Subrata Dasgupta

 COMPUTER SCIENCE

A Very Short Introduction

~OXFORD

Subrata Dasqupta

COMPUTER SCIENCE

A Very Short Introduction

OXFORD

UNIVERSITY PRESS

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP,
United Kingdom

Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries
© Subrata Dasgupta 2016
The moral rights of the author have been asserted

First edition published in 2016
Impression: 1
All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above

You must not circulate this work in any other form
and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available
Library of Congress Control Number: 2015950971
ISBN 978-0-19-873346-1

Printed in Great Britain by
Ashford Colour Press Ltd, Gosport, Hampshire

Links to third party websites are provided by Oxford in good faith and
for information only. Oxford disclaims any responsibility for the materials
contained in any third party website referenced in this work.

Contents

N oo W=

Preface xv

Acknowledgements xix

List of illustrations xx

The ‘stuff’ of computing 1

Computational artefacts 13

Algorithmic thinking 33

The art, science, and engineering of programming 62
The discipline of computer architecture 81

Heuristic computing 104

Computational thinking 119

Epilogue: is computer science a universal science? 129
Further reading 133

Index 139

Copyrighted material

Preface

The 1960s were tumultuous times, socially and culturally. But
tucked away amidst the folds of the Cold War, civil rights activism,
anti-war demonstrations, the feminist movement, student revolt,
flower-power, sit-ins, and left-radical insurrections—almost
unnoticed—a new science came into being on university campuses
in the West and even, albeit more tentatively, in some regions of
the non-Western world.

This science was centred on a new kind of machine: the
electronic digital computer. The technology surrounding this
machine was called by a variety of names, most commonly,
‘automatic computation ‘automatic computing’, or ‘information
processing’. In the English-speaking world this science was most
widely called computer science, while in Europe it came to be
labelled ‘informatique’, or ‘informatik’.

The technological idea of automatic computation—designing

and building real machines that would compute with minimal
human intervention—can at least be traced back to the obsessive
dreams of the English mathematician and intellectual gadfly
Charles Babbage in the early 19th century, if not further back. The
mathematical concept of computing was first studied in the late
1930s by the logicians Alan Turing in England and Alonzo Church
in the United States. But the impetus for a proper empirical

Computer Science

science of computing had to wait until the invention, design, and
implementation of the electronic digital computer in the 1940s,
just after the end of the Second World War. Even then, there was
a gestation period. An autonomous science with a name and an
identity of its own only emerged in the 1960s when universities
began offering undergraduate and graduate degrees in computer
science, and the first generation of formally trained computer

scientists emerged from the campuses.

Since the advent of the electronic digital computer in 1946, the
spectacular growth of the technologies associated with this
machine (nowadays called generically ‘information technology’ or
‘IT”) and the related cultural and social transformation (expressed
in such terms as ‘information age) ‘information revolution,
‘information society’) is visible for all to see and experience.
Indeed, we are practically engulfed by this techno-social milieu.
The science—the intellectual discipline—underlying the
technology, however, is less visible and certainly less known or
understood outside the professional computer science community.
Yet computer science surely stands alongside the likes of
molecular biology and cognitive science as being amongst the
most consequential new sciences of the post-Second World War
era. Moreover, there is a certain strangeness to computer science
that compels attention and sets it apart from all other sciences.

My intent in this book is to offer the intellectually curious reader
seriously interested in scientific ideas and principles the basis for
an understanding of the fundamental nature of computer science;
to enrich, if you will, the public understanding of this strange,
historically unique, highly consequential, and still new, science.
Put simply, this book strives to answer in direct, immediate, and
concise fashion the question: What is computer science?

Before we proceed, some terminological clarity is in order. In this
book I will use the word computing as a verb to denote a certain

Xvi

kind of activity; computation is used as a noun to signify the
outcome of computing; computational is used as an adjective;
computer is a noun which will refer to a device, artefact, or system
that does computing; artefact refers to anything made by humans
(or, sometimes, animals); and a computational artefact is any
artefact that participates in computational work.

Finally, a caveat must be stated. This book begins by accepting the
proposition that computer science is indeed a science; that is, it
manifests the broad attributes associated with the concept of
science, notably, that it entails the systematic blend of empirical,
conceptual, mathematical and logical, quantitative and qualitative
modes of inquiry into the nature of a certain kind of phenomena.
Questioning this assumption is an exercise in the philosophy of
science that is beyond the scope of this book. The abiding issue of
interest here is the nature of computer science gua science and,
especially, its distinct and distinguishing character.

Xvii

dejald

Copyrighted material

Acknowledgements

I thank Latha Menon, my editor at OUP for her support and sage
advice on this project from its very onset. Her comments on the
penultimate version of the book were especially insightful.

Jenny Nugee always responded readily with editorial help and
suggestions at various stages of this work. I thank her.

Four anonymous readers of two different drafts of the manuscript
offered invaluable suggestions and comments which I took
seriously. I am most grateful to them and wish I could
acknowledge them by name.

My thanks to Elman Bashar for preparing the illustrations.

Portions of this material were used in an upper-level
undergraduate course on ‘Computational Thinking’ which I have
taught on several occasions to non-computer science majors.
Their responses have been most helpful in shaping and
sharpening the text.

Finally, as always, my thanks to members of my family. In their
different ways each continues to provide the sustenance that
makes living the life of the mind worthwhile.

List of illustrations

Abstraction and hierarchy
inside a computer system 16

General structure of the
Turing machine 26

Programming, related
disciplines, and associated
sciences 66

Computer architectures and
their external constraints 86

Portrait of a computer’s inner
architecture 91

An instruction pipeline 99

Portrait of a
multiprocessor 100

General structure of a
heuristic search system 115

Chapter 1
The ‘stuff’ of computing

‘What is computer science? A, now classic, answer was offered

in 1967 by three eminent early contributors to the discipline, Alan
Perlis, Allen Newell, and Herbert Simon, who stated, quite
simply, that computer science is the study of computers and their
associated phenomena.

This is a quite straightforward response and I think most
computer scientists would accept it as a rough and ready working
definition. It centres on the computer itself, and certainly there
would be no computer science without the computer. But both
computer scientists and the curious layperson may wish to
understand more precisely the two key terms in this definition:
‘computers’ and their ‘associated phenomena’.

An automaton called ‘computer’

The computer is an automaton. In the past this word, coined in
the 17th century (plural, ‘automata’) meant any artefact which,
largely driven by its own source of motive power, performed
certain repetitive patterns of movement and actions without
external influences. Sometimes, these actions imitated those of
humans and animals. Ingenious mechanical automata have been
devised since pre-Christian antiquity, largely for the amusement
of the wealthy, but some were of a very practical nature as, for

1

Computer Science

example, the water clock said to be invented in the 1st century ce
by the engineer Hero of Alexandria. The mechanical weight-driven
clock invented in 15th-century Italy is a highly successful and
lasting descendant of this type of automaton. In the Industrial
Revolution of the 18th century, the operation of a pump to remove
water from mines motivated by the ‘atmospheric’ steam engine
invented by Thomas Newcomen (in 1713), and later improved by
James Watt (in 1765) and others, was another instance of a

practical automaton.

Thus, mechanical automata that perform physical actions of one
sort or another have a venerable pedigree. Automata that mimic
cognitive actions are of far more recent vintage. A notable example
is the ‘tortoise’ robot Machina Speculatriz invented by British
neurophysiologist W. Grey Walter in the late 194.0s to early 1950s.
But the automatic electronic digital computer, developed in the
second half of the 1940s, marked the birth process of an entirely
new genus of automata; for the computer was an artefact designed
to simulate and imitate certain kinds of human thought processes.

The idea of computing as a way of imitating human thinking—of
the computer as a ‘thinking machine’—is a profoundly interesting,
disturbing, and controversial notion which I will address later

in the book, for it is the root of a branch of computer science
called artificial intelligence (AI). But many computer scientists
prefer to be less anthropocentric about their discipline. Some even
deny that computing has any similarity at all to autonomous
human thinking. Writing in the 1840s, the remarkable English
mathematician Ada Augustus, the Countess of Lovelace, an
associate of Charles Babbage (see Preface) pointed out that the
machine Babbage had conceived (called the Analytical Engine,
the first incarnation of what a century later became the modern
general purpose digital computer), had no ‘pretensions’ to initiating
tasks on its own. It could only do what it was ordered to do by
humans. This sentiment is often repeated by modern sceptics of
Al, such as Sir Maurice Wilkes, one of the pioneers of the

2

electronic computer. Writing at the end of the 20th century and
echoing Lovelace, he insisted that computers only did what ‘they
had been written to do’.

So what is it that computers do which sets them apart from
every other kind of artefact, including other sorts of automata?
And what makes computer science so distinctive as a scientific

discipline?

For the purpose of this chapter, I will treat the computer as a ‘black
box’. That is, we will more or less ignore the internal structure and
workings of computers; those will come later. For the present we
will think of the computer as a generic kind of automaton, and
consider only what it does, not how it does what it does.

Computing as information processing

Every discipline that aspires to be ‘scientific’ is constrained by

the fundamental stuffit is concerned with. The stuff of physics
comprises matter, force, energy, and motion; that of chemistry is
atoms and molecules; the stuff of genetics is the gene; and that of
civil engineering comprises the forces that keep a physical
structure in equilibrium.

A widely held view amongst computer scientists is that the
fundamental stuff of computer science is ¢nformation. Thus, the
computer is the means by which information is automatically
retrieved from the ‘environment), stored, processed, or transformed,
and released back into the environment. This is why an alternative
term for computing is information processing; why in Europe
computer science is called ‘informatique’ or ‘informatik’; and why
the ‘United Nations’ of computing is called the International
Federation for Information Processing (IFIP).

The problem is that despite the founding of IFIP in 1960 (thus
giving official international blessing to the concept of information

3

buizndwos jo ynis, 3y

Computer Science

processing), there remains, to this day, a great deal of
misunderstanding about what information és. It is, as Maurice
Wilkes once remarked, an elusive thing.

‘Meaningless’ information

One significant reason for this is the unfortunate fact that the word
‘information’ was appropriated by communication engineers to
mean something very different from its everyday meaning. We
usually think of information as telling us something about the world.
In ordinary language, information is meaningful. The statement
‘The average winter temperature in country X is 5 degrees Celsius’
tells us something about the climate in country X; it gives us
information about X. In contrast, in the branch of communication
engineering called ‘information theory) largely created by American
electrical engineer Claude Shannon in 1948, information is simply
a commodity transmitted across communication channels such

as telegraph wires and telephone lines. In information theory,
information is devoid of meaning. The unit of information in
information theory is called the b:t (short for ‘binary digit’) and a bit
has only two values, usually denoted as ‘0’ and ‘1. However, in this
age of personal computers and laptops, people are more familiar
with the concept of the byte. One byte consists of eight bits. Since
each bit can have one of two values, a byte of information can have
28 (= 256) possible values ranging from 00000000 to 11111111. What
bits (or bytes) mean is of no concern in this sense of ‘information’

In computing, information processing in this meaningless sense is
certainly relevant since (as we will see) a physical computer, made
out of electronic circuits, magnetic and electromechanical devices,
and the like (collectively dubbed ‘hardware’), stores, processes,
and communicates information as multiples of bits and bytes. In
fact, one of the ways in which the capacity and performance of a
computational artefact is specified is in terms of bits and bytes.
For example, I may buy a laptop with 6 gigabytes of internal
memory and 500 gigabytes of external memory (‘hardrive’),

4

(where 1 gigabyte = 10° bytes); or we may speak of a computer
network transmitting information at the rate of 100 megabits/
second (where 1 megabit = 10 bits).

‘Meaningful’ (or semantic) information

But the physical computer is (as we will see in Chapter 2) only one
kind of computational artefact. Meaningless information is just
one kind of information the computer scientist is interested in.
The other, more significant (and arguably more interesting), kind
is information that has meaning: semantic information. Such
information connects to the ‘real world’—and in this sense
corresponds to the everyday use of the word. For example, when

I access the Internet through my personal computer, information
processing certainly occurs at the physical or ‘meaningless’ level:
bits are transmitted from some remote computer (‘server’) through
the network to my machine. But I am seeking information that
is about something, say the biography of a certain person. The
resulting text that I read on my screen means something to me. At
this level, the computational artefact I am interacting with is a
semantic information processing system.

Such information can, of course, be almost anything about the
physical, social, or cultural environment, about the past, about
thoughts and ideas of other people as expressed by them publicly,
and even about one’s own thoughts if they happen to be recorded
or stored somewhere. What such meaningful information shares
with meaningless information, as computer scientist Paul
Rosenbloom has noted, is that it must be expressed in some
physical medium such as electrical signals, magnetic states, or

marks on paper; and that it resolves uncertainty.

Is information knowledge?

But consider an item of semantic information such as the
biography of an individual. On reading it, I can surely claim to

5

buizndwos jo ynis, 3y

Computer Science

possess knowledge about that individual. And this points to the
second source of confusion about the concept of information in
ordinary language: the conflation of information with knowledge.

The poet T.S. Eliot had no doubt about their distinction. In his
play The Rock (1934) he famously asked:

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

Eliot was clearly implying a hierarchy: that wisdom is superior to
knowledge, and knowledge to information.

Computer scientists generally avoid talking about wisdom as
being beyond the scope of their purview. But they have also
remained somewhat uneasy about distinguishing knowledge from
information, at least in some contexts. For example, in Al, a
subfield of computer science, a long-standing problem of interest
has been knowledge representation—how to represent knowledge
about the world in computer memory. Another kind of problem
they study is how to make inferences from a body of knowledge.
The kinds of things Al researchers recognize as knowledge include
facts (‘All men are mortal’), theories (‘Evolution by natural
selection’), laws (‘Every action has an equal and opposite
reaction’), beliefs (‘There is a God’), rules (‘Always come to a dead
stop at a stop sign’), and procedures (‘how to make seafood
gumbo’), etc. But in what way such entities constitute knowledge
and not information remains largely unsaid. Al researchers may
well claim that what they do, in their branch of computer science,
is knowledge processing rather than information processing; but
they seem to fall shy of explaining why their concern is knowledge
and not information.

In another specialty known as ‘data mining’ the concern is
‘knowledge discovery’ from large volumes of data. Some data

mining researchers characterize knowledge as ‘interesting’ and
‘useful’ patterns or regularities hidden in large databases. They
distinguish knowledge discovery from information retrieval
(another kind of computing activity) in that the latter is concerned
with retrieving ‘useful’ information from a database on the basis

of some query, whereas the former identifies knowledge that is
more than just ‘useful’ information, or more than patterns of
regularity: such information must be ‘interesting’ in some
significant sense to become knowledge. Like T.S. Eliot, data
mining researchers rate knowledge as superior to information. At
any rate, knowledge processing is what data mining is about
rather than information retrieval.

Luciano Floridi, a philosopher of computing, offered the following
view of the information/knowledge nexus. Information and
knowledge bear a ‘family resemblance’. They are both meaningful
entities but they differ in that information elements are isolated
like bricks whereas knowledge relates information elements to
one another so that one can produce new inferences by way of the

relationships.

To take an example: suppose, while driving, I hear on my car
radio that physicists in Geneva have detected a fundamental
particle called the Higgs boson. This new fact (‘The Higgs boson
exists’) is certainly a piece of new information for me. I may even
think that I have acquired some new knowledge. But this would
be an illusion unless I can connect this information with other
related items of information about fundamental particles and
cosmology. Nor would I be able to judge the significance of this
information. Physicists possess an integrated web of facts,
theories, laws, etc., about subatomic particles, and about the
structure of the universe that enable them to assimilate this new
fact and grasp its significance or consequences. They possess the
knowledge to do this, while I have merely acquired a new piece

of information.

buizndwos jo ynis, 3y

Computer Science

Is information data?

In mentioning ‘data mining), I have introduced another term of
great relevance: data. And here is yet another source of ambiguity
in our making sense of the information concept, especially in the

computer science community.

This ambiguity, indeed confusion, was remarked upon by the
computer scientist Donald Knuth as far back as 1966, a time
when computer science, emerging as a scientific discipline in its
own right, was demanding the invention of new concepts and
clarification of old ones. Knuth noted that in science there
appeared to be some confusion concerning the terms ‘information’
and ‘data’. When a scientist executes an experiment involving
measurement, what is elicited might be any one of four entities:
the ‘true’ values of that which is measured; the values that

are actually obtained—approximations to the true values; a
representation of the values; and the concepts the scientist
teases out by analysing the measurements. The word ‘data),
Knuth asserted, most appropriately applies to the third of these
entities. For Knuth, then, speaking as a computer scientist,
data is the representation of information obtained by observation
or measurement in some precise manner. So, in his view,
information precedes data. In practice, the relationship between
information and data is as murky as that between information
and knowledge. Here, I can only cite a few of the diverse views of

this relationship.

For Russell Ackoff, a prominent systems and management
scientist, data constitute the outcome of observations; they are
representations of objects and events. As for information, Ackoff
imagined someone asking some questions of data which is then
‘processed’ (presumably by a human being or a machine) to afford
answers, and this latter is information. So according to Ackoff,
contra Knuth, data precedes information.

For Luciano Floridi, data also precedes information but in a
different sense. Data exists, according to Floridi, only when there
is an absence of uniformity between two states of a system. As he
puts it, a datum (the infrequently used singular of ‘data’) exists
whenever there are two variables, and y such that « # y. So, for
Floridi, data is a condition which itself has no meaning except that
it signifies the presence of difference. When I am approaching a
traffic light for instance, my observation of a red signal is a datum
because it could have been otherwise: yellow or green.

Given this definition of data, Floridi then defines information as
one or more data elements that are structured according to some
rules, and are meaningful. To use the linguist’s jargon, information
is data when it possesses both syntax and semantics. Thus, my
observation of the red traffic signal, a datum, becomes information
because the meaning of the red light is that ‘motorists must stop
at the traffic light’ If I did not associate this action with the red
light, the latter would remain only a datum.

As afinal example, for Al researchers Jeffrey Shrager and Pat Langley,
data do not result from observation; rather, observation is data;
more precisely, what is observed is selectively recorded to qualify as
data. Information does not figure in their scheme of things.

The programmer’s point of view

These examples suffice to demonstrate the murkiness of the
information/data connection from different perspectives. But let me
return to Knuth. His definition of data reflects to a large extent, I
think, the view of those computer scientists who specialize in
another aspect of computer science, namely, computer
programming—the techniques by which humans communicate a
computational task to the computer (a topic I discuss later in this
book). Even while paying lip service to the idea of computing as
information processing, programmers and programming theorists

buizndwos jo ynis, 3y

Computer Science

do not generally reflect on ‘information’; rather, they are more
concerned with the Knuthian idea of data. More precisely, they
concern themselves with data as the fundamental objects (‘data
objects’) upon which computations are performed; and, thus, they
are preoccupied with the classification of data objects (‘data types’),
the rules for representing complex data objects (‘data structures’),
and the rules for manipulating, processing, and transforming such
data objects to produce new data objects. For such computer
scientists it is data that matters, not information, not knowledge.
To be more exact, programmers take for granted that there is
information ‘out there’ in the ‘real world’ But the interesting
question for them is how to represent real world information in a
form that is appropriate not only for automatic computing but also
for human understanding. (Needless to say, other practitioners, such
as historians, statisticians, and experimental scientists, do not
usually regard data in this fashion.)

I will elaborate on this later in the book. But to give a very

simple example of the programmer’s view of data: in a university
environment there will exist information in the registrar’s office
about its body of enrolled students: their names, dates of birth,

home addresses, email addresses, names of parents or guardians,

the subjects they are majoring in, the courses taken, the grades
obtained, scholarships held, fees paid, and so on. The university
administration needs a system that will organize this information in
a systematic fashion (a ‘database’) such that, perhaps, information
concerning any particular student can be accurately and speedily
retrieved; new information about existing or new students can be
inserted; the progress of individual students can be efficiently tracked;
and statistics about the student population as a whole or some subset
can be gathered. The programmer given the task of creating such a
system is not concerned with the information per se, but rather, given
the nature of the information, how to identify the basic data objects
representing student information, construct data structures
representing the data objects, and build a database so as to facilitate
the computational tasks the university administration demands.

10

