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Preface

Computational thinking is a fundamental skill for everybody, not
just for computer scientists. To reading, writing, and arithmetic, we
should add computational thinking to every child’s analytic ability.

—JEANNETTE WING’

Traditionally, general education courses in computer science have been
rooted in some combination of four topics: (1) computer programming,
(2) computer hardware, (3) societal issues of computing, and (4) computer
application skills. Computational thinking is different because the focus
goes beyond introductory knowledge of computing to treat computer sci-
ence as an independent body of thought that is an essential part of what it
means to be educated today. Thinking algorithmically is uniquely impor-
tant just as is scientific investigation, artistic creativity, or proof theory
in mathematics; and yet computational thinking is a distinct form of
thought, separate from these other academic disciplines. The diagram-
matic techniques used in software engineering analysis are effective for
such efforts as strategic planning. The way that data is digitized has a pro-
found impact on today’s graphical art and music. Computer science mod-
eling techniques are essential in many aspects of today’s research in the
social sciences and business. Pattern-matching techniques are useful in
even the most rudimentary forms of DNA analysis. Understanding things
such as how to express software requirements and the limits of computing
are essential for all people who expect to live and work in a world where
information is stored, accessed, and manipulated via computer software.
This book adheres to the concept of computational thinking. Since
content such as this is typically taught in more advanced computer

" Dr. Jeannette Wing is assistant director, Computer and Information Science and Engineering
Directorate, National Science Foundation and former dean of the School of Computer Science at
Carnegie Mellon University.
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science courses, special attention is paid to the use of effective exam-
ples and analogies. In addition, every effort is made to demonstrate the
ways that these concepts are applicable in other fields of endeavor and
to keep this material both accessible and relevant to noncomputer sci-
ence majors.

The primary topical threads of this presentation can be grouped into
foundational computer science concepts and engineering topics. The
foundational computer science threads include abstraction, algorithms,
logic, graph theory, social issues of software, and numeric modeling. The
engineering threads include execution control, problem-solving strat-
egies, testing, and data encoding and organizing. Rather than organize
all chapters around these threads, a more logically connected approach is
employed. So, for example, algorithmic thinking is integral to at least six
different chapters as a part of problem solving, control structures, model-
ing, correctness, limits of computation, and concurrency.

It is expected that anyone teaching a computational thinking course
will include some instruction in computer programming. However, there
are many suitable programming languages and various depths of coverage
that might be appropriate. Therefore, this book does not include computer
programming instruction per se. However, the fundamental concepts of
programming—variables and assignment, sequential execution, selec-
tion, repetition, control abstraction, data organization, and even concur-
rency—are presented. Particular care has been given to present algorithms
using language-independent notation.

This approach has been taught, using early manuscript versions of this
book, for several semesters to university students. Reactions have been
largely positive from both the students and the several faculty involved.
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CHAPTER 1

What Is Computational
Thinking?

Computational Thinking—It represents a universally applicable atti-
tude and skill set everyone, not just computer scientists, should be
eager to learn and use.

—JEANNETTE WING

OBJECTIVES

¢ To provide a working definition for the concept of computational thinking

¢ To introduce the distinction between analog and digital representations
of data

* To examine the origins of mechanical calculation using the abacus as
an example to represent, store, and process data

¢ To examine key historical events that contributed to the invention of
modern computing hardware and software

* To explain the stored program concept and the role it plays in soft-
ware execution and the manipulation of data

* To introduce the basic compaonents and characteristics of a modern
computer

* To explain Moore’s law and its impact

Is there any human invention that has changed the world more than the
computer? Certainly this is a question worthy of discussion. We live in
a time when not owning a computer puts a person at a disadvantage in
countless ways. Apart from desktop computers, laptop computers, and
tablet computers, many other of today’s devices rely upon embedded

1
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computers. Traction control, antilock brakes, computer-assisted parking,
and even car repair all involve computers on board automobiles. Digital
cameras are little more than a computer with a lens attached and most cell
phones are really just handheld computers.

1.1 COMPUTERS, COMPUTERS EVERYWHERE

Computers impact nearly every aspect of life. Among the first occupations

to rely upon computers were accounting and engineering, utilizing the
speed and accuracy of computers for complex calculations. Later, writ-
ers, scholars, and journalists began to rely upon word processing for effi-
cient ways to create and modify documents. Clearly, graphic artists and
motion picture animators depend heavily upon computers. Consider the
glass of milk you drank for breakfast. This milk most likely originated
with genetically engineered crops fed to cows in rations determined by a
computer chip around the cow’s neck, while a computer-controlled robot
milked the cows, and there were myriad computers involved with trans-
porting, processing, and retailing the milk before you brought it home to
your computer-controlled refrigerator.

Today, our finances are computer managed, our wars are fought
increasingly by computer-controlled devices, and we frequently com-
municate with our friends through computer-reliant social networks.
Unfortunately, even the fastest growing form of criminal activity is cat-
egorized as “computer crime.”

The point is that you really don’t have any choice about the limitless
impact computing has on your life. The only choice is how to respond; you
can choose to educate yourself about computers and learn to use them to
your advantage, or you can choose the path of the luddite. (The word “lud-
dite” was included in the English language not so long ago, specifically to
label the person who is technology ignorant.)

1.2 COMPUTER, COMPUTER SCIENCE, AND
COMPUTATIONAL THINKING

We use the terms computer or computer system to refer to a collection of
computer hardware and software.” Computer hardware includes all of

the physical devices that collectively constitute the item we think of as a

" Technically, it is more precise to use the term computer system to refer to hardware plus software,
and restrict the meaning of computer to hardware only. However, since computer hardware is of
little value without software, it is now common to use the term “computer” to mean either hard-
ware only or hardware plus software.



What Is Computational Thinking? m 3

desktop or a laptop computer. Such items as keyboards, LCD, computer
memory, disk drives, CD and DVD drives, mice and track pads, and pro-
cessors are typical parts of computer hardware.

But the computer hardware of even the most sophisticated of all com-
puters would be of no practical value were it not for computer software.
The term software refers to any group of computer programs. Perhaps the
most important difference between a computer and other machines is the
computer’s ability to respond to instructions, and the instructions for per-
forming a certain task are called a program. It is also acceptable to use the
word code in place of software or program.

You have encountered numerous computer programs if you have used
a computer. When you went surfing about the Internet, you were using a
web browser program, such as Chrome or Internet Explorer or Firefox or
Safari. Among the first things people do with a newly purchased computer
is to configure the antivirus software. A computer program running on
your computer might allow you to play music that was downloaded by way
of a computer program running on another computer located somewhere
on the Internet. Computer programs do everything from managing your
bank account to formatting the pages of this book. Whenever you down-
load any app to your cell phone, you have just installed a program.

Whereas most human inventions are designed to perform a specific
task, computers are set apart from other machines because of the variety
of tasks the computer can perform. So long as someone can create the
program, the computer can perform the associated task. Often, these pro-
grams are called applications in recognition that the program is simply a
way to apply the computer hardware to a specific purpose.

Not surprisingly, people whose career is creating programs have titles
such as programmer or software developer. Since every program is designed
to satisfy someone’s requirements, the program is in effect solving a prob-
lem. This means that programmers are really a kind of problem solver; and
given the importance of computers in our lives, computer programmers
are arguably the most important of all modern problem solvers.

So how does computer science fit into this discussion of computer hard-
ware and software? It turns out that study of computer science includes all
issues surrounding computers from hardware to software, from the foun-
dational theories of the technology to the end-user applications. Subfields
of computer science such as computer architecture explore the way in
which electrical circuits are designed, whereas software engineering
examines the preferred techniques for analyzing problems, and designing
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and implementing programs to solve them. Some subdisciplines of com-
puter science, like graphics, robotics, information security, networking,
and artificial intelligence, study the concepts implied by their names. All
of these computer science topics, and others, play a role in this book.

The preceding discussion has been leading to the central issue of this
book, namely, computational thinking. The best way to characterize com-
putational thinking is as the way that computer scientists think, the man-
ner in which they reason (Figure 1.1).

Of course it is not possible to explore everything that is known to com-
puter science. So we have selected computer science concepts, techniques,
and methods that have the widest utility to those individuals who most
likely will not be computer scientists. In other words, this is written to cap-
ture how computer scientists think for the rest of us. Some of the book’s
topics are necessary simply to be literate in a society that is so dependent
upon computers. Some of the concepts will allow you to more effectively
use computers in your own field. Many of these ideas are borrowed from
more advanced computer science courses. However, it is increasingly the
case that computing concepts are used everywhere. Words like “multi-

» <«

tasking,” “downloading,” and “flash memory” illustrate how computer
science jargon has found its way into everyday speech. Discoveries in
many fields would not have been possible without computers. Human
genome sequencing requires the processing of thousands of genes made
from billions of base pairs. Motion pictures rely on computational tech-

niques, such as wire frame models, to create lifelike images of fictional

Computational Thinking?

FIGURE 1.1 Computational thinking?
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worlds. Modern medicine is practiced with minimal invasiveness due to
robotics.

The scientific community discovered roughly a decade ago that most
future scientific discovery would require computing knowledge among
the researchers. As a result, new specialties, such as computational biol-
ogy and computational physics, have become common in institutions of
higher education.

But computational thinking is useful well beyond the scientific com-
munity. A computing subfield known as “artificial intelligence” has led
to significant discoveries in psychology. Many software engineering tools
used in software design have proven to be highly effective as business
management tools. Computer programs have revolutionized how music
is written, and architects use computer imagery to visually “walk about”
buildings long before they are built. In short, computers allow us to study
things that were previously too small, too large, too distant, too fast, or too
complex. But as every good carpenter knows, you cannot get the most out
of a tool unless you know how to use it.

1.3 FROM ABACUS TO MACHINE

We begin the history leading up to modern computers by considering cal-
culating devices, because an important aspect of computer hardware is

the ability to perform calculations. Certainly, the earliest known calculat-
ing device is the abacus. Although it is believed that the abacus was used
in Mesopotamia centuries before, the oldest archaeological evidence of
an abacus dates back to approximately the fifth century BC and the oldest
known written description of an abacus is estimated to have been written
in China in the thirteenth century AD.

There are variations on the basic structure of this device; we shall
examine a version most commonly used in recent years and known as the
“Chinese abacus” (see Figure 1.2).

The abacus consists of beads strung onto spindles. Each spindle is sup-
ported from its ends, as well as through a bar offset from its center. The
number of spindles can differ from one abacus to another. The bar sepa-
rates the beads into two groups. The key thing to remember while using
an abacus is that every bead should be pushed as far as possible toward
one end of the spindle or the other. In other words, no bead should ever be
positioned to allow more than one bare space (region of exposed spindle)
on each side of the bar.
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L4 dddd ] s

} Beads below
! ' ' the bar
Y,

Spindles

FIGURE 1.2 The Chinese abacus.

The beads have values that increase right to left, just like the value of
digits in a decimal number or a Roman numeral have increasing value
from right to left. The rightmost spindle of beads below the bar are called
the 1s beads because each has a value of 1, while the beads of the rightmost
spindle above the bar are the 5s beads. For the second spindle from the
right below the bar are 10s beads and above the bar are 50s beads. The
third bar from the right has 100s beads below and 500s beads above, and
so forth.

Only the beads pushed as close as possible to the bar contribute to the
value. This means that to make the abacus represent the value 4 you should
push four 1s beads against the bar and all other beads away from the bar.
Figure 1.3 illustrates both the value 4 and the value 2,639 as they could be
represented on an abacus.

Different kinds of abacus may have different numbers of beads on each
spindle, but the Chinese abacus always has two beads above the bar and
five below. This configuration allows the abacus to represent most num-
bers in multiple ways. For example, Figure 1.4 shows three different ways
to represent the number 10.

‘ddddLIBNLLL P DY

TTTTHETHH

Value: 4 Value: 2,639

FIGURE 1.3 Two abacus configurations and their values.
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FIGURE 1.4 Three ways to represent 10 with a Chinese abacus.

Modern computers borrow four concepts from the abacus:

1. Storage
2. Representation
3. Calculation

4. User interface

For any valid bead configuration we can think of the abacus as stor-
ing the associated numeric value. So long as the beads are not moved, the
abacus retains this same numeric value. A significant aspect of a modern
computer is its storage. Of course, your computer can store much more
than a single number, and it does not use beads, but both the abacus and
your computer are definitely capable of storage.

If there is storage, then there must be something to store. The items that
are stored are commonly referred to as data. An abacus can only store a
single datum at any point in time, while your laptop can store trillions of
pieces of data.

The second concept your computer borrows from the abacus is the
notion of representation. A representation occurs anytime the data from
one system is intended to model something else (the information being
represented). The abacus stores (represents) an integer, using beads on a
spindle to do so. The location of beads can be translated into a numeric
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value—the value that is represented. A modern computer is designed to
solve problems that involve real-world information. That information is
represented as data within computers using various technologies, many
of them electronic. The electronic signals inside your computers memory
can be translated into the information that they represent. We will discuss
just how computers represent information in more detail in Chapter 2.

The third property of a computer also present in an abacus is the abil-
ity to perform calculations. Truthfully, neither the abacus nor computer
hardware alone can perform calculations. In the case of the abacus some-
thing (usually a human) must push the beads around. Addition and sub-
traction are possible by adding or removing beads next to the bar. As
mentioned before, computer hardware also requires something, namely,
software, in order to perform calculations. Just like humans can cause an
abacus to perform arithmetic, software can cause computers to perform
computations.

As a final similarity to modern computers, the abacus illustrates the
first known user interface for a calculating device. The term user interface
refers to the way that humans communicate with the machine. In the case
of the abacus the user interface consists of the use of fingers and thumbs to
slide beads mounted on spindles and to visually interpret the represented
value by the location of beads. The user interface on your laptop computer
is much more sophisticated, using a keyboard and a trackpad together
with some kind of liquid crystal display (LCD). We say that you use a
graphical user interface (GUI) because most computer interaction involves
the manipulation of graphical images, such as icons, buttons, sliders, pop-
up windows, and pull-down menus.

The abacus may exhibit some concepts still in use by today’s computers,
but no one would use the word “computer” to describe an abacus. The aba-
cus does not have enough storage, is designed to represent only integers, is
limited in the kind of calculations it can perform, and has a rather crude
user interface.

The importance of improving the calculation capabilities of human
inventions was evident for many centuries after the abacus. One example
device of note was Napier’s bones invented by a Scottish mathematician
named John Napier and published in 1617. Napier’s bones consist of small
rectangular sticks with numbers and lines on each stick. Different sticks
have numbers positioned in cleverly different ways (Figure 1.5). Arranging
the sticks in different ways makes it convenient to perform multiplication,
division, and even calculating square roots.
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FIGURE 1.5 Napier’s bones.

The next step toward computer hardware improved both the speed of
calculation and user interface, while bringing human invention into the
category of something that could validly be called a “machine.” Actually,
there were a few inventions that occurred in history during roughly the
same time. These first calculating machines were invented by mathe-
maticians and from various countries in Europe. Perhaps the two most
significant of the earliest mechanical calculators were Pascaline, invented
in 1643 by Frenchman Blaise Pascal, and Leibniz’ calculator invented by
the German mathematician and philosopher Gottfried Leibniz around
1674. Figure 1.6 and Figure 1.7 show photos of these machines.

Pascaline and the Leibniz’ calculator advanced the user interface by
permitting the user to turn cranks and thumb wheels. These devices also
did a better job of assisting humans through the use of internal wheels,
gears, and levers that accomplished addition, subtraction, multiplica-
tion, or division. These machines also demonstrate the importance of
speed when performing calculations. Presumably, a knowledgeable user
could perform lengthy calculations more rapidly using these machines
rather than an abacus or Napier’s bones. These were early devices that
already illustrated man’s conquest of finding machines capable of accel-
erating calculations.
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FIGURE 1.6 Pascaline.

FIGURE 1.7 Leibniz’ calculator.
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FIGURE 1.8 Fragment of Antikythera mechanism.

Not every historical calculating device was used to perform arithmetic.
The device that is the first known example of using gears for calculation
is the Antikythera mechanism (Figure 1.8). Dated to the first century BC,
this machine contained at least 30 interconnected brass gears of various
dimensions. It is believed that positioning a crank on the Antikythera
mechanism caused the device to accurately identify the location of the
sun, moon, and planets.

The Antikythera mechanism has been called a computer by some peo-
ple. However, it is probably more accurate to think of it as a special pur-
pose calculator, somewhat related to time-keeping machines. Remarkably,
fifteen to sixteen centuries would pass before the gearing technology of
the Antikythera mechanism would reappear in the watch-making indus-
try and early calculators, such as Pascaline.

1.4 THE FIRST SOFTWARE

None of the devices described in Section 1.3 were truly programmable.
Yes, it is possible to rearrange beads, relocate bones, or turn wheels and
cranks, but these are merely ways to configure devices to perform calcula-

tions. In order to perform a different calculation any prior configuration is
lost. A truly programmable device is one in which the program is divorced
from the hardware so that it can be stored for reuse at a different time. In
other words the program “instructs” the device in how to perform, and
different programs produce different results.
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The first known programmable machine is not a calculator; it is a loom
for weaving cloth. Around 1805, a French inventor named Joseph-Marie
Jacquard built the first known programmable machine. The Jacquard
loom (Figure 1.9) was similar to other looms of the day except that it used
a loop of stiff paper cards as a program. The cards had holes punched in
them. Changing the number and placement of holes in these cards would
cause the loom to weave a different pattern. The loom was built so that the
loop and cards could be removed and replaced by a different loop of cards;
thereby programming the loom to weave different patterns. This kind of
punch card program is still used on textile looms today.

Although punched cards might represent programmability, weaving
on a loom is quite different from computer-like calculations. The first
example of what might be termed “computer software” (or at least calcu-
lator software) did not occur until approximately 1843. This important
event in history came from an English mathematician and inventor named

FIGURE 1.9 Model of a Jacquard loom.
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FIGURE 1.10 A piece of the Analytical Engine.

Charles Babbage. Babbage had already built a mechanical calculator capa-
ble of more advanced logarithmic and trigonometric calculations, but he
did not add the notion of programmability until the design of his second,
and more significant, invention—the Analytical Engine (Figure 1.10).

The Analytical Engine adopted the concept of punched cards to store
and input a program into the hardware. But programs for the Analytical
Engine were capable of performing a sequence of mathematical operations
in the same way that modern computers can perform complex mathemat-
ical operations as directed by a proper computer program. Sadly, because
of the complexity of the device, the manufacturing capabilities of the day
made it impossible to construct a complete Analytical Engine during
Babbage’s lifetime.

An interesting side note in history often told about the Analytical
Engine involves a woman named Ada Lovelace (Figure 1.11). The Countess
Lovelace was the daughter of the famous poet, Lord Byron. She was quite
interested in the work of Charles Babbage and is known to have written
programs for the Analytical Engine. Some people have called Ada Lovelace
the first programmer, but this cannot be confirmed and is most likely not
true, since several individuals (Babbage included) wrote programs at about
the same time. Nonetheless she is clearly among the first programmers.
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FIGURE 1.11  Charles Babbage and Ada Lovelace were among the first computer
programmers.

1.5 WHAT MAKES IT A MODERN COMPUTER?

One widely accepted definition of modern computer requires three prop-

erties of this calculating device:

1. It must be electronic and not exclusively mechanical.
2. It must be digital and not analog,.

3. It must employ the stored program concept.

As it happens, even the Analytical Engine invented by Babbage fails to
satisfy every one of these three requirements.

To find the first invention that is believed to satisfy at least one of these
three properties, we skip to the 1890s. The United States has a long his-
tory of taking census every ten years. In 1880 the census was tabulated,
like every decade prior, by hand. This process of counting citizenry and
categorizing them by geographic region was becoming difficult because
of rapid population growth. In fact the 1880 census was barely completed
before 1890 when the next census was to begin.

A man named Herman Hollerith invented a calculating device built
specifically for tabulating the US census. Hollerith’s machine completed
the 1890 census in less than one year. More important for computing,
Hollerith’s machine ran on electricity. The Hollerith tabulating machine
can fairly be labeled as the first calculating (i.e., computer-like) hardware
that satisfies any of the properties that distinguish a modern computer.
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Hollerith later founded a Tabulating Machine Company to build these
devices, and his company merged to form IBM Corporation in 1924; IBM
remains today as one of the world’s largest manufacturers of computers.
Hollerith’s tabulating machine also provides convincing evidence of the
future capacity of computers to assist in solving human problems.

Before revealing the candidates for the first modern computer, there
are two of the preceding properties of a modern computer that have yet to
be mentioned. The first issue is that a modern computer must be digital.
Prior to the 1930s, machines that stored data typically did so as repre-
sented using mechanical gears or electrical signals. Gears can generally be
rotated to an infinite number of different angles. Similarly, electrical sig-
nals are infinitely variable in terms of voltage, amperage, capacitance, and
inductance. This kind of continuous change is called analog. For example,
an analog wristwatch often has a sweep second hand and can position the
minute hand at an infinite number of positions around the dial.

A digital system, unlike analog systems, is one in which there are not
an infinite number of possibilities and change is not continuous. Instead,
digital systems restrict values to be one of a few choices. For example,
hours and minutes on a digital watch are displayed as numbers. It is not
possible for the minute number to display anything between 9:30 and 9:31.
Most of our automobile speedometers are analog with a needle that rotates
gradually as the car accelerates. However, a few cars have digital speed-
ometers that display the current speed as a single number in either whole
miles or meters per hour.

An explanation of the stored program concept requires a brief look at
the major units of hardware in a modern computer. Figure 1.12 diagrams a
simple desktop-style computer with three components: a keyboard, a dis-
play, and a system unit. These three components can be used to illustrate

dispfo 1y

FIGURE 1.12  The basic parts of a simple desktop computer.
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Clearly, ENTAC satisfies the earlier criteria for a modern computer. It
was a calculating device that ran on electricity and was digital. The origi-
nal version of ENIAC did not truly follow the stored program concept, but
this capability was later incorporated. By today’s standards ENIAC was
enormous, physically filling an entire room. Its circuitry relied on 19,000
vacuum tubes (see Figure 1.14) and 1,000 relays. Vacuum tubes can be used
as memory devices, but they are large (each roughly the size of a human
thumb) and unreliable relative to today’s computer memory. Relays are a
form of electrical switch that are mechanical and also large (about the size
of half a cell phone).

Despite the patent, ENTAC is not considered the first modern computer.
In fact the US Patent Office invalidated the 1947 patent in 1973. The pri-
mary reason for this invalidation was the discovery of some earlier work
that was not fully patented.

In 1937-1938 two physicists—John Atanasoff and Chuck Berry—at
Iowa State University built a machine they called the ABC Computer (see
Figure 1.15). During the patent dispute, it was discovered that the Des
Moines Register had printed an article regarding the ABC Computer in
1941. It was also claimed that Atanasoff discussed his design with Mauchly
in 1940 and had visited a US Patent Office that same year.

Unfortunately, the ABC Computer may not truly qualify as the first
modern computer, because it failed to use the stored program concept, nor
was it truly programmable for general purposes, as it was only designed to

FIGURE 1.14 Vacuum tubes.
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of Manchester, England, and the first computer to use the stored program
concept. However, it was never intended to be a practical computer but
rather part of a test bed for other hardware. By September of the same
year, ENIAC had been modified to use stored programs, making it a con-
tender for first modern computer.

Regardless of which invention should be considered to be most signifi-
cant, what is clear is that during the late 1930s and throughout the 1940s
there was a flurry of research taking place around the world to create early
computing devices.

Within a few years computer scientists had grown weary of the tedious
activity of using machine instructions, which led to the invention of high-
level programming languages. A high-level language is one that relies
upon instructions that are much more English-like instead of the cryp-
tic numeric form of most machine instructions. The revolution leading to
computer systems like today’s changed to more of an evolutionary history
by the mid-1950s, except for one major change to the hardware.

1.7 MOORE'S LAW

No discussion of today’s computer hardware would be complete without
the inclusion of one more discovery. In the 1950s and 1960s several physi-
cists, most notably Jack Kilby and Robert Noyce, were working on a tech-
nology that would soon replace the use of vacuum tubes and relays with
smaller, faster, and far more reliable electronics.

The idea was to use silicon wafers that are manufactured in such a way
that thousands, and later trillions, of electronic switches, known as “tran-
sistors,” can be combined onto a single chip. Such devices are referred to
as integrated circuits and the technology that permits silicon to function in
this way is called semiconductor technology.

Figure 1.16 is a photograph of an integrated circuit. The blackened
square region in the center is the silicon wafer with wires (the lines) con-
necting it to the metal legs on the outside of the device. These legs typi-
cally plug into a socket for connection to the remainder of the computer
circuitry. The entire package is commonly referred to as a chip.

Robert Noyce was awarded the Nobel Prize in Physics for his work in
the creation of semiconductors. Together with Gordon Moore, he founded
Intel Corporation—the largest manufacturer of computer processors in the
world.

Integrated circuits make it possible for us to carry computers in a brief-
case or a pocket that are millions of times faster than the room-sized
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EXERCISES

1. What are the three qualities required of a calculating device in order
for it to qualify as a modern computer?

2. What is the difference between computer hardware and computer
software?

3. Describe the significance of each of the following inventions, as it
eventually led to the creation of the first modern computer.

a. The abacus

b. The Analytical Engine

c. Jacquard loom

d. Hollerith’s machine for tabulating the US census

4. Digital cameras are one kind of modern computer. In this sense,
answer the following questions.

a. How does the user supply input to a digital camera?
b. What would you consider to be the camera’s output device(s)?

c. What is the purpose of the camera’s memory?



