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dents. Inevitably, some of the presentation drifts into more difficult waters,
more from the nature of the statistical ideas than the mathematics. Readers
who find our aerial view circling too long over some topic shouldn’t hesi-
tate to move ahead in the book. For the most part, the chapters can be read
independently of each other (though there is a connecting overall theme).
This comment applies especially to nonstatisticians who have picked up
the book because of interest in some particular topic, say survival analysis
or boosting.

Useful disciplines that serve a wide variety of demanding clients run
the risk of losing their center. Statistics has managed, for the most part,
to maintain its philosophical cohesion despite a rising curve of outside de-
mand. The center of the field has in fact moved in the past sixty years, from
its traditional home in mathematics and logic toward a more computational
focus. Our book traces that movement on a topic-by-topic basis. An answer
to the intriguing question “What happens next?” won’t be attempted here,
except for a few words in the epilogue, where the rise of data science is
discussed.
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Notation

Throughout the book the numbered { sign indicates a technical note or
reference element which is elaborated on at the end of the chapter. There,
next to the number, the page number of the referenced location is given in
parenthesis. For example, 1lowess in the notes on page 11 was referenced
via a T; on page 6. Matrices such as X are represented in bold font, as
are certain vectors such as y, a data vector with n elements. Most other
vectors, such as coefficient vectors, are typically not bold. We use a dark
green typewriter font to indicate data set names such as prostate,
variable names such as prog from data sets, and R commands such as
glmnet or locfdr. No bibliographic references are given in the body of
the text; important references are given in the endnotes of each chapter.
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Classic Statistical Inference



4 Algorithms and Inference

Of course, $¢ (1.2) is itself an algorithm, which could be (and is) subject
to further inferential analysis concerning ifs accuracy. The point is that
the algorithm comes first and the inference follows at a second level of
statistical consideration. In practice this means that algorithmic invention
is a more free-wheeling and adventurous enterprise, with inference playing
catch-up as it strives to assess the accuracy. good or bad, of some hot new
algorithmic methodology.

If the inference/algorithm race is a tortoise-and-hare affair, then modern
electronic computation has bred a bionic hare. There are two effects at work
here: computer-based technology allows scientists to collect enormous data
sets, orders of magnitude larger than those that classic statistical theory
was designed to deal with; huge data demands new methodology, and the
demand is being met by a burst of innovative computer-based statistical
algorithms. When one reads of “big data” in the news, it is usually these
algorithms playing the starring roles.

Our book’s title, Computer Age Statistical Inference, emphasizes the tor-
toise’s side of the story. The past few decades have been a golden age of
statistical methodology. It hasn’t been, quite, a golden age for statistical
inference, but it has not been a dark age either. The efflorescence of am-
bitious new algorithms has forced an evolution (though not a revolution)
in inference, the theories by which statisticians choose among competing
methods. The book traces the interplay between methodology and infer-
ence as it has developed since the 1950s, the beginning of our discipline’s
computer age. As a preview, we end this chapter with two examples illus-
trating the transition from classic to computer-age practice.

1.1 A Regression Example

Figure 1.1 concerns a study of kidney function. Data points (x;, y;) have
been observed for n = 157 healthy volunteers, with x; the ith volunteer’s
age in years, and y; a composite measure “tot” of overall function. Kid-
ney function generally declines with age, as evident in the downward scat-
ter of the points. The rate of decline is an important question in kidney
transplantation: in the past, potential donors past age 60 were prohibited,
though, given a shortage of donors, this is no longer enforced.
The solid line in Figure 1.1 is a linear regression

v =Bo+ Pix (13)

fit to the data by least squares, that is by minimizing the sum of squared
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tot

-2
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20 30 40 50 60 70 80 20

age

Figure 1.1 Kidney fitness tot vs age for 157 volunteers. The
line is a linear regression fit, showing 42 standard errors at
selected values of age.

deviations

> (i — Bo— Pixi)? (14)

i=1

over all choices of (8, ). The least squares algorithm, which dates back
to Gauss and Legendre in the early 1800s, gives By = 2.86 and B, =
—0.079 as the least squares estimates. We can read off of the fitted line
an estimated value of kidney fitness for any chosen age. The top line of
Table 1.1 shows estimate 1.29 at age 20, down to —3.43 at age 80.

How accurate are these estimates? This is where inference comes in:
an extended version of formula (1.2), also going back to the 1800s, pro-
vides the standard errors, shown in line 2 of the table. The vertical bars in
Figure 1.1 are + two standard errors, giving them about 95% chance of
containing the true expected value of tot at each age.

That 95% coverage depends on the validity of the linear regression model
(1.3). We might instead try a quadratic regression y = Bo + B1x + f2x2,
or a cubic, etc., all of this being well within the reach of pre-computer
statistical theory.
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Table 1.1 Regression analysis of the kidney data; (1) linear regression

estimates; (2) their standard errors; (3) Lowess estimates; (4) their
bootstrap standard errors.

age 20 30 40 50 60 70 80

1. linear regression 129 50 -28 —1.07 —186 —2.64 343

2. std error 21 15 15 .19 .26 34 42

3. lowess 1.6 65 =59 -127 -—-191 =268 =350

4. bootstrap std error .71 .23 31 32 37 47 70
<+ 4 . oy ’

tot

-2
!

20 30 40 50 60 70 80

age

Figure 1.2 Local polynomial lowess (x,y, 1/3) fit to the
kidney-fitness data, with £2 bootstrap standard deviations.

A modern computer-based algorithm lowess produced the somewhat
bumpy regression curve in Figure 1.2. The lowess ' 2 algorithm moves
its attention along the x-axis, fitting local polynomial curves of differing
degrees to nearby (x, y) points. (The 1/3 in the call® lowess (x,y,1/3)

2 Here and throughout the book, the numbered  sign indicates a technical note or
reference element which is elaborated on at the end of the chapter.

3 Here and in all our examples we are employing the language R, itself one of the key

developments in computer-based statistical methodology.
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determines the definition of local.) Repeated passes over the x-axis refine
the fit, reducing the effects of occasional anomalous points. The fitted curve
in Figure 1.2 is nearly linear at the right, but more complicated at the left
where points are more densely packed. It is flat between ages 25 and 35,
a potentially important difference from the uniform decline portrayed in
Figure 1.1.

There is no formula such as (1.2) to infer the accuracy of the lowess
curve. Instead, a computer-intensive inferential engine, the bootstrap, was
used to calculate the error bars in Figure 1.2. A bootstrap data set is pro-
duced by resampling 157 pairs (x;, ¥;) from the original 157 with replace-
ment, so perhaps (x, y;) might show up twice in the bootstrap sample,
(x3, y2) might be missing, (xs, y3) present once, etc. Applying lowess
to the bootstrap sample generates a bootstrap replication of the original
calculation.

tot

-2

T T T T T T T T
20 30 40 50 60 70 80 90

age

Figure 1.3 25 bootstrap replications of lowess (x,y,1/3).

Figure 1.3 shows the first 25 (of 250) bootstrap lowess replications
bouncing around the original curve from Figure 1.2. The variability of the
replications at any one age, the bootstrap standard deviation, determined
the original curve’s accuracy. How and why the bootstrap works is dis-
cussed in Chapter 10. It has the great virtue of assessing estimation accu-
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racy for any algorithm, no matter how complicated. The price is a hundred-
or thousand-fold increase in computation, unthinkable in 1930, but routine
now.

The bottom two lines of Table 1.1 show the lowess estimates and
their standard errors. We have paid a price for the increased flexibility of
lowess, its standard errors roughly doubling those for linear regression.

1.2 Hypothesis Testing

Our second example concerns the march of methodology and inference
for hypothesis testing rather than estimation: 72 leukemia patients, 47 with
ALL (acute lymphoblastic leukemia) and 25 with AML (acute myeloid leuk-
emia, a worse prognosis) have each had genetic activity measured for a
panel of 7,128 genes. The histograms in Figure 1.4 compare the genetic
activities in the two groups for gene 136.

02 4 6 8 10

[ T T T T T I 1
02 0.4 0.6 08 1.0 1.2 14 1.6

ALL scores — mean .752

0 2 4 6 810

f T T T T T T !
0.2 0.4 0.6 0.8 10 12 1.4 16

AML scores — mean .950

Figure 1.4 Scores for gene 136, leukemia data. Top ALL
(n = 47), bottom AML (n = 25). A two-sample 7-statistic = 3.01
with p-value = .0036.

The AML group appears to show greater activity, the mean values being

ALL = 0.752 and AML = 0.950. (1.5)
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1.3 Notes

Legendre published the least squares algorithm in 1805, causing Gauss
to state that he had been using the method in astronomical orbit-fitting
since 1795. Given Gauss’ astonishing production of major mathematical
advances, this says something about the importance attached to the least
squares idea. Chapter 8 includes its usual algebraic formulation, as well as
Gauss’ formula for the standard errors, line 2 of Table 1.1.

Our division between algorithms and inference brings to mind Tukey’s
exploratory/confirmatory system. However the current algorithmic world
is often bolder in its claims than the word “exploratory” implies, while to
our minds “inference” conveys something richer than mere confirmation.
[p. 6] lowess was devised by William Cleveland (Cleveland, 1981) and
is available in the R statistical computing language. It is applied to the
kidney data in Efron (2004). The kidney data originated in the nephrology
laboratory of Dr. Brian Myers, Stanford University, and is available from
this book’s web site.
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Frequentist Inference

Before the computer age there was the calculator age, and before “big data™
there were small data sets, often a few hundred numbers or fewer, labori-
ously collected by individual scientists working under restrictive experi-
mental constraints. Precious data calls for maximally efficient statistical
analysis. A remarkably effective theory, feasible for execution on mechan-
ical desk calculators, was developed beginning in 1900 by Pearson, Fisher,
Neyman, Hotelling, and others, and grew to dominate twentieth-century
statistical practice. The theory, now referred to as classical, relied almost
entirely on frequentist inferential ideas. This chapter sketches a quick and
simplified picture of frequentist inference, particularly as employed in clas-
sical applications.

We begin with another example from Dr. Myers” nephrology laboratory:
211 kidney patients have had their glomerular filtration rates measured,
with the results shown in Figure 2.1; gfr is an important indicator of kid-
ney function, with low values suggesting trouble. (It is a key component of
tot in Figure 1.1.) The mean and standard error (1.1)—(1.2) are x = 54.25
and §& = 0.95, typically reported as

54.25 4+ 0.95; 2.1

40.95 denotes a frequentist inference for the accuracy of the estimate ¥ =
54.25, and suggests that we shouldn’t take the *.25” very seriously, even
the “4” being open to doubt. Where the inference comes from and what
exactly it means remains to be said.

Statistical inference usually begins with the assumption that some prob-
ability model has produced the observed data x, in our case the vector of
n = 211 gfr measurements x = (x1.X2,....%,). Let X = (X1, X5....
X») indicate n independent draws from a probability distribution F, writ-
ten

F— X, 2.2)

12
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30

Frequency
15

10
|

20 40 60 80 100

gfr

Figure 2.1 Glomerular filtration rates for 211 kidney patients;
mean 34.25, standard error .95.

F being the underlying distribution of possible g£r scores here. A realiza-
tion X = x of (2.2) has been observed, and the statistician wishes to infer
some property of the unknown distribution F'.

Suppose the desired property is the expectation of a single random draw
X from F, denoted

8= EpiX} 2.3)

(which also equals the expectation of the average X = 3 X;/n of random
vector (2.2)1). The obvious estimate of @ is 6 = X, the sample average. If
n were enormous, say 10'°, we would expect 6 to nearly equal 6, but oth-
erwise there is room for error. How much error is the inferential question.

The estimate 0 is calculated from x according to some known algorithm,
say

6 =t(x), (24)
f(x) in our example being the averaging function ¥ = > x;/n; 6 is a

! The fact that E ¢ {X } equals E {X} is a crucial, though easily proved, probabilistic
result.
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realization of
0 =1(X), (2.5)

the output of 7(-) applied to a theoretical sample X from F (2.2). We have
chosen 7(X), we hope, to make ®a good estimator of 6, the desired prop-
erty of F.

We can now give a first definition of frequentist inference: the accu-
racy of an observed estimate 6 = ((x) is the probabilistic accuracy of
O = t(X) as an estimator of . This may seem more a tautology than a
definition, but it contains a powerful idea: 6 is just a single number but 8]
takes on a range of values whose spread can define measures of accuracy.

Bias and variance are familiar examples of frequentist inference. Define
t to be the expectation of 0= t(X) under model (2.2),

1= Ep{©}. (2.6)

Then the bias and variance attributed to estimate 6 of parameter € are
bias=pu—0 and var= Ep {((:)—,u)z}. 2.7)

Again, what keeps this from tautology is the attribution to the single num-
ber 6 of the probabilistic properties of © following from model (2.2). If
all of this seems too obvious to worry about, the Bayesian criticisms of
Chapter 3 may come as a shock.

Frequentism is often defined with respect to “an infinite sequence of
future trials.” We imagine hypothetical data sets XV, X@ X®)  gen-
erated by the same mechanism as x providing corresponding values eOm,
O@ ©® . asin (2.5). The frequentist principle is then to attribute for
0 the accuracy properties of the ensemble of © values.2 If the Os have
empirical variance of, say, 0.04, then 6 is claimed to have standard error
0.2 = +/0.04, etc. This amounts to a more picturesque restatement of the
previous definition.

2.1 Frequentism in Practice

Our working definition of frequentism is that the probabilistic properties
of a procedure of interest are derived and then applied verbatim to the
procedure’s output for the observed data. This has an obvious defect: it
requires calculating the properties of estimators © = 1(X) obtained from

2 In essence, frequentists ask themselves “What would I see if I reran the same situation
again (and again and again...)?”
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the true distribution F, even though F is unknown. Practical frequentism
uses a collection of more or less ingenious devices to circumvent the defect.

1_. The plug-in principle. A simple formula relates the standard error of
X =3 X;/n tovarg(X), the variance of a single X drawn from F,

se (X) = [varg(X)/n]'/2. (2.8)

But having observed x = (xy, X3, ..., X,) we can estimate varg (X) with-
out bias by

varp =) (% — %) /(n—1). (2.9)

Plugging formula (2.9) into (2.8) gives se (1.2), the usual estimate for the
standard error of an average x. In other words, the frequentist accuracy
estimate for ¥ is itself estimated from the observed data.?

2. Taylor-series approximations.  Statistics 0=t (x) more complicated
than X can often be related back to the plug-in formula by local linear
approx1mat10ns sometimes known as the “delta method.” " For example,
6 = 72 hasdf/dx = 2%. Thinking of 2% as a constant gives

se (¥%) = 2% e, (2.10)

with §¢ as in (1.2). Large sample calculations, as sample size n goes to
infinity, validate the delta method which, fortunately, often performs well
in small samples.

3. Parametric families and maximum likelihood theory.  Theoretical ex-
pressions for the standard error of a maximum likelihood estimate (MLE)
are discussed in Chapters 4 and 5, in the context of parametric families
of distributions. These combine Fisherian theory, Taylor-series approxima-
tions, and the plug-in principle in an easy-to-apply package.

4. Simulation and the bootstrap.  Modern computation has opened up the
possibility of numerically implementing the “infinite sequence of future
trials” definition, except for the infinite part. An estimate Fof F, perhaps
the MLE, is found, and values ©® = (X ®)) simulated from F for k =
1,2...., B,say B = 1000. The empirical standard deviation of the Os is
then the frequentist estimate of standard error for 6 = {(x), and similarly
with other measures of accuracy.

This is a good description of the bootstrap, Chapter 10. (Notice that

3 The most familiar example is the observed proportion p of heads in 7 flips of a coin
having true probability 7: the actual standard error is [ (1 — 7)/n]'/? but we can
only report the plug-in estimate [p(1 — p)/n]'/2.

T1
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What might be called the strong definition of frequentism insists on exact
frequentist correctness under experimental repetitions. Pivotality, unfortu-
nately, is unavailable in most statistical situations. Our looser definition
of frequentism, supplemented by devices such as those above,’ presents a
more realistic picture of actual frequentist practice.

2.2 Frequentist Optimality

The popularity of frequentist methods reflects their relatively modest math-
ematical modeling assumptions: only a probability model F (more exactly
a family of probabilities, Chapter 3) and an algorithm of choice #(x). This
flexibility is also a defect in that the principle of frequentist correctness
doesn’t help with the choice of algorithm. Should we use the sample mean
to estimate the location of the gfr distribution? Maybe the 25% Win-
sorized mean would be better, as Table 2.1 suggests.

The years 1920-1935 saw the development of two key results on fre-
quentist optimality, that is, finding the best choice of ¢ (x) given model F.
The first of these was Fisher’s theory of maximum likelihood estimation
and the Fisher information bound: in parametric probability models of the
type discussed in Chapter 4, the MLE is the optimum estimate in terms of
minimum (asymptotic) standard error.

In the same spirit, the Neyman—Pearson lemma provides an optimum
hypothesis-testing algorithm. This is perhaps the most elegant of frequen-
tist constructions. In its simplest formulation, the NP lemma assumes we
are trying to decide between two possible probability density functions for
the observed data x, a null hypothesis density fy(x) and an alternative
density f)(x). A testing rule 7(x) says which choice, 0 or 1, we will make
having observed data x. Any such rule has two associated frequentist error
probabilities: choosing f; when actually f; generated x, and vice versa,

a =Pry {t(x) =1},

(2.20)
p=Pryii(x)=0}.
Let L(x) be the likelihood ratio,
L(x) = fi(x)/fo(x) (2.21)

7 The list of devices is not complete. Asymptotic calculations play a major role, as do
more elaborate combinations of pivotality and the plug-in principle; see the discussion
of approximate bootstrap confidence intervals in Chapter 11.
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and define the testing rule 7.(x) by

1 if log L >
fe(x) = oot (x)zc (2.22)
0 if logL(x) <c.

There is one such rule for each choice of the cutoff ¢. The Neyman—Pearson
lemma says that only rules of form (2.22) can be optimum; for any other
rule #(x) there will be a rule #.(x) having smaller errors of both kinds,?

o, <o and B, < B. (2.23)

1.0

0.8

0.2
1

Figure 2.2 Neyman-Pearson alpha-beta curve for fy ~ N(0, 1),
f1 ~ N(.5,1), and sample size n = 10. Red dots correspond to
cutoffsc = .8,.6,.4,...,—.4.

Figure 2.2 graphs (a., B.) as a function of the cutoff ¢, for the case
where x = (x1,X2,..., X10) is obtained by independent sampling from a
normal distribution, N(0, 1) for f, versus A'(0.5, 1) for f;. The NP lemma
says that any rule not of form (2.22) must have its (c, ) point lying above
the curve.

8 Here we are ignoring some minor definitional difficulties that can occur if fp and f] are
discrete.
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Frequentist optimality theory, both for estimation and for testing, an-
chored statistical practice in the twentieth century. The larger data sets and
more complicated inferential questions of the current era have strained the
capabilities of that theory. Computer-age statistical inference, as we will
see, often displays an unsettling ad hoc character. Perhaps some contem-
porary Fishers and Neymans will provide us with a more capacious opti-
mality theory equal to the challenges of current practice, but for now that
is only a hope.

Frequentism cannot claim to be a seamless philosophy of statistical in-
ference. Paradoxes and contradictions abound within its borders, as will
be shown in the next chapter. That being said, frequentist methods have
a natural appeal to working scientists, an impressive history of success-
ful application, and, as our list of five “devices” suggests, the capacity to
encourage clever methodology. The story that follows is not one of aban-
donment of frequentist thinking, but rather a broadening of connections
with other methods.

2.3 Notes and Details

The name “frequentism” seems to have been suggested by Neyman as a
statistical analogue of Richard von Mises’ frequentist theory of probability,
the connection being made explicit in his 1977 paper, “Frequentist prob-
ability and frequentist statistics.” “Behaviorism™ might have been a more
descriptive name® since the theory revolves around the long-run behavior
of statistics 7(x), but in any case “frequentism” has stuck, replacing the
older (sometimes disparaging) term “objectivism.” Neyman’s attempt at a
complete frequentist theory of statistical inference, “inductive behavior,”
is not much quoted today, but can claim to be an important influence on
Wald’s development of decision theory.

R. A. Fisher’s work on maximum likelihood estimation is featured in
Chapter 4. Fisher, arguably the founder of frequentist optimality theory,
was not a pure frequentist himself, as discussed in Chapter 4 and Efron
(1998), “R. A. Fisher in the 21st Century.” (Now that we are well into the
twenty-first century, the author’s talents as a prognosticator can be frequen-
tistically evaluated.)

[p. 15] Delta method. The delta method uses a first-order Taylor series to
approximate the variance of a function 3(6) of a statistic 6. Suppose 6
has mean/variance (#, 0%), and consider the approximation s (9) s(0) +

9 That name is already spoken for in the psychology literature.
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s'(8)(6 — 0). Hence var{s(6)} ~ |s'(8)|202. We typically plug-in @ for 6,
and use an estimate for 62,
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Bayesian Inference

The human mind is an inference machine: “It’s getting windy, the sky is
darkening, I'd better bring my umbrella with me.” Unfortunately, it’s not a
very dependable machine, especially when weighing complicated choices
against past experience. Bayes’ theorem is a surprisingly simple mathemat-
ical guide to accurate inference. The theorem (or “rule”), now 250 years
old, marked the beginning of statistical inference as a serious scientific sub-
ject. It has waxed and waned in influence over the centuries, now waxing
again in the service of computer-age applications.

Bayesian inference, if not directly opposed to frequentism, is at least or-
thogonal. It reveals some worrisome flaws in the frequentist point of view,
while at the same time exposing itself to the criticism of dangerous overuse.
The struggle to combine the virtues of the two philosophies has become
more acute in an era of massively complicated data sets. Much of what
follows in succeeding chapters concerns this struggle. Here we will review
some basic Bayesian ideas and the ways they impinge on frequentism.

The fundamental unit of statistical inference both for frequentists and
for Bayesians is a family of probability densities

F={fulx): x e X, peQ}; (3.1)

x, the observed data, 1s a point1 in the sample space X', while the unob-
served parameter j¢ is a point in the parameter space €2. The statistician
observes x from f,,(x), and infers the value of 1.

Perhaps the most familiar case is the normal family

Jfulx) = \/12?6_5("_‘”2 (3.2)

! Both x and s may be scalars, vectors, or more complicated objects. Other names for the
generic “x”" and “j.” occur in specific situations, for instance x for x in Chapter 2. We
will also call F a “family of probability distributions.”

22
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rule in ratio form (3.8) answers the physicist’s question:

g(Identical | Same)  g(Identical) figenica(Same)
g(Fraternal | Same) ~ g(Fraternal) ' frraterna (Same)
1/3 1
= % . m =
That is, the posterior odds are even, and the physicist’s twins have equal
probabilities 0.5 of being Identical or Fraternal.* Here the doctor’s prior

odds ratio, 2 to 1 in favor of Fraternal, is balanced out by the sonogram’s
likelihood ratio of 2 to 1 in favor of Identical.

(3.9)

Sonogram shows:

Same sex Difterent
a b
Identical 13 0 1/3
Twins are: Doctor
c d
Fraternal 13 1/3 2/3
Physicist

Figure 3.1 Analyzing the twins problem.

There are only four possible combinations of parameter & and outcome
x in the twins problem, labeled a, b, ¢, and d in Figure 3.1. Cell & has
probability O since Identicals cannot be of Different Sexes. Cells ¢ and d
have equal probabilities because of the random sexes of Fraternals. Finally,
a + b must have total probability 1/3, and ¢ + d total probability 2/3,
according to the doctor’s prior distribution. Putting all this together, we
can fill in the probabilities for all four cells, as shown. The physicist knows
she is in the first column of the table, where the conditional probabilities
of Identical or Fraternal are equal, just as provided by Bayes’ rule in (3.9).

Presumably the doctor’s prior distribution came from some enormous
state or national database, say three million previous twin births, one mil-
lion Identical pairs and two million Fraternals. We deduce that cells 4, c,
and d must have had one million entries each in the database, while cell
b was empty. Bayes’ rule can be thought of as a big book with one page

4 They turned out to be Fraternal.
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for each possible outcome x. (The book has only two pages in Figure 3.1.)
The physicist turns to the page “Same Sex™ and sees two million previous
twin births, half Identical and half Fraternal, correctly concluding that the
odds are equal in her situation.

Given any prior distribution g(x) and any family of densities f, (x),
Bayes’ rule will always provide a version of the big book. That doesn’t
mean that the book’s contents will always be equally convincing. The prior
for the twins problems was based on a large amount of relevant previous
experience. Such experience is most often unavailable. Modern Bayesian
practice uses various strategies to construct an appropriate “prior” g(u)
in the absence of prior experience, leaving many statisticians unconvinced
by the resulting Bayesian inferences. Our second example illustrates the

difficulty.

Table 3.1 Scores from two tests taken by 22 students, mechanics and
vectors.

2 3 4 5 6 7 8 9 10 11

mechanics 7 44 49 59 34 46 0 32 49 52 44
vectors 51 69 41 70 42 40 40 45 57 64 61

12 13 14 15 16 17 18 19 20 21 22

mechanics 36 42 5 22 18 41 48 31 42 46 63
vectors 59 60 30 58 51 63 38 42 69 49 63

Table 3.1 shows the scores on two tests, mechanics and vectors,
achieved by n = 22 students. The sample correlation coefficient between
the two scores is f = 0.498,

22 22 22 1/2
6= (m; —m)(v; — ) / [Z(miﬁe)z Z(viﬁ)z] . (3.10)
i=1

i=1 i=1

with m and v short for mechanics and vectors, m and v their aver-
ages. We wish to assign a Bayesian measure of posterior accuracy to the
true correlation coefficient @, “true” meaning the correlation for the hypo-
thetical population of all students, of which we observed only 22.

If we assume that the joint (m,v) distribution is bivariate normal (as
discussed in Chapter 5), then the density of @ as a function of @ has a
known form, '
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Ay (n—4)/2
(n — 2)(1 — g2)(—1/2 (1 - 92)

fe(é) - fow( dw —.

coshw — 99)

(3.11)
In terms of our general Bayes notation, parameter 1 is 6, observation x is
6, and family F is given by (3.11), with both @ and X’ equaling the interval
[—1, 1]. Formula (3.11) looks formidable to the human eye but not to the
computer eye, which makes quick work of it.

-
o
Jeffreys
A
o .
& \ flat prior
o
@
2=
© o |
w o]
o
2 A . P
< 093 MLE .498 .750
T T T T T T T
-0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

Figure 3.2 Student scores data; posterior density of correlation 6
for three possible priors.

In this case, as in the majority of scientific situations, we don’t have a
trove of relevant past experience ready to provide a prior g(#). One expe-
dient, going back to Laplace, is the “principle of insufficient reason,” that
is, we take @ to be uniformly distributed over €2,

g(6)=1 for —1<6<1, (3.12)

a “flat prior.” The solid black curve in Figure 3.2 shows the resulting poste-
rior density (3.5), which is just the likelihood f5(0.498) plotted as a func-
tion of # (and scaled to have integral 1).
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Jeffreys’ prior,
g"(0) = 1/(1-6%), (3.13)

yields posterior density g(0| é) shown by the dashed red curve. It suggests
somewhat bigger values for the unknown parameter ¢. Formula (3.13)
arises from a theory of “uninformative priors™ discussed in the next sec-
tion, an improvement on the principle of insufficient reason; (3.13) is an
improper density in that f_ll £(0) df = oo, but it still provides proper pos-
terior densities when deployed in Bayes™ rule (3.5). X

The dotted blue curve in Figure 3.2 is posterior density g(0|€) obtained
from the triangular-shaped prior

g(@)=1—-16|. (3.14)

This is a primitive example of a shrinkage prior, one designed to favor
smaller values of 0. Its effect is seen in the leftward shift of the posterior
density. Shrinkage priors will play a major role in our discussion of large-
scale estimation and testing problems, where we are hoping to find a few
large effects hidden among thousands of negligible ones.

3.2 Uninformative Prior Distributions

Given a convincing prior distribution, Bayes’ rule is easier to use and pro-
duces more satisfactory inferences than frequentist methods. The domi-
nance of frequentist practice reflects the scarcity of useful prior information
in day-to-day scientific applications. But the Bayesian impulse is strong,
and almost from its inception 250 years ago there have been proposals for
the construction of “priors” that permit the use of Bayes’ rule in the ab-
sence of relevant experience.

One approach, perhaps the most influential in current practice, is the
employment of uninformative priors. “Uninformative” has a positive con-
notation here, implying that the use of such a prior in Bayes’ rule does not
tacitly bias the resulting inference. Laplace’s principle of insufficient rea-
son, i.e., assigning uniform prior distributions to unknown parameters, is
an obvious attempt at this goal. Its use went unchallenged for more than a
century, perhaps because of Laplace’s influence more than its own virtues.

Venn (of the Venn diagram) in the 1860s, and Fisher in the 1920s, attack-
ing the routine use of Bayes’ theorem, pointed out that Laplace’s principle
could not be applied consistently. In the student correlation example, for
instance, a uniform prior distribution for & would not be uniform if we
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changed parameters to y = e?; posterior probabilities such as
Pr{a > 0|é} - Pr{y > 1|é} (3.15)

would depend on whether € or y was taken to be uniform a priori. Neither
choice then could be considered uninformative.

A more sophisticated version of Laplace’s principle was put forward by
Jeffreys beginning in the 1930s. It depends, interestingly enough, on the
frequentist notion of Fisher information (Chapter 4). For a one-parameter
Sfamily f,,(x), where the parameter space €2 is an interval of the real line
R, the Fisher information is defined to be

a 2
(@ log fu(x)) % . (3.16)

(For the Poisson family (3.3), d/du(log f,(x)) = x/pu—1landZ, = 1/p.)
The Jeffreys’ prior g'® () is by definition

M) =TI/, (3.17)

,=E,

Because 1/Z,, equals, approximately, the variance Jﬁ of the MLE fi, an
equivalent definition is

g () =1/o,. (3.18)

Formula (3.17) does in fact transform correctly under parameter changes,
avoiding the Venn—Fisher criticism. TTt is known that 6 in family (3.11) has
approximate standard deviation

o6 = c(1 —6?), (3.19)

yielding Jeffreys’ prior (3.13) from (3.18), the constant factor ¢ having no
effect on Bayes’ rule (3.5)—(3.6).

The red triangles in Figure 3.2 indicate the “95% credible interval” [0.093,
0.750] for 6, based on Jeffreys’ prior. That is, the posterior probability
0.093 < 6 < 0.750 equals 0.95,

0.750 R
f g (9|9) d6 = 0.95, (3.20)
0.093
with probability 0.025 for 8 < 0.093 or 8 > 0.750. It is not an accident that
this nearly equals the standard Neyman 95% confidence interval based on
fo (é) (3.11). Jeffreys’ prior tends to induce this nice connection between
the Bayesian and frequentist worlds, at least in one-parameter families.
Multiparameter probability families, Chapter 4, make everything more

T2
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Unfortunately, it turns out that the investigators broke protocol and peek-
ed at the data at month 20, in the hope of being able to stop an expensive
experiment early. This proved a vain hope, Z,, = 0.79 not being anywhere
near significance, so they continued on to month 30 as originally planned.
This means they effectively used the stopping rule “stop and declare signif-
icance if either Z,g or Z3¢ exceeds 1.645.” Some computation shows that
this rule had probability 0.074, not 0.05, of rejecting Hy if it were true.
Victory has turned into defeat according to the honored frequentist 0.05
criterion.

Once again, the Bayesian statistician is more lenient. The likelihood
function for the full data set x = (x1, X2,..., X30),

30
Ly() = [Je 27, (3.27)
i=1
is the same irrespective of whether or not the experiment might have stopped
early. The stopping rule doesn’t affect the posterior distribution g(u|x),
which depends on x only through the likelihood (3.7).

400
|

Frequency
200
|

100
|

gene 610

T T T |

-4 -2 0 2 4 5.29

effect-size estimates

Figure 3.4 Unbiased effect-size estimates for 6033 genes,
prostate cancer study. The estimate for gene 610 is xg19 = 5.29.
What is its effect size?

The lenient nature of Bayesian inference can look less benign in multi-
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parameter settings. Figure 3.4 concerns a prostate cancer study comparing
52 patients with 50 healthy controls. Each man had his genetic activity
measured for a panel of N = 6033 genes. A statistic x was computed for
each gene,” comparing the patients with controls, say '

xi ~N(wi, 1) i=12,....N, (3.28)

where (1; represents the frue effect size for gene i. Most of the genes, prob-
ably not being involved in prostate cancer, would be expected to have effect
sizes near 0, but the investigators hoped to spot a few large p; values, either
positive or negative.

The histogram of the 6033 x; values does in fact reveal some large val-
ues, Xg1o = 5.29 being the winner. Question: what estimate should we
give for 16197 Even though x¢19 was individually unbiased for (4610, a fre-
quentist would (correctly) worry that focusing attention on the largest of
6033 values would produce an upward bias, and that our estimate should
downwardly correct 5.29. “Selection bias,” “regression to the mean,” and
“the winner’s curse” are three names for this phenomenon.

Bayesian inference, surprisingly, is immune to selection bias." Irrespec-
tive of whether gene 610 was prespecified for particular attention or only
came to attention as the “winner,” the Bayes’ estimate for 1tg19 given all
the data stays the same. This isn’t obvious, but follows from the fact that
any data-based selection process does not affect the likelihood function in
(3.7).

What does affect Bayesian inference is the prior g(u) for the full vector
p of 6033 effect sizes. The flat prior, g(u) constant, results in the danger-
ous overestimate flg1g = Xg10 = 5.29. A more appropriate uninformative
prior appears as part of the empirical Bayes calculations of Chapter 15
(and gives ftg10 = 4.11). The operative point here is that there is a price to
be paid for the desirable properties of Bayesian inference. Attention shifts
from choosing a good frequentist procedure to choosing an appropriate
prior distribution. This can be a formidable task in high-dimensional prob-
lems, the very kinds featured in computer-age inference.

3.4 A Bayesian/Frequentist Comparison List
Bayesians and frequentists start out on the same playing field, a family

of probability distributions f,,(x) (3.1), but play the game in orthogonal

5 The statistic was the two-sample #-statistic (2.17) transformed to normality (3.28); see
the endnotes.

Ta
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directions, as indicated schematically in Figure 3.5: Bayesian inference
proceeds vertically, with x fixed, according to the posterior distribution
g(u]x), while frequentists reason horizontally, with p fixed and x varying.
Advantages and disadvantages accrue to both strategies, some of which are
compared next.

Q g(ulr)

A
I
I
I
I
I
I

N p——————t
v
~

Figure 3.5 Bayesian inference proceeds vertically, given x:
frequentist inference proceeds horizontally, given (.

e Bayesian inference requires a prior distribution g(u¢). When past experi-
ence provides g(jt), as in the twins example, there is every good reason to
employ Bayes’ theorem. If not, techniques such as those of Jeffreys still
permit the use of Bayes’ rule, but the results lack the full logical force
of the theorem; the Bayesian’s right to ignore selection bias, for instance,
must then be treated with caution.

¢ Frequentism replaces the choice of a prior with the choice of a method,
or algorithm, #(x), designed to answer the specific question at hand. This
adds an arbitrary element to the inferential process, and can lead to meter-
reader kinds of contradictions. Optimal choice of ¢ (x) reduces arbitrary
behavior, but computer-age applications typically move outside the safe
waters of classical optimality theory, lending an ad-hoc character to fre-
quentist analyses.

e Modern data-analysis problems are often approached via a favored meth-
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odology, such as logistic regression or regression trees in the examples of
Chapter 8. This plays into the methodological orientation of frequentism,
which is more flexible than Bayes’ rule in dealing with specific algorithms
(though one always hopes for a reasonable Bayesian justification for the
method at hand).

Having chosen g(yt), only a single probability distribution g(u|x) is in
play for Bayesians. Frequentists, by contrast, must struggle to balance
the behavior of f(x) over a family of possible distributions, since p in
Figure 3.5 is unknown. The growing popularity of Bayesian applications
(usually begun with uninformative priors) reflects their simplicity of ap-
plication and interpretation.

The simplicity argument cuts both ways. The Bayesian essentially bets it
all on the choice of his or her prior being correct, or at least not harmful.
Frequentism takes a more defensive posture, hoping to do well, or at least
not poorly, whatever j« might be.

A Bayesian analysis answers all possible questions at once, for example,
estimating £ {gfr} or Pr{gfr < 40} or anything else relating to Figure 2.1.
Frequentism focuses on the problem at hand, requiring different estima-
tors for different questions. This is more work, but allows for more intense
inspection of particular problems. In situation (2.9) for example, estima-
tors of the form

PRSI LGRS (3.29)

might be investigated for different choices of the constant ¢, hoping to
reduce expected mean-squared error.
The simplicity of the Bayesian approach is especially appealing in dy-
namic contexts, where data arrives sequentially and updating one’s beliefs
is a natural practice. Bayes’ rule was used to devastating effect before the
2012 US presidential election, updating sequential polling results to cor-
rectly predict the outcome in all 50 states. Bayes’ theorem is an excellent
tool in general for combining statistical evidence from disparate sources,
the closest frequentist analog being maximum likelihood estimation.
In the absence of genuine prior information, a whiff of subjectivity® hangs
over Bayesian results, even those based on uninformative priors. Classical
frequentism claimed for itself the high ground of scientific objectivity,
especially in contentious areas such as drug testing and approval, where
skeptics as well as friends hang on the statistical details.

Figure 3.5 is soothingly misleading in its schematics: p and x will

6 Here we are not discussing the important subjectivist school of Bayesian inference, of

Savage, de Finetti, and others, covered in Chapter 13.
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typically be high-dimensional in the chapters that follow, sometimes very
high-dimensional, straining to the breaking point both the frequentist and
the Bayesian paradigms. Computer-age statistical inference at its most
successful combines elements of the two philosophies, as for instance in
the empirical Bayes methods of Chapter 6, and the lasso in Chapter 16.
There are two potent arrows in the statistician’s philosophical quiver, and
faced, say, with 1000 parameters and 1,000,000 data points, there’s no
need to go hunting armed with just one of them.

3.5 Notes and Details

Thomas Bayes, if transferred to modern times, might well be employed as
a successful professor of mathematics. Actually, he was a mid-eighteenth-
century nonconformist English minister with substantial mathematical in-
terests. Richard Price, a leading figure of letters, science, and politics, had
Bayes’ theorem published in the 1763 Transactions of the Royal Society
(two years after Bayes’ death), his interest being partly theological, with
the rule somehow proving the existence of God. Bellhouse’s (2004) biog-
raphy includes some of Bayes’ other mathematical accomplishments.

Harold Jeffreys was another part-time statistician, working from his day
job as the world’s premier geophysicist of the inter-war period (and fierce
opponent of the theory of continental drift). What we called uninformative
priors are also called noninformative or objective. Jeffreys’ brand of Bayes-
lanism had a dubious reputation among Bayesians in the period 1950-
1990, with preference going to subjective analysis of the type advocated
by Savage and de Finetti. The introduction of Markov chain Monte Carlo
methodology was the kind of technological innovation that changes philoso-
phies. MCMC (Chapter 13), being very well suited to Jeffreys-style anal-
ysis of Big Data problems, moved Bayesian statistics out of the textbooks
and into the world of computer-age applications. Berger (2006) makes a
spirited case for the objective Bayes approach.

[p. 26] Correlation coefficient density. Formula (3.11) for the correlation
coefficient density was R. A. Fisher’s debut contribution to the statistics
literature. Chapter 32 of Johnson and Kotz (1970b) gives several equivalent
forms. The constant ¢ in (3.19) is often taken to be (n — 3)~'/2, with n the
sample size.

[p. 29] Jeffreys’ prior and transformations. Suppose we change parame-
ters from p to ji in a smoothly differentiable way. The new family f;(x)
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for a function # = T () of p according to the simple plug-in rule
6 =T (), 4.3)

most often with @ being a scalar parameter of particular interest, such as
the regression coefficient of an important covariate in a linear model.

Maximum likelihood estimation came to dominate classical applied es-
timation practice. Less dominant now, for reasons we will be investigating
in subsequent chapters, the MLE algorithm still has iconic status, being of-
ten the method of first choice in any novel situation. There are several good
reasons for its ubiquity.

I The MLE algorithm is automatic: in theory, and almost in practice, a
single numerical algorithm produces [i without further statistical input.
This contrasts with unbiased estimation, for instance, where each new
situation requires clever theoretical calculations.

2 The MLE enjoys excellent frequentist properties. In large-sample situa-
tions, maximum likelihood estimates tend to be nearly unbiased, with the
least possible variance. Even in small samples, MLEs are usually quite
efficient, within say a few percent of the best possible performance.

3 The MLE also has reasonable Bayesian justification. Looking at Bayes’
rule (3.7),

g(ulx) = cxg(uye~®, (4.4)

we see that /& is the maximizer of the posterior density g(p|x) if the prior
g () is flat, that is, constant. Because the MLE depends on the family
F only through the likelihood function, anomalies of the meter-reader
type are averted.

Figure 4.1 displays two maximum likelihood estimates for the gfr data
of Figure 2.1. Here the data' is the vector x = (x1,X2,....Xp), n = 211.
We assume that x was obtained as a random sample of size n from a density
Ju(x),

L fx) fori=12,....n, (4.5)

“iid” abbreviating “independent and identically distributed.” Two families

are considered for the component density f,,(x), the normal, with . =
(0.0),

L 303

v 2mo? '

! Now x is what we have been calling “x” before, while we will henceforth use x as a
symbol for the individual components of x.

Julx) = (4.6)
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Figure 4.1 Glomerular filtration data of Figure 2.1 and two
maximum-likelihood density estimates, normal (solid black), and
gamma (dashed blue).

and the gamma,? with u = (1, 0, v),

(x =2

T ) (for x > A, 0 otherwise).

Sulx) =

Since

Julx) = l_[ Ju(xi)

i=1

under iid sampling, we have

Le() = ) log fulxi) = ) Ly ().
i=1 i=1

4.7)

(4.8)

(4.9)

Maximum likelihood estimates were found by maximizing / (1). For the
normal model (4.6),

(é,&) — (54.3,13.7) = (x [Z (x; — %) /n]m) .

(4.10)

2 The gamma distribution is usually defined with A = 0 as the lower limit of x. Here we
are allowing the lower limit A to vary as a free parameter.
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There is no closed-form solution for gamma model (4.7), where numerical
maximization gave

(i,a, ﬁ) — (21.4,5.47,6.0). (4.11)

The plotted curves in Figure 4.1 are the two MLE densities fj(x). The
gamma model gives a better fit than the normal, but neither is really satis-
factory. (A more ambitious maximum likelihood fit appears in Figure 5.7.)

Most MLEs require numerical minimization, as for the gamma model.
When introduced in the 1920s, maximum likelihood was criticized as com-
putationally difficult, invidious comparisons being made with the older
method of moments, which relied only on sample moments of various
kinds.

There is a downside to maximum likelihood estimation that remained
nearly invisible in classical applications: it is dangerous to rely upon in
problems involving large numbers of parameters. If the parameter vector
p has 1000 components, each component individually may be well esti-
mated by maximum likelihood, while the MLE 6 = T'(/i) for a quantity of
particular interest can be grossly misleading.

For the prostate data of Figure 3.4, model (4.6) gives MLE [i; = x; for
each of the 6033 genes. This seems reasonable, but if we are interested in
the maximum coordinate value

6 = T(1) = maxiu;}. “.12)

the MLE is § = 5.29, almost certainly a flagrant overestimate. “Regular-
ized” versions of maximum likelihood estimation more suitable for high-
dimensional applications play an important role in succeeding chapters.

4.2 Fisher Information and the MLE

Fisher was not the first to suggest the maximum likelihood algorithm for
parameter estimation. His paradigm-shifting work concerned the favorable
inferential properties of the MLE, and in particular its achievement of the
Fisher information bound. Only a brief heuristic review will be provided
here, with more careful derivations referenced in the endnotes.

We begin® with a one-parameter family of densities

F={fo(x), 6 €Q, xe X}, (4.13)

3 The multiparameter case is considered in the next chapter.
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where €2 is an interval of the real line, possibly infinite, while the sam-
ple space X may be multidimensional. (As in the Poisson example (3.3),
fe(x) can represent a discrete density, but for convenience we assume here
the continuous case, with the probability of set A equaling [, fo(x) dx,
etc.) The log likelihood function is /,(#) = log fs(x) and the MLE 0 =
arg max{/,(0)}, with 0 replacing s in (4.1)=(4.2) in the one-dimensional
case.

Dots will indicate differentiation with respect to 6, e.g., for the score
Jfunction

. ) .
Ix(0) = 39 108 Jo(x) = fo(x)/fo(x). (4.14)

The score function has expectation 0,

L 12(0) fo(x) dx = f(Y folx) dx = a% fx folx) dx

d
=—1=0,
a6
where we are assuming the regularity conditions necessary for differenti-
ating under the integral sign at the third step.
The Fisher information Iy is defined to be the variance of the score

function,

(4.15)

T, = fX 1(6)? f3(x) dx. (4.16)

the notation
[(0) ~ (0, ) (4.17)

indicating that fx(B) has mean 0 and variance 7. The term “information” is
well chosen. The main rgsult for maximum likelihood estimation, sketched
next, is that the MLE € has an approximately normal distribution with
mean 6 and variance 1/7y,

6~ N(0,1/Ty), (4.18)

and that no “nearly unbiased” estimator of € can do better. In other words,
bigger Fisher information implies smaller variance for the MLE.
The second derivative of the log likelihood function

I(6) = 8—Zlog fory = 22 _ (fs(x)) (4.19)

002 Jo(x) fa(x)
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has expectation

o {i’x (9)} —_T, (4.20)

(the fg (x)/fo(x) term having expectation 0 as in (4.15)). We can write
~1(6) ~ (s, To), “.21)

where Jp is the variance of 7, ().
Now suppose that x = (x1,x2. ..., )g,,) is an iid sample from fg(x), as
in (4.5), so that the total score function [, (8), as in (4.9), is

INCOEDINACR (4.22)
i=1
and similarly
—le () =) —1,(6). (4.23)
i=1

The MLE 6 based on the full sample x satisfies the maximizing condition
[, (6) = 0. A first-order Taylor series gives the approximation

0=1i, (9) = [(0) + 1:(0) (é - 9) , (4.24)
or )
gy 2O/ (4.25)
—lx(0)/n

Under reasonable regularity conditions, (4.17) and the central limit theo-
rem imply that

Le(8)/n <~ N (0.Zg/n). (4.26)
while the law of large numbers has —I ()/n approaching the constant Z,
4.21).

Putting all of this together, (4.25) produces Fisher’s fundamental theo-
rem for the MLE, that in large samples

6 <~ N (0,1/(nTy)). (4.27)

This is the same as result (4.18) since the total Fisher information in an iid
sample (4.5) is nZy, as can be seen by taking expectations in (4.23).
In the case of normal sampling,

i X N(6,0%)  fori=1,2,....n, (4.28)
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| More relevant inferences. The conditional standard deviation in situ-
ation (4.35) seems obviously more relevant to the accuracy of the ob-
served 6 for estimating 6. It is less obvious in the regression example,
though arguably still the case.

2 Simpler inferences. Conditional inferences are often simpler to exe-
cute and interpret. This is the case with regression, where the statistician
doesn’t have to worry about correlation relationships among the covari-
ates, and also with our next example, a Fisherian classic.

Table 4.1 shows the results of a randomized trial on 45 ulcer patients,
comparing new and old surgical treatments. Was the new surgery signifi-
cantly better? Fisher argued for carrying out the hypothesis test conditional
on the marginals of the table (16,29, 21, 24). With the marginals fixed, the
number y in the upper left cell determines the other three cells by subtrac-
tion. We need only test whether the number y = 9 is too big under the null
hypothesis of no treatment difference, instead of trying to test the numbers
in all four cells.*

Table 4.1 Forty-five ulcer patients randomly assigned to either new or
old surgery, with results evaluated as either success or failure.
Was the new surgery significantly better?

success failure

new 9 12 21
old 7 17 24
16 29 45

An ancillary statistic (again, Fisher’s terminology) is one that contains
no direct information by itself, but does determine the conditioning frame-
work for frequentist calculations. Our three examples of ancillaries were
the sample size n, the covariate matrix x, and the table’s marginals. “Con-
tains no information” is a contentious claim. More realistically, the two ad-
vantages of conditioning, relevance and simplicity, are thought to outweigh
the loss of information that comes from treating the ancillary statistic as
nonrandom. Chapter 9 makes this case specifically for standard survival
analysis methods.

4 Section 9.3 gives the details of such tests; in the surgery example, the difference was not
significant.
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Our final example concerns the accuracy of a maximum likelihood esti-
mate #. Rather than

6~ N(0.1/ (nTy)). (4.36)
the plug-in version of (4.27), Fisher suggested using
6~ N (@6, 1/1(x)), (4.37)
where I(x) is the observed Fisher information
. . 02
1(x) = I, (a) - —agzzx(e)‘é . (4.38)

The expectation of I(x) is nZy, so in large samples the distribution (4.37)
converges to (4.36). Before convergence, however, Fisher suggested that
(4.37) gives a better idea of 0’s accuracy.

As a check, a simulation was run involving i.i.d. samples x of size n =
20 drawn from a Cauchy density

1 1
714+ (x—0)

10,000 samples x of size n = 20 were drawn (with € = 0) andkthe ob-
served information bound 1/7(x) computed for each. The 10,000 6 values
were grouped according to deciles of 1/7(x), and the observed empirical
variance of f within each group was then calculated.

This amounts to calculating a somewhat crude estimate of the condi-
tional variance of the MLE &, given the observed information bound 1/7(x).
Figure 4.2 shows the results. We see that the conditional variance is close
to 1/1(x), as Fisher predicted. The conditioning effect is quite substan-
tial; the unconditional variance 1/nZy is 0.10 here, while the conditional
variance ranges from 0.05 to 0.20.

The observed Fisher information /(x) acts as an approximate ancillary,
enjoying both of the virtues claimed by Fisher: it is more relevant than the
unconditional information nIé, and it is usually easier to calculate. Once

fa(x) = (4.39)

6 has been found, I(x) is obtained by numerical second differentiation.
Unlike Zy, no probability calculations are required.

There is a strong Bayesian current flowing here. A narrow peak for the
log likelihood function, i.e., a large value of /(x), also implies a narrow
posterior distribution for # given x. Conditional inference, of which Fig-
ure 4.2 is an evocative example, helps counter the central Bayesian criti-
cism of frequentist inference: that the frequentist properties relate to data
sets possibly much different than the one actually observed. The maximum
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Figure 4.2 Conditional variance of MLE for Cauchy samples of
size 20, plotted versus the observed information bound 1//(x).
Observed information bounds are grouped by quantile intervals
for variance calculations (in percentages): (0-5), (5-15)., ...,
(85-95), (95-100). The broken red horizontal line is the
unconditional variance 1/nZy.

likelihood algorithm can be interpreted both vertically and horizontally in
Figure 3.5, acting as a connection between the Bayesian and frequentist
worlds.

The equivalent of result (4.37) for multiparameter families, Section 5.3,

fo NG (e 1)), (4.40)

plays an important role in succeeding chapters, with —/(x) the px p matrix
of second derivatives

2

log fu(x)] ; (4.41)

jua

I(x) = _ix (n) =-— [W
1 J
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4.4 Permutation and Randomization

Fisherian methodology faced criticism for its overdependence on normal
sampling assumptions. Consider the comparison between the 47 ALL and
25 AML patients in the gene 136 leukemia example of Figure 1.4. The two-
sample f-statistic (1.6) had value 3.13, with two-sided significance level
0.0025 according to a Student-¢ null distribution with 70 degrees of free-
dom. All of this depended on the Gaussian, or normal, assumptions (2.12)—
(2.13).

As an alternative significance-level calculation, Fisher suggested using
permutations of the 72 data points. The 72 values are randomly divided
into disjoint sets of size 47 and 25, and the two-sample ¢-statistic (2.17) is
recomputed. This is done some large number B times, yielding permuta-
tion t-values 1,15, ... .15. The two-sided permutation significance level
for the original value ¢ is then the proportion of the ¢ values exceeding ¢
in absolute value,

#{[1| = ¢} /B. (4.42)

frequency
400 600
| 1
1
]

200
|

original
1-statistic

-4 -3.01 -2 0 2 3.01 4

t* values

Figure 4.3 10,000 permutation ¢ *-values for testing ALL vs AML,
for gene 136 in the leukemia data of Figure 1.3. Of these, 26
t*-values (red ticks) exceeded in absolute value the observed
t-statistic 3.01, giving permutation significance level 0.0026.
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Figure 4.3 shows the histogram of B = 10,000 ;" values for the gene
136 data in Figure 1.3: 26 of these exceeded t = 3.01 in absolute value,
yielding significance level 0.0026 against the null hypothesis of no ALL/AML
difference, remarkably close to the normal-theory significance level 0.0025.
(We were a little lucky here.)

Why should we believe the permutation significance level (4.42)? Fisher
provided two arguments.

e Suppose we assume as a null hypothesis that the n = 72 observed mea-
surements x are an iid sample obtained from the same distribution f, (x),

xS f () fori=1.2....n. (4.43)
(There is no normal assumption here, say that f,,(x) is N'(6,062).)

Let o indicate the order statistic of x, i.e., the 72 numbers ordered
from smallest to largest, with their AML or ALL labels removed. Then it
can be shown that all 72!/(47!125!) ways of obtaining x by dividing o
into disjoint subsets of sizes 47 and 25 are equally likely under null hy-
pothesis (4.43). A small value of the permutation significance level (4.42)
indicates that the actual division of AML/ALL measurements was not ran-
dom, but rather resulted from negation of the null hypothesis (4.43). This
might be considered an example of Fisher’s logic of inductive inference,
where the conclusion “should be obvious to all.” It is certainly an exam-
ple of conditional inference, now with conditioning used to avoid specific
assumptions about the sampling density f,(x).

e In experimental situations, Fisher forcefully argued for randomization,
that is for randomly assigning the experimental units to the possible treat-
ment groups. Most famously, in a clinical trial comparing drug A with
drug B, each patient should be randomly assigned to A or B.

Randomization greatly strengthens the conclusions of a permutation
test. In the AML/ALL gene- 136 situation, where randomization wasn’t fea-
sible, we wind up almost certain that the AML group has systematically
larger numbers, but cannot be certain that it is the different disease states
causing the difference. Perhaps the AML patients are older, or heavier, or
have more of some other characteristic affecting gene 136. Experimen-
tal randomization almost guarantees that age, weight, etc., will be well-
balanced between the treatment groups. Fisher’s RCT (randomized clini-
cal trial) was and is the gold standard for statistical inference in medical
trials.

Permutation testing is frequentistic: a statistician following the proce-
dure has 5% chance of rejecting a valid null hypothesis at level 0.05, etc.
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Parametric Models and Exponential Families

We have been reviewing classic approaches to statistical inference—fre-
quentist, Bayesian, and Fisherian—with an eye toward examining their
strengths and limitations in modern applications. Putting philosophical dif-
ferences aside, there is a common methodological theme in classical statis-
tics: a strong preference for low-dimensional parametric models; that is, for
modeling data-analysis problems using parametric families of probability
densities (3.1),

F={fulx);xe X, neQ}, (5.1

where the dimension of parameter p is small, perhaps no greater than 5
or 10 or 20. The inverted nomenclature “nonparametric” suggests the pre-
dominance of classical parametric methods.

Two words explain the classic preference for parametric models: math-
ematical tractability. In a world of sliderules and slow mechanical arith-
metic, mathematical formulation, by necessity, becomes the computational
tool of choice. Our new computation-rich environment has unplugged the
mathematical bottleneck, giving us a more realistic, flexible, and far-reach-
ing body of statistical techniques. But the classic parametric families still
play an important role in computer-age statistics, often assembled as small
parts of larger methodologies (as with the generalized linear models of
Chapter 8). This chapter! presents a brief review of the most widely used
parametric models, ending with an overview of exponential families, the
great connecting thread of classical theory and a player of continuing im-
portance in computer-age applications.

1 This chapter covers a large amount of technical material for use later, and may be
reviewed lightly at first reading.
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5.1 Univariate Families

Univariate parametric families, in which the sample space A" of observation
x is a subset of the real line R!, are the building blocks of most statistical
analyses. Table 5.1 names and describes the five most familiar univariate
families: normal, Poisson, binomial, gamma, and beta. (The chi-squared
distribution with n degrees of freedom y2 is also included since it is dis-
tributed as 2 - Gam(n /2, 1).) The normal distribution N (i, 02) is a shifted
and scaled version of the A/(0, 1) distribution? used in (3.27),

N(p,0%) ~ p+oN(0,1). (5.2)

Table 5.1 Five familiar univariate densities, and their sample spaces X,
parameter spaces 2, and expectations and variances; chi-squared
distribution with n degrees of freedom is 2 Gam(n /2, 1).

Name . Expectation

’ Densit X Q ’
Notation ensty Variance
Normal 1 _1 (ﬂ)z 1 neRr! I

2 R
N(,o?) o2z ® ‘ a?>0 o2
Poisson e—H ¥ m
0,1,... >0
Poi(t) x! { b "
Binomial - m__jx(q _gyn=x  401,...m}0<m <1 na
Bi(n, ) xtn—x)! e nr(l — )
Gamma v—lg—x/0 v>0 av
L e - x>0

Gam(v, o) o’ T'(v) - oc>0 o2y
Beta I(v) +v9) vy >0 vi/(v1 +v2)

TN () =x=< viv
Be(v1,v2) V2> 0 G0t D

Relationships abound among the table’s families. For instance, indepen-
dent gamma variables Gam(vy, ) and Gam(v,, o) yield a beta variate ac-
cording to

Gam(v,, o)

Be(vy, va) ~ (5.3)

Gam(vy,0) + Gam(v2,0)°

The binomial and Poisson are particularly close cousins. A Bi(n, ) distri-
bution (the number of heads in n independent flips of a coin with probabil-

2 The notation in (5.2) indicates that if X ~ AN(i,02) and ¥ ~ A(0, 1) then X and
1+ oY have the same distribution.
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Figure 5.1 Comparison of the binomial distribution Bi(30, 0.2)
(black lines) with the Poisson Poi(6) (red dots). In the legend we
show the mean and standard deviation for each distribution.

ity of heads 7) approaches a Poi(n) distribution,
Bi(n, )~ Poi(nn) (5.4)

as n grows large and = small, the notation ~ indicating approximate equal-
ity of the two distributions. Figure 5.1 shows the approximation already
working quite effectively for n = 30 and = = 0.2.

The five families in Table 5.1 have five different sample spaces, making
them appropriate in different situations. Beta distributions, for example,
are natural candidates for modeling continuous data on the unit interval
[0, 1]. Choices of the two parameters (v, v2) provide a variety of possible
shapes, as illustrated in Figure 5.2. Later we will discuss general exponen-
tial families, unavailable in classical theory, that greatly expand the catalog
of possible shapes.

5.2 The Multivariate Normal Distribution

Classical statistics produced a less rich catalog of multivariate distribu-
tions, ones where the sample space X exists in R”, p-dimensional Eu-
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Figure 5.2 Three beta densities, with (v, v2) indicated.

clidean space, p > 1. By far the greatest amount of attention focused on
the multivariate normal distribution.

A random vector x = (X1, X2....,Xp)’, normally distributed or not, has
mean vector

p=E{xy = (Etx} Efxa), ..., E{x,}) (5.5)
and p x p covariance matrix®
T=E{x— -} = (E{xi—pw)x; —pm)f).  (5.6)

(The outer product uv’ of vectors u and v is the matrix having elements
u;v;.) We will use the convenient notation

X~ X) (5.7)

for (5.5) and (5.6), reducing to the familiar form x ~ (i, 02) in the uni-
variate case.
Denoting the entries of X by o;;, for i and j equaling 1,2,..., p, the
diagonal elements are variances,
g = var(x;). (5.8)

3 The notation £ = (o;;) defines the ijth element of a matrix.
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The off-diagonal elements relate to the correlations between the coordi-
nates of x,

Uij
JOii0j;
The multivariate normal distribution extends the univariate definition

N (i, 0%) in Table 5.1. To begin with, let z = (zy, 22, ..., z,)" be a vector
of p independent A/ (0, 1) variates, with probability density function

cor(x;, x;) = (5.9)

f(z) = @n)y e 1LV = (2n) %277 (5.10)

according to line | of Table 5.1.

The multivariate normal family is obtained by linear transformations of
z: let i be a p-dimensional vector and T a p x p nonsingular matrix, and
define the random vector

x=u+T:z. (5.11)

Following the usual rules of probability transformations yields the density
of x,

-p/2
(2m) »/ e—%(x—p,)’x"(x—u,)‘

Suzx) = S (5.12)
where X is the p x p symmetric positive definite matrix
X=TT' (5.13)

and |Z| its determinant; " £}, 5 (x), the p-dimensional multivariate normal
distribution with mean p and covariance X, is denoted

x ~ N, Z). (5.14)

Figure 5.3 illustrates the bivariate normal distribution with ;& = (0, 0)’
and X having g;; = 03> = 1 and 07, = 0.5 (so cor(x;, x3) = 0.5). The
bell-shaped mountain on the left is a plot of density (5.12). The right panel
shows a scatterplot of 2000 points drawn from this distribution. Concentric
ellipses illustrate curves of constant density,

(x — )XY (x — u) = constant. (5.15)

Classical multivariate analysis was the study of the multivariate normal
distribution, both of its probabilistic and statistical properties. The notes
reference some important (and lengthy) multivariate texts. Here we will
just recall a couple of results useful in the chapters to follow.

T



