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Introduction: In Which Mathematics Sets
Out to Conquer New Territories

IT’s BEEN said again and again: the century that just ended was
the true golden age of mathematics. Mathematics evolved more in
the twentieth century than in all previous centuries put together.
Yet the century just begun may well prove exceptional for mathe-
matics, too: the signs seem to indicate that, in the coming decades,
mathematics will undergo as many metamorphoses as in the twen-
tieth century - if not more. The revolution has already begun. From
the early seventies onward, the mathematical method has been
transforming at its core: the notion of proof. The driving force
of this transformation is the return of an old, yet somewhat under-
rated mathematical concept: that of computing.

The idea that computing might be the key to a revolution may
seem paradoxical. Algorithms that allow us, among other things, to
perform sums and products are already recognized as a basic part
of mathematical knowledge; as for the actual calculations, they are
seen as rather boring tasks of limited creative interest. Mathemati-
cians themselves tend to be prejudiced against computing — René
Thom said: “A great deal of my assertions are the product of sheer
speculation; you may well call them reveries. I accept this qualifi-
cation. ... At a time when so many scientists around the world are
computing, should we not encourage those of them who can to
dream?” Making computing food for dreams does seem a bit of a
challenge.

Unfortunately, this prejudice against computing is ingrained in
the very definition of mathematical proof. Indeed, since Euclid, a
proof has been defined as reasoning built on axioms and inference
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rules. But are mathematical problems always solved using a rea-
soning process? Hasn't the practice of mathematics shown, on the
contrary, that solving a problem requires the subtle arrangement of
reasoning stages and computing stages? By confining itself to rea-
soning, the axiomatic method may offer only a limited vision of
mathematics. Indeed, the axiomatic method has reached a crisis,
with recent mathematical advances, not all related to one another,
gradually challenging the primacy of reasoning over computing and
suggesting a more balanced approach in which these two activities
play complementary roles.

This revolution, which invites us to rethink the relationship
between reasoning and computing, also induces us to rethink
the dialogue between mathematics and natural sciences such as
physics and biology. It thus sheds new light on the age-old question
of mathematics'’s puzzling effectiveness in those fields, as well as on
the more recent debate about the logical form of natural theories.
It prompts us to reconsider certain philosophical concepts such as
analytic and synthetic judgement. It also makes us reflect upon the
links between mathematics and computer science and upon the
singularity of mathematics, which appears to be the only science
where no tools are necessary.

Finally, and most interestingly, this revolution holds the promise
of new ways of solving mathematical problems. These new methods
will shake off the shackles imposed by past technologies that have
placed arbitrary limits on the lengths of proofs. Mathematics may
well be setting off to conquer new, as yet inaccessible territories.

Of course, the crisis of the axiomatic method did not come out
of the blue. It had been heralded, from the first half of the twentieth
century, by many signs, the most striking being two new theories
that, without altogether questioning the axiomatic method, helped
to reinstate computing in the mathematical edifice, namely the the-
ory of computability and the theory of constructivity. We will there-
fore trace the history of these two ideas before delving into the crisis.
However, let us first head for remote antiquity, where we will seek
the roots of the very notion of computing and explore the “inven-
tion” of mathematics by the ancient Greeks.



PART ONE

Ancient Origins



Copyrighted material



The Prehistory of Mathematics and the Greek Resolution 7

In all these cases, the number 2 x x? is different from y?. We could
carry on searching, moving on to larger numbers. In all likelihood,
Pythagoras’s followers kept looking for the key to this problem for a
long time, in vain, until they eventually became convinced that no
such triangle existed. How did they manage to reach this conclu-
sion, namely that the problem could not be solved? Not by trying
out each and every pair of numbers one after the other, for there are
infinitely many such pairs. Even if you tried out all possible pairs up
to one thousand, or even up to one million, and found none that
worked, you still could not state with any certainty that the problem
has no solution — a solution might lie beyond one million.

Let’s try to reconstruct the thought process that may have led the
Pythagoreans to this conclusion.

First, when looking for a solution, we can restrict our attention
to pairs in which at least one of the numbers x and y is odd. To
see why, observe that if the pair x = 202 and y = 214, for example,
were a solution, then, by dividing each number by two, we would
find another solution, x = 101 and y = 107, where at least one of the
numbers is odd. More generally, if you were to pick any solution and
divide it by two, repeatedly if necessary, you would eventually come
to another solution in which at least one of the numbers is odd. So,
if the problem has any solution, there is necessarily a solution in
which either x or y is an odd number.

Now, let’s divide all pairs of numbers into four sets:

¢ pairs in which both numbers are odd;

¢ pairs in which the first number is even and the second number is
odd;

* pairs in which the first number is odd and the second number is
even;

* pairs in which both numbers are even.

We can now give four separate arguments to show that none of
these sets holds a solution in which at least one of the numbers x
and y is odd. As a result, the problem cannot be solved.

Begin with the first set: it cannot contain a solution in which one
of the numbers x and y is odd, because if y is an odd number, then
so is y°; as a consequence, y* cannot equal 2 x x?, which is neces-
sarily an even number. This argument also rules out the second set,
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in which x is even and y odd. Obviously, the fourth set must also be
ruled out, because by definition it cannot contain a pair where at
least one number is odd. Which leaves us with the third set. In this
case, x is odd and y is even, so that the number obtained by halving
2 x x? is odd, whereas half of y? is even - these two numbers cannot
be equal.

The conclusion of this reasoning, namely that a square cannot
equal twice another square, was reached by the Pythagoreans more
than twenty-five centuries ago and still plays an important part in
contemporary mathematics. It shows that, when you draw a right
isosceles triangle whose short side is one meter long, the length of
the hypotenuse measured in meters is a number (slightly greater
than 1.414) that cannot be obtained by dividing x and y, two natural
numbers, by each other. Geometry thus conjures up numbers that
cannot be derived from integers using the four operations — addi-
tion, subtraction, multiplication, and division.

Many centuries later, this precedent inspired mathematicians to
construct new numbers, called “real numbers.” The Pythagoreans,
however, did not go quite so far: they were not ready to give up what
they regarded as the essential value of natural numbers. Their dis-
covery felt to them more like a disaster than an opportunity.

Yet the Pythagorean problem was revolutionary not only because
of its effects, but also because of how it is framed and how it
was solved. To begin with, the Pythagorean problem is much more
abstract than the question found on the Mesopotamian tablet,
where 1,152,000 measures of grain were divided by 7 measures.
Whereas the Mesopotamian question deals with measures of grain,
the Pythagorean problem deals with numbers and nothing more.
Similarly, the geometric form of the Pythagorean problem does
not concern triangular fields but abstract triangles. Moving from
a number of measures of grain to a number, from a triangu-
lar field to a triangle, may seem a trifle, but abstraction is actu-
ally a step of considerable importance. A field cannot measure
more than a few kilometers. If the problem involved an actual trian-
gular field, it would suffice, in order to solve it, to try every solution
in which x and y are less than 10,000. But, unlike a triangular field,
an abstract triangle can easily measure a million units, or a billion,
or any magnitude.
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Clearly, a rift had opened between mathematical objects, which
are abstract, and concrete, natural objects — and this exists even
when the mathematical objects have been abstracted from the con-
crete ones. It is this rift that was the big breakthrough of the fifth
century B.C.

The growing distance between mathematical objects and nat-
ural ones led some people to think that mathematics was not fit
to describe natural objects. This idea dominated until the seven-
teenth century — Galileo’s day — when it was refuted by advances in
mathematical physics. Yet it persists today in those views that deny
mathematics any relevance in the fields of social sciences — as when
Marina Yaguello argues that the role of mathematics in linguistics is
to “cover up its ‘social’ (hence fundamentally inexact) science with
complex formulae.”

This change in the nature of the objects under study — which,
since the fifth century B.c., have been geometric figures and num-
bers not necessarily related to concrete objects — triggered a revo-
lution in the method used to solve mathematical problems. Once
again, let’s compare the methods used by the Mesopotamians and
those used by the Pythagoreans. The tablet shows that Mesopotami-
ans solved problems by performing computations — to answer the
question about grain, they did a simple division. When it comes to
the Pythagoreans’ problem, however, reasoning is necessary.

In order to do a division, all you have to do is apply an algo-
rithm taught in primary school, of which the Mesopotamians knew
equivalents. By contrast, when developing their thought process,
the Pythagoreans could not lean on any algorithm — no algorithm
recommends that you group the pairs into four sets. To come up
with this idea, the Pythagoreans had to use their imaginations.
Maybe one of Pythagoras’s followers understood that the number
y could not be odd and then, a few weeks or a few months later,
another disciple helped make headway by discovering that x could
not be an odd number either. Perhaps it was months or even years
before another Pythagorean made the next big advance. When a
Mesopotamian tackled a division, he knew he was going to achieve
a result. He could even gauge beforehand how long the operation
would take him. A Pythagorean tackling an arithmetic problem had
no means of knowing how long it would be before he found the line
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of reasoning that would enable him to solve the problem - or even
if he ever would.

Students often complain that mathematics is a tough subject,
and they’re right: it is a subject that requires imagination; there is
no systematic method for solving problems. Mathematics is even
more difficult for professional mathematicians — some problems
have remained unsolved for decades, sometimes centuries. When
trying to solve a math problem, there is nothing unusual about
drawing a blank. Professional mathematicians often stay stumped
too, sometimes for years, before they have a breakthrough. By con-
trast, no one dries up over a division problem - one simply commits
the division algorithm to memory and applies it.

How did the change in the nature of mathematical objects bring
about this methodological change? In other words, how did abstrac-
tion lead mathematicians to drop calculation in favor of the reason-
ing that so characterizes Ancient Greek mathematics? Why couldn’t
the Pythagorean problem be solved by simple calculation? Think
back, once more, to the Mesopotamian question. It deals with a spe-
cific object (a grain-filled barn) of known size. In the Pythagorean
problem, the size of the triangle is not known - indeed, that’s the
whole problem. So the Pythagorean problem does not involve a spe-
cific triangle but, potentially, all possible triangles. In fact, because
there is no limit to the size a triangle might reach, the problem
concerns an infinity of triangles simultaneously. The change in the
nature of the objects being studied is thus accompanied by the
irruption of the infinite into mathematics. It was this irruption that
made a methodological change necessary and required reasoning to
be substituted for computing. For, if the problem concerned a finite
number of triangles — for example, all triangles whose sides measure
less than 10,000 metres — we could still resort to calculation. Trying
out every possible pair of whole numbers up to 10,000 would doubt-
less be tedious without the aid of a machine, but it is nonetheless
systematic and would settle the finite problem. As we've observed,
though, it would be futile against the infinite.

This is why the transition from computing to reasoning, in the
fifth century B.c. in Greece, is regarded as the true advent of mathe-
matics.
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THE FIRST REASONING RULES: PHILOSOPHERS
AND MATHEMATICIANS

One crucial question remains: what is reasoning? Knowing that all
squirrels are rodents, that all rodents are mammals, that all mam-
mals are vertebrates, and that all vertebrates are animals, we can
infer that all squirrels are animals.

One reasoning process — among others — enabling us to reach this
conclusion consists in deducing, successively, that all squirrels are
mammals, then that all squirrels are vertebrates, and finally that all
squirrels are animals. Although this process is extremely simple, its
structure is not fundamentally different from that of mathematical
reasoning. In both cases, the thought process is made up of a series
of propositions, each of which follows logically from the previous
one through the application of an “inference rule.” Here we used
the same rule three times in a row: “if all Y are X and all Z are Y,
then all Z are X.”

The Greek philosophers were the first to compile a list of these
inference rules that enable new propositions to be deduced from
those already established and hence allow reasoning processes to
make headway. For example, we have Aristotle to thank for the
aforementioned rule. Indeed, Aristotle set up a list of rules that he
called syllogisms. Syllogisms can take on various forms. Some follow
the “all Y are X” pattern, others fall into the “some Y are X” category.
Thus, knowing that all Y are X, and that some Z are ¥, we can infer
that some Z are X,

Aristotle was not the only ancient philosopher to take an interest
in inference rules. In the third century B.c., the Stoics laid out other
such rules. One rule allows the proposition B to be deduced from
the propositions “if A then B” and A.

These two attempts to catalog inference rules occurred con-
temporaneously with the development of Greek arithmetic and
geometry, after the revolutionary methodological switch from
computing to reasoning. It would have made sense for Greek
mathematicians to use the logic of Aristotle or that of the Stoics
to support their reasoning. In order to prove that a square cannot
be twice another square, for instance, they might have resorted to
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is the only way to solve mathematical problems. This position is in
keeping with the importance the Ancient Greeks, both mathemati-
cians and philosophers, attached to reasoning.

So Greek mathematicians discovered the axiomatic method and,
with it, a whole new way of practicing mathematics. They might
have tried to understand how this new sort of mathematics followed
from Mesopotamian and Egyptian mathematics. If they had, this
line of investigation would have led them to look for a way to com-
bine computing and reasoning. But they did no such thing. Quite
the contrary - they made a clean sweep of the past and abandoned
computing altogether to replace it with reasoning.

For this reason, after the Greeks, computation held hardly a place
in the rising edifice of mathematics.



CHAPTER TWO

Two Thousand Years of Computation

ONCE THE AXIOMATIC METHOD had been adopted, reasoning was often
spoken of as the one and only tool available for solving mathe-
matical problems. In the discourse they developed about their sci-
ence, mathematicians hardly ever mentioned computation. This
doesn’t mean that computing vanished from the practice of mathe-
matics, however. Mathematicians would regularly put forward new
algorithms to systematically solve certain types of problems. It
seems that the history of mathematics has a bright side — that of
conjectures, theorems, and proofs — and a hidden one — that of
algorithms.

This chapter will focus on three important points in this his-
tory, each set in a different time period, and each raising important
issues.

First we will tackle the apparent contradiction between mathe-
matical discourse, which tends to overlook computation, and math-
ematical practice, which places great weight on it. We will also
retrace the transition between the prehistory of mathematics and
Ancient Greek mathematics.

Next we will examine the relative parts played in medieval math-
ematics by the Mesopotamian legacy and by the Greek legacy.

Finally we will explore why so many new geometric figures (the
catenary curve, the roulette curve, etc.) appeared in the seventeenth
century, whereas ancient geometry focused on only a small number
of figures (the triangle, the circle, the parabola, etc.).

15
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EUCLID'S ALGORITHM: REASONING-BASED COMPUTATION

Euclid linked his name not only to geometry and the axiomatic
method but also, ironically, to an algorithm that allows the cal-
culation of the greatest common divisor of two integers. It is known
as Euclid’s algorithm.

The first method for calculating the greatest common divisor of
two numbers consists of listing the divisors of each number - suc-
cessively dividing the number by all smaller numbers and writing
down all those for which there is no remainder - and identifying the
largest number that appears on both lists. For instance, in order to
calculate the greatest common divisor of 90 and 21, we start by list-
ing the divisors 0f 90 (1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, and 90) and
those of 21 (1, 3, 7, and 21). Then we observe that 3 is the largest
number on both lists. Thus, to verify that 3 is the greatest common
divisor of 90 and 21, or even to find out what the greatest common
divisor of 90 and 21 is (according to how the problem is phrased),
there is no need for reasoning. It suffices to apply this tiresome yet
systematic algorithm (which boils down to a simple paraphrase of
the definition of greatest common divisor).

Euclid’s algorithm enables us to achieve the same result in a less
tedious way. It rests on the following idea: in order to calculate the
greatest common divisor of two numbers a and b - say, 90 and
21 — we start by dividing the greater number, a, by the smaller, b.
If the division works out exactly and produces a quotient g, then
a = b x q. In that case, b is a divisor of a, therefore it is a com-
mon divisor of a and b, and it is bound to be the greatest one,
because no divisor of b can be greater than b itself. As a conclusion,
that number is the greatest common divisor of @ and b. Now, if the
division does not work out exactly but leaves a remainder r, then
a = b x q + r. In that case, the common divisors of a and b are also
those of b and r. For that reason, we can replace the pair a and b by
the pair b and r, which will have the same greatest common divisor.
Euclid’s algorithm consists in repeating that operation several times
until we reach a pair of numbers for which the remainder is zero.
The greatest common divisor is the smaller of those two numbers.
Thus, when we calculate the greatest common divisor of 90 and 21
using Euclid’s algorithm, we first replace the pair (90, 21) by the pair
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(21, 6), then by the pair (6, 3), and, finally, 6 being a multiple of 3, the
result is 3.

For the numbers 90 and 21, Euclid’s algorithm yields a result after
three divisions. More generally, whatever numbers we start with, we
will reach a result after a finite number of divisions. Because the
number a is replaced with the number r, the numbers in the pair
whose greatest common divisor we are looking for decrease, and a
decreasing series of natural numbers is necessarily finite.

This example shows that, far from turning their backs on compu-
tation, the Greeks — among them, Euclid - participated in the devis-
ing of new algorithms. It also shows how intricately interwoven rea-
soning and computing are in mathematical practice. Whereas the
first algorithm we discussed required no prior demonstration, in
order to elaborate Euclid’s algorithm, it was necessary to demon-
strate several theorems: first, if the division of a by b works out
exactly, then the greatest common divisor of @ and b is b; second,
if r is the remainder of the division of a by b, then the common divi-
sors of a and b are the same as those of b and r; third, the remain-
der of a division is always less than the divisor; and last, a decreas-
ing series of natural numbers is necessarily finite. Euclid established
those results by reasoning processes similar to those used by the
Pythagoreans to prove that a square cannot equal twice another
square.

No significant reasoning was needed to build the first algorithm,
but this is an exceptional case. More often than not, algorithms are
like Euclid’s and entail more than merely paraphrasing a definition:
in order to elaborate the algorithm, we must conduct a reasoning
process.

THALES AND THE PYRAMIDS: THE INVENTION OF MATHEMATICS

The fact that building an algorithm typically requires reasoning
causes us to wonder, in retrospect, about Mesopotamian and Egyp-
tian mathematics. How did the Mesopotamians, for instance, con-
ceive a division algorithm without resorting to reasoning? The two
peoples must have known an implicit form of reasoning. The fact
that, unlike the Greeks, they did not make their reasoning processes
explicit — by writing them down on tablets, for example - and that
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Figure 2.1 (pyramid, stick and shadow)

they probably were not aware of the importance of reasoning in
the solving of abstract mathematical problems proves nothing: they
may very well have reasoned the way Monsieur Jourdain, Moliere’s
“Bourgeois Gentleman,” spoke in prose — “unawares.”

The necessity of mathematical reasoning in the building of algo-
rithms has often been remarked upon. More rarely has it been noted
that this necessity sheds light on the Greek miracle: the transition
from computing to reasoning. Indeed, we can hypothesize that the
importance of reasoning dawned on the Greeks precisely as they
developed algorithms.

The “first” geometrical reasoning process is generally attributed
to Thales. In order to calculate the size of a pyramid that was too
high to be measured directly, Thales came up with an idea: he mea-
sured the length of the pyramid’s shadow, the height of a stick, and
the length of the stick’s shadow, then proceeded to apply the rule of
three (Figure 2.1).

It seems likely that Thales’s aim was to devise a new algorithm
to calculate the length of a segment; in doing so, he probably real-
ized that he needed to prove that the ratio between the pyramid and
its shadow was the same as that between the stick and its shadow.
Thus, a theorem was born, the intrinsic value of which was later to
be revealed.!

! This result, known today as the “intercept theorem,” is referred to in many lan-
guages as Thales’s theorem. It should not be confused with another result, more
commonly known in English as Thales’s theorem, which deals with points on a
circle.
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makes simple addition and subtraction algorithms possible. More
importantly, with this notation system, the multiplication algorithm
is simplified: in order to multiply a number by ten, all you need to
do is shift the number to the left and add a 0 at the end.

This positional notation for numbers has its origin in
Mesopotamia, where a rough draft of this system was already in use
by 2000 B.c. However, the Mesopotamian system was too compli-
cated. The Indians were the first to simplify it. Then, in the ninth
century, the Indian version of positional notation spread to the
Arab world thanks to a book written by Muhammad ebne Miusa
al-Khwarizmi (from whose name the word “algorithm” is derived)
called Al-Jabr wa-al-Muqabilah (“Book on Integration and Equa-
tion”). The system then reached Europe in the twelfth century.
Mathematicians of the Middle Ages thus benefited from a double
legacy: they inherited a lot from the Greeks, but also from the
Mesopotamians, who handed down to them the all-important
positional notation system. These mathematicians then spent
many centuries developing and perfecting algorithms.

The discovery of the axiomatic method did not oust compu-
tation. On the contrary, computation thrived, through the Meso-
potamian legacy, to become a key preoccupation in the eyes of
medieval mathematicians.

CALCULUS

Having dealt with Euclid’s algorithm and with algorithms designed
to carry out arithmetic operations, we now move on to a third
crucial event in the history of mathematics: the development of
calculus. This branch of mathematics appeared in the seventeenth
century with the works of Bonavantura Cavalieri, Isaac Newton,
Gottfried Wilhelm Leibniz, and others. Its roots, however, go back
much further: during antiquity, two discoveries of Archimedes'’s laid
the groundwork for the invention of calculus. One of these discov-
eries concerns the area of the circle and the other, the area of the
parabolic segment.

It is a well-known fact, today, that the area of a circle is obtained
by multiplying the square of its radius by 3.1415926. ... Archimedes
did not get quite this far, but he did prove that, in order to
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Figure 2.2a

calculate the area of a circle, you need to multiply a number
bounded between 3 + 10/71 = 3.140... and 3 + 10/70 = 3.142. ..
by the square of the circle’s radius — in other words, he discovered
the first two decimals of the number 7. His work on the area of the
parabolic segment was even more successful, as he reached an exact
result: he correctly established that the area of a parabolic segment
equals four-thirds the area of the triangle inscribed within that seg-
ment (Figure 2.2a).

In order to achieve that feat, Archimedes decomposed the
parabolic segment into an infinity of successively smaller triangles,
the areas of which he added up (Figure 2.2b).

If you take the area of the triangle inscribed within the parabolic
segment as a unit, the area of first triangle is, by definition, 1. It
can be proved that the two triangles on its sides have a total area of
1/4, then that the area of the next four triangles is 1/16, and so on.
The total area of each set of triangles equals one fourth that of the

Figure 2.2b
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general in Frege’s days, Russell’s paradox proved it to be just another
notion requiring its own axioms. So, in the 1920s, Russell’s type the-
ory was in turn simplified: David Hilbert stripped it of everything
specific to the notion of set and created “predicate logic,” which
remains the framework of logic to this day. Since then axioms spe-
cific to the notion of set, as they were formulated by Ernst Zermelo
in 1908, constituted just one theory among many others, namely set
theory.

The separation between predicate logic and set theory under-
mines Russell’s thesis of the universality — or lack of specificity -
of mathematics. It is predicate logic that appears to be universal;
within predicate logic, if you wish to practice mathematics, it is nec-
essary to call upon axioms taken from set theory. It is therefore pos-
sible to conceive of a logical reasoning process that obeys the rules
of predicate logic and yet rests on axioms other than those of set
theory; the same cannot be said of mathematical reasoning.

Actually, these assertions call for some qualification. A theorem
proved by Kurt Gédel in 1930 (but not Godel’s famous theorem)
shows that any theory can be translated into set theory. Euclidian
geometry, which a priori rests on a different set of axioms than set
theory, can nevertheless be translated into set theory. This theorem
revives Russell’s thesis by conferring universality and ontological
neutrality on set theory itself.

THE PROBLEM OF AXIOMS

Besides endangering Russell’s thesis, the separation of predicate
logic and set theory has another major drawback: it imperils Frege's
whole philosophical project to define the notion of a natural num-
ber from purely logical notions, then to show that the proposition
“2 4+ 2 =4" follows from that definition. In predicate logic, with-
out axioms it is impossible to define the integers so as to make
this proposition provable. As soon as we introduce axioms — such
as those of set theory - it becomes possible. Around the same time
that Frege put forward his axioms, Peano devised some of his own,
namely axioms of arithmetic. These also made it possible to prove
the proposition “2 + 2 = 4” and, more generally, to demonstrate all
known theorems concerning integers, only in a simpler way.



