

Computational Philosophy of Science

Paul Thagard

A Bradford Book

The MIT Press
Cambridge, Massachusetts
London, England

First MIT Press paperback edition, 1993
(C) 1988 Massachusetts Institute ot Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information storage
and retrieval) without permission in writing from the publisher.

This book was set in Palatino by Asco Trade Typesetting Ltd., Hong Kong, and printed
and bound by Halliday Lithograph in the United States of America.

Library of Congress Cataloging-in-Publication Data

Thagard, Paul
Computational philosophy of science/Paul Thagard.
p. cm.
“A Bradford book.”
Bibliography: p.
Includes index.
1 (PB)
1. Science—Philosophy. 2. Psychology. 3. Artificial intelligence. 1. Title.
Q175.T479 1988 501—dc19 87-21892

Contents

Preface xi

Acknowledgments xiii

Chapter 1

Computation and the Philosophy of Science 1

1.1. A New Approach 1

1.2. Artificial Intelligence, Psychology, and Historical Philosophy of Science 2
1.3. Why Write Programs? 4

1.4. Psychologism 7

1.5. Ouverview 8

1.6. Summary 9

Chapter 2
The Structure of Scientific Knowledge 11
2.1. Structure and Process 11
2.2. Scientific Knowledge 12
2.3. Structure and Processin PI 15
2.3.1. Knowledge Representation 15
2.3.2. Problem Solving 19
233 Induction 27
2.3.4. Limitations of P 29
2.4. Expressive and Procedural Equivalence 30
2.5. Summary 32

Chapter 3
Theories and Explanations 33
3.1. Requirements of an Account of the Nature of Theories 34
3.2, Critigue of Prevailing Accounts 35
3.2.1. The Positivist Syntactic Account 35
3.2.2. Kuhn's Paradigms 36
3.2.3. The Set-Theoretic Conception 37
3.3. A Computational Account of the Nature of Theories 38
3.3.1. Rules and Concepts 38
3.3.2. The Importance of Schemas 41

viil Contents

3.4. Practical Adequacy of the Computational Account

42

3.5. Explanation 43

3.5.1. Understanding 44

3.5.2. Explanation and Problem Solving 45
3.6. Summary 48

Chapter 4
Discovery and the Emergence of Meaning 51
uckion 51
jon 52

4.2.1. Discovery or Justification? 53
4.2.2. Simple Abduction in PI 54
4.2.3. Existential Abduction 56
4.2.4. Abduction to Rules 58
4.2.5. Analogical Abduction 60
4.2.6. Logic of Discovery? 63

4.3. Theoretical Concept Formation 65

4.4. The Emergence of Meaning 68

4.5. Innateness 71

4.6. Limitations of PI 72

4.7. Summary 73

Chapter 5

Theory Evaluation 75

5.1. From Discovery to Evaluation 75

5.2. Case Studies of Theory Choice 76

5.3. Consilience 78

5.4. Simplicity ~ 82

5.5. Inference to the Best Explanation in PI 86
5.5.1. Competing Theories and Evidence 87
5.5.2. Consiliencein PI 88
5.5.3. Simplicity in PI 89
5.5.4. Limitations 92

5.6. Analogy 92

5.7. Meaning and Commensurability 95

5.8. Probability 97

5.9. Conclusion 98

5.10. Summary 99

Chapter 6

Against Evolutionary Epistemology 101
6.1. What Makes a Good Analogy? 101
6.2. The Evolutionary Approach 102

6.3 Varighon 102

Contents

6.4, Selection 107

6.5. Transmission 109
6.6. Conclusion 110
6.7. Summary 111

Chapter 7
From the Descriptive to the Normative 113
7.1. The Normative Character of Philosophy 113
7.2. Goodman: Normative Conclusions through Reflective Equilibrium 114
7.3. Historical Philosophy of Science 115
7.4. Wide Reflective Equilibrium 119
7.5. HPS, WRE, and the Relevance of Psychology to Logic 122
7.5.1. Limitations of HPS 123
7.5.2. Relevance of WRE for Psychology and Logic 124
7.5.3. Narrow Reflective Equilibrium? 126
7.6. From Psychology to Logic: Criteria for Inferential Systems 127
7.6.1. First Approximation: FPL 127
7.6.2. Criteria for Coherence 128
7.6.3. Beyond Reflective Equilibrium 129
7.6.4. On Deductive Logic ~ 132
7.7. From the Descriptive to the Normative: A General Model 133
7.8. The Role of Computational Studies 135
7.9. Irrationality 136
7.10. Summary 136

Chapter 8

Justification and Truth 139

8.1. The Justification of Inference to the Best Explanation 139
8.1.1. How Not to Justify Inference to the Best Explanation = 139
8.1.2. Alternative Justification 141

8.2. Scientific Realism 145
8.2.1. Realism and Computation 145
8.2.2. An Argument for Realism 147
8.2.3. Inference to the Best Explanation Is Not Circular 149
8.2.4. Computation and Observation 150
8.2.5. Realism in the Cognitive Sciences 152

8.3. Methodological Conservatism 152

8.4. Summary 155

Chapter 9

Pseudoscience 157

9.1. The Problem of Demarcation 157
9.2. Verifiability and Falsifiability 160
9.3. Resemblance Thinking 162

1X

X Contents

9.4. Resemblance Thinking and Pseudoscience 166
9.5. Progressiveness 168

9.6. Profiles of Science and Pseudoscience 170

9.7. Are the Cognitive Sciences Scientific? 171

9.8. Summary 173

Chapter 10
The Process of Inquiry: Projects for Computational Philosophy
of Science 175
10.1. Theory and Experiment 175
10.1.1. The Limitations of PI 175
10.1.2. Two Methodological Myths 176
10.1.3. Experimental Design as Problem Solving 179
10.1.4. An Illustration: The Extinction of the Dinosaurs 180
10.2. Parallel Computation and Group Rationality 182
10.2.1. The Importance of Parallel Computation 182
10.2.2. Parallelism in Scientific Communities 186
10.2.3. Group Rationality 187
10.2.4. The Need for Experiments 187
10.3. Summary 188
10.4. Conclusion 188

Appendix 1: Tutorials 191

A. Outline of the Philosophy of Science 191
B. Formal Logic 193

C. Data Structures and Algorithms 196
D. Schemas 198

Appendix 2: Specification of PI 201
Appendix 3: Sample Run of PI 209
References 225

Index 235

Preface

To some ears, “computational philosophy of science” will sound like the
most self-contradictory enterprise in philosophy since business ethics. On
the contrary, central philosophical issues concerning the structure and
growth of scientific knowledge can be greatly illuminated by drawing on
ideas and techniques from the field of artificial intelligence. This book uses
PI, a computer program for problem solving and induction, to illustrate the
relevance of computational ideas to questions concerning the discovery,
evaluation, and application of scientific theories.

The first part of the book is concerned with computational models
of scientific thinking, and should appeal to those interested in artificial
intelligence and cognitive psychology as well as to philosophers. Later
chapters turn to more traditional philosophical issues, concerning the rela-
tion between how reasoning is done and how it ought to be done, truth,
the justification of scientific methods, and the difference between science
and pseudoscience. Some of the general conclusions about the nature of
scientific method are applied to the particular fields of psychology and
artificial intelligence. The book concludes with a highly speculative chapter
concerning what computational models might add to our understanding of
two key aspects of the process of inquiry: the interrelations of theory and
experiment, and the importance of group rationality in science.

I have tried to make this book accessible to an interdisciplinary reader-
ship by clarifying philosophical and computational terms as they arise. To
provide background for readers of different fields without interrupting the
argument, appendix 1 contains four tutorials providing essential philoso-
phical, computational, and psychological introductions. Each chapter con-
cludes with a summary of its most important claims.

The book is offered in the hope that it will be read without arbitrary
categorizations of what is philosophy, artificial intelligence, or psychology,
and in the conviction that an understanding of scientific reasoning can only
come through interdisciplinary cooperation.

Acknowledgments

This book has depended on the assistance of many people and institutions.
It was begun when | was an Associate Professor of Philosophy at the
University of Michigan-Dearborn, and I am grateful for the freedom pro-
vided there by my colleagues. Much of the work was done while I was
also associated with the Cognitive Science Program at the University of
Michigan, Ann Arbor, which provided support of many kinds. The book
has been completed using the excellent facilities of the Cognitive Science
Laboratory at Princeton University, where I am now doing interdisciplinary
research as part of the Human Information Processing Group.

In the period during which many of the ideas of this book were being
developed, I was fortunate to collaborate with John Holland, Keith Hol-
yoak, and Richard Nisbett on our 1986 book: Induction: Processes of Inference,
Learning, and Discovery. Some of the themes developed here were sketched
in a preliminary way there. I am particularly indebted to Keith Holyoak,
since the processing system PI, whose philosophical implications and appli-
cations are discussed at length here, is a collaborative project with him, I
am grateful to Richard Nisbett for first acquainting me wth work in cogni-
tive psychology, and to John Holland for supervising my M.S. in computer
science.

Earlier drafts of this book received valuable comments from Paul
Churchland, Robert Cummins, Daniel Hausman, Stephen Hanson, Gilbert
Harman, Ziva Kunda, Richard Nisbett, and lan Pratt. I am especially grate-
ful to Lindley Darden for detailed comments on two separate drafts.

Over the years that this book developed, | have been grateful for the
support of the National Science Foundation, the Sloan Foundation, the
Systems Development Foundation, the Basic Research Office of the Army
Research Institute for Behavioral and Social Science, and the McDonnell
Foundation.

Some sections of this book derive from previously published articles. |
am grateful to the respective publishers for permission to use the following

material.

Section 1.4 and tutorial D draw on “Frames, Knowledge, and Infer-

Computational Philosophy of Science

Chapter 1
Computation and the Philosophy of Science

Epistemology without contact with science becomes an empty scheme.
Science without epistemology is—insofar as it is thinkable at all—
primitive and muddled.

(Albert Einstein, 1949, pp. 683f.)

1.1. A New Approach

Philosophy of science and artificial intelligence have much to learn from
each other. The central questions that can benefit from a multidisciplinary
investigation include

1. What are scientific theories?

2. What is scientific explanation and problem solving?

3. How are theories discovered and evaluated?

4. How do theoretical concepts become meaningful?

5. What are the roles of theorizing and experimentation in the process
of scientific inquiry?

6. How can descriptive studies of how science is done be relevant to
normative judgments about how it ought to be done?

This book presents an integrated set of answers to these questions
within a computational framework. Here is a preliminary sketch of what is
proposed in later chapters.

1. Theories are complex data structures in computational systems;
they consist of highly organized packages of rules, concepts, and
problem solutions.

2. Explanation and problem solving are computational processes
mediated by the rules, concepts, and problem solutions that can con-
stitute theories.

3. The discovery and evaluation of theories are subprocesses that are
triggered in the context of explanation and problem solving.

4. Theoretical concepts are meaningful because of their generation

2 Chapter 1

by discovery processes and because of their connections with other
concepts.

5. Theorizing and experimentation play complementary roles in scien-
tic inquiry, with neither dominant.

6. Descriptive studies of how science is done can provide an essential
contribution to the determination of how science ought to be done.

Fleshing out these vague claims will proceed in later chapters. To sub-
stantiate them, I shall describe an artificial intelligence program for problem
solving and induction, showing how its operation helps to illustrate the
processes by which scientific theories are constructed and used. 1 shall
argue that richer philosophical accounts of scientific problem solving, dis-
covery, and justification can be developed using the resources of artificial
intelligence than are possible with the traditional techniques of logic and
set theory. I do not pretend to have solved the numerous difficult problems
concerning such topics as explanation and justification that are addressed
here; but | do hope to show that a computational approach offers ideas and
techniques for representing and using knowledge that surpass ones usually
employed by philosophers. Before launching into computational details, I
want to situate the enterprise | am calling “computational philosophy of
science” in relation to more familiar fields.

1.2. Artificial Intelligence, Psychology, and Historical Philosophy of Science

Artificial intelligence (Al) is the branch of computer science concerned with
getting computers to perform intelligent tasks. In its brief three decades
of existence, Al has developed many computational tools for describing
the representation and processing of information. Cognitive psychologists
have found these tools valuable for developing theories about human
thinking. Similarly, computational philosophy of science can use them for
describing the structure and growth of scientific knowledge.

To a large extent, then, the concerns of Al, cognitive psychology, and
computational philosophy of science overlap, although philosophy has a
greater concern with normative issues than these other two fields. We must
distinguish between descriptive issues, concerning how scientists do think,
and normative issues, concerning how scientists ought to think. Cognitive
psychology is dedicated to the empirical investigation of mental processes,
and is interested in normative issues only to the extent of characterizing
people’s departures from assumed norms (see Nisbett and Ross, 1980, for
a recent survey). Similarly, artificial intelligence understood as cognitive
modeling can confine itself to the descriptive rather than the normative. Al
however, is also sometimes concerned with improving on the performance
of people and therefore can be interested in what is optimal and normative.

Computation and the Philosophy of Science 3

For philosophy of science, discussion of normative questions is inescapable,
although we shall see in chapter 7 that descriptive and normative issues are
intimately related.

Current research in Al divides roughly into two camps, which have
colorfully been characterized as “neats” and “scruffies”. The distinction is
based largely on attitudes toward the importance of formal logic in under-
standing intelligence. The neats, such as John McCarthy (1980) and Nils
Nilsson (1983), view logic as central to Al, which then consists primarily
of constructing formal systems in which logical deduction is the central
process. In contrast, scruffy Al, represented, for example, by Marvin Min-
sky (1975) and Roger Schank (1982), takes a much more psychological
approach to Al, claiming that Al is more likely to be successful if it eschews
the rigor of formal logic and investigates instead the more varied structures
and processes found in human thought. Using the computer programmers’
term for a complex and unsystematically put together program, Minsky
remarks that the brain is a “kluge”. A third influential approach to Al, the
production systems of Newell and Simon (1972), falls somewhere between
the neat and scruffy camps. Psychologists range from neats who emphasize
the role of logic in thinking (Braine, 1978; Rips, 1983) to scruffies who
deny that logic is at all central (Johnson-Laird, 1983; Cheng et al.,, 1986).

Philosophy also has its neats and scruffies. No one was ever neater than
the logical positivists, who used the techniques of formal logic to analyze
the nature of theories and other key problems. It is therefore not surprising
that formally inclined philosophers are displaying a growing interest in
such Al endeavors as algorithmic analysis and logic programming (Gly-
mour, Kelly, and Scheines, 1983). But this trend reflects the relation only of
neat Al to neat philosophy of science. Since any computer implementation
requires formalization, which was the hallmark of the logical positivists,
one might suppose that any artificial intelligence approach to the phi-
losophy of science would fall within the positivist camp. This conclu-
sion, however, sorely underestimates the intellectual resources of artificial
intelligence.

In the 1950s and 1960s, philosophy of science saw a rebellion against
logical positivist accounts of science, led by such writers as Hanson (1958)
and, especially, Kuhn (1970b). (For a sketch of developments in the phi-
losophy of science, see tutorial A in appendix 1.) Critics argued that the
positivists’ emphasis on formal models had led them farther and farther
away from the practice of actual science. Many philosophers of science have
since adopted a methodology that avoids formalization, instead giving less
precise descriptions of the methods of scientists based on historical case
studies. Kuhn, for example, drew heavily on such examples as Lavoisier’s
theory of oxygen and Einstein's theory of relativity to back his account of
the growth of science.

4 Chapter 1

Historical philosophy of science has contributed to a much more rich and
subtle account of the nature of science than could be developed within the
framework of the logical positivists. But it has lacked one of the most
appealing features of the positivist program: analytical rigor. Kuhn de-
scribed scientific revolutions as the surpassing of one paradigm by another,
but the central concept of a paradigm was left notoriously vague. Similarly,
Laudan’s (1977) influential work on science as a problem-solving activity
never said much about the nature of problem solving.

These gaps can be filled in by computational philosophy of science,
which this book places at the intersection of scruffy Al and historical
philosophy of science. By offering detailed computational analyses of the
structure and growth of knowledge, 1 hope to show that postpositivist
philosophy of science can have some rigor in its scruffiness.

Hanson and Kuhn both made use of ideas from gestalt psychology
in developing their alternatives to logical positivist accounts of science.
Computational philosophy of science is even more closely tied with psy-
chology, by virtue of the link between scruffy Al and current cognitive
psychology, which increasingly employs computational models as theoret-
ical tools. These three fields can collaborate in developing a computational
account of how human scientists think. Many researchers in philosophy of
science and artificial intelligence would prefer to leave psychology out of
the picture, and science may indeed someday be performed by computers
using processes very different from those in humans. But for now, at least,
science is a human enterprise, and understanding of the development of
scientific knowledge depends on an account of the thought processes of
humans. Hence computational philosophy of science overlaps as much with
cognitive psychology as it does with scruffy Al Even its normative pre-
scriptions about how science ought to be done should take human cogni-
tive limitations as starting points, according to the view developed in
chapter 7.

Computational philosophy of science and much of current cognitive
psychology employ computational models, but why? In the next section |
shall sketch the methodological advantages of using computer programs
for understanding thinking.

1.3. Why Write Programs?

There are at least three major gains that computer programs offer to cogni-
tive psychology and computational philosophy of science: (1) computer
science provides a systematic vocabulary for describing structures and
mechanisms; (2) the implementation of ideas in a running program is a
test of internal coherence; and (3) running the program can provide tests

6 Chapter 1

is a lot more to computation than deduction, making possible the investi-
gation of less constrained processes, such as those underlying scientific
discovery.

Because mental processes are postulated to be computational, the com-
puter is potentially an even more powerful tool for psychology than it is
for such fields as economics and meteorology that use weak simulations in
contrast to psychology’s strong simulations. In a weak simulation, the
computer functions as a calculating device drawing out the consequences
of mathematical equations that describe the process simulated. A computer
can valuably simulate a business cycle or a hurricane, but no one contends
that it has an economic depression or high winds. In a strong simulation,
however, the simulation itself resembles the process simulated. For exam-
ple, a wind tunnel used to study the aerodynamics of cars is a strong
simulation, since the flow of air over the car in the tunnel is similar to the
flow of air over the car on the highway. In contrast, a computer model of
the car’s aerodynamics would only be a weak simulation, Whereas for most
fields computers will only provide weak simulations, psychology has the
possibility of strong simulations, if the computational theory of mind is
correct.

Of course, merely characterizing data structures and processes in compu-
tational terms does not tell us how the mind operates. But even getting the
program to run provides a test of sorts. Some noncomputational psychol-
ogists tend to assume that anything can be programmed, but this is no
more credible than the assumption of some computer scientists that any
psychological data can be got by a clever experimenter. To run, a computer
program has to have at least a coherent interrelation of structures and
algorithms. In addition, the threat of combinatorial explosion puts a severe
constraint on the realizability of programs: if the program requires expo-
nentially increasing time to run, it will quickly exhaust the resources of the
most powerful computers. So developing a computer simulation provides
a valuable test of the internal coherence of a set of ideas.

A psychological model should be more than internally coherent: we
want it to account for experimental data about how people think. But
sometimes, if a model is complex, it is not easy to see what its conse-
quences are. Cognitive models, like many models in the social sciences,
often postulate many interacting processes. The computer program enables
a researcher to see whether the model has all and only the consequences
that it was expected to have. Comparison of these consequences against
experimental observations provides the means of validating the model in
much greater detail than pencil-and-paper calculations might allow. Com-
putational philosophy of science can benefit from the same model-forming
and model-testing benefits that Al provides to cognitive psychology.

8 Chapter 1

Knowledge is both private and public, inhabiting the brains of particular
thinkers, but also subject to intersubjective communication and assess-
ment. Weak psychologism aims to capture both these aspects. The real
test between weak psychologism and antipsychologism consists in seeing
which framework can develop a comprehensive and rich account of human
knowledge. This book can be viewed as a computationally oriented attempt
to describe some possible results of a weak psychologistic research pro-
gram. Kindred attempts include the naturalistic epistemology of Quine
(1969), the genetic epistemology of Piaget (1970), the epistemics of Gold-
man (1978, 1986), and the evolutionary epistemology of Campbell (1974).
The last of these is criticized in chapter 6.

| share with such authors the view that philosophical method should be
more akin to theory construction in science than to the sort of conceptual
analysis that has been predominant in much twentieth-century philosophy.
No precise analyses of individual concepts will be offered, because there
are grounds for doubting whether such analyses are to be had (see sections
2.3.1 and 4.4), and because the larger enterprise of describing systematic
connections among such processes as explanation and hypothesis forma-
tion is much more interesting.

1.5. Overview

Exploration of computational philosophy of science begins in the next
chapter, with a discussion of the basic structures and processes relevant to
an understanding of scientific knowledge. The artificial intelligence pro-
gram PI provides a concrete example of how knowledge can be organized
and used in problem solving. Chapter 3 then develops a computational
account of the nature of scientific theories and explanations. Chapter 4
describes how abductive inference can be computationally implemented,
providing an account of several kinds of scientific discovery. It also dis-
cusses how new concepts can be formed and acquire meaning. In chapter
5, I develop an account of theory evaluation as inference to the best
explanation and describe its implementation in PI. Chapter 6 uses the ideas
about discovery and evaluation of theories developed in earlier chapters
to criticize the Darwinian model of knowledge development offered by
evolutionary epistemologists. The next three chapters shift concern to
normative matters. Chapter 7 develops a model for reaching normative
conclusions from descriptive considerations, and the model is applied in
chapter 8 to the problems of justifying inference to the best explanation
and defending scientific realism. Chapter 9 discusses the normative prob-
lem of distinguishing science from pseudoscience. Finally, in chapter 10 I
offer some speculative suggestions about what computational philosophy
of science may be able to contribute to questions concerning the relation of

Computation and the Philosophy of Science 9

theory and experiment and the role of group rationality in science. I have
added three appendices to fill in details that would have distracted from the
main argument. The first consists of four tutorials providing background
information concemning the philosophy of science, logic, data structures
and algorithms, and schemas. The second provides a summary of the
structure of the computer program PI discussed in chapters 2—5, and the
third presents a sample run of PI.

1.6. Summary

Computational philosophy of science is an attempt to understand the
structure and growth of scientific knowledge in terms of the develop-
ment of computational and psychological structures. It aims to offer new
accounts of the nature of theories and explanations, and of the processes
underlying their development. Although allied with investigations in arti-
ficial intelligence and cognitive psychology, it differs in having an essential
normative component.

Chapter 2
The Structure of Scientific Knowledge

This chapter begins a computational analysis of scientific knowledge by
discussing how such knowledge can be represented and used in computer
programs. Artificial intelligence provides a new set of techniques for repre-
senting different parts of the scientific corpus, including laws, theories, and
concepts. To present concretely the need for complex representations of
these essential ingredients of scientific knowledge, 1 shall describe PI, a
running program for problem solving and induction.

2.1. Structure and Process

In the last chapter, we saw that that there are good reasons for the dramatic
influence of computational ideas in psychology. From artificial intelligence,
psychology has gained a new stock of ideas concerning representations
and processes, as well as a new methodology of testing ideas using com-
puter simulation. This and later chapters will exhibit similar reasons for a
computational approach to epistemology and the philosophy of science.
The case for the epistemological relevance of computation rests on a
simple but extremely important point: Structure cannot be separated from
process. We cannot discuss the structure of knowledge without paying
attention to the processes that are required to use it. This point is familiar
to most practitioners of artificial intelligence, but is new to philosophers,
who have in this century had a relatively simple view of the structure of
knowledge. Since the pioneering work of Frege and Russell, formal logic
has been the canonical way of describing the structure of knowledge. In
first-order predicate calculus, a simple atomic sentence such as “Fred is
angry” is represented by a predicate and an argument such as A(f). Al use
of the predicate calculus is less cryptic, so that the same sentence is
represented by angry (Fred). More complex sentences are built up using
connectives like and, or, and if-then, and by quantifiers such as some and
all. For example, the sentence, “All criminals are angry.” can be represented
as (for all x)(if criminal(x) then angry(x)). Predicate calculus has many
strengths as a starting point for representing knowledge, but we shall see
below that it does not provide sufficient structure for all processing pur-

12 Chapter 2

poses. (Readers in need of a brief introduction to predicate calculus should
consult tutorial B.)

In twentieth-century philosophy, the most studied technique for using
knowledge is deduction in logical systems, in which rules of inference can
be precisely defined. For example, modus ponens is the rule of inference
that licenses the inference from if p then q and p to q. But there must
be more to a processing system than deduction. If a system is large, assem-
bling the relevant information at a particular time can be highly prob-
lematic. In epistemological systems based on logic, a corpus of knowledge
is generally taken to consist of all the deductive consequences of a set of
statements, even though the set of consequences is infinite. For more realis-
tic systems, it becomes crucial to ask the question, What shall we infer
when? So even in a system designed to do deduction, we need processes
that take into account what information is available and what rules of
inference are appropriate.

In any system designed for learning as well as performance, for acquisi-
tion of knowledge as well as its use, nondeductive processes are required.
Scientific discovery is multifaceted, requiring diverse processes for generat-
ing concepts, forming general laws, and creating hypotheses. Such pro-
cesses depend, we shall see, on complex representations of concepts and
laws.

My concern in this book is with scientific knowledge. Hence the next
section will discuss what kinds of structures and processes are most impor-
tant for characterizing scientific knowledge. Then I shall describe a com-
prehensive processing system to illustrate in much greater detail how
structure and process are interrelated.

2.2. Scientific Knowledge

To represent scientific knowledge, we need to find a formal expression for
at least three kinds of information: observations, laws, and theories. Philos-
ophers of science have differed on the relative importance of these aspects
in the development of scientific knowledge. On one simple account of how
science develops, scientists start by making experimental observations, and
then use these to generate laws and theories. On an equally simple and
misleading account, scientists start with laws and theories and make predic-
tions that they then check against observations. In most scientific practice,
there is rather an interplay of hypotheses and observations, with new
observations leading to new laws and theories and vice versa (see chapter
10). To describe the process of science computationally, we need to be able
to formalize observations, laws, and theories in structures that can be part

of computer programs. In addition, I shall argue that it is also necessary to
use a rich representation of scientific concepts. Formalization is necessary

The Structure of Scientific Knowledge 13

but not sufficient for representation, since we could formalize a body of
scientific knowledge in predicate calculus or set theory without it being
represented in a form that is computationally usable. Formalization and
representation must go hand in hand, putting the knowledge into a form
that can be processed.

A particular observation that a specimen, call it specimen2?7, is blue can
easily be represented in predicate calculus as blue(specimen27). More
complex observations concern relations between objects, which predicate
calculus can represent by allowing more than one argument. For example,
that one specimen is observed to be to the left of another can be repre-
sented by left-of (specimen27, specimend42). Relations become even
more important if temporal information is also to be added: we can for-
malize the information that specimen 27 was blue at time t by writing
blue(specimen27, t). So predicate calculus appears to be an excellent way
of representing observations, particularly about relations. Any representa-
tion of scientific knowledge will have to be able to distinguish between x
being to the left of y, and y being to the left of x, which predicate calculus
does very handily by contrasting left-of (x, y) with left-of (y, x).

Science obviously does more than just collect observations. A central
aim is to organize observations by means of laws. In physics, these can be
highly general, as in the law that any two objects have a gravitational force
between them. In the social sciences and in much of twentieth-century
physics it is common to speak of effects rather than laws, indicating a
statistical relation rather than full generality. General laws can naturally be
represented by quantified expressions in predicate calculus. For example,
the simple law that copper conducts electricity becomes (for all x)(if
copper(x) then conducts-electricity(x)). It might seem, then, that pre-
dicate calculus is all we need for laws too.

But that conclusion neglects the important point about process made
above. If all we wanted to do with laws was to use them in logical
deductions, then predicate calculus might be fine. But laws have many
important additional roles to play. They are discovered using observations,
serve to predict new observations, help enormously in problem solving
and explanation, and are explained by theories. To function in all these
processes, it is useful to give laws a more complex representation such as
that used for rules in the system PI discussed below.

From a logical point of view, theories look just like general laws. New-
ton’s theory of gravitation, for example, says that between any two bodies
there is a force. This could be represented by the rule, If x is a body and y
is a body, then there is a force z between x and y. But theories differ from
laws in their origins and explanatory roles. Whereas laws are generalized
from observations, theories are evaluated by seeing how well they explain
laws (see chapter 5). Moreover, since theories go beyond what is observed

The Structure of Scientific Knowledge 15

tutorial B). Predicates are associated with sets of objects in a domain,
interpreted as those objects of which the predicate is true. However, we
shall see in chapter 4 that model-theoretic semantics is inadequate as a
theory of meaning of scientific predicates.

Scientists are more aware of the value of concepts than logicians. With-
out appropriate concepts, formation of useful laws and theories is impos-
sible. For example, Einstein and Infeld (1938, p. 133) include the following
exclamation in their discussion of the physical concept of a field: “How
difficult it would be to find these facts without the concept of a field! The
expression for a force acting between a wire through which a current flows
and a magnetic pole is very complicated. In the case of two solenoids [coils
of wire] we should have to investigate the force with which two currents
act upon each other. But if we do this, with the help of the field, we
immediately notice the character of all those actions at the moment when
the similarity between the field of a solenoid and that of a bar magnet is
seen.” To understand the importance of concepts in this kind of discovery
and in scientific thinking in general, a richer representation of concepts than
mere predicates will turn out to be necessary. In particular, chapter 4 will
describe how the development of theoretical concepts requires that con-
cepts have a rich internal structure.

2.3. Structure and Process in PI

To be more concrete about the importance of rich representations, I shall
now outline an artificial intelligence program called PI, which stands for
“processes of induction” and is pronounced “pie”. Pl implements in the
programming language LISP a general model of problem solving and
inductive inference developed in collaboration with cognitive psychologist
Keith Holyoak. The intention in describing Pl is not to propose is as a
canonical language for doing science; its limitations will be described. Nor
is PI claimed to constitute in itself a solution to the host of difficult
problems in the philosophy of science concerning explanation, justification,
and so on. Rather, I present it as an illustration of how representation and
process interact and of how an integrated general account of scientific
discovery and justification can begin to be developed within a computa-
tional framework. Supplemental descriptions of the operation of PI can be
found elsewhere (Holland et al., 1986; Thagard and Holyoak, 1985), and
appendices 2 and 3 contain much more detailed information about PI's
implementation in LISP.

2.3.1. Knowledge Representation
PI represents particular results of observation and inference by messages,
which are similar to sentences in predicate calculus and to what are called

16 Chapter 2

“facts” in production systems. A message is a list that includes the following
information: predicate, argument, truth-value, confidence, and message-
name. For example, the observation that the planet Mars is red is repre-
sented by the list (red (Mars) true 1). A similar structure can also represent
simple hypotheses. The information that Mars is hypothesized to be devoid
of life could be represented by the list (has-life (Mars) projected-to-be-
false .7 hypothesis-26). In addition to the obvious truth values true
and false, Pl also allows more tentative projected values. The number .7
indicates how confident the system is in the message, while the message
name can be used to store additional information, for example, about the
evidence for the hypothesis. Thus PI's messages, although starting with a
structure derived from predicate calculus, add more information that will
play an important role in problem solving and inductive inference.

Laws are represented by rules, which are if-then statements such as If x
is copper then x conducts electricity. Even more than for messages, it
turns out to be useful to add much more structure than a statement in
predicate calculus would have. For a start, we want to give rules names to
keep track of their successes and failures. Past successes and failures are
summed up in a quantity called strength, which in PI is a number between
0 and 1. As we shall see below, it is important for problem solving that
rules be attached to concepts, so the full profile of the above rule about
copper might be

Name: Rule-22

Data-type: rule

Concepts-attached-to: copper

Condition: If x is copper

Action: Then x conducts electricity
Strength: 7

LISP programmers will recognize this as a property list of the atom Rule-
22. Pascal programmers can think of it as a record with various fields. Basic
and Fortran programmers will have to think of it as a more complex kind
of array than they are used to. Logicians usually call the condition of a rule
its “antecedent” and the action of a rule its “consequent”. Complex condi-
tions and actions make possible the representation of mathematical laws.
Newton's law F = ma becomes, If x is force and y is mass and z is accelera-
tion, then x = y times z.

Concepts in PI are still more complicated, in that they are represented by
rich structures akin to the frames of Minsky (1975). A frame represents a
typical kind of object or situation (see tutorials C and D for background).
Each of PI's concepts includes information about its place in a hierarchical
network of concepts: dogs, for example, are kinds of animals and have

18 Chapter 2

Projection-status: nil
Current-value: 0
Action-instances: nil

The conditions, actions, slot, status, confidence, and strength are all set up
by the programmer. The other properties of the rule, from Old-matches on
down, are initially empty but get filled in by the program as it proceeds.
For example, it is crucial to keep track of old matches—what messages
have previously matched all the conditions and led to firing of the rule—to
stop the same rule being applied over again in the same inference and
preventing other rules from firing. In rule-based systems, this is called
“refraction”. Satisfies-goal? is used to keep track of whether firing a rule
would satisfy a problem’s goal, in order to ensure that such a rule will fire.
Current-value gets calculated when the conditions of a rule are matched
and determines whether the rule will be selected as one of the rules to be
fired, taking into account such factors as the strength and degree of activa-
tion of the rule. Action-instances are the actions of the rule with variables
bound when the conditions are matched against messages. Appendix 2
provides an outline of the LISP functions for firing rules in PI.

Note that rules such as Rule-3 do not constitute a strict analysis or
definition of “sound”. They express what is typical of sounds, not what is
universally necessary and sufficient for being a sound. Dictionaries are of
little help in forming such definitions, as the following typical dictionary
entry shows (Guralnik, 1976, p. 1360):

sound 1. a) vibrations in air, water, etc. that stimulate the auditory
nerves and produce the sensation of hearing. b) the auditory sensation
produced by such vibrations.

In the first place, this definition is highly theoretical, in that it relies on the
scientific view that sounds are vibrations. In the second place, it turns out
to be quite circular, since the dictionary defines “auditory” in terms of
“hearing”, and “hearing” in terms of perceiving sounds. Such circularity is
no problem for the account of meaning discussed in chapter 4.

Rules generally specify what is characteristic of typical objects, not what
is universally true of them. Through the critiques of Wittgenstein (1953)
and Putnam (1975) in philosophy, Rosch (1973) in psychology, and Min-
sky (1975) in artificial intelligence, the traditional notion of concepts as
defined by necessary and sufficient conditions has been discredited. Witt-
genstein pointed out that there are no definitions that capture all and only
the instances of complex concepts such as “game”. Such definitions are
rarely to be found outside mathematics. The experiments of Rosch and
others showed that peoples’ concepts are organized around prototypes: a
robin, for example, is a more prototypical bird than an ostrich. Minsky

The Structure of Scientific Knowledge 19

argued that for computational flexibility concepts should be represented as
frames that describe typical or idealized instances. Accordingly, the rules in
PI provide a rough description of what is typical of sounds, not a definition
of them. The traditional notion of concepts as fully defined generates a
misleadingly strict account of their meaning, a point that will be important
for later discussions of how concepts become meaningful (chapter 4) and of
incommensurability of conceptual schemes (chapter 5).

Why does PI use messages, rules, and concepts with so much structure?
The justification for complicating these structures is simply to be able to
use them in complex processes: they support a far more elaborate and
interesting model of problem solving and inductive inference than would
otherwise be possible. The question of whether a computational model
of thinking must have separate structures corresponding to concepts is con-
troversial, and the important cognitive architectures of Anderson (1983)
and Laird, Rosenbloom, and Newell (1986) do not have them. I shall argue
that they are an important part of a theory of cognition.

2.3.2. Problem Solving

Problem Solving and Spreading Activation of Concepts PI's central activity is
problem solving. Given a set of starting conditions and goals, it fires rules
that will lead from the starting conditions to the goals. Here is PI's simple
representation of the problem of explaining why sound propagates and
reflects:

Name: explain—sound

Data-type: problem

Start: (sound ($x) true)

Goals: (reflect ($x) true) (propagate ($x) true)
Problem-type: explanation

Activation: 1

The solution to such a problem is a sequence of rule firings, in this case
leading from the supposition that some $x is an arbitrary instance of sound
to the conclusion that it reflects and propagates. Once the system has the
wave theory of sound, the explanation can be a straightforward application
of the rules that sounds are waves and that waves propagate and reflect.
However, deciding what rules to fire depends on many nonlogical issues,
such as what rules are available from memory, what rules are strongest in
the sense of having the best record of success, and what rules appear to be
most relevant to the current situation. (For a detailed discussion of the
operation of these factors in rule-based systems, see Holland et al., 1986).
When people solve problems, only some of the relevant information is
available to them in memory at any given time. Pl models the varying

20 Chapter 2

accessibility of elements in the memory of an individual scientist by a
process of spreading activation of concepts and rules. At any given time,
only some of the total set of concepts are active and only some of the total
set of rules are available for firing. Rules are attached to concepts: as we
saw, attached to the concept of sound are rules such as that if x is sound
and y is some person near x, then y hears x. Also attached to the concept
of sounds are messages encoding facts about particular sounds, such as that
a particular sound is loud. PI matches all the rules from active concepts
against all the messages from active concepts; rules whose conditions are
matched then become candidates for firing. Any number of rules can be
fired at a time, which simulates parallel processing. (Parallelism is computa-
tionally and epistemological important; see chapter 10.) When a rule is
fired, the concepts used in its action become active. So if the rule “If x is a
dog, then x has fur” is matched by the message “Lassie is a dog”, then the
new message “‘Lassie has fur” will be produced, and, equally important, the
concept of fur will become active. Hence at the next timestep, new sets of
messages and rules about fur will become active. Activation can also spread
backward from the goal to potentially useful concepts and rules. In addi-
tion, in the current version of PI (in contrast to the version described in
Holland et al., 1986), activation spreads automatically up and down the
conceptual hierarchy, for example, from sound up to its superordinates
sensation and physical phenomenon and down to its subordinates music,
voice, whistle, and bang. The process of rule firing and spreading acti-
vation of concepts continues until the goals of the problem have been
accomplished. This process is summarized in figure 2.2.

PI solves the problem of explaining the propagation and reflection of
sound by forming a wave theory of sound. Just how this occurred to the
ancient Greek or Roman who first discovered the wave theory of sound is
unknown, but fragments from Chrysippus (Samburski, 1973) and Vitruvius
(1960) suggest that an association was made between sound and water
waves. Pl has simulated various ways in which the concept of sound and
wave might have become simultaneously active, for example, through
associations from sound to music to instruments to strings to vibrations to
waves. PI's solution of the problem of explaining why sound propagates
and reflects proceeds by rule firings and spreading activation, including
activation of the concept of a wave that makes possible formation of the
hypothesis that sound is a wave. One chain of associations from sound to
wave that has been simulated in Pl is depicted in figure 2.3. Rule firings are
indicated by arrows, and spreading of activation to subordinates and super-
ordinates is indicated by vertical lines. In this simulation, activation spreads
from sound down to its subordinate music, and down again to instrumental
music. Then the rule that instrumental music is played by an instrument
fires, and stringed-instrument is activated as a subordinate of instrument.

22 Chapter 2

sound

instrumental ——= instrument

music
stringed —— & vyibrales ~————s= MOVESUp
instrument and down
wave
Figure 2.3

Spreading activation from sound to wave.

Two rules then fire: stringed instruments vibrate, and what vibrates moves
up and down. Finally, the link that waves are a kind of moving up and
down leads to activation of the concept of a wave. See appendix 3 for a
fuller description of PI's run on this example. Clearly, this is only one of
many chains of association that might have occurred when the wave
theory of sound was initially discovered by the ancient Greeks. Moreover,

in a more realistic simulation, many other activations and rule firings would
also occur simultaneously with the ones just described. Nevertheless, the

simulation gives some idea of how an association between sound and wave
might occur during an attempt to explain why sound propagates and
reflects.

Analogical Problem Solving Problem solving can be greatly facilitated by
the use of past successful problem solutions. Keith Holyoak and I have
adapted PI's mechanism of direct spreading activation to provide an anal-
ysis of how old problem solutions can be used to solve new problems
(Holyoak and Thagard, 1986). The two key questions in analogical prob-
lem solving are (1) How, while solving a problem, does one retrieve rele-
vant existing problem solutions? (2) How, once a relevant problem solution
is found, does one exploit the analogy between them? In PI, directed
spreading activation provides similar answers to both these questions.

We now have running a highly simplified simulation of the ray problem
of Duncker (1945). The ray problem consists of figuring out how to use a
ray source to destroy a tumor inside a patient, when radiation at full
strength will destroy flesh between the source and the tumor, leading to
the death of the patient. Subjects have great difficulty coming up with a
solution to this problem (Gick and Holyoak, 1980, 1983), but their per-
formance is greatly improved when they are first told of an analogous
problem. The fortress problem consists of trying to figure out how an army

The Structure of Scientific Knowledge 23

can capture a fortress when a frontal attack by the whole army is impos-
sible. One solution is to split up the army and have it attack the fortress
from different sides. This solution suggests an analogous solution for the
ray problem, leading to irradiation of the tumor with lower intensity rays
from different directions.

Our current simulation models analogical problem solving in the follow-
ing steps. First, the base problem (here the fortress problem) must be
solved, and its solution stored by association with the concepts mentioned
in its problem description. The solved fortress problem, for example, is
represented by the following structure:

Name: capture_fortress
Data-type: problem
Start: (army (obj—1) true)

(fortress (obj—2) true)
(road (obj—3) true)
(between (obj—3 obj—1 obj_2) true)

Goals: (capture (obj—1 obj—2) true)
(destroyed (obj—1) false)

Activation: 1

Concepts-attached-to: (army fortress roads between capture
destroyed)

Rules-used: rule_1_army, etc.

Effectors: (split (obj—1) true)

(move-separately-to (obj—1 obj_2) true)

Second, solution of the target problem (here the ray problem) is
attempted. This begins directed spreading activation in two directions:
forward from concepts mentioned in the starting conditions of the target
problem by rule-firing, and backward from the concepts mentioned in the
goal conditions. Third, this process of rule-firing leads to activation of
concepts to which the fortress problem has been attached. Figure 2.4 shows
one possible path of activation that Pl has been used to simulate. Here an
association from ray to shoot to shoot-bullet to gun to weapons to fight to
conflict to battle to army leads to activation of the concept army. Some of
these associations are by firing of rules, such as that rays can shoot, while
others are by subordinate/superordinate relations, for example, from fight
to its superordinate conflict and down to another subordinate, battle.
Thanks to PI's simulated parallelism, at the same time an association from
the goal of destroying the tumor leads from destroy to defeat (since one
way of destroying something is to defeat it) and then to conquer and
capture. Since the stored solution of the fortress problem is attached to the
newly activated concepts of army and capture, it gradually accumulates

The Structure of Scientific Knowledge 25

ray problem. The analogy with the fortress problem does not provide a
complete solution to the ray problem, but it does suggest potentially key
steps in its solution.

After PI solves a problem analogically, producing one solution using a
previous one, it constructs an analogical schema, which is an abstraction
from the two previous solutions (for an introduction to the psychological
notion of a schema, see tutorial D). Since the fortress problem has contri-
buted to a solution to the ray problem, PI examines the statement of the
two problems to see what they have in common. Using the rules stored
with the concepts of the respective problems, it attempts to derive an
abstract version of the two problems. In the fortress and ray problems,
there is enough similarity to produce the following structure:

Name: capture-fortress/destroy-tumor
Data-type: problem schema
Start: (force ($x) true)
(target ($y) true)
Goals: (overcome ($x $y) true)

Effectors: (split ($x) true)

(move—separately _to ($x $y) true)

This structure is then associated with the relevant concepts, such as force,
and is available for future analogical problem solving. The schema, how-
ever, is potentially much more usable than the two problems from which it
was formed, since it will be easier to map a new concrete problem to this
abstraction than to the fortress or ray problems. Any new problem whose
concepts sufficiently activate the concepts of force, target, and overcome
will be be able to exploit the possible solution of splitting the force.

The processes just described simulate many of the experimental results
of Duncker (1945) and of Gick and Holyoak (1980, 1983). Holyoak and
Thagard (1986) describe how this model can account for such experimental
results as the effectiveness of hints in problem solving, the efficacy of
problem schemas, and the fact that structural similarities (ones that play
a causal role in determining solutions) are more important than surface
similarities in analogical transfer.

Extralogical Processes A logician will naturally ask, Why bother with all
this spreading activation? Why not just take the logical consequences of
current beliefs and add them to the set of beliefs? We have already seen
that no finite memory could handle such a procedure. A system must not
clutter up a finite memory with useless facts. Still, one might argue that it
would be more elegant to consider, at each timestep, all of the messages and
rules stored in memory. The computational problem with this suggestion
is simply that there are too many of them in a large system such as a human

BRADFORD BOOKS

Computational Philosophy of Science
Paul Thagard

By applying research in artificial intelligence to problems in the philos-
ophy ot science, Paul Thagard develops an exciting new approach to
the study of scientific reasoning, using computational ideas to shed
light on how scientific theories are discovered, evaluated, and used in
explanations. He describes®a detailed computational model of prob-
lem solving and discovery that provides a conceptually rich yet rigor-
ous alternative to accounts of scientific knowledge based on formal
logic, and he uses the model to illuminate such topics as the nature of
concepts, hypothesis formation, analogy, and theory justification.

“The writing reflects an enviable clarity of thought and economy of
expression. Thagard has a remarkable ability to reduce complicated
philosophical positions to their essential simplicity and state them in
clear, flowing arguments. . . . To say that | liked this book would be an
egregious understatement. Indeed, | read it twice and enthusiastically
underlined nearly half of it in the process. . . . [T]he must-read book
of the year.”

—J. M. Artz, Computing Reviews

Paul Thagard is a research scientist at the Princeton University
Cognitive Science Laboratory.

The MIT Press
Massachusetts Institute of Technology
Cambridge, Massachusetts 02142

