CoMPUTATIONAL THINKING
FOR THE MODERN
PROBLEM SOLVER

DAaviD D. RILEY
KenNy A. HUNT

CRC Press
Taylor & Francis Group

A CHAPMAN & HALL BOOK

CHAPMAN & HALL/CRC

TEXTBOOKS IN COMPUTING

CoMPUTATIONAL THINKING
FOR THE MODERN
PROBLEM SOLVER

DaviD D. RiLey AND KENNY A. HUNT

University of Wisconsin
La Crosse, USA

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140206

International Standard Book Number-13: 978-1-4665-8779-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authorsand
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface, xiii

Authors, xv

CHAPTER T B WHAT |Is COMPUTATIONAL THINKING?

1

N

COMPUTERS, COMPUTERS EVERYWHERE

1.2 COMPUTER, COMPUTER SCIENCE, AND
COMPUTATIONAL THINKING 2
1.3 FROM ABACUS TO MACHINE 5
1.4 THE FIRST SOFTWARE 11
1.5 WHAT MAKES IT A MODERN COMPUTER? 14
1.6 THE FIRST MODERN COMPUTER 17
1.7 MOORF'S LAW 21
1.8 SUMMARY 23
1.9 WHEN WILL YOU EVER USE THIS STUFF? 23
REFERENCES 23
TERMINOLOQGY 24
EXERCISES 25

CHaprTer 2 B How Real-World Information Becomes

Computable Data 27
2.1 INFORMATION AND DATA 28
2.2 CONVERTING INFORMATION INTO DATA 29
2.3 DATA CAPACITY 33

vi ® Contents

2.4 DATA TYPES AND DATA ENCODING 35
2.4.1 Numbers 35
2.4.1.1 Numeral Systems 35

2.4.1.2 Positional Numeral System 37

2.4.1.3 Integers as Binary Bit Strings 39

2.4.1.4 Real Numbers as Binary Bit Strings 40

2.4.1.5 Precision as a Source of Error 41

2.4.1.6 Underflow and Overflow as Sources of Error 41

242 Text 41

243 Colors 42

2.44 Pictures 44

2.4.5 Sound 45

2.5 DATA COMPRESSION 47
2.5.1 Run-Length Encoding 49

2.6 SUMMARY 51
REFERENCE 52
TERMINOLOQY 52
EXERCISES 53
CHAPTER 3 B Locic 57
3.1 WHAT IS LOGIC? 58
3.2 BOOLEAN LOGIC 59
3.2.1 Writing Well-Formed Propositions 61

3.2.2 Evaluating Propositions 66
3.2.2.1 Conjunction (AND) 67

3.2.2.2 Disjunction (OR) 68

3.2.2.3 Implication (IMPLIES) 69

3.2.2.4 Equivalence (=) 71

3.2.2.5 Logical Negation (NOT) 71

3.2.2.6 Compound Propositions 72

3.2.2.7 Logical Equivalence 76

3.2.2.8 Tautologies and Contradictions 76

Contents ® vii

3.3 APPLICATIONS OF PROPOSITIONAL LOGIC 78
3.3.1 Search Queries 78
3.3.1.1 Conjunction in Search Queries 79

3.3.1.2 Disjunction in Search Queries 79

3.3.1.3 Negation in Search Queries 80

3.3.2 Digital Logic 80

3.3.3 Image Compositing 82

3.3.4 Database Queries 84

3.3.5 Software Requirements 87
TERMINOLOQGY 89
EXERCISES 90
CHAPTER 4 B SOLVING PROBLEMS 93
4.1 PROBLEM DEFINITION 94
4.2 LOGICAL REASONING 99
4.3 DECOMPOSITION: SOFTWARE DESIGN 104
4.4 DECOMPOSITION: OTHER USES 112
4.5 ABSTRACTION: CLASS DIAGRAMS 114
4.6 ABSTRACTION: USE CASE DIAGRAMS 119
4.7 SUMMARY 123
4.8 WHEN WILL YOU EVER USE THIS STUFF? 123
REFERENCES 124
TERMINOLOGY 124
EXERCISES 125
CHAPTER 5 B ALGORITHMIC THINKING 129
5.1 ALGORITHMS 130
5.2 SOFTWARE AND PROGRAMMING LANGUAGES 132
5.3 ACTIONS 133
5.3.1 Name Binding 133
5.3.1.1 Proper Naming 135

5.3.1.2 State 137

viii m Contents

5.3.2 Selection 139
5.3.2.1 One-Way Selection 139

5.3.2.2 Two-Way Selection 142

5.3.2.3 Multiway Selection 144

5.3.3 Repetition 147
5.3.3.1 Infinite Loops 152

5.3.4 Modularization 153
5.3.4.1 Module Flexibility 156
TERMINOLOGY 159
EXERCISES 159
CHAPTER 6 B MODELING SOLUTIONS 163
6.1 ACTIVITY DIAGRAMS 164
6.2 SELECTION IN ACTIVITY DIAGRAMS 166
6.3 REPETITION IN ACTIVITY DIAGRAMS 170
6.4 CONTROL ABSTRACTION IN ACTIVITY DIAGRAMS 173
6.5 STATES AND STATE DIAGRAMS 173
6.6 INCLUDING BEHAVIOR IN STATE DIAGRAMS 176
6.7 PROVIDING MORE DETAIL IN STATE DIAGRAMS 180
6.8 SUMMARY 183
6.9 WHEN WILL | EVER USE THIS STUFF? 183
TERMINOLOGY 184
EXERCISES 184
CHAPTER 7 B DATA ORGANIZATION 189
7.1 NAMES 190
7.2 LISTS 193
7.2.1 Arrays 195
7.2.1.1 Storage 195

7.2.1.2 Accessing Array Elements 197

7.2.1.3 Deleting Array Elements 197

7.2.14 Inserting Array Elements 199

7.2.1.5 Array Summary 200

Contents m ix

7.2.2 Linking 200
7.2.2.1 Storage 200

7.2.2.2 Accessing Linked List Elements 203

7.2.2.3 Deleting Linked List Elements 204

7.2.24 Inserting Linked List Elements 204

7.2.2.5 Linked List Summary 205

7.3 GRAPHS 206
7.3.1 Terminology and Properties 208

7.3.2 Storage 210

7.4 HIERARCHIES 211
7.4.1 Organizational Chart 211

7.42 Family Tree 212

7.43 Biology 213

7.4.4 Linguistics 214

7.45 Trees 215
REFERENCES 216
TERMINOLOGY 216
EXERCISES 217
CHAPTER 8 B ALGORITHMIC THINKING 221
8.1 VON NEUMANN ARCHITECTURE 222
8.2 SPREADSHEETS 223
82.1 Spreadsheet Structure 223

8.2.2 Formulas/Expressions 224
8.2.2.1 Numbers 224

8.2.2.2 Operators 225

8.2.2.3 Cell References 232

8.2.24 Functions 234

8.3 TEXT PROCESSING 237
8.3.1 String Basics 237

8.3.2 String Operations 238
8.3.2.1 Indexing 238

8.3.2.2 Length 239

x m Contents

8.3.2.3 Concatenation 239
8.3.2.4 Naming 240
8.3.2.5 Substring 241
8.3.2.6 Searching 241
8.3.2.7 Case Study: Processing e-Mail Addresses 242
8.3.2.8 Case Study: Processing Dates 244
8.4 PATTERNS 245
8.4.1 How to Write a Pattern 246
8.4.1.1 Case Study: Hugs and Kisses Pattern 246
8.4.1.2 Case Study: MPAA Rating Pattern 247
8.4.1.3 Case Study: Social Security Numbers 248
8.4.2 Repetition Rules 248
8.4.3 Character Class Rules 250
8.4.4 Case Study: DNA Sequencing 251

8.45 Case Study: Web Searches and Enron Legal
Documents 253
REFERENCE 256
TERMINOLOGY 256
EXERCISES 257
CHapTer 9 B LeT’s Ger It CorrECT 263
9.1 “COMPUTER ERRORS” USUALLY AREN'T 264
9.2 SOFTWARE CORRECTNESS 267
9.3 VERIFICATION 269
9.4 SOFTWARE TESTING 272
9.5 WHITE BOX TESTING 275

9.6 BLACK BOX TESTING WITH EQUIVALENCE

PARTITIONING 279
9.7 BOUNDARY VALUE ANALYSIS 283
9.8 WHEN WILL YOU EVER USE THIS STUFF? 286
REFERENCE 287
TERMINOLOGY 287
EXERCISES 288

Contents m xi

CHapTer 10 ® Limits of Computation 291
10.1 HOW IS CAPACITY MEASURED IN COMPUTERS? 294
10.2 AN ESTIMATE OF THE PHYSICAL LIMITATIONS 296
10.3 BENCHMARKS 297
10.4 COUNTING THE PERFORMANCE 299
10.5 IMPRACTICAL ALGORITHMS 305
10.6 IMPOSSIBLE ALGORITHMS 310
10.7 METAPHYSICAL LIMITATIONS 313
10.8 WHEN WILL YOU EVER USE THIS STUFF? 316
REFERENCES 316
TERMINOLOGY 317
EXERCISES 317

CHAPTER 11 B CONCURRENT ACTIVITY 321
11.17 PARALLELISM OR CONCURRENCY? 322
11.2 SCHEDULING 324
11.3 SORTING NETWORKS 327
11.4 MEASURING CONCURRENCY’S EFFECT 330
11.5 CHALLENGES OF CONCURRENCY 332
11.6 WHEN WILL YOU EVER USE THIS STUFF? 339
REFERENCES 340
TERMINOLOCQCY 340
EXERCISES 341

CHAPTER 12 M NFORMATION SECURITY 343
12.1 WHAT IS SECURITY? 344
12.2 FOUNDATIONS 347
12.3 COMMON FORMS OF CYBERCRIME 350
12.4 HOW TO SECURE? STEP 1: AUTHENTICATE 353
12.5 HOW TO SECURE? STEP 2: AUTHORIZATION 356

12.6 ALL A MATTER OF RISK 358

xii ® Contents

12.7 AFEW COQOD IDEAS

1271
12.7.2
12.7.3
12.7.4
12.7.5
12.7.6

Encryption

Firewalls (Including Spam Filters)
Antivirus Software

Software Update

Backups

Log Files

12.8 GOOD STRATEGIES

12.8.1
12.8.2
12.8.3
12.8.4
12.85
12.8.6

Secure the Weakest Link
Reduce the Attack Surface
Defend Deeply
Compartmentalize

Trust Reluctantly

Use Open Software

12.9 WHEN WILL YOU EVER USE THIS STUFF?

REFERENCE

TERMINOLOGY

EXERCISES
INDEX, 381

359
359
365
367
368
369
370
370
370
371
372
373
374
375
375
376
376
377

Preface

Computational thinking is a fundamental skill for everybody, not
just for computer scientists. To reading, writing, and arithmetic, we
should add computational thinking to every child’s analytic ability.

—JEANNETTE WING’

Traditionally, general education courses in computer science have been
rooted in some combination of four topics: (1) computer programming,
(2) computer hardware, (3) societal issues of computing, and (4) computer
application skills. Computational thinking is different because the focus
goes beyond introductory knowledge of computing to treat computer sci-
ence as an independent body of thought that is an essential part of what it
means to be educated today. Thinking algorithmically is uniquely impor-
tant just as is scientific investigation, artistic creativity, or proof theory
in mathematics; and yet computational thinking is a distinct form of
thought, separate from these other academic disciplines. The diagram-
matic techniques used in software engineering analysis are effective for
such efforts as strategic planning. The way that data is digitized has a pro-
found impact on today’s graphical art and music. Computer science mod-
eling techniques are essential in many aspects of today’s research in the
social sciences and business. Pattern-matching techniques are useful in
even the most rudimentary forms of DNA analysis. Understanding things
such as how to express software requirements and the limits of computing
are essential for all people who expect to live and work in a world where
information is stored, accessed, and manipulated via computer software.
This book adheres to the concept of computational thinking. Since
content such as this is typically taught in more advanced computer

" Dr. Jeannette Wing is assistant director, Computer and Information Science and Engineering
Directorate, National Science Foundation and former dean of the School of Computer Science at
Carnegie Mellon University.

Xiii

xiv m Preface

science courses, special attention is paid to the use of effective exam-
ples and analogies. In addition, every effort is made to demonstrate the
ways that these concepts are applicable in other fields of endeavor and
to keep this material both accessible and relevant to noncomputer sci-
ence majors.

The primary topical threads of this presentation can be grouped into
foundational computer science concepts and engineering topics. The
foundational computer science threads include abstraction, algorithms,
logic, graph theory, social issues of software, and numeric modeling. The
engineering threads include execution control, problem-solving strat-
egies, testing, and data encoding and organizing. Rather than organize
all chapters around these threads, a more logically connected approach is
employed. So, for example, algorithmic thinking is integral to at least six
different chapters as a part of problem solving, control structures, model-
ing, correctness, limits of computation, and concurrency.

It is expected that anyone teaching a computational thinking course
will include some instruction in computer programming. However, there
are many suitable programming languages and various depths of coverage
that might be appropriate. Therefore, this book does not include computer
programming instruction per se. However, the fundamental concepts of
programming—variables and assignment, sequential execution, selec-
tion, repetition, control abstraction, data organization, and even concur-
rency—are presented. Particular care has been given to present algorithms
using language-independent notation.

This approach has been taught, using early manuscript versions of this
book, for several semesters to university students. Reactions have been
largely positive from both the students and the several faculty involved.

Authors

David Riley has been committed to computer science education for more
than 35 years. He has authored eight other computer science textbooks,
along with numerous book chapters and research papers. His interest in
computational thinking spans countless experiences teaching computer
science majors and graduate students, as well as nonmajors, and even
a year as a high school teacher. He has taught a full array of computer
science courses. Jeannette Wing’s seminal paper, titled “Computational
Thinking,” and Wing’s subsequent discussions at the University of
Wisconsin-La Crosse caused Riley to reconsider the priorities of a
computing-related education, especially as they pertain to students out-
side the computer science mainstream. For the past three years he has
taught several sections of computational thinking to students not intend-
ing to study any other computer science. This book is based upon these
experiences.

Kenny Hunt has more than 25 years of experience in the fields of com-
puter science and engineering. His technical expertise spans a broad array
of the computational spectrum: from the design of research satellite elec-
tronics to the development of large-scale cloud-based web applications. He
has authored numerous research articles and published a text on image
processing. He has taught computer science and software engineering to
both graduate and undergraduate students for more than 15 years and is
greatly intrigued by the educational benefits of computational thinking.

XV

Copyrighted material

CHAPTER 1

What Is Computational
Thinking?

Computational Thinking—It represents a universally applicable atti-
tude and skill set everyone, not just computer scientists, should be
eager to learn and use.

—JEANNETTE WING

OBJECTIVES

¢ To provide a working definition for the concept of computational thinking

¢ To introduce the distinction between analog and digital representations
of data

* To examine the origins of mechanical calculation using the abacus as
an example to represent, store, and process data

¢ To examine key historical events that contributed to the invention of
modern computing hardware and software

* To explain the stored program concept and the role it plays in soft-
ware execution and the manipulation of data

* To introduce the basic compaonents and characteristics of a modern
computer

* To explain Moore’s law and its impact

Is there any human invention that has changed the world more than the
computer? Certainly this is a question worthy of discussion. We live in
a time when not owning a computer puts a person at a disadvantage in
countless ways. Apart from desktop computers, laptop computers, and
tablet computers, many other of today’s devices rely upon embedded

1

2 = Computational Thinking for the Modern Problem Solver

computers. Traction control, antilock brakes, computer-assisted parking,
and even car repair all involve computers on board automobiles. Digital
cameras are little more than a computer with a lens attached and most cell
phones are really just handheld computers.

1.1 COMPUTERS, COMPUTERS EVERYWHERE

Computers impact nearly every aspect of life. Among the first occupations

to rely upon computers were accounting and engineering, utilizing the
speed and accuracy of computers for complex calculations. Later, writ-
ers, scholars, and journalists began to rely upon word processing for effi-
cient ways to create and modify documents. Clearly, graphic artists and
motion picture animators depend heavily upon computers. Consider the
glass of milk you drank for breakfast. This milk most likely originated
with genetically engineered crops fed to cows in rations determined by a
computer chip around the cow’s neck, while a computer-controlled robot
milked the cows, and there were myriad computers involved with trans-
porting, processing, and retailing the milk before you brought it home to
your computer-controlled refrigerator.

Today, our finances are computer managed, our wars are fought
increasingly by computer-controlled devices, and we frequently com-
municate with our friends through computer-reliant social networks.
Unfortunately, even the fastest growing form of criminal activity is cat-
egorized as “computer crime.”

The point is that you really don’t have any choice about the limitless
impact computing has on your life. The only choice is how to respond; you
can choose to educate yourself about computers and learn to use them to
your advantage, or you can choose the path of the luddite. (The word “lud-
dite” was included in the English language not so long ago, specifically to
label the person who is technology ignorant.)

1.2 COMPUTER, COMPUTER SCIENCE, AND
COMPUTATIONAL THINKING

We use the terms computer or computer system to refer to a collection of
computer hardware and software.” Computer hardware includes all of

the physical devices that collectively constitute the item we think of as a

" Technically, it is more precise to use the term computer system to refer to hardware plus software,
and restrict the meaning of computer to hardware only. However, since computer hardware is of
little value without software, it is now common to use the term “computer” to mean either hard-
ware only or hardware plus software.

What Is Computational Thinking? m 3

desktop or a laptop computer. Such items as keyboards, LCD, computer
memory, disk drives, CD and DVD drives, mice and track pads, and pro-
cessors are typical parts of computer hardware.

But the computer hardware of even the most sophisticated of all com-
puters would be of no practical value were it not for computer software.
The term software refers to any group of computer programs. Perhaps the
most important difference between a computer and other machines is the
computer’s ability to respond to instructions, and the instructions for per-
forming a certain task are called a program. It is also acceptable to use the
word code in place of software or program.

You have encountered numerous computer programs if you have used
a computer. When you went surfing about the Internet, you were using a
web browser program, such as Chrome or Internet Explorer or Firefox or
Safari. Among the first things people do with a newly purchased computer
is to configure the antivirus software. A computer program running on
your computer might allow you to play music that was downloaded by way
of a computer program running on another computer located somewhere
on the Internet. Computer programs do everything from managing your
bank account to formatting the pages of this book. Whenever you down-
load any app to your cell phone, you have just installed a program.

Whereas most human inventions are designed to perform a specific
task, computers are set apart from other machines because of the variety
of tasks the computer can perform. So long as someone can create the
program, the computer can perform the associated task. Often, these pro-
grams are called applications in recognition that the program is simply a
way to apply the computer hardware to a specific purpose.

Not surprisingly, people whose career is creating programs have titles
such as programmer or software developer. Since every program is designed
to satisfy someone’s requirements, the program is in effect solving a prob-
lem. This means that programmers are really a kind of problem solver; and
given the importance of computers in our lives, computer programmers
are arguably the most important of all modern problem solvers.

So how does computer science fit into this discussion of computer hard-
ware and software? It turns out that study of computer science includes all
issues surrounding computers from hardware to software, from the foun-
dational theories of the technology to the end-user applications. Subfields
of computer science such as computer architecture explore the way in
which electrical circuits are designed, whereas software engineering
examines the preferred techniques for analyzing problems, and designing

4 m Computational Thinking for the Modern Problem Solver

and implementing programs to solve them. Some subdisciplines of com-
puter science, like graphics, robotics, information security, networking,
and artificial intelligence, study the concepts implied by their names. All
of these computer science topics, and others, play a role in this book.

The preceding discussion has been leading to the central issue of this
book, namely, computational thinking. The best way to characterize com-
putational thinking is as the way that computer scientists think, the man-
ner in which they reason (Figure 1.1).

Of course it is not possible to explore everything that is known to com-
puter science. So we have selected computer science concepts, techniques,
and methods that have the widest utility to those individuals who most
likely will not be computer scientists. In other words, this is written to cap-
ture how computer scientists think for the rest of us. Some of the book’s
topics are necessary simply to be literate in a society that is so dependent
upon computers. Some of the concepts will allow you to more effectively
use computers in your own field. Many of these ideas are borrowed from
more advanced computer science courses. However, it is increasingly the
case that computing concepts are used everywhere. Words like “multi-

» <«

tasking,” “downloading,” and “flash memory” illustrate how computer
science jargon has found its way into everyday speech. Discoveries in
many fields would not have been possible without computers. Human
genome sequencing requires the processing of thousands of genes made
from billions of base pairs. Motion pictures rely on computational tech-

niques, such as wire frame models, to create lifelike images of fictional

Computational Thinking?

FIGURE 1.1 Computational thinking?

What Is Computational Thinking? m 5

worlds. Modern medicine is practiced with minimal invasiveness due to
robotics.

The scientific community discovered roughly a decade ago that most
future scientific discovery would require computing knowledge among
the researchers. As a result, new specialties, such as computational biol-
ogy and computational physics, have become common in institutions of
higher education.

But computational thinking is useful well beyond the scientific com-
munity. A computing subfield known as “artificial intelligence” has led
to significant discoveries in psychology. Many software engineering tools
used in software design have proven to be highly effective as business
management tools. Computer programs have revolutionized how music
is written, and architects use computer imagery to visually “walk about”
buildings long before they are built. In short, computers allow us to study
things that were previously too small, too large, too distant, too fast, or too
complex. But as every good carpenter knows, you cannot get the most out
of a tool unless you know how to use it.

1.3 FROM ABACUS TO MACHINE

We begin the history leading up to modern computers by considering cal-
culating devices, because an important aspect of computer hardware is

the ability to perform calculations. Certainly, the earliest known calculat-
ing device is the abacus. Although it is believed that the abacus was used
in Mesopotamia centuries before, the oldest archaeological evidence of
an abacus dates back to approximately the fifth century BC and the oldest
known written description of an abacus is estimated to have been written
in China in the thirteenth century AD.

There are variations on the basic structure of this device; we shall
examine a version most commonly used in recent years and known as the
“Chinese abacus” (see Figure 1.2).

The abacus consists of beads strung onto spindles. Each spindle is sup-
ported from its ends, as well as through a bar offset from its center. The
number of spindles can differ from one abacus to another. The bar sepa-
rates the beads into two groups. The key thing to remember while using
an abacus is that every bead should be pushed as far as possible toward
one end of the spindle or the other. In other words, no bead should ever be
positioned to allow more than one bare space (region of exposed spindle)
on each side of the bar.

6 m Computational Thinking for the Modern Problem Solver

L4 dddd] s

} Beads below
! ' ' the bar
Y,

Spindles

FIGURE 1.2 The Chinese abacus.

The beads have values that increase right to left, just like the value of
digits in a decimal number or a Roman numeral have increasing value
from right to left. The rightmost spindle of beads below the bar are called
the 1s beads because each has a value of 1, while the beads of the rightmost
spindle above the bar are the 5s beads. For the second spindle from the
right below the bar are 10s beads and above the bar are 50s beads. The
third bar from the right has 100s beads below and 500s beads above, and
so forth.

Only the beads pushed as close as possible to the bar contribute to the
value. This means that to make the abacus represent the value 4 you should
push four 1s beads against the bar and all other beads away from the bar.
Figure 1.3 illustrates both the value 4 and the value 2,639 as they could be
represented on an abacus.

Different kinds of abacus may have different numbers of beads on each
spindle, but the Chinese abacus always has two beads above the bar and
five below. This configuration allows the abacus to represent most num-
bers in multiple ways. For example, Figure 1.4 shows three different ways
to represent the number 10.

‘ddddLIBNLLL P DY

TTTTHETHH

Value: 4 Value: 2,639

FIGURE 1.3 Two abacus configurations and their values.

What Is Computational Thinking? m 7

FIGURE 1.4 Three ways to represent 10 with a Chinese abacus.

Modern computers borrow four concepts from the abacus:

1. Storage
2. Representation
3. Calculation

4. User interface

For any valid bead configuration we can think of the abacus as stor-
ing the associated numeric value. So long as the beads are not moved, the
abacus retains this same numeric value. A significant aspect of a modern
computer is its storage. Of course, your computer can store much more
than a single number, and it does not use beads, but both the abacus and
your computer are definitely capable of storage.

If there is storage, then there must be something to store. The items that
are stored are commonly referred to as data. An abacus can only store a
single datum at any point in time, while your laptop can store trillions of
pieces of data.

The second concept your computer borrows from the abacus is the
notion of representation. A representation occurs anytime the data from
one system is intended to model something else (the information being
represented). The abacus stores (represents) an integer, using beads on a
spindle to do so. The location of beads can be translated into a numeric

8 m Computational Thinking for the Modern Problem Solver

value—the value that is represented. A modern computer is designed to
solve problems that involve real-world information. That information is
represented as data within computers using various technologies, many
of them electronic. The electronic signals inside your computers memory
can be translated into the information that they represent. We will discuss
just how computers represent information in more detail in Chapter 2.

The third property of a computer also present in an abacus is the abil-
ity to perform calculations. Truthfully, neither the abacus nor computer
hardware alone can perform calculations. In the case of the abacus some-
thing (usually a human) must push the beads around. Addition and sub-
traction are possible by adding or removing beads next to the bar. As
mentioned before, computer hardware also requires something, namely,
software, in order to perform calculations. Just like humans can cause an
abacus to perform arithmetic, software can cause computers to perform
computations.

As a final similarity to modern computers, the abacus illustrates the
first known user interface for a calculating device. The term user interface
refers to the way that humans communicate with the machine. In the case
of the abacus the user interface consists of the use of fingers and thumbs to
slide beads mounted on spindles and to visually interpret the represented
value by the location of beads. The user interface on your laptop computer
is much more sophisticated, using a keyboard and a trackpad together
with some kind of liquid crystal display (LCD). We say that you use a
graphical user interface (GUI) because most computer interaction involves
the manipulation of graphical images, such as icons, buttons, sliders, pop-
up windows, and pull-down menus.

The abacus may exhibit some concepts still in use by today’s computers,
but no one would use the word “computer” to describe an abacus. The aba-
cus does not have enough storage, is designed to represent only integers, is
limited in the kind of calculations it can perform, and has a rather crude
user interface.

The importance of improving the calculation capabilities of human
inventions was evident for many centuries after the abacus. One example
device of note was Napier’s bones invented by a Scottish mathematician
named John Napier and published in 1617. Napier’s bones consist of small
rectangular sticks with numbers and lines on each stick. Different sticks
have numbers positioned in cleverly different ways (Figure 1.5). Arranging
the sticks in different ways makes it convenient to perform multiplication,
division, and even calculating square roots.

What Is Computational Thinking? = 9

8
3 4
;5 g! ‘9."
) x
v \V o,
o \aly
o T .r'__9‘ 3 i
b U R RN ' 1_/113/ \
. Agr ;) 4/ B
L] "’4{ 6l "7 .9"} ;_./, 0
2 shoab s b VA 3
2 “1 240, % 5
3 '}'2 8l b 3 5/ 56
] BT s N R S
4 6] 4 8l 2078 "i'"l 6/;
1 vl EVR TR V.
s W3l 25 }’; 0 /{4’ 1’,;
o 2 B R A B
= 77
e a2 D
B 217817 6} 41 "
N ERERG 1
’ - & 35 28 8

FIGURE 1.5 Napier’s bones.

The next step toward computer hardware improved both the speed of
calculation and user interface, while bringing human invention into the
category of something that could validly be called a “machine.” Actually,
there were a few inventions that occurred in history during roughly the
same time. These first calculating machines were invented by mathe-
maticians and from various countries in Europe. Perhaps the two most
significant of the earliest mechanical calculators were Pascaline, invented
in 1643 by Frenchman Blaise Pascal, and Leibniz’ calculator invented by
the German mathematician and philosopher Gottfried Leibniz around
1674. Figure 1.6 and Figure 1.7 show photos of these machines.

Pascaline and the Leibniz’ calculator advanced the user interface by
permitting the user to turn cranks and thumb wheels. These devices also
did a better job of assisting humans through the use of internal wheels,
gears, and levers that accomplished addition, subtraction, multiplica-
tion, or division. These machines also demonstrate the importance of
speed when performing calculations. Presumably, a knowledgeable user
could perform lengthy calculations more rapidly using these machines
rather than an abacus or Napier’s bones. These were early devices that
already illustrated man’s conquest of finding machines capable of accel-
erating calculations.

10 m Computational Thinking for the Modern Problem Solver

D- D-' Lh-u ol v nhn :Dr- 'It—m—
H‘,ﬂu ul,rm ‘n|ﬂ|| il]l‘l\:‘llmu llpiu ;|{ﬁn l::‘”!.

Meller. l:n /m.'u.r’fl?p. £y S]] V' R

| .I{m,

Photo A, Devauk.—-.

FIGURE 1.6 Pascaline.

FIGURE 1.7 Leibniz’ calculator.

What Is Computational Thinking? m 11

FIGURE 1.8 Fragment of Antikythera mechanism.

Not every historical calculating device was used to perform arithmetic.
The device that is the first known example of using gears for calculation
is the Antikythera mechanism (Figure 1.8). Dated to the first century BC,
this machine contained at least 30 interconnected brass gears of various
dimensions. It is believed that positioning a crank on the Antikythera
mechanism caused the device to accurately identify the location of the
sun, moon, and planets.

The Antikythera mechanism has been called a computer by some peo-
ple. However, it is probably more accurate to think of it as a special pur-
pose calculator, somewhat related to time-keeping machines. Remarkably,
fifteen to sixteen centuries would pass before the gearing technology of
the Antikythera mechanism would reappear in the watch-making indus-
try and early calculators, such as Pascaline.

1.4 THE FIRST SOFTWARE

None of the devices described in Section 1.3 were truly programmable.
Yes, it is possible to rearrange beads, relocate bones, or turn wheels and
cranks, but these are merely ways to configure devices to perform calcula-

tions. In order to perform a different calculation any prior configuration is
lost. A truly programmable device is one in which the program is divorced
from the hardware so that it can be stored for reuse at a different time. In
other words the program “instructs” the device in how to perform, and
different programs produce different results.

12 m Computational Thinking for the Modern Problem Solver

The first known programmable machine is not a calculator; it is a loom
for weaving cloth. Around 1805, a French inventor named Joseph-Marie
Jacquard built the first known programmable machine. The Jacquard
loom (Figure 1.9) was similar to other looms of the day except that it used
a loop of stiff paper cards as a program. The cards had holes punched in
them. Changing the number and placement of holes in these cards would
cause the loom to weave a different pattern. The loom was built so that the
loop and cards could be removed and replaced by a different loop of cards;
thereby programming the loom to weave different patterns. This kind of
punch card program is still used on textile looms today.

Although punched cards might represent programmability, weaving
on a loom is quite different from computer-like calculations. The first
example of what might be termed “computer software” (or at least calcu-
lator software) did not occur until approximately 1843. This important
event in history came from an English mathematician and inventor named

FIGURE 1.9 Model of a Jacquard loom.

What Is Computational Thinking? = 13

I R

e
—
=—
—_—
e
S
b
—
—
Sty
—

FIGURE 1.10 A piece of the Analytical Engine.

Charles Babbage. Babbage had already built a mechanical calculator capa-
ble of more advanced logarithmic and trigonometric calculations, but he
did not add the notion of programmability until the design of his second,
and more significant, invention—the Analytical Engine (Figure 1.10).

The Analytical Engine adopted the concept of punched cards to store
and input a program into the hardware. But programs for the Analytical
Engine were capable of performing a sequence of mathematical operations
in the same way that modern computers can perform complex mathemat-
ical operations as directed by a proper computer program. Sadly, because
of the complexity of the device, the manufacturing capabilities of the day
made it impossible to construct a complete Analytical Engine during
Babbage’s lifetime.

An interesting side note in history often told about the Analytical
Engine involves a woman named Ada Lovelace (Figure 1.11). The Countess
Lovelace was the daughter of the famous poet, Lord Byron. She was quite
interested in the work of Charles Babbage and is known to have written
programs for the Analytical Engine. Some people have called Ada Lovelace
the first programmer, but this cannot be confirmed and is most likely not
true, since several individuals (Babbage included) wrote programs at about
the same time. Nonetheless she is clearly among the first programmers.

14 m Computational Thinking for the Modern Problem Solver

FIGURE 1.11 Charles Babbage and Ada Lovelace were among the first computer
programmers.

1.5 WHAT MAKES IT A MODERN COMPUTER?

One widely accepted definition of modern computer requires three prop-

erties of this calculating device:

1. It must be electronic and not exclusively mechanical.
2. It must be digital and not analog,.

3. It must employ the stored program concept.

As it happens, even the Analytical Engine invented by Babbage fails to
satisfy every one of these three requirements.

To find the first invention that is believed to satisfy at least one of these
three properties, we skip to the 1890s. The United States has a long his-
tory of taking census every ten years. In 1880 the census was tabulated,
like every decade prior, by hand. This process of counting citizenry and
categorizing them by geographic region was becoming difficult because
of rapid population growth. In fact the 1880 census was barely completed
before 1890 when the next census was to begin.

A man named Herman Hollerith invented a calculating device built
specifically for tabulating the US census. Hollerith’s machine completed
the 1890 census in less than one year. More important for computing,
Hollerith’s machine ran on electricity. The Hollerith tabulating machine
can fairly be labeled as the first calculating (i.e., computer-like) hardware
that satisfies any of the properties that distinguish a modern computer.

What Is Computational Thinking? m 15

Hollerith later founded a Tabulating Machine Company to build these
devices, and his company merged to form IBM Corporation in 1924; IBM
remains today as one of the world’s largest manufacturers of computers.
Hollerith’s tabulating machine also provides convincing evidence of the
future capacity of computers to assist in solving human problems.

Before revealing the candidates for the first modern computer, there
are two of the preceding properties of a modern computer that have yet to
be mentioned. The first issue is that a modern computer must be digital.
Prior to the 1930s, machines that stored data typically did so as repre-
sented using mechanical gears or electrical signals. Gears can generally be
rotated to an infinite number of different angles. Similarly, electrical sig-
nals are infinitely variable in terms of voltage, amperage, capacitance, and
inductance. This kind of continuous change is called analog. For example,
an analog wristwatch often has a sweep second hand and can position the
minute hand at an infinite number of positions around the dial.

A digital system, unlike analog systems, is one in which there are not
an infinite number of possibilities and change is not continuous. Instead,
digital systems restrict values to be one of a few choices. For example,
hours and minutes on a digital watch are displayed as numbers. It is not
possible for the minute number to display anything between 9:30 and 9:31.
Most of our automobile speedometers are analog with a needle that rotates
gradually as the car accelerates. However, a few cars have digital speed-
ometers that display the current speed as a single number in either whole
miles or meters per hour.

An explanation of the stored program concept requires a brief look at
the major units of hardware in a modern computer. Figure 1.12 diagrams a
simple desktop-style computer with three components: a keyboard, a dis-
play, and a system unit. These three components can be used to illustrate

dispfo 1y

FIGURE 1.12 The basic parts of a simple desktop computer.

What Is Computational Thinking? m 19

Clearly, ENTAC satisfies the earlier criteria for a modern computer. It
was a calculating device that ran on electricity and was digital. The origi-
nal version of ENIAC did not truly follow the stored program concept, but
this capability was later incorporated. By today’s standards ENIAC was
enormous, physically filling an entire room. Its circuitry relied on 19,000
vacuum tubes (see Figure 1.14) and 1,000 relays. Vacuum tubes can be used
as memory devices, but they are large (each roughly the size of a human
thumb) and unreliable relative to today’s computer memory. Relays are a
form of electrical switch that are mechanical and also large (about the size
of half a cell phone).

Despite the patent, ENTAC is not considered the first modern computer.
In fact the US Patent Office invalidated the 1947 patent in 1973. The pri-
mary reason for this invalidation was the discovery of some earlier work
that was not fully patented.

In 1937-1938 two physicists—John Atanasoff and Chuck Berry—at
Iowa State University built a machine they called the ABC Computer (see
Figure 1.15). During the patent dispute, it was discovered that the Des
Moines Register had printed an article regarding the ABC Computer in
1941. It was also claimed that Atanasoff discussed his design with Mauchly
in 1940 and had visited a US Patent Office that same year.

Unfortunately, the ABC Computer may not truly qualify as the first
modern computer, because it failed to use the stored program concept, nor
was it truly programmable for general purposes, as it was only designed to

FIGURE 1.14 Vacuum tubes.

What Is Computational Thinking? m 21

of Manchester, England, and the first computer to use the stored program
concept. However, it was never intended to be a practical computer but
rather part of a test bed for other hardware. By September of the same
year, ENIAC had been modified to use stored programs, making it a con-
tender for first modern computer.

Regardless of which invention should be considered to be most signifi-
cant, what is clear is that during the late 1930s and throughout the 1940s
there was a flurry of research taking place around the world to create early
computing devices.

Within a few years computer scientists had grown weary of the tedious
activity of using machine instructions, which led to the invention of high-
level programming languages. A high-level language is one that relies
upon instructions that are much more English-like instead of the cryp-
tic numeric form of most machine instructions. The revolution leading to
computer systems like today’s changed to more of an evolutionary history
by the mid-1950s, except for one major change to the hardware.

1.7 MOORE'S LAW

No discussion of today’s computer hardware would be complete without
the inclusion of one more discovery. In the 1950s and 1960s several physi-
cists, most notably Jack Kilby and Robert Noyce, were working on a tech-
nology that would soon replace the use of vacuum tubes and relays with
smaller, faster, and far more reliable electronics.

The idea was to use silicon wafers that are manufactured in such a way
that thousands, and later trillions, of electronic switches, known as “tran-
sistors,” can be combined onto a single chip. Such devices are referred to
as integrated circuits and the technology that permits silicon to function in
this way is called semiconductor technology.

Figure 1.16 is a photograph of an integrated circuit. The blackened
square region in the center is the silicon wafer with wires (the lines) con-
necting it to the metal legs on the outside of the device. These legs typi-
cally plug into a socket for connection to the remainder of the computer
circuitry. The entire package is commonly referred to as a chip.

Robert Noyce was awarded the Nobel Prize in Physics for his work in
the creation of semiconductors. Together with Gordon Moore, he founded
Intel Corporation—the largest manufacturer of computer processors in the
world.

Integrated circuits make it possible for us to carry computers in a brief-
case or a pocket that are millions of times faster than the room-sized

24 = Computational Thinking for the Modern Problem Solver

TERMINOLOGY

abacus

ABC Computer
analog

Analytical Engine
Antikythera device
app

application
Attanasoff, John
Babbage, Charles
Berry, Chuck
calculation

chip

code
computational thinking
computer

computer science
computer system
data

differential analyzer
digital

Ekert, Peter

ENIAC

electronic (computer)

exponential growth

graphical user interface (GUI)

hardware

high-level programming
language

Hollerith, Herman
I/0

input

integrated circuit
Jacquard, Joseph-Marie
Jacquard loom
Kilby, Jack

Leibniz, Gottfried
Lovelace, Ada
machine instruction
modern computer
Moore, Gordon
Moore’s law

Napier, John
Napier’s bones
Noyce, Robert
output

Manchester Small-Scale
Experimental Machine
(SSEM)

Mauchly, John

What Is Computational Thinking? m 25

memory semiconductor technology
Pascal, Blaise software
Pascaline software developer
processor stored program concept
program storage
programmable user interface
programmer Z4 Computer
punched cards Zuse, Konrad
representation

EXERCISES

1. What are the three qualities required of a calculating device in order
for it to qualify as a modern computer?

2. What is the difference between computer hardware and computer
software?

3. Describe the significance of each of the following inventions, as it
eventually led to the creation of the first modern computer.

a. The abacus

b. The Analytical Engine

c. Jacquard loom

d. Hollerith’s machine for tabulating the US census

4. Digital cameras are one kind of modern computer. In this sense,
answer the following questions.

a. How does the user supply input to a digital camera?
b. What would you consider to be the camera’s output device(s)?

c. What is the purpose of the camera’s memory?

