGURE 2.1. Rabbits with doubling population.
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FIGURE 2.2. Rabbits with doubling population, split on two islands.

It is easy to see that the population doubles every year without limit
(which means the rabbits would quickly take over the planet, solar system,
and universe, but we won’t worry about that for now).

This is a linear system: the whole is equal to the sum of the parts. What do
I mean by this? Let’s take a population of four rabbits and split them between
two separate islands, two rabbits on each island. Then let cthe rabbits proceed
with their reproduction. The population growth over two years is illustrated
in figure 2.2.

Each of the two populations doubles each year. At each year, if you add
the populations on the two islands together, you'll get the same number of
rabbits that you would have gotten had there been no separation—that is,
had they all lived on one island.

If you make a plot with the current year’s population size on the horizonral
axis and the next-year’s population size on the vertical axis, you get a straight
line (figure 2.3). This is where the term /linear system comes from.

But what happens when, more realistically, we consider limits to popu-
lation growth? This requires us to make the growth rule nonlinear. Suppose
that, as before, each year every pair of rabbits has four offspring and then
dies. But now suppose that some of the offspring die before they reproduce
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FIGURE 2.3. A plot of how the population size next year depends on

the population size this year for the linear model.

because of overcrowding. Population biologists sometimes use an equation
called the Jogistic model as a description of population growth in the presence
of overcrowding. This sense of the word model means a mathematical formula
that describes population growth in a simplified way.

In order to use the logistic model to calculate the size of the next gen-
eration’s population, you need to input to the logistic model the current
generation’s population size, the birth rate, the death rate (the probability of an
individual will die due to overcrowding), and the maximum carrying capacity
(the strict upper limit of the population that the habitat will support.)

I won'’t give the actual equation for the logistic model here (it is given in
the notes), but you can see its behavior in figure 2.4.

As a simple example, let's set birth rate = 2 and death rate = 0.4, assume
the carrying capacity is thirty-two, and start with a population of twenty
rabbits in the first generation. Using the logistic model, I calculate that the
number of surviving offspring in the second generation is twelve. I then plug
this new population size into the model, and find that chere are still exactly
twelve surviving rabbits in the third generation. The population will stay at
twelve for all subsequent years.

If I reduce the death rate to 0.1 (keeping everything else the same), things
get a little more interesting. From the model I calculate that the second
generation has 14.25 rabbits and the third generation has 15.01816.
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FIGURE 2.4. A plot of how the population size next year depends
on the population size this year under the logistic model, with birth
rate equal to 2, death rate equal to 0.4, and carrying capacity equal
to 32. The plot will also be a parabola for other values of these

parameters.

Wait a minute! How can we have 0.25 of a rabbit, much less 0.01816 of
a rabbit? Obviously in real life we cannot, but this is a mathematical model,
and it allows for fractional rabbits. This makes it easier to do the math, and
can still give reasonable predictions of the actual rabbit population. So let’s
not worry about that for now.

This process of calculating the size of the next population again and
again, starting each time with the immediately previous population, is called
“iterating the model.”

What happens if the death rate is set back to 0.4 and carrying capacity is
doubled to sixty-four? The model tells me that, starting with twenty rabbits,
by year nine the population reaches a value close to twenty-four and stays
there.

You probably noticed from these examples that the behavior is more
complicated than when we simply doubled the population each year. That’s
because the logistic model is nonlinear, due to its inclusion of death by over-
crowding. Its plot is a parabola instead of a line (figure 2.4). The logistic
population growth is not simply equal to the sum of its parts. To show this,
let’s see what happens if we take a population of twenty rabbits and segregate it
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One Island Two Islands

Year 0: 20 rabbits
Year 0: 10+ 10 = 20 rabbits

Year 1: 12 rabbits

FIGURE 2.5. Rabbit population split on two islands, following the logistic model.

into populations of ten rabbits each, and iterate the model for each population
(with birth vate = 2 and death rate = 4, as in the first example above). The
resulg is illustrated in figure 2.5.

At year one, the original twenty-rabbit population has been cut down to
twelve rabbits, but each of the original ten-rabbit populations now has eleven
rabbits, for a total of twenty-two rabbits. The behavior of the whole is clearly
not equal to the sum of the behavior of the parts.

The Logistic Map

Many scientists and mathematicians who study this sort of thing have used
a simpler form of the logistic model called the logistic map, which is perhaps
the most famous equation in the science of dynamical systems and chaos. The
logistic model is simplified by combining the effects of birth rate and death
rate into one number, called R. Population size is replaced by a related concept
called “fraction of carrying capacity,” called x. Given this simplified model,
scientists and mathematicians promptly forget all about population growth,
carrying capacity, and anything else connected to the real world, and simply
get lost in the astounding behavior of the equation itself. We will do the

same.
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Here is the equation, where x, is the current value of x and x,4 is its
value at the next time step: '

Xt+1 — er(l - xr)-

I give the equation for the logistic map to show you how simple it is.
In fact, it is one of the simplest systems to capture the essence of chaos:
sensitive dependence on initial conditions. The logistic map was brought to
the attention of population biologists in a 1971 arcicle by the mathematical
biologist Robert May in the prestigious journal Nature. It had been previously
analyzed in detail by several mathematicians, including Stanislaw Ulam, John
von Neumann, Nicholas Metropolis, Paul Stein, and Myron Stein. But it really
achieved fame in the 1980s when the physicist Mitchell Feigenbaum used it
to demonstrate #niversal properties common to a very large class of chaotic
systems. Because of its apparent simplicity and rich history, it is a perfect
vehicle to introduce some of the major concepts of dynamical systems theory
and chaos.

The logistic map gets very interesting as we vary the value of R. Let’s start
with R = 2. We need to also start out with some value between 0 and 1 for
xp, say 0.5. If you plug those numbers into the logistic map, the answer for
x1 is 0.5. Likewise, xo = 0.5, and so on. Thus, if R = 2 and the population
starts out at half the maximum size, it will stay there forever.

Now let’s try x9 = 0.2. You can use your calculator to compute this one.
(I'm using one that reads off at most seven decimal places.) The results are
more interesting:

x0 = 0.2
x1 = 0.32
Xy = 04352

x3 = 0.4916019
x4 = 0.4998589
x5 =0.5
x6 = 0.5

1. Authors of popular-audience science books are always warned of the following rule: every equation
in your book will cut the readership by one-half. I'm no exception—my editor told me this fact very
clearly. I'm going to give the logistic map equation here anyway, so the half of you who would throw the

book out the window if you ever encountered an equation, please skip over the next line.
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FIGURE 2.6. Behavior of the logistic map for R = 2 and x9 = 0.2.

The same eventual result (x, = 0.5 forever) occurs but here it takes five
iterations to get there.

It helps to see these results visually. A plot of the value of x, at each time
¢ for 20 time steps is shown in figure 2.6. I've connected the points by lines
to better show how as time increases, x quickly converges to 0.5.

What happens if x¢ is large, say, 0.99? Figure 2.7 shows a plot of the
results.

Again the same ultimate result occurs, but with a longerand more dramatic
path to get there.

You may have guessed it already: if R = 2 then x, eventually always gets
to 0.5 and stays there. The value 0.5 is called a fixed point: how long it takes
to get there depends on where you start, but once you are there, you are fixed.

If you like, you can do a similar set of calculations for R = 2.5, and you
will find that the system also always goes to a fixed point, but this time the
fixed point is 0.6.

For even more fun, let R = 3.1. The behavior of the logistic map now gets
more complicated. Let xp = 0.2. The plot is shown in figure 2.8.

In this case x never settles down to a fixed point; instead it eventually settles
into an oscillation between two values, which happen to be 0.5580141 and
0.7645665. If the former is plugged into the formula the latter is produced,
and vice versa, so this oscillation will continue forever. This oscillation will be
reached eventually no matter what value is given for xg. This kind of regular
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FIGURE 2.8. Behavior of the logistic map for R = 3.1 and xo = 0.2.

final behavior (either fixed point or oscillation) is called an “attractor,” since,
loosely speaking, any initial condition will eventually be “attracted to it.”
For values of R up toaround 3.4 the logistic map will have similar behavior:
after a certain number of iterations, the system will oscillate between two
different values. (The final pair of values will be different for each value of
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FIGURE 2.9. Behavior of the logistic map for R = 3.49 and xp = 0.2.

R.) Because it oscillates between two values, the system is said to have period
equal to 2.

But at a value between R = 3.4 and R = 3.5 an abrupt change occurs.
Given any value of xp, the system will eventually reach an oscillation among
Jonr distinct values instead of two. For example, if we set R = 3.49,x9 = 0.2,
we see the results in figure 2.9.

Indeed, the values of x fairly quickly reach an oscillation among four
different values (which happen to be approximately 0.872, 0.389, 0.829, and
0.494, if you're interested). That is, at some R between 3.4 and 3.5, the period
of the final oscillation has abruptly doubled from 2 to 4.

Somewhere between R = 3.54 and R = 3.55 the period abruptly dou-
bles again, jumping to 8. Somewhere berween 3.564 and 3.565 the period
jumps to 16. Somewhere between 3.5687 and 3.5688 the period jumps to
32. The period doubles again and again after smaller and smaller increases in
R until, in short order, the period becomes effectively infinite, at an R value
of approximately 3.569946. Before this point, the behavior of the logistic
map was roughly predictable. If you gave me the value for R, I could tell you
the ultimate long-term behavior from any starting point xg: fixed points are
reached when R is less than about 3.1, period-two oscillations are reached
when R is between 3.1 and 3.4, and so on.

When R is approximately 3.569946, the values of x no longer settle into
an oscillation; rather, they become chaotic. Here’s what this means. Let’s
call the series of values xg, x1, x2, and so on the #rajectory of x. At values of
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FIGURE 2.10. Two trajectories of the logistic map for
R =4.0:x) =0.2and xy = 0.2000000001.

R that yield chaos, two trajectories starting from very similar values of xq,
rather than converging to the same fixed point or oscillation, will instead
progtessively diverge from each other. At R = 3.569946 this divergence
occurs very slowly, but we can see a more dramatic sensitive dependence on
%0 if we set R = 4.0. First I set xo = 0.2 and iterate the logistic map to obrain
a trajectory. Then I restarted with a new xq, increased slightly by putting a 1
in the tenth decimal place, xop = 0.2000000001, and iterated the map again
to obtain a second trajectory. In figure 2.10 the first trajectory is the dark
curve with black circles, and the second trajectory is the light line with open
circles.

The two trajectories start off very close to one another (so close that the
first, solid-line trajectory blocks our view of the second, dashed-line trajec-
tory), but after 30 or so iterations they start to diverge significantly, and soon
after there is no correlation berween them. This is whar is meant by “sensitive
dependence on initial conditions.”

So far we have seen three different classes of final behavior (attractors):
fixed-point, periodic, and chaotic. (Chaotic attractors are also sometimes called
“strange attractors.”) Type of attractor is one way in which dynamical systems
theory characterizes the behavior of a system.

Let’s pause a minute to consider how remarkable the chaotic behavior
really is. The logistic map is an extremely simple equartion and is completely
deterministic: every x, maps onto one and only one value of x,4 1. And yet the
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chaotic trajectories obtained from this map, at certain values of R, look very
random—enough so that the logistic map has been used as a basis for gen-
erating pseudo-random numbers on a computer. Thus apparent randomness
can arise from very simple deterministic systems.

Moreover, for the values of R that produce chaos, if there is any uncertainty
in che initial condition xg, there exists a time beyond which the future value
cannot be predicted. This was demonstrated above with R = 4. If we don’t
know the value of the tenth and higher decimal places of xp—a quite likely
limitation for many experimental observations—then by # = 30 or so the
value of x; is unpredictable. For any value of R that yields chaos, uncertainty
in any decimal place of xg, however far out in the decimal expansion, will
result in unpredictability at some value of ¢.

Robert May, the mathematical biologist, summed up these rather
surprising properties, echoing Poincaré:

The fact thar the simple and deterministic equation (1) {i.e., the logis-
tic map] can possess dynamical trajectories which look like some sort
of random noise has disturbing practical implications. It means, for
example, that apparently erratic fluctuations in the census data for
an animal population need not necessarily betoken either the vagaries
of an unpredictable environment or sampling errors: they may sim-
ply derive from a rigidly deterministic population growth relationship
such as equation (1). ... Alternatively, it may be observed that in the
chaotic regime arbitrarily close initial conditions can lead to trajecto-
ries which, after a sufficiently long time, diverge widely. This means
that, even if we have a simple model in which all the parameters are
determined exactly, long-term prediction is nevertheless impossible.

In short, the presence of chaos in a system implies that perfect prediction 2
la Laplace is impossible not only in practice but also in principle, since we can
never know xq to infinitely many decimal places. This is a profound negative
result that, along with quantum mechanics, helped wipe out the optimistic
nineteenth-century view of a clockwork Newtonian universe that ticked along
its predictable path.

But is there a more positive lesson to be learned from studies of the logistic
map? Can it help the goal of dynamical systems theory, which attempts to
discover general principles concerning systems that change over time? In
fact, deeper studies of che logistic map and related maps have resulted in an
equally surprising and profound positive result—the discovery of universal
characteristics of chaotic systems.
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Universals in Chaos

The term chaos, as used to describe dynamical systems with sensitive depen-
dence on initial conditions, was first coined by physicists T. Y. Li and James
Yorke. The term seems apt: the colloquial sense of the word “chaos” implies
randomness and unpredictability, qualities we have seen in the chaotic ver-
sion of logistic map. However, unlike colloquial chaos, there turns out to
be substantial order in mathematical chaos in the form of so-called wniversal
features that are common to a wide range of chaotic systems.

THE FIRST UNIVERSAL FEATURE: THE PERIOD-DOUBLING
ROUTE TO CHAOS

In the mathematical explorations we performed above, we saw that as R was
increased from 2.0 to 4.0, iterating the logistic map for a given value of R
first yielded a fixed point, then a period-two oscillation, then period four,
then eight, and so on, until chaos was reached. In dynamical systems theory,
each of chese abrupt period doublings is called a bifurcation. This succession of
bifutcations culminating in chaos has been called the “period doubling route
to chaos.”

These bifurcations are often summarized in a so-called bifurcation diagram
that plots the attractor the system ends up in as a function of the value of a
“control parameter” such as R. Figure 2.11 gives such a bifurcation diagram

1.0
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0.4
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FIGURE 2.11. Bifurcation diagram for the logistic map, with

attractor plotted as a function of R.
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for the logistic map. The horizontal axis gives R. For each value of R, the final
(attractor) values of x are plotted. For example, for R = 2.9, x reaches a fixed-
point arcractor of x = 0.655. At R = 3.0, x reaches a period-two attractor.
This can be seen as the first branch point in the diagram, when the fixed-point
attractors give way to the period-two attractors. For R somewhere between
3.4 and 3.5, the diagram shows a bifurcation to a period-four attractor, and so
on, with further period doublings, until the onset of chaos at R approximately
equal to 3.569946.

The period-doubling route to chaos has a rich history. Period doubling
bifurcations had been observed in mathematical equations as early as the
1920s, and a similar cascade of bifurcations was described by P. J. Myrberg,
a Finnish mathematician, in the 1950s. Nicholas Metropolis, Myron Stein,
and Paul Stein, working at Los Alamos National Laboratory, showed that not
just the logistic map but ##y map whose graph is parabola-shaped will follow
a similar period-doubling route. Here, “parabola-shaped” means that plot of

the map has just one hump—in mathematical terms, it is “unimodal.”

THE SECOND UNIVERSAL FEATURE: FEIGENBAUM'S
CONSTANT

The discovery that gave the period-doubling route its renowned place among
mathematical universals was made in the 1970s by the physicist Mitchell
Feigenbaum. Feigenbaum, using only a programmable desktop calcularor,
made a list of the R values at which the period-doubling bifurcations occur
(where ~ means “approximately equal to”):

Ry = 3.0

R- A~ 3.44949
Ry =& 3.54409
Ri =~ 3.564407
Rs &~ 3.568759
Rs =& 3.569692
R; A~ 3.569891
Rg A~ 3.569934
Ree &~ 3.569946

Here, R, corresponds to period 2'(= 2),R, corresponds to period
2?(= 4), and in general, R, corresponds to period 2”. The symbol 00
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(“infinity”) is used to denote the onset of chaos—a trajectory with an infinite
period.

Feigenbaum noticed that as the period increases, the R values get closer
and closer together. This means that for each bifurcation, R has to be increased
less than it had before to get to the next bifurcation. You can see this
in the bifurcation diagram of Figure 2.11: as R increases, the bifurcations
get closer and closer together. Using these numbers, Feigenbaum measured
the rate at which the bifurcations get closer and closer; that is, the rate at
which the R values converge. He discovered thar the rare is (approximartely)
the constant value 4.6692016. What this means is that as R increases,
each new period doubling occurs about 4.6692016 times faster than the
previous one.

This fact was interesting but not earth-shaking. Things started to geta lot
more interesting when Feigenbaum looked at some other maps—the logistic
map is just one of many that have been studied. As I mentioned above, a
few years before Feigenbaum made these calculations, his colleagues at Los
Alamos, Metropolis, Stein, and Stein, had shown that any unimodal map
will follow a similar period-doubling cascade. Feigenbaum’s next step was to
calculate the rate of convergence for some other unimodal maps. He started
with the so-called sine map, an equation similar to the logistic map but which
uses the trigonometric sine function.

Feigenbaum repeated the steps I sketched above: he calculated the values of
R at the period-doubling bifurcations in the sine map, and then calculated the
rate at which these values converged. He found that the rate of convergence
was 4.6692016.

Feigenbaum was amazed. The rate was the same. He tried it for other
unimodal maps. It was still the same. No one, including Feigenbaum, had
expected this at all. But once the discovery had been made, Feigenbaum went
on to develop a mathematical theory that explained why the common value of
4.6692016, now called Feigenbaum’s constant, is universal—which here means
the same for all unimodal maps. The theory used a sophisticated mathematical
technique called renormalization that had been developed originally in the
area of quantum field theory and later imported to another field of physics:
the study of phase transitions and other “critical phenomena.” Feigenbaum
adapted it for dynamical systems theory, and it has become a cornerstone in
the understanding of chaos.

It turned out that this is not just a mathematical curiosity. In the
years since Feigenbaum’s discovery, his theory has been verified in several
laboratory experiments on physical dynamical systems, including fluid flow,
electronic circuits, lasers, and chemical reactions. Period-doubling cascades
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have been observed in these systems, and values of Feigenbaum’s constant
have been calculated in steps similar to those we saw above. It is often
quite difficult to get accurate measurements of, say, what corresponds to
R values in such experiments, but even so, the values of Feigenbaum’s con-
stant found by the experimenters agree well within the margin of error to
Feigenbaum’s value of approximately 4.6692016. This is impressive, since
Feigenbaum’s theory, which yields this number, involves only abstract math,
no physics. As Feigenbaum’s colleague Leo Kadanoff said, this is “the best
thing that can happen to a scientist, realizing that something that's hap-
pened in his or her mind exactly corresponds to something that happens
in nature.”

Large-scale systems such as the weather are, as yet, too hard to experiment
with directly, so no one has direct/y observed period doubling or chaos in their
behavior. However, certain computer models of weather have displayed the
period-doubling route to chaos, as have computer models of electrical power
systems, the heart, solar variability, and many other systems.

There is one more remarkable fact to mention about this story. Similar
to many important scientific discoveries, Feigenbaum’s discoveries were also
made, independently and at almost the same time, by another research team.
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