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Preface

Why We Wrote This Book

Through six editions of this book, our goal has been to describe the basic principles
underlying what will be tomorrow’s technological developments. Our excitement
about the opportunities in computer architecture has not abated, and we echo what
we said about the field in the first edition: “It is not a dreary science of paper
machines that will never work. No! It’s a discipline of keen intellectual interest,
requiring the balance of marketplace forces to cost-performance-power, leading
to glorious failures and some notable successes.”

Our primary objective in writing our first book was to change the way people
learn and think about computer architecture. We feel this goal is still valid and
important. The field is changing daily and must be studied with real examples
and measurements on real computers, rather than simply as a collection of defini-
tions and designs that will never need to be realized. We offer an enthusiastic wel-
come to anyone who came along with us in the past, as well as to those who are
joining us now. Either way, we can promise the same quantitative approach to, and
analysis of, real systems.

As with earlier versions, we have strived to produce a new edition that will
continue to be as relevant for professional engineers and architects as it is for those
involved in advanced computer architecture and design courses. Like the first edi-
tion, this edition has a sharp focus on new platforms—personal mobile devices and
warehouse-scale computers—and new architectures—specifically, domain-
specific architectures. As much as its predecessors, this edition aims to demystify
computer architecture through an emphasis on cost-performance-energy trade-offs
and good engineering design. We believe that the field has continued to mature and
move toward the rigorous quantitative foundation of long-established scientific
and engineering disciplines.
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This Edition

The ending of Moore’s Law and Dennard scaling is having as profound effect on
computer architecture as did the switch to multicore. We retain the focus on the
extremes in size of computing, with personal mobile devices (PMDs) such as cell
phones and tablets as the clients and warehouse-scale computers offering cloud
computing as the server. We also maintain the other theme of parallelism in all
its forms: data-level parallelism (DLP) in Chapters 1 and 4, instruction-level par-
allelism (ILP) in Chapter 3, thread-level parallelism in Chapter 5, and request-
level parallelism (RLP) in Chapter 6.

The most pervasive change in this edition is switching from MIPS to the RISC-
V instruction set. We suspect this modern, modular, open instruction set may
become a significant force in the information technology industry. It may become
as important in computer architecture as Linux is for operating systems.

The newcomer in this edition is Chapter 7, which introduces domain-specific
architectures with several concrete examples from industry.

As before, the first three appendices in the book give basics on the RISC-V
instruction set, memory hierarchy, and pipelining for readers who have not read
a book like Computer Organization and Design. To keep costs down but still sup-
ply supplemental material that is of interest to some readers, available online at
https://www.elsevier.com/books-and-journals/book-companion/9780128119051
are nine more appendices. There are more pages in these appendices than there are
in this book!

This edition continues the tradition of using real-world examples to demonstrate
the ideas, and the “Putting It All Together” sections are brand new. The “Putting It All
Together” sections of this edition include the pipeline organizations and memory hier-
archies of the ARM Cortex A8 processor, the Intel core 17 processor, the NVIDIA
GTX-280 and GTX-480 GPUs, and one of the Google warehouse-scale computers.

Topic Selection and Organization

As before, we have taken a conservative approach to topic selection, for there are
many more interesting ideas in the field than can reasonably be covered in a treat-
ment of basic principles. We have steered away from a comprehensive survey of
every architecture a reader might encounter. Instead, our presentation focuses on
core concepts likely to be found in any new machine. The key criterion remains
that of selecting ideas that have been examined and utilized successfully enough
to permit their discussion in quantitative terms.

Our intent has always been to focus on material that is not available in equiv-
alent form from other sources, so we continue to emphasize advanced content
wherever possible. Indeed, there are several systems here whose descriptions can-
not be found in the literature. (Readers interested strictly in a more basic introduc-
tion to computer architecture should read Computer Organization and Design: The
Hardware/Software Interface.)
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An Overview of the Content

Chapter 1 includes formulas for energy, static power, dynamic power, integrated cir-
cuit costs, reliability, and availability. (These formulas are also found on the front
inside cover.) Our hope is that these topics can be used through the rest of the book.
In addition to the classic quantitative principles of computer design and performance
measurement, it shows the slowing of performance improvement of general-purpose
microprocessors, which is one inspiration for domain-specific architectures.

Our view is that the instruction set architecture is playing less of a role today
than in 1990, so we moved this material to Appendix A. It now uses the RISC-V
architecture. (For quick review, a summary of the RISC-V ISA can be found on the
back inside cover.) For fans of ISAs, Appendix K was revised for this edition and
covers 8 RISC architectures (5 for desktop and server use and 3 for embedded use),
the 80x 86, the DEC VAX, and the IBM 360/370.

We then move onto memory hierarchy in Chapter 2, since it is easy to apply the
cost-performance-energy principles to this material, and memory is a critical
resource for the rest of the chapters. As in the past edition, Appendix B contains
an introductory review of cache principles, which is available in case you need it.
Chapter 2 discusses 10 advanced optimizations of caches. The chapter includes
virtual machines, which offer advantages in protection, software management,
and hardware management, and play an important role in cloud computing. In
addition to covering SRAM and DRAM technologies, the chapter includes new
material both on Flash memory and on the use of stacked die packaging for extend-
ing the memory hierarchy. The PIAT examples are the ARM Cortex A8, which is
used in PMDs, and the Intel Core 17, which 1s used in servers.

Chapter 3 covers the exploitation of instruction-level parallelism in high-
performance processors, including superscalar execution, branch prediction
(including the new tagged hybrid predictors), speculation, dynamic scheduling,
and simultaneous multithreading. As mentioned earlier, Appendix C is a review
of pipelining in case you need it. Chapter 3 also surveys the limits of ILP. Like
Chapter 2, the PIAT examples are again the ARM Cortex A8 and the Intel Core
i7. While the third edition contained a great deal on Itanium and VLIW, this mate-
rial is now in Appendix H, indicating our view that this architecture did not live up
to the earlier claims.

The increasing importance of multimedia applications such as games and video
processing has also increased the importance of architectures that can exploit data
level parallelism. In particular, there is a rising interest in computing using graph-
ical processing units (GPUs), yet few architects understand how GPUs really work.
We decided to write a new chapter in large part to unveil this new style of computer
architecture. Chapter 4 starts with an introduction to vector architectures, which
acts as a foundation on which to build explanations of multimedia SIMD instruc-
tion set extensions and GPUs. (Appendix G goes into even more depth on vector
architectures.) This chapter introduces the Roofline performance model and then
uses it to compare the Intel Core i7 and the NVIDIA GTX 280 and GTX 480 GPUs.
The chapter also describes the Tegra 2 GPU for PMDs.
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Chapter 5 describes multicore processors. It explores symmetric and
distributed-memory architectures, examining both organizational principles and
performance. The primary additions to this chapter include more comparison of
multicore organizations, including the organization of multicore-multilevel
caches, multicore coherence schemes, and on-chip multicore interconnect. Topics
in synchronization and memory consistency models are next. The example is the
Intel Core i7. Readers interested in more depth on interconnection networks should
read Appendix F, and those interested in larger scale multiprocessors and scientific
applications should read Appendix L.

Chapter 6 describes warehouse-scale computers (WSCs). It was extensively
revised based on help from engineers at Google and Amazon Web Services. This
chapter integrates details on design, cost, and performance of WSCs that few archi-
tects are aware of. It starts with the popular MapReduce programming model
before describing the architecture and physical implementation of WSCs, includ-
ing cost. The costs allow us to explain the emergence of cloud computing, whereby
it can be cheaper to compute using WSCs in the cloud than in your local datacenter.
The PIAT example is a description of a Google WSC that includes information
published for the first time in this book.

The new Chapter 7 motivates the need for Domain-Specific Architectures
(DSAs). It draws guiding principles for DSAs based on the four examples of DSAs.
Each DSA corresponds to chips that have been deployed in commercial settings. We
also explain why we expect a renaissance in computer architecture via DSAs given
that single-thread performance of general-purpose microprocessors has stalled.

This brings us to Appendices A through M. Appendix A covers principles of
ISAs, including RISC-V, and Appendix K describes 64-bit versions of RISC V,
ARM, MIPS, Power, and SPARC and their multimedia extensions. It also includes
some classic architectures (80x86, VAX, and IBM 360/370) and popular embed-
ded instruction sets (Thumb-2, microMIPS, and RISC V C). Appendix H is related,
in that it covers architectures and compilers for VLIW ISAs.

As mentioned earlier, Appendix B and Appendix C are tutorials on basic cach-
ing and pipelining concepts. Readers relatively new to caching should read Appen-
dix B before Chapter 2, and those new to pipelining should read Appendix C before
Chapter 3.

Appendix D, “Storage Systems,” has an expanded discussion of reliability and
availability, a tutorial on RAID with a description of RAID 6 schemes, and rarely
found failure statistics of real systems. It continues to provide an introduction to
queuing theory and I/O performance benchmarks. We evaluate the cost, perfor-
mance, and reliability of a real cluster: the Internet Archive. The “Putting It All
Together” example is the NetApp FAS6000 filer.

Appendix E, by Thomas M. Conte, consolidates the embedded material in
one place.

Appendix F, on interconnection networks, is revised by Timothy M. Pinkston
and José Duato. Appendix G, written originally by Krste Asanovic, includes a
description of vector processors. We think these two appendices are some of
the best material we know of on each topic.
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Appendix H describes VLLIW and EPIC, the architecture of Itanium.

Appendix I describes parallel processing applications and coherence protocols
for larger-scale, shared-memory multiprocessing. Appendix J, by David Goldberg,
describes computer arithmetic.

Appendix L, by Abhishek Bhattacharjee, is new and discusses advanced tech-
niques for memory management, focusing on support for virtual machines and
design of address translation for very large address spaces. With the growth in
clouds processors, these architectural enhancements are becoming more important.

Appendix M collects the “Historical Perspective and References” from each
chapter into a single appendix. It attempts to give proper credit for the ideas in each
chapter and a sense of the history surrounding the inventions. We like to think of
this as presenting the human drama of computer design. It also supplies references
that the student of architecture may want to pursue. If you have time, we recom-
mend reading some of the classic papers in the field that are mentioned in these
sections. It is both enjoyable and educational to hear the ideas directly from the
creators. “Historical Perspective” was one of the most popular sections of prior
editions.

Navigating the Text

There is no single best order in which to approach these chapters and appendices,
except that all readers should start with Chapter 1. If you don’t want to read every-
thing, here are some suggested sequences:

m  Memory Hierarchy: Appendix B, Chapter 2, and Appendices D and M.
m Instruction-Level Parallelism: Appendix C, Chapter 3, and Appendix H
m  Data-Level Parallelism: Chapters 4, 6, and 7, Appendix G

m  Thread-Level Parallelism: Chapter 5, Appendices F and 1

m  Request-Level Parallelism: Chapter 6

m  ISA: Appendices A and K

Appendix E can be read at any time, but it might work best if read after the ISA and
cache sequences. Appendix J can be read whenever arithmetic moves you. You
should read the corresponding portion of Appendix M after you complete each
chapter.

Chapter Structure

The material we have selected has been stretched upon a consistent framework that
is followed in each chapter. We start by explaining the ideas of a chapter. These
ideas are followed by a “Crosscutting Issues” section, a feature that shows how the
ideas covered in one chapter interact with those given in other chapters. This is
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followed by a “Putting It All Together” section that ties these ideas together by
showing how they are used in a real machine.

Next in the sequence is “Fallacies and Pitfalls,” which lets readers learn from
the mistakes of others. We show examples of common misunderstandings and
architectural traps that are difficult to avoid even when you know they are lying
in wait for you. The “Fallacies and Pitfalls™ sections is one of the most popular
sections of the book. Each chapter ends with a “Concluding Remarks™ section.

Case Studies With Exercises

Each chapter ends with case studies and accompanying exercises. Authored by
experts in industry and academia, the case studies explore key chapter concepts
and verify understanding through increasingly challenging exercises. Instructors
should find the case studies sufficiently detailed and robust to allow them to create
their own additional exercises.

Brackets for each exercise (<chapter.section >) indicate the text sections of
primary relevance to completing the exercise. We hope this helps readers to avoid
exercises for which they haven’t read the corresponding section, in addition to pro-
viding the source for review. Exercises are rated, to give the reader a sense of the
amount of time required to complete an exercise:

[10] Less than 5 min (to read and understand)

[15] 5-15 min for a full answer

[20] 15-20 min for a full answer

[25] 1 h for a full written answer

[30] Short programming project: less than 1 full day of programming
[40] Significant programming project: 2 weeks of elapsed time

[Discussion] Topic for discussion with others

Solutions to the case studies and exercises are available for instructors who
register at textbooks.elsevier.com.

Supplemental Materials

A variety of resources are available online at https://www elsevier.com/books/
computer-architecture/hennessy/978-0-12-811905-1, including the following:

m Reference appendices, some guest authored by subject experts, covering a
range of advanced topics

m Historical perspectives material that explores the development of the key ideas
presented in each of the chapters in the text
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m Instructor slides in PowerPoint
m  Figures from the book in PDF, EPS, and PPT formats
m Links to related material on the Web

m List of errata

New materials and links to other resources available on the Web will be added
on a regular basis.

Helping Improve This Book

Finally, it is possible to make money while reading this book. (Talk about cost per-
formance!) If you read the Acknowledgments that follow, you will see that we
went to great lengths to correct mistakes. Since a book goes through many print-
ings, we have the opportunity to make even more corrections. If you uncover any
remaining resilient bugs, please contact the publisher by electronic mail
(cabbugs @mkp.com).

We welcome general comments to the text and invite you to send them to a
separate email address at cabcomments @mkp.com.

Concluding Remarks

Once again, this book is a true co-authorship, with each of us writing half the chap-
ters and an equal share of the appendices. We can’t imagine how long it would have
taken without someone else doing half the work, offering inspiration when the task
seemed hopeless, providing the key insight to explain a difficult concept, supply-
ing over-the-weekend reviews of chapters, and commiserating when the weight of
our other obligations made it hard to pick up the pen.

Thus, once again, we share equally the blame for what you are about to read.

John Hennessy « David Patterson
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Fundamentals of Quantitative
Design and Analysis

An iPod, a phone, an Internet mobile communicator... these are
NOT three separate devices! And we are calling it iPhone! Today
Apple is going to reinvent the phone. And here it is.

Steve Jobs, January 9, 2007

New information and communications technologies, in particular
high-speed Internet, are changing the way companies do business,
transforming public service delivery and democratizing innovation.
With 10 percent increase in high speed Internet connections,
economic growth increases by 1.3 percent.

The World Bank, July 28, 2009
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Chapter One Fundamentals of Quantitative Design and Analysis

1.1

Introduction

Computer technology has made incredible progress in the roughly 70 years since
the first general-purpose electronic computer was created. Today, less than $500
will purchase a cell phone that has as much performance as the world’s fastest
computer bought in 1993 for $50 million. This rapid improvement has come both
from advances in the technology used to build computers and from innovations in
computer design.

Although technological improvements historically have been fairly steady,
progress arising from better computer architectures has been much less consistent.
During the first 25 years of electronic computers, both forces made a major con-
tribution, delivering performance improvement of about 25% per year. The late
1970s saw the emergence of the microprocessor. The ability of the microprocessor
to ride the improvements in integrated circuit technology led to a higher rate of
performance improvement—roughly 35% growth per year.

This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business being based
on microprocessors. In addition, two significant changes in the computer market-
place made it easier than ever before to succeed commercially with a new archi-
tecture. First, the virtual elimination of assembly language programming reduced
the need for object-code compatibility. Second, the creation of standardized,
vendor-independent operating systems, such as UNIX and its clone, Linux, low-
ered the cost and risk of bringing out a new architecture.

These changes made it possible to develop successfully a new set of architec-
tures with simpler instructions, called RISC (Reduced Instruction Set Computer)
architectures, in the early 1980s. The RISC-based machines focused the attention
of designers on two critical performance techniques, the exploitation of instruc-
tion-level parallelism (initially through pipelining and later through multiple
instruction issue) and the use of caches (initially in simple forms and later using
more sophisticated organizations and optimizations).

The RISC-based computers raised the performance bar, forcing prior architec-
tures to keep up or disappear. The Digital Equipment Vax could not, and so it was
replaced by a RISC architecture. Intel rose to the challenge, primarily by translat-
ing 80x86 instructions into RISC-like instructions internally, allowing it to adopt
many of the innovations first pioneered in the RISC designs. As transistor counts
soared in the late 1990s, the hardware overhead of translating the more complex
x 86 architecture became negligible. In low-end applications, such as cell phones,
the cost in power and silicon area of the x 86-translation overhead helped lead to a
RISC architecture, ARM, becoming dominant.

Figure 1.1 shows that the combination of architectural and organizational
enhancements led to 17 years of sustained growth in performance at an annual rate
of over 50%—a rate that is unprecedented in the computer industry.

The effect of this dramatic growth rate during the 20th century was fourfold.
First, it has significantly enhanced the capability available to computer users. For
many applications, the highest-performance microprocessors outperformed the
supercomputer of less than 20 years earlier.
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Second, this dramatic improvement in cost-performance led to new classes of
computers. Personal computers and workstations emerged in the 1980s with the
availability of the microprocessor. The past decade saw the rise of smart cell
phones and tablet computers, which many people are using as their primary com-
puting platforms instead of PCs. These mobile client devices are increasingly using
the Internet to access warehouses containing 100,000 servers, which are being
designed as if they were a single gigantic computer.

Third, improvement of semiconductor manufacturing as predicted by Moore’s
law has led to the dominance of microprocessor-based computers across the entire
range of computer design. Minicomputers, which were traditionally made from
off-the-shelf logic or from gate arrays, were replaced by servers made by using
microprocessors. Even mainframe computers and high-performance supercom-
puters are all collections of microprocessors.

The preceding hardware innovations led to a renaissance in computer design,
which emphasized both architectural innovation and efficient use of technology
improvements. This rate of growth compounded so that by 2003, high-
performance microprocessors were 7.5 times as fast as what would have been
obtained by relying solely on technology, including improved circuit design, that
is, 52% per vear versus 35% per year.

This hardware renaissance led to the fourth impact, which was on software
development. This 50,000-fold performance improvement since 1978 (see
Figure 1.1) allowed modern programmers to trade performance for productivity.
In place of performance-oriented languages like C and C++, much more program-
ming today is done in managed programming languages like Java and Scala. More-
over, scripting languages like JavaScript and Python, which are even more
productive, are gaining in popularity along with programming frameworks like
Angular]S and Django. To maintain productivity and try to close the performance
gap, interpreters with just-in-time compilers and trace-based compiling are repla-
cing the traditional compiler and linker of the past. Software deployment is chang-
ing as well, with Software as a Service (SaaS) used over the Internet replacing
shrink-wrapped software that must be installed and run on a local computer.

The nature of applications is also changing. Speech, sound, images, and video
are becoming increasingly important, along with predictable response time that is
so critical to the user experience. An inspiring example is Google Translate. This
application lets you hold up your cell phone to point its camera at an object, and the
image is sent wirelessly over the Internet to a warehouse-scale computer (WSC)
that recognizes the text in the photo and translates it into your native language.
You can also speak into it, and it will translate what you said into audio output
in another language. It translates text in 90 languages and voice in 15 languages.

Alas, Figure 1.1 also shows that this 17-year hardware renaissance is over. The
fundamental reason is that two characteristics of semiconductor processes that
were true for decades no longer hold.

In 1974 Robert Dennard observed that power density was constant for a given
area of silicon even as you increased the number of transistors because of smaller
dimensions of each transistor. Remarkably, transistors could go faster but use less
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power. Dennard scaling ended around 2004 because current and voltage couldn’t
keep dropping and still maintain the dependability of integrated circuits.

This change forced the microprocessor industry to use multiple efficient pro-
cessors or cores instead of a single inefficient processor. Indeed, in 2004 Intel can-
celed its high-performance uniprocessor projects and joined others in declaring
that the road to higher performance would be via multiple processors per chip
rather than via faster uniprocessors. This milestone signaled a historic switch from
relying solely on instruction-level parallelism (ILP), the primary focus of the first
three editions of this book, to data-level parallelism (DLP) and thread-level par-
allelism (TLP), which were featured in the fourth edition and expanded in the fifth
edition. The fifth edition also added WSCs and request-level parallelism (RLP),
which is expanded in this edition. Whereas the compiler and hardware conspire
to exploit ILP implicitly without the programmer’s attention, DLP, TLP, and
RLP are explicitly parallel, requiring the restructuring of the application so that
it can exploit explicit parallelism. In some instances, this is easy; in many, it is
a major new burden for programmers.

Amdahl’s Law (Section 1.9) prescribes practical limits to the number of useful
cores per chip. If 10% of the task is serial, then the maximum performance benefit
from parallelism is 10 no matter how many cores you put on the chip.

The second observation that ended recently is Moore’s Law. In 1965 Gordon
Moore famously predicted that the number of transistors per chip would double
every year, which was amended in 1975 to every two years. That prediction lasted
for about 50 years, but no longer holds. For example, in the 2010 edition of this
book, the most recent Intel microprocessor had 1,170,000,000 transistors. If
Moore’s Law had continued, we could have expected microprocessors in 2016
to have 18,720,000,000 transistors. Instead, the equivalent Intel microprocessor
has just 1,750,000,000 transistors, or off by a factor of 10 from what Moore’s
Law would have predicted.

The combination of

m (ransistors no longer getting much better because of the slowing of Moore’s
Law and the end of Dinnard scaling,

m the unchanging power budgets for microprocessors,

m the replacement of the single power-hungry processor with several energy-
efficient processors, and

m the limits to multiprocessing to achieve Amdahl’s Law

caused improvements in processor performance to slow down, that is, to double
every 20 years, rather than every 1.5 years as it did between 1986 and 2003
(see Figure 1.1).

The only path left to improve energy-performance-cost is specialization. Future
microprocessors will include several domain-specific cores that perform only one
class of computations well, but they do so remarkably better than general-purpose
cores. The new Chapter 7 in this edition introduces domain-specific architectures.
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This text is about the architectural ideas and accompanying compiler improve-
ments that made the incredible growth rate possible over the past century, the rea-
sons for the dramatic change, and the challenges and initial promising approaches
to architectural ideas, compilers, and interpreters for the 21st century. At the core is
a quantitative approach to computer design and analysis that uses empirical obser-
vations of programs, experimentation, and simulation as its tools. It is this style and
approach to computer design that is reflected in this text. The purpose of this chap-
ter is to lay the quantitative foundation on which the following chapters and appen-
dices are based.

This book was written not only to explain this design style but also to stimulate
you to contribute to this progress. We believe this approach will serve the computers
of the future just as it worked for the implicitly parallel computers of the past.

1.2 Classes of Computers
These changes have set the stage for a dramatic change in how we view computing,
computing applications, and the computer markets in this new century. Not since
the creation of the personal computer have we seen such striking changes in the way
computers appear and in how they are used. These changes in computer use have led
to five diverse computing markets, each characterized by different applications,
requirements, and computing technologies. Figure 1.2 summarizes these main-
stream classes of computing environments and their important characteristics.
Internet of Things/Embedded Computers
Embedded computers are found in everyday machines: microwaves, washing
machines, most printers, networking switches, and all automobiles. The phrase
Personal Clusters/warehouse- Internet of
Feature mobile device Desktop Server scale computer things/
(PMD) P embedded
Price of system  $100-$1000 $300-$2500 $5000-$10,000,000  $100,000-$200,000,000 $10-$100,000
Price of $10-$100 $50-$500 $200-$2000 $50-$250 $0.01-$100
MICroprocessor
Critical system  Cost, energy, Price- Throughput, Price-performance, Price, energy,
design issues media performance, availability, throughput, energy application-
performance, energy, graphics  scalability, energy  proportionality specific
responsiveness  performance performance

Figure 1.2 A summary of the five mainstream computing classes and their system characteristics. Sales in 2015
included about 1.6 billion PMDs (90% cell phones), 275 million desktop PCs, and 15 million servers. The total number
of embedded processors sold was nearly 19 billion. In total, 14.8 billion ARM-technology-based chips were shipped in
2015. Note the wide range in system price for servers and embedded systems, which go from USB keys to network
routers. For servers, this range arises from the need for very large-scale multiprocessor systems for high-end trans-

action processing.
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Internet of Things (IoT) refers to embedded computers that are connected to the
Internet, typically wirelessly. When augmented with sensors and actuators, [oT
devices collect useful data and interact with the physical world, leading to a wide
variety of “smart” applications, such as smart watches, smart thermostats, smart
speakers, smart cars, smart homes, smart grids, and smart cities.

Embedded computers have the widest spread of processing power and cost.
They include 8-bit to 32-bit processors that may cost one penny, and high-end
64-bit processors for cars and network switches that cost $100. Although the range
of computing power in the embedded computing market is very large, price is a key
factor in the design of computers for this space. Performance requirements do exist,
of course, but the primary goal often meets the performance need at a minimum
price, rather than achieving more performance at a higher price. The projections
for the number of IoT devices in 2020 range from 20 to 50 billion.

Most of this book applies to the design, use, and performance of embedded
processors, whether they are off-the-shelf microprocessors or microprocessor
cores that will be assembled with other special-purpose hardware.

Unfortunately, the data that drive the quantitative design and evaluation of
other classes of computers have not yet been extended successfully to embedded
computing (see the challenges with EEMBC, for example, in Section 1.8). Hence
we are left for now with qualitative descriptions, which do not fit well with the rest
of the book. As a result, the embedded material is concentrated in Appendix E. We
believe a separate appendix improves the flow of ideas in the text while allowing
readers to see how the differing requirements affect embedded computing.

Personal Mobile Device

Personal mobile device (PMD) is the term we apply to a collection of wireless
devices with multimedia user interfaces such as cell phones, tablet computers,
and so on. Cost is a prime concern given the consumer price for the whole
product is a few hundred dollars. Although the emphasis on energy efficiency
is frequently driven by the use of batteries, the need to use less expensive packag-
ing—plastic versus ceramic—and the absence of a fan for cooling also limit total
power consumption. We examine the issue of energy and power in more detail
in Section 1.5. Applications on PMDs are often web-based and media-oriented,
like the previously mentioned Google Translate example. Energy and size
requirements lead to use of Flash memory for storage (Chapter 2) instead of
magnetic disks.

The processors in a PMD are often considered embedded computers, but we
are keeping them as a separate category because PMDs are platforms that can
run externally developed software, and they share many of the characteristics of
desktop computers. Other embedded devices are more limited in hardware and
software sophistication. We use the ability to run third-party software as the divid-
ing line between nonembedded and embedded computers.

Responsiveness and predictability are key characteristics for media applica-
tions. A real-time performance requirement means a segment of the application
has an absolute maximum execution time. For example, in playing a video on a
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PMD, the time to process each video frame is limited, since the processor must
accept and process the next frame shortly. In some applications, a more nuanced
requirement exists: the average time for a particular task is constrained as well as
the number of instances when some maximum time is exceeded. Such
approaches—sometimes called soft real-time—arise when it is possible to miss
the time constraint on an event occasionally, as long as not too many are missed.
Real-time performance tends to be highly application-dependent.

Other key characteristics in many PMD applications are the need to minimize
memory and the need to use energy efficiently. Energy efficiency is driven by both
battery power and heat dissipation. The memory can be a substantial portion of the
system cost, and it is important to optimize memory size in such cases. The impor-
tance of memory size translates to an emphasis on code size, since data size is dic-
tated by the application.

Desktop Computing

The first, and possibly still the largest market in dollar terms, is desktop computing.
Desktop computing spans from low-end netbooks that sell for under $300 to high-
end, heavily configured workstations that may sell for $2500. Since 2008, more
than half of the desktop computers made each year have been battery operated lap-
top computers. Desktop computing sales are declining.

Throughout this range in price and capability, the desktop market tends to
be driven to optimize price-performance. This combination of performance
(measured primarily in terms of compute performance and graphics perfor-
mance) and price of a system is what matters most to customers in this market,
and hence to computer designers. As a result, the newest, highest-performance
microprocessors and cost-reduced microprocessors often appear first in desktop
systems (see Section 1.6 for a discussion of the issues affecting the cost of
computers).

Desktop computing also tends to be reasonably well characterized in terms of
applications and benchmarking, though the increasing use of web-centric, interac-
tive applications poses new challenges in performance evaluation.

Servers

As the shift to desktop computing occurred in the 1980s, the role of servers grew to
provide larger-scale and more reliable file and computing services. Such servers
have become the backbone of large-scale enterprise computing, replacing the tra-
ditional mainframe.

For servers, different characteristics are important. First, availability is critical.
(We discuss availability in Section 1.7.) Consider the servers running ATM
machines for banks or airline reservation systems. Failure of such server systems
is far more catastrophic than failure of a single desktop, since these servers must
operate seven days a week, 24 hours a day. Figure 1.3 estimates revenue costs of
downtime for server applications.
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Application

Annual losses with downtime of

Cost of downtime 1% 0.5% 0.1%

per hour (87.6 h/year) (43.8 h/year) (8.8 h/year)
Brokerage service $4.,000,000 $350,400,000 $175,200,000 $35,000,000
Energy $1,750,000 $153,300,000 $76,700,000 $15,300,000
Telecom $1,250,000 $109,500,000 $54.,800,000 $11,000,000
Manufacturing $1.,000,000 $87,600,000 $43.,800,000 $8,800,000
Retail $650,000 $56,900,000 $28,500,000 $5,700,000
Health care $400,000 $35,000,000 $17,500,000 $3,500,000
Media $50,000 $4,400,000 $2,200,000 $400,000

Figure 1.3 Costs rounded to nearest $100,000 of an unavailable system are shown by analyzing the cost of down-
time (in terms of immediately lost revenue), assuming three different levels of availability, and that downtime is
distributed uniformly. These data are from Landstrom (2014) and were collected and analyzed by Contingency Plan-

ning Research.

A second key feature of server systems is scalability. Server systems often
grow in response to an increasing demand for the services they support or an
expansion in functional requirements. Thus the ability to scale up the computing
capacity, the memory, the storage, and the /O bandwidth of a server is crucial.

Finally, servers are designed for efficient throughput. That is, the overall per-
formance of the server—in terms of transactions per minute or web pages served
per second—is what is crucial. Responsiveness to an individual request remains
important, but overall efficiency and cost-effectiveness, as determined by how
many requests can be handled in a unit time, are the key metrics for most servers.
We return to the issue of assessing performance for different types of computing
environments in Section 1.8.

Clusters/Warehouse-Scale Computers

The growth of Software as a Service (SaaS) for applications like search, social net-
working, video viewing and sharing, multiplayer games, online shopping, and so
on has led to the growth of a class of computers called clusters. Clusters are col-
lections of desktop computers or servers connected by local area networks to act as
a single larger computer. Each node runs its own operating system, and nodes com-
municate using a networking protocol. WSCs are the largest of the clusters, in that
they are designed so that tens of thousands of servers can act as one. Chapter 6
describes this class of extremely large computers.

Price-performance and power are critical to WSCs since they are so large. As
Chapter 6 explains, the majority of the cost of a warehouse is associated with
power and cooling of the computers inside the warehouse. The annual amortized
computers themselves and the networking gear cost for a WSC is $40 million,
because they are usually replaced every few years. When you are buying that
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much computing, you need to buy wisely, because a 10% improvement in price-
performance means an annual savings of $4 million (10% of $40 million) per
WSC: a company like Amazon might have 100 WSCs!

WSCs are related to servers in that availability is critical. For example, Ama-
zon.com had $136 billion in sales in 2016. As there are about 8800 hours in a year,
the average revenue per hour was about $15 million. During a peak hour for Christ-
mas shopping, the potential loss would be many times higher. As Chapter 6
explains, the difference between WSCs and servers is that WSCs use redundant,
inexpensive components as the building blocks, relying on a software layer to
catch and isolate the many failures that will happen with computing at this scale
to deliver the availability needed for such applications. Note that scalability for a
WSC is handled by the local area network connecting the computers and not by
integrated computer hardware, as in the case of servers.

Supercomputers are related to WSCs in that they are equally expensive,
costing hundreds of millions of dollars, but supercomputers differ by emphasi-
zing floating-point performance and by running large, communication-intensive
batch programs that can run for weeks at a time. In contrast, WSCs emphasize
interactive applications, large-scale storage, dependability, and high Internet
bandwidth.

Classes of Parallelism and Parallel Architectures

Parallelism at multiple levels is now the driving force of computer design across all
four classes of computers, with energy and cost being the primary constraints.
There are basically two kinds of parallelism in applications:

1. Data-level parallelism (DLP) arises because there are many data items that can
be operated on at the same time.

2. Task-level parallelism (TLP) arises because tasks of work are created that can
operate independently and largely in parallel.

Computer hardware in turn can exploit these two kinds of application parallelism in
four major ways:

1. Instruction-level parallelism exploits data-level parallelism at modest levels
with compiler help using ideas like pipelining and at medium levels using ideas
like speculative execution.

2. Vector architectures, graphic processor units (GPUs), and multimedia instruc-
tion sets exploit data-level parallelism by applying a single instruction to a col-
lection of data in parallel.

3. Thread-level parallelism exploits either data-level parallelism or task-level par-
allelism in a tightly coupled hardware model that allows for interaction between
parallel threads.

4, Request-level parallelism exploits parallelism among largely decoupled tasks
specified by the programmer or the operating system.
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When Flynn (1966) studied the parallel computing efforts in the 1960s, he
found a simple classification whose abbreviations we still use today. They target
data-level parallelism and task-level parallelism. He looked at the parallelism in the
instruction and data streams called for by the instructions at the most constrained
component of the multiprocessor and placed all computers in one of four
categories:

1. Single instruction stream, single data stream (SISD)—This category is the uni-
processor. The programmer thinks of it as the standard sequential computer, but
it can exploit ILP. Chapter 3 covers SISD architectures that use ILP techniques
such as superscalar and speculative execution.

2. Single instruction stream, multiple data streams (SIMD)—The same instruc-
tion is executed by multiple processors using different data streams. SIMD com-
puters exploit data-level parallelism by applying the same operations to
multiple items of data in parallel. Each processor has its own data memory
(hence, the MD of SIMD), but there is a single instruction memory and control
processor, which fetches and dispatches instructions. Chapter 4 covers DLP and
three different architectures that exploit it: vector architectures, multimedia
extensions to standard instruction sets, and GPUs.

3. Multiple instruction streams, single data stream (MISD)—No commercial mul-
tiprocessor of this type has been built to date, but it rounds out this simple
classification.

4. Multiple instruction streams, multiple data streams (MIMD)—Each processor
fetches its own instructions and operates on its own data, and it targets task-level
parallelism. In general, MIMD is more flexible than SIMD and thus more gen-
erally applicable, but it is inherently more expensive than SIMD. For example,
MIMD computers can also exploit data-level parallelism, although the overhead
is likely to be higher than would be seen in an SIMD computer. This overhead
means that grain size must be sufficiently large to exploit the parallelism effi-
ciently. Chapter 5 covers tightly coupled MIMD architectures, which exploit
thread-level parallelism because multiple cooperating threads operate in paral-
lel. Chapter 6 covers loosely coupled MIMD architectures—specifically, clus-
ters and warehouse-scale computers—that exploit request-level parallelism,
where many independent tasks can proceed in parallel naturally with little need
for communication or synchronization.

This taxonomy is a coarse model, as many parallel processors are hybrids of the

SISD, SIMD, and MIMD classes. Nonetheless, it is useful to put a framework on
the design space for the computers we will see in this book.

Defining Computer Architecture

The task the computer designer faces is a complex one: determine what attributes
are important for a new computer, then design a computer to maximize
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performance and energy efficiency while staying within cost, power, and availabil-
ity constraints. This task has many aspects, including instruction set design, func-
tional organization, logic design, and implementation. The implementation may
encompass integrated circuit design, packaging, power, and cooling. Optimizing
the design requires familiarity with a very wide range of technologies, from com-
pilers and operating systems to logic design and packaging.

A few decades ago, the term computer architecture generally referred to only
instruction set design. Other aspects of computer design were called implementa-
tion, often insinuating that implementation is uninteresting or less challenging.

We believe this view is incorrect. The architect’s or designer’s job is much
more than instruction set design, and the technical hurdles in the other aspects
of the project are likely more challenging than those encountered in instruction
set design. We’'ll quickly review instruction set architecture before describing
the larger challenges for the computer architect.

Instruction Set Architecture: The Myopic View
of Computer Architecture

We use the term instruction set architecture (ISA) to refer to the actual
programmer-visible instruction set in this book. The ISA serves as the boundary
between the software and hardware. This quick review of ISA will use examples
from 80x86, ARMvS8, and RISC-V to illustrate the seven dimensions of an ISA.
The most popular RISC processors come from ARM (Advanced RISC Machine),
which were in 14.8 billion chips shipped in 2015, or roughly 50 times as many
chips that shipped with 80x86 processors. Appendices A and K give more details
on the three ISAs.

RISC-V (*RISC Five”) is a modern RISC instruction set developed at the
University of California, Berkeley, which was made free and openly adoptable
in response to requests from industry. In addition to a full software stack (com-
pilers, operating systems, and simulators), there are several RISC-V implementa-
tions freely available for use in custom chips or in field-programmable gate arrays.
Developed 30 years after the first RISC instruction sets, RISC-V inherits its ances-
tors’ good ideas—a large set of registers, easy-to-pipeline instructions, and a lean
set of operations—while avoiding their omissions or mistakes. It is a free and
open, elegant example of the RISC architectures mentioned earlier, which is
why more than 60 companies have joined the RISC-V foundation, including
AMD, Google, HP Enterprise, IBM, Microsoft, Nvidia, Qualcomm, Samsung,
and Western Digital. We use the integer core ISA of RISC-V as the example
ISA in this book.

1. Class of ISA—Nearly all ISAs today are classified as general-purpose register
architectures, where the operands are either registers or memory locations. The
80x86 has 16 general-purpose registers and 16 that can hold floating-point data,
while RISC-V has 32 general-purpose and 32 floating-point registers (see
Figure 1.4). The two popular versions of this class are register-memaory ISAs,
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Register Name Use Saver
x0 zZero The constant value 0 N.A.
x1 ra Return address Caller
X2 sp Stack pointer Callee
X3 ap Global pointer -
x4 tp Thread pointer -

xb-x7 t0-t2 Temporaries Caller
%8 s0/fp Saved register/frame pointer Callee

x9 sl Saved register Callee
x10-x11 a0-al Function arguments/return values Caller
x12-x17 az-a’7 Function arguments Caller
x18-x27 s2-sll Saved registers Callee
x28-x31 t3-t6 Temporaries Caller
fo-f7 fto-ft7 FP temporaries Caller
f8-1f9 fs0-fsl FP saved registers Callee
f10-f11 fa0-fal FP function arguments/return values Caller
flz2-f17 faz-fa7 FP function arguments Caller
f18-f27 fs2-fsll FP saved registers Callee
f28-f31 ft8-ftll FP temporaries Caller

Figure 1.4 RISC-V registers, names, usage, and calling conventions. In addition to the
32 general-purpose registers (x0—x31), RISC-V has 32 floating-point registers (f0—31)
that can hold either a 32-bit single-precision number or a 64-bit double-precision num-
ber. The registers that are preserved across a procedure call are labeled “Callee” saved.

such as the 80x86, which can access memory as part of many instructions, and
load-store ISAs, such as ARMv8 and RISC-V, which can access memory
only with load or store instructions. All ISAs announced since 1985 are
load-store.

. Memory addressing—Virtually all desktop and server computers, including the
80x86, ARMvS, and RISC-V, use byte addressing to access memory operands.
Some architectures, like ARMVSE, require that objects must be aligned. An
access to an object of size s bytes at byte address A is aligned if A mod
s=0. (See Figure A.5 on page A-8.) The 80x86 and RISC-V do not require
alignment, but accesses are generally faster if operands are aligned.

. Addressing modes—In addition to specifying registers and constant operands,
addressing modes specify the address of a memory object. RISC-V addressing
modes are Register, Immediate (for constants), and Displacement, where a con-
stant offset is added to a register to form the memory address. The 80x86
supports those three modes, plus three variations of displacement: no register
(absolute), two registers (based indexed with displacement), and two registers
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where one register is multiplied by the size of the operand in bytes (based with
scaled index and displacement). It has more like the last three modes, minus the
displacement field, plus register indirect, indexed, and based with scaled index.
ARMVS has the three RISC-V addressing modes plus PC-relative addressing,
the sum of two registers, and the sum of two registers where one register is
multiplied by the size of the operand in bytes. It also has autoincrement and
autodecrement addressing, where the calculated address replaces the contents
of one of the registers used in forming the address.

. Tvpes and sizes of operands—Like most ISAs, 80x86, ARMvVS, and RISC-V

support operand sizes of 8-bit (ASCII character), 16-bit (Unicode character
or half word), 32-bit (integer or word), 64-bit (double word or long integer),
and IEEE 754 floating point in 32-bit (single precision) and 64-bit (double
precision). The 80x86 also supports 80-bit floating point (extended double
precision).

. Operations—The general categories of operations are data transfer, arithmetic

logical, control (discussed next), and floating point. RISC-V is a simple and
easy-to-pipeline instruction set architecture, and it is representative of the RISC
architectures being used in 2017. Figure 1.5 summarizes the integer RISC-V
ISA, and Figure 1.6 lists the floating-point ISA. The 80x86 has a much richer
and larger set of operations (see Appendix K).

. Control flow instructions—Virtually all ISAs, including these three, support

conditional branches, unconditional jumps, procedure calls, and returns. All
three use PC-relative addressing, where the branch address is specified by an
address field that is added to the PC. There are some small differences.
RISC-V conditional branches (BE, BNE, etc.) test the contents of registers,
and the 80x86 and ARMv8 branches test condition code bits set as side effects
of arithmetic/logic operations. The ARMv8 and RISC-V procedure call places
the return address in a register, whereas the 80x86 call (CALLF) places the
return address on a stack in memory.

. Encoding an 1ISA—There are two basic choices on encoding: fixed length and

variable length. All ARMv8 and RISC-V instructions are 32 bits long, which
simplifies instruction decoding. Figure 1.7 shows the RISC-V instruction for-
mats. The 80x86 encoding is variable length, ranging from 1 to 18 bytes.
Variable-length instructions can take less space than fixed-length instructions,
s0 a program compiled for the 80x86 is usually smaller than the same program
compiled for RISC-V. Note that choices mentioned previously will affect how
the instructions are encoded into a binary representation. For example, the num-
ber of registers and the number of addressing modes both have a significant
impact on the size of instructions, because the register field and addressing
mode field can appear many times in a single instruction. (Note that ARMv8
and RISC-V later offered extensions, called Thumb-2 and RV64IC, that
provide a mix of 16-bit and 32-bit length instructions, respectively, to reduce
program size. Code size for these compact versions of RISC architectures
are smaller than that of the 80x86. See Appendix K.)
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Instruction type/opcode

Instruction meaning

Data transfers

1b, Thu, sb

1h, Thu, sh

Tw, Twu, sw

1d, sd

flw, f1d, fsw, fsd
fmv._.x, fmv.x_

csrrw, csrrwi, csrrs,
csrrsi,csrrc, csrrci

Move data between registers and memory, or between the integer and FP or special
registers; only memory address mode is 12-bit displacement+ contents of a GPR

Load byte, load byte unsigned, store byte (to/from integer registers)

Load half word, load half word unsigned, store half word (to/from integer registers)
Load word, load word unsigned, store word (to/from integer registers)

Load double word, store double word (to/from integer registers)

Load SP float, load DP float, store SP float, store DP float

Copy from/to integer register to/from floating-point register; *__"=S for single-
precision, D for double-precision

Read counters and write status registers, which include counters: clock cycles, time,
instructions retired

Arithmetic/logical
add, addi, addw, addiw

sub, subw

mul, mulw, mulh, mulhsu,
mulhu

div, divu, rem, remu
divw, divuw, remw, remuw

and, andi
or,ori, xor, xori
Tui

auipc

s11,s111,srl,srli, sra,
srai

sl1Tw, sTTiw, sriw, srliw
sraw, sraiw

slt,s1ti,sltu, s1tiu

Operations on integer or logical data in GPRs

Add, add immediate (all immediates are 12 bits), add 32-bits only & sign-extend to 64
bits, add immediate 32-bits only

Subtract, subtract 32-bits only

Multiply, multiply 32-bits only, multiply upper half, multiply upper half signed-
unsigned, multiply upper half unsigned

Divide, divide unsigned, remainder, remainder unsigned

Divide and remainder: as previously, but divide only lower 32-bits, producing 32-bit
sign-extended result

And, and immediate
Or, or immediate, exclusive or, exclusive or immediate
Load upper immediate; loads bits 31-12 of register with immediate, then sign-extends

Adds immediate in bits 31-12 with zeros in lower bits to PC; used with JALR to
transfer control to any 32-bit address

Shifts: shift left logical, right logical, right arithmetic; both variable and immediate
forms

Shifts: as previously, but shift lower 32-bits, producing 32-bit sign-extended result

Set less than, set less than immediate, signed and unsigned

Control

beq, bne, b1t, bge, b1tu,
bgeu

jal, jalr

ecall
ebreak
fence, fence.i

Conditional branches and jumps; PC-relative or through register

Branch GPR equal/not equal; less than; greater than or equal, signed and unsigned

Jump and link: save PC +4, target is PC-relative (JAL) or a register (JALR); if specify
%0 as destination register, then acts as a simple jump

Make a request to the supporting execution environment, which is usually an OS
Debuggers used to cause control to be transferred back to a debugging environment

Synchronize threads to guarantee ordering of memory accesses; synchronize
instructions and data for stores to instruction memory

Figure 1.5 Subset of the instructions in RISC-V. RISC-V has a base set of instructions (R641) and offers optional exten-
sions: multiply-divide (RVM), single-precision floating point (RVF), double-precision floating point (RVD). This figure
includes RVM and the next one shows RVF and RVD. Appendix A gives much more detail on RISC-V.
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Instruction type/opcode

Instruction meaning

Floating point

fadd.d, fadd.s
fsub.d, fsub.s
fmul.d, fmul.s

fmadd.d, fmadd.s, fnmadd.d,
fnmadd.s

fmsub.d, fmsub.s, fnmsub.d,
fnmsub.s

fdiv.d, fdiv.s
fsqgrt.d, fsqrt.s

fmax.d, fmax.s, fmin.d,
fmin.s

fevt._._, fevt._._u,
fevi._u._

feq._, flt._fle._

fclass.d, fclass.s

fsgnj._, fsgnjn._,
fsgnjx._

FP operations on DP and SP formats

Add DP, SP numbers

Subtract DP, SP numbers

Multiply DP, SP tloating point

Multiply-add DP, SP numbers; negative multiply-add DP, SP numbers

Multiply-sub DP, SP numbers; negative multiply-sub DP, SP numbers

Divide DP, SP floating point
Square root DP, SP floating point
Maximum and minimum DP, SP floating point

Convert instructions: FCVT . x. y converts from type X to type ¥, where X and y are
L (64-bitinteger), W (32-bit integer), D (DP), or S (SP). Integers can be unsigned (U)

Floating-point compare between floating-point registers and record the Boolean
result in integer register; “__" =25 for single-precision, D for double-precision
Writes to integer register a 10-bit mask that indicates the class of the floating-point
number (—oo, +00, —0, +0, NaN, ...)

Sign-injection instructions that changes only the sign bit: copy sign bit from other
source, the oppositive of sign bit of other source, XOR of the 2 sign bits

Figure 1.6 Floating point instructions for RISC-V. RISC-V has a base set of instructions (R64l) and offers optional
extensions for single-precision floating point (RVF) and double-precision floating point (RVD). SP =single precision;

DP =double precision.

31 2524 2019 1514 1211 76 0
| funct? rs2 | s Jfuncd rd | opcode | R-type
| imm [11:0] [ st Junct rd | opcode | I-type
[ imm[11:5] rs2 | st |unct3]  imm[4:0]  |opcode | S-type
[imm [12]] imm [10:5] | rs2 | rs1  Jfunctd| imm [4:1]11] [opcode | B-type
| imm [31:12] | rd | opcode | U-type
| imm [20[10:1]11]19:12) | rd | opcode | J-type

Figure 1.7 The base RISC-V instruction set architecture formats. All instructions are 32 bits long. The R format is for
integer register-to-register operations, such as ADD, SUB, and so on. The | format is for loads and immediate oper-
ations, such as LD and ADDI. The B format is for branches and the J format is for jumps and link. The S format is for
stores. Having a separate format for stores allows the three register specifiers (rd, rs1, rs2) to always be in the same
location in all formats. The U format is for the wide immediate instructions (LUI, AUIPC).
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The other challenges facing the computer architect beyond ISA design are par-
ticularly acute at the present, when the differences among instruction sets are small
and when there are distinct application areas. Therefore, starting with the fourth
edition of this book, beyond this quick review, the bulk of the instruction set mate-
rial is found in the appendices (see Appendices A and K).

Genuine Computer Architecture: Designing the Organization
and Hardware to Meet Goals and Functional Requirements

The implementation of a computer has two components: organization and hard-
ware. The term organization includes the high-level aspects of a computer’s
design, such as the memory system, the memory interconnect, and the design of
the internal processor or CPU (central processing unit—where arithmetic, logic,
branching, and data transfer are implemented). The term microarchitecture is also
used instead of organization. For example, two processors with the same instruc-
tion set architectures but different organizations are the AMD Opteron and the Intel
Core i7. Both processors implement the 80x 86 instruction set, but they have very
different pipeline and cache organizations.

The switch to multiple processors per microprocessor led to the term core also
being used for processors. Instead of saying multiprocessor microprocessor, the
term multicore caught on. Given that virtually all chips have multiple processors,
the term central processing unit, or CPU, is fading in popularity.

Hardware refers to the specifics of a computer, including the detailed logic
design and the packaging technology of the computer. Often a line of computers
contains computers with identical instruction set architectures and very similar
organizations, but they differ in the detailed hardware implementation. For exam-
ple, the Intel Core i7 (see Chapter 3) and the Intel Xeon E7 (see Chapter 5) are
nearly identical but offer different clock rates and different memory systems, mak-
ing the Xeon E7 more effective for server computers.

In this book, the word architecture covers all three aspects of computer
design—instruction set architecture, organization or microarchitecture, and
hardware.

Computer architects must design a computer to meet functional requirements
as well as price, power, performance, and availability goals. Figure 1.8 summarizes
requirements to consider in designing a new computer. Often, architects also must
determine what the functional requirements are, which can be a major task. The
requirements may be specific features inspired by the market. Application software
typically drives the choice of certain functional requirements by determining how
the computer will be used. If a large body of software exists for a particular instruc-
tion set architecture, the architect may decide that a new computer should imple-
ment an existing instruction set. The presence of a large market for a particular
class of applications might encourage the designers to incorporate requirements
that would make the computer competitive in that market. Later chapters examine
many of these requirements and features in depth.
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Functional requirements

Typical features required or supported

Application area

Personal mobile device
General-purpose desktop
Servers
Clusters/warehouse-scale

computers

Internet of things/embedded
computing

Target of computer

Real-time performance for a range of tasks, including interactive performance for
graphics, video, and audio; energy efficiency (Chapters 2-5 and 7: Appendix A)
Balanced performance for a range of tasks, including interactive performance for
graphics, video, and audio (Chapters 2-5; Appendix A)

Support for databases and transaction processing: enhancements for reliability and
availability; support for scalability (Chapters 2, 5, and 7; Appendices A, D, and F)

Throughput performance for many independent tasks; error correction for memory;
energy proportionality (Chapters 2, 6, and 7; Appendix F)

Often requires special support for graphics or video (or other application-specific
extension); power limitations and power control may be required; real-time constraints
(Chapters 2, 3, 5, and 7; Appendices A and E)

Level of software compatibility
At programming language

Object code or binary
compatible

Determines amount of existing software for computer
Most flexible for designer; need new compiler (Chapters 3, 5, and 7; Appendix A)

Instruction set architecture is completely defined—Iittle flexibility—but no investment
needed in software or porting programs (Appendix A)

Operating system reqiirements
Size of address space
Memory management

Protection

Necessary features to support chosen OS (Chapter 2; Appendix B)

Very important feature (Chapter 2); may limit applications

Required for modern OS; may be paged or segmented (Chapter 2)

Different OS and application needs: page versus segment; virtual machines (Chapter 2)

Standards
Floating point

/O interfaces
Operating systems
Networks

Programming languages

Certain standards may be required by marketplace

Format and arithmetic: IEEE 754 standard (Appendix J), special arithmetic for graphics
or signal processing

For I/O devices: Serial ATA, Serial Attached SCSI, PCI Express (Appendices D and F)
UNIX, Windows, Linux, CISCO 10S

Support required for different networks: Ethernet, Infiniband (Appendix F)
Languages (ANSI C, C++, Java, Fortran) affect instruction set (Appendix A)

Figure 1.8 Summary of some of the most important functional requirements an architect faces. The left-hand
column describes the class of requirement, while the right-hand column gives specific examples. The right-hand col-
umn also contains references to chapters and appendices that deal with the specific issues.

Architects must also be aware of important trends in both the technology and

the use of computers because such trends affect not only the future cost but also the
longevity of an architecture.

14

Trends in Technology

If an instruction set architecture is to prevail, it must be designed to survive rapid
changes in computer technology. After all, a successful new instruction set
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architecture may last decades—for example, the core of the IBM mainframe has
been in use for more than 50 years. An architect must plan for technology changes
that can increase the lifetime of a successful computer.

To plan for the evolution of a computer, the designer must be aware of rapid

changes in implementation technology. Five implementation technologies, which
change at a dramatic pace, are critical to modern implementations:

Integrated circuit logic technology—Historically, transistor density increased
by about 35% per year, quadrupling somewhat over four years. Increases in
die size are less predictable and slower, ranging from 10% to 20% per year.
The combined effect was a traditional growth rate in transistor count on a chip
of about 40%—55% per year, or doubling every 18-24 months. This trend is
popularly known as Moore’s Law. Device speed scales more slowly, as we
discuss below. Shockingly, Moore’s Law is no more. The number of devices
per chip is still increasing, but at a decelerating rate. Unlike in the Moore’s
Law era, we expect the doubling time to be stretched with each new technol-
ogy generation.

Semiconductor DRAM (dynamic random-access memory)—This technology
is the foundation of main memory, and we discuss it in Chapter 2. The growth
of DRAM has slowed dramatically, from quadrupling every three years as in
the past. The 8-gigabit DRAM was shipping in 2014, but the 16-gigabit
DRAM won’t reach that state until 2019, and it looks like there will be no
32-gigabit DRAM (Kim, 2005). Chapter 2 mentions several other technologies
that may replace DRAM when it hits its capacity wall.

Semiconductor Flash (electrically erasable programmable read-only mem-
ory)—This nonvolatile semiconductor memory is the standard storage device
in PMDs, and its rapidly increasing popularity has fueled its rapid growth
rate in capacity. In recent years, the capacity per Flash chip increased by about
50%—60% per year, doubling roughly every 2 years. Currently, Flash
memory is 810 times cheaper per bit than DRAM. Chapter 2 describes Flash
memory.

Magnetic disk technology—Prior to 1990, density increased by about 30% per
year, doubling in three years. It rose to 60% per year thereafter, and increased to
100% per year in 1996. Between 2004 and 2011, it dropped back to about 40%
per year, or doubled every two years. Recently, disk improvement has slowed
to less than 5% per year. One way to increase disk capacity is to add more plat-
ters at the same areal density, but there are already seven platters within the
one-inch depth of the 3.5-inch form factor disks. There is room for at most
one or two more platters. The last hope for real density increase is to use a small
laser on each disk read-write head to heat a 30 nm spot to 400°C so that it can
be written magnetically before it cools. It is unclear whether Heat Assisted
Magnetic Recording can be manufactured economically and reliably, although
Seagate announced plans to ship HAMR in limited production in 2018. HAMR
is the last chance for continued improvement in areal density of hard disk
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drives, which are now 8—10 times cheaper per bit than Flash and 200-300 times
cheaper per bit than DRAM. This technology is central to server- and
warehouse-scale storage, and we discuss the trends in detail in Appendix D.

m  Network technology—Network performance depends both on the performance
of switches and on the performance of the transmission system. We discuss the
trends in networking in Appendix F.

These rapidly changing technologies shape the design of a computer that, with
speed and technology enhancements, may have a lifetime of 3-5 years. Key tech-
nologies such as Flash change sufficiently that the designer must plan for these
changes. Indeed, designers often design for the next technology, knowing that,
when a product begins shipping in volume, the following technology may be
the most cost-effective or may have performance advantages. Traditionally, cost
has decreased at about the rate at which density increases.

Although technology improves continuously, the impact of these increases can
be in discrete leaps, as a threshold that allows a new capability is reached. For
example, when MOS technology reached a point in the early 1980s where between
25,000 and 50,000 transistors could fit on a single chip, it became possible to build
a single-chip, 32-bit microprocessor. By the late 1980s, first-level caches could go
on a chip. By eliminating chip crossings within the processor and between the pro-
cessor and the cache, a dramatic improvement in cost-performance and energy-
performance was possible. This design was simply unfeasible until the technology
reached a certain point. With multicore microprocessors and increasing numbers of
cores each generation, even server computers are increasingly headed toward a sin-
gle chip for all processors. Such technology thresholds are not rare and have a sig-
nificant impact on a wide variety of design decisions.

Performance Trends: Bandwidth Over Latency

As we shall see in Section 1.8, bandwidth or throughput is the total amount of work
done in a given time, such as megabytes per second for a disk transfer. In contrast,
latency or response time is the time between the start and the completion of an
event, such as milliseconds for a disk access. Figure 1.9 plots the relative improve-
ment in bandwidth and latency for technology milestones for microprocessors,
memory, networks, and disks. Figure 1.10 describes the examples and milestones
in more detail.

Performance is the primary differentiator for microprocessors and networks, so
they have seen the greatest gains: 32,000—-40,000 x in bandwidth and 50-90 x in
latency. Capacity is generally more important than performance for memory and
disks, so capacity has improved more, yet bandwidth advances of 400-2400 x are
still much greater than gains in latency of 8-9 x.

Clearly, bandwidth has outpaced latency across these technologies and will likely
continue to do so. A simple rule of thumb is that bandwidth grows by at least the
square of the improvement in latency. Computer designers should plan accordingly.
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Figure 1.9 Log-log plot of bandwidth and latency milestones in Figure 1.10 relative to the first milestone. Note
that latency improved 8-91 x, while bandwidth improved about 400—32,000 x. Except for networking, we note that
there were modest improvements in latency and bandwidth in the other three technologies in the six years since the
last edition: 0%—23% in latency and 23%—70% in bandwidth. Updated from Patterson, D., 2004. Latency lags band-
width. Commun. ACM 47 (10), 71-75.

Scaling of Transistor Performance and Wires

Integrated circuit processes are characterized by the feature size, which is the min-
imum size of a transistor or a wire in either the x or y dimension. Feature sizes
decreased from 10 pm in 1971 to 0.016 pm in 2017; in fact, we have switched
units, so production in 2017 is referred to as “16 nm,” and 7 nm chips are under-
way. Since the transistor count per square millimeter of silicon is determined by the
surface area of a transistor, the density of transistors increases quadratically with a
linear decrease in feature size.



Microprocessor

16-Bit
address/
bus,

32-Bit 5-Stage 2-Way Out-of-order
address/ pipeline, superscalar, 3-way
bus, on-chip | & D 64-bit bus superscalar

microcoded microcoded caches, FPU

Out-of-order

Multicore

superpipelined, 00O 4-way

on-chip L2
cache

on chip L3
cache, Turbo

Product Intel 80286 Intel 80386 Intel 80486  Intel Pentium Intel Pentium Pro Intel Pentium 4 Intel Core i7
Year 1982 1985 1989 1993 1997 2001 2015
Die size (mm?) 47 43 81 90 308 217 122
Transistors 134,000 275.000 1,200,000 3,100,000 5,500,000 42,000,000  1,750,000,000
Processors/chip 1 1 1 1 1 1 4
Pins 68 132 168 273 387 423 1400
Latency (clocks) 6 5 5 5 10 22 14
Bus width (bits) 16 32 32 64 64 64 196
Clock rate (MHz) 12.5 16 25 66 200 1500 4000
Bandwidth (MIPS) 2 6 25 132 600 4500 64,000
Latency (ns) 320 313 200 76 50 15 4
Memory module DRAM  Page mode  Fast page Fast page Synchronous Double data DDR4

DRAM  mode DRAM mode DRAM DRAM rate SDRAM SDRAM
Module width (bits) 16 16 32 64 64 64 64
Year 1980 1983 1986 1993 1997 2000 2016
Mbits/DRAM chip 0.06 0.25 1 16 64 256 4096
Die size (mm?) 35 45 70 130 170 204 50
Pins/DRAM chip 16 16 18 20 54 66 134
Bandwidth (MBytes/s) 13 40 160 267 640 1600 27,000
Latency (ns) 225 170 125 75 62 52 30
Local area network Ethernet Fast Gigabit 10 Gigabit 100 Gigabit 400 Gigabit

Ethernet Ethernet Ethernet Ethernet Ethernet
IEEE standard 802.3 803.3u 802.3ab 802.3ac 802.3ba 802.3bs
Year 1978 1995 1999 2003 2010 2017
Bandwidth (Mbits/seconds) 10 100 1000 10,000 100,000 400,000
Latency (ps) 3000 500 340 190 100 60
Hard disk 3600 RPM 5400 RPM 7200 RPM 10,000 RPFM 15,000 RPM 15,000 RPM
Product CDC Wrenl  Seagate Seagate Seagate Seagate Seagate

94145-36  ST41600 STI5150 ST39102 ST373453 STE0OMX0062

Year 1983 1990 1994 1998 2003 2016
Capacity (GB) 0.03 1.4 4.3 9.1 734 600
Disk form factor 5.25in. 5.25in. 35in. 3.5in, 35in. 3.5in,
Media diameter 5.251n. 5.251n. 3.5in. 3.0in. 2.51in. 2.51n.
Interface ST-412 SCSI SCSI SCSI SCSI SAS
Bandwidth (MBytes/s) 0.6 4 9 24 86 250
Latency (ms) 483 17.1 12.7 8.8 5.1 36

Figure 1.10 Performance milestones over 25-40 years for microprocessors, memory, networks, and disks. The
microprocessor milestones are several generations of |A-32 processors, going from a 16-bit bus, microcoded 80286 to
a 64-bit bus, multicore, out-of-order execution, superpipelined Core i7. Memory module milestones go from 16-bit-
wide, plain DRAM to 64-bit-wide double data rate version 3 synchronous DRAM. Ethernet advanced from 10 Mbits/s
to 400 Gbits/s. Disk milestones are based on rotation speed, improving from 3600 to 15,000 RPM. Each case is best-
case bandwidth, and latency is the time for a simple operation assuming no contention. Updated from Patterson, D.,
2004. Latency lags bandwidth. Commun. ACM 47 (10), 71-75.
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The increase in transistor performance, however, is more complex. As feature
sizes shrink, devices shrink quadratically in the horizontal dimension and also
shrink in the vertical dimension. The shrink in the vertical dimension requires a
reduction in operating voltage to maintain correct operation and reliability of the
transistors. This combination of scaling factors leads to a complex interrelationship
between transistor performance and process feature size. To a first approximation, in
the past the transistor performance improved linearly with decreasing feature size.

The fact that transistor count improves quadratically with a linearincrease in tran-
sistor performance is both the challenge and the opportunity for which computer
architects were created! In the early days of microprocessors, the higher rate of
improvement in density was used to move quickly from 4-bit, to 8-bit, to 16-bit,
to 32-bit, to 64-bit microprocessors. More recently, density improvements have sup-
ported the introduction of multiple processors per chip, wider SIMD units, and many
of the innovations in speculative execution and caches found in Chapters 2-5.

Although transistors generally improve in performance with decreased feature
size, wires in an integrated circuit do not. In particular, the signal delay for a wire
increases in proportion to the product of its resistance and capacitance. Of course,
as feature size shrinks, wires get shorter, but the resistance and capacitance per unit
length get worse. This relationship is complex, since both resistance and capaci-
tance depend on detailed aspects of the process, the geometry of a wire, the loading
on a wire, and even the adjacency to other structures. There are occasional process
enhancements, such as the introduction of copper, which provide one-time
improvements in wire delay.

In general, however, wire delay scales poorly compared to transistor perfor-
mance, creating additional challenges for the designer. In addition to the power
dissipation limit, wire delay has become a major design obstacle for large inte-
grated circuits and is often more critical than transistor switching delay. Larger
and larger fractions of the clock cycle have been consumed by the propagation
delay of signals on wires, but power now plays an even greater role than wire delay.

Trends in Power and Energy in Integrated Circuits

Today, energy is the biggest challenge facing the computer designer for nearly
every class of computer. First, power must be brought in and distributed around
the chip, and modern microprocessors use hundreds of pins and multiple intercon-
nect layers just for power and ground. Second, power is dissipated as heat and must
be removed.

Power and Energy: A Systems Perspective

How should a system architect or a user think about performance, power, and
energy? From the viewpoint of a system designer, there are three primary concerns.

First, what is the maximum power a processor ever requires? Meeting this
demand can be important to ensuring correct operation. For example, if a processor
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attempts to draw more power than a power-supply system can provide (by drawing
more current than the system can supply), the result is typically a voltage drop,
which can cause devices to malfunction. Modern processors can vary widely in
power consumption with high peak currents; hence they provide voltage indexing
methods that allow the processor to slow down and regulate voltage within a wider
margin. Obviously, doing so decreases performance.

Second, what is the sustained power consumption? This metric is widely called
the thermal design power (TDP) because it determines the cooling requirement.
TDP is neither peak power, which is often 1.5 times higher, nor is it the actual aver-
age power that will be consumed during a given computation, which is likely to be
lower still. A typical power supply for a system is typically sized to exceed the
TDP, and a cooling system is usually designed to match or exceed TDP. Failure
to provide adequate cooling will allow the junction temperature in the processor to
exceed its maximum value, resulting in device failure and possibly permanent
damage. Modern processors provide two features to assist in managing heat, since
the highest power (and hence heat and temperature rise) can exceed the long-term
average specified by the TDP. First, as the thermal temperature approaches the
junction temperature limit, circuitry lowers the clock rate, thereby reducing power.
Should this technique not be successful, a second thermal overload trap is activated
to power down the chip.

The third factor that designers and users need to consider is energy and energy
efficiency. Recall that power is simply energy per unit time: 1 watt=1 joule per
second. Which metric is the right one for comparing processors: energy or power?
In general, energy is always a better metric because it is tied to a specific task and
the time required for that task. In particular, the energy to complete a workload is
equal to the average power times the execution time for the workload.

Thus, if we want to know which of two processors is more efficient for a given
task, we need to compare energy consumption (not power) for executing the task.
For example, processor A may have a 20% higher average power consumption
than processor B, but if A executes the task in only 70% of the time needed by
B, its energy consumption will be 1.2 x 0.7=0.84, which is clearly better.

One might argue that in a large server or cloud, it is sufficient to consider the
average power, since the workload is often assumed to be infinite, but this is mis-
leading. If our cloud were populated with processor Bs rather than As, then the
cloud would do less work for the same amount of energy expended. Using energy
to compare the alternatives avoids this pitfall. Whenever we have a fixed workload,
whether for a warehouse-size cloud or a smartphone, comparing energy will be the
right way to compare computer alternatives, because the electricity bill for the
cloud and the battery lifetime for the smartphone are both determined by the energy
consumed.

When is power consumption a useful measure? The primary legitimate use is as
a constraint: for example, an air-cooled chip might be limited to 100 W. It can be
used as a metric if the workload is fixed, but then it’s just a variation of the true
metric of energy per task.
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Energy and Power Within a Microprocessor

For CMOS chips, the traditional primary energy consumption has been in switch-
ing transistors, also called dynamic energy. The energy required per transistor is
proportional to the product of the capacitive load driven by the transistor and
the square of the voltage:

Energy gynamic o¢ Capacitive load x Voltage

This equation is the energy of pulse of the logic transition of 0 —1—0 or
1 —0—1. The energy of a single transition (0 —1 or 1 —0) is then:

Energygypamic  1/2 x Capacitive load x Voltage?

The power required per transistor is just the product of the energy of a transition
multiplied by the frequency of transitions:

Powergypamic o 1/2 x Capacitive load x Volta.gc2 x Frequency switched

For a fixed task, slowing clock rate reduces power, but not energy.

Clearly, dynamic power and energy are greatly reduced by lowering the volt-
age, so voltages have dropped from 5 V to just under 1 V in 20 years. The capac-
itive load is a function of the number of transistors connected to an output and the
technology, which determines the capacitance of the wires and the transistors.

Example

Answer

Some microprocessors today are designed to have adjustable voltage, so a 15%
reduction in voltage may result in a 15% reduction in frequency. What would
be the impact on dynamic energy and on dynamic power?

Because the capacitance is unchanged, the answer for energy is the ratio of the
voltages

Energy,., (Voltage x 0.85)

= ——=0.85"=0.72
Energy 4 Voltage

which reduces energy to about 72% of the original. For power, we add the ratio of
the frequencies

Powerey 072 x (Frequency switched x 0.85)

- =0.61
Powergy Frequency switched

shrinking power to about 61% of the original.

As we move from one process to the next, the increase in the number of tran-
sistors switching and the frequency with which they change dominate the decrease
in load capacitance and voltage, leading to an overall growth in power consump-
tion and energy. The first microprocessors consumed less than a watt, and the first
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32-bit microprocessors (such as the Intel 80386) used about 2 W, whereas a
4.0 GHz Intel Core i7-6700K consumes 95 W. Given that this heat must be dissi-
pated from a chip that is about 1.5 cm on a side, we are near the limit of what can be
cooled by air, and this is where we have been stuck for nearly a decade.

Given the preceding equation, you would expect clock frequency growth to
slow down if we can’t reduce voltage or increase power per chip. Figure 1.11
shows that this has indeed been the case since 2003, even for the microprocessors
in Figure 1.1 that were the highest performers each year. Note that this period of
flatter clock rates corresponds to the period of slow performance improvement
range in Figure 1.1.

Distributing the power, removing the heat, and preventing hot spots have
become increasingly difficult challenges. Energy is now the major constraint to
using transistors; in the past, it was the raw silicon area. Therefore modern
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Figure 1.11 Growth in clock rate of microprocessors in Figure 1.1. Between 1978 and 1986, the clock rate improved
less than 15% per year while performance improved by 22% per year. During the “renaissance period” of 52% per-
formance improvement per year between 1986 and 2003, clock rates shot up almost 40% per year. Since then, the
clock rate has been nearly flat, growing at less than 2% per year, while single processor performance improved
recently at just 3.5% per year.
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microprocessors offer many techniques to try to improve energy efficiency despite
flat clock rates and constant supply voltages:

1. Do nothing well. Most microprocessors today turn off the clock of inactive
modules to save energy and dynamic power. For example, if no floating-point
instructions are executing, the clock of the floating-point unit is disabled. If
some cores are idle, their clocks are stopped.

2. Dynamic voltage-frequency scaling (DVFS). The second technique comes
directly from the preceding formulas. PMDs, laptops, and even servers have
periods of low activity where there is no need to operate at the highest clock
frequency and voltages. Modern microprocessors typically offer a few clock
frequencies and voltages in which to operate that use lower power and energy.
Figure 1.12 plots the potential power savings via DVES for a server as the work-
load shrinks for three different clock rates: 2.4, 1.8, and 1 GHz. The overall
server power savings is about 10%—15% for each of the two steps.

3. Design for the typical case. Given that PMDs and laptops are often idle, mem-
ory and storage offer low power modes to save energy. For example, DRAMs
have a series of increasingly lower power modes to extend battery life in PMDs
and laptops, and there have been proposals for disks that have a mode that spins
more slowly when unused to save power. However, you cannot access DRAMs
or disks in these modes, so you must return to fully active mode to read or write,
no matter how low the access rate. As mentioned, microprocessors for PCs have
been designed instead for heavy use at high operating temperatures, relying on
on-chip temperature sensors to detect when activity should be reduced automat-
ically to avoid overheating. This “emergency slowdown” allows manufacturers
to design for a more typical case and then rely on this safety mechanism if some-
one really does run programs that consume much more power than is typical.
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Figure 1.12 Energy savings for a server using an AMD Opteron microprocessor, 8 GB
of DRAM, and one ATA disk. At 1.8 GHz, the server can handle at most up to two-thirds
of the workload without causing service-level violations, and at 1 GHz, it can safely han-
dle only one-third of the workload (Figure 5.11 in Barroso and Holzle, 2009).
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4. Overclocking. Intel started offering Turbo mode in 2008, where the chip decides
that it is safe to run at a higher clock rate for a short time, possibly on just a few
cores, until temperature starts to rise. For example, the 3.3 GHz Core 17 can run
in short bursts for 3.6 GHz. Indeed, the highest-performing microprocessors
each year since 2008 shown in Figure 1.1 have all offered temporary overclock-
ing of about 10% over the nominal clock rate. For single-threaded code, these
microprocessors can turn off all cores but one and run it faster. Note that,
although the operating system can turn off Turbo mode, there is no notification
once it is enabled, so the programmers may be surprised to see their programs
vary in performance because of room temperature!

Although dynamic power is traditionally thought of as the primary source of
power dissipation in CMOS, static power is becoming an important issue because
leakage current flows even when a transistor is off:

Powergy,;. o Currenty,q. x Voltage

That is, static power is proportional to the number of devices.

Thus increasing the number of transistors increases power even if they are idle,
and current leakage increases in processors with smaller transistor sizes. As a
result, very low-power systems are even turning off the power supply (power gat-
ing) to inactive modules in order to control loss because of leakage. In 2011 the
goal for leakage was 25% of the total power consumption, with leakage in
high-performance designs sometimes far exceeding that goal. Leakage can be as
high as 50% for such chips, in part because of the large SRAM caches that need
power to maintain the storage values. (The S in SRAM is for static.) The only hope
to stop leakage is to turn off power to the chips’ subsets.

Finally, because the processor is just a portion of the whole energy cost of a sys-
tem, it can make sense to use a faster, less energy-efficient processor to allow the rest
of the system to go into a sleep mode. This strategy is known as race-to-halt.

The importance of power and energy has increased the scrutiny on the effi-
ciency of an innovation, so the primary evaluation now is tasks per joule or per-
formance per watt, contrary to performance per mm” of silicon as in the past. This
new metric affects approaches to parallelism, as we will see in Chapters 4 and 5.

The Shift in Computer Architecture Because of Limits of Energy

As transistor improvement decelerates, computer architects must look elsewhere
for improved energy efficiency. Indeed, given the energy budget, it is easy today
to design a microprocessor with so many transistors that they cannot all be turned
on at the same time. This phenomenon has been called dark silicon, in that much of
a chip cannot be unused (“dark’) at any moment in time because of thermal con-
straints. This observation has led architects to reexamine the fundamentals of pro-
cessors’ design in the search for a greater energy-cost performance.

Figure 1.13, which lists the energy cost and area cost of the building blocks of
a modern computer, reveals surprisingly large ratios. For example, a 32-bit
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Relative energy cost Relative area cost

Operation: Energy (pJ) Area (um?)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FB Add 0.4
32b FB Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FB Mult 14
32b FB Mult 3.7 7700
32b SRAM Read (8KB) 5 N/A
32b DRAM Read 640 N/A

1 10 100 1000 10000 1 10 100 1000

Energy numbers are from Mark Horowitz *Computing’s Energy problem (and what we can do about it)*. ISSCC 2014
Area numbers are from synthesized result using Design compiler under TSMC 45nm tech node. FP units used DesignWare Library.

Figure 1.13 Comparison of the energy and die area of arithmetic operations and energy cost of accesses to SRAM
and DRAM. [Azizi][Dally]. Area is for TSMC 45 nm technology node.
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floating-point addition uses 30 times as much energy as an 8-bit integer add. The
area difference is even larger, by 60 times. However, the biggest difference is in
memory; a 32-bit DRAM access takes 20,000 times as much energy as an 8-bit
addition. A small SRAM is 125 times more energy-efficient than DRAM, which
demonstrates the importance of careful uses of caches and memory buffers.

The new design principle of minimizing energy per task combined with the
relative energy and area costs in Figure 1.13 have inspired a new direction for com-
puter architecture, which we describe in Chapter 7. Domain-specific processors
save energy by reducing wide floating-point operations and deploying special-pur-
pose memories to reduce accesses to DRAM. They use those saving to provide
10-100 more (narrower) integer arithmetic units than a traditional processor.
Although such processors perform only a limited set of tasks, they perform them
remarkably faster and more energy efficiently than a general-purpose processor.

Like a hospital with general practitioners and medical specialists, computers in
this energy-aware world will likely be combinations of general-purpose cores that
can perform any task and special-purpose cores that do a few things extremely well
and even more cheaply.

Trends in Cost

Although costs tend to be less important in some computer designs—specifically
supercomputers—cost-sensitive designs are of growing significance. Indeed, in
the past 35 years, the use of technology improvements to lower cost, as well as
increase performance, has been a major theme in the computer industry.
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Textbooks often ignore the cost half of cost-performance because costs change,
thereby dating books, and because the issues are subtle and differ across industry
segments. Nevertheless, it’s essential for computer architects to have an under-
standing of cost and its factors in order to make intelligent decisions about whether
a new feature should be included in designs where cost is an issue. (Imagine archi-
tects designing skyscrapers without any information on costs of steel beams and
concrete!)

This section discusses the major factors that influence the cost of a computer
and how these factors are changing over time.

The Impact of Time, Volume, and Commoditization

The cost of a manufactured computer component decreases over time even without
significant improvements in the basic implementation technology. The underlying
principle that drives costs down is the learning curve—manufacturing costs
decrease over time. The learning curve itself is best measured by change in
vield—the percentage of manufactured devices that survives the testing procedure.
Whether it is a chip, a board, or a system, designs that have twice the yield will have
half the cost.

Understanding how the learning curve improves yield is critical to projecting
costs over a product’s life. One example is that the price per megabyte of DRAM
has dropped over the long term. Since DRAMSs tend to be priced in close relation-
ship to cost—except for periods when there is a shortage or an oversupply—price
and cost of DRAM track closely.

Microprocessor prices also drop over time, but because they are less standard-
ized than DRAMs, the relationship between price and cost is more complex. In a
period of significant competition, price tends to track cost closely, although micro-
processor vendors probably rarely sell at a loss.

Volume is a second key factor in determining cost. Increasing volumes atfect
cost in several ways. First, they decrease the time needed to get through the learn-
ing curve, which is partly proportional to the number of systems (or chips) man-
ufactured. Second, volume decreases cost because it increases purchasing and
manufacturing efficiency. As a rule of thumb, some designers have estimated that
costs decrease about 10% for each doubling of volume. Moreover, volume
decreases the amount of development costs that must be amortized by each com-
puter, thus allowing cost and selling price to be closer and still make a profit.

Commodities are products that are sold by multiple vendors in large volumes
and are essentially identical. Virtually all the products sold on the shelves of gro-
cery stores are commodities, as are standard DRAMs, Flash memory, monitors,
and keyboards. In the past 30 years, much of the personal computer industry
has become a commodity business focused on building desktop and laptop com-
puters running Microsoft Windows.

Because many vendors ship virtually identical products, the market is highly
competitive. Of course, this competition decreases the gap between cost and selling
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price, but it also decreases cost. Reductions occur because a commodity market has
both volume and a clear product definition, which allows multiple suppliers to
compete in building components for the commodity product. As a result, the over-
all product cost is lower because of the competition among the suppliers of the
components and the volume efficiencies the suppliers can achieve. This rivalry
has led to the low end of the computer business being able to achieve better
price-performance than other sectors and has yielded greater growth at the low
end, although with very limited profits (as is typical in any commodity business).

Cost of an Integrated Circuit

Why would a computer architecture book have a section on integrated circuit
costs? In an increasingly competitive computer marketplace where standard
parts—disks, Flash memory, DRAMs, and so on—are becoming a significant por-
tion of any system’s cost, integrated circuit costs are becoming a greater portion of
the cost that varies between computers, especially in the high-volume, cost-
sensitive portion of the market. Indeed, with PMDs’ increasing reliance of whole
systems on a chip (SOC), the cost of the integrated circuits is much of the cost of the
PMD. Thus computer designers must understand the costs of chips in order to
understand the costs of current computers.

Although the costs of integrated circuits have dropped exponentially, the basic
process of silicon manufacture is unchanged: A wafer is still tested and chopped
into dies that are packaged (see Figures 1.14-1.16). Therefore the cost of a pack-
aged integrated circuit is

Cost of die + Cost of testing die + Cost of packaging and final test
Final test yield

Cost of integrated circuit =

In this section, we focus on the cost of dies, summarizing the key issues in testing
and packaging at the end.

Learning how to predict the number of good chips per wafer requires first learn-
ing how many dies fit on a wafer and then learning how to predict the percentage of
those that will work. From there it is simple to predict cost:

Cost of wafer

Cost of die=
ostot die Dies per wafer x Die yield

The most interesting feature of this initial term of the chip cost equation is its sen-
sitivity to die size, shown below.

The number of dies per wafer is approximately the area of the wafer divided by
the area of the die. It can be more accurately estimated by

7 % (Wafer diameter/2)* 7z x Wafer diameter
Die area v/2 x Diearea

The first term is the ratio of wafer area (m,z) to die area. The second compensates
for the “square peg in a round hole” problem—rectangular dies near the periphery

Dies per wafer =
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Figure 1.14 Photograph of an Intel Skylake microprocessor die, which is evaluated
in Chapter 4.

Memory..|| sa—mm |, = o> 2 - 5 i 5, Susgee | Memory
Controller JH R ANEIINE, o 5-< Zont LN o228 | Controller,

Figure 1.15 The components of the microprocessor die in Figure 1.14 are labeled with their functions.
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Figure 1.16 This 200 mm diameter wafer of RISC-V dies was designed by SiFive. It has
two types of RISC-V dies using an older, larger processing line. An FE310 die is 2.65
mm x 2.72 mm and an SiFive test die that is 2.89 mm x 2.72 mm. The wafer contains
1846 of the former and 1866 of the latter, totaling 3712 chips.

of round wafers. Dividing the circumference (zd) by the diagonal of a square die is
approximately the number of dies along the edge.

Example

Answer

Find the number of dies per 300 mm (30 ¢cm) wafer for a die that is 1.5 cm on a side
and for a die that is 1.0 cm on a side.

When die area is 2.25 cm”:

2
Dies per wafer = R 30/2) oy BRSO & =270

225 /2%225 225 212

Because the area of the larger die is 2.25 times bigger, there are roughly 2.25 as
many smaller dies per wafer:

7x(30/2° xx30 7069 942
1.00 V2x1.00 100 141

Dies per wafer = 640

However, this formula gives only the maximum number of dies per wafer. The
critical question is: What is the fraction of good dies on a wafer, or the die yield? A
simple model of integrated circuit yield, which assumes that defects are randomly
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distributed over the wafer and that yield is inversely proportional to the complexity
of the fabrication process, leads to the following:

Die yield = Wafer yield x 1/(1 + Defects per unit area x Die area)"

This Bose-Einstein formula is an empirical model developed by looking at the
yield of many manufacturing lines (Sydow, 2006), and it still applies today. Wafer
vield accounts for wafers that are completely bad and so need not be tested. For
simplicity, we'll just assume the wafer yield is 100%. Defects per unit area is a
measure of the random manufacturing defects that occur. In 2017 the value was
typically 0.08-0.10 defects per square inch for a 28-nm node and 0.10-0.30 for
the newer 16 nm node because it depends on the maturity of the process (recall
the learning curve mentioned earlier). The metric versions are 0.012—0.016 defects
per square centimeter for 28 nm and 0.016-0.047 for 16 nm. Finally, N is a
parameter called the process-complexity factor, a measure of manufacturing
difficulty. For 28 nm processes in 2017, N is 7.5-9.5. For a 16 nm process,
N ranges from 10 to 14.

Example

Answer

Find the die yield for dies that are 1.5 ¢m on a side and 1.0 ¢cm on a side, assuming a
defect density of 0.047 per cm?® and N is 12.

The total die areas are 2.25 and 1.00 cm®. For the larger die, the yield is
Die yield = 1/(1 + 0.047 x 2.25)"% x 270 = 120

For the smaller die, the yield is
Die yield = 1/(1 + 0.047 x 1.00)"? x 640 = 444

The bottom line is the number of good dies per wafer. Less than half of all the large
dies are good, but nearly 70% of the small dies are good.

Although many microprocessors fall between 1.00 and 2.25 cm?, low-end
embedded 32-bit processors are sometimes as small as 0.05 cm?, processors used
for embedded control (for inexpensive loT devices) are often less than 0.01 cm?,
and high-end server and GPU chips can be as large as 8 cm?,

Given the tremendous price pressures on commodity products such as DRAM
and SRAM, designers have included redundancy as a way to raise yield. For a
number of years, DRAMs have regularly included some redundant memory cells
so that a certain number of flaws can be accommodated. Designers have used sim-
ilar techniques in both standard SRAMSs and in large SRAM arrays used for caches
within microprocessors. GPUs have 4 redundant processors out of 84 for the same
reason. Obviously, the presence of redundant entries can be used to boost the yield
significantly.
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In 2017 processing of a 300 mm (12-inch) diameter wafer in a 28-nm technol-
ogy costs between $4000 and $5000, and a 16-nm wafer costs about $7000.
Assuming a processed wafer cost of $7000, the cost of the 1.00 cm® die would
be around $16, but the cost per die of the 2.25 cm?® die would be about $58, or
almost four times the cost of a die that is a little over twice as large.

What should a computer designer remember about chip costs? The manufactur-
ing process dictates the wafer cost, wafer yield, and defects per unit area, so the sole
control of the designer is die area. In practice, because the number of defects per
unit area is small, the number of good dies per wafer, and therefore the cost per die,
grows roughly as the square of the die area. The computer designer affects die size,
and thus cost, both by what functions are included on or excluded from the die and
by the number of I/O pins.

Before we have a part that is ready for use in a computer, the die must be tested
(to separate the good dies from the bad), packaged, and tested again after packag-
ing. These steps all add significant costs, increasing the total by half.

The preceding analysis focused on the variable costs of producing a functional
die, which is appropriate for high-volume integrated circuits. There is, however,
one very important part of the fixed costs that can significantly affect the cost
of an integrated circuit for low volumes (less than 1 million parts), namely, the cost
of a mask set. Each step in the integrated circuit process requires a separate mask.
Therefore, for modern high-density fabrication processes with up to 10 metal
layers, mask costs are about $4 million for 16 nm and $1.5 million for 28 nm.

The good news is that semiconductor companies offer “shuttle runs” to dramat-
ically lower the costs of tiny test chips. They lower costs by putting many small
designs onto a single die to amortize the mask costs, and then later split the dies
into smaller pieces for each project. Thus TSMC delivers 80—100 untested dies that
are 1.57 x 1.57 mm in a 28 nm process for $30,000 in 2017. Although these die are
tiny, they offer the architect millions of transistors to play with. For example, sev-
eral RISC-V processors would fit on such a die.

Although shuttle runs help with prototyping and debugging runs, they don’t
address small-volume production of tens to hundreds of thousands of parts.
Because mask costs are likely to continue to increase, some designers are incorpo-
rating reconfigurable logic to enhance the flexibility of a part and thus reduce the
cost implications of masks.

Cost Versus Price

With the commoditization of computers, the margin between the cost to manufac-
ture a product and the price the product sells for has been shrinking. Those margins
pay for a company’s research and development (R&D), marketing, sales,
manufacturing equipment maintenance, building rental, cost of financing, pretax
profits, and taxes. Many engineers are surprised to find that most companies spend
only 4% (in the commodity PC business) to 12% (in the high-end server business)
of their income on R&D, which includes all engineering.
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1.7

Cost of Manufacturing Versus Cost of Operation

For the first four editions of this book, cost meant the cost to build a computer and
price meant price to purchase a computer. With the advent of WSCs, which contain
tens of thousands of servers, the cost to operate the computers is significant in addi-
tion to the cost of purchase. Economists refer to these two costs as capital expenses
(CAPEX) and operational expenses (OPEX).

As Chapter 6 shows, the amortized purchase price of servers and networks
is about half of the monthly cost to operate a WSC, assuming a short lifetime
of the IT equipment of 3—4 years. About 40% of the monthly operational costs
are for power use and the amortized infrastructure to distribute power and to cool
the IT equipment, despite this infrastructure being amortized over 10-15 years.
Thus, to lower operational costs in a WSC, computer architects need to use energy
efficiently.

Dependability

Historically, integrated circuits were one of the most reliable components of a com-
puter. Although their pins may be vulnerable, and faults may occur over commu-
nication channels, the failure rate inside the chip was very low. That conventional
wisdom is changing as we head to feature sizes of 16 nm and smaller, because both
transient faults and permanent faults are becoming more commonplace, so archi-
tects must design systems to cope with these challenges. This section gives a quick
overview of the issues in dependability, leaving the official definition of the terms
and approaches to Section D.3 in Appendix D.

Computers are designed and constructed at different layers of abstraction. We
can descend recursively down through a computer seeing components enlarge
themselves to full subsystems until we run into individual transistors. Although
some faults are widespread, like the loss of power, many can be limited to a single
component in a module. Thus utter failure of a module at one level may be con-
sidered merely a component error in a higher-level module. This distinction is
helpful in trying to find ways to build dependable computers.

One difficult question is deciding when a system is operating properly. This
theoretical point became concrete with the popularity of Internet services. Infra-
structure providers started offering service level agreements (SLAs) or service
level objectives (SLOs) to guarantee that their networking or power service would
be dependable. For example, they would pay the customer a penalty if they did not
meet an agreement of some hours per month. Thus an SLA could be used to decide
whether the system was up or down.

Systems alternate between two states of service with respect to an SLA:

1. Service accomplishment, where the service is delivered as specified.

2. Service interruption, where the delivered service is different from the SLA.
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Transitions between these two states are caused by failures (from state 1 to state 2)
or restorations (2 to 1). Quantifying these transitions leads to the two main mea-
sures of dependability:

m  Module reliability is a measure of the continuous service accomplishment (or,
equivalently, of the time to failure) from a reference initial instant. Therefore the
mean time to failure (MTTF) is a reliability measure. The reciprocal of MTTF is
arate of failures, generally reported as failures per billion hours of operation, or
FIT (for failures in time). Thus an MTTF of 1,000,000 hours equals 10°/10° or
1000 FIT. Service interruption is measured as mean time to repair (MTTR).
Mean time between failures (MTBF) is simply the sum of MTTF+MTTR.
Although MTBF is widely used, MTTF is often the more appropriate term. If
a collection of modules has exponentially distributed lifetimes—meaning that
the age of a module is not important in probability of failure—the overall failure
rate of the collection is the sum of the failure rates of the modules.

m  Module availability is a measure of the service accomplishment with respect to
the alternation between the two states of accomplishment and interruption. For
nonredundant systems with repair, module availability is

MTTF

Module d\r’dildbl]]ty = m

Note that reliability and availability are now quantifiable metrics, rather than syn-
onyms for dependability. From these definitions, we can estimate reliability of a
system quantitatively if we make some assumptions about the reliability of com-
ponents and that failures are independent.

Example

Answer

Assume a disk subsystem with the following components and MTTF:

m 10 disks, each rated at 1,000,000-hour MTTF
m | ATA controller, 500,000-hour MTTF

= | power supply. 200,000-hour MTTF

m 1 fan, 200,000-hour MTTF

m 1 ATA cable, 1,000,000-hour MTTF

Using the simplifying assumptions that the lifetimes are exponentially distributed
and that failures are independent, compute the MTTF of the system as a whole.
The sum of the failure rates is

! I 1 1 1
1,000,000 500,000 200,000 T 200,000 © 1,000,000

Failure rateygem = 10 %

_10+2+45+5+1 23 23,000
~ 1,000,000 hours 1,000,000 1,000,000,000 hours
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or 23,000 FIT. The MTTF for the system is just the inverse of the failure rate

1 ~1,000,000,000 hours
Failure rategygem - 23,000

MTTI system — =43,500 hours

or just under 5 years.

The primary way to cope with failure is redundancy, either in time (repeat the
operation to see if it still is erroneous) or in resources (have other components to
take over from the one that failed). Once the component is replaced and the system
is fully repaired, the dependability of the system is assumed to be as good as new.
Let’s quantify the benefits of redundancy with an example.

Example

Answer

Disk subsystems often have redundant power supplies to improve dependability.
Using the preceding components and MTTFs, calculate the reliability of redundant
power supplies. Assume that one power supply is sufficient to run the disk subsys-
tem and that we are adding one redundant power supply.

We need a formula to show what to expect when we can tolerate a failure and still
provide service. To simplify the calculations, we assume that the lifetimes of the
components are exponentially distributed and that there is no dependency between
the component failures. MTTF for our redundant power supplies is the mean time
until one power supply fails divided by the chance that the other will fail before the
first one is replaced. Thus, if the chance of a second failure before repair is small,
then the MTTF of the pair is large.

Since we have two power supplies and independent failures, the mean time until
one supply fails is MTTF o wer suppiy/2. A good approximation of the probability of
a second failure is MTTR over the mean time until the other power supply fails.
Therefore a reasonable approximation for a redundant pair of power supplies is
MTTFpnwcr L;upply/2 _ MTTF]E'IUWCT .~;upp]y/2 _ MTTFﬁnwcr supply

MTTRpuwer supply MTTR
MTTF,

MTTFpower supply pair =
power supply 2x MTTR power supply

power supply

Using the preceding MTTF numbers, if we assume it takes on average 24 hours for
a human operator to notice that a power supply has failed and to replace it, the reli-
ability of the fault tolerant pair of power supplies is

MTTI icwer supply 200, 0002

MTTF, ; pair = = = 830,000,000
power supply pair 7 % MTTRpuwer supply 7 % 24

making the pair about 4150 times more reliable than a single power supply.

Having quantified the cost, power, and dependability of computer technology, we
are ready to quantify performance.
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Measuring, Reporting, and Summarizing Performance

When we say one computer is faster than another one is, what do we mean? The
user of a cell phone may say a computer is faster when a program runs in less time,
while an Amazon.com administrator may say a computer is faster when it com-
pletes more transactions per hour. The cell phone user wants to reduce response
time—the time between the start and the completion of an event—also referred
to as execution time. The operator of a WSC wants to increase throughput—the
total amount of work done in a given time.

In comparing design alternatives, we often want to relate the performance of
two different computers, say, X and Y. The phrase “X is faster than Y is used
here to mean that the response time or execution time is lower on X than on Y
for the given task. In particular, “X is n times as fast as Y~ will mean

Execution timey
. n
Execution timey

Since execution time is the reciprocal of performance, the following relationship
holds:

1
Execution timey  Performancey Performancex
n= = - = =
Execution timey 1 Performancey
Performancey

The phrase “the throughput of X is 1.3 times as fast as Y signifies here that the
number of tasks completed per unit time on computer X is 1.3 times the number
completed on Y.

Unfortunately, time is not always the metric quoted in comparing the perfor-
mance of computers. Our position is that the only consistent and reliable measure
of performance is the execution time of real programs, and that all proposed alter-
natives to time as the metric or to real programs as the items measured have even-
tually led to misleading claims or even mistakes in computer design.

Even execution time can be defined in different ways depending on what we
count. The most straightforward definition of time is called wall-clock time,
response time, or elapsed time, which is the latency to complete a task, including
storage accesses, memory accesses, input/output activities, operating system over-
head—everything. With multiprogramming, the processor works on another pro-
gram while waiting for I/O and may not necessarily minimize the elapsed time of
one program. Thus we need a term to consider this activity. CPU time recognizes
this distinction and means the time the processor is computing, not including the
time waiting for I/O or running other programs. (Clearly, the response time seen by
the user is the elapsed time of the program, not the CPU time.)

Computer users who routinely run the same programs would be the perfect can-
didates to evaluate a new computer. To evaluate a new system, these users would
simply compare the execution time of their workloads—the mixture of programs
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and operating system commands that users run on a computer. Few are in this
happy situation, however. Most must rely on other methods to evaluate computers,
and often other evaluators, hoping that these methods will predict performance for
their usage of the new computer. One approach is benchmark programs, which are
programs that many companies use to establish the relative performance of their
computers.

Benchmarks

The best choice of benchmarks to measure performance is real applications, such as
Google Translate mentioned in Section 1.1. Attempts at running programs that are
much simpler than a real application have led to performance pitfalls. Examples
include

m  Kernels, which are small, key pieces of real applications.

m  Toy programs, which are 100-line programs from beginning programming
assignments, such as Quicksort.

m  Synthetic benchmarks, which are fake programs invented to try to match the
profile and behavior of real applications, such as Dhrystone.

All three are discredited today, usually because the compiler writer and architect
can conspire to make the computer appear faster on these stand-in programs than
on real applications. Regrettably for your authors—who dropped the fallacy about
using synthetic benchmarks to characterize performance in the fourth edition of
this book since we thought all computer architects agreed it was disreputable—
the synthetic program Dhrystone is still the most widely quoted benchmark for
embedded processors in 2017!

Another issue is the conditions under which the benchmarks are raun. One way
to improve the performance of a benchmark has been with benchmark-specific
compiler flags; these flags often caused transformations that would be illegal on
many programs or would slow down performance on others. To restrict this pro-
cess and increase the significance of the results, benchmark developers typically
require the vendor to use one compiler and one set of flags for all the programs
in the same language (such as C++ or C). In addition to the question of compiler
flags, another question is whether source code modifications are allowed. There are
three different approaches to addressing this question:

1. No source code modifications are allowed.

2. Source code modifications are allowed but are essentially impossible. For
example, database benchmarks rely on standard database programs that are tens
of millions of lines of code. The database companies are highly unlikely to make
changes to enhance the performance for one particular computer.

3. Source modifications are allowed, as long as the altered version produces the
same output.
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The key issue that benchmark designers face in deciding to allow modification of the
source is whether such modifications will reflect real practice and provide useful
insight to users, or whether these changes simply reduce the accuracy of the bench-
marks as predictors of real performance. As we will see in Chapter 7, domain-
specific architects often follow the third option when creating processors for
well-defined tasks.

To overcome the danger of placing too many eggs in one basket, collections of
benchmark applications, called benchmark suites, are a popular measure of perfor-
mance of processors with a variety of applications. Of course, such collections are
only as good as the constituent individual benchmarks. Nonetheless, a key advan-
tage of such suites is that the weakness of any one benchmark is lessened by the
presence of the other benchmarks. The goal of a benchmark suite is that it will char-
acterize the real relative performance of two computers, particularly for programs
not in the suite that customers are likely to run.

A cautionary example is the Electronic Design News Embedded Microproces-
sor Benchmark Consortium (or EEMBC, pronounced “embassy”) benchmarks.

It is a set of 41 kernels used to predict performance of different embedded
applications: automotive/industrial, consumer, networking, office automation,
and telecommunications. EEMBC reports unmodified performance and “full fury”
performance, where almost anything goes. Because these benchmarks use small
kernels, and because of the reporting options, EEMBC does not have the reputation
of being a good predictor of relative performance of different embedded computers
in the field. This lack of success is why Dhrystone, which EEMBC was trying to
replace, is sadly still used.

One of the most successful attempts to create standardized benchmark appli-
cation suites has been the SPEC (Standard Performance Evaluation Corporation),
which had its roots in efforts in the late 1980s to deliver better benchmarks for
workstations. Just as the computer industry has evolved over time, so has the need
for different benchmark suites, and there are now SPEC benchmarks to cover many
application classes. All the SPEC benchmark suites and their reported results are
found at http://www.spec.org.

Although we focus our discussion on the SPEC benchmarks in many of the
following sections, many benchmarks have also been developed for PCs running
the Windows operating system.

Desktop Benchmarks

Desktop benchmarks divide into two broad classes: processor-intensive bench-
marks and graphics-intensive benchmarks, although many graphics benchmarks
include intensive processor activity. SPEC originally created a benchmark set
focusing on processor performance (initially called SPEC89), which has evolved
into its sixth generation: SPEC CPU2017, which follows SPEC2006, SPEC2000,
SPEC95 SPEC92, and SPEC89. SPEC CPU2017 consists of a set of 10 integer
benchmarks (CINT2017) and 17 floating-point benchmarks (CFP2017).
Figure 1.17 describes the current SPEC CPU benchmarks and their ancestry.



Benchmark name by SPEC generation

SPEC2017 SPEC2006 SPEC2000 SPEC95 SPEC92 SPEC89

GNU C compiler - gce
Perl interpreter perl espresso
Route planning mef i
General data compression XZ | bzip2 compress | egntott
Discrete Event simulation - computer network ~————————— omnelpp vortex go 5G R
XML to HTML conversion via XSLT <——— xalancbmk gzip iipeg
Video comprassion X264 h264ref eon m&8ksim
Artificial Intelligence: alpha-beta tree search (Chess) deepsjeng sjeng twolf
Artificial Intelligence: Monte Carlo tree search (Go) leela gobmk vortex
Artificial Intelligence: recursive solution generator (Sudoku) exchange2 astar vpr

hmmer crafty

libquantum parser
Explosion modeling - bwaves foppp
Physics: relativity - cactuBSSN tomcaty
Molecular dynamics - namd doduc
Ray tracing - pOVray nasa7
Fluid dynamics - bm spice
Weather forecasting -~ wrf swim matrix300
Biomedical imaging: optical tomography with finite elements parest gamess apsi hydro2d [
3D rendering and animation blender mgrid su2cor
Atmosphere modeling camé milc wupwise | applu wave5
Image manipulation imagick zeusmp apply turb3d
Molecular dynamics nab gromacs galgel
Computational Electromagnetics fotonik3d leslie3d mesa
Regional ocean modeling roms deall art

soplex equake

calculix facerec

GemsFDTD | @mmp

tonto lucas

sphinx3 fmadd

sixtrack

Figure 1.17 SPEC2017 programs and the evolution of the SPEC benchmarks over time, with integer programs above the line and floating-
point programs below the line. Of the 10 SPEC2017 integer programs, 5 are written in C, 4 in C++., and 1 in Fortran. For the floating-point
programs, the split is 3 in Fortran, 2 in C++, 2 in C, and 6 in mixed C, C++, and Fortran. The figure shows all 82 of the programs in the 1989,
1992, 1995, 2000, 2006, and 2017 releases. Gee is the senior citizen of the group. Only 3 integer programs and 3 floating-point programs survived
three or more generations. Although a few are carried over from generation to generation, the version of the program changes and either the
input or the size of the benchmark is often expanded to increase its running time and to avoid perturbation in measurement or domination of the
execution time by some factor other than CPU time. The benchmark descriptions on the left are for SPEC2017 only and do not apply to earlier
versions, Programs in the same row from different generations of SPEC are generally not related; for example, fpppp is not a CFD code like
bwaves.
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SPEC benchmarks are real programs modified to be portable and to minimize
the effect of 1/0O on performance. The integer benchmarks vary from part of a C
compiler to a go program to a video compression. The floating-point benchmarks
include molecular dynamics, ray tracing, and weather forecasting. The SPEC
CPU suite is useful for processor benchmarking for both desktop systems and
single-processor servers. We will see data on many of these programs throughout
this book. However, these programs share little with modern programming lan-
guages and environments and the Google Translate application that Section 1.1
describes. Nearly half of them are written at least partially in Fortran! They are
even statically linked instead of being dynamically linked like most real pro-
grams. Alas, the SPEC2017 applications themselves may be real, but they are
not inspiring. It’s not clear that SPECINT2017 and SPECFP2017 capture what
is exciting about computing in the 21st century.

In Section 1.11, we describe pitfalls that have occurred in developing the SPEC
CPUbenchmark suite, as well as the challenges in maintaining a useful and pre-
dictive benchmark suite.

SPEC CPU2017 is aimed at processor performance, but SPEC offers many other
benchmarks. Figure 1.18 lists the 17 SPEC benchmarks that are active in 2017.

Server Benchmarks

Just as servers have multiple functions, so are there multiple types of benchmarks.
The simplest benchmark is perhaps a processor throughput-oriented benchmark.
SPEC CPU2017 uses the SPEC CPU benchmarks to construct a simple throughput
benchmark where the processing rate of a multiprocessor can be measured by run-
ning multiple copies (usually as many as there are processors) of each SPEC CPU
benchmark and converting the CPU time into a rate. This leads to a measurement
called the SPECrate, and it is a measure of request-level parallelism from Section
1.2. To measure thread-level parallelism, SPEC offers what they call high-
performance computing benchmarks around OpenMP and MPI as well as for
accelerators such as GPUs (see Figure 1.18).

Other than SPECrate, most server applications and benchmarks have signifi-
cant /O activity arising from either storage or network traffic, including bench-
marks for file server systems, for web servers, and for database and transaction-
processing systems. SPEC offers both a file server benchmark (SPECSFS) and
a Java server benchmark. (Appendix D discusses some file and I/O system bench-
marks in detail.) SPECvirt_Sc2013 evaluates end-to-end performance of virtua-
lized data center servers. Another SPEC benchmark measures power, which we
examine in Section 1.10.

Transaction-processing (TP) benchmarks measure the ability of a system to
handle transactions that consist of database accesses and updates. Airline reserva-
tion systems and bank ATM systems are typical simple examples of TP; more
sophisticated TP systems involve complex databases and decision-making.
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Category Name Measures performance of

Cloud Cloud_laaS 2016 Cloud using NoSQL database transaction and K-Means
clustering using map/reduce

CPU CPU2017 Compute-intensive integer and floating-point workloads

Graphics and
workstation
performance

SPECviewperf® 12
SPECwpc V2.0

SPECapcSM for 3ds Max 2015™
SPECapcSM for Maya®™ 2012
SPECapeSM for PTC Creo 3.0

SPECapcSM for Siemens NX 9.0
and 10.0

SPECapcSM for SolidWorks 2015

3D graphics in systems running OpenGL and Direct X

Workstations running professional apps under the
Windows OS

3D graphics running the proprietary Autodesk 3ds Max
2015 app

3D graphics running the proprietary Autodesk 3ds Max
2012 app

3D graphics running the proprietary PTC Creo 3.0 app

3D graphics running the proprietary Siemens NX 9.0 or
10.0 app

3D graphics of systems running the proprietary SolidWorks
2015 CAD/CAM app

ACCEL Accelerator and host CPU running parallel applications
_ using OpenCL and OpenACC
High pefrformance MPI2007 MPI-parallel, floating-point, compute-intensive programs
computing . . :
running on clusters and SMPs
OMP2012 Parallel apps running OpenMP
Java client/server SPECjbb2015 Java servers

Power

SPECpower_ssj2008

Power of volume server class computers running
SPECjbb2015

Solution File
Server (SFS)

SFS2014
SPECsfs2008

File server throughput and response time

File servers utilizing the NFSv3 and CIFES protocols

Virtualization

SPECvirt_sc2013

Datacenter servers used in virtualized server consolidation

Figure 1.18 Active benchmarks from SPEC as of 2017.

In the mid-1980s, a group of concerned engineers formed the vendor-independent
Transaction Processing Council (TPC) to try to create realistic and fair benchmarks
for TP. The TPC benchmarks are described at http://www.tpc.org.

The first TPC benchmark, TPC-A, was published in 1985 and has since been
replaced and enhanced by several different benchmarks. TPC-C, initially created in
1992, simulates a complex query environment. TPC-H models ad hoc decision
support—the queries are unrelated and knowledge of past queries cannot be used
to optimize future queries. The TPC-DI benchmark, a new data integration (DI)
task also known as ETL, is an important part of data warehousing. TPC-E is an
online transaction processing (OLTP) workload that simulates a brokerage firm’s

customer accounts.
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Recognizing the controversy between traditional relational databases and “No
SQL” storage solutions, TPCx-HS measures systems using the Hadoop file system
running MapReduce programs, and TPC-DS measures a decision support system
that uses either a relational database or a Hadoop-based system. TPC-VMS and
TPCx-V measure database performance for virtualized systems, and TPC-Energy
adds energy metrics to all the existing TPC benchmarks.

All the TPC benchmarks measure performance in transactions per second. In
addition, they include a response time requirement so that throughput performance
is measured only when the response time limit is met. To model real-world sys-
tems, higher transaction rates are also associated with larger systems, in terms
of both users and the database to which the transactions are applied. Finally, the
system cost for a benchmark system must be included as well to allow accurate
comparisons of cost-performance. TPC modified its pricing policy so that there
is a single specification for all the TPC benchmarks and to allow verification of
the prices that TPC publishes.

Reporting Performance Results

The guiding principle of reporting performance measurements should be repro-
ducibility—list everything another experimenter would need to duplicate the
results. A SPEC benchmark report requires an extensive description of the com-
puter and the compiler flags, as well as the publication of both the baseline and
the optimized results. In addition to hardware, software, and baseline tuning
parameter descriptions, a SPEC report contains the actual performance times,
shown both in tabular form and as a graph. A TPC benchmark report is even more
complete, because it must include results of a benchmarking audit and cost
information. These reports are excellent sources for finding the real costs of com-
puting systems, since manufacturers compete on high performance and cost-
performance.

Summarizing Performance Results

In practical computer design, one must evaluate myriad design choices for their
relative quantitative benefits across a suite of benchmarks believed to be relevant.
Likewise, consumers trying to choose a computer will rely on performance mea-
surements from benchmarks, which ideally are similar to the users” applications. In
both cases, it is useful to have measurements for a suite of benchmarks so that the
performance of important applications is similar to that of one or more benchmarks
in the suite and so that variability in performance can be understood. In the best
case, the suite resembles a statistically valid sample of the application space,
but such a sample requires more benchmarks than are typically found in most suites
and requires a randomized sampling, which essentially no benchmark suite uses.
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Once we have chosen to measure performance with a benchmark suite, we
want to be able to summarize the performance results of the suite in a unique num-
ber. A simple approach to computing a summary result would be to compare the
arithmetic means of the execution times of the programs in the suite. An alternative
would be to add a weighting factor to each benchmark and use the weighted arith-
metic mean as the single number to summarize performance. One approach is to
use weights that make all programs execute an equal time on some reference com-
puter, but this biases the results toward the performance characteristics of the ref-
erence computer.

Rather than pick weights, we could normalize execution times to a reference
computer by dividing the time on the reference computer by the time on the
computer being rated, yielding a ratio proportional to performance. SPEC uses this
approach, calling the ratio the SPECRatio. It has a particularly useful property
that matches the way we benchmark computer performance throughout this
text—namely, comparing performance ratios. For example, suppose that the
SPECRatio of computer A on a benchmark is 1.25 times as fast as computer B;
then we know

Execution timeeference
_ SPECRatios _ Execution time, _ Execution timeg _ Performance 5
" SPECRatiop  Execution timMereference  Execution time,  Performancep
Execution timeg

1.25

Notice that the execution times on the reference computer drop out and the choice
of the reference computer is irrelevant when the comparisons are made as a ratio,
which is the approach we consistently use. Figure 1.19 gives an example.

Because a SPECRatio is a ratio rather than an absolute execution time,
the mean must be computed using the geometric mean. (Because SPECRatios
have no units, comparing SPECRatios arithmetically is meaningless.) The
formula is

n
Geometric mean = | Hsample,—

i=1

In the case of SPEC, sample; is the SPECRatio for program i. Using the geometric
mean ensures two important properties:

1. The geometric mean of the ratios is the same as the ratio of the geometric means.

2. The ratio of the geometric means is equal to the geometric mean of the perfor-
mance ratios, which implies that the choice of the reference computer is
irrelevant.

Therefore the motivations to use the geometric mean are substantial, especially
when we use performance ratios to make comparisons.
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Example Show that the ratio of the geometric means is equal to the geometric mean of the
performance ratios and that the reference computer of SPECRatio does not matter.

Answer  Assume two computers A and B and a set of SPECRatios for each.

n
/] [SPECRatio A,
Geometric mean, | i . ﬁSPECRatio A;
i=l1

Geometric meang [ n a SPECRatio B;
. SPECRatio B;

i=l

Execution timereference;

n

|y Execution times, Execution timeg, /7y Performance,,
-1 I -
= =

Xecution UMereference; 7t Execution time, Performanceg,

Execution timeg,

That is, the ratio of the geometric means of the SPECRatios of A and B is the geo-
metric mean of the performance ratios of A to B of all the benchmarks in the suite.
Figure 1.19 demonstrates this validity using examples from SPEC.

AMD
Sun Ultra A10- Intel Xeon
Enterprise 6800K SPEC E5-2690 SPEC AMD/Intel  Intel/AMD
2 time time 2006Cint time 2006Cint times SPEC

Benchmarks (seconds) (seconds) ratio (seconds) ratio (seconds) ratios
perlbench 9770 401 24.36 261 37.43 1.54 1.54
bzip2 9650 505 19.11 422 22.87 1.20 1.20
gee 8050 490 1643 227 35.46 2.16 2.16
mcf 9120 249 36.63 153 59.61 1.63 1.63
gobmk 10,490 418 25.10 382 27.46 1.09 1.09
hmmer 9330 182 51.26 120 717.75 1.52 1.52
sjeng 12,100 517 23.40 383 31.59 1.35 1.35
libquantum 20,720 84 246.08 3 7295.77 29.65 29.65
h264ref 22,130 611 36.22 425 52.07 1.44 1.44
omnetpp 6250 313 19.97 153 40.85 2.05 2.05
astar 7020 303 23.17 209 33.59 1.45 1.45
xalancbmk 6900 215 32.09 98 70.41 2.19 2.19
Geometric mean 31.91 63.72 2.00 2.00

Figure 1.19 SPEC2006Cint execution times (in seconds) for the Sun Ultra 5—the reference computer of
SPEC2006—and execution times and SPECRatios for the AMD A10 and Intel Xeon E5-2690. The final two columns show
the ratios of execution times and SPEC ratios. This figure demonstrates the irrelevance of the reference computerin relative
performance. The ratio of the execution times is identical to the ratio of the SPEC ratios, and the ratio of the geometric
means (63.7231.91/20.86 = 2.00) is identical to the geometric mean of the ratios (2.00). Section 1.11 discusses libquantum,
whose performance is orders of magnitude higher than the other SPEC benchmarks.
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1.9

Quantitative Principles of Computer Design

Now that we have seen how to define, measure, and summarize performance, cost,
dependability, energy, and power, we can explore guidelines and principles that are
useful in the design and analysis of computers. This section introduces important
observations about design, as well as two equations to evaluate alternatives.

Take Advantage of Parallelism

Using parallelism is one of the most important methods for improving perfor-
mance. Every chapter in this book has an example of how performance is enhanced
through the exploitation of parallelism. We give three brief examples here, which
are expounded on in later chapters.

Our first example is the use of parallelism at the system level. To improve the
throughput performance on a typical server benchmark, such as SPECSES or TPC-
C, multiple processors and multiple storage devices can be used. The workload of
handling requests can then be spread among the processors and storage devices,
resulting in improved throughput. Being able to expand memory and the number
of processors and storage devices is called scalability, and it is a valuable asset for
servers. Spreading of data across many storage devices for parallel reads and writes
enables data-level parallelism. SPECSFS also relies on request-level parallelism to
use many processors, whereas TPC-C uses thread-level parallelism for faster pro-
cessing of database queries.

At the level of an individual processor, taking advantage of parallelism among
instructions is critical to achieving high performance. One of the simplest ways to
do this is through pipelining. (Pipelining is explained in more detail in Appendix C
and is a major focus of Chapter 3.) The basic idea behind pipelining is to overlap
instruction execution to reduce the total time to complete an instruction sequence.
A key insight into pipelining is that not every instruction depends on its immediate
predecessor, so executing the instructions completely or partially in parallel may be
possible. Pipelining is the best-known example of ILP.

Parallelism can also be exploited at the level of detailed digital design. For
example, set-associative caches use multiple banks of memory that are typically
searched in parallel to find a desired item. Arithmetic-logical units use carry-
lookahead, which uses parallelism to speed the process of computing sums from
linear to logarithmic in the number of bits per operand. These are more examples of
data-level parallelism.

Principle of Locality

Important fundamental observations have come from properties of programs. The
most important program property that we regularly exploit is the principle of local-
ity: programs tend to reuse data and instructions they have used recently. A widely
held rule of thumb is that a program spends 90% of its execution time in only 10%
of the code. An implication of locality is that we can predict with reasonable
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accuracy what instructions and data a program will use in the near future based on
its accesses in the recent past. The principle of locality also applies to data accesses,
though not as strongly as to code accesses.

Two different types of locality have been observed. Temporal locality states
that recently accessed items are likely to be accessed soon. Spatial locality says
that items whose addresses are near one another tend to be referenced close
together in time. We will see these principles applied in Chapter 2.

Focus on the Common Case

Perhaps the most important and pervasive principle of computer design is to focus
on the common case: in making a design trade-off, favor the frequent case over the
infrequent case. This principle applies when determining how to spend resources,
because the impact of the improvement is higher if the occurrence is commonplace.

Focusing on the common case works for energy as well as for resource allo-
cation and performance. The instruction fetch and decode unit of a processor
may be used much more frequently than a multiplier, so optimize it first. It works
on dependability as well. If a database server has 50 storage devices for every pro-
cessor, storage dependability will dominate system dependability.

In addition, the common case is often simpler and can be done faster than the
infrequent case. For example, when adding two numbers in the processor, we can
expect overflow to be a rare circumstance and can therefore improve performance
by optimizing the more common case of no overflow. This emphasis may slow
down the case when overflow occurs, but if that is rare, then overall performance
will be improved by optimizing for the normal case.

We will see many cases of this principle throughout this text. In applying this
simple principle, we have to decide what the frequent case is and how much per-
formance can be improved by making that case faster. A fundamental law, called
Amdahl’s Law, can be used to quantify this principle.

Amdahl’s Law

The performance gain that can be obtained by improving some portion of a com-
puter can be calculated using Amdahl’s Law. Amdahl’s Law states that the perfor-
mance improvement to be gained from using some faster mode of execution is
limited by the fraction of the time the faster mode can be used.

Amdahl’s Law defines the speedup that can be gained by using a particular
feature. What is speedup? Suppose that we can make an enhancement to a com-
puter that will improve performance when it is used. Speedup is the ratio

Performance for entire task using the enhancement when possible
Performance for entire task without using the enhancement

Speedup =

Alternatively,

Speedup — Execution time for entire task without using the enhancement
PeeCiP™ Execution time for entire task using the enhancement when possible
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Speedup tells us how much faster a task will run using the computer with the
enhancement contrary to the original computer.

Amdahl’s Law gives us a quick way to find the speedup from some enhance-
ment, which depends on two factors:

1. The fraction of the computation time in the original computer that can be con-
verted to take advantage of the enhancement—For example, if 40 seconds of
the execution time of a program that takes 100 seconds in total can use an
enhancement, the fraction is 40/100. This value, which we call Fractioneynanceds
is always less than or equal to 1.

2. The improvement gained by the enhanced execution mode, that is, how much
faster the task would run if the enhanced mode were used for the entire pro-
gram—This value is the time of the original mode over the time of the enhanced
mode. If the enhanced mode takes, say, 4 seconds for a portion of the program,
while it is 40 seconds in the original mode, the improvement is 40/4 or 10. We
call this value, which is always greater than 1, Speedupepnanced-

The execution time using the original computer with the enhanced mode will be the
time spent using the unenhanced portion of the computer plus the time spent using
the enhancement:

Fractioneghanced )

Execution time,., = Execution timegg % ((1 — Fractiongnpanced ) +
Spet:dupcnhanccd

The overall speedup is the ratio of the execution times:

Execution timegq 1

Speedu = — i
pe Poverall Execution timepey Fraction, panced

(1 — Fractiongppanced) +
Speedupen hanced

Example

Answer

Suppose that we want to enhance the processor used for web serving. The new
processor is 10 times faster on computation in the web serving application than
the old processor. Assuming that the original processor is busy with computation
40% of the time and is waiting for I/O 60% of the time, what is the overall speedup
gained by incorporating the enhancement?

. 1 1
Fractionephanced = 0.45 Speedup,hanced = 10: Speedup,eran =04 06 ~1.56
0.6+ E )

Amdahl’s Law expresses the law of diminishing returns: The incremental improve-
ment in speedup gained by an improvement of just a portion of the computation
diminishes as improvements are added. An important corollary of Amdahl’s
Law is that if an enhancement is usable only for a fraction of a task, then we can’t
speed up the task by more than the reciprocal of 1 minus that fraction.
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A common mistake in applying Amdahl’s Law is to confuse “fraction of time con-
verted to use an enhancement” and “fraction of time after enhancement is in use.”
It, instead of measuring the time that we could use the enhancement in a compu-
tation, we measure the time after the enhancement is in use, the results will be
incorrect!

Amdahl’s Law can serve as a guide to how much an enhancement will improve
performance and how to distribute resources to improve cost-performance. The
goal, clearly, is to spend resources proportional to where time is spent. Amdahl’s
Law is particularly useful for comparing the overall system performance of two
alternatives, but it can also be applied to compare two processor design alterna-
tives, as the following example shows.

Example

Answer

A common transformation required in graphics processors is square root. Imple-
mentations of floating-point (FP) square root vary significantly in performance,
especially among processors designed for graphics. Suppose FP square root
(FSQRT) is responsible for 20% of the execution time of a critical graphics bench-
mark. One proposal is to enhance the FSQRT hardware and speed up this operation
by a factor of 10. The other alternative is just to try to make all FP instructions in the
graphics processor run faster by a factor of 1.6; FP instructions are responsible for
half of the execution time for the application. The design team believes that they
can make all FP instructions run 1.6 times faster with the same effort as required for
the fast square root. Compare these two design alternatives.

We can compare these two alternatives by comparing the speedups:
1 1
Speedupgsorr = 02 08 1.22

(1-02)+55

1 1
Speedupgp = 05 = 0815 1.23
(1—0.5)+1—6 )

Improving the performance of the FP operations overall is slightly better because
of the higher frequency.

Amdahl’s Law is applicable beyond performance. Let’s redo the reliability
example from page 39 after improving the reliability of the power supply via
redundancy from 200,000-hour to 830,000,000-hour MTTF, or 4150 x better.

Example

The calculation of the failure rates of the disk subsystem was

1 1 1 | 1
1,000,000 T 500,000 © 200,000 T 200,000 * 1,000,000

Failure rateygem = 10 x

~10+2+5+45+1 23
" 1,000,000 hours 1,000,000 hours
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Answer

Therefore the fraction of the failure rate that could be improved is 5 per million
hours out of 23 for the whole system, or 0.22.

The reliability improvement would be

1 1
022078
(l - 0.22) + m
Despite an impressive 4150 x improvement in reliability of one module, from the

system’s perspective. the change has a measurable but small benefit.

Improvement,oyer supply pair = =1.28

In the preceding examples, we needed the fraction consumed by the new and
improved version; often it is difficult to measure these times directly. In the next
section, we will see another way of doing such comparisons based on the use
of an equation that decomposes the CPU execution time into three separate
components. If we know how an alternative affects these three components,
we can determine its overall performance. Furthermore, it is often possible to
build simulators that measure these components before the hardware is actually
designed.

The Processor Performance Equation

Essentially all computers are constructed using a clock running at a constant rate.
These discrete time events are called clock periods, clocks, cycles, or clock cycles.
Computer designers refer to the time of a clock period by its duration (e.g., 1 ns) or
by its rate (e.g., 1 GHz). CPU time for a program can then be expressed two ways:

CPU time = CPU clock cycles for a program x Clock cycle time
or

CPU clock cycles for a program
Clock rate

CPU time =

In addition to the number of clock cycles needed to execute a program, we can
also count the number of instructions executed—the instruction path length or
instruction count (IC). If we know the number of clock cycles and the instruction
count, we can calculate the average number of clock cycles per instruction (CPI).
Because it is easier to work with, and because we will deal with simple processors
in this chapter, we use CPIL. Designers sometimes also use instructions per clock
(IPC), which is the inverse of CPL

CPI is computed as

CPU clock cycles for a program

CPI= -
Instruction count

This processor figure of merit provides insight into different styles of instruction
sets and implementations, and we will use it extensively in the next four
chapters.
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By transposing the instruction count in the preceding formula, clock cycles
can be defined as IC x CPL This allows us to use CPI in the execution time
formula:

CPU time = Instruction count x Cycles per instruction x Clock cycle time

Expanding the first formula into the units of measurement shows how the pieces fit
together:

Instructions  Clock cycles S ds S d:
nstructions ock cycles econds _ Seconds .. .. .

Program Instruction ~ Clock cycle  Program

As this formula demonstrates, processor performance is dependent upon three
characteristics: clock cycle (or rate), clock cycles per instruction, and instruction
count. Furthermore, CPU time is equally dependent on these three characteristics;
for example, a 10% improvement in any one of them leads to a 10% improvement
in CPU time.

Unfortunately, it is difficult to change one parameter in complete isolation from
others because the basic technologies involved in changing each characteristic are
interdependent:

m  Clock cycle time—Hardware technology and organization
m  CPI—Organization and instruction set architecture

m Instruction count—Instruction set architecture and compiler technology

Luckily, many potential performance improvement techniques primarily enhance
one component of processor performance with small or predictable impacts on the
other two.

In designing the processor, sometimes it is useful to calculate the number of
total processor clock cycles as

n
CPU clock cycles = _IC; x CP;

i=1
where IC; represents the number of times instruction i is executed in a program and
CPI; represents the average number of clocks per instruction for instruction i. This
form can be used to express CPU time as

CPU time = (Z 1C; x CPI,-) x Clock cycle time

i=1

and overall CPI as

n
> IC; < CPy,
i=1 lCr

Instruction count < Instruction count

CPl;

The latter form of the CPI calculation uses each individual CPI; and the fraction of
occurrences of that instruction in a program (i.e., IC; = Instruction count). Because
it must include pipeline effects, cache misses, and any other memory system
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inefficiencies, CPI; should be measured and not just calculated from a table in the
back of a reference manual.

Consider our performance example on page 52, here modified to use measure-
ments of the frequency of the instructions and of the instruction CPI values, which,
in practice, are obtained by simulation or by hardware instrumentation.

Example

Answer

Suppose we made the following measurements:

Frequency of FP operations =25%
Average CPI of FP operations =4.0
Average CPI of other instructions = 1.33
Frequency of FSQRT =2%

CPI of FSQRT=20

Assume that the two design alternatives are to decrease the CPI of FSQRT to 2 or to
decrease the average CPI of all FP operations to 2.5. Compare these two design
alternatives using the processor performance equation.

First, observe that only the CPI changes; the clock rate and instruction
count remain identical. We start by finding the original CPl with neither
enhancement:

CPlysiging = ;CPL X ($)
=(4%x25%) +(1.33x75%) =2.0
We can compute the CPI for the enhanced FSQRT by subtracting the cycles saved
from the original CPI:
CPlyith new rpsQR = CPloriginal — 2% X (CPLoig ppsor — CPLof new FPSQR only )
=20-2%x(20-2)=1.64
We can compute the CPI for the enhancement of all FP instructions the same way
or by summing the FP and non-FP CPIs. Using the latter gives us
CPlyey pp = (75% x 1.33) + (25% x 2.5) = 1.625

Since the CPI of the overall FP enhancement is slightly lower, its performance will
be marginally better. Specifically, the speedup for the overall FP enhancement is

CPU timegriginal -~ IC x Clock cycle x CPlysigina
CPU timepey pp IC % Clock cycle x CPlyey pp
_ CPIuﬁginal _ 2.00

=—=—=——=1.23
CPliyewrp  1.625

Speedup;ey, pp =

Happily, we obtained this same speedup using Amdahl’s Law on page 51.
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Itis often possible to measure the constituent parts of the processor performance
equation. Such isolated measurements are a key advantage of using the processor
performance equation versus Amdahl’s Law in the previous example. In particular,
it may be difficult to measure things such as the fraction of execution time for which
a set of instructions is responsible. In practice, this would probably be computed
by summing the product of the instruction count and the CPI for each of the instruc-
tions in the set. Since the starting point is often individual instruction count and
CPI measurements, the processor performance equation is incredibly useful.

Touse the processor performance equation as a design tool, we need to be able to
measure the various factors. For an existing processor, it is easy to obtain the exe-
cution time by measurement, and we know the default clock speed. The challenge
lies in discovering the instruction count or the CP1. Most processors include counters
for both instructions executed and clock cycles. By periodically monitoring these
counters, it is also possible to attach execution time and instruction count to seg-
ments of the code, which can be helpful to programmers trying to understand and
tune the performance of an application. Often designers or programmers will want
to understand performance at a more fine-grained level than what is available from
the hardware counters. For example, they may want to know why the CP1 is what it
is. In such cases, the simulation techniques used are like those for processors that are
being designed.

Techniques that help with energy efficiency, such as dynamic voltage fre-
quency scaling and overclocking (see Section 1.5), make this equation harder to
use, because the clock speed may vary while we measure the program. A simple
approach is to turn off those features to make the results reproducible. Fortunately,
as performance and energy efficiency are often highly correlated—taking less time
to run a program generally saves energy—it’s probably safe to consider perfor-
mance without worrying about the impact of DVES or overclocking on the results.

Putting It All Together: Performance, Price, and Power

In the “Putting It All Together” sections that appear near the end of every chapter,
we provide real examples that use the principles in that chapter. In this section, we
look at measures of performance and power-performance in small servers using the
SPECpower benchmark.

Figure 1.20 shows the three multiprocessor servers we are evaluating along
with their price. To keep the price comparison fair, all are Dell PowerEdge servers.
The first is the PowerEdge R710, which is based on the Intel Xeon x 85670 micro-
processor with a clock rate of 2.93 GHz. Unlike the Intel Core i7-6700 in Chapters
2-5, which has 20 cores and a 40 MB L3 cache, this Intel chip has 22 cores and a
55 MB L3 cache, although the cores themselves are identical. We selected a two-
socket system—so 44 cores total—with 128 GB of ECC-protected 2400 MHz
DDR4 DRAM. The next server is the PowerEdge C630, with the same processor,
number of sockets, and DRAM. The main difference is a smaller rack-mountable
package: “2U” high (3.5 inches) for the 730 versus “1U” (1.75 inches) for the 630.



56 Chapter One Fundamentals of Quantitative Design and Analysis

System 1 System 2 System 3
Component Cost (% Cost) Cost (% Cost) Cost (% Cost)
Base server PowerEdge R710 $653 (7%) PowerEdge R815 $1437 (15%) PowerEdge R815 $1437 (11%)
Power supply 570 W 1100 W 1100 W
Processor Xeon X5670 $3738 (40%) Opteron 6174 $2679 (29%) Opteron 6174 $5358 (42%)
Clock rate 293 GHz 2.20 GHz 2.20 GHz
Total cores 12 24 48
Sockets 2 2 4
Cores/socket 6 12 12
DRAM 12GB $484 (5%) 16 GB $693 (7%)  32GB $1386 (11%)
Ethernet Inter. ~ Dual 1-Gbit $199 (2%)  Dual 1-Gbit $199 (2%)  Dual 1-Gbit $199 (2%)
Disk 50 GB SSD $1279 (14%) 50 GB SSD $1279 (14%) 50 GB SSD $1279 (10%)
Windows OS $2999 (32%) $2999 (33%) $2999 (24%)
Total $9352 (100%) $9286 (100%) $12,658 (100%)
Max ssj_ops 910,978 926,676 1,840,450
Max ssj_ops/$ 97 100 145

Figure 1.20 Three Dell PowerEdge servers being measured and their prices as of July 2016. We calculated the cost
of the processors by subtracting the cost of a second processor. Similarly, we calculated the overall cost of memory by
seeing what the cost of extra memory was. Hence the base cost of the server is adjusted by removing the estimated
cost of the default processor and memory. Chapter 5 describes how these multisocket systems are connected
together, and Chapter 6 describes how clusters are connected together.

The third server is a cluster of 16 of the PowerEdge 630 s that is connected
together with a 1 Gbit/s Ethernet switch. All are running the Oracle Java HotSpot
version 1.7 Java Virtual Machine (JVM) and the Microsoft Windows Server 2012
R2 Datacenter version 6.3 operating system.

Note that because of the forces of benchmarking (see Section 1.11), these are
unusually configured servers. The systems in Figure 1.20 have little memory rel-
ative to the amount of computation, and just a tiny 120 GB solid-state disk. It is
inexpensive to add cores if you don’t need to add commensurate increases in mem-

ory and storage!

Rather than run statically linked C programs of SPEC CPU, SPECpower uses a
more modern software stack written in Java. It is based on SPECjbb, and it repre-
sents the server side of business applications, with performance measured as the
number of transactions per second, called ssj_ops for server side Java operations
per second. It exercises not only the processor of the server, as does SPEC CPU,
but also the caches, memory system, and even the multiprocessor interconnection
system. In addition, it exercises the JVM, including the JIT runtime compiler and
carbage collector, as well as portions of the underlying operating system.

As the last two rows of Figure 1.20 show, the performance winner is the cluster
of 16 R630s, which is hardly a surprise since it is by far the most expensive. The
price-performance winner is the PowerEdge R630, but it barely beats the cluster at
213 versus 211 ssj-ops/S. Amazingly, the 16 node cluster is within 1% of the same
price-performances of a single node despite being 16 times as large.
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While most benchmarks (and most computer architects) care only about per-
formance of systems at peak load, computers rarely run at peak load. Indeed,
Figure 6.2 in Chapter 6 shows the results of measuring the utilization of tens of
thousands of servers over 6 months at Google, and less than 1% operate at an aver-
age utilization of 100%. The majority have an average utilization of between 10%
and 50%. Thus the SPECpower benchmark captures power as the target workload
varies from its peak in 10% intervals all the way to 0%, which is called Active Idle.

Figure 1.21 plots the ssj_ops (SSJ operations/second) per watt and the average
power as the target load varies from 100% to 0%. The Intel R730 always has the
lowest power and the single node R630 has the best ssj_ops per watt across each
target workload level. Since watts =joules/second, this metric is proportional to
S$SJ operations per joule:

ssj_operations/second _ ssj_operations/second _ ssj_operations

Watt Joule/second Joule
s Dell 830 44 cores perfiwatt s Dell 730 44 cores perfiwatt . Dell 630 cluster 704 cores perfiwatt
= = Dell 630 cluster 704 cores watts/node = — -Dell 630 44 cores watts ==+ Dell 730 44 cores watts
14000 350
12000 - 300
10000 - 250
¥ 8000 {- r 200
s E
a ]
] s
@ 6000 - 150
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04 0

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% Active idle
Target Workload

Figure 1.21 Power-performance of the three servers in Figure 1.20. Ssj_ops/watt values are on the left axis, with
the three columns associated with it, and watts are on the right axis, with the three lines associated with it. The hor-
izontal axis shows the target workload, as it varies from 100% to Active Idle. The single node R630 has the best
ssj_ops/watt at each workload level, but R730 consumes the lowest power at each level.
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1.11
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To calculate a single number to use to compare the power efficiency of sys-
tems, SPECpower uses

Zssjfﬂps
Zpowcr

The overall ssj_ops/watt of the three servers is 10,802 for the R730, 11,157 for the
R630, and 10,062 for the cluster of 16 R630s. Therefore the single node R630 has
the best power-performance. Dividing by the price of the servers, the ssj_ops/watt/
$1,000 is 879 for the R730, 899 for the R630, and 789 (per node) for the 16-node
cluster of R630s. Thus, after adding power, the single-node R630 is still in first
place in performance/price, but now the single-node R730 is significantly more
efficient than the 16-node cluster.

Overall ssj_ops/watt =

Fallacies and Pitfalls

The purpose of this section, which will be found in every chapter, is to explain
some commonly held misbeliefs or misconceptions that you should avoid. We call
such misbeliefs fallacies. When discussing a fallacy, we try to give a counterex-
ample. We also discuss pitfalls—easily made mistakes. Often pitfalls are general-
izations of principles that are true in a limited context. The purpose of these
sections is to help you avoid making these errors in computers that you design.

All exponential laws must come to an end.

The first to go was Dennard scaling. Dennard’s 1974 observation was that power
density was constant as transistors got smaller. If a transistor’s linear region shrank
by a factor 2, then both the current and voltage were also reduced by a factor of 2,
and so the power it used fell by 4. Thus chips could be designed to operate faster and
still use less power. Dennard scaling ended 30 years after it was observed, not
because transistors didn’t continue to get smaller but because integrated circuit
dependability limited how far current and voltage could drop. The threshold voltage
was driven so low that static power became a significant fraction of overall power.

The next deceleration was hard disk drives. Although there was no law for
disks, in the past 30 years the maximum areal density of hard drives—which deter-
mines disk capacity—improved by 30%—100% per year. In more recent years, it
has been less than 5% per year. Increasing density per drive has come primarily
from adding more platters to a hard disk drive.

Next up was the venerable Moore’s Law. It’s been a while since the number of
transistors per chip doubled every one to two years. For example, the DRAM chip
introduced in 2014 contained 8B transistors, and we won’t have a 16B transistor
DRAM chip in mass production until 2019, but Moore’s Law predicts a 64B tran-
sistor DRAM chip.

Moreover, the actual end of scaling of the planar logic transistor was even pre-
dicted to end by 2021. Figure 1.22 shows the predictions of the physical gate length
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Figure 1.22 Predictions of logic transistor dimensions from two editions of the ITRS report. These reports started
in 2001, but 2015 will be the last edition, as the group has disbanded because of waning interest. The only companies
that can produce state-of-the-art logic chips today are GlobalFoundaries, Intel, Samsung, and TSMC, whereas there
were 19 when the first ITRS report was released. With only four companies left, sharing of plans was too hard to
sustain. From IEEE Spectrum, July 2016, “Transistors will stop shrinking in 2021, Moore’s Law Roadmap Predicts,”
by Rachel Courtland.

of the logic transistor from two editions of the International Technology Roadmap
for Semiconductors (ITRS). Unlike the 2013 report that projected gate lengths
to reach 5 nm by 2028, the 2015 report projects the length stopping at 10 nm
by 2021. Density improvements thereafter would have to come from ways other
than shrinking the dimensions of transistors. It’s not as dire as the ITRS suggests,
as companies like Intel and TSMC have plans to shrink to 3 nm gate lengths, but
the rate of change is decreasing.

Figure 1.23 shows the changes in increases in bandwidth over time for micro-
processors and DRAM-—which are affected by the end of Dennard scaling
and Moore’s Law—as well as for disks. The slowing of technology improvements
is apparent in the dropping curves. The continued networking improvement is
due to advances in fiber optics and a planned change in pulse amplitude modu-
lation (PAM-4) allowing two-bit encoding so as to transmit information at
400 Gbit/s.
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Figure 1.23 Relative bandwidth for microprocessors, networks, memory, and disks over time, based on data in

Figure 1.10.

Fallacy

Multiprocessors are a silver bullet.

The switch to multiple processors per chip around 2005 did not come from some
breakthrough that dramatically simplified parallel programming or made it easy to
build multicore computers. The change occurred because there was no other option
due to the ILP walls and power walls. Multiple processors per chip do not guar-
antee lower power; it’s certainly feasible to design a multicore chip that uses more
power. The potential is just that it’s possible to continue to improve performance
by replacing a high-clock-rate, inefficient core with several lower-clock-rate, effi-
cient cores. As technology to shrink transistors improves, it can shrink both capac-
itance and the supply voltage a bit so that we can get a modest increase in the
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number of cores per generation. For example, for the past few years, Intel has been
adding two cores per generation in their higher-end chips.

As we will see in Chapters 4 and 5, performance is now a programmer’s bur-
den. The programmers’ La-Z-Boy era of relying on a hardware designer to make
their programs go faster without lifting a finger is officially over. If programmers
want their programs to go faster with each generation, they must make their pro-
grams more parallel.

The popular version of Moore’s law—increasing performance with each gen-
eration of technology—is now up to programmers.

Falling prey to Amdahl’s heartbreaking law.

Virtually every practicing computer architect knows Amdahl’s Law. Despite this,
we almost all occasionally expend tremendous effort optimizing some feature before
we measure its usage. Only when the overall speedup is disappointing do we recall
that we should have measured first before we spent so much effort enhancing it!

A single point of failure.

The calculations of reliability improvement using Amdahl’s Law on page 53 show
that dependability is no stronger than the weakest link in a chain. No matter how
much more dependable we make the power supplies, as we did in our example, the
single fan will limit the reliability of the disk subsystem. This Amdahl’s Law
observation led to a rule of thumb for fault-tolerant systems to make sure that every
component was redundant so that no single component failure could bring down
the whole system. Chapter 6 shows how a software layer avoids single points of
failure inside WSCs.

Hardware enhancements that increase performance also improve energy
efficiency, or are at worst energy neutral.

Esmacilzadeh et al. (2011) measured SPEC2006 on just one core of a 2.67 GHz
Intel Core 17 using Turbo mode (Section 1.5). Performance increased by a factor
of 1.07 when the clock rate increased to 2.94 GHz (or a factor of 1.10), but the 17
used a factor of 1.37 more joules and a factor of 1.47 more watt hours!

Benchmarks remain valid indefinitely.

Several factors influence the usefulness of a benchmark as a predictor of real per-
formance, and some change over time. A big factor influencing the usefulness of a
benchmark is its ability to resist “benchmark engineering” or “benchmarketing.”
Once a benchmark becomes standardized and popular, there is tremendous pres-
sure to improve performance by targeted optimizations or by aggressive interpre-
tation of the rules for running the benchmark. Short kernels or programs that spend
their time in a small amount of code are particularly vulnerable.

For example, despite the best intentions, the initial SPEC89 benchmark suite
included a small kernel, called matrix300, which consisted of eight different
300 x 300 matrix multiplications. In this kernel, 99% of the execution time was
in a single line (see SPEC, 1989). When an IBM compiler optimized this inner loop
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(using a good idea called blocking, discussed in Chapters 2 and 4), performance
improved by a factor of 9 over a prior version of the compiler! This benchmark
tested compiler tuning and was not, of course, a good indication of overall perfor-
mance, nor of the typical value of this particular optimization.

Figure 1.19 shows that if we ignore history, we may be forced to repeat it.
SPEC Cint2006 had not been updated for a decade, giving compiler writers sub-
stantial time to hone their optimizers to this suite. Note that the SPEC ratios of all
benchmarks but libquantum fall within the range of 16-52 for the AMD computer
and from 22 to 78 for Intel. Libquantum runs about 250 times faster on AMD and
7300 times faster on Intel! This “miracle” is a result of optimizations by the Intel
compiler that automatically parallelizes the code across 22 cores and optimizes
memory by using bit packing, which packs together multiple narrow-range inte-
gers Lo save memory space and thus memory bandwidth. If we drop this benchmark
and recalculate the geometric means, AMD SPEC Cint2006 falls from 31.9 to 26.5
and Intel from 63.7 to 41.4. The Intel computer is now about 1.5 times as fast as the
AMD computer instead of 2.0 if we include libquantum, which is surely closer to
their real relative performances. SPECCPU2017 dropped libquantum.

To illustrate the short lives of benchmarks, Figure 1.17 on page 43 lists the
status of all 82 benchmarks from the various SPEC releases; Gec is the lone sur-
vivor from SPEC89. Amazingly, about 70% of all programs from SPEC2000 or
earlier were dropped from the next release.

The rated mean time to failure of disks is 1,200,000 hours or almost 140 years,
so disks practically never fail.

The current marketing practices of disk manufacturers can mislead users. How is
such an MTTF calculated? Early in the process, manufacturers will put thousands
of disks in a room, run them for a few months, and count the number that fail. They
compute MTTF as the total number of hours that the disks worked cumulatively
divided by the number that failed.

One problem is that this number far exceeds the lifetime of a disk, which is
commonly assumed to be five years or 43,800 hours. For this large MTTF to make
some sense, disk manufacturers argue that the model corresponds to a user who
buys a disk and then keeps replacing the disk every 5 years—the planned lifetime
of the disk. The claim is that if many customers (and their great-grandchildren) did
this for the next century, on average they would replace a disk 27 times before a
failure, or about 140 years.

A more useful measure is the percentage of disks that fail, which is called
the annual failure rate. Assume 1000 disks with a 1,000,000-hour MTTF and
that the disks are used 24 hours a day. If you replaced failed disks with a new
one having the same reliability characteristics, the number that would fail in a year
(8760 hours) is

Number of disks x Time period 1000 disks x 8760 hours/drive

Failed digks = MTTF ~ 1,000,000 hours/failure

Stated alternatively, 0.9% would fail per year, or 4.4% over a 5-year lifetime.
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Moreover, those high numbers are quoted assuming limited ranges of temper-
ature and vibration; if they are exceeded, then all bets are off. A survey of disk
drives in real environments (Gray and van Ingen, 2005) found that 3%—7% of
drives failed per year, for an MTTF of about 125,000-300,000 hours. An even
larger study found annual disk failure rates of 2%—10% (Pinheiro et al., 2007).
Therefore the real-world MTTF is about 2-10 times worse than the
manufacturer’s MTTF.

Peak performance tracks observed performance.

The only universally true definition of peak performance is “the performance level
a computer is guaranteed not to exceed.” Figure 1.24 shows the percentage of peak
performance for four programs on four multiprocessors. It varies from 5% to 58%.
Since the gap is so large and can vary significantly by benchmark, peak perfor-
mance is not generally useful in predicting observed performance.

B rowers
[] 1tanium 2

[ NEC earth simulator
O Cray x1

Paratec LBMHD Cactus GTC
plasma physics materials science astrophysics magnetic fusion

Figure 1.24 Percentage of peak performance for four programs on four multiprocessors scaled to 64 processors.
The Earth Simulator and X1 are vector processors (see Chapter 4 and Appendix G). Not only did they deliver a higher
fraction of peak performance, but they also had the highest peak performance and the lowest clock rates. Except for
the Paratec program, the Power 4 and Itanium 2 systems delivered between 5% and 10% of their peak. From Oliker,
L, Canning, A, Carter, J,, Shalf, J,, Ethier, S., 2004. Scientific computations on modern parallel vector systems. In: Proc.
ACMV/IEEE Conf. on Supercomputing, November 6-12, 2004, Pittsburgh, Penn., p. 10.
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Fault detection can lower availability.

This apparently ironic pitfall is because computer hardware has a fair amount of
state that may not always be critical to proper operation. For example, it is not fatal
if an error occurs in a branch predictor, because only performance may suffer.

In processors that try to exploit ILP aggressively, not all the operations are
needed for correct execution of the program. Mukherjee et al. (2003) found that
less than 30% of the operations were potentially on the critical path for the
SPEC2000 benchmarks.

The same observation is true about programs. If a register is “dead™ in a pro-
gram—that is, the program will write the register before it is read again—then
errors do not matter. If you were to crash the program upon detection of a transient
fault in a dead register, it would lower availability unnecessarily.

The Sun Microsystems Division of Oracle lived this pitfall in 2000 with an L2
cache that included parity, but not error correction, in its Sun E3000 to Sun E10000
systems. The SRAMs they used to build the caches had intermittent faults, which
parity detected. If the data in the cache were not modified, the processor would
simply reread the data from the cache. Because the designers did not protect the
cache with ECC (error-correcting code), the operating system had no choice but
to report an error to dirty data and crash the program. Field engineers found no
problems on inspection in more than 90% of the cases.

To reduce the frequency of such errors, Sun modified the Solaris operating sys-
tem to “scrub” the cache by having a process that proactively wrote dirty data to
memory. Because the processor chips did not have enough pins to add ECC, the
only hardware option for dirty data was to duplicate the external cache, using the
copy without the parity error to correct the error.

The pitfall is in detecting faults without providing a mechanism to correct
them. These engineers are unlikely to design another computer without ECC on
external caches.

Concluding Remarks

This chapter has introduced a number of concepts and provided a quantitative
framework that we will expand on throughout the book. Starting with the last edi-
tion, energy efficiency is the constant companion to performance.

In Chapter 2, we start with the all-important area of memory system design. We
will examine a wide range of techniques that conspire to make memory look infi-
nitely large while still being as fast as possible. (Appendix B provides introductory
material on caches for readers without much experience and background with
them.) As in later chapters, we will see that hardware-software cooperation has
become a key to high-performance memory systems, just as it has to high-
performance pipelines. This chapter also covers virtual machines, an increasingly
important technique for protection.

In Chapter 3, we look at ILP, of which pipelining is the simplest and most com-
mon form. Exploiting ILP is one of the most important techniques for building
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high-speed uniprocessors. Chapter 3 begins with an extensive discussion of basic
concepts that will prepare you for the wide range of ideas examined in both chap-
ters. Chapter 3 uses examples that span about 40 years, drawing from one of the
first supercomputers (IBM 360/91) to the fastest processors on the market in 2017.
It emphasizes what is called the dvnamic or runtime approach to exploiting ILP. It
also talks about the limits to ILP ideas and introduces multithreading, which is fur-
ther developed in both Chapters 4 and 5. Appendix C provides introductory mate-
rial on pipelining for readers without much experience and background in
pipelining. (We expect it to be a review for many readers, including those of
our introductory text, Computer Organization and Design: The Hardware/Soft-
ware Interface.)

Chapter 4 explains three ways to exploit data-level parallelism. The classic and
oldest approach is vector architecture, and we start there to lay down the principles
of SIMD design. (Appendix G goes into greater depth on vector architectures.) We
next explain the SIMD instruction set extensions found in most desktop micropro-
cessors today. The third piece is an in-depth explanation of how modern graphics
processing units (GPUs) work. Most GPU descriptions are written from the pro-
grammer’s perspective, which usually hides how the computer really works. This
section explains GPUs from an insider’s perspective, including a mapping between
GPU jargon and more traditional architecture terms.

Chapter 5 focuses on the issue of achieving higher performance using multiple
processors, or multiprocessors. Instead of using parallelism to overlap individual
instructions, multiprocessing uses parallelism to allow multiple instruction streams
to be executed simultaneously on different processors. Our focus is on the domi-
nant form of multiprocessors, shared-memory multiprocessors, though we intro-
duce other types as well and discuss the broad issues that arise in any
multiprocessor. Here again we explore a variety of techniques, focusing on the
important ideas first introduced in the 1980s and 1990s.

Chapter 6 introduces clusters and then goes into depth on WSCs, which com-
puter architects help design. The designers of WSCs are the professional descen-
dants of the pioneers of supercomputers, such as Seymour Cray, in that they are
designing extreme computers. WSCs contain tens of thousands of servers, and
the equipment and the building that holds them cost nearly $200 million. The con-
cerns of price-performance and energy efficiency of the earlier chapters apply to
WSCs, as does the quantitative approach to making decisions.

Chapter 7 is new to this edition. It introduces domain-specific architectures as
the only path forward for improved performance and energy efficiency given the
end of Moore’s Law and Dennard scaling. It offers guidelines on how to build effec-
tive domain-specific architectures, introduces the exciting domain of deep neural
networks, describes four recent examples that take very different approaches to
accelerating neural networks, and then compares their cost-performance.

This book comes with an abundance of material online (see Preface for more
details), both to reduce cost and to introduce readers to a variety of advanced
topics. Figure 1.25 shows them all. Appendices A—C, which appear in the book,
will be a review for many readers.



66 Chapter One Fundamentals of Quantitative Design and Analysis

Appendix Title

Instruction Set Principles

Review of Memory Hierarchies

Pipelining: Basic and Intermediate Concepts

Storage Systems
Embedded Systems

Interconnection Networks

Vector Processors in More Depth
Hardware and Software for VLIW and EPIC
Large-Scale Multiprocessors and Scientific Applications

Computer Arithmetic

Survey of Instruction Set Architectures

Advanced Concepts on Address Translation
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Historical Perspectives and References

Figure 1.25 List of appendices.

In Appendix D, we move away from a processor-centric view and discuss
issues in storage systems. We apply a similar quantitative approach, but one based
on observations of system behavior and using an end-to-end approach to perfor-
mance analysis. This appendix addresses the important issue of how to store
and retrieve data efficiently using primarily lower-cost magnetic storage technol-
ogies. Our focus is on examining the performance of disk storage systems for typ-
ical I/O-intensive workloads, such as the OLTP benchmarks mentioned in this
chapter. We extensively explore advanced topics in RAID-based systems, which
use redundant disks to achieve both high performance and high availability.
Finally, Appendix D introduces queuing theory, which gives a basis for trading
off utilization and latency.

Appendix E applies an embedded computing perspective to the ideas of each of
the chapters and early appendices.

Appendix F explores the topic of system interconnect broadly, including wide
area and system area networks that allow computers to communicate.

Appendix H reviews VLIW hardware and software, which, in contrast, are less
popular than when EPIC appeared on the scene just before the last edition.

Appendix I describes large-scale multiprocessors for use in high-performance
computing.

Appendix J is the only appendix that remains from the first edition, and it
covers computer arithmetic.

Appendix K provides a survey of instruction architectures, including the
80x86, the IBM 360, the VAX, and many RISC architectures, including ARM,
MIPS, Power, RISC-V, and SPARC.

Appendix L is new and discusses advanced techniques for memory manage-
ment, focusing on support for virtual machines and design of address translation
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for very large address spaces. With the growth in cloud processors, these architec-
tural enhancements are becoming more important.
We describe Appendix M next.

Historical Perspectives and References

Appendix M (available online) includes historical perspectives on the key ideas
presented in each of the chapters in this text. These historical perspective sections
allow us to trace the development of an idea through a series of machines or to
describe significant projects. If you’re interested in examining the initial develop-
ment of an idea or processor or want further reading, references are provided at the
end of each history. For this chapter, see Section M.2, ““The Early Development of
Computers,” for a discussion on the early development of digital computers and
performance measurement methodologies.

As you read the historical material, you’ll soon come to realize that one of the
important benefits of the youth of computing, compared to many other engineering
fields, is that some of the pioneers are still alive—we can learn the history by
simply asking them!

Case Studies and Exercises by Diana Franklin

Case Study 1: Chip Fabrication Cost

Concepts illustrated by this case study

m Fabrication Cost
m Fabrication Yield

m  Defect Tolerance Through Redundancy

Many factors are involved in the price of a computer chip. Intel is spending $7 billion
to complete its Fab 42 fabrication facility for 7 nm technology. In this case study, we
explore a hypothetical company in the same situation and how different design deci-
sions involving fabrication technology, area, and redundancy affect the cost of chips.

[10/10] <1.6> Figure 1.26 gives hypothetical relevant chip statistics that influence
the cost of several current chips. In the next few exercises, you will be exploring the
effect of different possible design decisions for the Intel chips.

Die Size
Chip (mm?)

Estimated defect rate Manufacturing Transistors
(per cm?) N size (nm) (billion) Cores

BlueDragon 180

0.03 12 10 7.5 4

RedDragon 120

0.04 14 7 7.5 4

Phoenix® 200

0.04 14 7 12 8

Figure 1.26 Manufacturing cost factors for several hypothetical current and future processors.
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a. [10] <1.6> What is the yield for the Phoenix chip?
b. [10] <1.6> Why does Phoenix have a higher defect rate than BlueDragon?

[20/20/20/20] <1.6> They will sell a range of chips from that factory, and they
need to decide how much capacity to dedicate to each chip. Imagine that they will
sell two chips. Phoenix is a completely new architecture designed with 7 nm tech-
nology in mind, whereas RedDragon is the same architecture as their 10 nm Blue-
Dragon. Imagine that RedDragon will make a profit of $15 per defect-free
chip. Phoenix will make a profit of $30 per defect-free chip. Each wafer has
a 450 mm diameter.

a. [20] <1.6> How much profit do you make on each wafer of Phoenix chips?

b. [20] <1.6> How much profit do you make on each wafer of RedDragon
chips?

c. [20] <1.6> If your demand is 50,000 RedDragon chips per month and 25,000
Phoenix chips per month, and your facility can fabricate 70 wafers a month, how
many wafers should you make of each chip?

[20/20] <1.6> Your colleague at AMD suggests that, since the yield is so poor,
you might make chips more cheaply if you released multiple versions of the same
chip, just with different numbers of cores. For example, you could sell Phoenix®,
Phoenix”, Phoenix*, and Phoenix', which contain 8, 4, 2, and 1 cores on each chip,
respectively. If all eight cores are defect-free, then it is sold as Phoenix®. Chips with
four to seven defect-free cores are sold as Phoenix®, and those with two or three
defect-free cores are sold as Phoenix?. For simplification, calculate the yield for
a single core as the yield for a chip that is 1/8 the area of the original Phoenix chip.
Then view that yield as an independent probability of a single core being defect
free. Calculate the yield for each configuration as the probability of at the corre-
sponding number of cores being defect free.

a. [20] <1.6> What is the yield for a single core being defect free as well as the
yield for Phoenix*, Phoenix” and Phoenix'?

b. [5] <1.6> Using your results from part a, determine which chips you think it
would be worthwhile to package and sell, and why.

c. [10] <1.6> If it previously cost $20 dollars per chip to produce Phoenix®, what
will be the cost of the new Phoenix chips, assuming that there are no additional
costs associated with rescuing them from the trash?

d. [20] <1.6> You currently make a profit of $30 for each defect-free Phoenix®, and
you will sell each Phoenix* chip for $25. How much is your profit per Phoenix®
chip if you consider (i) the purchase price of Phoenix* chips to be entirely profit
and (i) apply the profit of Phoenix* chips to each Phoenix® chip in proportion
to how many are produced? Use the yields calculated from part Problem 1.3a,
not from problem 1.1a.
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Case Study 2: Power Consumption in Computer Systems

Concepts illustrated by this case study

m  Amdahl’s Law
m  Redundancy
s MTTF

m  Power Consumption

Power consumption in modern systems is dependent on a variety of factors, includ-
ing the chip clock frequency, efficiency, and voltage. The following exercises
explore the impact on power and energy that different design decisions and use
scenarios have.

[10/10/10/10] <1.5> A cell phone performs very different tasks, including stream-
ing music, streaming video, and reading email. These tasks perform very different
computing tasks. Battery life and overheating are two common problems for cell
phones, so reducing power and energy consumption are critical. In this problem,
we consider what to do when the user is not using the phone to its full computing
capacity. For these problems, we will evaluate an unrealistic scenario in which the
cell phone has no specialized processing units. Instead, it has a quad-core, general-
purpose processing unit. Each core uses 0.5 W at full use. For email-related tasks,
the quad-core is 8§ as fast as necessary.

a. [10] <1.5> How much dynamic energy and power are required compared to
running at full power? First, suppose that the quad-core operates for 1/8 of
the time and is idle for the rest of the time. That is, the clock is disabled for
/8 of the time, with no leakage occurring during that time. Compare total
dynamic energy as well as dynamic power while the core is running.

b. [10] <1.5> How much dynamic energy and power are required using fre-
quency and voltage scaling? Assume frequency and voltage are both reduced
to 1/8 the entire time.

c. [10] <1.6, 1.9> Now assume the voltage may not decrease below 50% of the
original voltage. This voltage is referred to as the voltage floor, and any voltage
lower than that will lose the state. Therefore, while the frequency can keep
decreasing, the voltage cannot. What are the dynamic energy and power savings
in this case?

d. [10] <1.5> How much energy is used with a dark silicon approach? This
involves creating specialized ASIC hardware for each major task and power
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gating those elements when not in use. Only one general-purpose core would be
provided, and the rest of the chip would be filled with specialized units.
For email, the one core would operate for 25% the time and be turned
completely off with power gating for the other 75% of the time. During the other
75% of the time, a specialized ASIC unit that requires 20% of the energy of a
core would be running.

[10/10/10] <1.5> As mentioned in Exercise 1.4, cell phones run a wide variety of
applications. We'll make the same assumptions for this exercise as the previous
one, that it is 0.5 W per core and that a quad core runs email 3x as fast.

a. [10] <1.5> Imagine that 80% of the code is parallelizable. By how much would
the frequency and voltage on a single core need to be increased in order to exe-
cute at the same speed as the four-way parallelized code?

b. [10] <1.5> What is the reduction in dynamic energy from using frequency and
voltage scaling in part a?

c. [10] <1.5> How much energy is used with a dark silicon approach? In this
approach, all hardware units are power gated, allowing them to turn off entirely
(causing no leakage). Specialized ASICs are provided that perform the same
computation for 20% of the power as the general-purpose processor. Imagine
that each core is power gated. The video game requires two ASICS and two
cores. How much dynamic energy does it require compared to the baseline
of parallelized on four cores?

[10/10/10/10/10/20] <1.5,1.9> General-purpose processes are optimized for
general-purpose computing. That is, they are optimized for behavior that is gener-
ally found across a large number of applications. However, once the domain is
restricted somewhat, the behavior that is found across a large number of the target
applications may be different from general-purpose applications. One such appli-
cation is deep learning or neural networks. Deep learning can be applied to many
different applications, but the fundamental building block of inference—using the
learned information to make decisions—is the same across them all. Inference
operations are largely parallel, so they are currently performed on graphics proces-
sing units, which are specialized more toward this type of computation, and not to
inference in particular. In a quest for more performance per watt, Google has cre-
ated a custom chip using tensor processing units to accelerate inference operations
in deep learning.1 This approach can be used for speech recognition and image
recognition, for example. This problem explores the trade-offs between this pro-
cess, a general-purpose processor (Haswell E5-2699 v3) and a GPU (NVIDIA
K80), in terms of performance and cooling. If heat is not removed from the com-
puter efficiently, the fans will blow hot air back onto the computer, not cold air.
Note: The differences are more than processor—on-chip memory and DRAM also
come into play. Therefore statistics are at a system level, not a chip level.

'Cite paper at this website: https://drive.google.com/file/d/0Bx4hafXDDq2EMzRNcy 1vSUxtcEk/view.
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a. [10] <1.9> If Google’s data center spends 70% of its time on workload A and
30% of its time on workload B when running GPUs, what is the speedup of the
TPU system over the GPU system?

b. [10] <1.9> If Google’s data center spends 70% of its time on workload A and
30% of its time on workload B when running GPUs, what percentage of Max
IPS does it achieve for each of the three systems?

c. [15] <1.5, 1.9> Building on (b), assuming that the power scales linearly from
idle to busy power as IPS grows from 0% to 100%, what is the performance per
watt of the TPU system over the GPU system?

d. [10] <1.9> If another data center spends 40% of its time on workload A, 10%
of its time on workload B, and 50% of its time on workload C, what are the
speedups of the GPU and TPU systems over the general-purpose system?

e. [10] <1.5> A cooling door for a rack costs $4000 and dissipates 14 kW (into
the room; additional cost is required to get it out of the room). How many
Haswell-, NVIDIA-, or Tensor-based servers can you cool with one cooling
door, assuming TDP in Figures 1.27 and 1.287

f. [20] <1.5> Typical server farms can dissipate a maximum of 200 W per square
foot. Given that a server rack requires 11 square feet (including front and back
clearance), how many servers from part (e) can be placed on a single rack, and
how many cooling doors are required?

System Chip TDP Idle power Busy power
General-purpose Haswell E5-2699 v3 504 W 159 W 455 W
Graphics processor NVIDIA K80 1838 W 357TW 991 W
Custom ASIC TPU 861 W 290 W 384 W

Figure 1.27 Hardware characteristics for general-purpose processor, graphical processing unit-based or custom
ASIC-based system, including measured power (cite ISCA paper).

Throughput % Max IPS
System Chip
A B C A B C
General-purpose Haswell E5-2699 v3 5482 13,194 12,000 42% 100% 90%
Graphics processor NVIDIA K80 13,461 36,465 15,000 37% 100% 40%
Custom ASIC TPU 225,000 280,000 2000 80% 100% 1%

Figure 1.28 Performance characteristics for general-purpose processor, graphical processing unit-based or
custom ASIC-based system on two neural-net workloads (cite ISCA paper). Workloads A and B are from published
results. Workload C is a fictional, more general-purpose application.
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1.7

1.8

19

Exercises

[10/15/15/10/10] < 1.4, 1.5> One challenge for architects is that the design created
today will require several years of implementation, verification, and testing before
appearing on the market. This means that the architect must project what the tech-
nology will be like several years in advance. Sometimes, this is difficult to do.

a. [10] <1.4> According to the trend in device scaling historically observed by
Moore’s Law, the number of transistors on a chip in 2025 should be how many
times the number in 20157

b. [15] <1.5> The increase in performance once mirrored this trend. Had perfor-
mance continued to climb at the same rate as in the 1990s, approximately what
performance would chips have over the VAX-11/780 in 20257

c. [15] <1.5> At the current rate of increase of the mid-2000s, what is a more
updated projection of performance in 20257

d. [10] <1.4> What has limited the rate of growth of the clock rate, and what are
architects doing with the extra transistors now to increase performance?

e. [10] <1.4> The rate of growth for DRAM capacity has also slowed down. For
20 years, DRAM capacity improved by 60% each year. If 8 Gbit DRAM was
first available in 2015, and 16 Gbit is not available until 2019, what is the cur-
rent DRAM growth rate?

[10/10] <1.5> You are designing a system for a real-time application in which
specific deadlines must be met. Finishing the computation faster gains nothing,
You find that your system can execute the necessary code, in the worst case, twice
as fast as necessary.

a. [10] <1.5> How much energy do you save if you execute at the current speed
and turn off the system when the computation is complete?

b. [10] <1.5> How much energy do you save if you set the voltage and frequency
to be half as much?

[10/10/20/20] <1.5> Server farms such as Google and Yahoo! provide enough
compute capacity for the highest request rate of the day. Imagine that most of
the time these servers operate at only 60% capacity. Assume further that the power
does not scale linearly with the load; that is, when the servers are operating at 60%
capacity, they consume 90% of maximum power. The servers could be turned off,
but they would take too long to restart in response to more load. A new system has
been proposed that allows for a quick restart but requires 20% of the maximum
power while in this “barely alive” state.

a. [10] <1.5> How much power savings would be achieved by turning off 60% of
the servers?

b. [10] <1.5> How much power savings would be achieved by placing 60% of
the servers in the “barely alive” state?
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¢. [20] <1.5> How much power savings would be achieved by reducing the volt-
age by 20% and frequency by 40%?

d. [20] <1.5> How much power savings would be achieved by placing 30% of
the servers in the “barely alive” state and 30% off?

[10/10/20] <1.7> Availability is the most important consideration for designing
servers, followed closely by scalability and throughput.

a. [10] <1.7> We have a single processor with a failure in time (FIT) of 100. What
is the mean time to failure (MTTEF) for this system?

b. [10] <1.7> If it takes one day to get the system running again, what is the avail-
ability of the system?

¢. [20] <1.7> Imagine that the government, to cut costs, is going to build a super-
computer out of inexpensive computers rather than expensive, reliable com-
puters. What is the MTTF for a system with 1000 processors? Assume that
if one fails, they all fail.

[20/20/20] < 1.1, 1.2, 1.7> In a server farm such as that used by Amazon or eBay, a
single failure does not cause the entire system to crash. Instead, it will reduce the
number of requests that can be satisfied at any one time.

a. [20] <1.7> If a company has 10,000 computers, each with an MTTF of 35 days,
and it experiences catastrophic failure only if 1/3 of the computers fail, what is
the MTTF for the system?

b. [20] <1.1, 1.7> If it costs an extra $1000, per computer, to double the MTTF,
would this be a good business decision? Show your work.

¢. [20] <1.2> Figure 1.3 shows, on average, the cost of downtimes, assuming that
the cost is equal at all times of the year. For retailers, however, the Christmas
season is the most profitable (and therefore the most costly time to lose sales). If
a catalog sales center has twice as much traffic in the fourth quarter as every
other quarter, what is the average cost of downtime per hour during the fourth
quarter and the rest of the year?

[20/10/10/10/15] <1.9> In this exercise, assume that we are considering enhanc-
ing a quad-core machine by adding encryption hardware to it. When computing
encryption operations, it is 20 times faster than the normal mode of execution.
We will define percentage of encryption as the percentage of time in the original
execution that is spent performing encryption operations. The specialized hard-
ware increases power consumption by 2%.
a. [20] <1.9> Draw a graph that plots the speedup as a percentage of the compu-
tation spent performing encryption. Label the y-axis “Net speedup™ and label
the x-axis “Percent encryption.”

b. [10] <1.9> With what percentage of encryption will adding encryption hard-
ware result in a speedup of 27

¢. [10] <1.9> What percentage of time in the new execution will be spent on
encryption operations if a speedup of 2 is achieved?
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1.15

d. [15] <1.9> Suppose you have measured the percentage of encryption to be
50%. The hardware design group estimates it can speed up the encryption hard-
ware even more with significant additional investment. You wonder whether
adding a second unit in order to support parallel encryption operations would
be more useful. Imagine that in the original program, 90% of the encryption
operations could be performed in parallel. What is the speedup of providing
two or four encryption units, assuming that the parallelization allowed is limited
to the number of encryption units?

[15/10] <1.9> Assume that we make an enhancement to a computer that improves
some mode of execution by a factor of 10. Enhanced mode is used 50% of the time,
measured as a percentage of the execution time when the enhanced mode is in use.
Recall that Amdahl’s Law depends on the fraction of the original, unenhanced exe-
cution time that could make use of enhanced mode. Thus we cannot directly use
this 50% measurement to compute speedup with Amdahl’s Law.

a. [15] <1.9> What is the speedup we have obtained from fast mode?

b. [10] <1.9> What percentage of the original execution time has been converted
to fast mode?

[20/20/15] <1.9> When making changes to optimize part of a processor, it is often
the case that speeding up one type of instruction comes at the cost of slowing down
something else. For example, if we put in a complicated fast floating-point unit,
that takes space, and something might have to be moved farther away from the
middle to accommodate it, adding an extra cycle in delay to reach that unit. The
basic Amdahl’s Law equation does not take into account this trade-off.

a. [20] <1.9> If the new fast floating-point unit speeds up floating-point opera-
tions by, on average, 2x, and floating-point operations take 20% of the original
program’s execution time, what is the overall speedup (ignoring the penalty to
any other instructions)?

b. [20] <1.9> Now assume that speeding up the floating-point unit slowed down
data cache accesses, resulting in a 1.5x slowdown (or 2/3 speedup). Data cache
accesses consume 10% of the execution time. What is the overall speedup now?

¢ [15] <1.9> After implementing the new floating-point operations, what per-
centage of execution time is spent on floating-point operations? What percent-
age is spent on data cache accesses?

[10/10/20/20] <1.10> Your company has just bought a new 22-core processor,
and you have been tasked with optimizing your software for this processor.
You will run four applications on this system, but the resource requirements are
not equal. Assume the system and application characteristics listed in Table 1.1.

Table 1.1 Four applications

Application A B C D
% resources needed 41 27 18 14
% parallelizable 50 80 60 90
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The percentage of resources of assuming they are all run in serial. Assume
that when you parallelize a portion of the program by X, the speedup for that
portion is X.

a.

b.

[10] <1.10> How much speedup would result from running application A on
the entire 22-core processor, as compared to running it serially?

[10] <1.10> How much speedup would result from running application D on
the entire 22-core processor, as compared to running it serially?

[20] <1.10> Given that application A requires 41% of the resources, if we stat-
ically assign it 41% of the cores, what is the overall speedup if A is run paral-
lelized but everything else is run serially?

. [20] <1.10> What is the overall speedup if all four applications are statically

assigned some of the cores, relative to their percentage of resource needs, and
all run parallelized?

. [10] <1.10> Given acceleration through parallelization, what new percentage

of the resources are the applications receiving, considering only active time on
their statically-assigned cores?

[10/20/20/20/25] <1.10> When parallelizing an application, the ideal speedup is
speeding up by the number of processors. This is limited by two things: percentage
of the application that can be parallelized and the cost of communication.
Amdahl’s Law takes into account the former but not the latter.

a.

b.

[10] <1.10> What is the speedup with N processors if 80% of the application is
parallelizable, ignoring the cost of communication?

[20] <1.10> What is the speedup with eight processors if, for every processor
added, the communication overhead is 0.5% of the original execution time.

[20] <1.10> What is the speedup with eight processors if, for every time the
number of processors is doubled, the communication overhead is increased
by 0.5% of the original execution time?

. [20] <1.10> What is the speedup with N processors if, for every time the num-

ber of processors is doubled, the communication overhead is increased by 0.5%
of the original execution time?

. [25] <1.10> Write the general equation that solves this question: What is the

number of processors with the highest speedup in an application in which P% of
the original execution time is parallelizable, and, for every time the number of
processors is doubled, the communication is increased by 0.5% of the original
execution time?
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Memory Hierarchy
Design

Ideally one would desire an indefinitely large memory capacity
such that any particular... word would be immediately available...
We are... forced to recognize the possibility of constructing a
hierarchy of memories each of which has greater capacity than the
preceding but which is less quickly accessible.

A. W. Burks, H. H. Goldstine,
and J. von Neumann,
Preliminary Discussion of the
Logical Design of an Electronic
Computing Instrument (1946).
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2.1

Introduction

Computer pioneers correctly predicted that programmers would want unlimited
amounts of fast memory. An economical solution to that desire is a memory hierar-
chy, which takes advantage of locality and trade-offs in the cost-performance of
memory technologies. The principle of locality, presented in the first chapter, says
that most programs do not access all code or data uniformly. Locality occurs in time
(temporal locality) and in space (spatial locality). This principle plus the guideline
that for a given implementation technology and power budget, smaller hardware
can be made faster led to hierarchies based on memories of different speeds and
sizes. Figure 2.1 shows several different multilevel memory hierarchies, including
typical sizes and speeds of access. As Flash and next generation memory technol-
ogies continue to close the gap with disks in cost per bit, such technologies are likely
to increasingly replace magnetic disks for secondary storage. As Figure 2.1 shows,
these technologies are already used in many personal computers and increasingly in
servers, where the advantages in performance, power, and density are significant.

Because fast memory is more expensive, a memory hierarchy is organized into
several levels—each smaller, faster, and more expensive per byte than the next
lower level, which is farther from the processor. The goal is to provide a memory
system with a cost per byte that is almost as low as the cheapest level of memory
and a speed almost as fast as the fastest level. In most cases (but not all), the data
contained in a lower level are a superset of the next higher level. This property,
called the inclusion property, is always required for the lowest level of the hierar-
chy, which consists of main memory in the case of caches and secondary storage
(disk or Flash) in the case of virtual memory.

The importance of the memory hierarchy has increased with advances in per-
formance of processors. Figure 2.2 plots single processor performance projections
against the historical performance improvement in time to access main memory.
The processor line shows the increase in memory requests per second on average
(i.e., the inverse of the latency between memory references), while the memory line
shows the increase in DRAM accesses per second (i.e., the inverse of the DRAM
access latency), assuming a single DRAM and a single memory bank. The reality is
more complex because the processor request rate is not uniform, and the memory
system typically has multiple banks of DRAMs and channels. Although the gap in
access time increased significantly for many years, the lack of significant perfor-
mance improvement in single processors has led to a slowdown in the growth of
the gap between processors and DRAM.

Because high-end processors have multiple cores, the bandwidth requirements
are greater than for single cores. Although single-core bandwidth has grown more
slowly in recent years, the gap between CPU memory demand and DRAM band-
width continues to grow as the numbers of cores grow. A modern high-end desktop
processor such as the Intel Core i7 6700 can generate two data memory references
per core each clock cycle. With four cores and a 4.2 GHz clock rate, the i7 can
generate a peak of 32.8 billion 64-bit data memory references per second, in addi-
tion to a peak instruction demand of about 12.8 billion 128-bit instruction
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(A) Memory hierarchy for a personal mobile device
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Desktop Size: 2000 bytes 64 KB 256 KB 8-32 MB 8-64 GB 256 GB-2 TB
Speed: 300 ps 1ns 3-10ns 10-20ns 50-100 ns 50-100 uS
(B) Memory hierarchy for a laptop or a desktop
Memory Disk storage
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(C) Memory hierarchy for server

Figure 2.1 The levels in a typical memory hierarchy in a personal mobile device (PMD), such as a cell phone or
tablet (A), in a laptop or desktop computer (B), and in a server (C). As we move farther away from the processor, the
memory in the level below becomes slower and larger. Note that the time units change by a factor of 10° from pico-
seconds to milliseconds in the case of magnetic disks and that the size units change by a factor of 10'® from thou-
sands of bytes to tens of terabytes. If we were to add warehouse-sized computers, as opposed to just servers, the
capacity scale would increase by three to six orders of magnitude. Solid-state drives (55Ds) composed of Flash are
used exclusively in PMDs, and heavily in both laptops and desktops. In many desktops, the primary storage system is
SSD, and expansion disks are primarily hard disk drives (HDDs). Likewise, many servers mix SSDs and HDDs.
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Figure 2.2 Starting with 1980 performance as a baseline, the gap in performance,
measured as the difference in the time between processor memory requests (for
a single processor or core) and the latency of a DRAM access, is plotted over time.
In mid-2017, AMD, Intel and Nvidia all announced chip sets using versions of HBM
technology. Note that the vertical axis must be on a logarithmic scale to record the size
of the processor-DRAM performance gap. The memory baseline is 64 KiB DRAM in 1980,
with a 1.07 per year performance improvement in latency (see Figure 2.4 on page 88).
The processor line assumes a 1.25 improvement per year until 1986, a 1.52 improve-
ment until 2000, a 1.20 improvement between 2000 and 2005, and only small improve-
ments in processor performance (on a per-core basis) between 2005 and 2015. As you
can see, until 2010 memory access times in DRAM improved slowly but consistently;
since 2010 the improvement in access time has reduced, as compared with the earlier
periods, although there have been continued improvements in bandwidth. See
Figure 1.1 in Chapter 1 for more information.

references; this is a total peak demand bandwidth of 409.6 GiB/s! This incredible
bandwidth is achieved by multiporting and pipelining the caches; by using three
levels of caches, with two private levels per core and a shared L3; and by using
a separate instruction and data cache at the first level. In contrast, the peak band-
width for DRAM main memory, using two memory channels, is only 8% of the
demand bandwidth (34.1 GiB/s). Upcoming versions are expected to have an
L4 DRAM cache using embedded or stacked DRAM (see Sections 2.2 and 2.3).

Traditionally, designers of memory hierarchies focused on optimizing average
memory access time, which is determined by the cache access time, miss rate, and
miss penalty. More recently, however, power has become a major consideration. In
high-end microprocessors, there may be 60 MiB or more of on-chip cache, and a
large second- or third-level cache will consume significant power both as leakage
when not operating (called static power) and as active power, as when performing a
read or write (called dynamic power), as described in Section 2.3. The problem is
even more acute in processors in PMDs where the CPU is less aggressive and the
power budget may be 20 to 50 times smaller. In such cases, the caches can account
for 25% to 50% of the total power consumption. Thus more designs must consider
both performance and power trade-offs, and we will examine both in this chapter.
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Basics of Memory Hierarchies: A Quick Review

The increasing size and thus importance of this gap led to the migration of the
basics of memory hierarchy into undergraduate courses in computer architecture,
and even to courses in operating systems and compilers. Thus we’ll start with
a quick review of caches and their operation. The bulk of the chapter, however,
describes more advanced innovations that attack the processor—memory
performance gap.

When a word is not found in the cache, the word must be fetched from a lower
level in the hierarchy (which may be another cache or the main memory) and
placed in the cache before continuing. Multiple words, called a block (or line),
are moved for efficiency reasons, and because they are likely to be needed soon
due to spatial locality. Each cache block includes a tag to indicate which memory
address it corresponds to.

A key design decision is where blocks (or lines) can be placed in a cache. The
most popular scheme is set associative, where a set is a group of blocks in the
cache. A block is first mapped onto a set, and then the block can be placed any-
where within that set. Finding a block consists of first mapping the block address to
the set and then searching the set—usually in parallel—to find the block. The set is
chosen by the address of the data:

(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the cache placement is called n-way set associative.
The end points of set associativity have their own names. A direct-mapped cache
has just one block per set (so a block is always placed in the same location), and a
fully associative cache has just one set (so a block can be placed anywhere).

Caching data that is only read is easy because the copy in the cache and mem-
ory will be identical. Caching writes is more difficult; for example, how can the
copy in the cache and memory be kept consistent? There are two main strategies.
A write-through cache updates the item in the cache and writes through to update
main memory. A write-back cache only updates the copy in the cache. When the
block is about to be replaced, it is copied back to memory. Both write strategies can
use a write buffer to allow the cache to proceed as soon as the data are placed in the
buffer rather than wait for full latency to write the data into memory.

One measure of the benefits of different cache organizations is miss rate. Miss
rate is simply the fraction of cache accesses that result in a miss—that is, the
number of accesses that miss divided by the number of accesses.

To gain insights into the causes of high miss rates, which can inspire better
cache designs, the three Cs model sorts all misses into three simple categories:

m  Compulsory—The very first access to a block cannot be in the cache, so the
block must be brought into the cache. Compulsory misses are those that occur
even if you were to have an infinite-sized cache.

m  Capacity—If the cache cannot contain all the blocks needed during execution
of a program, capacity misses (in addition to compulsory misses) will occur
because of blocks being discarded and later retrieved.
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m  Conflict—If the block placement strategy is not fully associative, conflict mis-
ses (in addition to compulsory and capacity misses) will occur because a block
may be discarded and later retrieved if multiple blocks map to its set and
accesses to the different blocks are intermingled.

Figure B.8 on page 24 shows the relative frequency of cache misses broken down
by the three Cs. As mentioned in Appendix B, the three C’s model is conceptual,
and although its insights usually hold, it is not a definitive model for explaining the
cache behavior of individual references.

As we will see in Chapters 3 and 5, multithreading and multiple cores add com-
plications for caches, both increasing the potential for capacity misses as well as
adding a fourth C, for coherency misses due to cache flushes to keep multiple
caches coherent in a multiprocessor; we will consider these issues in Chapter 5.

However, miss rate can be a misleading measure for several reasons. Therefore
some designers prefer measuring misses per instruction rather than misses per
memory reference (miss rate). These two are related:

Misses Miss rate x Memory accesses . Memory accesses
= = Miss rate X ——————

Instruction Instruction count Instruction

(This equation is often expressed in integers rather than fractions, as misses per
1000 instructions.)

The problem with both measures is that they don’t factor in the cost of a miss.
A better measure is the average memory access time,

Average memory access time = Hit time + Miss rate x Miss penalty

where hit time 1s the time to hit in the cache and miss penalty is the time to replace
the block from memory (that is, the cost of a miss). Average memory access time is
still an indirect measure of performance; although it is a better measure than miss
rate, it is not a substitute for execution time. In Chapter 3 we will see that specu-
lative processors may execute other instructions during a miss, thereby reducing
the effective miss penalty. The use of multithreading (introduced in Chapter 3) also
allows a processor to tolerate misses without being forced to idle. As we will exam-
ine shortly, to take advantage of such latency tolerating techniques, we need caches
that can service requests while handling an outstanding miss.

If this material is new to you, or if this quick review moves too quickly, see
Appendix B. It covers the same introductory material in more depth and includes
examples of caches from real computers and quantitative evaluations of their
effectiveness.

Section B.3 in Appendix B presents six basic cache optimizations, which we
quickly review here. The appendix also gives quantitative examples of the benefits
of these optimizations. We also comment briefly on the power implications of
these trade-offs.

1. Larger block size to reduce miss rate—The simplest way to reduce the miss rate
is to take advantage of spatial locality and increase the block size. Larger blocks
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reduce compulsory misses, but they also increase the miss penalty. Because
larger blocks lower the number of tags, they can slightly reduce static power.
Larger block sizes can also increase capacity or conflict misses, especially in
smaller caches. Choosing the right block size is a complex trade-off that
depends on the size of cache and the miss penalty.

2. Bigger caches to reduce miss rate—The obvious way to reduce capacity misses
is to increase cache capacity. Drawbacks include potentially longer hit time of
the larger cache memory and higher cost and power. Larger caches increase
both static and dynamic power.

3. Higher associativity to reduce miss rate—QObviously, increasing associativity
reduces conflict misses. Greater associativity can come at the cost of increased
hit time. As we will see shortly, associativity also increases power consumption.

4. Multilevel caches to reduce miss penalty—A difficult decision is whether to
make the cache hit time fast, to keep pace with the high clock rate of proces-
sors, or to make the cache large to reduce the gap between the processor
accesses and main memory accesses. Adding another level of cache between
the original cache and memory simplifies the decision. The first-level cache
can be small enough to match a fast clock cycle time, yet the second-level
(or third-level) cache can be large enough to capture many accesses that would
go to main memory. The focus on misses in second-level caches leads to larger
blocks, bigger capacity, and higher associativity. Multilevel caches are more
power-efficient than a single aggregate cache. If L1 and L2 refer, respectively,
to first- and second-level caches, we can redefine the average memory access
time:

Hit timey ; + Miss rate;; x (Hit time; , + Miss rate;, x Miss penalty; ,)

5. Giving priority to read misses over writes to reduce miss penalty—A write
buffer is a good place to implement this optimization. Write buffers create haz-
ards because they hold the updated value of a location needed on a read miss—
that is, a read-after-write hazard through memory. One solution is to check the
contents of the write buffer on a read miss. If there are no conflicts, and if the
memory system is available, sending the read before the writes reduces the miss
penalty. Most processors give reads priority over writes. This choice has little
effect on power consumption.

6. Avoiding address translation during indexing of the cache to reduce hit time—
Caches must cope with the translation of a virtual address from the processor to
a physical address to access memory. (Virtual memory is covered in
Sections 2.4 and B.4.) A common optimization is to use the page offset—the
part that is identical in both virtual and physical addresses—to index the cache,
as described in Appendix B, page B.38. This virtual index/physical tag method
introduces some system complications and/or limitations on the size and struc-
ture of the L1 cache, but the advantages of removing the translation lookaside
buffer (TLB) access from the critical path outweigh the disadvantages.
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2.2

Note that each of the preceding six optimizations has a potential disadvantage
that can lead to increased, rather than decreased, average memory access time.

The rest of this chapter assumes familiarity with the preceding material and the
details in Appendix B. In the “Putting It All Together” section, we examine the
memory hierarchy for a microprocessor designed for a high-end desktop or smaller
server, the Intel Core 17 6700, as well as one designed for use in a PMD, the Arm
Cortex-53, which is the basis for the processor used in several tablets and smart-
phones. Within each of these classes, there is a significant diversity in approach
because of the intended use of the computer.

Although the 17 6700 has more cores and bigger caches than the Intel proces-
sors designed for mobile uses, the processors have similar architectures. A proces-
sor designed for small servers, such as the i7 6700, or larger servers, such as the
Intel Xeon processors, typically is running a large number of concurrent processes,
often for different users. Thus memory bandwidth becomes more important, and
these processors offer larger caches and more aggressive memory systems to boost
that bandwidth.

In contrast, PMDs not only serve one user but generally also have smaller oper-
ating systems, usually less multitasking (running of several applications simulta-
neously), and simpler applications. PMDs must consider both performance and
energy consumption, which determines battery life. Before we dive into more
advanced cache organizations and optimizations, one needs to understand the
various memory technologies and how they are evolving.

Memory Technology and Optimizations

...the one single development that put computers on their feet was the
invention of a reliable form of memory, namely, the core memory. ...Its cost
was reasonable, it was reliable and, because it was reliable, it could in due
course be made large. (p. 209)

Maurice Wilkes.
Memoirs of a Computer Pioneer (1985)

This section describes the technologies used in a memory hierarchy, specifically in
building caches and main memory. These technologies are SRAM (static random-
access memory), DRAM (dynamic random-access memory), and Flash. The last of
these 1s used as an alternative to hard disks, but because its characteristics are based
on semiconductor technology, it is appropriate to include in this section.

Using SRAM addresses the need to minimize access time to caches. When a
cache miss occurs, however, we need to move the data from the main memory as
quickly as possible, which requires a high bandwidth memory. This high memory
bandwidth can be achieved by organizing the many DRAM chips that make up the
main memory into multiple memory banks and by making the memory bus wider,
or by doing both.

To allow memory systems to keep up with the bandwidth demands of modern
processors, memory innovations started happening inside the DRAM chips
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themselves. This section describes the technology inside the memory chips and
those innovative, internal organizations. Before describing the technologies and
options, we need to introduce some terminology.

With the introduction of burst transfer memories, now widely used in both
Flash and DRAM, memory latency is quoted using two measures—access time
and cycle time. Access time is the time between when a read is requested and when
the desired word arrives, and cycle time is the minimum time between unrelated
requests to memory.

Virtually all computers since 1975 have used DRAMSs for main memory and
SRAMIs for cache, with one to three levels integrated onto the processor chip with
the CPU. PMDs must balance power and performance, and because they have
more modest storage needs, PMDs use Flash rather than disk drives, a decision
increasingly being followed by desktop computers as well.

SRAM Technology

The first letter of SRAM stands for staric. The dynamic nature of the circuits in
DRAM requires data to be written back after being read—thus the difference
between the access time and the cycle time as well as the need to refresh. SRAMs
don’t need to refresh, so the access time is very close to the cycle time. SRAMs
typically use six transistors per bit to prevent the information from being disturbed
when read. SRAM needs only minimal power to retain the charge in standby mode.

In earlier times, most desktop and server systems used SRAM chips for their
primary, secondary, or tertiary caches. Today, all three levels of caches are inte-
grated onto the processor chip. In high-end server chips, there may be as many
as 24 cores and up to 60 MiB of cache; such systems are often configured with
128-256 GiB of DRAM per processor chip. The access times for large, third-level,
on-chip caches are typically two to eight times that of a second-level cache. Even
so, the L3 access time is usually at least five times faster than a DRAM access.

On-chip, cache SRAMs are normally organized with a width that matches the
block size of the cache, with the tags stored in parallel to each block. This allows an
entire block to be read out or written into a single cycle. This capability is partic-
ularly useful when writing data fetched after a miss into the cache or when writing
back a block that must be evicted from the cache. The access time to the cache
(ignoring the hit detection and selection in a set associative cache) is proportional
to the number of blocks in the cache, whereas the energy consumption depends
both on the number of bits in the cache (static power) and on the number of blocks
(dynamic power). Set associative caches reduce the initial access time to the mem-
ory because the size of the memory is smaller, but increase the time for hit detection
and block selection, a topic we will cover in Section 2.3.

DRAM Technology

As early DRAMSs grew in capacity, the cost of a package with all the necessary
address lines was an issue. The solution was to multiplex the address lines, thereby
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Figure 2.3 Internal organization of a DRAM. Modern DRAMs are organized in banks,
up to 16 for DDR4. Each bank consists of a series of rows. Sending an ACT (Activate)
command opens a bank and a row and loads the row into a row buffer. When the
row is in the buffer, it can be transferred by successive column addresses at whatever
the width of the DRAM is (typically 4, 8, or 16 bits in DDR4) or by specifying a block trans-
fer and the starting address. The Precharge commend (PRE) closes the bank and row
and readies it for a new access. Each command, as well as block transfers, are synchro-
nized with a clock. See the next section discussing SDRAM. The row and column signals
are sometimes called RAS and CAS, based on the original names of the signals.

cutting the number of address pins in half. Figure 2.3 shows the basic DRAM orga-
nization. One-half of the address is sent first during the row access strobe (RAS).
The other half of the address, sent during the column access strobe (CAS), follows
it. These names come from the internal chip organization, because the memory is
organized as a rectangular matrix addressed by rows and columns.

An additional requirement of DRAM derives from the property signified by its
first letter, D, for dynamic. To pack more bits per chip, DRAMs use only a single
transistor, which effectively acts as a capacitor, to store a bit. This has two implica-
tions: first, the sensing wires that detect the charge must be precharged, which sets
them “halfway” between a logical 0 and 1, allowing the small charge stored in the cell
to cause a 0 or 1 to be detected by the sense amplifiers. On reading, a row is placed
into a row buffer, where CAS signals can select a portion of the row to read out from
the DRAM. Because reading a row destroys the information, it must be written back
when the row is no longer needed. This write back happens in overlapped fashion, but
in early DRAMs, it meant that the cycle time before a new row could be read was
larger than the time to read a row and access a portion of that row.

In addition, to prevent loss of information as the charge in a cell leaks away
(assuming it is not read or written), each bit must be “refreshed” periodically. For-
tunately, all the bits in a row can be refreshed simultaneously just by reading that
row and writing it back. Therefore every DRAM in the memory system must
access every row within a certain time window, such as 64 ms. DRAM controllers
include hardware to refresh the DRAMs periodically.

This requirement means that the memory system is occasionally unavailable
because it is sending a signal telling every chip to refresh. The time for a refresh
is a row activation and a precharge that also writes the row back (which takes
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roughly 2/3 of the time to get a datum because no column select is needed), and this
is required for each row of the DRAM. Because the memory matrix in a DRAM is
conceptually square, the number of steps in a refresh is usually the square root of
the DRAM capacity. DRAM designers try to keep time spent refreshing to less
than 5% of the total time. So far we have presented main memory as if it operated
like a Swiss train, consistently delivering the goods exactly according to schedule.
In fact, with SDRAMs, a DRAM controller (usually on the processor chip) tries to
optimize accesses by avoiding opening new rows and using block transfer when
possible. Refresh adds another unpredictable factor.

Amdahl suggested as a rule of thumb that memory capacity should grow linearly
with processor speed to keep a balanced system. Thus a 1000 MIPS processor should
have 1000 MiB of memory. Processor designers rely on DRAMs to supply that
demand. In the past, they expected a fourfold improvement in capacity every three
years, or 55% per year. Unfortunately, the performance of DRAMs is growing at a
much slower rate. The slower performance improvements arise primarily because of
smaller decreases in the row access time, which is determined by issues such as
power limitations and the charge capacity (and thus the size) of an individual mem-
ory cell. Before we discuss these performance trends in more detail, we need to
describe the major changes that occurred in DRAMs starting in the mid-1990s.

Improving Memory Performance Inside
a DRAM Chip: SDRAMs

Although very early DRAMs included a buffer allowing multiple column accesses
to a single row, without requiring a new row access, they used an asynchronous
interface, which meant that every column access and transfer involved overhead
to synchronize with the controller. In the mid-1990s, designers added a clock sig-
nal to the DRAM interface so that the repeated transfers would not bear that over-
head, thereby creating synchronous DRAM (SDRAM). In addition to reducing
overhead, SDRAMs allowed the addition of a burst transfer mode where multiple
transfers can occur without specifying a new column address. Typically, eight or
more 16-bit transfers can occur without sending any new addresses by placing the
DRAM in burst mode. The inclusion of such burst mode transfers has meant that
there is a significant gap between the bandwidth for a stream of random accesses
versus access (o a block of data.

To overcome the problem of getting more bandwidth from the memory as
DRAM density increased, DRAMS were made wider. Initially, they offered a
four-bit transfer mode: in 2017, DDR2, DDR3, and DDR DRAMS had up to 4, 8,
or 16 bit buses.

In the early 2000s, a further innovation was introduced: double data rate
(DDR), which allows a DRAM to transfer data both on the rising and the falling
edge of the memory clock, thereby doubling the peak data rate.

Finally, SDRAMs introduced banks to help with power management, improve
access time, and allow interleaved and overlapped accesses to different banks.
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Access to different banks can be overlapped with each other, and each bank has its
own row buffer. Creating multiple banks inside a DRAM effectively adds another
segment to the address, which now consists of bank number, row address, and col-
umn address. When an address is sent that designates a new bank, that bank must
be opened, incurring an additional delay. The management of banks and row
buffers is completely handled by modern memory control interfaces, so that when
a subsequent access specifies the same row for an open bank, the access can happen
quickly, sending only the column address.

To initiate a new access, the DRAM controller sends a bank and row number
(called Activate in SDRAMs and formerly called RAS—row select). That com-
mand opens the row and reads the entire row into a buffer. A column address
can then be sent, and the SDRAM can transfer one or more data items, depending
on whether it is a single item request or a burst request. Before accessing a new
row, the bank must be precharged. If the row is in the same bank, then the pre-
charge delay is seen; however, if the row is in another bank, closing the row
and precharging can overlap with accessing the new row. In synchronous DRAMs,
each of these command cycles requires an integral number of clock cycles.

From 1980 to 1995, DRAMs scaled with Moore’s Law, doubling capacity
every 18 months (or a factor of 4 in 3 years). From the mid-1990s to 2010, capacity
increased more slowly with roughly 26 months between a doubling. From 2010 to
2016, capacity only doubled! Figure 2.4 shows the capacity and access time for
various generations of DDR SDRAMSs. From DDRI1 to DDR3, access times
improved by a factor of about 3, or about 7% per year. DDR4 improves power
and bandwidth over DDR3, but has similar access latency.

As Figure 2.4 shows, DDR is a sequence of standards. DDR2 lowers power
from DDRI1 by dropping the voltage from 2.5 to 1.8 V and offers higher clock
rates: 266, 333, and 400 MHz. DDR3 drops voltage to 1.5 V and has a maximum
clock speed of 800 MHz. (As we discuss in the next section, GDDRS5 is a graphics

Best case access time (no precharge) Precharge needed
Production year Chip size DRAM type RAS time (ns) CAS time (ns) Total (ns) Total (ns)
2000 256M bit DDRI 21 21 42 63
2002 512M bit DDRI1 15 15 30 45
2004 1G bit DDR2 15 15 30 45
2006 2G bit DDR2 10 10 20 30
2010 4G bit DDR3 13 13 26 39
2016 8G bit DDR4 13 13 26 39

Figure 2.4 Capacity and access times for DDR SDRAMs by year of production. Access time is for arandom memory
word and assumes a new row must be opened. If the row is in a different bank, we assume the bank is precharged;
if the row is not open, then a precharge is required, and the access time is longer. As the number of banks has
increased, the ability to hide the precharge time has also increased. DDR4 SDRAMs were initially expected in
2014, but did not begin production until early 2016.
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Standard 1/0 clock rate M transfers/s DRAM name MiB/s/DIMM DIMM name
DDRI1 133 266 DDR266 2128 PC2100
DDRI1 150 300 DDR300 2400 PC2400
DDRI1 200 400 DDR400 3200 PC3200
DDR2 266 533 DDR2-533 4264 PC4300
DDR2 333 667 DDR2-667 5336 PC5300
DDR2 400 800 DDR2-800 6400 PC6400
DDR3 533 1066 DDR3-1066 8528 PC8500
DDR3 666 1333 DDR3-1333 10,664 PC10700
DDR3 800 1600 DDR3-1600 12,800 PC12800
DDR4 1333 2666 DDR4-2666 21,300 PC21300

Figure 2.5 Clock rates, bandwidth, and names of DDR DRAMS and DIMMs in 2016. Note the numerical relationship
between the columns. The third column is twice the second, and the fourth uses the number from the third column in
the name of the DRAM chip. The fifth column is eight times the third column, and a rounded version of this number is
used in the name of the DIMM. DDR4 saw significant first use in 2016.

RAM and is based on DDR3 DRAMs.) DDR4, which shipped in volume in early
2016, but was expected in 2014, drops the voltage to 1-1.2 V and has a maximum
expected clock rate of 1600 MHz. DDRS5 is unlikely to reach production quantities
until 2020 or later,

With the introduction of DDR, memory designers increasing focused on band-
width, because improvements in access time were difficult. Wider DRAMs, burst
transfers, and double data rate all contributed to rapid increases in memory band-
width. DRAMs are commonly sold on small boards called dual inline memory
modules (DIMMs) that contain 4-16 DRAM chips and that are normally organized
to be 8 bytes wide (+ ECC) for desktop and server systems. When DDR SDRAMs
are packaged as DIMMs, they are confusingly labeled by the peak DIMM band-
width. Therefore the DIMM name PC3200 comes from 200 MHz x 2 x 8 bytes,
or 3200 MiB/s; it is populated with DDR SDRAM chips. Sustaining the confusion,
the chips themselves are labeled with the number of bits per second rather than
their clock rate, so a 200 MHz DDR chip is called a DDR400. Figure 2.5 shows
the relationships’ 1/O clock rate, transfers per second per chip, chip bandwidth,
chip name, DIMM bandwidth, and DIMM name.

Reducing Power Consumption in SDRAMs

Power consumption in dynamic memory chips consists of both dynamic power
used in a read or write and static or standby power; both depend on the operating
voltage. In the most advanced DDR4 SDRAMs, the operating voltage has dropped
to 1.2 V, significantly reducing power versus DDR2 and DDR3 SDRAMs. The
addition of banks also reduced power because only the row in a single bank is read.
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Figure 2.6 Power consumption for a DDR3 SDRAM operating under three condi-
tions: low-power (shutdown) mode, typical system mode (DRAM is active 30% of
the time for reads and 15% for writes), and fully active mode, where the DRAM is
continuously reading or writing. Reads and writes assume bursts of eight transfers.
These data are based on a Micron 1.5V 2GB DDR3-1066, although similar savings occur
in DDR4 SDRAM:s.

In addition to these changes, all recent SDRAMSs support a power-down mode,
which is entered by telling the DRAM to ignore the clock. Power-down mode dis-
ables the SDRAM, except for internal automatic refresh (without which entering
power-down mode for longer than the refresh time will cause the contents of mem-
ory to be lost). Figure 2.6 shows the power consumption for three situations in a
2 GB DDR3 SDRAM. The exact delay required to return from low power mode
depends on the SDRAM, but a typical delay is 200 SDRAM clock cycles.

Graphics Data RAMs

GDRAMSs or GSDRAMs (Graphics or Graphics Synchronous DRAMs) are a spe-
cial class of DRAMs based on SDRAM designs but tailored for handling the higher
bandwidth demands of graphics processing units. GDDRS is based on DDR3 with
earlier GDDRs based on DDR2. Because graphics processor units (GPUs; see
Chapter 4) require more bandwidth per DRAM chip than CPUs, GDDRs have
several important differences:

1. GDDRs have wider interfaces: 32-bits versus 4, 8, or 16 in current designs.

2. GDDRs have a higher maximum clock rate on the data pins. To allow a higher
transfer rate without incurring signaling problems, GDRAMS normally connect
directly to the GPU and are attached by soldering them to the board, unlike
DRAMSs, which are normally arranged in an expandable array of DIMMs.

Altogether, these characteristics let GDDRs run at two to five times the bandwidth
per DRAM versus DDR3 DRAMs.
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Packaging Innovation: Stacked or Embedded DRAMs

The newest innovation in 2017 in DRAMs is a packaging innovation, rather than a
circuit innovation. It places multiple DRAMs in a stacked or adjacent fashion
embedded within the same package as the processor. (Embedded DRAM also is
used to refer to designs that place DRAM on the processor chip.) Placing the
DRAM and processor in the same package lowers access latency (by shortening
the delay between the DRAMs and the processor) and potentially increases band-
width by allowing more and faster connections between the processor and DRAM;
thus several producers have called it high bandwidth memory (HBM).

One version of this technology places the DRAM die directly on the CPU die
using solder bump technology to connect them. Assuming adequate heat manage-
ment, multiple DRAM dies can be stacked in this fashion. Another approach stacks
only DRAMs and abuts them with the CPU in a single package using a substrate
(interposer) containing the connections. Figure 2.7 shows these two different inter-
connection schemes. Prototypes of HBM that allow stacking of up to eight chips
have been demonstrated. With special versions of SDRAMs, such a package could
contain 8 GiB of memory and have data transfer rates of 1 TB/s. The 2.5D tech-
nique is currently available. Because the chips must be specifically manufactured
to stack, it is quite likely that most early uses will be in high-end server chipsets.

In some applications, it may be possible to internally package enough DRAM
to satisfy the needs of the application. For example, a version of an Nvidia GPU
used as a node in a special-purpose cluster design is being developed using HBM,
and it is likely that HBM will become a successor to GDDRS for higher-end appli-
cations. In some cases, it may be possible to use HBM as main memory, although
the cost limitations and heat removal issues currently rule out this technology for
some embedded applications. In the next section, we consider the possibility of
using HBM as an additional level of cache.

DRAM

Vertical stacking (3D) Interposer stacking (2.5D)

Figure 2.7 Two forms of die stacking. The 2.5D form is available now. 3D stacking is
under development and faces heat management challenges due to the CPU.
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Flash Memory

Flash memory is a type of EEPROM (electronically erasable programmable read-
only memory), which is normally read-only but can be erased. The other key prop-
erty of Flash memory is that it holds its contents without any power. We focus on
NAND Flash, which has higher density than NOR Flash and is more suitable for
large-scale nonvolatile memories; the drawback is that access is sequential and
writing is slower, as we explain below.

Flash is used as the secondary storage in PMDs in the same manner that a disk
functions in a laptop or server. In addition, because most PMDs have a limited
amount of DRAM, Flash may also act as a level of the memory hierarchy, to a
much greater extent than it might have to do in a desktop or server with a main
memory that might be 10-100 times larger.

Flash uses a very different architecture and has different properties than stan-
dard DRAM. The most important differences are

1. Reads to Flash are sequential and read an entire page, which can be 512 bytes,
2 KiB, or 4 KiB. Thus NAND Flash has a long delay to access the first byte
from a random address (about 25 puS), but can supply the remainder of a page
block at about 40 MiB/s. By comparison, a DDR4 SDRAM takes about 40 ns to
the first byte and can transfer the rest of the row at 4.8 GiB/s. Comparing the
time to transfer 2 KiB, NAND Flash takes about 75 pS, while DDR SDRAM
takes less than 500 ns, making Flash about 150 times slower. Compared to mag-
netic disk, however, a 2 KiB read from Flash is 300 to 500 times faster. From
these numbers, we can see why Flash is not a candidate to replace DRAM for
main memory, but is a candidate to replace magnetic disk.

2. Flash memory must be erased (thus the name flash for the “flash” erase process)
before it is overwritten, and it is erased in blocks rather than individual bytes or
words. This requirement means that when data must be written to Flash, an
entire block must be assembled, either as new data or by merging the data to
be written and the rest of the block’s contents. For writing, Flash is about
1500 times slower then SDRAM, and about 8—15 times as fast as magnetic disk.

3. Flash memory is nonvolatile (i.e., it keeps its contents even when power is not
applied) and draws significantly less power when not reading or writing (from
less than half in standby mode to zero when completely inactive).

4. Flash memory limits the number of times that any given block can be written,
typically at least 100,000. By ensuring uniform distribution of written blocks
throughout the memory, a system can maximize the lifetime of a Flash memory
system. This technique, called write leveling, is handled by Flash memory
controllers.

5. High-density NAND Flash is cheaper than SDRAM but more expensive than
disks: roughly $2/GiB for Flash, $20 to $40/GiB for SDRAM, and $0.09/GiB
for magnetic disks. In the past five years, Flash has decreased in cost at a rate
that is almost twice as fast as that of magnetic disks.



2.2 Memory Technology and Optimizations 93

Like DRAM, Flash chips include redundant blocks to allow chips with small
numbers of defects to be used; the remapping of blocks is handled in the Flash chip.
Flash controllers handle page transfers, provide caching of pages, and handle write
leveling.

The rapid improvements in high-density Flash have been critical to the devel-
opment of low-power PMDs and laptops, but they have also significantly changed
both desktops, which increasingly use solid state disks, and large servers, which
often combine disk and Flash-based storage.

Phase-Change Memory Technology

Phase-change memory (PCM) has been an active research area for decades. The
technology typically uses a small heating element to change the state of a bulk sub-
strate between its crystalline form and an amorphous form, which have different
resistive properties. Each bit corresponds to a crosspoint in a two-dimensional net-
work that overlays the substrate. Reading is done by sensing the resistance between
an x and y point (thus the alternative name memristor), and writing is accomplished
by applying a current to change the phase of the material. The absence of an active
device (such as a transistor) should lead to lower costs and greater density than that
of NAND Flash.

In 2017 Micron and Intel began delivering Xpoint memory chips that are
believed to be based on PCM. The technology is expected to have much better
write durability than NAND Flash and, by eliminating the need to erase a page
before writing, achieve an increase in write performance versus NAND of up to
a factor of ten. Read latency is also better than Flash by perhaps a factor of
2-3. Initially, it is expected to be priced slightly higher than Flash, but the advan-
tages in write performance and write durability may make it attractive, especially
for SSDs. Should this technology scale well and be able to achieve additional cost
reductions, it may be the solid state technology that will depose magnetic disks,
which have reigned as the primary bulk nonvolatile store for more than 50 years.

Enhancing Dependability in Memory Systems

Large caches and main memories significantly increase the possibility of errors
occurring both during the fabrication process and dynamically during operation.
Errors that arise from a change in circuitry and are repeatable are called hard errors
or permanent faults. Hard errors can occur during fabrication, as well as from a
circuit change during operation (e.g., failure of a Flash memory cell after many
writes). All DRAMs, Flash memory, and most SRAMs are manufactured with
spare rows so that a small number of manufacturing defects can be accommodated
by programming the replacement of a defective row by a spare row. Dynamic
errors, which are changes to a cell’s contents, not a change in the circuitry, are
called soft errors or transient faults.

Dynamic errors can be detected by parity bits and detected and fixed by the use
of error correcting codes (ECCs). Because instruction caches are read-only, parity
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2.3

suffices. In larger data caches and in main memory, ECC is used to allow errors to
be both detected and corrected. Parity requires only one bit of overhead to detect a
single error in a sequence of bits. Because a multibit error would be undetected
with parity, the number of bits protected by a parity bit must be limited. One parity
bit per 8 data bits is a typical ratio. ECC can detect two errors and correct a single
error with a cost of 8 bits of overhead per 64 data bits.

In very large systems, the possibility of multiple errors as well as complete fail-
ure of a single memory chip becomes significant. Chipkill was introduced by IBM
to solve this problem, and many very large systems, such as IBM and SUN servers
and the Google Clusters, use this technology. (Intel calls their version SDDC.)
Similar in nature to the RAID approach used for disks, Chipkill distributes the data
and ECC information so that the complete failure of a single memory chip can be
handled by supporting the reconstruction of the missing data from the remaining
memory chips. Using an analysis by IBM and assuming a 10,000 processor server
with 4 GiB per processor yields the following rates of unrecoverable errors in three
years of operation:

m  Parity only: About 90,000, or one unrecoverable (or undetected) failure every
17 minutes.

m  ECC only: About 3500, or about one undetected or unrecoverable failure every
7.5 hours.

m  Chipkill: About one undetected or unrecoverable failure every 2 months.

Another way to look at this is to find the maximum number of servers (each
with 4 GiB) that can be protected while achieving the same error rate as demon-
strated for Chipkill. For parity, even a server with only one processor will have an
unrecoverable error rate higher than a 10,000-server Chipkill protected system. For
ECC, a 17-server system would have about the same failure rate as a 10,000-server
Chipkill system. Therefore Chipkill is a requirement for the 50,000-100,00 servers
in warehouse-scale computers (see Section 6.8 of Chapter 6).

Ten Advanced Optimizations of Cache Performance

The preceding average memory access time formula gives us three metrics for
cache optimizations: hit time, miss rate, and miss penalty. Given the recent trends,
we add cache bandwidth and power consumption to this list. We can classify the 10
advanced cache optimizations we examine into five categories based on these
metrics:

1. Reducing the hit time—Small and simple first-level caches and way-prediction.
Both techniques also generally decrease power consumption.

2. Increasing cache bandwidth—Pipelined caches, multibanked caches, and non-
blocking caches. These techniques have varying impacts on power consumption.
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3. Reducing the miss penalty—Critical word first and merging write buffers.
These optimizations have little impact on power.

4. Reducing the miss rate—Compiler optimizations. Obviously any improvement
at compile time improves power consumption.

5. Reducing the miss penalty or miss rate via parallelism—Hardware prefetching
and compiler prefetching. These optimizations generally increase power con-
sumption, primarily because of prefetched data that are unused.

In general, the hardware complexity increases as we go through these optimi-
zations. In addition, several of the optimizations require sophisticated compiler
technology, and the final one depends on HBM. We will conclude with a summary
of the implementation complexity and the performance benefits of the 10 tech-
niques presented in Figure 2.18 on page 113. Because some of these are straight-
forward, we cover them briefly; others require more description.

First Optimization: Small and Simple First-Level Caches
to Reduce Hit Time and Power

The pressure of both a fast clock cycle and power limitations encourages limited
size for first-level caches. Similarly, use of lower levels of associativity can reduce
both hit time and power, although such trade-offs are more complex than those
involving size.

The critical timing path in a cache hit is the three-step process of addressing the
tag memory using the index portion of the address, comparing the read tag value to
the address, and setting the multiplexor to choose the correct data item if the cache is
set associative. Direct-mapped caches can overlap the tag check with the transmis-
sion of the data, effectively reducing hit time. Furthermore, lower levels of associa-
tivity will usually reduce power because fewer cache lines must be accessed.

Although the total amount of on-chip cache has increased dramatically with
new generations of microprocessors, because of the clock rate impact arising from
a larger L1 cache, the size of the L1 caches has recently increased either slightly or
not at all. In many recent processors, designers have opted for more associativity
rather than larger caches. An additional consideration in choosing the associativity
is the possibility of eliminating address aliases; we discuss this topic shortly.

One approach to determining the impact on hit time and power consumption in
advance of building a chip is to use CAD tools. CACTI is a program to estimate the
access time and energy consumption of alternative cache structures on CMOS
microprocessors within 10% of more detailed CAD tools. For a given minimum
feature size, CACTI estimates the hit time of caches as a function of cache size,
associativity, number of read/write ports, and more complex parameters.
Figure 2.8 shows the estimated impact on hit time as cache size and associativity
are varied. Depending on cache size, for these parameters, the model suggests that
the hit time for direct mapped is slightly faster than two-way set associative and
that two-way set associative is 1.2 times as fast as four-way and four-way is 1.4
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Figure 2.8 Relative access times generally increase as cache size and associativity
are increased. These data come from the CACTI model 6.5 by Tarjan et al. (2005).
The data assume typical embedded SRAM technology, a single bank, and 64-byte
blocks. The assumptions about cache layout and the complex trade-offs between inter-
connect delays (that depend on the size of a cache block being accessed) and the cost of
tag checks and multiplexing lead to results that are occasionally surprising, such as the
lower access time for a 64 KiB with two-way set associativity versus direct mapping. Sim-
ilarly, the results with eight-way set associativity generate unusual behavior as cache size
is increased. Because such observations are highly dependent on technology and
detailed design assumptions, tools such as CACTI serve to reduce the search space.
These results are relative; nonetheless, they are likely to shift as we move to more recent
and denser semiconductor technologies.

times as fast as eight-way. Of course, these estimates depend on technology as well
as the size of the cache, and CACTI must be carefully aligned with the technology;
Figure 2.8 shows the relative tradeoffs for one technology.

Example

Answer

Using the data in Figure B.8 in Appendix B and Figure 2.8, determine whether a
32 KiB four-way set associative L1 cache has a faster memory access time than a
32 KiB two-way set associative L1 cache. Assume the miss penalty to L2 is
15 times the access time for the faster L1 cache. Ignore misses beyond L2. Which
has the faster average memory access time?

Let the access time for the two-way set associative cache be 1. Then, for the two-
way cache,
Average memory access time,. ., = Hit time + Miss rate x Miss penalty
=1+0.038x15=1.38
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For the four-way cache, the access time is 1.4 times longer. The elapsed time of the
miss penalty is 15/1.4=10.1. Assume 10 for simplicity:

Average memory access timey.,,, = Hit time;.,.,y x 1.4+ Miss rate x Miss penalty
=1.4+0.037x10=1.77

Clearly, the higher associativity looks like a bad trade-off; however, because cache
access in modern processors is often pipelined, the exact impact on the clock cycle
time is difficult to assess.

Energy consumption is also a consideration in choosing both the cache size and
associativity, as Figure 2.9 shows. The energy cost of higher associativity ranges
from more than a factor of 2 to negligible in caches of 128 or 256 KiB when going
from direct mapped to two-way set associative.

As energy consumption has become critical, designers have focused on ways
to reduce the energy needed for cache access. In addition to associativity, the
other key factor in determining the energy used in a cache access is the number
of blocks in the cache because it determines the number of “rows” that are
accessed. A designer could reduce the number of rows by increasing the block size
(holding total cache size constant), but this could increase the miss rate, especially
in smaller L1 caches.

10.0 4
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9.0 W 4-way [0 8-way
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Figure 2.9 Energy consumption per read increases as cache size and associativity
are increased. As in the previous figure, CACTI is used for the modeling with the same
technology parameters. The large penalty for eight-way set associative caches is due to
the cost of reading out eight tags and the corresponding data in parallel.
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An alternative is to organize the cache in banks so that an access activates
only a portion of the cache, namely the bank where the desired block resides.
The primary use of multibanked caches is to increase the bandwidth of the cache,
an optimization we consider shortly. Multibanking also reduces energy because
less of the cache is accessed. The L3 caches in many multicores are logically uni-
fied, but physically distributed, and effectively act as a multibanked cache. Based
on the address of a request, only one of the physical L3 caches (a bank) is actually
accessed. We discuss this organization further in Chapter 5.

In recent designs, there are three other factors that have led to the use of higher
associativity in first-level caches despite the energy and access time costs. First,
many processors take at least 2 clock cycles to access the cache and thus the impact
of a longer hit time may not be critical. Second, to keep the TLB out of the critical
path (a delay that would be larger than that associated with increased associativity),
almost all L1 caches should be virtually indexed. This limits the size of the cache to
the page size times the associativity because then only the bits within the page are
used for the index. There are other solutions to the problem of indexing the cache
before address translation is completed, but increasing the associativity, which also
has other benefits, is the most attractive. Third, with the introduction of multi-
threading (see Chapter 3), conflict misses can increase, making higher associativity
more attractive.

Second Optimization: Way Prediction to Reduce Hit Time

Another approach reduces conflict misses and yet maintains the hit speed of direct-
mapped cache. In way prediction, extra bits are kept in the cache to predict the way
(or block within the set) of the next cache access. This prediction means the mul-
tiplexor is set early to select the desired block, and in that clock cycle, only a single
tag comparison is performed in parallel with reading the cache data. A miss results
in checking the other blocks for matches in the next clock cycle.

Added to each block of a cache are block predictor bits. The bits select which of
the blocks to try on the next cache access. If the predictor is correct, the cache
access latency is the fast hit time. If not, it tries the other block, changes the
way predictor, and has a latency of one extra clock cycle. Simulations suggest that
set prediction accuracy is in excess of 90% for a two-way set associative cache and
80% for a four-way set associative cache, with better accuracy on I-caches than
D-caches. Way prediction yields lower average memory access time for a two-
way set associative cache if it is at least 10% faster, which is quite likely. Way
prediction was first used in the MIPS R10000 in the mid-1990s. It is popular in
processors that use two-way set associativity and was used in several ARM pro-
cessors, which have four-way set associative caches. For very fast processors, it
may be challenging to implement the one-cycle stall that is critical to keeping
the way prediction penalty small.

An extended form of way prediction can also be used to reduce power con-
sumption by using the way prediction bits to decide which cache block to actually
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access (the way prediction bits are essentially extra address bits); this approach,
which might be called way selection, saves power when the way prediction is cor-
rect but adds significant time on a way misprediction, because the access, not just
the tag match and selection, must be repeated. Such an optimization is likely to
make sense only in low-power processors. Inoue et al. (1999) estimated that using
the way selection approach with a four-way set associative cache increases the
average access time for the I-cache by 1.04 and for the D-cache by 1.13 on the
SPEC95 benchmarks, but it yields an average cache power consumption relative
to a normal four-way set associative cache that is 0.28 for the I-cache and 0.35 for
the D-cache. One significant drawback for way selection is that it makes it difficult
to pipeline the cache access; however, as energy concerns have mounted, schemes
that do not require powering up the entire cache make increasing sense.

Example

Answer

Assume that there are half as many D-cache accesses as [-cache accesses and that
the I-cache and D-cache are responsible for 25% and 15% of the processor’s power
consumption in a normal four-way set associative implementation. Determine if
way selection improves performance per watt based on the estimates from the
preceding study.

For the I-cache, the savings in power is 25 x 0.28 =0.07 of the total power, while
for the D-cache itis 15 x 0.35=0.05 for a total savings of 0.12. The way prediction
version requires 0.88 of the power requirement of the standard four-way cache. The
increase in cache access time is the increase in I-cache average access time plus
one-half the increase in D-cache access time, or 1.04+0.5 x0.13=1.11 times lon-
ger. This result means that way selection has 0.90 of the performance of a standard
four-way cache. Thus way selection improves performance per joule very slightly
by a ratio of 0.90/0.88 = 1.02. This optimization is best used where power rather
than performance is the key objective.

Third Optimization: Pipelined Access and Multibanked
Caches to Increase Bandwidth

These optimizations increase cache bandwidth either by pipelining the cache access
or by widening the cache with multiple banks to allow multiple accesses per clock;
these optimizations are the dual to the superpipelined and superscalar approaches to
increasing instruction throughput. These optimizations are primarily targeted at L1,
where access bandwidth constrains instruction throughput. Multiple banks are also
used in L2 and L3 caches, but primarily as a power-management technique.
Pipelining L1 allows a higher clock cycle, at the cost of increased latency. For
example, the pipeline for the instruction cache access for Intel Pentium processors
in the mid-1990s took 1 clock cycle; for the Pentium Pro through Pentium I1I in the
mid-1990s through 2000, it took 2 clock cycles: and for the Pentium 4, which
became available in 2000, and the current Intel Core i7, it takes 4 clock cycles.
Pipelining the instruction cache effectively increases the number of pipeline stages,
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Figure 2.10 Four-way interleaved cache banks using block addressing. Assuming
64 bytes per block, each of these addresses would be multiplied by 64 to get byte
addressing.

leading to a greater penalty on mispredicted branches. Correspondingly, pipelining
the data cache leads to more clock cycles between issuing the load and using the
data (see Chapter 3). Today, all processors use some pipelining of L1, if only for
the simple case of separating the access and hit detection, and many high-speed
processors have three or more levels of cache pipelining.

It is easier to pipeline the instruction cache than the data cache because the pro-
cessor can rely on high performance branch prediction to limit the latency effects.
Many superscalar processors can issue and execute more than one memory refer-
ence per clock (allowing a load or store is common, and some processors allow
multiple loads). To handle multiple data cache accesses per clock, we can divide
the cache into independent banks, each supporting an independent access. Banks
were originally used to improve performance of main memory and are now used
inside modern DRAM chips as well as with caches. The Intel Core 17 has four
banks in L1 (to support up to 2 memory accesses per clock).

Clearly, banking works best when the accesses naturally spread themselves
across the banks, so the mapping of addresses to banks affects the behavior of
the memory system. A simple mapping that works well is to spread the addresses
of the block sequentially across the banks, which is called sequential interleaving.
For example, if there are four banks, bank 0 has all blocks whose address modulo 4
is 0, bank 1 has all blocks whose address modulo 4 is 1, and so on. Figure 2.10
shows this interleaving. Multiple banks also are a way to reduce power consump-
tion in both caches and DRAM.

Multiple banks are also useful in L2 or L3 caches, but for a different reason.
With multiple banks in L2, we can handle more than one outstanding L1 miss,
if the banks do not conflict. This is a key capability to support nonblocking caches,
our next optimization. The L2 in the Intel Core i7 has eight banks, while Arm
Cortex processors have used L2 caches with 1-4 banks. As mentioned earlier,
multibanking can also reduce energy consumption.

Fourth Optimization: Nonblocking Caches
to Increase Cache Bandwidth

For pipelined computers that allow out-of-order execution (discussed in Chapter 3),
the processor need not stall on a data cache miss. For example, the processor could
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continue fetching instructions from the instruction cache while waiting for the data
cache to return the missing data. A nonblocking cache or lockup-free cache esca-
lates the potential benefits of such a scheme by allowing the data cache to continue
to supply cache hits during a miss. This “hit under miss” optimization reduces the
effective miss penalty by being helpful during a miss instead of ignoring the
requests of the processor. A subtle and complex option is that the cache may further
lower the effective miss penalty if it can overlap multiple misses: a “hit under
multiple miss™ or “miss under miss” optimization. The second option is beneficial
only if the memory system can service multiple misses; most high-performance pro-
cessors (such as the Intel Core processors) usually support both, whereas many
lower-end processors provide only limited nonblocking support in L2.

To examine the effectiveness of nonblocking caches in reducing the cache miss
penalty, Farkas and Jouppi (1994) did a study assuming 8 KiB caches with a
14-cycle miss penalty (appropriate for the early 1990s). They observed a reduction
in the effective miss penalty of 20% for the SPECINT92 benchmarks and 30% for
the SPECFP92 benchmarks when allowing one hit under miss.

Li et al. (2011) updated this study to use a multilevel cache, more modern
assumptions about miss penalties, and the larger and more demanding
SPECCPU2006 benchmarks. The study was done assuming a model based on a
single core of an Intel i7 (see Section 2.6) running the SPECCPU2006 benchmarks.
Figure 2.11 shows the reduction in data cache access latency when allowing 1, 2,
and 64 hits under a miss; the caption describes further details of the memory
system. The larger caches and the addition of an L3 cache since the earlier
study have reduced the benefits with the SPECINT2006 benchmarks showing
an average reduction in cache latency of about 9% and the SPECFP2006 bench-
marks about 12.5%.

Example

Answer

Which is more important for floating-point programs: two-way set associativity or
hit under one miss for the primary data caches? What about integer programs?
Assume the following average miss rates for 32 KiB data caches: 5.2% for
floating-point programs with a direct-mapped cache, 4.9% for the programs with
a two-way set associative cache, 3.5% for integer programs with a direct-mapped
cache, and 3.2% for integer programs with a two-way set associative cache. Assume
the miss penalty to L2 is 10 cycles, and the L2 misses and penalties are the same.

For floating-point programs, the average memory stall times are

Miss ratepy x Miss penalty =5.2% x 10=0.52
Miss ratez way x Miss penalty = 4.9% % 10=0.49

The cache access latency (including stalls) for two-way associativity is 0.49/0.52
or 94% of direct-mapped cache. Figure 2.11 caption indicates that a hit under
one miss reduces the average data cache access latency for floating-point programs
to 87.5% of a blocking cache. Therefore, for floating-point programs, the
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Figure 2.11 The effectiveness of a nonblocking cache is evaluated by allowing 1, 2,
or 64 hits under a cache miss with 9 SPECINT (on the left) and 9 SPECFP (on the right)
benchmarks. The data memory system modeled after the Intel i7 consists of a 32 KiB L1
cache with a four-cycle access latency. The L2 cache (shared with instructions) is 256 KiB
with a 10-clock cycle access latency. The L3 is 2 MiB and a 36-cycle access latency. All the
caches are eight-way set associative and have a 64-byte block size. Allowing one hit
under miss reduces the miss penalty by 9% for the integer benchmarks and 12.5%
for the floating point. Allowing a second hit improves these results to 10% and 16%,
and allowing 64 results in little additional improvement.

direct-mapped data cache supporting one hit under one miss gives better perfor-
mance than a two-way set-associative cache that blocks on a miss.
For integer programs, the calculation is

Miss ratepy x Miss penalty = 3.5% x 10=0.35
Miss ratey.,y x Miss penalty =3.2% x 10 =0.32

The data cache access latency of a two-way set associative cache is thus 0.32/0.35
or 91% of direct-mapped cache, while the reduction in access latency when allow-
ing a hit under one miss is 9%, making the two choices about equal.

The real difficulty with performance evaluation of nonblocking caches is that a
cache miss does not necessarily stall the processor. In this case, it is difficult to
judge the impact of any single miss and thus to calculate the average memory
access time. The effective miss penalty is not the sum of the misses but the
nonoverlapped time that the processor is stalled. The benefit of nonblocking caches
is complex, as it depends upon the miss penalty when there are multiple misses, the
memory reference pattern, and how many instructions the processor can execute
with a miss outstanding.

In general, out-of-order processors are capable of hiding much of the miss
penalty of an L1 data cache miss that hits in the L2 cache but are not capable
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of hiding a significant fraction of a lower-level cache miss. Deciding how many
outstanding misses to support depends on a variety of factors:

m  The temporal and spatial locality in the miss stream, which determines whether
a miss can initiate a new access to a lower-level cache or to memory.

m  The bandwidth of the responding memory or cache.

= To allow more outstanding misses at the lowest level of the cache (where the
miss time is the longest) requires supporting at least that many misses at a
higher level, because the miss must initiate at the highest level cache.

m  The latency of the memory system.

The following simplified example illustrates the key idea.

Example

Answer

Assume a main memory access time of 36 ns and a memory system capable of a
sustained transfer rate of 16 GiB/s. If the block size is 64 bytes, what is the maximum
number of outstanding misses we need to support assuming that we can maintain the
peak bandwidth given the request stream and that accesses never conflict. If the prob-
ability of a reference colliding with one of the previous four is 50%, and we assume
that the access has to wait until the earlier access completes, estimate the number of
maximum outstanding references. For simplicity, ignore the time between misses.

In the first case, assuming that we can maintain the peak bandwidth, the memory
system can support (16 x 10)’/64 =250 million references per second. Because
each reference takes 36 ns, we can support 250 x 10° x 36 x 10~? =9 references.
If the probability of a collision is greater than 0, then we need more outstanding ref-
erences, because we cannot start work on those colliding references; the memory
system needs more independent references, not fewer! To approximate, we can sim-
ply assume that half the memory references do not have to be issued to the memory.
This means that we must support twice as many outstanding references, or 18.

In Li, Chen, Brockman, and Jouppi’s study, they found that the reduction in
CPI for the integer programs was about 7% for one hit under miss and about
12.7% for 64. For the floating-point programs, the reductions were 12.7% for
one hit under miss and 17.8% for 64. These reductions track fairly closely the
reductions in the data cache access latency shown in Figure 2.11.

Implementing a Nonblocking Cache

Although nonblocking caches have the potential to improve performance, they are
nontrivial to implement. Two initial types of challenges arise: arbitrating conten-
tion between hits and misses, and tracking outstanding misses so that we know
when loads or stores can proceed. Consider the first problem. In a blocking cache,
misses cause the processor to stall and no further accesses to the cache will occur
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until the miss is handled. In a nonblocking cache, however, hits can collide with
misses returning from the next level of the memory hierarchy. If we allow multiple
outstanding misses, which almost all recent processors do, it is even possible for
misses to collide. These collisions must be resolved, usually by first giving priority
to hits over misses, and second by ordering colliding misses (if they can occur).

The second problem arises because we need to track multiple outstanding mis-
ses. In a blocking cache, we always know which miss is returning, because only
one can be outstanding. In a nonblocking cache, this is rarely true. At first glance,
you might think that misses always return in order, so that a simple queue could be
kept to match a returning miss with the longest outstanding request. Consider,
however, a miss that occurs in L1. It may generate either a hit or miss in L2; if
L2 is also nonblocking, then the order in which misses are returned to L1 will
not necessarily be the same as the order in which they originally occurred. Multi-
core and other multiprocessor systems that have nonuniform cache access times
also introduce this complication.

When a miss returns, the processor must know which load or store caused the
miss, so that instruction can now go forward; and it must know where in the cache
the data should be placed (as well as the setting of tags for that block). In recent
processors, this information is kept in a set of registers, typically called the Miss
Status Handling Registers (MSHRs). If we allow n outstanding misses, there will
be n MSHRs, each holding the information about where a miss goes in the cache
and the value of any tag bits for that miss, as well as the information indicating
which load or store caused the miss (in the next chapter, you will see how this
is tracked). Thus, when a miss occurs, we allocate an MSHR for handling that miss,
enter the appropriate information about the miss, and tag the memory request with
the index of the MSHR. The memory system uses that tag when it returns the data,
allowing the cache system to transfer the data and tag information to the appropri-
ate cache block and “notify” the load or store that generated the miss that the data is
now available and that it can resume operation. Nonblocking caches clearly require
extra logic and thus have some cost in energy. It is difficult, however, to assess
their energy costs exactly because they may reduce stall time, thereby decreasing
execution time and resulting energy consumption.

In addition to the preceding issues, multiprocessor memory systems, whether
within a single chip or on multiple chips, must also deal with complex implemen-
tation issues related to memory coherency and consistency. Also, because cache mis-
ses are no longer atomic (because the request and response are split and may be
interleaved among multiple requests), there are possibilities for deadlock. For the
interested reader, Section 1.7 in online Appendix I deals with these issues in detail.

Fifth Optimization: Critical Word First and
Early Restart to Reduce Miss Penalty

This technique is based on the observation that the processor normally needs just
one word of the block at a time. This strategy is impatience: don’t wait for the full
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block to be loaded before sending the requested word and restarting the processor.
Here are two specific strategies:

m  Critical word first—Request the missed word first from memory and send it to
the processor as soon as it arrives; let the processor continue execution while
filling the rest of the words in the block.

m  Early restart—Fetch the words in normal order, but as soon as the requested
word of the block arrives, send it to the processor and let the processor continue
execution.

Generally, these techniques only benefit designs with large cache blocks
because the benefit is low unless blocks are large. Note that caches normally
continue to satisfy accesses to other blocks while the rest of the block is
being filled.

However, given spatial locality, there is a good chance that the next reference is
to the rest of the block. Just as with nonblocking caches, the miss penalty is not
simple to calculate. When there is a second request in critical word first, the effec-
tive miss penalty is the nonoverlapped time from the reference until the second
piece arrives. The benefits of critical word first and early restart depend on the size
of the block and the likelihood of another access to the portion of the block that has
not yet been fetched. For example, for SPECint2006 running on the i7 6700, which
uses early restart and critical word first, there is more than one reference made to a
block with an outstanding miss (1.23 references on average with a range from 0.5
to 3.0). We explore the performance of the 17 memory hierarchy in more detail in
Section 2.6.

Sixth Optimization: Merging Write Buffer
to Reduce Miss Penalty

Write-through caches rely on write buffers, as all stores must be sent to the next
lower level of the hierarchy. Even write-back caches use a simple buffer when
a block is replaced. If the write buffer is empty, the data and the full address
are written in the buffer, and the write is finished from the processor’s perspective;
the processor continues working while the write buffer prepares to write the word
to memory. If the buffer contains other modified blocks, the addresses can be
checked to see if the address of the new data matches the address of a valid write
buffer entry. If so, the new data are combined with that entry. Write merging is the
name of this optimization. The Intel Core i7, among many others, uses write
merging.

If the buffer is full and there is no address match, the cache (and processor)
must wait until the buffer has an empty entry. This optimization uses the memory
more efficiently because multiword writes are usually faster than writes performed
one word at a time. Skadron and Clark (1997) found that even a merging four-entry
write buffer generated stalls that led to a 5%—10% performance loss.
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Write address  V \4 A \%
100 1 | Mem[100] | 0 0 0
108 1 | Mem[108] | 0 0 0
116 1 | Mem[116] | 0 0 0
124 1 | Mem[124] | o 0 0

Write address  V \% \% \Y

100 1 | Mem[100] | 1 | Mem[108] | 1 | Mem[116] | 1 | Mem[124]

Figure 2.12 In this illustration of write merging, the write buffer on top does not use
write merging while the write buffer on the bottom does. The four writes are merged
into a single buffer entry with write merging; without it, the buffer is full even though
three-fourths of each entry is wasted. The buffer has four entries, and each entry holds
four 64-bit words. The address for each entry is on the left, with a valid bit (V) indicating
whether the next sequential 8 bytes in this entry are occupied. (Without write merging,
the words to the right in the upper part of the figure would be used only for instructions
that wrote multiple words at the same time.)

The optimization also reduces stalls because of the write buffer being full.
Figure 2.12 shows a write buffer with and without write merging. Assume we
had four entries in the write buffer, and each entry could hold four 64-bit words.
Without this optimization, four stores to sequential addresses would fill the buffer
at one word per entry, even though these four words when merged fit exactly
within a single entry of the write buffer.

Note that input/output device registers are often mapped into the physical
address space. These I/O addresses cannot allow write merging because separate
I/O registers may not act like an array of words in memory. For example, they may
require one address and data word per I/O register rather than use multiword writes
using a single address. These side effects are typically implemented by marking the
pages as requiring nonmerging write through by the caches.
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Seventh Optimization: Compiler Optimizations
to Reduce Miss Rate

Thus far, our techniques have required changing the hardware. This next technique
reduces miss rates without any hardware changes.

This magical reduction comes from optimized software—the hardware
designer’s favorite solution! The increasing performance gap between processors
and main memory has inspired compiler writers to scrutinize the memory hierarchy
to see if compile time optimizations can improve performance. Once again, research
is split between improvements in instruction misses and improvements in data mis-
ses. The optimizations presented next are found in many modern compilers.

Loop Interchange

Some programs have nested loops that access data in memory in nonsequential
order. Simply exchanging the nesting of the loops can make the code access the
data in the order in which they are stored. Assuming the arrays do not fit in the
cache, this technique reduces misses by improving spatial locality; reordering max-
imizes use of data in a cache block before they are discarded. For example, if X is a
two-dimensional array of size [5000,100] allocated so that x[ 1, ] and x[1, ]
+ 1] are adjacent (an order called row major because the array is laid out by rows),
then the two pieces of the following code show how the accesses can be optimized:

/* Before */
for (j=0; jJ<100; j=j+1)
for (i=0; i<5000; i=1+1)
x[11[J1=2*x[1103]:
/* After */
for (i=0; 1 <5000; 1=1i+1)
for (j=0; j<100; j=j+1)
x[110jl=2*x[110LJ];:

The original code would skip through memory in strides of 100 words, while the
revised version accesses all the words in one cache block before going to the next
block. This optimization improves cache performance without affecting the num-
ber of instructions executed.

Blocking

This optimization improves temporal locality to reduce misses. We are again deal-
ing with multiple arrays, with some arrays accessed by rows and some by columns.
Storing the arrays row by row (row major order) or column by column (column
major order) does not solve the problem because both rows and columns are used
in every loop iteration. Such orthogonal accesses mean that transformations such
as loop interchange still leave plenty of room for improvement.
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Figure 2.13 A snapshot of the three arrays x, y, and z when N=6 and i = 1. The age of accesses to the array
elements is indicated by shade: white means not yet touched, light means older accesses, and dark means newer
accesses. The elements of ¥ and 7 are read repeatedly to calculate new elements of x. The variables i, J, and k
are shown along the rows or columns used to access the arrays.

Instead of operating on entire rows or columns of an array, blocked algorithms
operate on submatrices or blocks. The goal is to maximize accesses to the data
loaded into the cache before the data are replaced. The following code example,
which performs matrix multiplication, helps motivate the optimization:

/* Before */
for (i=0;1i<N;i=1+1)
for (j=0; J<N; j=]j+1)
{(r=0;
for (k=0; k<N; k=k+1)
r=r+y[iJ[k]I*z[k]J[J];
x[11[3) =r;
b

The two inner loops read all N-by-N elements of z, read the same N elements in a
row of y repeatedly, and write one row of N elements of X. Figure 2.13 gives a
snapshot of the accesses to the three arrays. A dark shade indicates a recent
access, a light shade indicates an older access, and white means not yet accessed.

The number of capacity misses clearly depends on N and the size of the cache.
If it can hold all three N-by-N matrices, then all is well, provided there are no cache
conflicts. If the cache can hold one N- by - N matrix and one row of N, then at least
the Tth row of y and the array Z may stay in the cache. Less than that and misses
may occur for both X and z. In the worst case, there would be 2N°+ N? memory
words accessed for N* operations.

To ensure that the elements being accessed can fit in the cache, the original
code is changed to compute on a submatrix of size B by B. Two inner loops
now compute in steps of size B rather than the full length of X and z. B is called
the blocking factor. (Assume X is initialized to zero.)
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/* After */
for (jj=0;5Jj<N; jij=3j+B)
for (kk=0; kk < N; kk=kk+B)
for (i=0;i<N;i=1+1)
for(j=3j:J <min(jj+B,N);j=]7+1)
fr=20;
for (k=kk; k <min(kk+B,N); k =k+1)
r=r+y[i]lk]*z[kI[j]1:
x[11031=x[1103]+r;
Vs

Figure 2.14 illustrates the accesses to the three arrays using blocking. Looking
only at capacity misses, the total number of memory words accessed is 2N/B + N2
This total is an improvement by an approximate factor of B. Therefore blocking
exploits a combination of spatial and temporal locality, because ¥ benefits from
spatial locality and z benefits from temporal locality. Although our example uses
a square block (BxB), we could also use a rectangular block, which would be nec-
essary if the matrix were not square.

Although we have aimed at reducing cache misses, blocking can also be used to
help register allocation. By taking a small blocking size such that the block can be
held in registers, we can minimize the number of loads and stores in the program.

As we shall see in Section 4.8 of Chapter 4, cache blocking is absolutely nec-
essary to get good performance from cache-based processors running applications
using matrices as the primary data structure.

Eighth Optimization: Hardware Prefetching of Instructions
and Data to Reduce Miss Penalty or Miss Rate

Nonblocking caches effectively reduce the miss penalty by overlapping execution
with memory access. Another approach is to prefetch items before the processor
requests them. Both instructions and data can be prefetched, either directly into

Figure 2.14 The age of accesses to the arrays x, y, and z when B = 3. Note that, in contrast to Figure 2.13, a smaller
number of elements is accessed.
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the caches or into an external buffer that can be more quickly accessed than main
memory.

Instruction prefetch is frequently done in hardware outside of the cache. Typically,
the processor fetches two blocks on a miss: the requested block and the next consec-
utive block. The requested block is placed in the instruction cache when it returns, and
the prefetched block is placed in the instruction stream buffer. If the requested block is
present in the instruction stream buffer, the original cache request is canceled, the
block is read from the stream buffer, and the next prefetch request is issued.

A similar approach can be applied to data accesses (Jouppi, 1990). Palacharla
and Kessler (1994) looked at a set of scientific programs and considered multiple
stream buffers that could handle either instructions or data. They found that eight
stream buffers could capture 50%—70% of all misses from a processor with two
64 KiB four-way set associative caches, one for instructions and the other for data.

The Intel Core i7 supports hardware prefetching into both L1 and L2 with the
most common case of prefetching being accessing the next line. Some earlier Intel
processors used more aggressive hardware prefetching, but that resulted in reduced
performance for some applications, causing some sophisticated vsers to turn off the
capability.

Figure 2.15 shows the overall performance improvement for a subset of
SPEC2000 programs when hardware prefetching is turned on. Note that this figure
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Figure 2.15 Speedup because of hardware prefetching on Intel Pentium 4 with hardware prefetching turned
on for 2 of 12 SPECint2000 benchmarks and 9 of 14 SPECfp2000 benchmarks. Only the programs that benefit
the most from prefetching are shown; prefetching speeds up the missing 15 SPECCPU benchmarks by less than

15% (Boggs et al., 2004).
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includes only 2 of 12 integer programs, while it includes the majority of the
SPECCPU floating-point programs. We will return to our evaluation of prefetch-
ing on the i7 in Section 2.6.

Prefetching relies on utilizing memory bandwidth that otherwise would be
unused, but if it interferes with demand misses, it can actually lower performance.
Help from compilers can reduce useless prefetching. When prefetching works
well, its impact on power is negligible. When prefetched data are not used
or useful data are displaced, prefetching will have a very negative impact
on power.

Ninth Optimization: Compiler-Controlled Prefetching
to Reduce Miss Penalty or Miss Rate

An alternative to hardware prefetching is for the compiler to insert prefetch instruc-
tions to request data before the processor needs it. There are two flavors of
prefetch:

m  Register prefetch loads the value into a register.

m  Cache prefetch loads data only into the cache and not the register.

Either of these can be faulting or nonfaulting:; that is, the address does or does
not cause an exception for virtual address faults and protection violations. Using
this terminology, a normal load instruction could be considered a “faulting register
prefetch instruction.” Nonfaulting prefetches simply turn into no-ops if they would
normally result in an exception, which is what we want.

The most effective prefetch is “semantically invisible” to a program: it doesn’t
change the contents of registers and memory, and it cannot cause virtual memory
faults. Most processors today offer nonfaulting cache prefetches. This section
assumes nonfaulting cache prefetch, also called nonbinding prefetch.

Prefetching makes sense only if the processor can proceed while prefetching
the data; that is, the caches do not stall but continue to supply instructions and data
while waiting for the prefetched data to return. As you would expect, the data cache
for such computers is normally nonblocking.

Like hardware-controlled prefetching, the goal is to overlap execution with the
prefetching of data. Loops are the important targets because they lend themselves
to prefetch optimizations. If the miss penalty is small, the compiler just unrolls the
loop once or twice, and it schedules the prefetches with the execution. If the miss
penalty is large, it uses software pipelining (see Appendix H) or unrolls many times
to prefetch data for a future iteration.

Issuing prefetch instructions incurs an instruction overhead, however, so com-
pilers must take care to ensure that such overheads do not exceed the benefits.
By concentrating on references that are likely to be cache misses, programs can
avoid unnecessary prefetches while improving average memory access time
significantly.
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Example

Answer

For the following code, determine which accesses are likely to cause data cache
misses. Next, insert prefetch instructions to reduce misses. Finally, calculate the
number of prefetch instructions executed and the misses avoided by prefetching.
Let’s assume we have an 8 KiB direct-mapped data cache with 16-byte blocks, and
it is a write-back cache that does write allocate. The elements of a and D are 8 bytes
long because they are double-precision floating-point arrays. There are 3 rows and
100 columns for @ and 101 rows and 3 columns for b. Let’s also assume they are
not in the cache at the start of the program.

for(i=0;i<3;i=1+1)
for (j=0; j<100; j=j+1)
aliJlj] =bljIl0]*blj+1]L0];

The compiler will first determine which accesses are likely to cause cache misses;
otherwise, we will waste time on issuing prefetch instructions for data that would
be hits. Elements of a are written in the order that they are stored in memory, so
a will benefit from spatial locality: The even values of j will miss and the odd
values will hit. Because a has 3 rows and 100 columns, its accesses will lead to
3 x(100/2), or 150 misses.

The array D does not benefit from spatial locality because the accesses are not in
the order it is stored. The array b does benefit twice from temporal locality: the
same elements are accessed for each iteration of 1, and each iteration of ] uses
the same value of b as the last iteration. Ignoring potential conflict misses, the
misses because of b will be for b[J+1][0] accesses when i =0, and also
the first access to b[JJ[ 0] when J=0. Because J goes from 0 to 99 when
i =0, accesses to b lead to 100+ 1, or 101 misses.

Thus this loop will miss the data cache approximately 150 times for @ plus 101
times for b, or 251 misses.

To simplify our optimization, we will not worry about prefetching the first
accesses of the loop. These may already be in the cache, or we will pay the miss
penalty of the first few elements of a or b. Nor will we worry about suppressing the
prefetches at the end of the loop that try to prefetch beyond the end of a (a[ 1]
[100] ... ali][106]) and the end of b (b[1011[0] ... b[107]L0]). If
these were faulting prefetches, we could not take this luxury. Let’s assume that
the miss penalty is so large we need to start prefetching at least, say, seven itera-
tions in advance. (Stated alternatively, we assume prefetching has no benefit until
the eighth iteration.) We underline the changes to the preceding code needed to add
prefetching.

for (j=0; j<100; j=3+1){
prefetch(bl[j+71001);
[*Db(j,0) for7 iterations Tater */
prefetch(al0J[j+71);
/*a(0,j) for 7 iterations later */
al0JLjl=bLjIl0O] *bLj+1]1L0];:});
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for(i=1;1<3:;1i=1+1)
for (j=0; j<100; j=j+1){
prefetch(alillj+71);
/*a(i,j) for+7 iterations */
aliJlj]l=DblJI[0]*Db[J+1]1[0];}

This revised code prefetches a[1][7] through a[1][99] and b[7][0]
through b[100][0], reducing the number of nonprefetched misses to

m 7 misses for elements b[OJ[0], b[1J[07, ..., b[6][0] in the first loop
m 4 misses ([7/2]) forelements a[0][0],al0][1],...,al0][6] in the first
loop (spatial locality reduces misses to 1 per 16-byte cache block)

m 4 misses ([7/2]) for elements a[1]1[0], al1][1], ..., all][6] in the
second loop

m 4 misses ([7/2]) for elements a[ 210071, al2]1[1], ..., al2][6] in the

second loop

or a total of 19 nonprefetched misses. The cost of avoiding 232 cache misses is
executing 400 prefetch instructions, likely a good trade-off.

Example

Answer

Calculate the time saved in the preceding example. Ignore instruction cache misses
and assume there are no conflict or capacity misses in the data cache. Assume that
prefetches can overlap with each other and with cache misses, thereby transferring
at the maximum memory bandwidth. Here are the key loop times ignoring cache
misses: the original loop takes 7 clock cycles per iteration, the first prefetch loop
takes 9 clock cycles per iteration, and the second prefetch loop takes 8 clock cycles
per iteration (including the overhead of the outer for loop). A miss takes 100 clock
cycles.

The original doubly nested loop executes the multiply 3 x 100 or 300 times. Because
the loop takes 7 clock cycles per iteration, the total is 300 x 7 or 2100 clock cycles
plus cache misses. Cache misses add 251 x 100 or 25,100 clock cycles, giving a total
of 27,200 clock cycles. The first prefetch loop iterates 100 times; at 9 clock cycles
per iteration the total is 900 clock cycles plus cache misses. Now add 11 x 100 or
1100 clock cycles for cache misses, giving a total of 2000. The second loop executes
2 x 100 or 200 times, and at 8 clock cycles per iteration, it takes 1600 clock cycles
plus 8 x 100 or 800 clock cycles for cache misses. This gives a total of 2400 clock
cycles. From the prior example, we know that this code executes 400 prefetch
instructions during the 2000 + 2400 or 4400 clock cycles to execute these two loops.
If we assume that the prefetches are completely overlapped with the rest of the exe-
cution, then the prefetch code is 27,200/4400, or 6.2 times faster.
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Although array optimizations are easy to understand, modern programs are
more likely to use pointers. Luk and Mowry (1999) have demonstrated that
compiler-based prefetching can sometimes be extended to pointers as well. Of
10 programs with recursive data structures, prefetching all pointers when a node
is visited improved performance by 4%—31% in half of the programs. On the other
hand, the remaining programs were still within 2% of their original performance.
The issue is both whether prefetches are to data already in the cache and whether
they occur early enough for the data to arrive by the time it is needed.

Many processors support instructions for cache prefetch, and high-end proces-
sors (such as the Intel Core i7) often also do some type of automated prefetch in
hardware.

Tenth Optimization: Using HBM to Extend
the Memory Hierarchy

Because most general-purpose processors in servers will likely want more memory
than can be packaged with HBM packaging, it has been proposed that the in-
package DRAMs be used to build massive L4 caches, with upcoming technologies
ranging from 128 MiB to 1 GiB and more, considerably more than current on-chip
L3 caches. Using such large DRAM-based caches raises an issue: where do the
tags reside? That depends on the number of tags. Suppose we were to use a
64B block size; then a 1 GiB L4 cache requires 96 MiB of tags—far more static
memory than exists in the caches on the CPU. Increasing the block size to
4 KiB, yields a dramatically reduced tag store of 256 K entries or less than
1 MiB total storage, which is probably acceptable, given L3 caches of
4-16 MiB or more in next-generation, multicore processors. Such large block
sizes, however, have two major problems.

First, the cache may be used inefficiently when content of many blocks are not
needed; this is called the fragmentation problem, and it also occurs in virtual mem-
ory systems. Furthermore, transferring such large blocks is inefficient if much of
the data is unused. Second, because of the large block size, the number of distinct
blocks held in the DRAM cache is much lower, which can result in more misses,
especially for conflict and consistency misses.

One partial solution to the first problem is to add sublocking. Subblocking
allow parts of the block to be invalid, requiring that they be fetched on a miss. Sub-
blocking, however, does nothing to address the second problem.

The tag storage is the major drawback for using a smaller block size. One pos-
sible solution for that difficulty is to store the tags for L4 in the HBM. At first glance
this seems unworkable, because it requires two accesses to DRAM for each L4
access: one for the tags and one for the data itself. Because of the long access time
for random DRAM accesses, typically 100 or more processor clock cycles, such an
approach had been discarded. Loh and Hill (2011) proposed a clever solution to this
problem: place the tags and the data in the same row in the HBM SDRAM.
Although opening the row (and eventually closing it) takes a large amount of time,
the CAS latency to access a different part of the row is about one-third the new row
access time. Thus we can access the tag portion of the block first, and if it is a hit,
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then use a column access to choose the correct word. Loh and Hill (L.-H) have pro-
posed organizing the L4 HBM cache so that each SDRAM row consists of a set of
tags (at the head of the block) and 29 data segments, making a 29-way set associa-
tive cache. When L4 is accessed, the appropriate row is opened and the tags are
read; a hit requires one more column access to get the matching data.

Qureshi and Loh (2012) proposed an improvement called an alloy cache that
reduces the hit time. An alloy cache molds the tag and data together and uses a
direct mapped cache structure. This allows the L4 access time to be reduced to
a single HBM cycle by directly indexing the HBM cache and doing a burst transfer
of both the tag and data. Figure 2.16 shows the hit latency for the alloy cache, the
L-H scheme, and SRAM based tags. The alloy cache reduces hit time by more than
a factor of 2 versus the L-H scheme, in return for an increase in the miss rate by a
factor of 1.1-1.2. The choice of benchmarks is explained in the caption.

Unfortunately, in both schemes, misses require two full DRAM accesses: one
to get the initial tag and a follow-on access to the main memory (which is even
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Figure 2.16 Average hit time latency in clock cycles for the L-H scheme, a currently-impractical scheme using
SRAM for the tags, and the alloy cache organization. In the SRAM case, we assume the SRAM is accessible in
the same time as L3 and that it is checked before L4 is accessed. The average hit latencies are 43 (alloy cache),
67 (SRAM tags), and 107 (L-H). The 10 SPECCPU2006 benchmarks used here are the most memory-intensive ones;
each of them would run twice as fast if L3 were perfect.
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slower). If we could speed up the miss detection, we could reduce the miss time.
Two different solutions have been proposed to solve this problem: one uses a map
that keeps track of the blocks in the cache (not the location of the block, just
whether it is present); the other uses a memory access predictor that predicts likely
misses using history prediction techniques, similar to those used for global branch
prediction (see the next chapter). It appears that a small predictor can predict likely
misses with high accuracy, leading to an overall lower miss penalty.

Figure 2.17 shows the speedup obtained on SPECrate for the memory-
intensive benchmarks used in Figure 2.16. The alloy cache approach outperforms
the LH scheme and even the impractical SRAM tags, because the combination of a
fast access time for the miss predictor and good prediction results lead to a shorter
time to predict a miss, and thus a lower miss penalty. The alloy cache performs
close to the Ideal case, an L4 with perfect miss prediction and minimal hit time.

8

m©

o

&)

w

o

0]

c

o

o

S

=]

5}

jo N

n LH-Cache
H SRAM-Tags
M Alloy cache
[ Ideal

64 MB 128 MB 256 MB 512 MB 1GB

L4 cache size

Figure 2.17 Performance speedup running the SPECrate benchmark for the LH scheme, an SRAM tag scheme,
and an ideal L4 (Ideal); a speedup of 1 indicates no improvement with the L4 cache, and a speedup of 2 would
be achievable if L4 were perfect and took no access time. The 10 memory-intensive benchmarks are used with
each benchmark run eight times. The accompanying miss prediction scheme is used. The Ideal case assumes that
only the 64-byte block requested in L4 needs to be accessed and transferred and that prediction accuracy for L4
is perfect (i.e., all misses are known at zero cost).
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HBM is likely to have widespread use in a variety of different configurations,
from containing the entire memory system for some high-performance, special-
purpose systems to use as an L4 cache for larger server configurations.

Cache Optimization Summary

The techniques to improve hit time, bandwidth, miss penalty, and miss rate gen-
erally affect the other components of the average memory access equation as well
as the complexity of the memory hierarchy. Figure 2.18 summarizes these tech-
niques and estimates the impact on complexity, with + meaning that the technique

Hit Band- Miss

Miss

Power

Hardware cost/

Technique time width penalty rate consumption complexity Comment

Small and simple + - + 0 Trivial; widely used

caches

Way-predicting caches  + + 1 Used in Pentium 4

Pipelined & banked - + 1 Widely used

caches

Nonblocking caches + + Widely used

Critical word first and + 2 Widely used

early restart

Merging write buffer + 1 Widely used with write
through

Compiler techniques to - 0 Software is a challenge, but

reduce cache misses many compilers handle
common linear algebra
calculations

Hardware prefetching + + - 2 instr., Most provide prefetch

of instructions and data 3 data instructions; modern high-
end processors also
automatically prefetch in
hardware

Compiler-controlled + + 3 Needs nonblocking cache;

prefetching possible instruction
overhead; in many CPUs

HBM as additional +/— - + + 3 Depends on new packaging

level of cache

technology. Effects depend
heavily on hit rate
improvements

Figure 2.18 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
sumption, and complexity. Although generally a technique helps only one factor, prefetching can reduce misses if
done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, — means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest
and 3 being a challenge.
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24

improves the factor, — meaning it hurts that factor, and blank meaning it has no
impact. Generally, no technique helps more than one category.

Virtual Memory and Virtual Machines

A virtual machine is taken to be an efficient, isolated duplicate of the real
machine. We explain these notions through the idea of a virtual machine
monitor (VMM)... a VMM has three essential characteristics. First, the VMM
provides an environment for programs which is essentially identical with
the original machine; second, programs run in this environment show at worst
only minor decreases in speed; and last, the VMM is in complete control of
system resources.

Gerald Popek and Robert Goldberg,
“Formal requirements for virtualizable third generation architectures,”
Communications of the ACM (July 1974).

Section B.4 in Appendix B describes the key concepts in virtual memory. Recall
that virtual memory allows the physical memory to be treated as a cache of sec-
ondary storage (which may be either disk or solid state). Virtual memory moves
pages between the two levels of the memory hierarchy, just as caches move blocks
between levels. Likewise, TLBs act as caches on the page table, eliminating the
need to do a memory access every time an address is translated. Virtual memory
also provides separation between processes that share one physical memory but
have separate virtual address spaces. Readers should ensure that they understand
both functions of virtual memory before continuing.

In this section, we focus on additional issues in protection and privacy between
processes sharing the same processor. Security and privacy are two of the most
vexing challenges for information technology in 2017. Electronic burglaries, often
involving lists of credit card numbers, are announced regularly, and it’s widely
believed that many more go unreported. Of course, such problems arise from pro-
gramming errors that allow a cyberattack to access data it should be unable to
access. Programming errors are a fact of life, and with modern complex software
systems, they occur with significant regularity. Therefore both researchers and
practitioners are looking for improved ways to make computing systems more
secure. Although protecting information is not limited to hardware, in our view
real security and privacy will likely involve innovation in computer architecture
as well as in systems software.

This section starts with a review of the architecture support for protecting pro-
cesses from each other via virtual memory. It then describes the added protection
provided by virtual machines, the architecture requirements of virtual machines,
and the performance of a virtual machine. As we will see in Chapter 6, virtual
machines are a foundational technology for cloud computing.
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Protection via Virtual Memory

Page-based virtual memory, including a TLB that caches page table entries, is the
primary mechanism that protects processes from each other. Sections B.4 and B.5
in Appendix B review virtual memory, including a detailed description of protec-
tion via segmentation and paging in the 80x86. This section acts as a quick review;
if it’s too quick, please refer to the denoted Appendix B sections.

Multiprogramming, where several programs running concurrently share a
computer, has led to demands for protection and sharing among programs and
to the concept of a process. Metaphorically, a process is a program’s breathing
air and living space—that is, a running program plus any state needed to continue
running it. At any instant, it must be possible to switch from one process to another.
This exchange is called a process switch or context switch.

The operating system and architecture join forces to allow processes to share the
hardware yet not interfere with each other. To do this, the architecture must limit
what a process can access when running a user process yet allow an operating sys-
tem process to access more. At a minimum, the architecture must do the following:

1. Provide at least two modes, indicating whether the running process is a user
process or an operating system process. This latter process is sometimes called
a kernel process or a supervisor process.

2. Provide a portion of the processor state that a user process can use but not write.
This state includes a user/supervisor mode bit, an exception enable/disable bit, and
memory protection information. Users are prevented from writing this state
because the operating system cannot control user processes if users can give them-
selves supervisor privileges, disable exceptions, or change memory protection.

3. Provide mechanisms whereby the processor can go from user mode to super-
visor mode and vice versa. The first direction is typically accomplished by a
system call, implemented as a special instruction that transfers control to a ded-
icated location in supervisor code space. The PC is saved from the point of the
system call, and the processor is placed in supervisor mode. The return to user
mode is like a subroutine return that restores the previous user/supervisor mode.

4. Provide mechanisms to limit memory accesses to protect the memory state of a
process without having to swap the process to disk on a context switch.

Appendix A describes several memory protection schemes, but by far the most
popular is adding protection restrictions to each page of virtual memory. Fixed-
sized pages, typically 4 KiB, 16 KiB, or larger, are mapped from the virtual address
space into physical address space via a page table. The protection restrictions are
included in each page table entry. The protection restrictions might determine
whether a user process can read this page, whether a user process can write to this
page, and whether code can be executed from this page. In addition, a process can
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neither read nor write a page if it is not in the page table. Because only the OS can
update the page table, the paging mechanism provides total access protection.

Paged virtual memory means that every memory access logically takes at least
twice as long, with one memory access to obtain the physical address and a second
access to get the data. This cost would be far too dear. The solution is to rely on the
principle of locality; if the accesses have locality, then the address translations for
the accesses must also have locality. By keeping these address translations in a spe-
cial cache, a memory access rarely requires a second access to translate the address.
This special address translation cache is referred to as a TLB.

A TLB entry is like a cache entry where the tag holds portions of the virtual
address and the data portion holds a physical page address, protection field, valid
bit, and usually a use bit and a dirty bit. The operating system changes these bits by
changing the value in the page table and then invalidating the corresponding TLB
entry. When the entry is reloaded from the page table, the TLB gets an accurate
copy of the bits.

Assuming the computer faithfully obeys the restrictions on pages and maps vir-
tual addresses to physical addresses, it would seem that we are done. Newspaper
headlines suggest otherwise.

The reason we’re not done is that we depend on the accuracy of the operating
system as well as the hardware. Today’s operating systems consist of tens of mil-
lions of lines of code. Because bugs are measured in number per thousand lines of
code, there are thousands of bugs in production operating systems. Flaws in the OS
have led to vulnerabilities that are routinely exploited.

This problem and the possibility that not enforcing protection could be much
more costly than in the past have led some to look for a protection model with a
much smaller code base than the full OS, such as virtual machines.

Protection via Virtual Machines

An idea related to virtual memory that is almost as old are virtual machines (VMs).
They were first developed in the late 1960s, and they have remained an important
part of mainframe computing over the years. Although largely ignored in the
domain of single-user computers in the 1980s and 1990s, they have recently gained
popularity because of

m the increasing importance of isolation and security in modern systems;
m the failures in security and reliability of standard operating systems;

m the sharing of a single computer among many unrelated users, such as in a data
center or cloud; and

m the dramatic increases in the raw speed of processors, which make the overhead
of VMs more acceptable.

The broadest definition of VMs includes basically all emulation methods that
provide a standard software interface, such as the Java VM. We are interested in
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VMs that provide a complete system-level environment at the binary instruction set
architecture (ISA) level. Most often, the VM supports the same ISA as the under-
lying hardware; however, it is also possible to support a different ISA, and such
approaches are often employed when migrating between ISAs in order to allow
software from the departing ISA to be used until it can be ported to the new
ISA. Our focus here will be on VMs where the ISA presented by the VM and
the underlying hardware match. Such VMs are called (operating) system virtual
machines. IBM VM/370, VMware ESX Server, and Xen are examples. They pre-
sent the illusion that the users of a VM have an entire computer to themselves,
including a copy of the operating system. A single computer runs multiple VMs
and can support a number of different operating systems (OSes). On a conventional
platform, a single OS “owns” all the hardware resources, but with a VM, multiple
OSes all share the hardware resources.

The software that supports VMs is called a virtual machine monitor (VMM) or
hypervisor; the VMM is the heart of virtual machine technology. The underlying
hardware platform is called the host, and its resources are shared among the guest
VMs. The VMM determines how to map virtual resources to physical resources: A
physical resource may be time-shared, partitioned, or even emulated in software.
The VMM is much smaller than a traditional OS; the isolation portion of a VMM is
perhaps only 10,000 lines of code.

In general, the cost of processor virtualization depends on the workload. User-
level processor-bound programs, such as SPECCPU2006, have zero virtualization
overhead because the OS is rarely invoked, so everything runs at native speeds.
Conversely, I/O-intensive workloads generally are also OS-intensive and execute
many system calls (which doing 1/O requires) and privileged instructions that can
result in high virtualization overhead. The overhead is determined by the number
of instructions that must be emulated by the VMM and how slowly they are emu-
lated. Therefore, when the guest VMs run the same ISA as the host, as we assume
here, the goal of the architecture and the VMM is to run almost all instructions
directly on the native hardware. On the other hand, if the I/O-intensive workload
is also I/0-bound, the cost of processor virtualization can be completely hidden by
low processor utilization because it is often waiting for I/O.

Although our interest here is in VMs for improving protection, VMs provide
two other benefits that are commercially significant:

1. Managing software—NVMs provide an abstraction that can run the complete
software stack, even including old operating systems such as DOS. A typical
deployment might be some VMs running legacy OSes, many running the cur-
rent stable OS release, and a few testing the next OS release.

2. Managing hardware—One reason for multiple servers is to have each applica-
tion running with its own compatible version of the operating system on sep-
arate computers, as this separation can improve dependability. VMs allow
these separate software stacks to run independently yet share hardware, thereby
consolidating the number of servers. Another example is that most newer
VMMs support migration of a running VM to a different computer, either to
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balance load or to evacuate from failing hardware. The rise of cloud computing
has made the ability to swap out an entire VM to another physical processor
increasingly useful.

These two reasons are why cloud-based servers, such as Amazon’s, rely on virtual
machines.

Requirements of a Virtual Machine Monitor

What must a VM monitor do? It presents a software interface to guest software, it
must isolate the state of guests from each other, and it must protect itself from guest
software (including guest OSes). The qualitative requirements are

m  Guest software should behave on a VM exactly as if it were running on the
native hardware, except for performance-related behavior or limitations of
fixed resources shared by multiple VMs.

m  Guest software should not be able to directly change allocation of real system
resources.

To “virtualize” the processor, the VMM must control just about everything—
access to privileged state, address translation, 1/0, exceptions and interrupts—even
though the guest VM and OS currently running are temporarily using them.

For example, in the case of a timer interrupt, the VMM would suspend the cur-
rently running guest VM, save its state, handle the interrupt, determine which guest
VM to run next, and then load its state. Guest VMs that rely on a timer interrupt are
provided with a virtual timer and an emulated timer interrupt by the VMM.

To be in charge, the VMM must be at a higher privilege level than the guest
VM, which generally runs in user mode; this also ensures that the execution of any
privileged instruction will be handled by the VMM. The basic requirements of sys-
tem virtual machines are almost identical to those for the previously mentioned
paged virtual memory:

m At least two processor modes, system and user.

m A privileged subset of instructions that is available only in system mode, result-
ing in a trap if executed in user mode. All system resources must be controllable
only via these instructions.

Instruction Set Architecture Support for Virtual Machines

If VMs are planned for during the design of the ISA, it’s relatively easy to reduce
both the number of instructions that must be executed by a VMM and how long it
takes to emulate them. An architecture that allows the VM to execute directly on
the hardware earns the title virfualizable, and the IBM 370 architecture proudly
bears that label.
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However, because VMs have been considered for desktop and PC-based server
applications only fairly recently, most instruction sets were created without virtua-
lization in mind. These culprits include 80x86 and most of the original RISC archi-
tectures, although the latter had fewer issues than the 80x86 architecture. Recent
additions to the x86 architecture have attempted to remedy the earlier shortcom-
ings, and RISC V explicitly includes support for virtualization.

Because the VMM must ensure that the guest system interacts only with virtual
resources, a conventional guest OS runs as a user mode program on top of the
VMM. Then, if a guest OS attempts to access or modify information related to
hardware resources via a privileged instruction—for example, reading or writing
the page table pointer—it will trap to the VMM. The VMM can then effect the
appropriate changes to corresponding real resources.

Therefore, if any instruction that tries to read or write such sensitive informa-
tion traps when executed in user mode, the VMM can intercept it and support a
virtual version of the sensitive information as the guest OS expects.

In the absence of such support, other measures must be taken. A VMM must
take special precautions to locate all problematic instructions and ensure that they
behave correctly when executed by a guest OS, thereby increasing the complexity
of the VMM and reducing the performance of running the VM. Sections 2.5 and
2.7 give concrete examples of problematic instructions in the 80x86 architecture.
One attractive extension allows the VM and the OS to operate at different privilege
levels, each of which is distinct from the user level. By introducing an additional
privilege level, some OS operations—e.g., those that exceed the permissions
granted to a user program but do not require intervention by the VMM (because
they cannot affect any other VM)—can execute directly without the overhead of
trapping and invoking the VMM. The Xen design, which we examine shortly,
makes use of three privilege levels.

Impact of Virtual Machines on Virtual Memory and I/O

Another challenge is virtualization of virtual memory, as each guest OS in every
VM manages its own set of page tables. To make this work, the VMM separates the
notions of real and physical memory (which are often treated synonymously) and
makes real memory a separate, intermediate level between virtual memory and
physical memory. (Some use the terms virtual memory, physical memory, and
machine memory to name the same three levels.) The guest OS maps virtual mem-
ory to real memory via its page tables, and the VMM page tables map the guests’
real memory to physical memory. The virtual memory architecture is specified
either via page tables, as in IBM VM/370 and the 80x86, or via the TLB structure,
as in many RISC architectures.

Rather than pay an extra level of indirection on every memory access, the
VMM maintains a shadow page table that maps directly from the guest virtual
address space to the physical address space of the hardware. By detecting all mod-
ifications to the guest’s page table, the VMM can ensure that the shadow page table
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entries being used by the hardware for translations correspond to those of the guest
OS environment, with the exception of the correct physical pages substituted for
the real pages in the guest tables. Therefore the VMM must trap any attempt by the
guest OS to change its page table or to access the page table pointer. This is com-
monly done by write protecting the guest page tables and trapping any access to the
page table pointer by a guest OS. As previously noted, the latter happens naturally
if accessing the page table pointer is a privileged operation.

The IBM 370 architecture solved the page table problem in the 1970s with an
additional level of indirection that is managed by the VMM. The guest OS keeps its
page tables as before, so the shadow pages are unnecessary. AMD has implemen-
ted a similar scheme for its 80x86.

To virtualize the TLB in many RISC computers, the VMM manages the real
TLB and has a copy of the contents of the TLB of each guest VM. To pull this off,
any instructions that access the TLB must trap. TLBs with Process ID tags can sup-
port a mix of entries from different VMs and the VMM, thereby avoiding flushing
of the TLB on a VM switch. Meanwhile, in the background, the VMM supports a
mapping between the VMs’ virtual Process IDs and the real Process IDs. Section
L.7 of online Appendix L describes additional details.

The final portion of the architecture to virtualize is I/O. This is by far the most
difficult part of system virtualization because of the increasing number of I/O
devices attached to the computer and the increasing diversity of I/O device types.
Another difficulty is the sharing of a real device among multiple VMs, and yet
another comes from supporting the myriad of device drivers that are required, espe-
cially if different guest OSes are supported on the same VM system. The VM illu-
sion can be maintained by giving each VM generic versions of each type of I/O
device driver, and then leaving it to the VMM to handle real 1/O.

The method for mapping a virtual-to-physical I/O device depends on the type
of device. For example, physical disks are normally partitioned by the VMM to
create virtual disks for guest VMs, and the VMM maintains the mapping of virtual
tracks and sectors to the physical ones. Network interfaces are often shared
between VMs in very short time slices, and the job of the VMM is to keep track
of messages for the virtual network addresses to ensure that guest VMs receive
only messages intended for them.

Extending the Instruction Set for Efficient Virtualization
and Better Security

In the past 5-10 years, processor designers, including those at AMD and Intel (and
to a lesser extent ARM), have introduced instruction set extensions to more effi-
ciently support virtualization. Two primary areas of performance improvement
have been in handling page tables and TLBs (the cornerstone of virtual memory)
and in I/O, specifically handling interrupts and DMA. Virtual memory perfor-
mance is enhanced by avoiding unnecessary TLB flushes and by using the nested
page table mechanism, employed by IBM decades earlier, rather than a complete
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set of shadow page tables (see Section L..7 in Appendix L). To improve I/O per-
formance, architectural extensions are added that allow a device to directly use
DMA to move data (eliminating a potential copy by the VMM) and allow device
interrupts and commands to be handled by the guest OS directly. These extensions
show significant performance gains in applications that are intensive either in their
memory-management aspects or in the use of I/O.

With the broad adoption of public cloud systems for running critical applica-
tions, concerns have risen about security of data in such applications. Any mali-
cious code that is able to access a higher privilege level than data that must be
kept secure compromises the system. For example, if you are running a credit card
processing application, you must be absolutely certain that malicious users cannot
get access to the credit card numbers, even when they are using the same hardware
and intentionally attack the OS or even the VMM. Through the use of virtualiza-
tion, we can prevent accesses by an outside user to the data in a different VM, and
this provides significant protection compared to a multiprogrammed environment.
That might not be enough, however, if the attacker compromises the VMM or can
find out information by observations in another VMM. For example, suppose the
attacker penetrates the VMM; the attacker can then remap memory so as to access
any portion of the data.

Alternatively, an attack might rely on a Trojan horse (see Appendix B) intro-
duced into the code that can access the credit cards. Because the Trojan horse is
running in the same VM as the credit card processing application, the Trojan horse
only needs to exploit an OS flaw to gain access to the critical data. Most cyberat-
tacks have used some form of Trojan horse, typically exploiting an OS flaw, that
either has the effect of returning access to the attacker while leaving the CPU still in
privilege mode or allows the attacker to upload and execute code as if it were part
of the OS. In either case, the attacker obtains control of the CPU and, using the
higher privilege mode, can proceed to access anything within the VM. Note that
encryption alone does not prevent this attacker. If the data in memory is unen-
crypted, which is typical, then the attacker has access to all such data. Furthermore,
if the attacker knows where the encryption key is stored, the attacker can freely
access the key and then access any encrypted data.

More recently, Intel introduced a set of instruction set extensions, called the
software guard extensions (SGX), to allow user programs to create enclaves, por-
tions of code and data that are always encrypted and decrypted only on use and
only with the key provided by the user code. Because the enclave is always
encrypted, standard OS operations for virtual memory or I/O can access the
enclave (e.g., to move a page) but cannot extract any information. For an enclave
to work, all the code and all the data required must be part of the enclave. Although
the topic of finer-grained protection has been around for decades, it has gotten little
traction before because of the high overhead and because other solutions that are
more efficient and less intrusive have been acceptable. The rise of cyberattacks and
the amount of confidential information online have led to a reexamination of tech-
niques for improving such fine-grained security. Like Intel’'s SGX, IBM and
AMD’s recent processors support on-the-fly encryption of memory.
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2.5

An Example VMM: The Xen Virtual Machine

Early in the development of VMs, a number of inefficiencies became apparent. For
example, a guest OS manages its virtual-to-real page mapping, but this mapping is
ignored by the VMM, which performs the actual mapping to physical pages. In
other words, a significant amount of wasted effort is expended just to keep the
guest OS happy. To reduce such inefficiencies, VMM developers decided that
it may be worthwhile to allow the guest OS to be aware that it is running on a
VM. For example, a guest OS could assume a real memory as large as its virtual
memory so that no memory management is required by the guest OS.

Allowing small modifications to the guest OS to simplify virtualization is
referred to as paravirtualization, and the open source Xen VMM is a good exam-
ple. The Xen VMM, which is used in Amazon’s web services data centers, pro-
vides a guest OS with a virtual machine abstraction that is similar to the
physical hardware, but drops many of the troublesome pieces. For example, to
avoid flushing the TLB, Xen maps itself into the upper 64 MiB of the address space
of each VM. Xen allows the guest OS to allocate pages, checking only to be sure
the guest OS does not violate protection restrictions. To protect the guest OS from
the user programs in the VM, Xen takes advantage of the four protection levels
available in the 80x86. The Xen VMM runs at the highest privilege level (0),
the guest OS runs at the next level (1), and the applications run at the lowest priv-
ilege level (3). Most OSes for the 80x 86 keep everything at privilege levels 0 or 3.

For subsetting to work properly, Xen modifies the guest OS to not use prob-
lematic portions of the architecture. For example, the port of Linux to Xen changes
about 3000 lines, or about 1% of the 80x86-specific code. These changes, how-
ever, do not affect the application binary interfaces of the guest OS.

To simplify the I/O challenge of VMs, Xen assigned privileged virtual
machines to each hardware I/0 device. These special VMs are called driver
domains. (Xen calls VMs “domains.”) Driver domains run the physical device
drivers, although interrupts are still handled by the VMM before being sent to
the appropriate driver domain. Regular VMs, called guest domains, run simple vir-
tual device drivers that must communicate with the physical device drivers in the
driver domains over a channel to access the physical /O hardware. Data are sent
between guest and driver domains by page remapping.

Cross-Cutting Issues: The Design of Memory Hierarchies

This section describes four topics discussed in other chapters that are fundamental
to memory hierarchies.

Protection, Virtualization, and Instruction Set Architecture

Protection is a joint effort of architecture and operating systems, but architects had
to modify some awkward details of existing instruction set architectures when vir-
tual memory became popular. For example, to support virtual memory in the IBM
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370, architects had to change the successful IBM 360 instruction set architecture
that had been announced just 6 years before. Similar adjustments are being made
today to accommodate virtual machines.

For example, the 80x86 instruction POPF loads the flag registers from the top
of the stack in memory. One of the flags is the Interrupt Enable (IE) flag. Until
recent changes to support virtualization, running the POPF instruction in user
mode, rather than trapping it, simply changed all the flags except IE. In system
mode, it does change the 1E flag. Because a guest OS runs in user mode inside
a VM, this was a problem, as the OS would expect to see a changed IE. Extensions
of the 80x86 architecture to support virtualization eliminated this problem.

Historically, IBM mainframe hardware and VMM took three steps to improve
performance of virtual machines:

1. Reduce the cost of processor virtualization.
2. Reduce interrupt overhead cost due to the virtualization.

3. Reduce interrupt cost by steering interrupts to the proper VM without
invoking VMM.

IBM is still the gold standard of virtual machine technology. For example, an IBM
mainframe ran thousands of Linux VMs in 2000, while Xen ran 25 VMs in 2004
(Clark et al., 2004). Recent versions of Intel and AMD chipsets have added special
instructions to support devices in a VM to mask interrupts at lower levels from each
VM and to steer interrupts to the appropriate VM.

Autonomous Instruction Fetch Units

Many processors with out-of-order execution and even some with simply deep
pipelines decouple the instruction fetch (and sometimes initial decode), using a
separate instruction fetch unit (see Chapter 3). Typically, the instruction fetch unit
accesses the instruction cache to fetch an entire block before decoding it into indi-
vidual instructions; such a technique is particularly useful when the instruction
length varies. Because the instruction cache is accessed in blocks, it no longer
makes sense to compare miss rates to processors that access the instruction cache
once per instruction. In addition, the instruction fetch unit may prefetch blocks into
the L1 cache; these prefetches may generate additional misses, but may actually
reduce the total miss penalty incurred. Many processors also include data prefetch-
ing, which may increase the data cache miss rate, even while decreasing the total
data cache miss penalty.

Speculation and Memory Access

One of the major techniques used in advanced pipelines is speculation, whereby an
instruction is tentatively executed before the processor knows whether it is really
needed. Such techniques rely on branch prediction, which if incorrect requires that
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the speculated instructions are flushed from the pipeline. There are two separate
issues in a memory system supporting speculation: protection and performance.
With speculation, the processor may generate memory references, which will
never be used because the instructions were the result of incorrect speculation.
Those references, if executed, could generate protection exceptions. Obviously,
such faults should occur only if the instruction is actually executed. In the next
chapter, we will see how such “speculative exceptions™ are resolved. Because a
speculative processor may generate accesses to both the instruction and data
caches, and subsequently not use the results of those accesses, speculation may
increase the cache miss rates. As with prefetching, however, such speculation
may actually lower the total cache miss penalty. The use of speculation, like the
use of prefetching, makes it misleading to compare miss rates to those seen in pro-
cessors without speculation, even when the ISA and cache structures are otherwise
identical.

Special Instruction Caches

One of the biggest challenges in superscalar processors is to supply the instruc-
tion bandwidth. For designs that translate the instructions into micro-operations,
such as most recent Arm and i7 processors, instruction bandwidth demands and
branch misprediction penalties can be reduced by keeping a small cache of
recently translated instructions. We explore this technique in greater depth in
the next chapter.

Coherency of Cached Data

Data can be found in memory and in the cache. As long as the processor is the sole
component changing or reading the data and the cache stands between the proces-
sor and memory, there is little danger in the processor seeing the old or stale copy.
As we will see, multiple processors and I/O devices raise the opportunity for copies
to be inconsistent and to read the wrong copy.

The frequency of the cache coherency problem is different for multiprocessors
than for I/O. Multiple data copies are a rare event for I/O—one to be avoided when-
ever possible—but a program running on multiple processors will want to have
copies of the same data in several caches. Performance of a multiprocessor pro-
gram depends on the performance of the system when sharing data.

The I/O cache coherency question is this: where does the I/O occur in the com-
puter—between the I/O device and the cache or between the I/O device and main
memory? If input puts data into the cache and output reads data from the cache,
both I/0 and the processor see the same data. The difficulty in this approach is that
it interferes with the processor and can cause the processor to stall for I/O. Input
may also interfere with the cache by displacing some information with new data
that are unlikely to be accessed soon.
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2.6

The goal for the I/O system in a computer with a cache is to prevent the stale
data problem while interfering as little as possible. Many systems therefore prefer
that I/O occur directly to main memory, with main memory acting as an I/O buffer.
If a write-through cache were used, then memory would have an up-to-date copy of
the information, and there would be no stale data issue for output. (This benefitis a
reason processors used write through.) However, today write through is usually
found only in first-level data caches backed by an L2 cache that uses write back.

Input requires some extra work. The software solution is to guarantee that no
blocks of the input buffer are in the cache. A page containing the buffer can be
marked as noncachable, and the operating system can always input to such a page.
Alternatively, the operating system can [lush the buffer addresses from the cache
before the input occurs. A hardware solution is to check the I/O addresses on input
to see if they are in the cache. If there is a match of I/O addresses in the cache, the
cache entries are invalidated to avoid stale data. All of these approaches can also be
used for output with write-back caches.

Processor cache coherency is a critical subject in the age of multicore proces-
sors, and we will examine it in detail in Chapter 5.

Putting It All Together: Memory Hierarchies in the

ARM Cortex-A53 and Intel Core i7 6700

This section reveals the ARM Cortex-AS53 (hereafter called the A53) and Intel Core
176700 (hereafter called i7) memory hierarchies and shows the performance of
their components on a set of single-threaded benchmarks. We examine the
Cortex-AS53 first because it has a simpler memory system; we go into more detail
for the 17, tracing out a memory reference in detail. This section presumes that
readers are familiar with the organization of a two-level cache hierarchy using vir-
tually indexed caches. The basics of such a memory system are explained in detail
in Appendix B, and readers who are uncertain of the organization of such a system
are strongly advised to review the Opteron example in Appendix B. Once they
understand the organization of the Opteron, the brief explanation of the A53 sys-
tem, which is similar, will be easy to follow.

The ARM Cortex-A53

The Cortex-A53 is a configurable core that supports the ARMvSA instruction set
architecture, which includes both 32-bit and 64-bit modes. The Cortex-A53 is
delivered as an IP (intellectual property) core. IP cores are the dominant form
of technology delivery in the embedded, PMD, and related markets; billions of
ARM and MIPS processors have been created from these [P cores. Note that [P
cores are different from the cores in the Intel i7 or AMD Athlon multicores. An
IP core (which may itself be a multicore) is designed to be incorporated with
other logic (thus it is the core of a chip), including application-specific processors
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(such as an encoder or decoder for video), I/O interfaces, and memory interfaces,
and then fabricated to yield a processor optimized for a particular application. For
example, the Cortex-A53 IP core is used in a variety of tablets and smartphones; it
is designed to be highly energy-efficient, a key criteria in battery-based PMDs. The
AS53 core is capable of being configured with multiple cores per chip for use in
high-end PMDs; our discussion here focuses on a single core.

Generally, IP cores come in two flavors. Hard cores are optimized for a par-
ticular semiconductor vendor and are black boxes with external (but still on-chip)
interfaces. Hard cores typically allow parametrization only of logic outside the
core, such as L2 cache sizes, and the IP core cannot be modified. Soft cores are
usually delivered in a form that uses a standard library of logic elements. A soft
core can be compiled for different semiconductor vendors and can also be modi-
fied, although extensive modifications are very difficult because of the complexity
of modern-day IP cores. In general, hard cores provide higher performance and
smaller die area, while soft cores allow retargeting to other vendors and can be

more easily modified.

The Cortex-AS53 can issue two instructions per clock at clock rates up to
1.3 GHz. It supports both a two-level TLB and a two-level cache; Figure 2.19 sum-
marizes the organization of the memory hierarchy. The critical term is returned
first, and the processor can continue while the miss completes; a memory system
with up to four banks can be supported. For a D-cache of 32 KiB and a page size of
4 KiB, each physical page could map to two different cache addresses; such aliases
are avoided by hardware detection on a miss as in Section B.3 of Appendix B.
Figure 2.20 shows how the 32-bit virtual address is used to index the TLB and
the caches, assuming 32 KiB primary caches and a 1 MiB secondary cache with

16 KiB page size.

Typical miss penalty

Structure Size Organization (clock cycles)
Instruction MicroTLB 10 entries Fully associative 2
Data MicroTLB 10 entries Fully associative 2
L2 Unified TLB 512 entries 4-way set associative 20
L1 Instruction cache 8-64 KiB 2-way sel associative; 64-byte block 13
L1 Data cache 8-64 KiB 2-way set associative; 64-byte block 13
L2 Unified cache 128 KiB to 2 MiB 16-way set associative; LRU 124

Figure 2.19 The memory hierarchy of the Cortex A53 includes multilevel TLBs and caches. A page map cache
keeps track of the location of a physical page for a set of virtual pages; it reduces the L2 TLB miss penalty. The
L1 caches are virtually indexed and physically tagged; both the L1 D cache and L2 use a write-back policy defaulting
to allocate on write. Replacement policy is LRU approximation in all the caches. Miss penalties to L2 are higher if both
a MicroTLB and L1 miss occur. The L2 to main memory bus is 64—128 bits wide, and the miss penalty is larger for the

narrow bus.
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Figure 2.20 The virtual address, physical and data blocks for the ARM Cortex-A53 caches and TLBs, assuming 32-
bit addresses. The top half (A) shows the instruction access; the bottom half (B) shows the data access, including L2.
The TLB (instruction or data) is fully associative each with 10 entries, using a 64 KiB page in this example. The L1 I-
cache is two-way set associative, with 64-byte blocks and 32 KiB capacity; the L1 D-cache is 32 KiB, four-way set asso-
ciative, and 64-byte blocks. The L2 TLB is 512 entries and four-way set associative. The L2 cache is 16-way set asso-
ciative with 64-byte blocks and 128 cKiB to 2 MiB capacity; a 1 MiB L2 is shown. This figure doesn’t show the valid bits
and protection bits for the caches and TLB.
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Performance of the Cortex-A53 Memory Hierarchy

The memory hierarchy of the Cortex-A8 was measured with 32 KiB primary
caches and a 1 MiB L2 cache running the SPECInt2006 benchmarks. The instruc-
tion cache miss rates for these SPECInt2006 are very small even for just the L1:
close to zero for most and under 1% for all of them. This low rate probably results
from the computationally intensive nature of the SPECCPU programs and the two-
way set associative cache that eliminates most conflict misses.

Figure 2.21 shows the data cache results, which have significant L1 and
L2 miss rates. The L1 rate varies by a factor of 75, from 0.5% to 37.3% with a
median miss rate of 2.4%. The global 1.2 miss rate varies by a factor of 180, from
0.05% to 9.0% with a median of 0.3%. MCF, which is known as a cache buster,
sets the upper bound and significantly affects the mean. Remember that the 1.2
clobal miss rate is significantly lower than the L2 local miss rate; for example,
the median L2 stand-alone miss rate is 15.1% versus the global miss rate of 0.3%.

Using these miss penalties in Figure 2.19, Figure 2.22 shows the average pen-
alty per data access. Although the L1 miss rates are about seven times higher than
the L2 miss rate, the L2 penalty is 9.5 times as high, leading to L2 misses slightly
dominating for the benchmarks that stress the memory system. In the next chapter,
we will examine the impact of the cache misses on overall CPL
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Figure 2.21 The data miss rate for ARM with a 32 KiB L1 and the global data miss rate for a 1 MiB L2 using the
SPECInt2006 benchmarks are significantly affected by the applications. Applications with larger memory footprints
tend to have higher miss rates in both L1 and L2. Note that the L2 rate is the global miss rate that is counting all
references, including those that hit in L1. MCF is known as a cache buster.
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Figure 2.22 The average memory access penalty per data memory reference coming from L1 and L2 is shown for
the A53 processor when running SPECInt2006. Although the miss rates for L1 are significantly higher, the L2 miss
penalty, which is more than five times higher, means that the L2 misses can contribute significantly.

The Intel Core i7 6700

The i7 supports the x 86-64 instruction set architecture, a 64-bit extension of the
80x86 architecture. The 17 is an out-of-order execution processor that includes four
cores. In this chapter, we focus on the memory system design and performance
from the viewpoint of a single core. The system performance of multiprocessor
designs, including the i7 multicore, is examined in detail in Chapter 5.

Each core in an i7 can execute up to four 80x86 instructions per clock cycle,
using a multiple issue, dynamically scheduled, 16-stage pipeline, which we
describe in detail in Chapter 3. The 17 can also support up to two simultaneous
threads per processor, using a technique called simultaneous multithreading,
described in Chapter 4. In 2017 the fastest 17 had a clock rate of 4.0 GHz (in Turbo
Boost mode), which yielded a peak instruction execution rate of 16 billion instruc-
tions per second, or 64 billion instructions per second for the four-core design. Of
course, there is a big gap between peak and sustained performance, as we will see
over the next few chapters.

The 17 can support up to three memory channels, each consisting of a separate
set of DIMMs, and each of which can transfer in parallel. Using DDR3-1066
(DIMM PC8500), the i7 has a peak memory bandwidth of just over 25 GB/s.
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i7 uses 48-bit virtual addresses and 36-bit physical addresses, yielding a
maximum physical memory of 36 GiB. Memory management is handled with a
two-level TLB (see Appendix B, Section B.4), summarized in Figure 2.23.

Figure 2.24 summarizes the i7’s three-level cache hierarchy. The first-level
caches are virtually indexed and physically tagged (see Appendix B,
Section B.3), while the L2 and L3 caches are physically indexed. Some versions
of the i7 6700 will support a fourth-level cache using HBM packaging.

Figure 2.25 is labeled with the steps of an access to the memory hierarchy.
First, the PC is sent to the instruction cache. The instruction cache index is

Cache size 32K

2= Block size x Set associativity T64x8 61=2"
Characteristic  Instruction TLB  Data DLB Second-level TLB
Entries 128 64 1536
Associativity 8-way 4-way 12-way
Replacement Pseudo-LRU Pseudo-LRU Pseudo-LRU
Access latency I cycle I cycle 8 cycles
Miss 9 cycles 9 cycles Hundreds of cycles to access

page table

Figure 2.23 Characteristics of the i7's TLB structure, which has separate first-level
instruction and data TLBs, both backed by a joint second-level TLB. The first-level TLBs
support the standard 4 KiB page size, as well as having a limited number of entries of
large 2—4 MiB pages; only 4 KiB pages are supported in the second-level TLB. The i7 has
the ability to handle two L2 TLB misses in parallel. See Section L.3 of online Appendix L
for more discussion of multilevel TLBs and support for multiple page sizes.

Characteristic L1 L2 L3

Size 32 KiB I/32 KiB D 256 KiB 2 MiB per core
Associativity both 8-way 4-way 16-way

Access latency 4 cycles, pipelined 12 cycles 44 cycles
Replacement scheme Pseudo-LRU Pseudo-LRU  Pseudo-LRU but with an

ordered selection algorithm

Figure 2.24 Characteristics of the three-level cache hierarchy in the i7. All three
caches use write back and a block size of 64 bytes. The L1 and L2 caches are separate
for each core, whereas the L3 cache is shared among the cores on a chip and is a total of
2 MiB per core. All three caches are nonblocking and allow multiple outstanding writes.
A merging write buffer is used for the L1 cache, which holds data in the event that the
line is not present in L1 when it is written. (That is, an L1 write miss does not cause the
line to be allocated.) L3 is inclusive of L1 and L2; we explore this property in further detail
when we explain multiprocessor caches. Replacement is by a variant on pseudo-LRU; in
the case of L3, the block replaced is always the lowest numbered way whose access bit is
off. This is not quite random but is easy to compute.
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Figure 2.25 The Intel i7 memory hierarchy and the steps in both instruction and data access. We show only reads.
Writes are similar, except that misses are handled by simply placing the data in a write buffer, because the L1 cache is
not write-allocated.
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or 6 bits. The page frame of the instruction’s address (36 =48 — 12 bits) is sent to
the instruction TLB (step 1). At the same time, the 12-bit page offset from the vir-
tual address is sent to the instruction cache (step 2). Notice that for the eight-way
associative instruction cache, 12 bits are needed for the cache address: 6 bits to
index the cache plus 6 bits of block offset for the 64-byte block, so no aliases
are possible. The previous versions of the 17 used a four-way set associative
I-cache, meaning that a block corresponding to a virtual address could actually
be in two different places in the cache, because the corresponding physical address
could have either a 0 or 1 in this location. For instructions this did not pose a prob-
lem because even if an instruction appeared in the cache in two different locations,
the two versions must be the same. If such duplication, or aliasing, of data is
allowed, the cache must be checked when the page map is changed, which is an
infrequent event. Note that a very simple use of page coloring (see Appendix B,
Section B.3) can eliminate the possibility of these aliases. If even-address virtual
pages are mapped to even-address physical pages (and the same for odd pages),
then these aliases can never occur because the low-order bit in the virtual and phys-
ical page number will be identical.

The instruction TLB is accessed to find a match between the address and a valid
page table entry (PTE) (steps 3 and 4). In addition to translating the address, the
TLB checks to see if the PTE demands that this access result in an exception
because of an access violation.

An instruction TLB miss first goes to the L2 TLB, which contains 1536 PTEs
of 4 KiB page sizes and is 12-way set associative. It takes 8 clock cycles to
load the L1 TLB from the L2 TLB, which leads to the 9-cycle miss penalty
including the initial clock cycle to access the L1 TLB. If the L2 TLB misses,
a hardware algorithm is used to walk the page table and update the TLB entry.
Sections L.5 and L.6 of online Appendix L describe page table walkers and page
structure caches. In the worst case, the page is not in memory, and the operating
system gets the page from secondary storage. Because millions of instructions
could execute during a page fault, the operating system will swap in another pro-
cess if one is waiting to run. Otherwise, if there is no TLB exception, the instruc-
tion cache access continues.

The index field of the address is sent to all eight banks of the instruction cache
(step 5). The instruction cache tag is 36 bits — 6 bits (index) — 6 bits (block offset),
or 24 bits. The four tags and valid bits are compared to the physical page frame
from the instruction TLB (step 6). Because the 17 expects 16 bytes each instruction
fetch, an additional 2 bits are used from the 6-bit block offset to select the appro-
priate 16 bytes. Therefore 6 +2 or 8 bits are used to send 16 bytes of instructions to
the processor. The L1 cache is pipelined, and the latency of a hit is 4 clock cycles
(step 7). A miss goes to the second-level cache.

As mentioned earlier, the instruction cache is virtually addressed and physi-
cally tagged. Because the second-level caches are physically addressed, the phys-
ical page address from the TLB is composed with the page offset to make an
address to access the L2 cache. The L2 index is

plndex _ Cache size 256K

= = =1024=2"
Block size x Set associativity 64 x4
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so the 30-bit block address (36-bit physical address — 6-bit block offset) is divided
into a 20-bit tag and a 10-bit index (step 8). Once again, the index and tag are sent
to the four banks of the unified L2 cache (step 9), which are compared in parallel. If
one matches and is valid (step 10), it returns the block in sequential order after the
initial 12-cycle latency at a rate of 8 bytes per clock cycle.

If the L2 cache misses, the L3 cache is accessed. For a four-core 17, which has
an 8 MiB L3, the index size is

Slndex _ Cache size _ 8M
" Block size x Set associativity 64 x 16

The 13-bit index (step 11) is sent to all 16 banks of the L3 (step 12). The L3 tag,
which is 36 — (13 +6) = 17 bits, is compared against the physical address from the
TLB (step 13). If a hit occurs, the block is returned after an initial latency of 42
clock cycles, at a rate of 16 bytes per clock and placed into both L1 and L3.
If L3 misses, a memory access is initiated.

If the instruction is not found in the L3 cache, the on-chip memory controller
must get the block from main memory. The i7 has three 64-bit memory channels
that can act as one 192-bit channel, because there is only one memory controller
and the same address is sent on both channels (step 14). Wide transfers happen
when both channels have identical DIMMs. Each channel supports up to four
DDR DIMMs (step 15). When the data return they are placed into L3 and L1 (step
16) because L3 is inclusive.

The total latency of the instruction miss that is serviced by main memory is
approximately 42 processor cycles to determine that an L3 miss has occurred, plus
the DRAM latency for the critical instructions. For a single-bank DDR4-2400
SDRAM and 4.0 GHz CPU, the DRAM latency is about 40 ns or 160 clock cycles
to the first 16 bytes, leading to a total miss penalty of about 200 clock cycles. The
memory controller fills the remainder of the 64-byte cache block at a rate of 16
bytes per I/O bus clock cycle, which takes another 5 ns or 20 clock cycles.

Because the second-level cache is a write-back cache, any miss can lead to an
old block being written back to memory. The 17 has a 10-entry merging write
buffer that writes back dirty cache lines when the next level in the cache is unused
for aread. The write buffer is checked on a miss to see if the cache line exists in the
bufter; if so, the miss is filled from the buffer. A similar buffer is used between
the L1 and L2 caches. If this initial instruction is a load, the data address is sent
to the data cache and data TLBs, acting very much like an instruction cache access.

Suppose the instruction is a store instead of a load. When the store issues, it
does a data cache lookup just like a load. A miss causes the block to be placed
in a write buffer because the L1 cache does not allocate the block on a write miss.
On a hit, the store does not update the L1 (or L2) cache until later, after it is known
to be nonspeculative. During this time, the store resides in a load-store queue, part
of the out-of-order control mechanism of the processor.

The 17 also supports prefetching for L1 and L2 from the next level in the
hierarchy. In most cases, the prefetched line is simply the next block in the cache.
By prefetching only for L1 and 1.2, high-cost unnecessary fetches to memory are
avoided.

=8192=2"
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Performance of the i7 memory system

We evaluate the performance of the i7 cache structure using the SPECint2006
benchmarks. The data in this section were collected by Professor Lu Peng and
PhD student Qun Liu, both of Louisiana State University. Their analysis is based
on earlier work (see Prakash and Peng, 2008).

The complexity of the i7 pipeline, with its use of an autonomous instruction
fetch unit, speculation, and both instruction and data prefetch, makes it hard to
compare cache performance against simpler processors. As mentioned on page
110, processors that use prefetch can generate cache accesses independent of
the memory accesses performed by the program. A cache access that is generated
because of an actual instruction access or data access is sometimes called a
demand access to distinguish it from a prefetch access. Demand accesses can
come from both speculative instruction fetches and speculative data accesses,
some of which are subsequently canceled (see Chapter 3 for a detailed description
of speculation and instruction graduation). A speculative processor generates at
least as many misses as an in-order nonspeculative processor, and typically more.
In addition to demand misses, there are prefetch misses for both instructions
and data.

The i7’s instruction fetch unit attempts to fetch 16 bytes every cycle, which com-
plicates comparing instruction cache miss rates because multiple instructions are
fetched every cycle (roughly 4.5 on average). In fact, the entire 64-byte cache line
isread and subsequent 16-byte fetches do not require additional accesses. Thus misses
are tracked only on the basis of 64-byte blocks. The 32 KiB, eight-way set associative
instruction cache leads to a very low instruction miss rate for the SPECint2006
programs. If, for simplicity, we measure the miss rate of SPECint2006 as the number
of misses for a 64-byte block divided by the number of instructions that complete, the
miss rates are all under 1% except for one benchmark (XALANCBMK), which has a
2.9% miss rate. Because a 64-byte block typically contains 16-20 instructions, the
effective miss rate per instruction is much lower, depending on the degree of spatial
locality in the instruction stream.

The frequency at which the instruction fetch unit is stalled waiting for the
I-cache misses is similarly small (as a percentage of total cycles) increasing to
2% for two benchmarks and 12% for XALANCBMK, which has the highest
[-cache miss rate. In the next chapter, we will see how stalls in the IFU contribute
to overall reductions in pipeline throughput in the i7.

The L1 data cache is more interesting and even trickier to evaluate because in
addition to the effects of prefetching and speculation, the L1 data cache is not
write-allocated, and writes to cache blocks that are not present are not treated as
misses. For this reason, we focus only on memory reads. The performance monitor
measurements in the 17 separate out prefetch accesses from demand accesses, but
only keep demand accesses for those instructions that graduate. The effect of spec-
ulative instructions that do not graduate is not negligible, although pipeline effects
probably dominate secondary cache effects caused by speculation; we will return
to the issue in the next chapter.



2.6 Putting It All Together: Memory Hierarchies in the ARM Cortex-AS53 and Intel Core i7 6700 » 139

45%

1 L1 miss rate prefetches and demand reads
B L1 miss rate demand reads only 41%

40%

35%

30%

25%

Miss rate

20%

15%

10%

5%

Figure 2.26 The L1 data cache miss rate for the SPECint2006 benchmarks is shown in two ways relative to the
demand L1 reads: one including both demand and prefetch accesses and one including only demand accesses.
The i7 separates out L1 misses for a block not present in the cache and L1 misses for a block already outstanding that
is being prefetched from L2; we treat the latter group as hits because they would hit in a blocking cache. These data,
like the rest in this section, were collected by Professor Lu Peng and PhD student Qun Liu, both of Louisiana State
University, based on earlier studies of the Intel Core Duo and other processors (see Peng et al., 2008).

To address these issues, while keeping the amount of data reasonable,
Figure 2.26 shows the L1 data cache misses in two ways:

1. The L1 miss rate relative to demand references given by the L1 miss rate includ-
ing prefetches and speculative loads/LL1 demand read references for those
instructions that graduate.
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2. The demand miss rate given by L.1 demand misses/L.1 demand read references,
both measurements only for instructions that graduate.

On average, the miss rate including prefetches is 2.8 times as high as the demand-
only miss rate. Comparing this data to that from the earlier i7 920, which had the
same size L1, we see that the miss rate including prefetches is higher on the newer
i7, but the number of demand misses, which are more likely to cause a stall, are
usually fewer.

To understand the effectiveness of the aggressive prefetch mechanisms in the
i7, let’s look at some measurements of prefetching. Figure 2.27 shows both the
fraction of L2 requests that are prefetches versus demand requests and the prefetch
miss rate. The data are probably astonishing at first glance: there are roughly
1.5 times as many prefetches as there are L2 demand requests, which come directly
from L1 misses. Furthermore, the prefetch miss rate is amazingly high, with an
average miss rate of 58%. Although the prefetch ratio varies considerably, the pre-
fetch miss rate is always significant. At first glance, you might conclude that the
designers made a mistake: they are prefetching too much, and the miss rate is too
high. Notice, however, that the benchmarks with the higher prefetch ratios
(ASTAR, BZIP2, HMMER, LIBQUANTUM, and OMNETPP) also show the
greatest gap between the prefetch miss rate and the demand miss rate, more than
a factor of 2 in each case. The aggressive prefetching is trading prefetch misses,
which occur earlier, for demand misses, which occur later; and as a result, a pipe-
line stall is less likely to occur due to the prefetching.

Similarly, consider the high prefetch miss rate. Suppose that the majority of the
prefetches are actually useful (this is hard to measure because it involves tracking
individual cache blocks), then a prefetch miss indicates a likely L2 cache miss in
the future. Uncovering and handling the miss earlier via the prefetch is likely to
reduce the stall cycles. Performance analysis of speculative superscalars, like
the i7, has shown that cache misses tend to be the primary cause of pipeline stalls,
because it is hard to keep the processor going, especially for longer running 1.2 and
L3 misses. The Intel designers could not easily increase the size of the caches with-
out incurring both energy and cycle time impacts; thus the use of aggressive pre-
fetching to try to lower effective cache miss penalties is an interesting alternative
approach.

With the combination of the L1 demand misses and prefetches going to L2,
roughly 17% of the loads generate an L2 request. Analyzing L2 performance
requires including the effects of writes (because L2 is write-allocated), as well
as the prefetch hit rate and the demand hit rate. Figure 2.28 shows the miss rates
of the L2 caches for demand and prefetch accesses, both versus the number of L1
references (reads and writes). As with L1, prefetches are a significant contributor,
generating 75% of the L2 misses. Comparing the L2 demand miss rate with that of
earlier i7 implementations (again with the same L2 size) shows that the 17 6700 has
a lower .2 demand miss rate by an approximate factor of 2, which may well justify
the higher prefetch miss rate.
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Figure 2.27 The fraction of L2 requests that are prefetches is shown via the columns and the left axis. The right
axis and the line shows the prefetch hit rate. These data, like the rest in this section, were collected by Professor Lu
Peng and PhD student Qun Liu, both of Louisiana State University, based on earlier studies of the Intel Core Duo and
other processors (see Peng et al., 2008).

Because the cost for a miss to memory is over 100 cycles and the average data
miss rate in L2 combining both prefetch and demand misses is over 7%, L3 is obvi-
ously critical. Without L3 and assuming that about one-third of the instructions are
loads or stores, L2 cache misses could add over two cycles per instruction to the
CPI! Obviously, prefetching past L.2 would make no sense without an L3.

In comparison, the average 1.3 data miss rate of 0.5% is still significant but less
than one-third of the L.2 demand miss rate and 10 times less than the L1 demand
miss rate. Only in two benchmarks (OMNETPP and MCF) is the 1.3 miss rate
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2.7

Fallacy
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Figure 2.28 The L2 demand miss rate and prefetch miss rate, both shown relative to
all the references to L1, which also includes prefetches, speculative loads that do not
complete, and program-generated loads and stores (demand references). These data,
like the rest in this section, were collected by Professor Lu Peng and PhD student Qun
Liu, both of Louisiana State University.

above 0.5%; in those two cases, the miss rate of about 2.3% likely dominates all
other performance losses. In the next chapter, we will examine the relationship
between the i7 CPI and cache misses, as well as other pipeline effects.

Fallacies and Pitfalls

As the most naturally quantitative of the computer architecture disciplines, mem-
ory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Yet we
were limited here not by lack of warnings, but by lack of space!

Predicting cache performance of one program from another.

Figure 2.29 shows the instruction miss rates and data miss rates for three programs
from the SPEC2000 benchmark suite as cache size varies. Depending on the
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Figure 2.29 Instruction and data misses per 1000 instructions as cache size varies
from 4 KiB to 4096 KiB. Instruction misses for gcc are 30,000—40,000 times larger than
for lucas, and, conversely, data misses for lucas are 2—60 times larger than for gcc. The
programs gap, gcc, and lucas are from the SPEC2000 benchmark suite.

program, the data misses per thousand instructions for a 4096 KiB cache are 9, 2, or
90, and the instruction misses per thousand instructions for a 4 KiB cache are 55,
19, or 0.0004. Commercial programs such as databases will have significant miss
rates even in large second-level caches, which is generally not the case for the
SPECCPU programs. Clearly, generalizing cache performance from one program
to another is unwise. As Figure 2.24 reminds us, there is a great deal of variation,
and even predictions about the relative miss rates of integer and floating-point-
intensive programs can be wrong, as mcf and sphnix3 remind us!

Simulating enough instructions to get accurate performance measures
of the memory hierarchy.

There are really three pitfalls here. One is trying to predict performance of a large
cache using a small trace. Another is that a program’s locality behavior is not con-
stant over the run of the entire program. The third is that a program’s locality
behavior may vary depending on the input.

Figure 2.30 shows the cumulative average instruction misses per thousand
instructions for five inputs to a single SPEC2000 program. For these inputs, the
average memory rate for the first 1.9 billion instructions is very different from
the average miss rate for the rest of the execution.

Not delivering high memory bandwidth in a cache-based system.

Caches help with average cache memory latency but may not deliver high memory
bandwidth to an application that must go to main memory. The architect must
design a high bandwidth memory behind the cache for such applications. We will
revisit this pitfall in Chapters 4 and 5.
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Figure 2.30 Instruction misses per 1000 references for five inputs to the perl bench-
mark in SPEC2000. There is little variation in misses and little difference between the
five inputs for the first 1.9 billion instructions. Running to completion shows how misses
vary over the life of the program and how they depend on the input. The top graph
shows the running average misses for the first 1.9 billion instructions, which starts at
about 2.5 and ends at about 4.7 misses per 1000 references for all five inputs. The bot-
tom graph shows the running average misses to run to completion, which takes 16—41
billion instructions depending on the input. After the first 1.9 billion instructions, the
misses per 1000 references vary from 2.4 to 7.9 depending on the input. The simulations
were for the Alpha processor using separate L1 caches for instructions and data, each
being two-way 64 KiB with LRU, and a unified 1 MiB direct-mapped L2 cache.
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Implementing a virtual machine monitor on an instruction set architecture that
wasn't designed to be virtualizable.

Many architects in the 1970s and 1980s weren’t careful to make sure that all
instructions reading or writing information related to hardware resource informa-
tion were privileged. This laissez faire attitude causes problems for VMMs for all
of these architectures, including the 80x86, which we use here as an example.
Figure 2.31 describes the 18 instructions that cause problems for paravirtuali-
zation (Robin and Irvine, 2000). The two broad classes are instructions that

m read control registers in user mode that reveal that the guest operating system is
running in a virtual machine (such as POPF mentioned earlier) and

m  check protection as required by the segmented architecture but assume that the
operating system is running at the highest privilege level.

Virtual memory is also challenging. Because the 80x86 TLBs do not support
process ID tags, as do most RISC architectures, it is more expensive for the VMM
and guest OSes to share the TLB; each address space change typically requires a
TLB flush.

Problem category Problem 80x86 instructions

Access sensitive registers without Store global descriptor table register (SGDT)
trapping when running in user mode  Store local descriptor table register (SLDT)
Store interrupt descriptor table register (S1DT)
Store machine status word (SMSW)
Push flags (PUSHF, PUSHFD)
Pop flags (POPF, POPFD)

When accessing virtual memory Load access rights from segment descriptor (LAR)
mechanisms in user mode, Load segment limit from segment descriptor (LSL)
instructions fail the Verify if segment descriptor is readable (VERR)
80x86 protection checks Verify if segment descriptor is writable (VERW)

Pop to segment register (POP CS, POP SS, ...)
Push segment register (PUSH CS, PUSH SS, ...)
Far call to different privilege level (CALL)

Far return to different privilege level (RET)

Far jump to different privilege level (JMP)
Software interrupt (INT)

Store segment selector register (STR)

Move to/from segment registers (MOVE)

Figure 2.31 Summary of 18 80x86 instructions that cause problems for virtualization
(Robin and Irvine, 2000). The first five instructions of the top group allow a program in
user mode to read a control register, such as a descriptor table register without causing
a trap. The pop flags instruction modifies a control register with sensitive information
but fails silently when in user mode. The protection checking of the segmented archi-
tecture of the 80x86 is the downfall of the bottom group because each of these instruc-
tions checks the privilege level implicitly as part of instruction execution when reading a
control register. The checking assumes that the OS must be at the highest privilege
level, which is not the case for guest VMs. Only the MOVE to segment register tries
to modify control state, and protection checking foils it as well.
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2.8

Virtualizing 1/O is also a challenge for the 80x86, in part because it supports
memory-mapped /O and has separate 1/O instructions, but more importantly
because there are a very large number and variety of types of devices and device
drivers of PCs for the VMM to handle. Third-party vendors supply their own
drivers, and they may not properly virtualize. One solution for conventional
VM implementations is to load real device drivers directly into the VMM.

To simplify implementations of VMMSs on the 80x86, both AMD and Intel
have proposed extensions to the architecture. Intel’s VT-x provides a new execu-
tion mode for running VMs, a architected definition of the VM state, instructions to
swap VMs rapidly, and a large set of parameters to select the circumstances where
a VMM must be invoked. Altogether, VT-x adds 11 new instructions for the
80x86. AMD’s Secure Virtual Machine (SVM) provides similar functionality.

After turning on the mode that enables VT-x support (via the new VMXON instruc-
tion), VT-x offers four privilege levels for the guest OS that are lower in priority than
the original four (and fix issues like the problem with the POPF instruction mentioned
earlier). VT-x captures all the states of a virtual machine in the Virtual Machine Control
State (VMCS) and then provides atomic instructions to save and restore a VMCS.
In addition to critical state, the VMCS includes configuration information to deter-
mine when to invoke the VMM and then specifically what caused the VMM to be
invoked. To reduce the number of times the VMM must be invoked, this mode adds
shadow versions of some sensitive registers and adds masks that check to see whether
critical bits of a sensitive register will be changed before trapping. To reduce the cost
of virtualizing virtual memory, AMD’s SVM adds an additional level of indirection,
called nested page tables, which makes shadow page tables unnecessary (see Section
L.7 of Appendix L).

Concluding Remarks: Looking Ahead

Over the past thirty years there have been several predictions of the eminent [sic]
cessation of the rate of improvement in computer performance. Every such pre-
diction was wrong. They were wrong because they hinged on unstated assump-
tions that were overturned by subsequent events. So, for example, the failure to
foresee the move from discrete components to integrated circuits led to a predic-
tion that the speed of light would limit computer speeds to several orders of mag-
nitude slower than they are now. Our prediction of the memory wall is probably
wrong too but it suggests that we have to start thinking “out of the box.”

Wm. A. Wulf and Sally A. McKee,

Hitting the Memory Wall: Implications of the Obvious,

Department of Computer Science, University of Virginia (December 1994).

This paper introduced the term memory wall.

The possibility of using a memory hierarchy dates back to the earliest days of
general-purpose digital computers in the late 1940s and early 1950s. Virtual mem-
ory was introduced in research computers in the early 1960s and into IBM main-
frames in the 1970s. Caches appeared around the same time. The basic concepts
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have been expanded and enhanced over time to help close the access time gap
between main memory and processors, but the basic concepts remain.

One trend that is causing a significant change in the design of memory hierar-
chies is a continued slowdown in both density and access time of DRAMs. In the
past 15 years, both these trends have been observed and have been even more obvi-
ous over the past 5 years. While some increases in DRAM bandwidth have been
achieved, decreases in access time have come much more slowly and almost van-
ished between DDR4 and DDR3. The end of Dennard scaling as well as a slow-
down in Moore’s Law both contributed to this situation. The trenched capacitor
design used in DRAMs is also limiting its ability to scale. It may well be the case
that packaging technologies such as stacked memory will be the dominant source
of improvements in DRAM access bandwidth and latency.

Independently of improvements in DRAM, Flash memory has been playing a
much larger role. In PMDs, Flash has dominated for 15 years and became the stan-
dard for laptops almost 10 years ago. In the past few years, many desktops have
shipped with Flash as the primary secondary storage. Flash’s potential advantage
over DRAMSs, specifically the absence of a per-bit transistor to control writing, is
also its Achilles heel. Flash must use bulk erase-rewrite cycles that are consider-
ably slower. As a result, although Flash has become the fastest growing form of
secondary storage, SDRAMs still dominate for main memory.

Although phase-change materials as a basis for memory have been around for a
while, they have never been serious competitors either for magnetic disks or for Flash.
The recent announcement by Intel and Micron of the cross-point technology may
change this. The technology appears to have several advantages over Flash, including
the elimination of the slow erase-to-write cycle and greater longevity in terms. It
could be that this technology will finally be the technology that replaces the electro-
mechanical disks that have dominated bulk storage for more than 50 years!

For some years, a variety of predictions have been made about the coming
memory wall (see previously cited quote and paper), which would lead to serious
limits on processor performance. Fortunately, the extension of caches to multiple
levels (from 2 to 4), more sophisticated refill and prefetch schemes, greater com-
piler and programmer awareness of the importance of locality, and tremendous
improvements in DRAM bandwidth (a factor of over 150 times since the mid-
1990s) have helped keep the memory wall at bay. In recent years, the combination
of access time constraints on the size of L1 (which is limited by the clock cycle) and
energy-related limitations on the size of L2 and L3 have raised new challenges. The
evolution of the i7 processor class over 67 years illustrates this: the caches are the
same size in the 17 6700 as they were in the first generation i7 processors! The more
aggressive use of prefetching is an attempt to overcome the inability to increase L2
and L3. Off-chip L4 caches are likely to become more important because they are
less energy-constrained than on-chip caches.

In addition to schemes relying on multilevel caches, the introduction of out-of-
order pipelines with multiple outstanding misses has allowed available instruction-
level parallelism to hide the memory latency remaining in a cache-based system.
The introduction of multithreading and more thread-level parallelism takes this a
step further by providing more parallelism and thus more latency-hiding
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opportunities. It is likely that the use of instruction- and thread-level parallelism
will be a more important tool in hiding whatever memory delays are encountered
in modern multilevel cache systems.

One idea that periodically arises is the use of programmer-controlled scratch-
pad or other high-speed visible memories, which we will see are used in GPUs.
Such ideas have never made the mainstream in general-purpose processors for sev-
eral reasons: First, they break the memory model by introducing address spaces
with different behavior. Second, unlike compiler-based or programmer-based
cache optimizations (such as prefetching), memory transformations with scratch-
pads must completely handle the remapping from main memory address space to
the scratchpad address space. This makes such transformations more difficult and
limited in applicability. In GPUs (see Chapter 4), where local scratchpad memories
are heavily used, the burden for managing them currently falls on the programmer.
For domain-specific software systems that can use such memories, the perfor-
mance gains are very significant. It is likely that HBM technologies will thus be
used for caching in large, general-purpose computers and quite possibility as
the main working memories in graphics and similar systems. As domain-specific
architectures become more important in overcoming the limitations arising from
the end of Dennard’s Law and the slowdown in Moore’s Law (see Chapter 7),
scratchpad memories and vector-like register sets are likely to see more use.

The implications of the end of Dennard’s Law affect both DRAM and proces-
sor technology. Thus, rather than a widening gulf between processors and main
memory, we are likely to see a slowdown in both technologies, leading to slower
overall growth rates in performance. New innovations in computer architecture and
in related software that together increase performance and efficiency will be key to
continuing the performance improvements seen over the past 50 years.

Historical Perspectives and References

In Section M.3 (available online) we examine the history of caches, virtual mem-
ory, and virtual machines. IBM plays a prominent role in the history of all three.
References for further reading are included.

Case Studies and Exercises by Norman P. Jouppi, Rajeev
Balasubramonian, Naveen Muralimanohar, and Sheng Li

Case Study 1: Optimizing Cache Performance via
Advanced Techniques

Concepts illustrated by this case study

m  Nonblocking Caches
s Compiler Optimizations for Caches
m  Software and Hardware Prefetching

m  Calculating Impact of Cache Performance on More Complex Processors
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The transpose of a matrix interchanges its rows and columns; this concept is
illustrated here:

A1l Al2 Al3 Al4d All A21 A3l A41
A21 A22 A23 a24 Al2 A22 A32 R42
A3l A32 A33 A34d = Al3 A23 A33 Ad3
A4l R42 A4d3 A4l Al4 A24 A34d Ada

Here is a simple C loop to show the transpose:
for (1i=0;1<3; i++) |

for (j=0; 7 <3; j+t) |
output[jI[il=1inputlillJ];

}
}

Assume that both the input and output matrices are stored in the row major order
(row major order means that the row index changes fastest). Assume that you are
executing a 256-256 double-precision transpose on a processor with a 16 KB fully
associative (don’t worry about cache conflicts) least recently used (LRU) replace-
ment L1 data cache with 64-byte blocks. Assume that the L1 cache misses or pre-
fetches require 16 cycles and always hit in the L2 cache, and that the L2 cache can
process a request every 2 processor cycles. Assume that each iteration of the pre-
ceding inner loop requires 4 cycles if the data are present in the L1 cache. Assume
that the cache has a write-allocate fetch-on-write policy for write misses. Unreal-
istically, assume that writing back dirty cache blocks requires 0 cycles.

[10/15/15/12/20] <2.3> For the preceding simple implementation, this execution
order would be nonideal for the input matrix; however, applying a loop interchange
optimization would create a nonideal order for the output matrix. Because loop
interchange is not sufficient to improve its performance, it must be blocked instead.

a. [10] <2.3> What should be the minimum size of the cache to take advantage of
blocked execution?

b. [15] <2.3> How do the relative number of misses in the blocked and
unblocked versions compare in the preceding minimum-sized cache?

¢. [15] <2.3> Write code to perform a transpose with a block size parameter B
that uses B- B blocks.

d. [12] <2.3> What is the minimum associativity required of the L1 cache for
consistent performance independent of both arrays’ position in memory?

e. [20] <2.3> Try out blocked and nonblocked 256-256 matrix transpositions on
a computer. How closely do the results match your expectations based on what
you know about the computer’s memory system? Explain any discrepancies if
possible.
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[10] <2.3> Assume you are designing a hardware prefetcher for the preceding
unblocked matrix transposition code. The simplest type of hardware prefetcher only
prefetches sequential cache blocks after a miss. More complicated “nonunit stride”
hardware prefetchers can analyze a miss reference stream and detect and prefetch
nonunit strides. In contrast, software prefetching can determine nonunit strides as eas-
ily as it can determine unit strides. Assume prefetches write directly into the cache and
that there is no “pollution” (overwriting data that must be used before the data that are
prefetched). For best performance given a nonunit stride prefetcher, in the steady state
of the inner loop, how many prefetches must be outstanding at a given time?

[15/20] <2.3> With software prefetching, it is important to be careful to have the
prefetches occur in time for use but also to minimize the number of outstanding
prefetches to live within the capabilities of the microarchitecture and minimize
cache pollution. This is complicated by the fact that different processors have dif-
ferent capabilities and limitations.

a. [15] <2.3> Create a blocked version of the matrix transpose with software
prefetching.

b. [20] <2.3> Estimate and compare the performance of the blocked and
unblocked transpose codes both with and without software prefetching.

Case Study 2: Putting It All Together: Highly Parallel
Memory Systems

Concept illustrated by this case study

m  Cross-Cutting Issues: The Design of Memory Hierarchies

The program in Figure 2.32 can be used to evaluate the behavior of a memory sys-
tem. The key is having accurate timing and then having the program stride through
memory to invoke different levels of the hierarchy. Figure 2.32 shows the code in
C. The first part is a procedure that uses a standard utility to get an accurate measure
of the user CPU time; this procedure may have to be changed to work on some
systems. The second part is a nested loop to read and write memory at different
strides and cache sizes. To get accurate cache timing, this code is repeated many
times. The third part times the nested loop overhead only so that it can be
subtracted from overall measured times to see how long the accesses were. The
results are output in . cSv file format to facilitate importing into spreadsheets.
You may need to change CACHE_MAX depending on the question you are answer-
ing and the size of memory on the system you are measuring. Running the program
in single-user mode or at least without other active applications will give more con-
sistent results. The code in Figure 2.32 was derived from a program written by
Andrea Dusseau at the University of California-Berkeley and was based on a
detailed description found in Saavedra-Barrera (1992). It has been modified to
fix a number of issues with more modern machines and to run under Microsoft
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ffinclude "stdafx.h"

#include <stdio.h>

fHinclude <time.h>

fidefine ARRAY_MIN (1024) /* 1/4 smallest cache */
fdefine ARRAY_MAX (4096*4096) /* 1/4 largest cache */
int x[ARRAY_MAX1: /* array going to stride through */

double get_seconds() { /* routine to read time in seconds */
__time6d_t Ttime;
_time64( &ltime );:
return (double) Ttime;
|
int label(int 1) {/* generate text labels */
if (i<le3) printf("%1dB,",1);
else if (i<leb) printf("%1dK,",i/1024);
else if (i<1e9) printf("%1dM,",1/1048576);
else printf("%1dG,",1/1073741824);
return 0:
'
int _tmain(int argc, _TCHAR* argv[1) |
int register nextstep, i, index, stride;
int csize;
double steps, tsteps;
double loadtime, lastsec, sec0, secl, sec; /* timing variables */

/* Initialize output */

printf(" ,");

for (stride=1; stride <{= ARRAY_MAX/Z2:; stride=stride*2)
Tabel(stride*sizeof(int));

printf("\n");

/* Main loop for each configuration */

for (csize=ARRAY_MIN; csize <{= ARRAY_MAX; csize=csize*?) |
label(csize*sizeof(int)); /* print cache size this loop */
for (stride=1: stride <= csize/2: stride=stride*2) |

/* Lay out path of memary references in array */

for (index=0; index < csize: index=index+stride)
x[index] = index + stride; /* pointer to next */

x[index-stride]l = 0; /* loop back to beginning */

/* Wait for timer to roll over */
lastsec = get_seconds():
secl = get_seconds(}: while (sec0 == lastsec);

/* Walk through path in array for twenty seconds */
/* This gives 5% accuracy with second resolution */
steps = 0.0: /* number of steps taken */
nextstep = 0; /* start at beginning of path */
sec) = get_seconds(); /* start timer */
| /* repeat until collect 20 seconds */
(i=stride;il=0;i=i-1) { /* keep samples same */
nextstep = 0;
do nextstep = x[nextstepl; /* dependency */
while (nextstep != 0);
]
steps = steps + 1.0: /* count Toop iterations */
secl = get_seconds(); /* end timer */
} while ((secl - sec0) < 20.0); /* collect 20 seconds */
sec = secl - secO;

/* Repeat empty loop to loop subtract overhead */
tsteps = 0.0; /* used to match no. while iterations */
secl = get_seconds(); /* start timer */
| /* repeat until same no. iterations as above */
(i=stride;il=0;i=i-1) { /* keep samples same */
index = 0;
do index = index + stride;
while (index < csize);
|
tsteps = tsteps + 1.0;
secl = get_seconds(); /* - overhead */
I while (tstepsd{steps): /* until = no., iterations */
sec = sec - (secl - secO);
loadtime = (sec*le9)/(steps*csize);
/* write out results in .csv format for Excel */
printf("%4.1f,", (loadtime<0.1) 7 0.1 : loadtime);
}: /* end of inner for loop */
printf("\n"J;
}; /* end of outer for loop */
return 0:

Figure 2.32 C program for evaluating memory system.
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Visual C++. It can be downloaded from http://www.hpl.hp.com/research/cacti/
aca_ch2_cs2.c.

The preceding program assumes that program addresses track physical
addresses, which is true on the few machines that use virtually addressed caches,
such as the Alpha 21264. In general, virtual addresses tend to follow physical
addresses shortly after rebooting, so you may need to reboot the machine in order
to get smooth lines in your results. To answer the following questions, assume that
the sizes of all components of the memory hierarchy are powers of 2. Assume that
the size of the page is much larger than the size of a block in a second-level cache (if
there is one) and that the size of a second-level cache block is greater than or equal
to the size of a block in a first-level cache. An example of the output of the program
is plotted in Figure 2.33; the key lists the size of the array that is exercised.

[12/12/12/10/12] <2.6> Using the sample program results in Figure 2.33:
a
b
C

. [12] <2.6> What are the overall size and block size of the second-level cache?
. [12] <2.6> What is the miss penalty of the second-level cache?
. [12] <2.6> What is the associativity of the second-level cache?

Q.

. [10] <2.6> What is the size of the main memory?

m

. [12] <2.6> What is the paging time if the page size is 4 KB?

1000
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Figure 2.33 Sample results

from program in Figure 2.32.
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[12/15/15/20] <2.6> If necessary, modify the code in Figure 2.32 to measure the
following system characteristics. Plot the experimental results with elapsed time on
the y-axis and the memory stride on the x-axis. Use logarithmic scales for both
axes, and draw a line for each cache size.

a. [12] <2.6> What is the system page size?

b. [15] <2.6> How many entries are there in the TLB?
c. [15] <2.6> What is the miss penalty for the TLB?
d. [20] <2.6> What is the associativity of the TLB?

[20/20] <2.6> In multiprocessor memory systems, lower levels of the memory
hierarchy may not be able to be saturated by a single processor but should be able
to be saturated by multiple processors working together. Modify the code in
Figure 2.32, and run multiple copies at the same time. Can you determine:

a. [20] <2.6> How many actual processors are in your computer system and how
many system processors are just additional multithreaded contexts?

b. [20] <2.6> How many memory controllers does your system have?

[20] <2.6> Can you think of a way to test some of the characteristics of an instruc-
tion cache using a program? Hint: The compiler may generate a large number of
nonobvious instructions from a piece of code. Try to use simple arithmetic instruc-
tions of known length in your instruction set architecture (ISA).

Case Study 3: Studying the Impact of Various
Memory System Organizations

Concepts illustrated by this case study

m  DDR3 memory systems
m  Impact of ranks, banks, row buffers on performance and power

= DRAM timing parameters

A processor chip typically supports a few DDR3 or DDR4 memory channels. We
will focus on a single memory channel in this case study and explore how its per-
formance and power are impacted by varying several parameters. Recall that the
channel is populated with one or more DIMMs. Each DIMM supports one or more
ranks—a rank is a collection of DRAM chips that work in unison to service a single
command issued by the memory controller. For example, a rank may be composed
of 16 DRAM chips, where each chip deals with a 4-bit input or output on every
channel clock edge. Each such chip is referred to as a x4 (by four) chip. In other
examples, a rank may be composed of 8 x 8 chips or 4 x 16 chips—note that in
each case, a rank can handle data that are being placed on a 64-bit memory channel.
A rank is itself partitioned into 8 (DDR3) or 16 (DDR4) banks. Each bank has a
row buffer that essentially remembers the last row read out of a bank. Here’s an
example of a typical sequence of memory commands when performing a read from
a bank:
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() The memory controller issues a Precharge command to get the bank ready to
access a new row. The precharge is completed after time tRP.

(i) The memory controller then issues an Activate command to read the appro-
priate row out of the bank. The activation is completed after time tRCD and the
row is deemed to be part of the row buffer.

(iii) The memory controller can then issue a column-read or CAS command that
places a specific subset of the row buffer on the memory channel. After time
CL, the first 64 bits of the data burst are placed on the memory channel.
A burst typically includes eight 64-bit transfers on the memory channel, per-
formed on the rising and falling edges of 4 memory clock cycles (referred to as
transfer time).

(iv) If the memory controller wants to then access data in a different row of the bank,
referred to as a row buffer miss, it repeats steps (i)—(iii). For now, we will
assume that after CL has elapsed, the Precharge in step (i) can be issued; in some
cases, an additional delay must be added, but we will ignore that delay here. If
the memory controller wants to access another block of data in the same row,
referred to as a row buffer hit, it simply issues another CAS command. Two
back-to-back CAS commands have to be separated by at least 4 cycles so that
the first data transfer is complete before the second data transfer can begin.

Note that a memory controller can issue commands to different banks in successive
cycles so that it can perform many memory reads/writes in parallel and it is not
sitting idle waiting for tRP, tRCD, and CL to elapse in a single bank. For the sub-
sequent questions, assume that (RP=tRCD=CL =13 ns, and that the memory
channel frequency is 1 GHz, that is, a transfer time of 4 ns.

[10] <2.2> What is the read latency experienced by a memory controller on a row
buffer miss?

[10] <2.2> What is the latency experienced by a memory controller on a row
buffer hit?

[10] <2.2> If the memory channel supports only one bank and the memory access
pattern is dominated by row buffer misses, what is the utilization of the memory
channel?

[15] <2.2> Assuming a 100% row buffer miss rate, what is the minimum number
of banks that the memory channel should support in order to achieve a 100% mem-
ory channel utilization?

[10] <2.2> Assuming a 50% row buffer miss rate, what is the minimum number of
banks that the memory channel should support in order to achieve a 100% memory
channel utilization?

[15] <2.2> Assume that we are executing an application with four threads and the
threads exhibit zero spatial locality, that is, a 100% row buffer miss rate. Every
200 ns, each of the four threads simultaneously inserts a read operation into the



2.14

2.15

2.16

217

Case Studies and Exercises 155

memory controller queue. What is the average memory latency experienced if the
memory channel supports only one bank? What if the memory channel supported
four banks?

[10] <2.2> From these questions, what have you learned about the benefits and
downsides of growing the number of banks?

[20] <2.2> Now let’s turn our attention to memory power. Download a copy of the
Micron power calculator from this link: https:/www.micron.com/~/media/
documents/products/power-calculator/ddr3_power_calc.xlsm. This spreadsheet
is preconfigured to estimate the power dissipation in a single 2 Gb x8 DDR3
SDRAM memory chip manufactured by Micron. Click on the “Summary” tab
to see the power breakdown in a single DRAM chip under default usage conditions
(reads occupy the channel for 45% of all cycles, writes occupy the channel for 25%
of all cycles, and the row buffer hit rate is 50%). This chip consumes 535 mW, and
the breakdown shows that about half of that power is expended in Activate oper-
ations, about 38% in CAS operations, and 12% in background power. Next, click
on the “System Config” tab. Modify the read/write traffic and the row buffer hit
rate and observe how that changes the power profile. For example, what is the
decrease in power when channel utilization is 35% (25% reads and 10% writes),
or when row buffer hit rate is increased to 80%?

[20] <2.2> In the default configuration, a rank consists of eight x8 2 Gb DRAM
chips. A rank can also comprise16 x 4 chips or 4 x 16 chips. You can also vary the
capacity of each DRAM chip—1 Gb, 2 Gb, and 4 Gb. These selections can be
made in the “DDR3 Config” tab of the Micron power calculator. Tabulate the total
power consumed for each rank organization. What is the most power-efficient
approach to constructing a rank of a given capacity?

Exercises

[12/12/15] <2.3> The following questions investigate the impact of small and
simple caches using CACTI and assume a 65 nm (0.065 m) technology. (CACTI
is available in an online form at http:/quid.hpl.hp.com:9081/cacti/.)

a. [12] <2.3> Compare the access times of 64 KB caches with 64-byte blocks and
a single bank. What are the relative access times of two-way and four-way set
associative caches compared to a direct mapped organization?

b. [12] <2.3> Compare the access times of four-way set associative caches with
64-byte blocks and a single bank. What are the relative access times of 32 and
64 KB caches compared to a 16 KB cache?

c. [15] <2.3> For a 64 KB cache, find the cache associativity between 1 and
8 with the lowest average memory access time given that misses per instruction
for a certain workload suite is 0.00664 for direct-mapped, 0.00366 for two-way
set associative, 0.000987 for four-way set associative, and 0.000266 for eight-
way set associative cache. Overall, there are 0.3 data references per instruction.
Assume cache misses take 10 ns in all models. To calculate the hit time in
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cycles, assume the cycle time output using CACTI, which corresponds to the
maximum frequency a cache can operate without any bubbles in the pipeline.

[12/15/15/10] <2.3> You are investigating the possible benefits of a way-
predicting L1 cache. Assume that a 64 KB four-way set associative single-banked
L1 data cache is the cycle time limiter in a system. For an alternative cache orga-
nization, you are considering a way-predicted cache modeled as a 64 KB direct-
mapped cache with 80% prediction accuracy. Unless stated otherwise, assume that
a mispredicted way access that hits in the cache takes one more cycle. Assume the
miss rates and the miss penalties in question 2.8 part (c).

a. [12] <2.3> What is the average memory access time of the current cache (in
cycles) versus the way-predicted cache?

b. [15] <2.3> If all other components could operate with the faster way-predicted
cache cycle time (including the main memory), what would be the impact on
performance from using the way-predicted cache?

c. [15] <2.3> Way-predicted caches have usually been used only for instruction
caches that feed an instruction queue or buffer. Imagine that you want to try out
way prediction on a data cache. Assume that you have 80% prediction accuracy
and that subsequent operations (e.g., data cache access of other instructions,
dependent operations) are issued assuming a correct way prediction. Thus a
way misprediction necessitates a pipe flush and replay trap, which requires
15 cycles. Is the change in average memory access time per load instruction
with data cache way prediction positive or negative, and how much is it?

d. [10] <2.3> As an alternative to way prediction, many large associative L2
caches serialize tag and data access so that only the required dataset array
needs to be activated. This saves power but increases the access time. Use
CACTT’s detailed web interface for a 0.065 m process 1| MB four-way set
associative cache with 64-byte blocks, 144 bits read out, 1 bank, only 1
read/write port, 30 bit tags, and ITRS-HP technology with global wires. What
is the ratio of the access times for serializing tag and data access compared to
parallel access?

[10/12] <2.3> You have been asked to investigate the relative performance of a
banked versus pipelined L1 data cache for a new microprocessor. Assume a 64 KB
two-way set associative cache with 64-byte blocks. The pipelined cache would
consist of three pipe stages, similar in capacity to the Alpha 21264 data cache.
A banked implementation would consist of two 32 KB two-way set associative
banks. Use CACTI and assume a 65 nm (0.065 m) technology to answer the fol-
lowing questions. The cycle time output in the web version shows at what
frequency a cache can operate without any bubbles in the pipeline.

a. [10] <2.3> What is the cycle time of the cache in comparison to its access time,
and how many pipe stages will the cache take up (to two decimal places)?

b. [12] <2.3> Compare the area and total dynamic read energy per access of the
pipelined design versus the banked design. State which takes up less area and
which requires more power, and explain why that might be.
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[12/15] <2.3> Consider the usage of critical word first and early restart on
L2 cache misses. Assume a 1 MB L2 cache with 64-byte blocks and a refill path
that is 16 bytes wide. Assume that the L2 can be written with 16 bytes every 4
processor cycles, the time to receive the first 16 byte block from the memory con-
troller is 120 cycles, each additional 16 byte block from main memory requires 16
cycles, and data can be bypassed directly into the read port of the L2 cache. Ignore
any cycles to transfer the miss request to the L2 cache and the requested data to the
L1 cache.

a. [12] <2.3> How many cycles would it take to service an L.2 cache miss with
and without critical word first and early restart?

b. [15] <2.3> Do you think critical word first and early restart would be more
important for L1 caches or L2 caches, and what factors would contribute to their
relative importance?

[12/12] <2.3> You are designing a write buffer between a write-through L1 cache

and a write-back L2 cache. The L2 cache write data bus is 16 B wide and can per-

form a write to an independent cache address every four processor cycles.

a. [12] <2.3> How many bytes wide should each write buffer entry be?

b. [15] <2.3> What speedup could be expected in the steady state by using a
merging write buffer instead of a nonmerging buffer when zeroing memory
by the execution of 64-bit stores if all other instructions could be issued in
parallel with the stores and the blocks are present in the L2 cache?

c. [15] <2.3> What would the effect of possible L1 misses be on the number of
required write buffer entries for systems with blocking and nonblocking
caches?

[20] <2.1, 2.2, 2.3> A cache acts as a filter. For example, for every 1000 instruc-
tions of a program, an average of 20 memory accesses may exhibit low enough
locality that they cannot be serviced by a 2 MB cache. The 2 MB cache is said
to have an MPKI (misses per thousand instructions) of 20, and this will be largely
true regardless of the smaller caches that precede the 2 MB cache. Assume the fol-
lowing cache/latency/MPKI values: 32 KB/1/100, 128 KB/2/80, 512 KB/4/50),
2 MB/8/40, 8 MB/16/10. Assume that accessing the off-chip memory system
requires 200 cycles on average. For the following cache configurations, calculate
the average time spent accessing the cache hierarchy. What do you observe about
the downsides of a cache hierarchy that is too shallow or too deep?

a. 32 KB L1; 8 MB L2; off-chip memory
b. 32 KB LI; 512 KB L2; 8 MB L3; off-chip memory
c. 32 KB LI1; 128 KB L2; 2 MB L3; 8 MB L4; off-chip memory

[15] <2.1, 2.2, 2.3> Consider a 16 MB 16-way L3 cache that is shared by two
programs A and B. There is a mechanism in the cache that monitors cache miss
rates for each program and allocates 1-15 ways to each program such that the over-
all number of cache misses is reduced. Assume that program A has an MPKI of 100
when it is assigned 1 MB of the cache. Each additional 1 MB assigned to program
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A reduces the MPKI by 1. Program B has an MPKI of 50 when it is assigned 1 MB
of cache; each additional 1 MB assigned to program B reduces its MPKI by 2.
What is the best allocation of ways to programs A and B?

[20] <2.1, 2.6> You are designing a PMD and optimizing it for low energy. The
core, including an 8 KB L1 data cache, consumes 1 W whenever it is not in hiber-
nation. If the core has a perfect L1 cache hit rate, it achieves an average CPI of 1 for
a given task, that is, 1000 cycles to execute 1000 instructions. Each additional
cycle accessing the L2 and beyond adds a stall cycle for the core. Based on the
following specifications, what is the size of L2 cache that achieves the lowest
energy for the PMD (core, L1, L2, memory) for that given task?

a. The core frequency is 1 GHz, and the L1 has an MPKI of 100.

b. A256 KB L2 has a latency of 10 cycles, an MPKI of 20, a background power of
0.2 W, and each L2 access consumes 0.5 nJ.

¢. A 1 MB L2 has a latency of 20 cycles, an MPKI of 10, a background power of
0.8 W, and each L2 access consumes (0.7 nl.

d. The memory system has an average latency of 100 cycles, a background power
of 0.5 W, and each memory access consumes 35 nl.

[15] <2.1,2.6> You are designing a PMD that is optimized for low power. Qual-
itatively explain the impact on cache hierarchy (L2 and memory) power and overall
application energy if you design an L2 cache with:

a. Small block size

b. Small cache size

c. High associativity

[10/10] <2.1, 2.2, 2.3> The ways of a set can be viewed as a priority list, ordered
from high priority to low priority. Every time the set is touched, the list can be
reorganized to change block priorities. With this view, cache management policies
can be decomposed into three sub-policies: Insertion, Promotion, and Victim
Selection. Insertion defines where newly fetched blocks are placed in the priority
list. Promotion defines how a block’s position in the list is changed every time it is

touched (a cache hit). Victim Selection defines which entry of the list is evicted to
make room for a new block when there is a cache miss.

a. Can you frame the LRU cache policy in terms of the Insertion, Promotion, and
Victim Selection sub-policies?

b. Can you define other Insertion and Promotion policies that may be competitive
and worth exploring further?

[15] <2.1, 2.3> In a processor that is running multiple programs, the last-level
cache is typically shared by all the programs. This leads to interference, where
one program’s behavior and cache footprint can impact the cache available to other
programs. First, this is a problem from a quality-of-service (QoS) perspective,
where the interference leads to a program receiving fewer resources and lower
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performance than promised, say by the operator of a cloud service. Second, thisisa
problem in terms of privacy. Based on the interference it sees, a program can infer
the memory access patterns of other programs. This is referred to as a timing chan-
nel, a form of information leakage from one program to others that can be exploited
to compromise data privacy or to reverse-engineer a competitor’s algorithm. What
policies can you add to your last-level cache so that the behavior of one program is
immune to the behavior of other programs sharing the cache?

[15] <2.3> A large multimegabyte L3 cache can take tens of cycles to access
because of the long wires that have to be traversed. For example, it may take
20 cycles to access a 16 MB L3 cache. Instead of organizing the 16 MB cache such
that every access takes 20 cycles, we can organize the cache so that it is an array of
smaller cache banks. Some of these banks may be closer to the processor core,
while others may be further. This leads to nonuniform cache access (NUCA),
where 2 MB of the cache may be accessible in 8 cycles, the next2 MB in 10 cycles,
and so on until the last 2 MB is accessed in 22 cycles. What new policies can you
introduce to maximize performance in a NUCA cache?

[10/10/10] <2.2> Consider a desktop system with a processor connected to a
2 GB DRAM with error-correcting code (ECC). Assume that there is only one
memory channel of width 72 bits (64 bits for data and 8 bits for ECC).

a. [10] <2.2> How many DRAM chips are on the DIMM if 1 Gb DRAM chips
are used, and how many data I/Os must each DRAM have if only one DRAM
connects to each DIMM data pin?

b. [10] <2.2> What burst length is required to support 32 B L2 cache blocks?

c. [10] <2.2> Calculate the peak bandwidth for DDR2-667 and DDR2-533
DIMMs for reads from an active page excluding the ECC overhead.

[10/10] <2.2> A sample DDR2 SDRAM timing diagram is shown in Figure 2.34.
tRCD is the time required to activate a row in a bank, and column address
strobe (CAS) latency (CL) is the number of cycles required to read out a column
in a row. Assume that the RAM is on a standard DDR2 DIMM with ECC, having
72 data lines. Also assume burst lengths of 8 that read out 8 bits, or a total of 64 B
from the DIMM. Assume tRCD = CAS (or CL) clock_frequency, and
clock_frequency = transfers_per_second/Z2. The on-chip latency
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Figure 2.34 DDR2 SDRAM timing diagram.



160

Chapter Two Memory Hierarchy Design

235

236

237

238

on a cache miss through levels 1 and 2 and back, not including the DRAM access,
is 20 ns.

a. [10] <2.2> How much time is required from presentation of the activate
command until the last requested bit of data from the DRAM transitions
from valid to invalid for the DDR2-667 1 Gb CL=5 DIMM? Assume that
for every request, we automatically prefetch another adjacent cache line in
the same page.

b. [10] <2.2> What is the relative latency when using the DDR2-667 DIMM of a
read requiring a bank activate versus one to an already open page, including the
time required to process the miss inside the processor?

[15] <2.2> Assume thata DDR2-667 2 GB DIMM with CL =5 is available for 130
and a DDR2-533 2 GB DIMM with CL =4 is available for 100. Assume that two
DIMMs are used in a system, and the rest of the system costs 800. Consider the
performance of the system using the DDR2-667 and DDR2-533 DIMMs on a
workload with 3.33 L2 misses per 1K instructions, and assume that 80% of all
DRAM reads require an activate. What is the cost-performance of the entire system
when using the different DIMMs, assuming only one L2 miss is outstanding at a
time and an in-order core with a CPI of 1.5 not including L2 cache miss memory
access time?

[12] <2.2> You are provisioning a server with eight-core 3 GHz CMP that can
execute a workload with an overall CPI of 2.0 (assuming that L2 cache miss refills
are not delayed). The L2 cache line size is 32 bytes. Assuming the system uses
DDR2-667 DIMMs, how many independent memory channels should be provided
so the system is not limited by memory bandwidth if the bandwidth required is
sometimes twice the average? The workloads incur, on average, 6.67 L2 misses
per 1 K instructions.

[15] <2.2> Consider a processor that has four memory channels. Should consec-
utive memory blocks be placed in the same bank, or should they be placed in dif-
ferent banks on different channels?

[12/12] <2.2> A large amount (more than a third) of DRAM power can be due to
page activation (see http://download.micron.com/pdf/technotes/ddr2/TN4704.pdf
and http://www.micron.com/systemcalc). Assume you are building a system with
2 GB of memory using either 8-bank 2 Gb x8 DDR2 DRAMs or 8-bank 1 Gb
x8& DRAMSs, both with the same speed grade. Both use a page size of 1 KB,
and the last-level cache line size is 64 bytes. Assume that DRAMs that are not
active are in precharged standby and dissipate negligible power. Assume that
the time to transition from standby to active is not significant.

a. [12] <2.2> Which type of DRAM would be expected to provide the higher
system performance? Explain why.

b. [12] <2.2> How does a 2 GB DIMM made of 1 Gb x8 DDR2 DRAMs com-
pare with a DIMM with similar capacity made of 1 Gb x4 DDR2 DRAMs in
terms of power?
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[20/15/12] <2.2> To access data from a typical DRAM, we first have to activate
the appropriate row. Assume that this brings an entire page of size 8 KB to the row
buffer. Then we select a particular column from the row buffer. If subsequent
accesses to DRAM are to the same page, then we can skip the activation step; oth-
erwise, we have to close the current page and precharge the bitlines for the next
activation. Another popular DRAM policy is to proactively close a page and
precharge bitlines as soon as an access is over. Assume that every read or write
to DRAM is of size 64 bytes and DDR bus latency (data from Figure 2.33) for
sending 512 bits is Tddr.

a. [20] <2.2> Assuming DDR2-667, if it takes five cycles to precharge, five
cycles to activate, and four cycles to read a column, for what value of the row
buffer hit rate () will you choose one policy over another to get the best access
time? Assume that every access to DRAM is separated by enough time to finish
a random new access.

b. [15] <2.2> If 10% of the total accesses to DRAM happen back to back or
contiguously without any time gap, how will your decision change?

c. [12] <€2.2> Calculate the difference in average DRAM energy per access
between the two policies using the previously calculated row buffer hit rate.
Assume that precharging requires 2 nJ and activation requires 4 nJ and that
100 pJ/bit are required to read or write from the row buffer.

[15] <2.2> Whenever a computer is idle, we can either put it in standby (where
DRAM is still active) or we can let it hibernate. Assume that, to hibernate, we have
to copy just the contents of DRAM to a nonvolatile medium such as Flash. If read-
ing or writing a cache line of size 64 bytes to Flash requires 2.56 J and DRAM
requires 0.5 nJ, and if idle power consumption for DRAM is 1.6 W (for 8 GB),
how long should a system be idle to benefit from hibernating? Assume a main
memory of size 8 GB.

[10/10/10/10/10] <2.4> Virtual machines (VMs) have the potential for adding

many beneficial capabilities to computer systems, such as improved total cost

of ownership (TCO) or availability. Could VMs be used to provide the following

capabilities? If so, how could they facilitate this?

a. [10] <2.4> Test applications in production environments using development
machines?

b. [10] <2.4> Quick redeployment of applications in case of disaster or failure?

c. [10] <2.4> Higher performance in I/O-intensive applications?

d. [10] <2.4> Fault isolation between different applications, resulting in higher
availability for services?

e. [10] <2.4> Performing software maintenance on systems while applications

are running without significant interruption?

[10/10/12/12] <2.4> Virtual machines can lose performance from anumber of events,
such as the execution of privileged instructions, TLB misses, traps, and I/O.
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Benchmark Native Pure Para

Null call 0.04 0.96 0.50
Null VYO 0.27 6.32 291
Stat 1.10 10.69 4.14
Open/close 1.99 2043 7.71
Install signal handler 0.33 7.34 2.89
Handle signal 1.69 19.26 2.36
Fork 56.00 513.00 164.00
Exec 316.00 2084.00 578.00
Fork +exec sh 1451.00 7790.00 2360.00

Figure 2.35 Early performance of various system calls under native execution, pure
virtualization, and paravirtualization.

These events are usually handled in system code. Thus one way of estimating the
slowdown when running under a VM is the percentage of application execution
time in system versus user mode. For example, an application spending 10% of its
execution in system mode might slow down by 60% when running on a VM.
Figure 2.35 lists the early performance of various system calls under native execu-
tion, pure virtualization, and paravirtualization for LMbench using Xen on
an Itanium system with times measured in microseconds (courtesy of Matthew
Chapman of the University of New South Wales).

a. [10] <2.4> What types of programs would be expected to have smaller
slowdowns when running under VMs?

b. [10] <2.4> If slowdowns were linear as a function of system time, given the
preceding slowdown, how much slower would a program spending 20% of its
execution in system time be expected to run?

c. [12] <2.4> What is the median slowdown of the system calls in the table above
under pure virtualization and paravirtualization?

d. [12] <2.4> Which functions in the table above have the largest slowdowns?
What do you think the cause of this could be?

[12] <2.4> Popek and Goldberg’s definition of a virtual machine said that it would
be indistinguishable from a real machine except for its performance. In this ques-
tion, we will use that definition to find out if we have access to native execution on
a processor or are running on a virtual machine. The Intel VT-x technology effec-
tively provides a second set of privilege levels for the use of the virtual machine.
What would a virtual machine running on top of another virtual machine have to
do, assuming VT-x technology?

[20/25] <2.4> With the adoption of virtualization support on the x86 architecture,
virtual machines are actively evolving and becoming mainstream. Compare and
contrast the Intel VT-x and AMD’s AMD-V virtualization technologies.
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(Information on AMD-V can be found at http://sites.amd.com/us/business/it-
solutions/virtualization/Pages/resources.aspx.)

a. [20] <2.4> Which one could provide higher performance for memory-
intensive applications with large memory footprints?

b. [25] <2.4> Information on AMD’s IOMMU support for virtualized I/O can be
found at http://developer.amd.com/documentation/articles/pages/892006101.
aspx. What do Virtualization Technology and an input/output memory manage-
ment unit (IOMMU) do to improve virtualized 1/O performance?

[30] <2.2, 2.3> Since instruction-level parallelism can also be effectively
exploited on in-order superscalar processors and very long instruction word
(VLIW) processors with speculation, one important reason for building an out-
of-order (O00) superscalar processor is the ability to tolerate unpredictable mem-
ory latency caused by cache misses. Thus you can think about hardware supporting
OO0 issue as being part of the memory system. Look at the floorplan of the Alpha
21264 in Figure 2.36 to find the relative area of the integer and floating-point issue
queues and mappers versus the caches. The queues schedule instructions for issue,
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Figure 2.36 Floorplan of the Alpha 21264 [Kessler 1999].
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and the mappers rename register specifiers. Therefore these are necessary additions
to support OOQ issue. The 21264 only has L1 data and instruction caches on chip,
and they are both 64 KB two-way set associative. Use an OOO superscalar sim-
ulator such as SimpleScalar (http://www.cs.wisc.edu/~mscalar/simplescalar.
html) on memory-intensive benchmarks to find out how much performance is lost
if the area of the issue queues and mappers is used for additional L1 data cache area
in an in-order superscalar processor, instead of OOOQ issue in a model of the 21264.
Make sure the other aspects of the machine are as similar as possible to make the
comparison fair, Ignore any increase in access or cycle time from larger caches and
effects of the larger data cache on the floorplan of the chip. (Note that this com-
parison will not be totally fair, as the code will not have been scheduled for the
in-order processor by the compiler.)

[15] <2.2, 2.7> As discussed in Section 2.7, the Intel i7 processor has an aggres-
sive prefetcher. What are potential disadvantages in designing a prefetcher that is
extremely aggressive?

[20/20/20] <2.6> The Intel performance analyzer VTune can be used to make
many measurements of cache behavior. A free evaluation version of VTune on
both Windows and Linux can be downloaded from http://software.intel.com/en-
us/articles/intel-vtune-amplifier-xe/. The program (aca_chZ_csZ.c) used in
Case Study 2 has been modified so that it can work with VTune out of the box
on Microsoft Visual C++. The program can be downloaded from http://www.
hpl.hp.com/research/cacti/aca_ch2_cs2_vtune.c. Special VTune functions have
been inserted to exclude initialization and loop overhead during the performance
analysis process. Detailed VTune setup directions are given in the README sec-
tion in the program. The program keeps looping for 20 seconds for every config-
uration. In the following experiment, you can find the effects of data size on cache
and overall processor performance. Run the program in VTune on an Intel proces-
sor with the input dataset sizes of 8 KB, 128 KB, 4 MB, and 32 MB, and keep a
stride of 64 bytes (stride one cache line on Intel 17 processors). Collect statistics on
overall performance and L1 data cache, L2, and L3 cache performance.

a. [20] <2.6> List the number of misses per 1K instruction of L1 data cache, L2,
and L3 for each dataset size and your processor model and speed. Based on the
results, what can you say about the L1 data cache, L2, and L3 cache sizes on
your processor? Explain your observations.

b. [20] <2.6> List the instructions per clock (1IPC) for each dataset size and your
processor model and speed. Based on the results, what can you say about the
L1, L2, and L3 miss penalties on your processor? Explain your observations.

c. [20] <2.6> Run the program in VTune with input dataset size of 8 KB and
128 KB on an Intel OOO processor. List the number of L1 data cache and
L2 cache misses per 1K instructions and the CPI for both configurations. What
can you say about the effectiveness of memory latency hiding techniques in
high-performance OOO processors? Hint: You need to find the L1 data cache
miss latency for your processor. For recent Intel 17 processors, it is approxi-
mately 11 cycles.
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Instruction-Level Parallelism
and Its Exploitation

“Who's first?”

"America.”

"“Who's second?”

“Sir, there is no second.”

Dialog between two observers of the

sailing race in 1851, later named “The America’s Cup,”
which was the inspiration for John Cocke’s

naming of an IBM research processor as “America,” the first
superscalar processor, and a precursor to the PowerPC.

Thus, the 1A-64 gambles that, in the future, power will not be the critical
limitation, and massive resources...will not penalize clock speed, path length,
or CPI factors. My view is clearly skeptical...

Marty Hopkins (2000), IBM Fellow and Early RISC pioneer
commenting in 2000 on the new Intel ftanium, a joint development
of Intel and HP. The Itanium used a static ILP approach (see
Appendix H) and was a massive investment for Intel. It never
accounted for more than 0.5% of Intel’s microprocessor sales.

Computer Architecture. https:/doi.org/10.1016/B978-0-12-811905-1.00003-1
© 2019 Elsevier Inc. All rights reserved.
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3.1

Instruction-Level Parallelism: Concepts and Challenges

All processors since about 1985 have used pipelining to overlap the execution of
instructions and improve performance. This potential overlap among instructions
is called instruction-level parallelism (ILP), because the instructions can be eval-
uated in parallel. In this chapter and Appendix H, we look at a wide range of tech-
niques for extending the basic pipelining concepts by increasing the amount of
parallelism exploited among instructions.

This chapter is at a considerably more advanced level than the material on basic
pipelining in Appendix C. If you are not thoroughly familiar with the ideas in
Appendix C, you should review that appendix before venturing into this chapter.

We start this chapter by looking at the limitation imposed by data and control
hazards and then turn to the topic of increasing the ability of the compiler and the
processor to exploit parallelism. These sections introduce a large number of concepts,
which we build on throughout this chapter and the next. While some of the more basic
material in this chapter could be understood without all of the ideas in the first two
sections, this basic material is important to later sections of this chapter.

There are two largely separable approaches to exploiting ILP: (1) an approach
that relies on hardware to help discover and exploit the parallelism dynamically,
and (2) an approach that relies on software technology to find parallelism statically
at compile time. Processors using the dynamic, hardware-based approach, includ-
ing all recent Intel and many ARM processors, dominate in the desktop and server
markets. In the personal mobile device market, the same approaches are used in
processors found in tablets and high-end cell phones. In the IOT space, where
power and cost constraints dominate performance goals, designers exploit lower
levels of instruction-level parallelism. Aggressive compiler-based approaches
have been attempted numerous times beginning in the 1980s and most recently
in the Intel Itanium series, introduced in 1999. Despite enormous efforts, such
approaches have been successful only in domain-specific environments or in
well-structured scientific applications with significant data-level parallelism.

In the past few years, many of the techniques developed for one approach have
been exploited within a design relying primarily on the other. This chapter intro-
duces the basic concepts and both approaches. A discussion of the limitations on
ILP approaches is included in this chapter, and it was such limitations that directly
led to the movement toward multicore. Understanding the limitations remains
important in balancing the use of ILP and thread-level parallelism.

In this section, we discuss features of both programs and processors that limit
the amount of parallelism that can be exploited among instructions, as well as the
critical mapping between program structure and hardware structure, which is key
to understanding whether a program property will actually limit performance and
under what circumstances.

The value of the CPI (cycles per instruction) for a pipelined processor is the
sum of the base CPI and all contributions from stalls:

Pipeline CPI = Ideal pipeline CPI + Structural stalls + Data hazard stalls + Control stalls
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Technique Reduces Section
Forwarding and bypassing Potential data hazard stalls C2
Simple branch scheduling and prediction Control hazard stalls C.2
Basic compiler pipeline scheduling Data hazard stalls C2,32
Basic dynamic scheduling (scoreboarding) Data hazard stalls from true dependences C.7
Loop unrolling Control hazard stalls 32
Advanced branch prediction Control stalls 33
Dynamic scheduling with renaming Stalls from data hazards, output dependences, and 3.4

antidependences

Hardware speculation Data hazard and control hazard stalls 3.6
Dynamic memory disambiguation Data hazard stalls with memory 3.6
Issuing multiple instructions per cycle Ideal CPI 37,38
Compiler dependence analysis, software pipelining,  Ideal CPI, data hazard stalls H.2, H.3
trace scheduling
Hardware support for compiler speculation Ideal CPI, data hazard stalls, branch hazard stalls H.4, H.5

Figure 3.1 The major techniques examined in Appendix C, Chapter 3, and Appendix H are shown together with
the component of the CPI equation that the technique affects.

The ideal pipeline CPI is a measure of the maximum performance attainable by the
implementation. By reducing each of the terms of the right-hand side, we decrease
the overall pipeline CPI or, alternatively, increase the IPC (instructions per clock).
The preceding equation allows us to characterize various techniques by what com-
ponent of the overall CPI a technique reduces. Figure 3.1 shows the techniques we
examine in this chapter and in Appendix H, as well as the topics covered in the
introductory material in Appendix C. In this chapter, we will see that the tech-
niques we introduce to decrease the ideal pipeline CPI can increase the importance
of dealing with hazards.

What Is Instruction-Level Parallelism?

All the techniques in this chapter exploit parallelism among instructions. The
amount of parallelism available within a basic block—a straight-line code sequence
with no branches in except to the entry and no branches out except at the exit—is
quite small. For typical RISC programs, the average dynamic branch frequency is
often between 15% and 25%, meaning that between three and six instructions exe-
cute between a pair of branches. Because these instructions are likely to depend
upon one another, the amount of overlap we can exploit within a basic block is
likely to be less than the average basic block size. To obtain substantial performance
enhancements, we must exploit ILP across multiple basic blocks.

The simplest and most common way to increase the ILP is to exploit parallel-
ism among iterations of a loop. This type of parallelism is often called loop-level
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parallelism. Here is a simple example of a loop that adds two 1000-element arrays
and is completely parallel:

for (i=0; i<=999; i=i+1)
x[(1]1=x[11+yl[i];

Every iteration of the loop can overlap with any other iteration, although within
each loop iteration, there is little or no opportunity for overlap.

We will examine a number of techniques for converting such loop-level
parallelism into instruction-level parallelism. Basically, such techniques work
by unrolling the loop either statically by the compiler (as in the next section) or
dynamically by the hardware (as in Sections 3.5 and 3.6).

An important alternative method for exploiting loop-level parallelism is the use
of SIMD in both vector processors and graphics processing units (GPUs), both of
which are covered in Chapter 4. A SIMD instruction exploits data-level parallelism
by operating on a small to moderate number of data items in parallel (typically
two to eight). A vector instruction exploits data-level parallelism by operating
on many data items in parallel using both parallel execution units and a deep pipe-
line. For example, the preceding code sequence, which in simple form requires
seven instructions per iteration (two loads, an add, a store, two address updates,
and a branch) for a total of 7000 instructions, might execute in one-quarter as many
instructions in some SIMD architecture where four data items are processed per
instruction. On some vector processors, this sequence might take only four instruc-
tions: two instructions to load the vectors X and y from memory, one instruction to
add the two vectors, and an instruction to store back the result vector. Of course,
these instructions would be pipelined and have relatively long latencies, but these
latencies may be overlapped.

Data Dependences and Hazards

Determining how one instruction depends on another is critical to determining how
much parallelism exists in a program and how that parallelism can be exploited.
In particular, to exploit instruction-level parallelism, we must determine which
instructions can be executed in parallel. If two instructions are parallel, they
can execute simultaneously in a pipeline of arbitrary depth without causing any
stalls, assuming the pipeline has sufficient resources (and thus no structural hazards
exist). If two instructions are dependent, they are not parallel and must be executed
in order, although they may often be partially overlapped. The key in both cases is
to determine whether an instruction is dependent on another instruction.

Data Dependences

There are three different types of dependences: data dependences (also called true
data dependences), name dependences, and control dependences. An instruction j
is data-dependent on instruction i if either of the following holds:
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m Instruction i produces a result that may be used by instruction j.

= Instruction j is data-dependent on instruction k, and instruction k is data-
dependent on instruction i.

The second condition simply states that one instruction is dependent on another if
there exists a chain of dependences of the first type between the two instructions.
This dependence chain can be as long as the entire program. Note that a depen-
dence within a single instruction (such as add x1,x1,x1) is not considered a
dependence.

For example, consider the following RISC-V code sequence that increments a
vector of values in memory (starting at 0(x1) ending with the last element at
0(x2)) by a scalar in register T2.

Loop: fld f0,0(x1) //f0=array element
fadd.d f4,f0,f2 //add scalar in f2
fsd f4,0(x1) //store result
addi x1,x1,-8 //decrement pointer 8 bytes
bne x1,x2,Loop //branch x1#xZ

The data dependences in this code sequence involve both floating-point data:

Loop: fld £f0,0(x1) //f0=array element
fadd.d f+4, 0,f2 //add scalar in f2
fsd £4,0 (x1) //store result

and integer data:

addi x1,x1,-8 //decrement pointer
//8 bytes (per DW)
bne ;X2,Loop//branch xlax2

In both of the preceding dependent sequences, as shown by the arrows, each
instruction depends on the previous one. The arrows here and in following exam-
ples show the order that must be preserved for correct execution. The arrow points
from an instruction that must precede the instruction that the arrowhead points to.

If two instructions are data-dependent, they must execute in order and cannot
execute simultaneously or be completely overlapped. The dependence implies that
there would be a chain of one or more data hazards between the two instructions.
(See Appendix C for a brief description of data hazards, which we will define
precisely in a few pages.) Executing the instructions simultaneously will cause
a processor with pipeline interlocks (and a pipeline depth longer than the distance
between the instructions in cycles) to detect a hazard and stall, thereby reducing or
eliminating the overlap. In a processor without interlocks that relies on compiler
scheduling, the compiler cannot schedule dependent instructions in such a way that
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they completely overlap because the program will not execute correctly. The pres-
ence of a data dependence in an instruction sequence reflects a data dependence
in the source code from which the instruction sequence was generated. The effect
of the original data dependence must be preserved.

Dependences are a property of programs. Whether a given dependence results
in an actual hazard being detected and whether that hazard actually causes a stall
are properties of the pipeline organization. This difference is critical to understand-
ing how instruction-level parallelism can be exploited.

A data dependence conveys three things: (1) the possibility of a hazard, (2) the
order in which results must be calculated, and (3) an upper bound on how
much parallelism can possibly be exploited. Such limits are explored in a pitfall
on page 262 and in Appendix H in more detail.

Because a data dependence can limit the amount of instruction-level parallel-
ism we can exploit, a major focus of this chapter is overcoming these limitations. A
dependence can be overcome in two different ways: (1) maintaining the depen-
dence but avoiding a hazard, and (2) eliminating a dependence by transforming
the code. Scheduling the code is the primary method used to avoid a hazard without
altering a dependence, and such scheduling can be done both by the compiler and
by the hardware.

A data value may flow between instructions either through registers or through
memory locations. When the data flow occurs through a register, detecting the
dependence is straightforward because the register names are fixed in the instruc-
tions, although it gets more complicated when branches intervene and correctness
concerns force a compiler or hardware to be conservative.

Dependences that flow through memory locations are more difficult to detect
because two addresses may refer to the same location but look different: For exam-
ple, 100(x4) and 20 (x6) may be identical memory addresses. In addition, the
effective address of a load or store may change from one execution of the instruc-
tion to another (so that 20 (x4 ) and 20 (x4 ) may be different), further compli-
cating the detection of a dependence.

In this chapter, we examine hardware for detecting data dependences that
involve memory locations, but we will see that these techniques also have limita-
tions. The compiler techniques for detecting such dependences are critical in unco-
vering loop-level parallelism.

Name Dependences

The second type of dependence is a name dependence. A name dependence occurs
when two instructions use the same register or memory location, called a name, but
there is no flow of data between the instructions associated with that name. There
are two types of name dependences between an instruction 7 that precedes instruc-
tion j in program order:

1. An antidependence between instruction i and instruction j occurs when instruc-
tion j writes a register or memory location that instruction 7 reads. The original
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ordering must be preserved to ensure that i reads the correct value. In the example
on page 171, there is an antidependence between fsd and addi on register x 1.

2. Anoutput dependence occurs when instruction / and instruction j write the same
register or memory location. The ordering between the instructions must be
preserved to ensure that the value finally written corresponds to instruction j.

Both antidependences and output dependences are name dependences, as opposed
to true data dependences, because there is no value being transmitted between the
instructions. Because a name dependence is not a true dependence, instructions
involved in a name dependence can execute simultaneously or be reordered, if
the name (register number or memory location) used in the instructions is changed
so the instructions do not conflict.

This renaming can be more easily done for register operands, where it is called
register renaming. Register renaming can be done either statically by a compiler or
dynamically by the hardware. Before describing dependences arising from branches,
let’s examine the relationship between dependences and pipeline data hazards.

Data Hazards

A hazard exists whenever there is a name or data dependence between instructions,
and they are close enough that the overlap during execution would change the
order of access to the operand involved in the dependence. Because of the depen-
dence, we must preserve what is called program order—that is, the order that the
instructions would execute in if executed sequentially one at a time as determined
by the original source program. The goal of both our software and hardware tech-
niques is to exploit parallelism by preserving program order only where it affects
the outcome of the program. Detecting and avoiding hazards ensures that neces-
sary program order is preserved.

Data hazards, which are informally described in Appendix C, may be classified
as one of three types, depending on the order of read and write accesses in the
instructions. By convention, the hazards are named by the ordering in the program
that must be preserved by the pipeline. Consider two instructions i and j, with i
preceding j in program order. The possible data hazards are

m  RAW (read after write)—j tries to read a source before i writes it, so j incor-
rectly gets the old value. This hazard is the most common type and corresponds
to a true data dependence. Program order must be preserved to ensure that j
receives the value from i.

n WAW (write after write)—j tries to write an operand before it is written by i.
The writes end up being performed in the wrong order, leaving the value writ-
ten by i rather than the value written by j in the destination. This hazard cor-
responds to an output dependence. WAW hazards are present only in pipelines
that write in more than one pipe stage or allow an instruction to proceed even
when a previous instruction is stalled.
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m  WAR (write after read)—j tries to write a destination before it is read by i, so i
incorrectly gets the new value. This hazard arises from an antidependence (or
name dependence). WAR hazards cannot occur in most static issue pipelines—
even deeper pipelines or floating-point pipelines—because all reads are early
(in ID in the pipeline in Appendix C) and all writes are late (in WB in the pipe-
line in Appendix C). A WAR hazard occurs either when there are some instruc-
tions that write results early in the instruction pipeline and other instructions
that read a source late in the pipeline, or when instructions are reordered, as
we will see in this chapter.

Note that the RAR (read after read) case is not a hazard.

Control Dependences

The last type of dependence is a control dependence. A control dependence deter-
mines the ordering of an instruction, i, with respect to a branch instruction so that
instruction i is executed in correct program order and only when it should be. Every
instruction, except for those in the first basic block of the program, is control-
dependent on some set of branches, and in general, these control dependences must
be preserved to preserve program order. One of the simplest examples of a control
dependence is the dependence of the statements in the “then” part of an if statement
on the branch. For example, in the code segment

ifpl{
S1;
b
ifp2d
YA
J

51 is control-dependent on pl, and SZ is control-dependent on pZ but not
onpl.
In general, two constraints are imposed by control dependences:

1. Aninstruction that is control-dependent on a branch cannot be moved before the
branch so that its execution is no longer controlled by the branch. For example,
we cannot take an instruction from the then portion of an if statement and move
it before the if statement.

2. An instruction that is not control-dependent on a branch cannot be moved after
the branch so that its execution is controlled by the branch. For example, we
cannot take a statement before the if statement and move it into the then portion.

When processors preserve strict program order, they ensure that control depen-
dences are also preserved. We may be willing to execute instructions that should
not have been executed, however, thereby violating the control dependences, if we
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can do so without affecting the correctness of the program. Thus control depen-
dence is not the critical property that must be preserved. Instead, the two properties
critical to program correctness—and normally preserved by maintaining both data
and control dependences—are the exception behavior and the data flow.

Preserving the exception behavior means that any changes in the ordering of
instruction execution must not change how exceptions are raised in the program.
Often this is relaxed to mean that the reordering of instruction execution must not
cause any new exceptions in the program. A simple example shows how maintain-
ing the control and data dependences can prevent such situations. Consider this
code sequence:

add x2,x3,x4

beq x2,x0,L1

1d  x1,0(x2)
L1:

In this case, it is easy to see that if we do not maintain the data dependence involv-
ing X2, we can change the result of the program. Less obvious is the fact that if we
ignore the control dependence and move the load instruction before the branch, the
load instruction may cause a memory protection exception. Notice that no data
dependence prevents us from interchanging the beqz and the 1d; it is only the
control dependence. To allow us to reorder these instructions (and still preserve
the data dependence), we want to just ignore the exception when the branch is
taken. In Section 3.6, we will look at a hardware technique, speculation, which
allows us to overcome this exception problem. Appendix H looks at software tech-
niques for supporting speculation.

The second property preserved by maintenance of data dependences and con-
trol dependences is the data flow. The data flow is the actual flow of data values
among instructions that produce results and those that consume them. Branches
make the data flow dynamic because they allow the source of data for a given
instruction to come from many points. Put another way, it is insufficient to just
maintain data dependences because an instruction may be data-dependent on more
than one predecessor. Program order is what determines which predecessor will
actually deliver a data value to an instruction. Program order is ensured by main-
taining the control dependences.

For example, consider the following code fragment:

add x1,x2,x3
beq x4,x0,L
sub x1,x5,x6

or x7.,x1,x8

In this example, the value of X1 used by the 0 instruction depends on whether the
branch is taken or not. Data dependence alone is not sufficient to preserve correct-
ness. The Or instruction is data-dependent on both the add and Sub instructions,
but preserving that order alone is insufficient for correct execution.
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3.2

Instead, when the instructions execute, the data flow must be preserved: If the
branch is not taken, then the value of x1 computed by the sub should be used by
the or, and if the branch is taken, the value of x1 computed by the add should
be used by the or. By preserving the control dependence of the or on the branch,
we prevent an illegal change to the data flow. For similar reasons, the s UD instruc-
tion cannot be moved above the branch. Speculation, which helps with the excep-
tion problem, will also allow us to lessen the impact of the control dependence
while still maintaining the data flow, as we will see in Section 3.6.

Sometimes we can determine that violating the control dependence cannot
affect either the exception behavior or the data flow. Consider the following code
sequence:

add x1,x2,x3
beq x12,x0,skip
sub  x4,x5,x6
add xb5,x4,x9
skip: or x7,%x8,x9

Suppose we knew that the register destination of the s ub instruction (x4) was unused
after the instruction labeled sk i p. (The property of whether a value will be used by an
upcoming instruction is called liveness.) If x4 were unused, then changing the value
of x4 just before the branch would not affect the data flow because x4 would be dead
(rather than live) in the code region after s k1 p. Thus, if x4 were dead and the existing
sub instruction could not generate an exception (other than those from which the
processor resumes the same process), we could move the Sub instruction before
the branch because the data flow could not be affected by this change.

If the branch is taken, the Sub instruction will execute and will be useless, but
it will not affect the program results. This type of code scheduling is also a form of
speculation, often called software speculation, because the compiler is betting on
the branch outcome; in this case, the bet is that the branch is usually not taken.
More ambitious compiler speculation mechanisms are discussed in Appendix H.
Normally, it will be clear when we say speculation or speculative whether the
mechanism is a hardware or software mechanism; when it is not clear, it is best
to say “hardware speculation™ or “software speculation.”

Control dependence is preserved by implementing control hazard detection
that causes control stalls. Control stalls can be eliminated or reduced by a variety
of hardware and software techniques, which we examine in Section 3.3.

Basic Compiler Techniques for Exposing ILP

This section examines the use of simple compiler technology to enhance a proces-
sor’s ability to exploit ILP. These techniques are crucial for processors that use static
issue or static scheduling. Armed with this compiler technology, we will shortly
examine the design and performance of processors using static issuing. Appendix
H will investigate more sophisticated compiler and associated hardware schemes
designed to enable a processor to exploit more instruction-level parallelism.
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Basic Pipeline Scheduling and Loop Unrolling

To keep a pipeline full, parallelism among instructions must be exploited by find-
ing sequences of unrelated instructions that can be overlapped in the pipeline. To
avoid a pipeline stall, the execution of a dependent instruction must be separated
from the source instruction by a distance in clock cycles equal to the pipeline
latency of that source instruction. A compiler’s ability to perform this scheduling
depends both on the amount of ILP available in the program and on the latencies of
the functional units in the pipeline. Figure 3.2 shows the FP unit latencies we
assume in this chapter, unless different latencies are explicitly stated. We assume
the standard five-stage integer pipeline so that branches have a delay of one clock
cycle. We assume that the functional units are fully pipelined or replicated (as
many times as the pipeline depth) so that an operation of any type can be issued
on every clock cycle and there are no structural hazards.

In this section, we look at how the compiler can increase the amount of avail-
able ILP by transforming loops. This example serves both to illustrate an important
technique as well as to motivate the more powerful program transformations
described in Appendix H. We will rely on the following code segment, which adds
a scalar to a vector:

for (1=999; i>=0; i=1-1)
x[1]l=x[1]+s;

We can see that this loop is parallel by noticing that the body of each iteration is
independent. We formalize this notion in Appendix H and describe how we can test
whether loop iterations are independent at compile time. First, let’s look at the per-
formance of this loop, which shows how we can use the parallelism to improve its
performance for a RISC-V pipeline with the preceding latencies.

The first step is to translate the preceding segment to RISC-V assembly language.
In the following code segment, x 1 is initially the address of the element in the array
with the highest address, and 2 contains the scalar value s. Register X2 is precom-
puted so that Regs [ X2 J+8 is the address of the last element to operate on.

Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

Figure 3.2 Latencies of FP operations used in this chapter. The last column is the
number of intervening clock cycles needed to avoid a stall. These numbers are similar
to the average latencies we would see on an FP unit. The latency of a floating-point load
to a store is 0 because the result of the load can be bypassed without stalling the store.
We will continue to assume an integer load latency of 1 and an integer ALU operation
latency of 0 (which includes ALU operation to branch).
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The straightforward RISC-V code, not scheduled for the pipeline, looks like
this:

Loop: fld f0,0(x1) //f0=array element
fadd.d f4,f0,f2 //add scalar in f2
fsd f4,0(x1) //store result
addi x1,x1,-8 //decrement pointer

//8 bytes (per DW)
bne x1,x2,Loop  //branch x1#x2

Let’s start by seeing how well this loop will run when it is scheduled on a sim-
ple pipeline for RISC-V with the latencies in Figure 3.2.

Example

Answer

Show how the loop would look on RISC-V, both scheduled and unscheduled,
including any stalls or idle clock cycles. Schedule for delays from floating-point
operations.

Without any scheduling, the loop will execute as follows, taking nine cycles:

Clock cycle issued

Loop: fld f0,0(x1) 1
stall 2
fadd.d f4,f0,f?2 3
stall 4
stall 5
fsd f4,0(x1) 6
addi x1l,x1,-8 7
bne x1,x2,Loop 8

We can schedule the loop to obtain only two stalls and reduce the time to seven
cycles:

Loop: fld f0,0(x1)
addi x1,x1,-8
fadd.d f4,f0,f2

stall

stall

fsd 4,8(x1)
bne x1,x2,Loop

The stalls after fadd . d are for use by the fsd, and repositioning the add i pre-
vents the stall after the 1d.

In the previous example, we complete one loop iteration and store back one array
element every seven clock cycles, but the actual work of operating on the array
element takes just three (the load, add, and store) of those seven clock cycles.
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The remaining four clock cycles consist of loop overhead—the addi and bne—
and two stalls. To eliminate these four clock cycles, we need to get more operations
relative to the number of overhead instructions.

A simple scheme for increasing the number of instructions relative to the
branch and overhead instructions is loop unrolling. Unrolling simply replicates
the loop body multiple times, adjusting the loop termination code.

Loop unrolling can also be used to improve scheduling. Because it eliminates
the branch, it allows instructions from different iterations to be scheduled together.
In this case, we can eliminate the data use stalls by creating additional independent
instructions within the loop body. If we simply replicated the instructions when we
unrolled the loop, the resulting use of the same registers could prevent us from
effectively scheduling the loop. Thus we will want to use different registers for
each iteration, increasing the required number of registers.

Example

Answer

Show our loop unrolled so that there are four copies of the loop body, assuming
x1 — x2 (that is, the size of the array) is initially a multiple of 32, which means that
the number of loop iterations is a multiple of 4. Eliminate any obviously redundant
computations and do not reuse any of the registers.

Here is the result after merging the addi instructions and dropping the unnec-
essary bne operations that are duplicated during unrolling. Note that X2 must
now be set so that Regs[xZ]+37 is the starting address of the last four
elements.

Loop: f1d f0,0(x1)
fadd.d f4,f0,f2
fsd f4,0(x1) //drop addi & bne
fid f6,-8(x1)
fadd.d f8,f6,f2
fsd f8,-8(x1) //drop addi & bne
fld f0,—-16(x1)
fadd.d fl2,f0,f2
fsd fl2,-16(x1) //drop addi & bne
fld f14,-24(x1)
fadd.d fle,fl4,f2
fsd fl6,-24(x1)
addi x1,x1,-32
bne x1,x2,Loop

We have eliminated three branches and three decrements of x 1. The addresses on
the loads and stores have been compensated to allow the add i instructions on x 1
to be merged. This optimization may seem trivial, but it is not; it requires symbolic
substitution and simplification. Symbolic substitution and simplification will rear-
range expressions so as to allow constants to be collapsed, allowing an expression
such as ((i+1)+1) to be rewritten as (i+(1+1)) and then simplified to (i+2).
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We will see more general forms of these optimizations that eliminate dependent
computations in Appendix H.

Without scheduling, every FP load or operation in the unrolled loop is followed
by a dependent operation and thus will cause a stall. This unrolled loop will run in
26 clock cycles—each T1d has 1 stall, each fadd.d has 2, plus 14 instruction
issue cycles—or 6.5 clock cycles for each of the four elements, but it can be sched-
uled to improve performance significantly. Loop unrolling is normally done early
in the compilation process so that redundant computations can be exposed and
eliminated by the optimizer.

In real programs, we do not usually know the upper bound on the loop. Sup-
pose itis n, and we want to unroll the loop to make k copies of the body. Instead of a
single unrolled loop, we generate a pair of consecutive loops. The first executes (n
mod k) times and has a body that is the original loop. The second is the unrolled
body surrounded by an outer loop that iterates (n/k) times. (As we will see in
Chapter 4, this technique is similar to a technique called strip mining, used in com-
pilers for vector processors.) For large values of n, most of the execution time will
be spent in the unrolled loop body.

In the previous example, unrolling improves the performance of this loop by
eliminating overhead instructions, although it increases code size substantially.
How will the unrolled loop perform when it is scheduled for the pipeline described
earlier?

Example

Answer

Show the unrolled loop in the previous example after it has been scheduled for the
pipeline with the latencies in Figure 3.2.

Loop: fld f0,0(x1)
fld f6,-8(x1)
fld f0,—16(x1)
fld f14,-24(x1)

fadd.d f4,f0,f2
fadd.d f8,f6,f2
fadd.d f12,f0,f?
fadd.d f16,f14,f2
fsd f4,00x1)
fsd f8,—-8(x1)
fsd f12,16(x1)

fsd 16,8(x1)
addi x1,x1,-32
bne x1,x2,Loop

The execution time of the unrolled loop has dropped to a total of 14 clock
cycles, or 3.5 clock cycles per element, compared with 8 cycles per element before
any unrolling or scheduling and 6.5 cycles when unrolled but not scheduled.
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The gain from scheduling on the unrolled loop is even larger than on the original
loop. This increase arises because unrolling the loop exposes more computation
that can be scheduled to minimize the stalls; the preceding code has no stalls.
Scheduling the loop in this fashion necessitates realizing that the loads and stores
are independent and can be interchanged.

Summary of the Loop Unrolling and Scheduling

Throughout this chapter and Appendix H, we will look at a variety of hardware and
software techniques that allow us to take advantage of instruction-level parallelism
to fully utilize the potential of the functional units in a processor. The key to most
of these techniques is to know when and how the ordering among instructions may
be changed. In our example, we made many such changes, which to us, as human
beings, were obviously allowable. In practice, this process must be performed in a
methodical fashion either by a compiler or by hardware. To obtain the final
unrolled code, we had to make the following decisions and transformations:

m  Determine that unrolling the loop would be useful by finding that the loop iter-
ations were independent, except for the loop maintenance code.

= Use different registers to avoid unnecessary constraints that would be forced by
using the same registers for different computations (e.g., name dependences).

m  Eliminate the extra test and branch instructions and adjust the loop termination
and iteration code.

m  Determine that the loads and stores in the unrolled loop can be interchanged by
observing that the loads and stores from different iterations are independent.
This transformation requires analyzing the memory addresses and finding that
they do not refer to the same address.

m  Schedule the code, preserving any dependences needed to yield the same result
as the original code.

The key requirement underlying all of these transformations is an understanding of
how one instruction depends on another and how the instructions can be changed
or reordered given the dependences.

Three different effects limit the gains from loop unrolling: (1) a decrease in the
amount of overhead amortized with each unroll, (2) code size limitations, and
(3) compiler limitations. Let’s consider the question of loop overhead first. When
we unrolled the loop four times, it generated sufficient parallelism among the
instructions that the loop could be scheduled with no stall cycles. In fact, in 14
clock cycles, only 2 cycles were loop overhead: the add i, which maintains the
index value, and the bne, which terminates the loop. If the loop is unrolled eight
times, the overhead is reduced from 1/2 cycle per element to 1/4.

A second limit to unrolling is the resulting growth in code size. For larger
loops, the code size growth may be a concern, particularly if it causes an increase
in the instruction cache miss rate.
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Another factor often more important than code size is the potential shortfall in
registers that is created by aggressive unrolling and scheduling. This secondary
effect that results from instruction scheduling in large code segments is called reg-
ister pressure. It arises because scheduling code to increase ILP causes the number
of live values to increase. After aggressive instruction scheduling, it may not be
possible to allocate all the live values to registers. The transformed code, while the-
oretically faster, may lose some or all of its advantage because it leads to a shortage
of registers. Without unrolling, aggressive scheduling is sufficiently limited by
branches so that register pressure is rarely a problem. The combination of unrolling
and aggressive scheduling can, however, cause this problem. The problem becomes
especially challenging in multiple-issue processors that require the exposure of
more independent instruction sequences whose execution can be overlapped.
In general, the use of sophisticated high-level transformations, whose potential
improvements are difficult to measure before detailed code generation, has led to
significant increases in the complexity of modern compilers.

Loop unrolling is a simple but useful method for increasing the size of straight-
line code fragments that can be scheduled effectively. This transformation is useful
in a variety of processors, from simple pipelines like those we have examined so far
to the multiple-issue superscalars and VLIWs explored later in this chapter.

Reducing Branch Costs With Advanced Branch
Prediction

Because of the need to enforce control dependences through branch hazards and
stalls, branches will hurt pipeline performance. Loop unrolling is one way to
reduce the number of branch hazards; we can also reduce the performance losses
of branches by predicting how they will behave. In Appendix C, we examine sim-
ple branch predictors that rely either on compile-time information or on the
observed dynamic behavior of a single branch in isolation. As the number of
instructions in flight has increased with deeper pipelines and more issues per clock,
the importance of more accurate branch prediction has grown. In this section, we
examine techniques for improving dynamic prediction accuracy. This section
makes extensive use of the simple 2-bit predictor covered in Section C.2, and
it is critical that the reader understand the operation of that predictor before
proceeding.

Correlating Branch Predictors

The 2-bit predictor schemes in Appendix C use only the recent behavior of a single
branch to predict the future behavior of that branch. It may be possible to improve
the prediction accuracy if we also look at the recent behavior of other branches
rather than just the branch we are trying to predict. Consider a small code {ragment
from the egntott benchmark, a member of early SPEC benchmark suites that dis-
played particularly bad branch prediction behavior:
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if (aa==2)
aa=0;

if (bb==2)
bb=0;

if (aa!=bb) {

Here is the RISC-V code that we would typically generate for this code frag-
ment assuming that aa and bD are assigned to registers x1 and xZ:

addi x3,x1,-2
bnez x3,L1 //branch bl (aa!=2)
add x1,x0,x0 //aa=0

L1: addi x3,x2,-2
bnez x3,L2 //branch b2 (bb!=2)
add x2,x0,x0 //bb=0

L2: sub x3,x1,x2 //x3=aa-bb
beqz x3,L3 //branch b3  (aa==bb)

Let’s label these branches b1, b2, and b3. The key observation is that the behavior
of branch b3 is correlated with the behavior of branches bl and b2. Clearly, if nei-
ther branches bl nor b2 are taken (i.e., if the conditions both evaluate to true and a a
and bD are both assigned 0), then b3 will be taken, because aa and bb are clearly
equal. A predictor that uses the behavior of only a single branch to predict the out-
come of that branch can never capture this behavior.

Branch predictors that use the behavior of other branches to make a prediction
are called correlating predictors or two-level predictors. Existing correlating pre-
dictors add information about the behavior of the most recent branches to decide
how to predict a given branch. For example, a (1,2) predictor uses the behavior of
the last branch to choose from among a pair of 2-bit branch predictors in predicting
a particular branch. In the general case, an (m,n) predictor uses the behavior of the
last m branches to choose from 2" branch predictors, each of which is an n-bit pre-
dictor for a single branch. The attraction of this type of correlating branch predictor
is that it can yield higher prediction rates than the 2-bit scheme and requires only a
trivial amount of additional hardware.

The simplicity of the hardware comes from a simple observation: the global
history of the most recent m branches can be recorded in an m-bit shift register,
where each bit records whether the branch was taken or not taken. The branch-
prediction buffer can then be indexed using a concatenation of the low-order bits
from the branch address with the m-bit global history. For example, in a (2,2) buffer
with 64 total entries, the 4 low-order address bits of the branch (word address)
and the 2 global bits representing the behavior of the two most recently executed
branches form a 6-bit index that can be used to index the 64 counters. By combin-
ing the local and global information by concatenation (or a simple hash function),
we can index the predictor table with the result and get a prediction as fast as we
could for the standard 2-bit predictor, as we will do very shortly.
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How much better do the correlating branch predictors work when compared
with the standard 2-bit scheme? To compare them fairly, we must compare
predictors that use the same number of state bits. The number of bits in an
(m,n) predictor is

2" x n x Number of prediction entries selected by the branch address

A 2-bit predictor with no global history is simply a (0,2) predictor.

Example

Answer

How many bits are in the (0,2) branch predictor with 4K entries? How many entries
are in a (2,2) predictor with the same number of bits?
The predictor with 4K entries has

29 % 2 % 4K = 8K bits

How many branch-selected entries are in a (2,2) predictor that has a total of 8K bits
in the prediction buffer? We know that

22 % 2 x Number of prediction entries selected by the branch = 8K

Therefore the number of prediction entries selected by the branch = 1K.

Figure 3.3 compares the misprediction rates of the earlier (0,2) predictor with 4K
entries and a (2,2) predictor with 1K entries. As you can see, this correlating pre-
dictor not only outperforms a simple 2-bit predictor with the same total number of
state bits, but it also often outperforms a 2-bit predictor with an unlimited number
of entries.

Perhaps the best-known example of a correlating predictor is McFarling’s
gshare predictor. In gshare the index is formed by combining the address of the
branch and the most recent conditional branch outcomes using an exclusive-
OR, which essentially acts as a hash of the branch address and the branch history.
The hashed result is used to index a prediction array of 2-bit counters, as shown in
Figure 3.4. The gshare predictor works remarkably well for a simple predictor, and
is often used as the baseline for comparison with more sophisticated predictors.
Predictors that combine local branch information and global branch history are also
called alloyed predictors or hybrid predictors.

Tournament Predictors: Adaptively Combining Local and
Global Predictors

The primary motivation for correlating branch predictors came from the observa-
tion that the standard 2-bit predictor, using only local information, failed on some
important branches. Adding global history could help remedy this situation.
Tournament predictors take this insight to the next level, by using multiple predic-
tors, usually a global predictor and a local predictor, and choosing between them
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Figure 3.3 Comparison of 2-bit predictors. A noncorrelating predictor for 4096 bits is first, followed by a noncor-
relating 2-bit predictor with unlimited entries and a 2-bit predictor with 2 bits of global history and a total of 1024
entries. Although these data are for an older version of SPEC, data for more recent SPEC benchmarks would show

similar differences in accuracy.

with a selector, as shown in Figure 3.5. A global predictor uses the most recent
branch history to index the predictor, while a local predictor uses the address
of the branch as the index. Tournament predictors are another form of hybrid or
alloyed predictors.

Tournament predictors can achieve better accuracy at medium sizes (8K-32K
bits) and also effectively use very large numbers of prediction bits. Existing tour-
nament predictors use a 2-bit saturating counter per branch to choose among two
different predictors based on which predictor (local, global, or even some time-
varying mix) was most effective in recent predictions. As in a simple 2-bit predic-
tor, the saturating counter requires two mispredictions before changing the identity
of the preferred predictor.

The advantage of a tournament predictor is its ability to select the right predic-
tor for a particular branch, which is particularly crucial for the integer benchmarks.
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Figure 3.4 A gshare predictor with 1024 entries, each being a standard 2-bit predictor.
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Figure 3.5 A tournament predictor using the branch address to index a set of 2-bit selection counters, which
choose between a local and a global predictor. In this case, the index to the selector table is the current branch
address. The two tables are also 2-bit predictors that are indexed by the global history and branch address, respec-
tively. The selector acts like a 2-bit predictor, changing the preferred predictor for a branch address when two mis-
predicts occur in a row. The number of bits of the branch address used to index the selector table and the local
predictor table is equal to the length of the global branch history used to index the global prediction table. Note that
misprediction is a bit tricky because we need to change both the selector table and either the global or local predictor.
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A typical tournament predictor will select the global predictor almost 40% of the
time for the SPEC integer benchmarks and less than 15% of the time for the SPEC
FP benchmarks. In addition to the Alpha processors that pioneered tournament pre-
dictors, several AMD processors have used tournament-style predictors.

Figure 3.6 looks at the performance of three different predictors (a local 2-bit
predictor, a correlating predictor, and a tournament predictor) for different num-
bers of bits using SPEC89 as the benchmark. The local predictor reaches its limit
first. The correlating predictor shows a significant improvement, and the tourna-
ment predictor generates a slightly better performance. For more recent versions
of the SPEC, the results would be similar, but the asymptotic behavior would
not be reached until slightly larger predictor sizes.

The local predictor consists of a two-level predictor. The top level is a local
history table consisting of 1024 10-bit entries; each 10-bit entry corresponds to
the most recent 10 branch outcomes for the entry. That is, if the branch is taken
10 or more times in a row, the entry in the local history table will be all 1s. If
the branch is alternately taken and untaken, the history entry consists of alternating
0Os and 1s. This 10-bit history allows patterns of up to 10 branches to be discovered
and predicted. The selected entry from the local history table is used to index a table
of 1K entries consisting of 3-bit saturating counters, which provide the local pre-
diction. This combination, which uses a total of 29K bits, leads to high accuracy in
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Figure 3.6 The misprediction rate for three different predictors on SPEC89 versus the size of the predictor in
kilobits. The predictors are a local 2-bit predictor, a correlating predictor that is optimally structured in its use of
global and local information at each point in the graph, and a tournament predictor. Although these data are
for an older version of SPEC, data for more recent SPEC benchmarks show similar behavior, perhaps converging
to the asymptotic limit at slightly larger predictor sizes.



