Computational Fairy Tales

computacional

(Faing Tates

Jeremy Kubica

Copyright

Copyright © 2012 Jeremy Kubica
All rights reserved.

Cover design and art by Meagan O’Brien
Interior design by Marjorie Carlson

A Note to Readers

This book focuses on computational thinking. The stories are written to
introduce and illustrate computational concepts. As such, they focus on
high-level concepts, the motivation behind them, and their application in
a non-computer domain. These stories are not meant as a substitute for a
solid technical description of computer science. Instead, these stories are
meant to be used like illustrations, supplementing the full concept.

The book covers a range of material, from introductory
programming through more advanced algorithmic concepts. The stories
are organized into sections by concept. Each section covers progressively
more advanced concepts.

Finally, each story is meant to (approximately) stand alone. While
most of the stories follow Ann’s quest to save the kingdom, there are
multiple side stories that are disjoint from the main thread. All of these
stories take place in the same kingdom.

Major Characters

Ann is the teenage daughter of King Fredrick and heir to the throne. She
has been tasked by the prophets with rescuing the kingdom from the
coming darkness. Unfortunately, the prophecy was very vague about the
specific threat facing the kingdom.

King Fredrick is the king and Ann’s father. He is a wise, fair, and
occasionally lazy ruler.

Marcus is a powerful wizard and staunch friend of the king’s. He is a
firm believer in the importance of the practical aspects of magic, such as
testing and commenting.

Clare O’Connell is the kingdom’s brightest computational theorist. She
spends her days working at the Bureau of Farm Animal Accounting:
Large Mammal Division, where she has assembled a talented team of
theorists.

Peter is an apprentice at the Library of Alexandria and an eager, though
occasionally arrogant, student of computational ideas.

Sir Galwin is the king’s trusted head knight. He has years of experience
with difficult quests.

THE START OF A QUEST

The Darkness is Coming

“The darkness is coming,” stated the seer.

He was the fifteenth seer to stand in front of King Fredrick this
week. Fifteen seers—all with the same prophecy. Darkness. Chaos.
Doom.

Granted, each seer brought his or her own twist to the prophecy.
One spoke of “ill winds” and added a small shiver for effect. Another
shouted loudly about the “end of times” until he was forcibly removed
from the room. A third gave the prophecy as a malformed limerick,
causing everyone in the room to wince at each attempted rhyme.

In contrast, this seer was much less dramatic; he was calm and to
the point. Princess Ann liked that. She had never been a fan of
unnecessary theatrics, especially in prophecies.

Of course, Ann didn’t care for the message itselt. Why did the
kingdom have to be doomed? Things were going really well for her. Now
some horrid “darkness” was going to consume the lands.

As her father began to cross-examine the seer, Ann idly wondered
how many seers were left today. She tired of the constant proclamations
of doom. Why not intersperse a minstrel or two? Anything to lighten the
mood would be welcome.

“Ann?” asked King Fredrick in a loud voice. He stared at her. Ann
realized that he was waiting for an answer, but she had no idea what the
question had been. She had stopped paying attention after the initial
prophecy.

“I’m sorry. What was the question?” she asked.

Ann heard a few surprised gasps from the back of the room. Her
father sighed and looked at her crossly.

“Will you take on this quest? Will you go forth and save the
kingdom?” he asked.

Ann froze. What quest? Why her? And why was Sir Galwin, the
land’s most famous knight, glaring at her? He should be beaming at the
mere mention of a quest. He loved quests.

“What quest?” Ann asked.

“To travel forth and find a way to stop the darkness,” responded
her father. He spoke slowly, as though to ensure Ann was paying
attention. It reminded Ann of how he ordered his breakfast in the
morning—her father left no room for misunderstanding in some aspects
of life.

Ann rather liked the suggestion of a quest. She longed to travel the
kingdom, but had never been allowed. With the summer holidays starting
next week, this quest sounded like a wonderful opportunity. She might
get to see the famed upside-down pyramids of South Patagonia or the
oreat Library of Alexandria. Her father even supported it.

“Sure. I can do that,” she answered quickly.

“It will be a long, lonely, and dangerous journey,” her father added.
“But you must find a way to save the kingdom and hold back the
darkness. The prophecies have said you must travel forth alone to find
the answer.”

“Wait, what? Alone?” sputtered Ann. They never assigned solitary
quests to teenagers. Usually a first quest involved a whole platoon of
veteran knights. She didn’t know the first thing about questing.

Her father sighed again. “Did you listen to any of the prophecy at
all?”

“No,” Ann admitted. “I stopped listening when he reached the you-
are-all-doomed part. I’ve heard that a hundred times already. It gets
boring.”

Everyone in the room stared incredulously at her. She started to
feel uncomfortable. She briefly wondered if she could somehow escape.

“I see,” her father began. “In short, the seer said that you can save
the lands. You need to go find a way to stop the darkness, or we are all
doomed. Then he said something about Fortran being the one true
language. Honestly, from that point on it was incoherent.”

“But ... alone?” asked Ann.

Her father gave her a serious look. “Alone.”

Ann nodded numbly, and again wished that she could run out of the
room.

After that, there might have been more said. There might have been
cheers or mumbled messages of luck. Her father might have given words
of encouragement. The seer might have provided more information.
However, Ann didn’t hear anything else. The entire room faded from her
mind as her new responsibility dawned on her.

*k %k 3k

Computer science is inherently a way of thinking about problems.
How can you route pieces of information across a distributed
network that spans the globe”? How can you render pictures that
look more realistic? How can | get this stupid program to stop
crashing?

The answers to these questions build on a set of core
concepts—approaches to solving fundamental problems in
computer science. This book focuses on these core concepts, the
problems they address, and how the concepts can be combined to
solve even larger and more complex problems.

An Algorithm for Quests

An algorithm is a set of specific steps or instructions for solving a
problem. For example, there are algorithms to sort numbers,
compute mathematical results, and render images.

k) 2k K

Ann started to panic as she packed for her quest. How was she going to
find the answer and save the kingdom? She rarely traveled out of the
capital city, and even then she had never gone beyond Millington. Now
she had to search all the known lands for a way to save the kingdom. It
quickly dawned on her that she had no idea what she was doing.

Her thoughts were interrupted by a sharp knock on the door.

Sir Galwin stood rigidly at the entryway, looking mildly uncomfortable.

“Sir Galwin,” Ann greeted him cautiously. He had been sulking
since Ann had received her quest, and she was afraid of setting him off
again.

“I came to wish you luck,” Sir Galwin offered. “I’m sure you’ll be
successful in your quest.”

“Thank you,” replied Ann.

The knight nodded a stiff acknowledgement and turned to leave.

“Sir Galwin, do you have any advice for me?” asked Ann before he
could go.

The knight turned back toward Ann. From the wide smile on his
face, Ann knew that she had asked the right question. Sir Galwin loved to
share his stories about quests almost as much as he loved questing itself.

“Follow the established algorithm for quests, and you’ll be fine,”
Sir Galwin assured her.

“An algorithm?” asked Ann. She had never heard of an algorithm
for quests. Hope flowed through her. She could handle algorithms.

“It’s simple,” started Sir Galwin. “If you have one or more leads,
you follow the best one. Otherwise, if you don’t have any leads, you
travel to where you can find more information. Break any ties by flipping
a coin.”

This advice surprised Ann. She didn’t know what she had been
expecting, but this certainly wasn’t it. It took her a few moments to
figure out how to voice her confusions.

“This approach seems to involve a lot of guessing,” ventured Ann.

“I prefer to think of it as a heuristic,” said Sir Galwin.

“A heuristic is basically an educated guess—a rule of thumb, if you
prefer,” said Ann. “Is there anything more exact? Something without any
ouessing, perhaps? Something that guarantees that I find a solution
quickly?”

Sir Galwin let out a deep throaty laugh. “I said the same thing
when my mentor described this approach to me. I resolved to develop a
better algorithm for solving all quests.”

Ann waited for him to continue, but Sir Galwin appeared to be
watching a pigeon outside her window. As far as Ann could tell, the
pigeon was not doing anything particularly interesting. It paced along the
window ledge, bobbing its head.

“Did you?” she finally asked.

“What? Oh. The algorithm. No. I never invented anything better. I
eventually realized that the established algorithm was pretty good. It
turns out that quests always involve some guessing.”

“So my entire plan is to keep following the best lead and collecting
new information?” Ann confirmed.

“Yes. I call it the Information Maximization for Issue Resolution
algorithm,” said the knight. “I think it sounds much better than what my
mentor used to say. He would call it ‘figuring stuff out.’

“Think of it as a search for an answer. At each step you try to either
move closer to the answer or learn more about the problem itself.
Hopefully, learning about the problem will help you find an answer.”

“How do I figure out the best lead? How do I figure out where to
get more information?” asked Ann.

“You have to find a strategy that works for you,” said Sir Galwin.
“I rank things according to a gut feeling. I use 0 to indicate ‘feels utterly
normal’ and 10 to indicate ‘feels wrong.” For me, a 10 feels similar to
eating three pounds of refried beans. I also use a special data structure to
track everything. That system saved my life hundreds of times. One time,
I was hunting a particularly nasty bog dragon through some marshlands

“Is there anything else I should know?” interrupted Ann. She was
desperate for any more information.

Sir Galwin thought for a moment. Finally, he said, “Avoid chasing
bog dragons through marshlands.”

For the twentieth time this hour, Ann wondered what she had
gotten herself into.

Variables and Magic Gifts

A variable is a place in memory where you can store a single
piece of data. Each variable is associated with a name.
Programmers can reference, modify, or set the value of a variable
using its name. Variables can also have associated types, such as
integer, Boolean, or float. These types indicate what kind of
Information can be stored in the corresponding variable.

k kK

Ann made it less than two miles from the castle before the crushing
weight of her task once again descended on her. The fate of the kingdom
depended on her finding a way to stop the darkness, yet she didn’t know
what it was or even how to find out. She felt utterly alone.

Ahead of her, Ann saw a man walking up the road wearing a bright
blue wizard’s cloak with silver threading. She instantly recognized
Marcus; no other wizard dressed so fashionably. He was also one of the
kingdom’s most powerful wizards and a staunch friend of her father’s. If
anyone could help her in the quest, he could.

“Sir Wizard!” she called out to him, embarrassed that she had
never learned the proper etiquette for addressing a wizard.

Marcus looked up with a smile. “Princess Ann. How are you this
lovely morning? Out for a ride, I see.”

“Unfortunately, I’'m not,” responded Ann. “I’m embarking on an
important quest. The seers have predicted a coming darkness, and I must
stop it.”

“Alone?” asked Marcus. His smile vanished.

“Yes. The prophecy said that I ‘must journey forth alone to stop the
coming darkness.” But ... perhaps you could still join me. Technically,
we met after I had already journeyed forth alone. In fact, I’ve been
journeying alone for about two miles. And, I could really use your help,”
Ann pleaded.

Marcus shook his head. “That wouldn’t be a good idea. Prophecies
are fiddly things, and they don’t like it when you try to find
technicalities. One time I thought I found a loophole in a prophecy; as a
result, it rained Haborian Slugs for three days. It was terribly messy. You
must go alone.”

Ann’s heart sank. Tears started to well up in the corners of her
eyes, but she fought them back and nodded bravely to Marcus. She knew
he was right.

“Maybe I can still help you, though,” continued Marcus. “Let me
see what I have with me.” As he spoke he rummaged through a small
pack. After a moment, he extracted a couple of curious looking objects.

“I have with me some of my latest magical works,” he explained.
“They’re based on variable magic.”

“Variable magic?” asked Ann. “What’s that? And what happened
to your other work?”

“I’m taking a break from all plant-related magic for a while. A
terrible accident with roses,” Marcus said without further explanation. He
trailed off, and Ann thought she detected a hint of anger in his
expression.

He shook his head as though clearing a horrible image. Then he
continued, “Variable magic is a useful, but often overlooked, form of
magic. It’s based on the simple idea of storing values. Take this rock for
instance. It uses what’s known as a ‘location’ variable.”

“What does it do?” asked Ann, her eyes wide with interest. After
algorithmic design, magic was her second favorite conversation topic.

“Stores a value, of course,” answered Marcus. “Weren’t you
listening? It stores a location.”

“So, you could use it to ...” Ann paused as she thought. She
couldn’t think of a single use case.

“You can use it to find your way back to a given place,” Marcus
finished. “For example, you could hide treasure and use the rock to store
its secret location. Or you could store your current location before
heading into a dangerous bog, so you can find your way out. Or you
could use it to find your horse in a particularly large parking lot. It has
many practical, everyday uses.”

“I see,” acknowledged Ann. She silently wondered what Marcus’s
“everyday” life must be like.

“You simply tap the rock with your index finger five times,”
explained Marcus. “Then the rock will store your current location in a
magic variable. No matter where you are, the rock will continue to point
toward the saved location until you set a new one.”

“Like a compass?” asked Ann.

“Exactly!” exclaimed Marcus. “Except you set the location instead
of it always pointing north.”

“It can only store a single location?” asked Ann.

“That’s how a variable works; it only stores one piece of
information,” answered Marcus. “Think about a small pocket—you can
fit one thing in it. You can change what you have in it, but you can never
have two things in it at the same time.”

“I guess it would depend on the size of the pocket,” commented
Ann.

“Tiny, tiny, tiny,” responded Marcus. “A tiny pocket that can only
fit one thing.”

“Oh. Well, thank you.” said Ann. She was still uncertain about the
actual usefulness of a compass rock.

“I also have this for you,” said Marcus, handing her a small coin
purse with a counter on the front.

“A purse?” asked Ann.

“A magic purse,” corrected Marcus. “It works like a calculator. It
uses a variable called ‘value’ to track how much money the purse
contains. This purse displays that amount on the front.

“When you put a coin in, that amount is added to the ‘value’
variable, and when you take a coin out, the appropriate amount is
subtracted from ‘value.’ It always tells you how much money you have
in the purse.”

Marcus demonstrated the concept by inserting a nickel into the
purse. The counter on the front increased by five cents. Ann imagined a
magical variable within the purse changing as the result of the addition.

value = value + 0.05

“Why would I need that?” asked Ann. “I can always count the
money.”

“Ah,” said Marcus with a smile. “Counting takes time. What if
you’re in a hurry?”

“I see. Thank you again for these wonderful gifts,” Ann responded
with false enthusiasm. She already knew that the gifts wouldn’t help her.

“I hope they help you on your quest,” replied Marcus. Then he
quietly added, “If I had known you were departing on a quest, I would
have brought better magical items for you.”

He shrugged, closed up his pack, and prepared to leave.

“Sir?” ventured Ann. “May I ask you for one more favor? Do you
have any advice to give me on my quest? Any helpful pointers on where
to start?”

Marcus paused for a long moment and looked off into the distance.
“I don’t know what the darkness is, or where you should go. I’'m sorry.
Instead, I’ll leave you with the following advice: don’t get eaten by a
dragon. I hear it’s terribly unpleasant.”

With those words, Marcus continued his journey toward the castle.

He hummed to himself as he went.
Once again, Ann felt a pit of despair in her stomach.

The IF-ELSE Life of the King’s Turtle

|IF-ELSE statements allow programs to branch off and execute
one of two different blocks of code. The |F statement starts by
evaluating a Boolean (true/false) clause. If this clause evaluates to
true, then the block of code conditioned on the |F statement is
executed. Otherwise, it is skipped. An ELSE clause can be
iIncluded to provide an alternate block of code in the cases where
the original Boolean clause evaluates to false.

k ok ok

Fido, King Fredrick’s prized pet turtle, lived a charmed life. He spent his
days in the garden fountain, swimming and sleeping. He didn’t have any
magic powers, aside from the ability to amuse himself for an hour by
staring at a pebble, but King Fredrick was quite fond of him. Due to his
quiet nature and lack of razor-sharp teeth, Fido had always been Ann’s
favorite pet as well. The castle’s servants took good care of him. They
made sure that his fountain was always mostly clean—Fido did enjoy the
occasional patch of slime.

Fido lived by a series of simple rules. In fact, since his brain was
roughly the size of a pebble, they were incredibly simple IF-ELSE—style
rules. These rules made up Fido’s entire daily routine. For example, he
had simple logic to determine when he ate:

IF he was hungry then he ate

This logic worked well for Fido, because he ate when he was hungry.
And, as a natural consequence, he didn’t eat when he wasn’t hungry. It
was quite a good system.

For some aspects of life, the IF statement could have two different
actions depending on the condition. For example, when he was
swimming:

IF the fountain 1s on then play i1n the fountain
ELSE swim around the large rock

Obviously, Fido enjoyed the fountain more than the rock.
Sometimes the decisions would be complex enough to require a
series of chained IF-ELSE statements:

IF it 1s sunny then sit in the grass
ELSE IF it i1s warm then go swimming
ELSE sleep

On sunny days, Fido would happily sit in the grass. When it was warm
but not sunny, Fido would swim in the fountain. And on those rare days
when it was neither warm nor sunny, Fido would sleep. He hated those
days.

The gardener responsible for taking care of Fido often joked that
“All that turtle does is eat, sleep, and swim,” which wasn’t far from the
truth. The logic that ruled Fido’s life consisted of about fifty different
actions contained within chained and nested IF-ELSE statements.

When Ann was a child, a visiting scholar had once spent a week
studying Fido. With Ann’s eager assistance, he recorded the entire logic
for Fido’s routine on a single scroll of parchment. If Fido had been
intelligent enough to understand what that meant, he might have been
offended. Instead, he sat in the grass—it was sunny.

Then, five days after the start of Ann’s quest, the unthinkable
happened. The gardener, worried that Fido would be bored without
Ann’s visits, added a second large rock to the garden. This addition threw
off Fido’s IF-ELSE—-based routine completely. It took almost a full week
for Fido to determine a new routine. In the end, he added another IF-
ELSE:

IF he 1s closer to the right rock then swim around the right

rock
ELSE swim around the left rock

Thus order was restored to his life.

Loops and Making Horseshoes

Loops, such as the FOR loop or WHILE loop, are programming
constructs for repeating a set of instructions until some termination
criterion is met. Two primary things define a loop: 1) What you do
inside the loop, and 2) the conditions to stop looping.

k) 2k K

Hundreds of miles north of the capital, in the small outpost of Garroow,
the blacksmith Drex was losing his patience. His new apprentice, Simon,
wasn’t working out. In fact, Drex had never had a worse apprentice in his
thirty-five years as Garroow’s master blacksmith. Simon could barely lift
the hammer, let alone swing it with sufficient force to shape metal.
However, worse than that, Simon also lacked the necessary intelligence
to carry out even simple tasks. Had it not been for his diminutive size,
Drex might have thought that Simon was actually an ogre.

Drex found himself constantly repeating instructions:

“Now, hit the metal again.”

“And again.”

“And again”

Drex’s patience was wearing thin. He hated repeating himself.

Finally, Drex decided to try an experiment. “Simon, hit the metal
twice,” he commanded.

Clank. Clank. Simon complied.

“Now, turn it over and flatten it,” Drex commanded.

Simon flipped the deformed-looking horseshoe and hit it once.
Then he paused and looked back at Drex, confused.

Drex sighed loudly. Was that really too much for Simon to handle?
The boy was hopeless.

“It’s a loop!” shouted Drex. He knew that Simon wouldn’t
understand, but at least shouting made Drex feel better. “A simple,
simple loop.”

“A loop?” asked Simon.

“Haven’t you ever heard of a loop?”

Simon shook his head sadly.

Drex realized that they had hit the core of the problem. How could
Simon function as a reasonable blacksmith without understanding how
loops worked? Then again, Drex had no idea how Simon could function
as a human without understanding loops.

“A loop is defined by two things: something to do and a way to
know when to stop doing it. You keep doing that one thing over and over
until you stop,” Drex explained calmly, reciting the favorite description
by Garroow’s famous scholar Dr. Whileton. Of course, Dr. Whileton

tended to repeat himself, so he would have explained it at least a few
times.

Simon stared back blankly.

“Think about a one-mile race,” Drex suggested. “You run around
the track until you have gone a mile. That’s four laps, right? So, running
is the thing you do and having run a full mile is how you know when to
stop. The track even looks like a loop.”

“I run until someone tells me to stop,” said Simon.

“Of course you do,” muttered Drex.

“In this case,” continued Drex, “I want you to keep hammering that
horseshoe until it’s flat. As soon as it’s flat, you can stop. WHILE the
horseshoe is not flat, hit it with the hammer.”

“Okay,” agreed Simon happily. He promptly set about hitting the
horseshoe over and over again. By the end, Simon breathed heavily from
the effort, but he had succeeded in flattening the horseshoe.

Drex was stunned. How had Simon understood that?

“Good. Now go get the coals hot,” Drex commanded.

Simon looked confused again.

Drex sighed. “It’s another loop. Pump the bellows 10 times. FOR
each number that you count from 1 to 10, give the bellows a pump.”

“Okay.” Simon again got to work, pumping the bellows exactly ten
times. He counted loudly each time:

“One ... two ... three ... four ... five ... six ... seven ... eight ...
nine ... ten.”

Over the course of a week, Drex determined that Simon would
repeat tasks if they were well specified in a loop. Drex would tell Simon
exactly what task to repeat and exactly how long to repeat it. Sometimes
he told Simon to count up to a certain number. Other times he phrased
the command like a WHILE loop, telling Simon to continue doing
something until he had met a goal.

Simon responded well to these structured commands. The
blacksmith’s shop was filled with the noise of Simon cheerfully counting
and hammering. “One ... bang ... two ... bang ...”

Eventually, Drex introduced nested loops, issuing instructions such
as “WHILE the sword is not thin enough, turn it over and FOR each
number from 1 to 5, hit it with the hammer.” Simon would happily go
about banging the sword into shape while turning it over after every five
hits.

Unfortunately, this formalized approach only worked to a point.
Disaster finally struck when Drex tried to teach Simon more complicated
computational concepts. As Drex and Simon stood outside the burning
blacksmith’s shop, Drex admitted defeat. Before leaving town for an
open blacksmith’s position in New Athens, he found Simon a better job
——counting laps for runners on the local track team.

The Town of Bool

Boolean logic is based on two values: TRUE and FALSE (or
alternatively ON and OFF for physical transistors). Complex
logical expressions can be formed by using a few simple
operations, such as AND, OR, and NOT. These expressions allow
computers to perform logic such as adding binary digits,
determining whether an |IF statement executes, or controlling
when a loop terminates.

k ok ok

The town of Bool was home to one of the kingdom’s most respected
logicians, Ellis Conjunctione. Ann had decided to visit the kingdom’s
scholars in the hope that they would provide insights into her quest.
Unfortunately, upon arrival, Ann was informed that Dr. Conjunctione
wouldn’t be seeing anyone.

“I am sorry, but Dr. Conjunctione is busy at the current time,”
stated one of Dr. Conjunctione’s graduate students. His voice projected a
rare combination of formality and boredom. It reminded Ann of a over-
practiced lecture, during which the teacher struggles to maintain his own
interest in the material.

The graduate student stood in front of the university’s doors,
physically blocking Ann’s path. He crossed his arms. Ann wondered if
the student thought that pose would make him look menacing. In reality,
he just looked uncomftortable.

“I’m on an important quest,” insisted Ann.

The student appeared unswayed. “Dr. Conjunctione is already
working on the single most important problem facing the kingdom: a
logic problem called 3-SAT. Your quest will have to wait. He gave me
explicit instructions not to be interrupted by anyone.”

Despite arguing her case for two hours, Ann couldn’t convince the
student. He refused to compromise at all. Finally, she admitted defeat and
resolved to move on to the next name on her list. She decided to stay the
night in Bool before continuing.

Ann found her short stay in the town of Bool most annoying. She
had always heard that the Booleans were strict believers in binary logic
—everything was either true or false. She had naturally assumed that this
simply meant that they were opinionated. For example, she wouldn’t
expect anyone in Bool to state “Jazz is okay.” Opinions would be
definite. However, she hadn’t expected this philosophy to apply to
absolutely every single aspect of life.

The first surprise came at a local restaurant.

“May I get more water, please?” Ann asked a waiter.

“No,” he replied. “I only refill a glass if it is empty AND you’re
still eating.”

“I am still eating,” Ann assured him.

“But your glass is NOT empty,” he responded as he moved off to
the next table.

Ann looked down at her glass. It contained at most three drops of
water. Ann sighed and finished those drops in preparation for the waiter’s
return. She decided that in this case she was going to embrace the
Boolean philosophy and NOT give him a tip.

Luckily, Ann was well equipped for her stay. She had studied
Boolean logic as an elective in kindergarten. It all came down to a few
simple rules:

e There are only two options: TRUE and FALSE,

« A AND B evaluates to TRUE if and only if both A and B are
TRUE,

e A OR B evaluates to TRUE if either A or B (or both) is TRUE,

e« NOT A evaluates to TRUE if and only if A is FALSE.

The logic matched how people used the terms in everyday life.
Unfortunately, though, the laws of Boolean logic weren’t designed for
living everyday life.

Over the course of her 16-hour stay, Ann continued to experience
the frustration of dealing with the Booleans’ world. She found that when
the park “closed at sunset,” the patrons would stay until the second the
sun dropped below the horizon and then run out of the park. Similarly,
getting directions turned out to be extremely aggravating.

“Is the hotel in that direction?” she asked, pointing approximately
southeast.

“It is NOT in that direction,” proclaimed a Boolean on the street.
“It is in that direction.” The Boolean pointed in almost, but not exactly,
the same direction. Ann sighed and walked in approximately the correct
direction.

“You are NOT going in the correct direction,” the Boolean shouted
after her. Ann ignored him.

She also resolved to program Marcus’s compass to guide her back
to the hotel. That way, if she went out, she could avoid having to ask for
directions again.

Even the signage in Bool was overly logical. The crosswalk light
actually said “Cross when the WALK light is on AND there are no cars
speeding toward you.” Did they really need to clarify that? Ann
wondered what would happen if someone misprinted the sign to use an
OR. Would it be chaos?

Ann only fully understood the Booleans’ true adherence to this
logical formulation when she reached the hotel. There, on the back of her
hotel door, was a fire escape plan like you would find at any hotel—
except, in this case, all of the conditions were specified as long Boolean

logic statements. “Use the south stairs IF (they are NOT on fire AND the
north stairs are on fire) OR (there is an obstruction in the hall toward the
north stairs) OR ...”

After reading the sign four times, Ann decided that in the event of a

fire she would be too confused to escape. She promptly resolved to leave
Bool as soon as she could.

Unhappy Magic Flowers and Binary

Binary is a number system in which each digit can take one of only
two values: 0 or 1. Binary allows the computer to encode
information in a series of switches that are either on (1) or off (0).

Each binary digit represents a power of two. The first (right-
most) digit represents the 1’s place, the second digit represents
the 2's place, the third represents the 4’s place, and so forth. For
example, the binary number 10110 = (1 x 2%) + (0 x 23) + (1 x 22) +
(1 x2")+ (0x 2% =22 in decimal.

k %k

The deliveryman paused outside of the wizard Marcus’s New Athens
townhouse. Marcus smiled. He had recently returned from visiting King
Fredrick in the capital, and he was waiting for the backlog of missed
deliveries. There should be at least five important potion ingredients and
a new hat arriving today.

Yet the deliveryman didn’t continue toward the door. He stood
transfixed, staring at the flowers. After two minutes, Marcus went
outside to see if there was a problem.

“Your flowers have changed since yesterday,” observed the
deliveryman. “I’m sure the one on the right was red yesterday. Today it’s
blue.”

“Those are the same flowers,” responded Marcus. “Some of them
are sulking today. Stupid flowers.”

“Sulking? Do flowers sulk?” the deliveryman asked.

“Actually, it’s more of a protest,” clarified Marcus. “They are, of
course, magic. They protest whenever it doesn’t rain. It’s quite
aggravating, really. I water them every day, yet they still insist on
sulking.”

“Huh?” The deliveryman looked back and forth between Marcus
and the flowers, trying to make sense of Marcus’s statement.

“They protest by changing color to blue. Roses are supposed to be
red. You have probably heard all of the poems to that effect, ‘Roses are
red’ and such. But these roses insist on telling me how long they have
had to ‘suffer’ without rain.” Marcus gestured angrily at the roses as he
spoke.

“They talk to you?” The deliveryman took a step away from
Marcus.

“Of course not. They simply change color.”

“What does color have to do with when it rained?”

“Well,” started Marcus. “they used to all change color together

after three days without rain—a sort of mass protest. Then they started to
organize. They want to let me know exactly how unhappy they are. So
now they count the days.”

“Only two are blue,” observed the deliveryman. “It hasn’t rained
all week.”

“Nine days, to be exact,” corrected Marcus after looking at the
flowers. “They use binary.”

HHuh?.H'

“Red tlowers are zero and blue tlowers are one,” Marcus added.

That explanation did not help. In fact, it seemed to further confuse
the deliveryman. However, on the positive side, he no longer looked as
though he wanted to run away.

“Binary?” prompted Marcus. “Each flower represents a different
digit, and thus a different power of two. The rightmost flower means one
(2, the one next to it means two (2'), the one next to that means four
(2%), and so forth. Add up the numbers represented by the blue flowers
and you get the total number of days. Right now only the first (2° = 1)
and fourth (2° = 8) tflowers are blue, so it’s been 2° + 2° =1 + 8 = 9 days.”

The deliveryman looked. Sure enough, the five flowers across
Marcus’s porch were: Red Blue Red Red Blue (or 01001).

Tl

“Why do they use binary?” asked the deliveryman.

“They tried to spell out the numbers on their petals, and they got
too confused. So they had to settle for each flower being either all red or
all blue. It turns out that flowers aren’t that smart. Binary is a simple
enough system for them. If they were smart enough for anything else, do
you think they would be complaining to me about the rain? There’s
nothing I can do about it!” Marcus shouted the last part directly at the
flowers.

“But how do they work together?” The more absurd the story got,
the more interested the deliveryman became. He leaned in toward the
flowers.

“It’s really quite simple for them to count in binary,” started
Marcus. “When it rains, they’re all happy and turn red. They effectively
reset the counter to 00000. I like those days a lot.

“Then, each morning all of the flowers wake up and decide what

color they’ll be for the whole day. If it hasn’t rained, they increase the
count.

After 1 day: Red Red Red Red Blue (00001 = 1)

After 2 days: Red Red Red Blue Red (00010 = 2)

After 3 days: Red Red Red Blue Blue (00011 =2 + 1 = 3)

After 4 days: Red Red Blue Red Red (00100 = 4)

After 5 days: Red Red Blue Red Blue (00101 =4 + 1 =5)
and so on.

“You see, each flower looks to its right in order to decide what to
do. If its right-hand neighbor changes from blue to red (1 to 0), then the
flower flips its own color. A blue flower changes to red, and a red tlower
changes to blue. This keeps happening until one of the flowers doesn’t
change from blue to red.”

“What about the right-most flower?” asked the deliveryman. “How
does it know what to do?”

“Ah. That one is the instigator! I’m sure he’s the one that started it.
Every morning there’s no rain, he flips. He’s the one that starts the
process off. Red to blue to red to blue.”

The deliveryman thought about it. “Why does a flower only change
when its neighbor flips from blue to red?”

“Think about it the way that you would count with numbers 0-9.
When you hit 9, you can’t go any further with that digit. So you increase
the next digit by one and roll the current digit back to 0. It’s like going
from 19 to 20 or from 29 to 30. Only here there are exactly two options
for each digit, 0 and 1, so things roll over more frequently.”

e

Qe
') HI'
sl Ef P

“That system always works?” interrupted the deliveryman.

Marcus tore his attention away from the right-most flower. He
suddenly wondered how the discussion had gone from a rant about magic
flowers to counting in binary. Did the deliveryman not have any other
deliveries? For that matter, where was the delivery for Marcus?

“Yes. They’ve already counted out nine days, haven’t they?”
answered Marcus flippantly.

Then, seeing the look of interest on the deliveryman’s face, Marcus
returned to his teaching tone. “Consider what happens if doesn’t rain
tomorrow. The first flower will switch from blue to red, so the second
flower will switch from red to blue. The count will go from 01001 =9 to
01010 = 10.”

The deliveryman looked impressed. Marcus couldn’t understand
why. The flowers were really annoying.

The Importance of (Variable) Names

Writing ‘readable’ code is vital to the long-term usability of the
code. Code that is clearly written is easy to understand (both for
the original programmer and for future users), easier to maintain,
and easier to check for mistakes. One important aspect of
readable code is the use of clear, meaningful variable names.
Using meaningful variable names can greatly improve the
understandability of code.

k ok ok

By the time Princess Ann reached the northernmost outpost within the
kingdom, she was losing hope. Her father, King Fredrick, had sent her on
a quest to save the kingdom from impending darkness weeks ago. So far,
Ann had found nothing.

The outpost of Garroow had been hit particularly hard by the
chaos. The frequency of goblin attacks had increased in recent weeks.
The commander, Sir Aat, had sent word to Ann’s father that the outpost
desperately needed reinforcements. At a loss for better stops on her
quest, Princess Ann headed north to Garroow. While there she also
hoped to consult with the world’s second-most expert in loops,

Dr. Whileton.

Ann found the situation in Garroow worse than she had expected.
First off, Dr. Whileton had left for Guelph to start an “important
collaboration” with another loop scholar. Nobody could provide details
on the project or the timing of his return. Second, and perhaps more
importantly, the outpost itself teetered on the verge of collapse.

During her first night at the outpost, a small goblin attack almost
overwhelmed it. The fifty-person garrison barely held off three relatively
tired goblins. She heard the captain shouting orders at his soldiers:

“Ut, guard the south wall. No, I meant Ot. Ut, stay where you are.

“Drex—no, [mean Dex—swap places with Plex. We need an
archer on the wall, not a blacksmith.

“Et, secure that door.”

Eventually, the soldiers repelled the attack and put out the fires.
However, the lingering feeling of chaos and confusion continued to
bother Ann. It worried her that the garrison’s response had been so
disorganized. It was like watching her father’s turtle Fido try to chase its
own tail. The problem wasn’t the number of soldiers in Garroow, but
rather how they were being commanded.

Ann resolved to fix the situation before leaving the garrison. She
spent the entire night pondering the different algorithmic strategies,
certain that one of them would help the garrison run more efficiently. As

she had been taught from an early age, almost every problem has an
algorithmic solution. Ultimately, the true problem dawned on her at
3 a.m., and she fell asleep confident that she knew how to fix the
situation.

“Sir Aat,” she addressed the commander at breakfast the next
morning. “We need to discuss the attack last night.”

“Yes,” agreed the commander. “The goblin threat is real. Now you
see why we need the reinforcements?”

“No,” responded Ann.

The commander looked shocked. The rest of the dining hall fell
silent. Everyone waited to see what Ann would say next.

“You need better names,” Ann continued.

The commander laughed deeply. “You don’t understand. We’ve
already improved our names. When a soldier joins the outpost, I assign
him a new name. Every name is short so that commanders can call out
orders quickly in battle.”

“No,” disagreed Ann. “It’s inefficient.”

“No offense, Princess Ann, but what do you know about
commanding in battle?” he asked.

“Only what I observed last night. But from that limited
introduction, I can assure you that the names are hurting your efforts.

“T think you’re mistaken,” declared the commander. “They allow
us to issue commands at incredible speeds.”

“Yes, they do,” agreed Ann. “But they’re prone to mistakes. Last
night, you corrected yourself 89 different times. The names are too
similar and thus too easy to confuse. Plex and Dex. Ut, Ot, Et, and Aat.
The short names don’t help!”

“Ha! What would you suggest?” scoffed the commander.

“Use descriptive names. For example, Plex should be called ‘South
Tower Archer’ or at least ‘Archer Plex.” That more accurately reflects his
role.”

“That’s crazy!” bellowed the commander as he slammed his mug
of coffee on the table. His anger at being lectured overrode his manners
toward the future ruler of the kingdom. “Do you know how long it takes
to say ‘South Tower Archer’ in the heat of battle? We would waste
valuable time.”

“Do you know how long it takes to say ‘Dex, swap places with
Plex, we need an archer on the wall, not a blacksmith’? Any measure of
efficiency needs to take into account the time spent on corrections,” Ann
countered.

“Well—you see—our old blacksmith Drex recently relocated, so
— started the commander.

“What about you?” Ann interrupted. “Why not have them call you
‘Commander’ or ‘Captain’?”

“Our names already reflect rank,” replied the commander. “The
names proceed down the ranks in alphabetical order. It allows any soldier
to instantly know who outranks them! It makes life simple!”

3

“No it doesn’t. In order for the soldiers to refer to each other, they
have to learn new, made-up names. Why not have them learn the ranks
instead? Either way they have to learn something new. Only, in this case,
the ranks mean something.”

“We have a good system!” argued the commander.

Ann sighed. “It’s like programming a complex algorithm,” she
explained. “Using short variable names can make it feel more efficient to
program, because you can type out the code faster. But, in the long run, it
can do more harm than good. It becomes easy to make mistakes and
difficult to sort out what’s happening. Oftentimes, slightly longer names
can make a significant difference.”

The commander opened his mouth to argue but couldn’t think of a
rebuttal. Instead, he sat at his table, mouth open, with a confused look on
his face. After a while, he spoke.

“Princess Ann, I think you might have a point.” Secretly, the
commander also felt a small pang of relief. He had never been fond of his
own assigned name. He often found himself daydreaming of his soldiers
saluting and shouting “Yes, Commander!” in unison.

That afternoon, the commander changed every soldier’s name to be
longer but more meaningful. Over the next few days, the troops stumbled
through drills, getting used to their longer names. But soon Ann began to
see efficiency improve.

A week later, on Ann’s final night in Garroow, goblins attacked
again. This time the invading force consisted of ten highly trained goblin
special-forces troops. The Garroow soldiers turned away the attack with
ease.

As Ann left the garrison, she took a small bit of pride in the
dramatic improvements in the forces there. After indulging in the brief
moment of happiness, she turned her horse south and continued on her
quest to save the kingdom.

Pseudocode for the Quest Algorithm

Pseudocode is an informal way of writing algorithms in order to
make them easily understandable. While it represents actual
computer code, it does not adhere to the syntax of any
programming language. Instead, it is often written as a mixture of

programming syntax and natural language.

k ok K

As she rode, Ann pulled a small scrap of paper out of her bag:

L]

WHIL!

best lead = “Find new i1information”

I have NOT stopped darkness:

FOR each lead 1n my list of leads:
IF lead 1s better than best lead

best lead = lead
Follow the best lead
Check 1f I have stopped the darkness

She already knew it by heart. It contained the algorithm that
Sir Galwin had taught her. Despite its simplicity, looking at the algorithm
always gave her hope.

So, without any leads, Ann picked a new city in which to gather
information. She would travel to Guelph and consult the foremost expert
in loops, Dr. Iterator. With any luck, she would also find an opportunity
to speak with Dr. Whileton.

She carefully folded the paper and returned it to her bag. At least

she had a plan.

DATA STRUCTURES

Arrays, Linked Lists, and Zed’s Coffee

Arrays and linked lists are both simple data structures that store
multiple values in memory. These data structures differ in how
they store and allow access to the data.

Arrays are like a set of bins with a fixed number of slots.
Their structure makes it easy to read from or write to an arbitrary
element in the array.

In contrast, linked lists are easily expandable chains of data.
However, you must scan to the correct location in the chain to
read or modify a piece of data in that node.

ol S

One year after Zed opened his coffee shop in the capital, business was
oreat. Zed had a devoted set of regulars who bought coffee every
morning on their way to the castle. They were mostly bureaucrats,
specializing in such jobs as counting the kingdom’s cattle or copying
maps. King Fredrick’s steward had become a particularly devoted patron,
drinking an alarming amount of coffee each day. Even Princess Ann used
to frequent the shop before she departed on her quest.

Then, one day, a competitor opened shop across the street. Zed
started losing business to MegaCup’s low prices and flashy signs. Zed
knew he had to expand.

Looking over the books, Zed noticed that he sold a lot of coffee in
the morning but almost none at night. None of his customers wanted to
be jittery as they headed home and went to sleep. Zed needed a new
product—something he could sell at night.

His supplier told him about a new type of coffee coming from the
southern region of the kingdom, “Low-Jitter Coffee.” Immediately, Zed
knew this coffee would solve his evening sales slump. He ordered eight
cases.

Z.ed needed a way to market his new coffee. The sign outside his
store read “Coffee” and didn’t have room for anything else. After a week
of intense thought, Zed ordered a new ArrayDesignBoard menu board for
outside his shop. The board had four slots into which you could slide the
menu items you wanted to display. He slid in “Coffee” and “Low-Jitter
Coffee” tags.

The new coffee became a huge success. Zed’s business doubled in
a week. He added four baristas to the evening shift. He even attracted a
few new morning customers, such as the king’s tailor, who had long ago
learned not to mix sewing and strong coffee.

However, Zed’s competition soon caught on. A week later, Zed

noticed a new shingle on MegaCup’s sign: “Low-Jitter Coffee.” The war
was on.

Welcome to Zed's

Coftee

Low-Jitter

[L.ow-Jitter Coftee

Zed's Coftee MegaCup

Then his supplier told him about another type of coffee. Called
“Double-Bold Coffee,” it was significantly stronger than the normal
brew. A single cup could keep you awake all night. Zed ordered eight
cases and a new menu tag for the ArrayDesignBoard menu.

Again, the new coffee became a rapid success. His morning crowd
loved it. The steward alone ordered three extra-large cups each morning.
Zed also started attracting new customers from the castle’s night guards.
They needed something strong to keep them awake during their watch.

Alas, MegaCup soon added a new shingle to the end of its sign.

Welcome to Zed's

Coftee

‘ Low-Jitter
[L.ow-Jitter Coftee Y (

Double-Bold
Double-Bold

Zed's Coftee MegaCup

The next time his supplier visited, Zed grilled him on the other
types of coffee available. After obsessing over the supply lists, Zed
decided to try a novel approach. He ordered one case each of ten
different flavors. He put these flavors into a rotation, constantly offering
new variety.

This rotation approach worked particularly well with Zed’s sign.
Every time he switched a flavor, he would remove one tag and slide a
new one in. Sometimes he changed the menu a few times in one day,
such as replacing “Double-Bold” with “Low-Jitter” after noon.

MegaCup took a different approach. The manager quickly found
that, while adding new shingles to the end of the list was easy, removing
them was frustrating. In order to remove a shingle, he had to: unlink it
from both the shingle above and the shingle below, then reattach the
shingle below to the one above. It was a time-consuming process. He
decided to take advantage of the sign’s ability to easily expand offerings.
He instead offered six different coffees on a semi-permanent basis. On
rare occasions, he would grudgingly spend fifteen minutes unlinking a
shingle on his sign and adding a new one.

The two coffee shops operated in that mode for years. Zed’s coffee
shop rotated through different options, and MegaCup offered a more
constant, but larger, selection.

Both businesses thrived as the market for coffee grew. Eventually,
Zed’s Coffee House became one of the largest businesses in the
kingdom, with over a hundred different locations. Zed continued to
expand aggressively until the great sugar famine hit. With business
dropping due to the lack of sugar, Zed decided to leave the world of

coffee and speculate in coconut sales.

Strings and Pigeon Messages

Strings are sequences of characters. In many programming
languages, strings are implemented as an array of characters, and
you can access each character as you would any value in an
array.

k) 2k K

“Only twenty letters?” asked Ann. The limit seemed ridiculous. Who had
ever heard of a pigeon-carrier message with a length limit?

“Yes,” confirmed Guelph’s pigeon master. “We don’t have the
kingdom'’s strongest pigeons here. We need to be careful about the
weight of the messages.”

“But twenty letters is so short,” objected Ann.

“It’s actually a twenty character limit,” clarified the pigeon master.
“Spaces count toward your total. So does punctuation.” He laid out a tiny
rectangle of parchment on the counter. It had twenty tiny gray squares.
Each square was large enough to hold a single character.

“I suppose we could send for a stronger pigeon,” offered the pigeon
master. “It might take a while, but we’ve done it before. I hear the castle
has pigeons that can carry multiple pages of information. Can you
imagine that?” He smiled wistfully and looked out the window. Ann had
never seen a case of pigeon envy this bad.

Ann shrugged. Truthfully, twenty characters would be more than
enough. She had yet to find any useful information about the darkness.
This message was a courtesy to her father; she had promised regular
updates.

Without a good reason to argue for a longer message, Ann set
about filling in the tiny squares: “No progress. -Ann.” Seventeen letters.

Njol [Pf=fofgl=efsfs]-| |-|2l=]=] | |

Ann took a moment to consider where she could add more
information. She could strip out the punctuation, but that would save her
only two characters. Anyway, she had nothing more to say.

She paid the pigeon master and watched him attach the message to
the pigeon’s leg. The bird lethargically flapped away, barely clearing the
windowsill. Ann briefly wished that she could follow the pathetic bird
back to the castle. Instead, she left the communications office and
continued on her quest.

As prescribed by Sir Galwin’s algorithm, Ann needed to find more
information. She had no leads and her recent attempts to consult
Dr. Conjunctione, Dr. Whileton, and now Dr. Iterator had failed

