| |

E
i
RITE‘(R

Manyord by products are claimed as trade-
mark in this book, and ey was aware of
he designations have been prited with il capialleters or i all cpias

“The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warcanty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden-
al or consequential damages in connection with or arising out of the use of the information or programs con-
tained herein.

‘The publisher offers d this book. for bulk sales,
For mor informarion, leas contact

U, Corporate and Government Sales
(300) 382-3419
corpsales @ pearsontechgroup.com

For sales outside of the U.S.,please contact
Imemational Sales

@17 581

Visit Addison-Wesley on the Web: www.awprofessional.com
Library of Congress Cataloging.in-Publication Data

Bishop, Matt.
‘Computer security art and science / Mat Bishop.
p.cm.
Includes bibliographical references and index.
ISBN 0-201-44099-7 (alk. paper)
1. Computer security. 1. Title

QAT6.9.A25 BS6 2002
005.8—de21 2002026219

Copyright © 2003 by Pearson Education, Inc.

Al No part of be reproduced, system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying. recording, or otherwise, without the
prior consent of he publshe. Prntedin the United Sitesof Amcrica. Publshed simufancouly in Canada

Chapters 18-21 and 34, Copyright 2003 by Elisabeth C. Sullivan. Published by Pearson Education, Inc. with
permission.

For information on obtaining permission for use of material from this work, please submit a written request

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116

Fax: (617) 8487047

ISBN 0-201-44099-7
Tet printed on recycled

3456789 10— CRW- 0807060504
Fifth printing. September 2004

Contents ix

34.1.2 Filter Function68
34.1.3 Putting It All Together .68
34.14 Demand and Create Operations. .69

3415 Safety Analysis .
3.5 Expressive Power and the Mode

35.1 Brief Comparison of HRU and SPM,

352 Extending SPM .
3 Simulation and Expressiveness
4 Typed Access Matrix Model .
Summary .
Research l\\ues
Further Reading
1 9 Exercises ...

PART 3: POLICY 93

Chapter 4 Security Policies
4.1 Security Policies ...
42 Types of Security Policies .
43 TheRoleof Trust
44 Types of Access Control
45 Policy Languages
4.5.1 High-Level Policy Languages.
4.5.2 Low-Level Policy Languages .
Example: Academic Computer Security Policy
4.6.1 General University Policy . .
4.6.2 Electronic Mail Policy. 12

4

N

4621 The Electronic Mail Policy Summary 12

4.62.2 The Full Policy. ... 13

4.6.2.3 Implementation at UC Du\ 114
4.7 Security and Precision . 114
48 Summary . o . 119
49 Research Issues ... 119
4.10 Further Reading 120

4.11 Exercises

Chapter 5 Confidentiality Policies
5.1 Goals of Confidentiality Policies
The Bell-LaPadula Model

x Contents

2.1 Informal Description .
Example: The Data General B2 UNIX System .
2.1 Assigning MAC Labels .
5222 Using MAC Labels
5.2.3 Formal Model .
5.23.1 Basic Security
5.2.3.2 Rules of Transformation
5.4 Example Model Instantiation: Multics .
5.24.1 The get-read Rule.
5242 The give-read Rul
53 Tranquility
54 The Controversy over the Bell-LaPadula Model .
54.1 McLean's t-Property and the Basic Security Theorem
McLean’s System Z and More Questions .
543 Summary
5.5 Summary .
5.6 Research Issues .
5.7 Further Reading .
5.8 Exercises.......

X

Chapter 6 Integrity PONCIESueeueensennenneanenneaneanns 151
6.1
62 Biba Integrity Model .
62,1 Low-Water-Mark Policy
6.2.2 Ring Policy. .
623 Biba's Model (Stict Integrity Policy) -

63 Lipner’s Integrity Matrix Model 156
6 3.1 Lipner's Use of the Bell-LaPadula Model . 156

2 Lipner’s Full Model 158

6 3 Comparison with Biba . 160

64 Clark-Wilson Integrity Model . . 160
64.1 The Model 161
64.1.1 A UNIX Approximation to Clark-Wilson . 164

6.4.2 Comparison with the Requirements . . 164
6.4.3 Comparison with Other Models . 165

65 Summary 166
6.6 Research Issues 166
6.7 Further Reading . .167
6.8 Exercises . 167
Chapter 7 Hybrid PONICIESccoviueuenrnninineneananns 169

7.1 Chinese Wall Modelooviuiiiiiiiiiiiiiiiiaas 169

Contents xi

7.1.1 Informal Description 170
7.1.2 Formal Model . ..
7.1.3 Bell-LaPadula and Chinese Wall Models
714 Clark-Wilson and Chinese Wall Models.
7.2 Clinical Information Systems Security Policy .
721 Bell-LaPadula and Clark-Wilson Models
7.3 Originator Controlled Access Control
74 Role-Based Access Control
7.5 Summary ...
7.6 Research Issues
7.7 Further Reading
78 Exercises ..

185

Chapter 8 Noninterference and Policy Composition ..
8.1 The Problem

8.1.1' Composition of Bell-LaPadula Models
82 Deterministic Noninterference .

on .
823 Security Policies That Change over Time. .
824 C of D Systems201

8.3 Nondeducibility
8.1 Composition of Deducibly Secure Systems

84 Generalized Noninterference
84.1 C

8.5 Restrictiveness
8.5.1 State Machine Model
8.5.2 Composition of Restrictive Systems

8.6 Summary ..

8.7 Research Issues

88 Further Reading

89 Exercises ...

PART 4: IMPLEMENTATION I: CRYPTOGRAPHY 215

Chapter 9 Basic Cryptographycoiiiiiiiiiinieniennanns 217
9.1 What Is Cryptography? .
9.2 Classical Cryptosystems
9.2.1 Transposition Ciphers .
9.2.2 SbSHHUON CIPES eeveeeteteieeeeeiiaeaenes 220

xii Contents

9.22.1 Vigenére Cipher.
9222 One-Time Pad
9.2.3 Data Encryption Standard
9.2.4 Other Classical Ciphers
9.3 Public Key Cryptography .
9.3.1 Diffie-Hellman
932 RSA
9.4 Cryptographic Checksums .
9.4.1 HMAC .
9.5 Summary ..
9.6 Research Issues .
9.7 Further Reading .
9.8 Exercises

Chapter 10 Key Management . . . 245
10.1 Session and Interchange Keys . 246
102 Key Exchange 246
1021 Classical Cryptographic Key Exchange and Authentication. 247
1022 Kerberos 250
1023 Public Key Cryptographic Key Exchange and Authentication.. . . 251
103 Key Generation 252
104 Cryptographic Key Infrastructures 254
1041 Merkle’s Tree Authentication Scheme 255
1042 Certificate Signature Chains 256

10421 X.509: Certification Signature Chains .

10422 PGP Certficate Signature Chains 258

1043 Summary .. 260

105 Storing and Revoking Keys .. 261
105.1 Key Storage .. 261
105.1.1 Key Escro 262

10.5.12 Key Escrow System and the Clipper Chip . 263

10.5.1.3 The Yaksha Security System 264

10.5.14 Other Approaches... ...
1052 Key Revocation

106 Digital Signatures
6.1 Classical Signature:

10.62 Public Key Signatures
10.6.2.1 RSA Digiral Signatures .

10622 El Gamal Digital Signature

107 Summary ...
108 Research Issues .

Contents xiii

10.9 Further Reading . 272

10.10 Exercises ... 272
Chapter 11 Cipher TECRNIGUSceeeueesnaeeennnnnns 275
111 Problems OO 275

1111 Precomputing the Possible Messages. ..275

11.12 Misordered Blocks .
3 Statistical Regularities -
11.1.4 Summary

112 Stream and Block Ciphers
1121 Stream Ciphers
11.2.1.1 Synchronous Stream Cipher

11.2.12 Self-Synchronous Stream Ciphers

1122 Block Ciphers.
11.22.1 Muliiple Encryption.

11.3 Networks and Cryptography
114 Example Protocols
1141 Secure Electronic Mail: PEM
114.1.1 Design Principles.

114.12 Basic Design ..

114,13 Other Considerations.

1142

Suunly at the Transport Layer: .
1142.1 Supporting Cryptographic Mechanisms
114.2.2 Lower Layer: SSL Record Protocol...
114.23 Upper Layer: SSL Handshake Protocol
11424 Upper Layer: SSL Change Cipher Spec Protocol
11425 Upper Layer:
11426 Upper Layer: Application Data Protocol .
11427 Summary
1143 Security at the Network Layer: IPsec.
1143.1 IPsec Architecture .

432 Authentication Header Protocol

3 Encapsulating Security Payload Protocol.
11.4.4 Conclusion

115 Summary .
11.6 Research Issues .
117 Further Reading .
118 EXERCISES . o..oeteiiteetaesi et eee e 307

xv Contents

Chapter 12 Authentication .
12.1 Authentication Basics . .
122 Passwords ..
1221 Attacking a Password System .
1222 Countering Password Guessing
Random Selection of Passwords
12222 Pronounceable and Other
Computer-Generated Passwords 315
12223 User Selection of Passwords.
12.2.24 Reusable Passwords and Dictionary Attacks .
12225 Guessing Through Authentication Function:
1223 Password Aging .
Challenge-Response .
1231 Pass Algorithm:
1232 One-Time Passwords.
1233 Hardware-Supported Challenge-Response Procedures
1234 Challenge-Response and Dictionary Attacks
124 Biometrics

I

1247 Caution
12.5 Location
12.6 Multiple Methods .
127 Summary ..
12.8 Research Issues
129 Further Reading
12.10 Exercises

PART 5: IMPLEMENTATION II: SYSTEMS 339

Chapter 13 Design Principles.
13.1 Overview
132 Design Principles ...
13.2.1 Principle of Least Privilege .
13.2.2 Principle of Fail-Safe Defaults .
1323 Principle of Economy of Mechanism -
1324 Principle of Complete Mediation . .

133
134
13.5
13.6

Chapter 14 Representing Identity

14.1
142
143
14.4
145

14.7
14.8
14.9

14.10 Exercises

Chapter 15 Access Control Mechanisms .

15.1

Contents xv

1325 Principle of Open Design ..
1326 Principle of Separation of Privilege
1327 Principle of Least Common Mechanism
1328 Principle of Psychological Acceptability
Summary .
Research Issues .
Further Reading .
Exercises ...

What Is Identity?
Files and Objects
Users
Groups and Roles .
Naming and Certificates .
1451 Conflicts
1452 The Meaning of the Identity.
1453 Trust...
Identity on the Web
14.6.1" Host Identity.

14.6.1.1 Static and Dynamic Identifiers

14.6.1.2 Security Issues with the Domain Name Serv
1462 State and Cookies
14.63 Anonymity on the Web

14.63.1 Anonymity for Better or Worse .

Summar,
Research Issues .
Further Reading .

Access Control Lists .
1511 Abbreviations of Access Control Li
15.12 Creation and Maintenance of Access Control Li
Which Subjects Can Modify an Object's ACL
Do the ACLs Apply to a Privileged User? .
Does the ACL Support Groups and Wildcards?
Conflicts.
125 ACLs and Default Permissions .
15.13 Revocation of Rights
15.14 Example: Windows NT Access Control Lists .

9

159

Chapter 16 Information Flow .

16.1

Contents

Capabilities
1521 Implementation of s
1522 Copying and Amplifying Capabil
Revocation of Right
4 Limits of Capabilities
Comparison with Ac
Locks and Keys
153.1 Type Checking.
Sharing Secrets .. .

Ring-Based Access Control ..
Propagated Access Control Lists
Summary
Research Issues
Further Reading
Exercises

Basics and Background
16.1.1 Entropy-Based Analysis ..
1612 Information Flow Models and Mechanisms -
Nonlattice Information Flow Policies
1621 Confinement Flow Model .
622 Transitive Nonlattice Information Flow Policies
1623 Nontransitive Information Flow Policies . ..
Compﬂer Based Mechanisms

Assignment Statements . ..
Compound Statemens. . ..
Conditional Statements
Iterative Statements. .
Goto Statements .
Procedure Calls

16.3.4 (_oncun:ncy
163.5 Soundness
Execution-Based Mechanisms
1641 Fenton’s Data Mark Machine .
16.4.2 Variable Classes .
Example Information Flow Controls
165.1 Security Pipeline Interface .
1652 Secure Network Server Mail Guard43

Contents xvi

16.6 Summary .
167 Research Issues .
168 Further Rmdml, e
169 EXEICISESvviiiiiiiiiiii i, 43

Chapter 17 Confinement Problemcooiiiiiiiiiinian, 439
17.1 The Confinement Problem .
17.2 Isolation
1721 Virtual Machines
17.2.2 Sandboxes.
17.3 Covert Channels
17.3.1 Detection of Covert Channels
17.3.1.1 Noninterference B
17.3.1.2 The Shared Resource Matrix Methodolog,
17.3.1.3 Information Flow Analys
17.3.14 me'rlFIum Trees

17.32.1 Covert Channel Capacity and Noninterference.
17.32.2 Measuring Covert Channel Capaci

17.32.3 Analy nzaNolvysz'thhamw/vCapa(3

1733 Mitigation of Covert Channels.

174 Summary
175 Research Issues .
17.6 Further Reading
177 Exercises ..

PART 6: ASSURANCE 475
Contributed by Elisabeth Sullivan

Chapter 18 Introduction to Assurance .
18.1 Assurance and Trust
18.1.1 The Need for Assurance. .
1812 The Role of Requirements in Assurance -
18.13 Assurance Throughout the Life Cycle . .
18.2 Building Secure and Trusted Systems
1821 Life Cycle. ..
Conception.
Manufacture.
Deployment .
Fielded Product Life .

xvii Contents

1822 The Waterfall Life Cycle Model 488
18.2.2.1 Requirements Definition and Analysis . 488

System and Software Design. . 489

Implementation and Unit Testing 489

Integration and System Testing 490

18.22.5 Operation and Maintenance .
18.2.2.6 Discussion
18.2.3 Other Models of Software Development.
18.2.3.1 Exploratory Programming

182.3.3 Formal Transformation
18.2.34 Sysiem Assembly from Reusable Components
8. Extreme Programming .
183 Summary RO
184 Research Issues
18.5 Further Readmg
186 Exercises ...

Chapter 19 Building Systems with ASSUFBNCEceeuuenns
19.1 Assurance in Requirements Definition and Analysis
Threats and Security Objectives .
Architectural Considerations
19.1.2.1 Security Mechanisms and Layered Architecture .
19.1.2.2 Building Security in or Adding Security Later 501
Policy Definition and Requirements Specification .
Justifying Requirements
192 Assurance During System and Software Design .
19.2.1 Design Techniques That Support Assurance
Design Document Contents.
19.2.2.1" Security Functions Sunmary Specification
19222 External Functional Specification ...
19.2.2.3 Internal Design Description .
19.2.24 Internal Design Specification .
1923 Building Documentation and Specifications
19.2.3.1 Modification Specifications .
Security Specifications .
Formal Specifications .
stifying That Design Meets Requiremen
19241 Requirements Tracing and Informal Correspondence -
19.24.2 Informal Arguments . . PPN
192.4.3 Formal Methods. Prm)fT(Lhmquet
19244 Review.

1924

19.3

19.4
19.5
19.6
19.7
19.8

Chapter 20 Formal Methods

20.1
202
20.3

20.5
20.6
20.7
208

Contents ~ xix

Assurance in Implementation and Integration
Implementation Considerations That Support

.531

19331
19332
19332 TestMarrices. ...
19.3.3.3 Formal Methods: Proving That Programs

536

Are COmrect ... 541
Assurance During Opcmuun and Maintenance .

Summary ...

Research Issues .

Further Reading .

Exercises ... 543

Formal Verification Techniques
Formal Specification .
Early Formal Verification Techniques
203.1 The Hierarchical Development Methodology -
203.1.1 Verification in HDM .
20.3.12 The Boyer-Moore Theorem Prover .
2032 Enhanced HDM .
2033 The Gypsy Verification Environment
203.3.1 The Gypsy Language . ..
203.3.2 The Bledsoe Theorem Prover
Current Verification Systems
20.4.1 The Prototype Verification Syslem
204.1.1 The PVS Specification Language.
204.12 The PVS Proof Checker .
204.1.3 Experience with PVS .
2042 The Symbolic Model Verifier .
204.2.1 The SMV Language .
204.2.2 The SMV Proof Theory .
204.2.3 SMV Experience.
2043 The Naval Research Laboratory Protocol Analyzer.
204.3.1 NPA Languages
20432 NPA Erpenencl’
Summary .
Research Issues .
Further Reading .
Exercises

xx Contents

Chapter 21 Evaluating Systems

21.1 Goals of Formal Evaluation ..
21.1.1 Deciding to Evaluate .
21,12 Historical Perspective of Evaluation Methodologies

21.2 TCSEC: 1983-1999 .

21.2.1 TCSEC Requirements
21.2.1.1 TCSEC Functional Requirements .
21.2.12 TCSEC Assurance Requirements .

2122 The TCSEC Evaluation Class

21.2.3 The TCSEC Evaluation Process .

4 Tmpacts

4.1 Scope Limitations

2 Process Limitations.

1.24.3 Contributions .

21.3 Intemnational Efforts and the ITSEC: 1991-2001
21.3.1 ITSEC Assurance Requirements. . .

21 1 Requirements in the TCSEC Not Found in l/m ITSEC .
21.3.1.2 Requirements in the ITSEC Not Found in the TCSEC .

.2 The ITSEC Evaluation Levels. P

.3 The ITSEC Evaluation Process

4 Impacts

2 1

214.1
2142 .
215 Other Commercial Efforts: Early 19905
21.6 The Federal Criteria: 1992 .
21.6.1 FC Requirements. .
2162 Impacts ...
217 FIPS 140: 1994-Present
217.1 FIPS 140 Requirement
21.7.2 FIPS 140-2 Security Levels.
3 Impact .
‘The Common Criteria: 1998-Present
Overview of the Methodology.
CC Requirements.
CC Security Functional Requirements
Assurance Requirements. .
Evaluation Assurance Levels .
Evaluation Process.
IMPACLS -+ttt ettt et

Contents xxi

21.88 Future of the Common Criteria 602
21.88.1 Interpretations............
21882 Assurance Class AMA and Family
21.88.3 Products Versus Systems .
21884 Protection Profiles and Security
21.885 Assurance Class AVA. L
21886 EALS .
219 SSE-CMM: 1997-Present
.1 The SSE-CMM Model .
92 Using the SSE-CMM .
2110 Summary ..
2111 Research Issues .
21.12 Further Reading .
21.13 Exercises ...

PART 7: SPECIAL TOPICS 611

Chapter 22 Malicious Logic
221 Introduction ...
222 Trojan Horses
23 Compnler Viruses .

2.3.1 Boot Sector Infectors .

Macro Viruses

224 Computer Worms .

22.5 Other Forms of Malicious Logic

22.5.1 Rabbits and Bacteria.

225.2 Logic Bombs

22.6 Theory of Malicious Logic . . .

22,61 Theory of Computer VArUSes o.vveveneennn.s

227 Defenses e
22.7.1 Malicious Logic Acting as Both Data and Instruction:

2272 Malicious Logic Assuming the Identity of a User .

.7.2.1 Information Flow Metrics

22722 Reducing the Rights . .

22723 Sandboxing................ociieiiiiiiii 635

xii Contents

22.7.3 Malicious Logic Crossing Protection

Domain Boundaries by Sharing. . 636
2274 Malicious Logic Altering Files . .. 637
2275 Malicious Logic Performing Actions Beyond Specification. .- 638

22.75.1 Proof-Carrying Code
Malicious Logic Altering Statistical Characteristics
22.7.7 The Notion of Trust
228 Summary
229 Research Issues
22.10 Further Reading
22,11 Exercises

Chapter 23 Vulnerability Analysisccceerinenenns 645
231 Introduction ...
23.2 Penetration Studies
Gols ...
Layering of Tests
Methodology at Each Layer
Flaw Hypothesis Methodology .

23241 Information Gathering and Flaw
23242 Flaw Testin
23243 Flaw Generalization
23.244 Flaw Elimination .. .
Example: Penetration of the Michigan Terminal System .
Example: Compromise of a Burroughs System

233 Vulnerability Class
233.1 Two Security Flaws. .

234 Frameworks
234.1 TheRISOS Study ...

411 The Flaw Classes

2 Legacy
2342 Protection Analysis Model .
23420 The Flaw Classes
234.2.2 Analysis Procedure .
23423 Legacy

Contents xxiii

2343 The NRL Taxonomy ..
23431 The Flaw Classe:
23432 Legacy

2344 Aslam’s Model .
23441 The Flaw Classe
23442 Legacy

23.45 Comparison and Analysis.
23451 The xterm Log File Flaw
23452 The fingerd Buffer Overflow Flaw
23453 Summary

25 Gupm and Gligor’s Theory of Penetration Analysis .

5.1 The Flow-Based Model of Penetration Analysis . 679

13 2 The Automated Penetration Analysis Tool . 682
2353 Discussion .

236 Summary 3

237 Research Issues. .683

238 Further Reading . .684

239 Exercises . .685

Chapter 24 AUGItINGeueeeeneeeneeenerteneieeaiaanenns 689

241 Definitions

242 Anatomy of an Auditing System
242.1 Logger ..

2422 Analyzer
242.3 Notifier.

243 Designing an Auditing System . :
243.1 Implementation Considerations . 696
2432 Syntactic Issues . 696
2433 Log Sanitization . 698
2434 Application and System Logging 700

24.4 A Posteriori Design 701
24.4.1 Auditing to Detect Violations of a Known Policy 702

24411 State-Based Auditing . S 702
24412 Transition-Based Audin 703
2442 Auditing to Detect Known Violations of aPollcy 704

245 Auditing Mechanisms . 705
245.1 Secure Systems 706
2452 Nonsecure Systems. 707

246 Examples Auditing File Systems 708

4.6.1 Audit Analysis of the NES Version 2 Protocol
24 .2 The Logging and Auditing File System (LAFS) .
2463 Comparison

xxiv Contents

247 Audit Browsing
248 Summary .
249 Research Issues .
24.10 Further Reading
24.11 Exercises .

Chapter 25 Intrusion Detectionccueirieiuernaennannns
25.1 Principles
Basic Intrus
Models ... o
2531 Anomaly Modeling
3..1" Derivation of Statisti
2532 Misuse Modeling
Specification Modeling . .
.4 Summary .
254 Architecture
2541 Agent.
254.1.1 Host-Based Information Gathering
254.1.2 Network-Based Information Gathering .74
25413 Comhmmg Sources.
2542 DIrector................
25.4.3 Notifier
25,5 Organization of Intrusion Detection Systems ...
2551 Monitoring Network Traffic for Intrusions: NSM .
2552 Combining Host and Network Monitoring: DIDS .
Autonomous Agents: AAFID ...
25.6 Intrusion Response
25.6.1 Incident Prevention
25.6.2 Intrusion Handling. . .
25.6.2.1 Containment Phase .
25.6.22 Eradication Phase
62.3 Follow-Up Phase

257 Summary
258 Research Issues
259 Further Reading
25.10 Exercises

PART 8: PRACTICUM m

Chapter 26 Network SeCUrityoeeenerenneenneeennns 3
26.1 Introduction
262 Policy Development -

. 774

26.5
26.6
26.7
268
269

Contents xxv

Av mnmy .
Consistency Check .
Network Organization .
2631 Firewalls and Proxies .
2632 Analyss of te Network Infrastructure
26321 Outer Firewall Configuration .
26.3.2.2 Inner Firewall Configuration .
2633 Inthe DMZ.
26331
26332
26333 DMZDNS Server.
26334 DMZ Log Server .
26335 Summary ...
2634 In the Internal Network . .
263.5 General Comment on Assurance
Availability and Network Fluodmg .
264.1 Intermediate Hos
2642 TCP State and Memory Allocations.
Anticipating Attacks
Summary .
Research Issues
Further Reading
Exercises

Chapter 27 SyStem Securitycceeeeeeeeiaueennens 805

27.1
272

Introduction
Policy ...
2721 The Web Server System in the DMZ.
2722 The Development Syslem
2723 Comparison

2724 Conclusion
Networks
2730 The Web Server System in the DMZ .
2732 The Development System
27.3.3 Comparison .
Users
2741 The Web Server System in the DMZ
2742 The Development System
2743 Comparison

xvi Contents

27.5 AURERUCALION ...\ttt
27.5.1 The Web Server System in the DMZ
2752 Development Network System
2753 Comparison

276 Processes

276.1 The Web Server System in the DMZ.

‘The Development System

Comparison

Comparison
27.8 Retrospective .
2781 The Web Server System in the DMZ

2782 The Development Syuem
279 Summary
27.10 Research Issue:
27.11 Further Reading
2712 BXCICISES . - eeee et

28.1
282

2822 The Login Procedure.
282.2.1 Trusted Host
2 Leaving the System
283 Files and Devices .
2831 Files.......... .

File Permissions on Creation
Group Access .
File Deletion .

Writable Devi
Smart Terminals .
Monitors and Window Systems...............

Copying and Moving Files -
Accidentally Overwriting Files
Encryption, Cryptographic Keys, and Passwords
Start-up Seftings
Limiting PrviIegesuuueeeiiiiieaaeeaeinn. 863

Contents xxvii

28.4.6 MaliCious LOGIC - -+ eeeveeeeeeeeiiinaeas
28.5 Electronic Communications
Automated Electronic Mail Processin
2852 Failure to Check Certificates
28.5.3 Sending Unexpected Content
286 Summary .
287 Research Issues .
28.8 Further Reading .
289 Exercises ...

Chapter 29 Program Security .
29.1 Introduction
292 Requirements and Policy .
29.2.1 Requirements
2922 Threats ...
2922.1 Group I: Unauthorized Users

Accessing Role Accounts
Group 2: Authorized Users
Accessing Role Accounts

292

i

293 Design . .

293.1 Framework

1.1 User Interface .
29.3.1.2 High-Level Design

2932 Access to Roles and Commands

29321 Interface.

29322 Internal

29.3.2.3 Storage of the Access Conirol Data.

294 Refinement and Implementation . .

294.1 First-Level Refinement. . .

2942 Second-Level Refinement
29.43 Functions

294.3.1 Obiaining Location . .

29432 The Access Control Record

29433 Error Handling in the Reading and

Matching Routines

2944 Summary

29.5 Common Security-Related Programming Problems

2951 Improper Choice of Initial Protection Domain.

29.5.1.1 Process Privileges

295.1.2 Access Control File Permissions .

xxviii Contents

29.5.1.3 Memory Protection. 891
29.5.14 Trustin the System

2052 Improper Isolation of Implementation Detail . .893
29.52.1 Resource Exhaustion and User Identifiers . . 893
29.52.2 Validating the Access Control Entries . 894

29523 Restricting the Protection Domain of the Role Process 894
Improper Change
29.53.1 Memor)

29.53.3 Race Conditions in File Accesse
2954 Improper Naming
29.5.5 Improper Deallocation or Deletion .
2956 Impwper Validation .
Bounds Checking
Type Checkil g'
Error Check
Checking for Vatid, ot v, Dt
Checking Input .
20566 Designing for Validation.
2957 Improper Indivisibility.
2958 Improper Sequencing. ...
2959 Tmproper Choice of Operand or Operation
.10 Summary . ..
296 Testing, Maintenance, and Operation
2961 Testing...
29.6.1.1 Testing the Module .
2962 Testing Composed Modules . .

2963 Testing the Program .

297 Distribution .

298 Conclusion .

e
29.11 Further Reading .
2912 EXETCISES - . 0.0ttt ettt et

PART 9: END MATTER 923
Chapter 30 Latticesouueuennianeantanteateateaneaeaaaans 925
30.1 Basics .

30.2 Lattices .
303 EXEICISES . oo vttt ettt 927

Contents xxix

Chapter 31 The Extended Euclidean Algorithm 929
311 The Euclidean Algorithm
312 The Extended Euclidean Algorithm .
313 Solvingarmodn =1

314 Solving avmodn=b
315 Exercises

Chapter 32 Entropy and Uncertainty
32.1 Conditional and Joint Probability
322 Entropy and Uncertainty ...
323 Joint and Conditional Entropy
32.3.1 Joint Entropy
3232 Conditional Entropy
3233 Perfect Secrecy.
Exercises

N

32

Chapter 33 Virtual MBChineseeueenannennennennns
33.1 Virtual Machine Structure
332 Virtual Machine Monitor

332.1 Privilege and Virtual Machines

332 hysical Resources and Virtual Machmes
3 Paging and Virtual Machines
333 Exercises .

Chapter 34 SYMBOIIC LOGIC« vvueeeeeeunneeeeeneannenans 947
341 Pmpmmonal Logic
Natural Deduction in Propositional Logic .
34.1.1.1 Rules.
34.1.12 Derived Rules.
3412 Well-Formed Formulas .
34.1.3 Truth Tables
34.1.4 Mathematical Induction .
Predicate Logic
3421 Natural Deduction in Predicate Logic . . .
343 Temporal Logic Systems .

343.1 Syntaxof CTL .

3432 Semantics of CTL. .
344 EXETCISES ...ttt iee et e et

34.

i

Chapter 35 Example Academic Security Policy 959
35.1 University of California E-mail Policy 959

xxx Contents

35.1.1 Summary: E-mail Policy Highlights .
35. Cautions

Do Nt
Does This Policy Apply o You?
35.12 University of California Electronic Mail Policy .
35.1.2.1 Introduction

Purpose .
Definitions.

General Provisions
Specific Provision.
Policy Violations. .
Responsibiliy for Polic
Campus Responsibilities and Discretion
35.1.2.10 Appendix A—Definitions.

35.1.2.11 Appendix B—References.

35.1.2.12 Appendix C—Policies Relating

1o Nonconsensual Access .

3513 UC Davis Implementation o the Electronic Mail Pohcy
35.1.3.1 Purpose and Scope

35.1.3.2 Definitions.

35.1.3.3 Policy ..

35.1.4 References and Related Policy

352 The Acceptable Use Policy for the Umvcmly of California, Davis .
352.1 Partl
35.2.1.1

nd Responsibilities
ing Legal Context
Enforcement .

Preface

HORTENSIO: Madam, before you touch the instrument
To learn the order of my fingering,

I must begin with rudiments of art

To teach you gamouth in a briefer sort,

More pleasant, pithy and effectual,

Than hath been taught by any of my trade;

And there it is in writing, fairly drawn.

—The Taming of the Shrew, 111, i, 62-68.

On September 11, 2001, terrorists seized control of four airplanes. Three were flown
into buildings, and a fourth crashed, with catastrophic loss of life. In the aftermath, the
security and reliability of many aspects of society drew renewed scrutiny. One of these
aspects was the widespread use of computers and their interconnecting networks.

The issue is not new. In 1988, approximately 5,000 computers throughout the
Intemet were rendered unusable within 4 hours by a program called a worm [432].!
While the spread, and the effects, of this program alarmed computer scientists, most
people were not worried because the worm did not affect their lives or their ability to
do their jobs. In 1993, more users of computer systems were alerted to such dangers
when a set of programs called sniffers were placed on many computers run by net-
work service providers and recorded login names and passwords [374].

After an attack on Tsutomu Shimomura’s computer system, and the fascinat-
ing way Shimomura followed the attacker’s trail, which led to his arrest [914], the
public’s interest and apprehension were finally aroused. Computers were now vul-
nerable. Their once reassuring protections were now viewed as flimsy.

Several films explored these concems. Movies such as War Games and Hack-
ers provided images of people who can, at will, wander throughout computers and
networks, maliciously or frivolously corrupting or destroying information it may
have taken millions of dollars to amass. (Reality intruded on Hackers when the
World Wide Web page set up by MGM/United Artists was quickly altered to present
an irreverent commentary on the movie and to suggest that viewers see The Net

! Section 22.4 discusses computer worms.

X

xxii Preface

instead. Paramount Pictures denied doing this [448].) Another film, Sneakers, pre-
sented a picture of those who test the security of computer (and other) systems for
their owners and for the government.

Goals

This book has three goals. The first is to show the importance of theory to practice and
of practice to theory. Al too often, practitioners regard theory as irrelevant and theoreti-
cians think of practice as trivial. In reality, theory and practice are symbiotic. For
example, the theory of covert channels, in which the goal i to limit the abilty of pro-

cesses to communicate through shared resources, provides a mechanism for evaluating
the effectiveness of mechanisms that confine processes, such as sandboxes and fire-
walls. Similarly, business practices in the commercial world led to the development of
several security policy models such as the Clark-Wilson model and the Chinese Wall
model. These models in turn help the designers of security policies better understand
and evaluate the mechanisms and procedures needed to secure their sites.

The second goal is to emphasize that computer security and cryptography are
different. Although cryptography is an essential component of computer security, it is
by no means the only component. Ci provides a for perform-
ing specific functions, such as preventing unauthorized people from reading and
altering messages on a network. However, unless developers understand the context
in which they are using cryptography, and unless the assumptions underlying the pro-
tocol and the cryptographic mechanisms apply to the context, the cryptography may
not add to the security of the system. The canonical example is the use of cryptogra-
phy to secure communications between two low-security systems. If only trusted
users can access the two systems, cryptography protects messages in transit. But if
untrusted users can access either systém (through authorized accounts or, more likely,
by breaking in), the cryptography is not sufficient to protect the messages. The
attackers can read the messages at cither endpoint.

‘The third goal is to demonstrate that computer security is not just a science but
also an art. It is an art because no system can be considered secure without an exami-
nation of how it is to be used. The definition of a “secure computer” necessitates a
statement of requirements and an expression of those requirements in the form of
authorized actions and authorized users. (A computer engaged in work at a university
may be considered “secure™ for the purposes of the work done at the university.
When moved to a military installation, that same system may not provide sufficient
control to be deemed “secure” for the purposes of the work done at that installation.)
How will people, as well as other computers, interact with the computer system?
How clear and restrictive an interface can a designer create without rendcrmg the sy
tem unusable while trying to prevent unauthorized use or access to the data or
resources on the system?

Preface xxxiil

Just as an artist paints his view of the world onto canvas, so does a designer of
security features articulate his view of the world of human/machine interaction in the
security policy and mechanisms of the system. Two designers may use entirely dif-
ferent designs to achieve the same creation, just as two artists may use different sub-
jects to achieve the same concept.

Computer security is also a science. Its theory is based on mathematical con-
structions, analyses, and proofs. s systems are built in accordance with the accepte
practices of engineering. It uses inductive and deductive reasoning to examine the
security of systems from key axioms and to discover underlying principles. These
scientific principles can then be applied to untraditional situations and new theories,
policies, and mechanisms.

Philosophy

Key to understanding the problems that exist in computer security is a recognition
that the problems are not new. They are old problems, dating from the beginning of
computer security (and, in fact, arising from parallel problems in the noncomputer
world). But the locus has changed as the field of computing has changed. Before the
mid-1980s, mainframe and mid-level computers dominated the market, and com-
puter security problems and solutions were phrased in terms of securing files or pro-
cesses on a single system. With the rise of networking and the Internet, the arena has
changed. Workstations and servers, and the networking infrastructure that connects
them, now dominate the market. Computer security problems and solutions now
focus on a networked environment. However, if the workstations and servers, and the
supporting network infrastructure, are viewed as a single system, the models, theo-
ries, and problem statements developed for systems before the mid-1980s apply
equally well to current systems.

As an example, consider the issue of assurance. In the early period, assurance
arose in several ways: formal methods and proofs of correctness, validation of policy
o requirements, and acquisition of data and programs from trusted sources, to name
a few. Those providing assurance analyzed a single system, the code on it and the
sources (vendors and users) from which the code u\uld be acquired to ensure that
either the sources could be trusted or the programs could be confined adequately to
do minimal damage. In the later period, the same basic principles and techniques
apply. except that the scope of some has been greatly expanded (from a single system
and a small set of vendors to the world-wide Internet). The work on proof-carrying
code, an exciting development in which the proof that a downloadable program mod-
ule satisfies a stated policy is incorporated into the program itself, is an example of
this expansion. It extends the notion of a proof of consistency with a stated policy. It
advances the technology of the earlier period into the later period. But in order to

Z

Section 22.7.5.1 discusses proof-carrying code.

xxxiv Preface

understand it properly, one must understand the ideas underlying the concept of
proof-carrying code, and these ideas lie in the earlier period.
another example, consider Saltzer and Schroeder’s principles of secure
design.? Enunciated in 1975, they promote simplicity, confinement, and understand-
ing. When security mechanisms grow too complex, attackers can evade or bypa:
them. Many programmers and vendors are learning this when attackers break into
their systems and servers. The argument that the principles are old, and somehow
outdated, rings hollow when the result of their violation is a nonsecure syst
The work from the carlier period s sometimes cast in terms of systems that no
longer exist and that differ in many ways from modern systems. This does not vitiate
the ideas and concepts. which also underlie the work done today. Once these ideas
and conceptsare properly understood, spplying them in 8 mulipliciy of environ.
will

ments becomes possible. the current
become obsolete and of historical interest themselves as new fnnm of computing
arise, but the underlying principles will live on, to underlie the next generation—
indeed the next era—of computing.

The philosophy of this book is that certain key concepts underlie all of com-
puter security, and that the study of all parts of computer security enriches the under-
standing of all paris. Moreover,critcal © an understanding of the applications of
s and is an of the theory

underlying those applications.

‘Advances in the theory of computer protection have illuminated the founda
tions of security systems. Issues of abstract modeling, and modeling to meet specific
environments, lead to systems designed to achieve a specific and rewarding goal.
Theorems about composability of policies* and the undecidability of the general
security question” have indicated the limits of what can be done. Much work and
effort are continuing to extend the borders of those limits.

Application of these results has improved the quality of the security of the sys-
tems being protected. However., the issue is how compatibly the assumptions of the
model (and theory) conform to the environment to which the theory is applied.
Although our knowledge of how to apply these abstractions s continualiy increasing
we still have difficulty correctly transposing the relevant information from a realistic
setting to one in which analyses can then proceed. Such abstraction often eliminates
vital information. The omitted data may pertain to security in nonobvious ways
Without this information, the analysis is flawed.

“The practitioner needs to know both the theoretical and practical aspects of the
art and science of computer security. The theory demonstrates what is possible. The
practical makes known what is feasible. The theoretician needs to understand the
constraints under which these theories are used. how their results are translated into
practical tools and methods, and how realistic are the assumptions underlying the the-
ories. Computer Security: Art and Science tries to meet these needs.

3 Chaper 13 discusses these principles.
#See Chapter 8, ul\mlcr[cm\u and Policy Composition.”
$ See Section 3.2, “Basic Results.

Preface xxxv.

Unfortunately, no single work can cover all aspects of computer security, so
this book focuses on those parts that are, in the author’s opinion, most fundamental
and most pervasive. The mechanisms exemplify the applications of these principles.

Organization

The organization of this book reflects its philosophy. It begins with mathematical fun-
damentals and principles that provide boundaries within which security can be mod-
eled and analyzed effectively. The mathematics provides a framework for expressing
and analyzing the requirements of the security of a system. These policies constrain
what is allowed and what is not allowed. Mechanisms provide the ability to implement
these policies. The degree to which the mechanisms correctly implement the policies,
and indeed the degree to which the policies themselves meet the requirements of the
organizations using the system, are questions o{ assurance. Exploiting failures in pol-
cy. in and in ass ext, as well as for provid-
ing information on the attack. The book Concludes with the applications of both theory
and policy focused on realistic situations. This natural progression emphasizes the
development and application of the principles existent in computer security.

art 1, “Introduction,” describes what computer security is all about and
explores the problems and challenges to be faced. It sets the context for the remain-
der of me book.

Part 2, “Foundations,” deals with basic questions such as how “security” can
be clearly and functionally defined, whether or not it is realistic, and whether or not it
is decidable. If it is decidable, under what conditions is it decidable, and if not, how
must the definition be bounded in order to make it decidable?

Part 3, “Policy,” probes the relationship between policy and security. The def-
inition of “security” depends on policy. In Part 3 we examine several types of poli-
cies, including the ever-present fundamental questions of trust, analysis of policies,
and the use of policies to constrain operations and transitions.

art 4, * L C » discusses cryptography and its role
in security. It focuses on applications and discusses issues such as key management
and escrow, key distribution, and how cryposystems are used in networks. A quick
study of authentication completes Pa

Part 5, “Implementation II: S stems,” considers how to implement the
requirements imposed by policies using system-oriented techniques. Certain design
principles are fundamental to effective security mechanisms. Policies define who can
act and how they can act, and so identity is a critical aspect of implementation.
Mechanisms implementing access controi and flow control enforce various aspects
of policies.

art 6, “Assurance,” presents and or
How well a system, o a product, mects its goals. Afler setting the buckground to
explain exactly what “assurance” is, the art of building systems to meet varying levels

xxvi Preface

of assurance is discussed. Formal verification methods play a role. Part 6 shows how
the progression of standards has cnhanced our understanding of assurance techniques.
‘Special Topics,” discusses some miscellaneous aspects of computer
security. Malicious logic thwarts many mechanisms. Despite our best efforts at high
assurance, systems today are replete with vulnerabilities. Why? How can a system be
analyzed to detect vulnerabilities? What models might help us improve the state of
the art? Given these security holes, how can we detect attackers who exploit them? A
discussion of auditing flows naturally into a discussion of intrusion detection—a
detection method for such attacks.

8, “Practicum.” presents examples of how to apply the principles discussed
throughout the book. It begins with networks and proceeds 10 systems, users, and pro-
grams. Each chapter states a desired policy and shows how to translate that policy into a
set of mechanisms and procedures that support the policy. Part 8 tries to demonstrate
that the material covered elsewhere can be, and should be, used in practice.

Each chapter in this book ends with a summary, descriptions of some research
issues, and some suggestions for further reading. The summary highlights the impor-
tant ideas in the chapter. The research issues are current “hot topics” or are topics that
may prove to be fertile ground for advancing the state of the art and science of com-
puter security. Interested readers who wish to pursue the topics in any chapter in
‘more depth can go to some of the suggested readings. They expand on the material in
the chapter or present other interesting avenues.

Roadmap

‘This book is both a reference book and a textbook. Its audience is undergraduate and
graduate students as well as practitioners. This section offers some suggestions on
approaching the book.

Dependencies

Chapter 1 is fundamental to the rest of the book and should be read first. After that,
however, the reader need not follow the chapters in order. Some of the dependencies
among chapters are as follows.

Chapter 3 depends on Chapter 2 and requires a fair degree of mathematical
maturity. Chapter 2, on the other hand, does not. The material in Chapter 3 is for the
most part not used elsewhere (although the existence of the first section’s key result,
the undecidability theorem, is mentioned repeatedly). It can be safely skipped if the
interests of the reader lie elsewhere.

‘The chapters in Part 3 build on one another. The formalisms in Chapter 5 are
called on in Chapters 19 and 20, but nowhere else. Unless the reader intends to delve
into the sections on theorem proving and formal mappings, the formalisms may be

Preface i

skipped. The material in Chapter 8 requires a degree of mathematical maturity, and
this material is used sparingly elsewhere. Like Chapter 3, Chapter 8 can be skipped
by the reader whose interests lie elsewhere.

Chapters 9, 10, and 11 also build on one another in order. A reader who has
encountered basic cryptography will have an easier time with the material than one
who has not, but the chapters do not demand the level of mathematical experience
that Chapters 3 and 8 require. Chapter 12 does not require material from Chapter 10
or Chapter 11, but it does require material from Chapter 9.

Chapter 13 is required for all of Part 5. A reader who has studied operating
systems at the undergraduate level will have no trouble with Chapter 15. Chapter 14
uses the material in Chapter 11; Chapter 16 builds on material in Chapters 5, 13, and
15; and Chapter 17 uses material in Chapters 4, 13, and 16.

Chaper 18 relies on information in Chapter 4. Chapter 19 builds on Chapters
5, 13, 15, and 18. Chapter 20 presents highly mathematical concepts and uses mate-
rial from Chapters 18 and 19. Chapter 21 is based on material in Chapters 5, 18, and
19; it does not require Chapter 20. For all of Part 5, a knowledge of software engi-
neering is very helpful.

Chapter 22 draws on ideas and information in Chapters 5, 6,9, 13, 15, and 17
(and for Section 22.6, the reader should read Section 3.1). Chapter 23 is self-con-
tained, although it implicitly uses many ideas from assurance. It also assumes a good
working knowledge of compilers, operating systems, and in some cases networks.
Many of the flaws are drawn from versions of the UNIX operating system, or from
Windows systems, and o a working knowledge of either or both systems will make
some of the material easier to understand. Chapter 24 uses information from Chapter
4, and Chapter 25 uses material from Chapter 24.

The practicum chapters are self-contained and do not require any material
beyond Chapter 1. However, they point out relevant material in other sections that aug-
ments the information and (we hope) the reader’s understanding of that information.

Background

The material in this book is at the advanced undergraduate level. Throughout, we
assume that the reader is familiar with the basics of compilers and computer architec-
ture (such as the use of the program stack) and operating systems. The reader should
also be comfortable with modular arithmetic (for the material on cryptography). Some
material, such as that on formal methods (Chapter 20) and the mathematical theory of
computer security (Chapter 3 and the formal presentation of policy models), requires
considerable mathematical maturity. Other specific recommended background is pre-
sented in the preceding section. Part 9, “End Matter,” contains material that will be
helpful to readers with backgrounds that lack some of the recommended material.

Examples are drawn from many systems. Many come from the UNIX operat-
ing system or variations of it (such as Linux). Others come from the Windows family
of systems. Familiarity with these systems will help the reader understand many
examples easily and quickly.

xxviii Preface

Undergraduate Level

An undergraduate class typically focuses on applications of theory and how students
can use the material. The specific arrangement and selection of material depends on
the focus of the class, but all classes should cover some basic material—notably that
in Chapters 1, 9, and 13, as well as the notion of an access control matrix, which is
discussed in Sections 2.1 and 2.2.

Presentation of real problems and solutions often engages undergraduate stu-
dents more effecively than presentation of abstractions. The special topics and the
practicum provide a wealth of practical problems and ways to deal with them. This
leads naturally to the deeper issues of policy, cryptography, noncryptographic mecha:
nisms, and assurance. The following are sections appropriate for nonmathematical
undergraduate courses in these topics.

« Policy: Sections 4.1 through 4.4 describe the notion of policy. The
instructor should select one or two examples from Sections 5.1, 5.2.1, 6.2,
6.4,7.1.1, and 7.2, which describe several policy models informally.
Section 7.4 discusses role-based access control.

Cryptography: Key distribution sed in Sections 10.1 and 10.2, and
2 ommon form of public key infrastructurs (called PK1s) is discusecd in
Section 10.4.2. Section 11.1 points out common errors in using
cryptography. Section 11.3 shows how cryptography is used in networks,
and the instructor should use one of the protocols in Section 114 as an
example. Chapter 12 offers a look at various forms of authentication,
including noncryptographic methods.

Noncryptographic mechanisms: 1dentity is the basis for many access
control mechanisms. Sections 14.1 through 14.4 discuss identity on a
system, and Section 14.6 discusses identity and anonymity on the Web.
Sections 15.1 and 15.2 explore two mechanisms for controlling access to
files, and Section 15.4 discusses the ring-based mechanism underlying the
notion of multiple levels of privilege. If desired, the instructor can cover
sandboxes by using Sections 17.1 and 17.2, but because Section 17.2 uses
material from Sections 4.5 and 4.5.1, the instructor will need to go over
those sections as well.

Assurance: Chapter 18 provides a basic introduction to the often
overlooked topic of assurance.

Graduate Level

A typical introductory graduate class can focus more deeply on the subject than can
class. Like an class, a graduate class should cover

cmpxen 1, 9, and 13. Also important are the undecidability results in Sections 3.1
d 3.2, which require that Chapter 2 be covered. Beyond that, the instructor can

Preface xxxix

choose from a variety of topics and present them to whatever depth is appropriate.
‘The following are sections suitable for graduate study.

Policy models: Part 3 covers many common policy models both informally
and formally. The formal description is much easier to understand once the
informal description is understood, so in all cases both should be covered.
The controversy in Section 5.4 is particularly illuminating to students who
have not considered the role of policy and the nature of a policy. Chapter 8
is a highly formal discussion of the foundations of policy and is
appropriate for students with experience in formal mathematics. Students
without such a background will find it quite difficult.
Cn ypmgmph) Part 4 focuses on the appllcauons of cryptography, not on
S It discusses areas of interest
Criteal o the use of cryptography, such as key management and some
basic cryptographic protocols used in networking.
Noncryptographic mechanisms: Tssues of identity and certification are
complex and generally poorly understood. Section 14.5 covers these
problems. Combining this with the discussion of identity on the Web
(Section 14.6) raises issues of trust and naming. Chapters 16 and 17
explore issues of information flow and confining that flow.
Assurance: Traditionally, assurance is taught as formal methods, and
Chapter 20 serves this purpose. In practice, however, assurance is more
often accomplished by using structured processes and techniques and
informal but rigorous arguments of justification, mappings, and analysis.
Chapter 19 emphasizes these topics. Chapter 21 discusses evaluation
standards and relies heavily on the material in Chapters 18 and 19 and
some of the ideas in Chapter 20.
Miscellaneous Topics: Section 22.6 presents a proof that the generic
problem of determining if a generic program is a computer virus is in fact
undecidable. The theory of penetration studies in Section 23.2, and the
more formal approach in Section 23.5, illuminate the analysis of systems
for vulnerabilities. If the instructor chooses to cover intrusion detection
(Chapter 25) in depth, it should be understood that this discussion draws
heavily on the material on auditing (Chapter 24).
Practicum: The practicum (Part 8) ties the material in the earlier part of
the book to real-world examples and emphasizes the applications of the
theory and methodologies discussed earlier.

The interested reader will find a number of books covering aspects of this subject [240, 590,
695,702, 888, 897, 998]

X Preface

Practitioners

Practitioners in the field of computer security will find much to interest them. The
table of contents and the index will help them locate specific topics. A more general
approach is to start with Chapter 1 and then proceed to Part 8, the practicum. Each
chapter has references to other sections of the text that explain the underpinnings of
the material. This will lead the reader to a deeper understanding of the reasons for the
policies. settings, configurations, and advice in the practicum. This approach also
allows readers to focus on those topics that are of most interest to them.

Special Acknowledgment

Elisabeth Sullivan contributed the assurance part of this book. She wrote several
drafts, all of which reflect her extensive knowledge and experience in that aspect of
computer security. I am particularly grateful to her for contributing her real-world
knowledge of how assurance is managed. Too often, books recount the mathematics
of assurance without recognizing that other aspects are equally important and more
widely used. These other aspects shine through in the assurance section, thanks to
Liz. As if that were not cnough, she made several suggestions that improved the pol-
icy part of this book. I will always be grateful for her contribution, her humor, and
especially her friendship.

Acknowledgments

Many others contributed to this book in various ways. Special thanks to Steven Alex-
ander, Jim Alves-Foss, Bill Arbaugh, Andrew Arcilla. Alex Aris. Rebecca Bace.
Belinda Bashore, Viadimir Berman, Ziad El Bizri, Logan Browne, Terry Brugger,
Serdar Cabuk, Raymond Centeno, Lisa Clark, Michael Clifford, Christopher Clifton,
Dan Coming, Kay Connelly, Crispin Cowan, Tom Daniels, Dimitri DeFiguciredo,
Joseph-Patrick Dib, Jeremy Frank, Robert Fourney, Martin Gagne, Ron Gove, James.
Hinde, Xuxian Jiang. Jesper Johansson, Mark Jones, Calvin Ko, Mark-Neil Ledesma,
Ken Levine, Karl Levitt, Yunhua Lu, Gary McGraw, Alexander Meau, Nasir Memon,
Mark Morrissey. Ather Nawaz, lulian Neamtiu, Kimberly Nico, Stephen Northcutt,
Rafael Obelheiro, Josko Orsulic. Holly Pang. Ryan Poling, Sung Park, Ashwini
Raina, Jorge Ramos, Brennen Reynolds, Peter Rozental, Christoph Schuba, David
Shambroom, Jonathan Shapiro, Clay Shields, Sriram Srinivasan, Mahesh V. Tripunit-
ara, Tom Walcott, James Walden, Dan Watson, Guido Wedig, Chris Wee, Patrick
Wheeler, Paul Williams, Bonnie Xu, Xiaoduan Ye, Lara Whelan, John Zachary, Ale-
ksandr Zingorenko, and to everyone in my computer security classes, who (know-
ingly or unknowingly) helped me develop and test this material.

Preface xii

The Addison-Wesley folks. Kathleen Billus, Susannah Buzard. Bernie
Gaffney, Amy Fleischer, Helen Goldstein, Tom Stone, Asdis Thorsteinsson, and most
especially my editor, Peter Gordon, were incredibly patient and helpful, despite fears
that this book would never materialize. The fact that it did so is in great measure
attributable to their hard work and encouragement. I also thank the production peo-
ple at Argosy. especially Beatriz Valdés and Craig Kirkpatrick, for their wonderful
work.

Dorothy Denning. my advisor in graduate school, guided me through the
maze of computer security when I was just beginning. Peter Denning, Barry Leiner,
Karl Levitt, Peter Neumann, Marvin Schaefer, Larry Snyder. and several others influ-
enced my approach to the subject. I hope this work reflects in some small way what
they gave to me and passes a modicum of it along to my readers.

Talso thank my parents, Leonard Bishop and Linda Allen. My father, a writer,
gave me some useful tips on writing, which I tried to follow. My mother, a literary
agent, helped me understand the process of getting the book published, and sup-
ported me throughout.

Finally, I would like to thank my family for their support throughout the writ-
ing. Sometimes they wondered if I would ever finish. My wife Holly and our chil-
dren Steven, David, and Caroline were very patient and understanding and made sure
I had time to work on the book. Our oldest daughter Heidi and her husband Mike
also provided much love and encouragement and the most wonderful distraction: our
grandson—Skyler. To all, my love and gratitude.

Part 1

Introduction

titers say *To write a good book, frst tell them what you are going to tell them, then tell
W them, then tell them what you told them.” This is the “what we're going to tell you" part.

Chapter 1, “An Overview of Computer Security," presents the underpinnings of com-
puter security and an overview of the important issues to place them in context. It begins with
a discussion of what computer security is and how threats are connected to security services
The combination of desired services makes up a policy, and mechanisms enforce the policy.
All rely on underlying assumptions, and the systems built on top of these assumptions lead to
issues of assurance. Finally, the operational and human factors affect the mechanisms used as
well as the policy.

Chapter 1

An Overview of
Computer Security

ANTONIO: Whereof wha

prologue, what to come
In yours and my discharge.
—The Tempest, 11, i, 257-258.

This chapter presents the basic concepts of computer security. The remainder of
the book will elaborate on these concepts in order to reveal the logic underlying the
principles of these concepts.

‘We begin with basic security-related services that protect against threats to the
security of the system. The next section discusses security policies that identify
the threats and define the requirements for ensuring a secure system. Security mech-
anisms detect and prevent attacks and recover from those that succeed. Analyzing the
security of a system requires an understanding of the mechanisms that enforce the
security policy. It also requires a knowledge of the related assumptions and trust,
which lead to the threats and the degree to which they may be realized. Such knowl-
edge allows one to design better mechanisms and policies to neutralize these threats.
This process leads to risk analysis. Human beings are the weakest link in the security
mechanisms of any system. Therefore, policies and procedures must take people into
account. This chapter discusses each of these topics.

1.1 The Basic Components

Computer security rests on confidentiality, integrity, and availability. The interpreta-
tions of these three aspects vary, as do the contexts in which they arise. The interpre-
tation of an aspect in a given environment is dictated by the needs of the individuals,
customs, and laws of the particular organization.

4 Chapter1 An Overview of Computer Security

111 Confidentiality

Confidentiality is the of or resources. The need for keeping
information secret ariss from the use of computers in sensitive fields such as £0v.
ernment and industry. For example, military and civilian institutions in the govern-
ment often restrict access to information to those who need that information. The
first formal work in computer security was motivated by the military’s attempt to
implement controls to enforce a “need to know” principle. This principle also applies
to industrial firms, which keep their proprietary designs secure lest their competitors
try to steal the designs. As a further example, all types of institutions keep personnel
records secret.

Access control mechanisms support confidentiality. One access control mech-
anism for preserving confidentiality is cryptography, which scrambles data to make it
incomprehensible. A cryptographic key controls access to the unscrambled data, but
then the cryptographic key itself becomnes another datum to be protected.

EXAMPLE: Enciphering an income tax return will prevent anyone from reading it. If
the owner needs to see the return, it must be deciphered. Only the possessor of the
cryptographic key can enter it into a deciphering program. However, if someone else
can read the key when it is entered into the program, the confidentiality of the tax
return has been compromised.

Other system-dependent mechanisms can prevent processes from illicitly
accessing information. Unlike enciphered data, however, data protected only by these
controls can be read when the controls fail or are bypassed. Then their advantage is off-
set by a corresponding disadvantage. They can protect the secrecy of data more com-
pletely than cryptography, but i they fail or are evaded, the data becomes visible.

Confidentiality also applies 1o the existence of data, which is sometimes more
revealing than the data itself. The precise number of people who distrust a politician
may be less important than knowing that such a poll was taken by the politician’s
staff. How a particular government agency harassed citizens in its country may be
less important than knowing that such harassment occurred. Access control mecha-
nisms sometimes conceal the mere existence of data, lest the existence itself reveal
information that should be protected.

Resource hiding is another important aspect of confidentiality. Sites often
wish to conceal their configuration as well as what systems they are using; organiza-
tions may not wish others to know about specific equipment (because it could be
used without authorization or in inappropriate ways), and a company renting time
from a service provider may not want others to know what resources it is using.
Access control mechanisms provide these capabilitie

All the mechanisms that enforce confidentiality require supporting services
from the system. The assumption is that the security services can rely on the kemel,
and other agents, to supply correct data. Thus, assumptions and trust underlie confi-
dentiality mechanisms.

1.1 The Basic Components 5

1.1.2 Integrity

Integrity refers to the trustworthiness of data or resources, and it s usually phrased in
terms of preventing improper or unauthorized change. Integrity includes data integ-
rity (the content of the information) and origin integrity (the source of the data, often
called authentication). The source of the information may bear on its accuracy and
credibility and on the trust that people place in the information. This dichotomy illus-
trates the principle that the aspect of integrity known as credibility is central to the
proper functioning of a system. We will return to this issue when discussing mali-
cious logic.

EXAMPLE: A newspaper may print information obtained from a leak at the White
House but attribute it to the wrong source. The information is printed as received
(preserving data integrity), but its source is incorrect (corrupting origin integrity).

Integrity mechanisms fall into two classes: prevention mechanisms and defec-
tion mechanisms.

Prevention mechanisms seek to maintain the integrity of the data by blocking
any unauthorized attempts to change the data or any atiempts to change the data in
unauthorized ways. The distinction between these two types of attempts is important.
The former occurs when a user tries to change data which she has no authority to
change. The latter occurs when a user authorized to make certain changes in the data
tries to change the data in other ways. For example, suppose an accounting system is
on a computer. Someone breaks into the system and tries to modify the accounting
data. Then an unauthorized user has tried to violate the integrity of the accounting
database. But if an accountant hired by the firm to maintain its books tries to embez-
zle money by sending it overseas and hiding the transactions, a user (the accountant)
has tried to change data (the accounting data) in unauthorized ways (by moving it to
a Swiss bank account). Adequate authentication and access controls will generally
stop the break-in from the outside, but preventing the second type of attempt requires
very different controls.

Detection mechanisms do not try to prevent violations of integrity: they sim-
ply report that the data’s integrity is no longer trustworthy. Detection mechanisms
‘may analyze system events (user or system actions) to detect problems or (more
commonly) may analyze the data itself to see if required or expected constraints still
hold. The mechanisms may report the actual cause of the integrity violation (a spe-
cific part of a file was altered), or they may simply report that the file is now corrupt.

Working with integrity is very different from working with confidentiality.
With the data is either oritis not, but integrity includes
both the correctness and the trustworthiness of the data. The origin of the data (how
and from whom it was obtained), how well the data was protected before it arrived at
the current machine, and how well the data is protected on the current machine all
affect the integrity of the data. Thus, evaluating integrity is often very difficult,

6 Chapter1 AnOverview of Computer Security

because it relies on assumptions about the source of the data and about trust in that
source—two underpinnings of security that are often overlooked.

1.1.3 Availability

Availability refers to the ability to use the information or resource desired. Avmlahllr
ity is an important aspect of reliability as well as of 5

ble System i 4t Ieast 45 bad 5 no system at all The aspect of avaiabilty
that i relevant to scurity is that someone may deliberately arrange to deny access to
data or 10 a service by making it unavailable. System designs usually assume a statis-
tical model to analyze expected patterns of use, and mechanisms ensure availability
when that statistical model holds. Someone may be able to manipulate use (or
parameters that control use, such as network traffic) so that the assumptions of the
statistical model are no longer valid. This means that the mechanisms for keeping the
resource or data available are working in an environment for which they were not
designed. As a result, they will often fail.

EXAMPLE: Suppose Anne has compromised a bank’s secondary system server,
which supplies bank account balances. When anyone else asks that server for infor-
mation, Anne can supply any information she desires. Merchants validate checks by
contacting the bank’s primary balance server. If a merchant gets no response, the sec-
ondary server will be asked to supply the data. Anne’s colleague prevents merchants
from contacting the primary balance server, so all merchant queries go to the second-
ary server. Anne will never have a check turned down, regardless of her actual
account balance. Notice that if the bank had only one server (the primary one), this
scheme would not work. The merchant would be unable to validate the check.

Attempts to block availability, called denial of service aitacks, can be the most
difficult to detect, because the analyst must determine if the unusual access pattemns
are attributable to deliberate manipulation of resources or of environment. Compli-
cating this determination is the nature of statistical models. Even if the model accu-
rately describes the environment, atypical events simply contribute to the nature of
the statistics. A deliberate attempt to make a resource unavailable may simply look
like, or be, an atypical event. In some environments, it may not even appear atypical.

1.2 Threats

A threat is a potential violation of security. The violation need not actually occur for
there to be a threat. The fact that the violation might occur means that those actions
that could cause it to occur must be guarded against (or prepared for). Those actions

12 Threats 7

are called artacks. Those who execute such actions, or cause them to be executed, are
called artackers.

The three security servi . integrity, and
counter threats to the sccurity of a system. Shirey [916] divides threats into four
broad classes: disclosure, or unauthorized access to information; deception. or
ceeptance of false data; disruption, or interruption or prevention of correct opera-
tion; and usurpation, or unauthorized control of some part of a system. These four
broad classes encompass many common threats. Because the threats are ubiquitous,
an introductory discussion of each one will present issues that recur throughout the
study of computer security.

Snooping. the unauthorized interception of information, is a form of disclosure.
It is passive, suggesting simply that some entity is listening to (or reading) communica-
tions or browsing through files or system information. Wiretapping, or passive wiretap-
ping.is a form of snooping in which a network is monitored. (It is called “wiretapping
because of the “wires” that compose the network, although the term s used even if no
phyuml viringis involved.) Confidentiality services counter this threat.

ation or alteration, an change of i covers three
classes of hreats. The goal may be deception, in which some cniity relis on the moi-
fied data to determine which action to take, or in which incorrect information is
accepted as correct and is released. If the modified data controls the operation of the
system, the threats of disruption and usurpation arise. Unlike snooping, modification is
; it results from an entity changing information. Active wiretapping is a form of
modification in which data moving across a network is altered; the term “active” dis-
tinguishes it from snooping (“passive” wiretapping). An example is the man-in-the-
‘middle attack, in which an intruder reads messages from the sender and sends (possibly
modified) versions to the recipient, in hopes that the recipient and sender will not real-
ize the presence of the intermediary. Integrity services counter this threat.
or spoofing. an of one entity by another, is a
form of both deception and usurpation. It lures a victim into believing that the entity
with which it is communicating is a different entity. For example, if a user tries to log
into a computer across the Internet but instead reaches another computer that claims
to be the desired one, the user has been spoofed. Similarly. if a user tries to read a
file, but an attacker has arranged for the user to be given a different file, another
spoof has taken place. This may be a passive attack (in which the user does not
attempt to authenticate the recipient, but merely accesses it). but it is usually an
active attack (in which the masquerader issues responses to mislead the user about its
identity). Although primarily deception, it is often used to usurp control of a system
by an attacker impersonating an authorized manager or controller. Integrity services
(called “authentication services” in this context) counter this threat.

Some forms of masquerading may be allowed. Delegation occurs when one
entity authorizes a second entity to perform functions on its behalf. The distinctions
between delegation and masquerading are important. If Susan delegates to Thomas
the authority to act on her behalf, she is giving permission for him to perform spe-
cific actions as though she were performing them herself. All parties are aware of the
delegation. Thomas will not pretend to be Susan; rather, he will say, “I am Thomas

10 Chapter1 AnOverview of Computer Security

combined site should be. The inconsistency often manifests itself as a security
breach. For example, if proprietary documents were given to a university, the policy
of confidentialiy in th corporation would confict with the more open poicis of
mo: cs. y and the company must develop a mutual security
pollcy it meetsboth thir needs in order 10 produce a consistent policy. When the
two sites communicate through an independent third party, such as an Internet Ser-
vice Provider, the complexity of the situation grows rapidly.

H

1.3.1 Goals of Security

Given a security policy’s specification of “secure” and “nonsecure” actions, these
security mechanisms can prevent the attack, detect the attack, or recover from the
attack. The strategies may be used together or separately.

Prevention means that an attack will fail. For example, if one attempts to
break into a host over the Internet and that host is not connected to the Internet, the
attack has been prevented. Typically, prevention involves implementation of mecha-
nisms that users cannot override and that are trusted to be implemented in a correct,
unalterable way, so that the attacker cannot defeat the mechanism by changing it.

often are very and interfere with system use
to the point that they hinder normal use of the system. But some simple preventative
‘mechanisms, such as passwords (which aim to prevent unauthorized users from
accessing the system), have become widely accepted. Prevention mechanisms can
prevent compromise of parts of the system: once in place, the resource protected by
the mechanism need not be monitored for security problems, at least in theory.

Detection is most useful when an attack cannot be prevented, but it can also
indicate the effectiveness of preventative measures. Detection mechanisms accept
that an attack will occur; the goal is to determine that an attack is underway, or has
occurred, and report it. The attack may be monitored, however, to provide data about
its nature, severity, and results. Typical detection mechanisms monitor various
aspects of the system, looking for actions or information indicating an attack. A good
example of such a mechanism is one that gives a warning when a user enters an
incorrect password three times. The login may continue, but an error message in a
system log reports the unusually high number of mistyped passwords. Detection
mechanisms do not prevent compromise of parts of the system, which is a serious
drawback. The resource protected by the detection mechanism is continuously or
periodically monitored for security problems.

Recovery has two forms. The first is to stop an attack and to assess and repair
any damage caused by that attack. As an example, if the attacker deletes a file, one
recovery mechanism would be to restore the file from backup tapes. In practice,
recovery is far more complex, because the nature of each attack is unique. Thus, the
type and extent of any damage can be difficult to characterize completely. Moreover,
the attacker may return, so recovery involves identification and fixing of the vulnera
bilities used by the attacker to enter the system. In some cases, retaliation (by attack-
ing the attacker’s system or taking legal steps to hold the attacker accountable) is part

1.4 Assumptions and Trust 11

of recovery. In all these cases, the system’s functioning is inhibited by the attack. By
definition, recovery requires resumption of correct operation.

In a second form of recovery, the system continues to function correctly while
an attack is underway. This type of recovery is quite difficult to implement because
of the complexity of computer systems. It draws on techniques of fault tolerance as
well as techniques of security and is typically used in safety-critical systems. It dif-
fers from the first form of recovery, because at no point does the system function
incorrectly. However, the system may disable nonessential functionality. Of course,
this type of recovery is often implemented in a weaker form whereby the system
detects incorrect functioning automatically and then corrects (or attempts to correct)
the error.

1.4 Assumptions and Trust

How do we determine if the policy cnrrecllv describes the required level and type of
security for the site? This question lies at the heart of all security, computer and oth-
erwise. Security rests on assumptions speuhc o the type of security required and the
environment in which it is to be employed.

EXAMPLE: Opening a door lock requires a key. The assumption is that the lock is
secure against lock picking. This assumption is treated as an axiom and is made
because most people would require a key to open a door lock. A good lock picker,
however, can open a lock without a key. Hence, in an environment with a skilled,
untrustworthy lock picker, the assumption is wrong and the consequence invalid.

If the lock picker is trustworthy, the assumption s valid. The term “trustwor-
thy” implies that the lock picker will not pick a lock unless the owner of the lock
authorizes the lock picking. This is another example of the role of trust. A well-
defined exception to the rules provides a “back door” through which the security

mechanism (the locks) can be bypassed. The trust resides in the belief that this back
door will not be used except as specified by the policy. If it is used, the trust has been
misplaced and the security mechanism (the lock) provides no security.

Like the lock example. a policy consists of a set of axioms that the policy
makers believe can be enforced. Designers of policies always make two assumptions.
First, the policy correctly and unambiguously partitions the set of system states into
“secure” and “nonsecure” states. Second, the security mechanisms prevent the sys-
tem from entering a “nonsecure” state. If either assumption is erroneous, the system
will be nonsecure.

ese t i different. The first assumption asserts
that the policy is a correctdeseription of whal consittes “secure” system, For exam-
ple, a bank’s policy may state that officers of the bank are authorized to shift money
among accounts. If a bank officer puts $100,000 in his account, has the bank’s security

12 Chapter1 An Overview of Computer Security

been violated? Given the aforementioned policy statement, no, because the officer was
authorized to move the money. In the “real world.” that action would constitute embez-
zlement, something any bank would consider a security violation.

The second assumption says that the security policy can be enforced by secu-
ity mechanisms. These mechanisms are either secure, precise, or broad. Let P be the
set of all possible states. Let Q be the set of secure states (as specified by the security
policy). Let the security mechanisms restrict the system to some set of states R (thus,
R C P). Then we have the following definition.

Definition 1-3. A security mechanism is secure if R < Q; it is precise if
R=0: and it is broad if there are states r such that r € R and r & Q.

Ideally. the union of all security mechanisms active on a system would pro-
duce a single precise mechanism (that is, R = Q). In practice, security mechanisms.
are broad; they allow the system to enter nonsecure states. We will revisit this topic
when we explore policy formulation in more detail

‘Trusting that mechanisms work requires several assumptions.

. Each mechanism is designed to implement one or more parts of the
security policy.

‘The union of the mechanisms implements all aspects of the security
policy.
‘The mechanisms

are implemented correctly.

=

The mechanisms are installed and administered correctly.

Because of the importance and complexity of trust and of assumptions, we will
revisit this topic repeatedly and in various guises throughout this book.

15 Assurance

Trust cannot be quantified precisely. System specification, design, and implement;
tion can provide a basis for determining “how much” to trust a system. This aspect of
trust is called assurance. It is an attempt to provide a basis for bolstering (or substan-
tiating or specifying) how much one can trust a system.

EXAMPLE: In the United States, aspirin from a nationally known and reputable man-
ufacturer, delivered to the drugstore in a safety-sealed container, and sold with the
seal still in place, is considered trustworthy by most people. The bases for that trust
follows.

+ The testing and certification of the drug (aspirin) by the Food and
Drug Administration. The FDA has jurisdiction over many types of

15 Assurance 13

medicines and allows medicines to be marketed only if they meet
certain clinical standards of usefulness.

‘The manufacturing standards of the company and the precautions it
takes to ensure that the drug is not contaminated. National and state
regulatory commissions and groups ensure that the manufacture of
the drug meets specific acceptable standards.

The safety seal on the bottle. To insert dangerous chemicals into a
safety-sealed bottle without damaging the seal is very difficult.

The three i facturing standards, and a
ing) provide some degree of assurance that the aspirin is not contaminated. The
degree of trust the purchaser has in the purity of the aspirin is a result of these three
processes.

In the 19805, drug manufacturers met two of the criteria above, but none used
safety seals." A series of arose when a well-known manufacturer’s
medicines were contaminated after manufacture but before purchase. The manufac-
turer promptly introduced safety seals to assure its customers that the medicine in the
er was the same as when it was shipped from the manufacturing plants.

Assurance in the computer world is similar. It requires specific steps to ensure
that the computer will function properly. The sequence of steps includes detailed
specifications of the desired (or undesirable) behavior; an analysis of the design of
the hardware, software, and other components to show that the system will not
late the specifications; and arguments or proofs that the implementation, operating
procedures, and maintenance procedures will produce the desired behavior.

Definition 1-4. A system is said to satisfy a specification if the specification
correctly states how the system will function.

This definition also applies to design and implementation satisfying a
specification.

1.5.1

A specification is a (formal or informal) statement of the desired functioning of the
system. It can be highly mathematical, using any of several languages defined for
that purpose. It can also be informal, using, for example, English to describe what
the system should do under certain conditions. The specification can be low-level,
combining program code with logical and temporal relationships to specify ordering
of events. The defining quality is a statement of what the system is allowed to do or
what it is not allowed to do.

! Many used childproof caps, but they prevented only young children (and some adults) from
opening the botiles. They were not designed to protect the medicine from malicious adults

14 Chapter1 An Overview of Computer Security

EXAMPLE: A company is purchasing a new computer for interal use. They need to
trust the system 10 be invulnerable to attack over the Internet. One of their (English)
specifications would read “The system cannot be attacked over the Internet.”

Specifications are used not merely in security but also in systems designed for
safety, such as medical technology. They constrain such systems from performing
acts that could cause harm. A system that regulates traffic lights must ensure that
pairs of lights facing the same way turn red, green, and yellow at the same time and
that at most one set of lights facing cross streets at an intersection is green.

A major part of the derivation of specifications is determination of the set of
requirements relevant to the system’s planned use. Section 1.6 discusses the relation-
ship of requirements 1o security.

152 Design

The design of a system translates the specifications into components that will imple-
ment them. The design is said to sarisfy the specifications if, under all relevant cir-
cumstances, the design will not permit the system to violate those specifications.

EXAMPLE: A design of the computer system for the company mentioned above had
no network interface cards, no modem cards, and no network drivers in the kernel.
This design satisfied the specification because the system would not connect to the
Internet. Hence it could not be attacked over the Internet.

An analyst can determine whether a design satisfies a set of specifications in
several ways. If the specifications and designs are expressed in terms of mathemat-
the analyst must show that the design formulations are consistent with the speci-
fications. Although much of the work can be done mechanically, a human must still
perform some analyses and modify components of the design that violate specifica-
tions (or, in some cases, components that cannot be shown to satisfy the specifica-
tions). If the specifications and design do not use mathematics, then a convincing and
compelling argument should be made. Most often, the specifications are nebulous
and the arguments are half-hearted and unconvincing or provide only partial cover-
age. The design depends on assumptions about what the specifications mean. This
leads to vulnerabilities, as we will sce.

1.5.3 Implementation

Given a design, the implementation creates a system that satisfies that design. If the
design also satisfies the specifications, then by transitivity the implementation will
also satisfy the specifications.

“The difficulty at ths step is the complexity of proving that a program correctly
implements the design and. in turn, the specifications.

1.6 Operational Issues 17

for confidentiality of the salaries in the database. The officers of the company must
decide the financial cost to the company should the salaries be disclosed, including
potential loss from lawsuits (if any); changes in policies, procedures, and personnel;
and the effect on future business. These are all business-related judgments, and deter-
mining their value is part of what company officers are paid to do.

‘Overlapping benefits are also a consideration. Suppose the integrity protection
mechanism can be augmented very quickly and cheaply to provide confidentiality.
Then the cost of providing confidentiality is much lower. This shows that evaluating
the cost of a particular security service depends on the mechanism chosen to imple-
ment it and on the mechanisms chosen to implement other security services. The
cost-benefit analysis should take into account as many mechanisms as possible. Add-
ing security mechanisms to an existing system is often more expensive (and, inciden-
tally, less effective) than designing them into the system in the first place.

1.6.2 Risk Analysis

To determine whether an asset should be protected, and to what level, requires analy-
sis of the potential threats against that asset and the likelihood that they will material-
ize. The level of protection is a function of the probability of an attack occurring and
the effects of the attack should it succeed. If an attack is unlikely, protecting against
it has a lower priority than protecting against a likely one. If the unlikely attack
would cause long delays in the company’s production of widgets but the likely attack
would be only a nuisance, then more effort should be put into preventing the unlikely
attack. The situations between these extreme cases are far more subjective.
Let’s revisit our company with the salary database that transmits salary infor-
mation over a network o a second computer that prints employees’ checks. The data
s stored on the database system and then moved over the network to the second sys-
tem. Hence, the risk of unauthorized changes in the data occurs in three places: on
the database system, on the network, and on the printing system. If the network is a
local (company-wide) one and no wide area networks are accessible, the threat of
attackers entering the systems is confined to untrustworthy internal personnel. If,
however, the network is connected to the Internet, the risk of geographically distant
attackers attempting to intrude is substantial enough to warrant consideration.
is example illustrates some finer points of risk analysis. First, risk is a func-
tion of environment. Attackers from a foreign country are not a threat to the company
when the computer is not connected to the Internet. If foreign attackers wanted to
break into the system, they would need physically to enter the company (and would
cease to be “foreign” because they would then be “local”). But if the computer is
connected to the Internet, foreign attackers become a threat because they can attack
over the Internet. An additional, less tangible issue is the faith in the company. 1f the
company is not able to meet its payroll because it does not kniow wihom it is to pay,
the company will lose the faith of its employees. It may be unable to hire anyone,
because the people hired would not be sure they would get paid. Investors would not

18 Chapter1 An Overview of Computer Security

fund the company because of the likelihood of lawsuits by unpaid employees. The
risk arises from the environments in which the company functions.

Second, the risks change with time. If a company’s network is not connected
to the Internet, there seems to be no risk of attacks from other hosts on the Internet.
However, despite any policies to the contrary, someone could connect a modem to
one of the company computers and connect to the Internet through the modem.
Should this happen, any risk analysis predicated on isolation from the Internet would
no longer be accurate. Although policies can forbid the connection of such a modem
and procedures can be put in place to make such connection difficult, unless the
responsible parties can guarantee that no such modem will ever be installed, the risks
can change.

“Third, many risks are quite remote but still exist. In the modem example, the
company ha sought to minimize the risk of an Internet connection. Hence, this risk
is “acceptable” but not nonexistent. As a practical matter, one does not worry about
acceptable risks; instead, one worries that the risk will become unacceptable.

Finally, the problem of “analysis paralysis” refers to making risk analyses
with no effort to act on those analyses. To change the example slightly, suppose the
company performs a risk analysis. The executives decide that they are not sure if all
risks have been found, so they order a second study to verify the first. They reconcile
the studies then wait for some time to act on these analyses. At that point, the secu-
rity officers raise the objection that the conditions in the workplace are no longer
those that held when the original risk analyses were done. The analysis is repeated.
But the company cannot decide how to ameliorate the risks, so it waits until a plan of
action can be developed, and the process continues. The point is that the company is
paralyzed and cannot act on the risks it faces.

1.63 Laws and Customs

Laws restrict the availability and use of technology and affect procedural controls.
Hence, any policy and any selection of mechanisms must take into account legal con-
siderations.

EXAMPLE: Until the year 2000, the United States controlled the export of crypto-
graphic hardware and software (considered munitions under United States law). If a
U.S. software company worked with a computer manufacturer in London, the U.S.
company could not send cryptographic software to the manufacturer. The U.S. com-
pany first would have to obtain a license to export the software from the United
States. Any security policy that depended on the London manufacturer using that
cryptographic software would need to take this into account.

EXAMPLE: Suppose the law makes it illegal to read a user’s file without the user’s
permission. An attacker breaks into the system and begins to download users’ files. If
the system administrators notice this dnd observe what the attacker is reading, they
will be reading the victim’s files without his permission and therefore will be violat-

17 Humanlssues 19

ing the law themselves. For this reason, most sites require users to give (implicit or
) permission for system administrators to read their files. In some jurisdic-
s, an explicit exception allows system administrators to access information on
their systems without permission in order to protect the quality of service provided
or to prevent damage to their systems.

Complicating this issue are situations involving the laws of multiple jurisdic-
tions—especially foreign ones.

EXAMPLE: In the 19905, the laws involving the use of cryptography in France were
very different from those in the United States. The laws of France required compa-
nies sending enciphered data out of the country to register their cryptographic keys
with the government. Security procedures involving the transmission of enciphered
data from a company in the United States to a branch office in France had to take
these differences into account.

EXAMPLE: If a policy called for prosecution of attackers and intruders came from
Russia to a system in the United States, prosecution would involve asking the United
States authorities to extradite the alleged attackers from Russia. This undoubtedly
would involve court testimony from company personnel involved in handling the
intrusion, possibly trips to Russia, and more court time once the extradition was
completed. The cost of prosecuting the attackers might be considerably higher than
the company would be willing (or able) to pay.

Laws are not the only constraints on policies and selection of mechanisms.
Society distinguishes between legal and acceptable practices. It may be legal for a
company to require all its employees to provide DNA samples for authentication pur-
poses, but it is not socially acceptable. Requiring the use of social security numbers as
passwords is legal (unless the computer is one owned by the U.S. government) but also
unacceptable. These practices provide security but at an unacceptable cost, and they
encourage users o evade or otherwise overcome the security mechanisms.

‘The issue that laws and customs raise is the issue of psychological acceptability.
A security mechanism that would put users and administrators at legal risk would place
a burden on these people that few would be willing to bear; thus, such a mechanism
would not be used. An unused mechanism is worse than a nonexistent one, because it
gives a false impression that a security service is available. Hence, users may rely on
that service to protect their data, when in reality their data is unprotected.

1.7 Human Issues

Implementing computer security controls is complex, and in a large organization
procedural controls often become vague or cumbersome. Regardless of the strength

20 Chapter1 AnOverview of Computer Security

of the technical controls, if iderations affect their
and use, the effect on security can be severe. Moreover, if configured or used incor-
rectly, even the best security control is useless at best and dangerous at worst. Thus,
the designers, implementers, and maintainers of security controls are essential to the
correct operation of those controls.

1.7.1 Organizational Problems

Security provides no direct financial rewards to the user. It limits losses, but it slso
requires the expenditure of resources that could be used elsewhere. Unle:
occur, organizations often believe they are wasting effort related to security. Aftr a
loss, the value of these controls suddenly becomes appreciated. Furthermore, secu-
rity controls often add complexity to otherwise simple operations. For example, if
concluding a stock trade takes two minutes without security controls and three min-
utes with security controls, adding those controls results in a 50% loss of productivity.

Losses occur when security protections are in place, but such losses are
expected to be less than they would have been without the security mechanisms. The
key question is whether such a loss, combined with the resulting loss in productivity,
would be greater than a financial loss or loss of confidence should one of the nonse-
cured transactions suffer a breach of security.

‘ompounding this problem is the question of who is responsible for the secu-
tity of the company’s computers. The power to implement appropriate controls must
reside with those who are responsible; the consequence of not doing so is that the
people who can most clearly see the need for security measures, and who are respon-
sible for implementing them, will be unable to do so. This is simply sound business
practice; responsibility without power causes problems in any organization, just as
does power without responsibility.

Once clear chains of responsibility and power have been established, the need
for security can compete on an equal footing with other needs of the organization.
The most common problem a security manager faces is the lack of people trained in
the area of computer security. Another common problem is that knowledgeable peo-
ple are overloaded with work. At many organizations, the “security administrator” is
also involved in system administration, development, or some other secondary func-
tion. In fact, the security aspect of the job is often secondary. The problem is that
indications of security problems often are not obvious and require time and skill to
spot. Preparation for an attack makes dealing with it less chaotic, but such prepdm
tion takes enough time and requires enough atiention so that treating it as a s
ary aspect of a job means that it will not be performed well, with he expcued
consequences.

Lack of resources is another common problem. Securing a system requires
resources as well as people. It requires time to design a configuration that will pro-
vide an adequate level of security, to implement the configuration, and to administer
the system. It requires money to purchase products that are needed to build an ade-
quate security system or to pay someone else to design and implement security mea-

1.7 Human Issues 21

sures. It requires computer resources to implement and execute the security
mechanisms and procedures. It requires training to ensure that employees understand
how to use the security tools, how to interpret the results, and how 1o implement the
nontechnical aspects of the security policy.

1.7.2 People Problems

‘The heart of any security system is people. This is particularly true in computer secu-
rity, which deals mainly with technological controls that can usually be bypassed by
human intervention. For example, a computer system authenticates a user by asking
that user for a secret codes if the correct secret code is supplied, the computer
assumes that the user is authorized to use the system. If an authorized user tells
another person his secret code, the unauthorized user can masquerade as the autho-
rized user with significantly less likelihood of detection.

People who have some motive to attack an organization and are not authorized
10 use that organization’s systems are called outsiders and can pose a serious threat.
Experts agree, however, that a far more dangerous threat comes from disgruntled
employees and other insiders who are authorized to use the computers. Insiders typi-
cally Know the organization of the company’s systems and what procedures the oper-
ators and users follow and often know enough passwords to bypass many security
controls that would detect an attack launched by an outsider. Insider misuse of autho-
rized privileges is a very difficult problem to solve.

Untrained personnel also pose a threat to system security. As an example, one
operator did not realize that the contents of backup tapes needed to be verified before
the tapes were stored. When attackers deleted several critical system files, she dis-
covered that none of the backup tapes could be read.

System administrators who misread the output of security mechanisms, or do
not analyze that output, contribute 1o the probability of successful attacks against
their systems. Similarly, who lated features
of a system can weaken the site sccurity. Users can also weaken site sccurity by mis-
using security mechanisms (such as selecting passwords that are easy to guess).

ack of training need not be in the technical arena. Many successful break-ins
have arisen from the art of social engineering. If operators will change passwords
based on telephone requests, all an attacker needs to do is to determine the name of
someone who uses the computer. A common tactic is to pick someone fairly far
above the operator (such as a vice president of the company) and to feign an emer-
gency (such as calling at night and saying that a report to the president of the com-
pany is due the next morning) so that the operator will be reluctant to refuse the
request. Once the password has been changed to one that the attacker knows, he can
simply log in as a normal user. Social engineering attacks are remarkably successful
and nl'len devastating.

he problem of i is by the ity of many
\eumly -related configuration files. For instance, a typographical error can disable
key protection features. Even worse, software does not always work as advertised.

24 Chapter1 AnOverview of Computer Security

This chapter has laid the foundation for what follows. All aspects of computer
security begin with the nature of threats and countering security services. In future
chapters, we will build on these basic concepts.

110 Research Issues

Future chapters will explore research issues in the technical realm. However, other,
nontechnical issues affect the needs and requirements for technical solutions, and
research into these issues helps guide research into technical areas.

A key question is how to quantify risk. The research issue is how (o determine
the effects of a system’s vulnerabilities on its security. For example, if a system can
be compromised in any of 50 ways, how can a company compare the costs of the
procedures (technical and otherwise) needed to prevent the compromises with the
costs of detecting the compromises, countering them, and recovering from them?
Many methods assign weights to the various factors, but these methods are ad hoc. A
rigorous technique for determining appropriate weights has yet to be found.

The relationships of computer security to the political, social, and economic
aspects of the world are not well understood. How does the ubiquity of the Internet
change a country’s borders? If someone starts at a computer in France, transits net-
works that cross Switzerland, Germany, Poland, Norway, Sweden, and Finland, and
launches an attack on a computer in Russia, who has jurisdiction? How can a country
limit the economic damage caused by an attack on its computer networks? How can
attacks be traced to their human origins?

‘This chapter has also raised many technical questions. Research issues arising
from them will be explored in future chapters.

1.11 Further Reading

Risk analy

arises in a variety of contexts. Molak [725] presents essays on risk
management and analysis in a variety of fields. Laudan [610] provides an enjoyable
introduction to the subject. Neumann [772] discusses the risks of technology and
recent problems. Software safety (Leveson [622]) requires an understanding of the
risks posed in the environment. Peterson [804] discusses many programming errors
in a readable way. All provide insights into the problems that arise in a variety of
environments.

Many authors recount stories of mcumy inciden
derful book [799], discusses motives and personalities as well as technical details.
Stoll recounts the technical details of unco\'enng an espionage ring that began as the
result of a 75¢ accounting error [973, 975]. Hafner and Markoff describe the same
episode in a study of “cyberpunks” [432]. The Internet worm [322, 432, 845, 953]

. The carliest, Parker’s won-

112 Exercises 25

brought the problem of computer security into popular view. Numerous other inci-
dents [374, 432, 642, 914, 931, 968] have heightened public awareness of the prob-
lem.

Several books 59, 61, 824, 891] discuss computer security for the layperson.
These works tend to focus on attacks that are visible or affect the end user (such as
pornography, theft of credit card information, and deception). They are worth read-
ing for those who wish to understand the results of failures in computer security.

1.12 Exercises

1. Classify each of the following as a violation of confidentiality., of integrity,
of availability, or of some combination thereof.
a. John copies Mary’s homework.
b. Paul crashes Linda’s system.
c. Carol changes the amount of Angelo’s check from $100 to $1,000.

d. Gina forges Roger’s signature on a deed.

e. Rhonda registers the domain name “AddisonWesley.com” and
refuses to let the publishing house buy or use that domain name.

f. Jonah obtains Peter’s credit card number and has the credit card
company cancel the card and replace it with another card bearing a
different account number.

2. Henry spoofs Julie’s IP address to gain access to her computer.

2. Identify mechanisms for implementing the following. State what policy or
policies they might be enforcing.

a. A password changing program will reject passwords that are less
than five characters long or that are found in the dictionary.

b. Only students in a computer science class will be given accounts on
the department’s computer system.

¢. The login program will disallow logins of any students who enter
their passwords incorrectly three times.

d. The permissions of the file containing Carol’s homework will
prevent Robert from cheating and copying it.

e. When World W)de ‘Web traffic climbs to more than 80% of the

capacity, systems will disallow any further
commnnicmmn: to or from Web servers.
f. Annie, a systems analyst, will be able to detect a student using a
program to scan her system for vulnerabilities.

Chapter 1 An Overview of Computer Security

g A program used to submit homework will turn itself off just after the
due date.

The aphorism “security through obscurity” suggests that hiding

information provides some level of security. Give an example of a

situation in which hiding information does not add appreciably to the

security of a system. Then give an example of a situation in which it does.

Give an example of a situation in which a compromise of confidentiality

leads to a compromise in integrity.

. Show that the three security services—confidentiality, integrity, and

availability—are sufficient to deal with the threats of disclosure,
disruption, deception, 'md usurpation.

. In addition to mathematical and informal statements of policy. policies can

be implicit (not stated). Why might this be done? Might it occur with

informally stated policies? What problems can this cause?

For each of the following statements, give an example of a situation in

which the statement is true.

>

urit;

=N

=~

4. Prevention is more important than detection and recovery.
b. Detection is more important than prevention and recovery.
c. Recovery is more important than prevention and detection.

L

Is it possible to design and implement a system in which no assumptions
about trust are made? Why or why not?

Policy restricts the use of electronic mail on a particular system to faculty
and staff. Students cannot send or receive electronic mail on that host.
Classify the following mechanisms as secure, precise, or broad.

e

. The electronic mail sending and receiving programs are disabled.

b As each letter is sent or received, the system looks up the sender (or
recipient) in a database. If that party s listed as faculty or staff, the
mail is processed. Otherwise, it is rejected. (Assume that the
database entrics are correct.)

. The electronic mail sending programs ask the user if he or she is a
student. If so, the mail is refused. The electronic mail receiving
programs are disabled.

I3

0. Consider a very high-assurance system developed for the military. The
system has a set of specifications, and both the d::ign and implementation
have been proven to satisfy the specifications. What questions should
school administrators ask when deciding whether to purcm;e such a
system for their school's use?

. How do laws protecting privacy impact the ability of system
administrators to monitor user activity?

s

@

E

3

=

I

112 Exercises 27

Computer viruses are programs that, among other actions, can delete files
without a users permission. A U.S. legislator wrote a law banning the
deletion of any files from computer disks. What was the problem with this
law from a computer security point of view? Specifically, state which
security service would have been affected if the law had been passed.
Users often bring in programs or download programs from the Internet.
Give an example of a site for which the benefits of allowing users to do
this outweigh the dangers. Then give an example of a site for which the
dangers of allowing users to do this outweigh the benefits.

A respected computer scientist has said that no computer can ever be made
perfectly secure. Why might she have said this?

An organization makes each lead system administrator responsible for
the security of the system he o she runs. However, the management
determines what programs are to be on the system and how they are to be
configured.

a. Describe the security problem(s) that this division of power would
create.
b. How would you fix them?

. The president of a large software development company has become

concerned about competitors learning proprietary information. He is
determined to stop them. Part of his security mechanism is to require all
employees to report any contact with employees of the company’s
competitors, even if it is purely social. Do you believe this will have the
desired effect? Why or why not?

. The police and the public defender share a computer. What security

problems does this present? Do you feel it is a reasonable cost-saving
measure to have all public agencies share the same (set of) computers?

. Companies usually restrict the use of electronic mail to company business

but do allow minimal use for personal reasons.

a. How might a company detect excessive personal use of electronic
mail, other than by reading it? (Hint: Think about the personal use of
a company telephone.)

. Intuitively, it seems reasonable to ban all personal use of electronic
mail on company computers. Explain why most companies do not
do this.

=

. Argue for or against the following proposition. Ciphers that the

government cannot cryptanalyze should be outlawed. How would your
argument change if such ciphers could be used provided that the users
registered the keys with the government?

. For many years, industries and financial institutions hired people who

broke into their systems once those people were released from prison.
Now, such a conviction tends to prevent such people from being hired.

28

Chapter 1 An Overview of Computer Security

Why you think attitudes on this issue changed? Do you think they changed
for the better or for the worse?

. A graduate student accidentally releases a program that spreads from
computer system to computer system. It deletes no files but requires much
time to implement the necessary defenses. The graduate student is

onvicted. Despite demands that he be sent to prison for the maximum
time possible (to make an example of him), the judge sentences him to pay
a fine and perform community service. What factors do you believe caused
the judge to hand down the sentence he did? What would you have done
were you the judge, and what extra information would you have needed to
‘make your decision?

Chapter 2
Access Control Matrix

GRANDPRE: Description cannot suit itself in words
To demonstrate the life of such a battle

In life so lifeless as it shows itself.

—The Life of Henry the Fifth, IV, ii, 53-55.

A protection system describes the conditions under which a system is secure. In this
chapter, we present a classical formulation of a protection system. The access control
matrix model arose both in operating systems research and in database research; it
describes allowed accesses using a matrix.

2.1 Protection State

‘The state of a system is the collection of the current values of all memory locations,
all secondary storage, and all registers and other components of the system. The sub-
set of this collection that deals with protection is the protection state of the system.
An access control matrix is one tool that can describe the current protection state.

Consider the set of possible protection states . Some subset Q of P consists of
exactly those states in which the system is authorized to reside. So, whenever the sys-
tem state is in Q, the system is secure. When the current state is in P — Q' the system is
not secure. Our interest in representing the state is to characterize those states in Q, and
our interest in enforcing security is to ensure that the system state is always an element
of Q. Characterizing the states in is the function of a securi preventing the
system from entering a state in P — Q is the function of a secarity mechanism. Recall
from Definition 13 that a mechanism that enforces this restriction is precise.

The access control matrix model is the most precise model used to describe a
protection state. It characterizes the rights of each subject (active entity, such as
a process) with respect to every other entity. The description of elements of A
form a specification against which the current state can be compared. Specifications

! The notation P — Q means all elements of set P not in set Q.

32 Chapter2 Access Control Matrix

take many forms, and different specification languages have been created to describe
the characteristics of allowable states.

As the system changes, the protection state changes. When a command
changes the state of the system, a state transition occurs. Very often, constraints on
the set of allowed states use these transitions inductively; a set of authorized states is
defined, and then a set of operations is allowed on the elements of that set. The result
of transforming an authorized state with an operation allowed in that state is an
authorized state. By induction, the system will always be in an authorized state.
Hence, both states and state transitions are often constrained.

ractice, any operation on a real system causes multiple state transitions;
the reading, loading. altering. and execution of any datum or instruction causes a
transition. We are concerned only with those state transitions that affect the protec-
tion state of the system, so only transitions that alter the actions a subject is autho-
rized to take are relevant. For cxample, a program that changes a variable to 0 does
not (usually) alter the protection state. However, if the variable altered is one that
affects the privileges of a process, then the program does alter the protection state
and needs to be accounted for in the set of transitions.

2.2 Access Control Matrix Model

The simplest framework for describing a protection system is the access control
matrix model, which describes the rights of users over files in a matrix. Butler Lamp-
son first proposed this model in 1971 [608]; Graham and Denning [279, 413] refined
it, and we will use their version.

The set of all protected entities (that is, entities that are relevant to the protec-
tion state of the system) is called the set of objects O. The set of subjects S is the set
of active objects, such as processes and users. In the access control matrix model, the
relationship between these entities is captured by a matrix A with rights drawn from
a set of rights R in each entry as, o], where s € S, 0 € 0, and afs, 0] R. The sub-
ject s has the set of rights afs, o] over the object o. The set of protection states of the
system is represented by the triple (S, O, A). For example, Figure 2-1 shows the pro-
tection state of a system. Here, process | can read or write file | and can read file 2;
process 2 can append to file 1 and read file 2. Process 1 can communicate with pro-
cess 2 by writing to it, and process 2 can read from process 1. Each process owns
itself and the file with the same number. Note that the processes themselves are
treated as both subjects (rows) and objects (columns). This enables a process to be
the target of operations as well as the operator.

Interpretation of the meaning of these rights varies from system to system.
Reading from, writing (0, and appending o fles is usually clear enough, but what does

“reading from"” a process mean? Depending on the instantiation of the model, it could
mean that the reader accepts messages from the process being read, or it could mean
that the reader simply looks at the state of the process being read (as a debugger does,

N
®

Access Control Matrix Model 33

file 1 file2 process 1 process 2
process 1 read, write, read read, write, write
own execute, own
process 2 append read. own read read, write,
execute, own

Figure 2-1 An access control matrix. The system has two processes and two
files. The set of rights is {read, write, execute, append, own}.

for example). The meaning of the right may vary depending on the object involved.
‘The point is that the access control matrix model is an abstract model of the protection
state, and when one talks about the meaning of some particular access control matrix,
one must always talk with respect to a particular implementation or system.

The own right is a distinguished right. In most systems, the creator of an

object has special privileges: the ability to add and delete rights for other users (and
for the owner). In the system shown in Figure 2-1, for example, process | could alter
the contents of A[x, file 1], where x is any subject.
EXAMPLE: The UNIX system defines the rights “read,” “write,” and “execute.”
‘When a process accesses a file, these terms mean what one would expect. When a
process accesses a directory, “read” means to be able to list the contents of the direc-
tory; “write” means to be able to create, rename, or delete files or subdirectories in
that directory; and “execute” means to be able to access files or subdirectories in that
directory. When a process accesses another process, “read” means to be able to
receive signals, “write” means to be able to send signals, and “execute” means to be
able to execute the process as a subprocess.

Moreover, the superuser can access any (local) file regardless of the permis-
sions the owner has granted. In effect, the superuser “owns” all objects on the sys-
tem. Even in this case however, the interpretation of the rights is constrained. For
example, the superuser cannot alter a directory using the system calls and commands
that alter files. The superuser must use specific system calis and commands to create,
rename, and delete files.

Although the “objects” involved in the access control matrix are normally
thought of as files, devices, and processes, they could just as easily be messages sent
between processes, or indeed systems themselves. Figure 2-2 shows an example
access control matrix for three systems on a local area network (LAN). The rights
curmpmm t0 various network protocols: own (the ability to add servers), fip (the

abil e system using the File Transfer Protocol, or FTP [815]). nfs (the

abi |y 1o access fle systems using the Network File System, or NFS, protocol [166,
9811), and mail (the ability to send and receive mail using the Simple Mail Transfer

34 Chapter2 Access Control Matrix

host names telegraph nob toadfiax
telegraph own fip fip

nob fip, nfs, mail, own ftp, nfs, mail
toadfiax fip, mail ftp, nfs, mail, own

Figure 2-2 Rights on a LAN. The set of rights is {ftp, mail, nfs, own}.

Protocol, or SMTP [814]). The subject relegraph is a personal computer with an fip
client but no servers, so neither of the other systems can access it, but it can fip to
them. The subject nob is configured to provide NFS service to a set of clients that
does not include the host toadflax, and both systems will exchange mail with any
host and allow any host to use fip.

At the micro level, access control matrices can model programming language
accesses; in this case, the objects are the variables and the subjects are the procedures
(or modules). Consider a program in which events must be synchronized. A module
provides functions for incrementing (inc_ctr) and decrementing (dec_ctr) a counter
private to that module. The routine manager calls these functions. The access control
‘matrix is shown in Figure 2-3. Note that “+” and “~" are the rights, representing the
ability to add and subtract, respectively, and call is the ability to invoke a procedure.
‘The routine manager can call itself; presumably, it is recursive.

In the examples above, entries in the access control matrix are rights. How-
ever, they could as easily have been functions that determined the set of rights at any
particular state based on other data, such as a history of prior accesses, the time of
day, the rights another subject has over the object, and so forth. A common form of
such a function is a locking function used to enforce the Bernstein conditions,” so
when a process is writing to a file, other processes cannot access the file; but once the
writing is done, the processes can access the file once again.

counter inc_ctr dec_ctr ‘manager
inc_ctr +
dec_ctr -
manager call call call

Figure 2-3 Rights in a program. The set of rights is {+, -, call}.

he Bemstein conditions ensure that data is consistent. They state that any number of readers
‘may access a datum simultaneously, but if a writer is accessing the datum, no other writers or
any reader can access the datum until the current writing is complete [805].

22 Access Control Matrix Model 35

221 Access Control by Boolean Expression Evaluation

Miller and Baldwin [715] use an access control matrix to control access to fields in a
database. The values are determined by Boolean expressions. Their objects are records
and fields; the subjects are users authorized to access the databases. Types of access are
defined by the database and are called verbs; for example, the Structured Query Lan-
guage (SQL) would have the verbs Insert and Update. Each rule, corresponding to a
function, is associated with one or more verbs. Whenever a subject attempts to access
an object using a right (verb) r, the Boolean expression (rule) associated with r s eval-
uated: if it is true, access is allowed, but if it is false, access is not allowed.

The Access Restriction Facility (ARF) program exemplifies this approach. It
defines subjects as having attributes such as a name, a level, a role, membership in
‘groups, and access to programs, but the user can assign any meaning desired o any
attribute. For example:

name role groups programs
matt programmer sys, hack compilers, editors
holly artist user, creative editors, paint, draw
heidi chef, gardener acct, creative editors, kitchen

Verbs have a default rule, either “closed” (access denied unless explicitly
granted; represented by the 0 rule) or “open” (access granted unless explicitly
denied; represented by the I rule):

verb default rule
read 1
write 0
paint 0
temp_ct 0

Associated with each object is a set of verbs, and each (object, verb) pair has
an associated rule:

name rules
recipes write: ‘creative' in subject.group

overpass wite: ‘artist in subject.role or ‘gardener’in subject.role

shellrct write: "hack in subject.group and time.hour < 4 and time.hour > 0

oven.dev read: 0; temp_cti: kitchen’ in subject.programs and ‘chef’in
subject.role

38 Chapter2 Access Control Matrix

commands, or transformation procedures, that update the access control matrix.
The commands state which entry in the matrix is to be changed, and how; hence, the
commands require parameters. Formally, let ¢, be the kth command with formal
PATAMELETS Py - Py Then the ith transition would be written as

it it Pt -”,.m’x”l'
Note the \lmll‘\rll)’ in notation between the use of the command and the state
transition operations. This is deliberate. For every command, there is a sequence of
state transition opemuum that takes the initial state X; to the resulting state X, .
Using the command notation allows us to shorten the description of the transforma-
tion as well as list the parameters (subjects, objects, and entries) that affect the trans-
formation operations.

/e now focus on the commands themselves. Following Harrison, Ruzzo, and
Ullman [450], we define a set of primitive commands that alter the access control
matrix. In the following list, the protection state is (S. O, A) before the execution of
each command and (S”, 0", A") after each command. The preconditions state the
conditions needed for the primitive command to be executed, and the postconditions
state the results

1. Precondition: s & §
Primitive command:

Postconditions: §” =5 U sh

(Ve 0"l v1= D). (Vs & § "L, 51 2,

(Vre S)(¥ye O)fa’lx.) il

This primitive command creates a new subject s. Note that s must not exist

as a subject or an object before this command is executed. This operation

does not add any rights. It merely modifies the matrix.

Precondition: 0 € O

Primitive command: create object o

Postconditions: §'=S.0°=0 U o],

(Vxe §)la’[x. 0] = D1, (Vxe S)(Vy e O)la’x.] = alx. y1}

‘This primitive command creates a new object o. Note that o must not exist

before this command is executed. Like create subject, this operation does

not add any rights. It merely modifies the matrix.

Precondition: s € S,0€ O

Primitive command: enter r into als.

Postconditions: 0,a’[s, 0] Lolulr),

(Vre S)Vye 0N(ny) #(s.0) > alx, \]—u[\ Bl

“This primitive command adds the right r to the cell als, o]. Note that

als. o] may already contain the right, in which case the effect of this

primitive depends on the instantiation of the model (it may add another

copy of the right or may do nothing).

reate subjetl

Uls)

2

0]

2.3 Protection State Transitions 39

4. Precondition: s€ §,0€ O
Primitive command: delete r from a[s, o]
Posteonditions: §"=S,0"=0,a’[s, 0] =als, 0] - { r },
(Vxe §)(Vye 0NI(x,y) #(s,0) > a’[x, y] = alx, y]]
This primitive command deletes the right r from the cell a[s, o]. Note that
as. o] need not contain the right, in which case this operation has no
effect.

5. Precondition: s € §
Primitive command: destroy subject s
Postconditions: S-{s}.0 -lo
(Yye 0)la’[s,y] =], (Vxe S)a’[x, ﬂ-@]
(Vxe §)(Vye 0M)la’[x.y] =alx,)]
‘This primitive command deletes the subject s. The column and row for s in
A are deleted also.
6. Precondition: 0 € 0

Primitive command: destroy object o
Posteonditions: §"= S, —to).

(Vxe §')a’lx, 0] =2, (Vxe §')(Vy e 0)a’[x, y] = alx,]I

‘This primitive command deletes the object o. The column for o in A is
deleted also.

These primitive operations can be combined into commands, during which

multiple primitive operations may be executed.

EXAMPLE: In the UNIX system, if process p created a file f with owner read (r) and
write (w) permission, the command capturing the resulting changes in the access
control matrix would be

command createsfle(p, f)
create object f;
enter own into ap,
enter r into alp. f1;
enter w into alp. f;

en

Suppose the process p wishes o create a new process ¢. The following command
would capture the resulting changes in the access control matrix.

command spawneprocess(p, q)
create subject g;
enter own into alp, ql;
enter rinto alp, g];
enter w into alp. l;

40 Chapter2 Access Control Matrix

enter r into alq. pl;
enter w into alg, pl;
en

The

and w rights enable the parent and child to signal each other.

The system can update the matrix only by using defined commands; it cannot
use the primitive commands directly. Of course, a command may invoke only a sin-
gle primitive: such a command is called mono-operational.

EXAMPLE: The command

command makesowner(p, f)
enter own into alp, f1;
en,

is a mono-operational command. It does not delete any existing owner rights. It
merely adds p to the set of owners of /. Hence, f may have multiple owners after this
command is executed.

23.1 Conditional Commands

The execution of some primitives requires that specific preconditions be satisfied.
For example, suppose a process p wishes to give another process ¢ the right to read a
file £. In some systems, p must own f. The abstract command would be

command grantsreadsfile=] (p. f.)
if own in al
then
enter rinto alq. f1;
end

Any number of conditions may be placed together using and. For example, suppose
a system has the distinguished right c. If a subject has the rights and ¢ over an
object, it may give any other subject rights over that object. Then

command grantsread=file-2(p, f, q)
if rinalp, f1and c in alp, f]
then

enter rinto alg, f1;

en

Commands with one condition are called monoconditional. Commands with two
conditions are called biconditional. The command grantsreadsfiles] is monocondi-

2.4 Copying, Owning, and the Attenuation of Privilege 41

tional, and the command grantsreadsfile=2 is biconditional. Because both have one
primitive command, both are mono-operational.

Note that all conditions are joined by and, and never by or. Because joining
conditions with or is equivalent to two commands each with one of the conditions,
the disjunction is unnecessary and thus is omitted. For example, suppose the right @
enables one to grant the right r to another subject. To achieve the effect of a com-
mand equivalent to

if own in alp, f1 or @ in alp, f1
then
enter 7 into alq, f1;
define the following two commands:
command grantwritesfiles] (p,

if own in alp. f1
the

n
enter rinto alq. f1;
en
command grantswritesfiles2(p. f, q)
ifainalp,
then
enter r into alg, f1;
end

and then say

“files1(p.f, 4); § 2(p.fax

Also, the negation of a condition is not permitted—that is, one cannot test for
the absence of a right within a command by the condition

if r not in Alp. /]

‘This has some interesting consequences, which we will explore in the next chapter.

2.4 Copying, Owning, and the Attenuation of Privilege

Two specific rights are worth discussing. The first augments existing rights and is
called the copy flag; the second is the own right. Both of these rights are related to
the principle of attenuation of privilege, which essentially says that a subject may not
give away rights it does not possess.

42 Chapter2 Access Control Matrix

24.1 Copy Right

The copy right (often called the grant righ) allows the possessor to grant rights to
another. By the principle of attenuation, only those rights the grantor possesses may
be copied. Whether the copier must surrender the right, or can simply pass it on, is
specific to the system being modeled. This right is often considered a flag attached to
other rights; in this case, it is known as the copy flag.

EXAMPLE: In Windows NT, the copy flag corresponds to the “P™ (change permis-
sion) right.

EXAMPLE: System R is a relational database developed by the IBM Corporation. Its
authorization model 337, 426] takes the database tables as objects to be protected.
Each table is a separate object, even if the same records are used to construct the
table (meaning that two different views of the same records are treated as two sepa-
rate objects). The users who access the tables are the subjects. The database rights
are read entries, which define new views on an existing table; insert, delete, and
update entries in a table; and drop (to delete a table). Associated with each right is a
grant option; if it is set, the possessor of the privilege can grant it to another. Here,
the grant option corresponds to a copy flag.

EXAMPLE: Let ¢ be the copy right, and suppose a subject p has r rights over an
object . Then the following command allows p to copy 7 over fto another subject ¢
only if p has a copy right over f.

command grantr(p, f, q)

if rinalp.f1and cin alp, f]
then

enter rinto alg, f1;

end

EXAMPLE: If p does not have ¢ rights over £, this command will not copy the r rights
0q.

242 Own Right

The own right is a special right that enables possessors to add or delete privileges for
themselves. It also allows the possessor to grant rights to others, although to whom
they can be granted may be system- or implementation-dependent. The owner of an
object is usually the subject that created the object or a subject to which the creator
gave ownership.

EXAMPLE: On UNIX systems, the owner may use the chown(1) command to change
the permissions that others have over an object. The semantics of delegation of owner-

Image
not
avallable

>

. Let ¢ be a copy flag and let a computer system have the same righ
4.

28 Exercises 45

a. Create the corresponding access control marix.
b. Cyndy gives Alice permission to read cyadyre, and Alice removes
Bob’s ability to read alicerc. Show the new access control matrix.

. In Miller and Baldwin’s model (see Section 2.2.1), they restricted the

functions that generated the access control matrix entries to working on
objects. not on subjects. Thus, one could not base rights being granted on
whether another subject possessed those rights. Why did they impose this
restriction? Can you think of cases in which this restriction would cause
problems?

. The query-set-overlap mechanism requires a history of all queries to the

database. Discuss the feasibility of this control. In particular, how will the

size of the history affect the response of the mechanism.

Consider the set of rights {read, write, execute. append, list, modifs, own).
a. Using the syntax in Section 2.3, write a command delete_all_rights

(p...5). This command causes p to delete all rights the subject ¢ has

over an object 5.

Modify your command so that the deletion can occur only if p has

modify tights over s.

Modify your command so that the deletion can occur only if p has

modify tights over s and g does not have own rights over s.

4

I3

Exerci:

a. Using the syntax in Section 2.3, write a command
copy_all_rights(p, q. s) that copies all rights that p has over s (o ¢.

b. Modify your command so that only those rights with an associated
copy flag are copied. The new copy should not have the copy flag.

c. In part (b), what conceptually would be the effect of copying the
copy flag along with the right?

This exercise asks you to consider the consequences of not applying the
principle of attenuation of privilege to a computer system.

a. What are the consequences of not applying the principle at all? In
particular, what is the maximal set of rights that subjects within the
system can acquire (possibly with the cooperation of other
subjects)?

b, Suppose attenuation of privilege applied only to access rights such
as reac write, but not to rights such as own and grant_rights.
Would this ameliorate the situation discussed in part (a)? Why or
why not?

46 Chapter2 Access Control Matrix

Consider a restricted form of attenuation, which works as follows. A
subject ¢ is attenuated by the maximal set of rights that ¢, or any of
its ancestors, has. So, for example, if any ancestor of g has
permission over a file £, ¢ can also 7 f. How does this affect the
spread of rights throughout the access control matrix of the system?
Develop an example matrix that includes the ancestor right, and
illustrate your answer.

Chapter 3
Foundational Results

MARIA: Ay, but you must confine yourself
within the modest limits of order.
—Twelfih Night, 1. iii, 8-9.

In 1976, Harrison, Ruzzo, and Ullman [450] proved that in the most general abstract
case, the security of computer systems was undecidable and explored some of the
limits of this result. In that same year, Jones, Lipton, and Snyder [527] presented a
specific system in which security was not only decidable, but decidable in time linear
with the size of the system. Minsky [718] suggested a third model to examine what
made the general, abstract case undecidable but at least one specific case decidable.
Sandhu [870] extended this model to examine the boundary even more closely.

These models explore the most basic question of the art and science of com-
puter security: under what conditions can a generic algorithm determine whether a
system is secure? Understanding models and the results derived from them lays the
foundations for coping with limits in policy and policy composition as well as apply-
ing the theoretical work.

3.1 The General Question

Given a computer system, how can we determine if it is secure? More simply, is
there a generic algorithm that allows us to determine whether a computer system is
secure? If so, we could simply apply that algorithm to any system; although the algo-
rithm might not tell us where the security problems were, it would tell us whether
any existed.

The first question is the definition of “secure.” What policy shall define
“secure” For a general result, the definition should be as broad as possible. We use
the access control matrix to express our policy. However, we do not provide any spe-
cial rights such as copy or own, and the principle of attenuation of privilege does not
apply.

Let R be the set of generic (primitive) rights of the system.

48 Chapter3 Foundational Results

Definition 3-1. When a generic right r is added to an element of the access
control matrix not already containing r, that right is said to be leaked.

Our policy defines the authorized set of states A to be the set of states in which
1o command c(x,.x,) can leak 7. This means that no generic rights can be added
to the matrix.

We do not distinguish between the leaking of rights and an authorized transfer
of rights. In our model, there is no authorized transfer of rights. (If we wish to allow
such a transfer, we designate the subjects involved as “trusted.” We then eliminate all
trusted subjects from the matrix, because the security mechanisms no longer apply to
them.)

Let a computer system begin in protection state sq.

n 3-2. If a system can never leak the right r, the system (including

itial state s) is called safe with respect to the right r. If the system can
leak the right r (enter an unauthorized state), it is called unsafe with respect to
the right r.

We use these terms rather than secure and nonsecure because safety refers to
the abstract model and security refers to the actual implementation. Thus, a secure
system corresponds to a model safe with respect to all rights, but a model safe with
respect to all rights does not ensure a secure s

EXAMPLE: A computer system allows the network administrator to read all network
traffic. It disallows all other users from reading this traffic. The system is designed in
such a way that the network administrator cannot communicate with other users.
Thus, there is no way for the right r of the network administrator over the network
device to leak. This system is safe.
Unfortunately. the operating system has a flaw. If a user specifies a certain file
name in a file deletion system call, that user can obtain access to any file on the sys-
controls). This is an implementation flaw, not a
theorefical one. It also allows the user to read data from the network. So this system
is not secure.

Our question (called the safety question) is: Does there exist an algorithm for
determining whether a given protection system with initial state sq is safe with
respect to a generic right 77

3.2 Basic Results

The simplest case is a system in which the commands are mono-operational (each con-
sisting of a single primitive command). In such a system, the following theorem holds.

32 BasicResults 49

‘Theorem 3-1. [450] There exists an algorithm that will determine whether a
given mono-operational protection system with initial state sy is safe with
respect to a generic right r.

Proof Because all commands are mono-operational, we can identify each
command by the type of primitive operation it invokes. Consider the minimal

sequence of commands, ¢ needed to leak the right r from the system
with initial state .
Because no commands can test for the absence of rights in an access

control matrix entry, we can omit the delete and destroy commands from the
analysis. They do not affect the ability of a right to leak.

Now suppose that multiple create commands occurred during the
sequence of commands, causing a leak. Subsequent commands check only for
the presence of rights in an access control matrix element. They distinguish
between different clements only by the presence (or lack of presence) of a par-
ticular right. Suppose that two subjects s, and s, are created and the rights in
Alsy, 01) and Alsy, 0,) are tested. The same test for Afs,, 0] and Afsy, 03] =
Alsi. 03] U A[s,, 0,) will produce the same result. Hence, all creates are
unnecessary except possibly the first (and that only if there are no subjects ini-
tially), and any commands entering rights into the new subjects are rewritten
to enter the new right into the lone created subject. Similarly, any tests for the
presence of rights in the new subjects are rewritten to test for the presence of
that right in an existing subject (or, if none initially, the first subject created).

Let ISg] be the number of subjects and 10| the number of objects in the
initial state. Let n be the number of generic rights. Then, in the worst case, one
new subject must be created (one command), and the sequence of commands
will enter every right into every element of the access control matrix. After the
creation, there are 1Syl + | subjects and 0] + 1 objects, and (1Sl + 110! + 1)
elements. Because there are n generic rights, this leads to n(Sgl + 1)(10gl + 1)
commands. Hence, k < n(1Sgl + 1)(10g! + 1) + 1.

By enumerating all possible states we can determine whether the system is
safe. Cléarly, this may be computationally infeasible, especially if many subjects,
objects, and rights are involved, but it is computable. (See Exercise 2.) Unfortu-
nately, this result does not generalize to all protection systems.

Before proving this, let us review the notation for a Turing machine. A Turing
machine T consists of head and an infinite tape divided into cells numbered 1, 2. .
from left o right. The machine also has a fnite set of states K and a inite et of fape

the tape at the start of all computations; also, at that time 7 is in the initial state gq.
‘The tape head occupies one square of the tape, and can read and write sym-

bols on that cell of the tape, and can move into the cell to the left or right of the cell it

currently occupies. The function 8: K x M — K x M x (L, R} describes the action of

7. For example, let p. ¢ € K and A, B € M. Then, if 8(p, A) = (¢, B, R), when T is in
state p and the head rests on a cell with symbol A, the tape head changes the symbol

52

decidable (simply enumerate all p

Chapter 3 Foundational Results

enter end into als;, . 5;411;

delete p from als;, 5;1;

delete A from afs;, 5,1

enter B into als; s

enter g into als;,). 5;]
end

Clearly, only one right in any of the access control matrices corresponds to
a state, and there will be exactly one end right in the matrix (by the nature of the
commands simulating Turing machine actions). Hence, in each configuration of
the Turing machine, there is at most one applicable command. Thus, the protec-
tion system exactly simulates the Turing machine, given the representation above.
Now, if the Turing machine enters state gy, then the protection system has leaked
the right g;: otherwise, the protection system is safe for the generic right g
But whether the Turing machine will enter the (halting) state gyis undecidable, so
whether the protection system is safe must be undecidable also.

However, we can generate a list of all unsafe systems.
‘Theorem 3-3. [269] The set of unsafe systems is recursively enumerable.
Proof See Exercise 3.

Assume that the create primitive is disallowed. Clearly, the safety question is
sible sequences of commands from the given

state: as no new subjects or objects are created, at some point no new rights can be
added to any clement of the access control matrix, so if the leak has not yet occurred,
it cannot occur). Hence, we have the following theorem.

deleting the delete and destroy primitives but not the create

‘Theorem 34, (450] For protection systems without the create primitives, the
question of safety is complete in P-SPACE.

Proof Consider a Turing machine bounded in polynomial space. A construc-
tion similar to that of Theorem 3-2 reduces that Turing machine in polyno-
mial time to an access control matrix whose size is polynomial in the length of
the Turing machine input.

If deletng the create primitives makes the safety question decidable, would
e also make the

prim
safety question decidable? Such systems are called monotonic becanse they only
increase in size and complexity: they cannot decrease. But:

Theorem 3-5. [451] It is idable whether a given confi ofa
given monotonic protection system is safe for a given generic right.

Restricting the number of conditions in the commands to two does not help:

3.3 The Take-Grant Protection Model 53
Theorem 3-6. [451] The safety question for biconditional monotonic protec-
tion systems is undecidable.
But if at most one condition per command is allowed:

Theorem 3-7. [451] The safety question for monoconditional monotonic pro-
tection systems is decidable.

‘This can be made somewhat stronger:
Theorem 3-8. [451] The safety question for monoconditional protection sys

tems with create, enter, and delete primitives (but no destroy primitive) is
decidable.

Thus, the safety question is undecidable for generic protection models but is
decidable if the protection system is restricted in some way. Two questions arise.
First, given a particular system with specific rules for transformation, can we show
that the safety question is decidable? Second, what are the weakest restrictions on a
protection system that will make the safety question decidable in that system?

3.3 The Take-Grant Protection Model

Can the safety of a particular system, with specific rules, be established (or dis-
proved)? The answer, not surprisingly, is yes. Such a system is the Take-Grant Pro-
tection Model.

‘The Take-Grant Protection Model represents a system as a directed graph.
Vertices are either subjects (represented by @) or objects (represented by O). Verti-
ces that may be either subjects or objects are represented by ®. Edges are labeled,
and the label indicates the rights that the source vertex has over the destination ver-
tex. Rights are elements of a predefined set R; R contains two distinguished rights:
(for take) and g (for grant).

As the protection state of the system changes, so does the graph. The protec-
tion state (and therefore the graph) changes according to four graph rewriting rules:

Take rule: Let x, y, and z be three distinct vertices in a protection graph G, and let x
be a subject. Let there be an edge from x to z labeled y with < v, an edge from z to
¥ labeled B, and o < . Then the take rule defines a new graph G by adding an edge
o the protection graph from X to labeled ct. Graphically,

o—otee

54 Chapter3 Foundational Results

The rule is written “x takes (¢ to y) from 2.

Grant rule: Let x, y, and z be three distinct vertices in a protection graph G, and let
2 be a subject. Let there be an edge from z to x labeled with ¢ € 7, an edge from z
10y labeled B, and a:c B Then the grant rule defines a new graph G by adding an
edge to the protection graph from X to y labeled ct. Graphically,

]
- @K B
X z y

‘The rule is written “z grants (0t to y) to x."
Create rule: Let x be any subject in a protection graph Go and let o< R . Then cre-

ate defines a new graph G by adding a new vertex y to the graph and an edge from x
toy labeled 0. Graphically,

The rule s written “x creates (0t to new vertex) y.”

Remove rule: Let x and y be any distinct vertices in a protection graph G, such that
X is a subject. Let there be an explicit edge from x to y labeled , and let o:c B. Then
remove defines a new graph G, by deleting the ct labels from B. If B becomes empty
as a result, the edge itself is deleted. Graphically,

The rule is written “x removes (. to) y.”

Because these rules alter the state of the protection graph, they are called de
jure (*by law” or “by right”) rules.

We demonstrate that one configuration of a protection graph can be derived
from another by applying the four rules above in succession. The symbol |- means
that the graph following it is produced by the action of a graph rewriting rule on the
graph preceding it; and the symbol |- represents a finite number of successive rule
applications. Such a sequence of graph rewriting rules is called a witness. A witness
is often demonstrated by listing the graph rewriting rules that make up the witness
(usually with pictures).

3.3 The Take-Grant Protection Model 55

3.3.1 Sharing of Rights

We first wish to determine if a given right ot can be shared—that is, given a protec-
tion graph Gy, can a vertex x obtain ot rights over another vertex y? More formally:

Definition 3-3. The predicate caneshare(c. X, . Go) is true for a set of rights
ocand two vertices x and y if and only if there exists a sequence of protection
graphs G, ..., G,, such that Gy |-"G, using only de jure rules and in G,, there
is an edge from X to y labeled 0.

To establish the conditions under which this predicate will hold, we must
define a few terms.

Definition 3-4. A g-path is a nonempty sequence ¥ v,, of distinct verti-
ces such that for all i, 05 <n, v; is connected to v;,; by an edge (in cither
direction) with a label containing 1 or g.

Definition 3-5. Vertices are fg-connected if there is @ rg-path between them.

We can now prove that any two subjects with a rg-path of length 1 can share
rights. Four such paths are possible. The take and grant rules in the preceding section
account for two of them. Lemmata 31 and 3-2 cover the other two cases.

Lemma 3-1.
o
t o * . o
X z v X z y

z takes (g to v) from x.

56 Chapter3 Foundational Results

z grants (010 y) O V.

X takes (0t o y) from v.

This sequence of rule applications adds an edge labeled ot from X to y.
A similar proof establishes the following lemma.

Lemma 3-2.

o
o ‘reep |-* s o
ks ? v

Thus, the ake and grant rules are symmetric if the vertices on the rg-path
between x and y are subjects. This leads us to the following definition.

Definition 3-6. An island is a maximal 7g-connected subject-only subgraph.

Because an island is a maximal rg-only subgraph, a straightforward inductive
proof shows that any right possessed by any vertex in the island can be shared with
any other vertex in the island.

Transferring rights between islands requires that a subject in one island be
able to take the right from a vertex in the other island or that a subject be able to
grant the right to an intermediate object from which another subject in the second
island may take the right. This observation, coupled with the symmetry of take and
grant, leads 1o a characterization of paths between islands along which rights can
be transferred. To express it succinctly, we use the following notation. With each
1g-path, associate one or more words over the alphabet in the obvious way. If the

3.3 The Take-Grant Protection Model 59

£

For all pairs of vertices x; and x; in G with x; having ot rights over x;,
perform “v grants (¢ t0 X)) to X;”

Let B be the set of rights labeling the edge from x; and x; in G (note that B
may be empty). Perform “v removes (et U { g)) B t0) x;"

o

The resulting graph G is the desired graph G.
(&). Let v be the initial subject, and let Go I~ G. By inspection of the rules, G
is finite, loop-fiee, and a directed graph; furthermore, it consists of subjects
and objects only, and all edges are labeled with nonempty subsets of R.

Because no rule allows the deletion of vertices, v is in G. Because no
rule allows an incoming edge to be added to a vertex without any incoming
edges, and v has no incoming edges, it cannot be assigned any.

Corollary 3-2. [944] A k-component, n-edge protection graph can be con-
structed from r-rule applications, where 2(k - 1) +n < 1 < 2(k - 1) +3n.

Using the Take-Grant Protection Model, Snyder [943] showed how some
common protection problems could be solved. For example, suppose two processes
p and q communicate through a shared buffer b controlled by a trusted entity s (for
example, an operating system). The configuration in Figure 3-2a shows the initial
protection state of the system. Because s is a trusted entity, the assumption that it has
g rights over p and q is reasonable. To create b, and to allow p and q to communicate
through it s does the following:

a. s creates ({r, w} to new object) b.
b. s grants ({r, w) to b) to p.
c. sgrants ({r,w) tob)toq.

Figure 3-2 (a) The initial state of the system: s, a trusted entity, can grant
rights to untrusted processes p and q. Each process p and q controls its own
private information (here represented by files u and v). (b) The trusted entity
has created a buffer b shared by the untrusted processes.

60 Chapter3 Foundational Results

‘This creates the configuration in Figure 3-2(b). The communication channel is two-
ways if it is to be one-way, the sender would have write rights and the receiver would
have read rights. This configuration also captures the ability of the trusted entity to
monitor the communication channel or interfere with it (by altering or creating
messages)—a point we will explore in later sections.

3.3.3 Theft in the Take-Grant Protection Model

The proof of the conditions necessary and sufficient for cansshare requires that all
subjects involved in the witness cooperate. This is unrealistic. If Professor Olson
does not want any students to read her grade file, the notion of “sharing” fails to cap-
ture the unwillingness to grant access. This leads to a notion of stealing, in which no
owner of any right over an object grants that right to another.

Definition 3-10. Let Gy be a protection graph, let x and y be distinct vertices
in Gy, and let o be a subset of a set of rights . The predicate canssteal(c., X, ¥,
G is true when there is no edge from X to y labeled ot in Gy and there exists a
sequence of protection graphs G, ..., G, for which the following hold simul-
tancously:

a. There is an edge from x to y labeled ot in G,

b. There is a sequence of rule applications py. ..., p, such that G;_; I- G; using

Pir
c. Forall vertices v and win G,_;, 1 <i <n, if there is an edge from v to y in
G labeled o, then p; is not of the form “v grants (0t to y) to W."

This definition disallows owners of o rights to y from transferring those rights. It
does not disallow those owners from transferring other rights. Consider Figure 3-3.
‘The given witness exhibits canssteal(ct, s, W, Go). In step (1), the owner of o rights to
w grants other rights (specifically, 7 rights 1o v) to a different subject, s. Without this
step, the theft cannot occur. The definition only forbids grants of the rights to be sto-
len. Other rights may be granted. One justification for this formulation is the ability
of attackers to trick others into surrendering rights. While the owner of the target

t v (1) u grants (tto v) tos.
(2) s takes (f to u) from v.

(3) s takes (ot to w) from u.
aow

Figure 3-3 A witness to theft in which the owner, u, of the stolen right, c,
grants other rights to another subject (t rights to v are granted to s).

3.3 The Take-Grant Protection Model 61

right would be unlikely to grant that right, the owner might grant other rights. This
models the Trojan horse (see Section 22.2), in which the owner of the rights is
unaware she is giving them away.

Making the target of the theft a subject complicates this situation. According
to Definition 3-10, the target may give away any rights as well. In this case,
the owner is acting as a moderator between the target and the source and must
restrain the transfer of the right through it. This models the case of mandatory access
controls.

‘Theorem 3-12. [944] The predicate canssteal(c, X, . Go) is true if and only
if the following hold simultaneously:

. There is no edge from x to y labeled o in Gy.
There exists a subject vertex x” such that x" = X or X initially spans to .
. There exists a vertex s with an edge labeled ot to y in Gy and for which
caneshare(t, x, s, Go) holds.

ooe

Proof (=»). Assume that the three conditions above hold. If x is a subject,
then x need merely obtain rights to s and then use the take rule to obtain 0.
rights to y. By definition, this satisfies canesteal(c, X, ¥, Go).

Suppose x is an object. Then Theorem 3-10, cansshare(t, x, s, Gy),
implies that there exists a subject vertex x” that rg-initially spans to x and for
which the predicate cansshare(t, X", s, Go) is true. Without loss of generality,
assume that the 7g-initial span is of length 1 and that x” has f rights over s in
Gy. If x” does not have an edge labeled . to y in Gy, then x” takes o rights to y
and grants those rights to X, satisfying the definition. If X" has an edge labeled
atoy in G, then x” will create a “surrogate” to which it can give take rights
tos:

1. X’ creates (g to new subject) X"
2. X grants (o s) to X",
3. X’ grants (310 X) to X",

Now x”has rights over s and g rights over X, so the rule applications

1. x”takes (0 to y) froms.
2. x” grants (0.0 y) to X.

satisfy the definition. Hence, canesteal(a, x, y, Gg) holds if the three condi-
tions in the theorem hold.

(¢=): Assume that canesteal(., X, ¥, Go) holds. Then condition (a) of the theo-
rem holds directly from Definition 3-10.

62

Chapter 3 Foundational Results

Condition (a) of Definition 3-10 implies caneshare(ct. X, ¥, Go). From
condition (b) of Theorem 310, we immediately obtain condition (b) of this
theorem.

Condition (a) of Theorem 3-10 ensures that the vertex s in condition (c)
of this theorem exists.

We must show that cansshare(t, X, . Go) holds. Let p be a sequence of
rule applications. Consider the minimal length sequence of rule applications
deriving G, from Gy. Let i be the least index such that G;_; I G; and such
that there i an edge labeled . from some vertex p to y in G; but not in Gj..
Then G is lhc t rzmph in which an edge labeled ot to y is added.

sly, p; is not a remove rule. It cannot be a create rule, because y
already exised. By condtion (¢)of Defiition 3-10, and the choice of fensur-
ing that all vertices with o rights to y in G; are also in Go, p; cannot be a grant
rule. Hence, p; must be a take rule of the form

t
>0 %»® |- ' o
P s y P s v

for some vertex s in G, From this, cansshare(r, p. 5, Gg) holds. By condition
(¢) of Theorem 3-10, there is a subject s such that s” = s or s” l:rmmal]y
spans to s, and by condition (d), there exists a sequence of islands /. .

such that x" € Iy ands” € 1,

If s is an object (and thus s # s), consider two cases. If s” and p are in
the same island, then take p = s”. If they are in different islands, the derivation
cannot be of minimal length; choose s” in the same island to exhibit a shorter
one. From this, the conditions of Theorem 3-10 have been met, and
cansshare(1, x, s, Go) holds.

If s is a subject (s" = 5), then p & I,,, and we must show that p € Gy, for
Theorem 3-10 to hold. If p & G, then there is a subject q in one of the islands.
such that cansshare(t, q. s, Go) holds. (To see this, note that s € Gg and that
none of the de jure rules add new labels to incoming edges on existing verti-
ces.) Because s is an owner of o rights to y in G, we must derive a witness for
this sharing in which s does not grant (ot to). If s and q are distinct, replace
cach rule application of the form

s grants (L to y) o q

with the sequence

s (et y) from s
gt0q) froms
P grants (to y) to q

3.3 The Take-Grant Protection Model 63

thereby transferring the right (0t to) to g without s granting. If s = g, then the
first rule application in this sequence suffices

Hence, there exists a witness to canes
not grant (e to). This completes the proof.

hare(t, q. s, Go) in which s does

3.3.4 Conspiracy

‘The notion of theft introduced the issue of cooperation: which subjects are actors in a
transfer of rights, and which are not? This raises the issue of the number of actors
necessary 1o transfer a right. More formally, what is the minimum number of actors
required to witness a given predicate cansshare(c, X, ¥, Go)?

Consider a subject vertex y. Then y can share rights from any vertex to which
it terminally spans and can pass those rights to any vertex to which it initially spans.

Definition 3-11. The access set A(y) with focus y is the set of vertices y, all
vertices x to which y initially spans, and all vertices x” o which y terminally
spans.

Of course, a focus must be a subject.

Consider two access sets with different foci y and y” that have a vertex in
common. If z € A(y) because y initially spans to 7, and z € A(y’) because y” ini-
tially spans to z, by the definition of initial span, no rights can be transferred
between y and y” through z. A similar result holds if both y and y” terminally span
to z. However, if one focus initially spans to z and the other terminally spans to z,
rights can be transferred through z. Because we care about the transfer of rights,
we identify a set of vertices that can be removed from the graph without affecting
transfers:

Definition 3-12. The deletion set 8(y, y) contains all vertices z in the set
Aly) N A(Y") i
(b) y terminally spans to z and y” initially spans to z, (c) 2=y, and (d) z=y".

Given the deletion set, we construct an undirected graph, called the conspir-
acy graph and represented by H, from Go:

1. For each subject vertex x in Gy, there is a corresponding vertex A(x) in H
with the same label.
2. 1£8(y. y') # @ in G, there is a line between A(y) and h(y") in H.

The conspiracy graph represents the paths along which subjects can transfer
rights. The paths are unidirectional because the rights can be transmitted in either
direction. Furthermore, each vertex in H represents an access set focus in G.

66 Chapter3 Foundational Results

The first paper introduced a model called the Schematic Send-Receive (SSR)
Protection Model [869]. The Schematic Protection Model (SPM) [870] generalizes
these results.

3.4.1 Schematic Protection Model

The key notion of the Schematic Protection Model, also called the SPM, is the pro-
tection type. This is a label for an entity that determines how control rights affect that
entity. For example, if the Take-Grant Protection Model is viewed as an instance of a
scheme under the SPM, the protection types are subject and object because the con-
trol rights take, grant, create, and remove affect subject entities differently than they
do object entities. Moreover, under SPM, the protection type of an entity is set when
the entity is created, and cannot change thereafter.

[n SPM, a ficket is a description of a single right. An entity has a set of tickets
(called a domain) that describe what rights it has over another entity. A ticket con-
sists of an enity name and a right symbol; for example, the ticket X/r allows the pos-
sessor of the ticket to apply the right 7 to the entity X. Although a ticket may contain
only one right, if an entity has multiple tickets X/r, X/s, and X/r, we abbreviate them
by writing X/rst.

Rights are partitioned into a set of inert rights (RI) or control rights (RC).
Applying an inert right does not alter the protection state of the system. For example,
reading a file does not modify which entities have access to the document, so read is
an inert right. But in the Take-Grant Protection Model, applying the take rule does
change the protection state of the system (it gives a subject a new right over an
object). Hence, the fake right is a control right. SPM ignores the effect of applying
inert rights, but not the effect of applying control rights.

The attribute ¢ is a copy flag; every right r has an associated copyable right rc.
A ticket with the copy flag can be copied to another domain. The notation r:c means
r or re, with the understanding that all occurrences of r:c are read as or all are read
as re.

We partition the set of types T'into a subject set TS and an object set TO. The
type of an entity X is written T(X). The type of a ticket X/~ .
same as T(X)/rc. More formally, let £ be the set of entities; then T:E—T and T:Ex
R—TXR.

‘The manipulation of rights is controlled by two relationships: a link predicate
and a filter function. Intuitively, the link predicate determines whether the source and
target of the transfer are “connected” (in a mathematical sense), and the filter func-
tion determines whether the transfer is authorized.

3.41.1 Link Predicate

A link predicate is a relation between two subjects. It is local in the sense that its
evaluation depends only on the tickets that the two subjects possess. Formally:

34 Closingthe Gap 67

Definition 3-13. Let dom(X) be the set of tickets that X possesses. A link
predicate link (X, Y) is a conjunction ordisjunction (bt not a negation) ofthe
following terms, for any right = € RC.

. X/z € dom(X)
. X/z € dom(Y)
. Y[z € dom(X)
. Y/z € dom(Y)
. true

t of link predicates { link;1i=1, ..., n } is called a scheme. If only one link
defined, we omit the subscript i.

EXAMPLE: The link predicate corresponding to the Take-Grant Protection Model
rules take and grant is

link(X,Y) =Y/g € dom(X) v X/t € dom(Y)

Here, X and Y are connected if X has g rights over Y or Y has f rights over X, which
corresponds to the model in the preceding section.

EXAMPLE: The link predicate

link(X,Y)

/b e dom(X)

connects X to every other entity Y provided that X has b rights over itself. With
respect to networks, b would correspond to a broadcast right. However, X does not
yet have the right to broadcast to all Y because predicates do not endow the ability to
exercise that right. Similarly, the predicate

link(X,Y)=Y/p € dom(Y)

corresponds to a pull connection between all entities X and Y. Again, this is not suffi-
cient for Y to exercise the pull right, but it is necessary.

EXAMPLE: The universal link depends on no entity’s rights:
link(X., Y) = true

This link holds even when X and Y have no tickets that refer to each other.

68 Chapter3 Foundational Results

3.41.2 Filter Function
‘The filter functions impose conditions on when transfer of tickets can occur. Specifi-
cally, a filter function is a function f;: TS x TS—2® that has as its range the set of
copyable tickets. For a copy to occur, the ticket to be copied must be in the range of
the appropriate filter function.

Combining this requirement with the others, a ticket X/r:c can be copied from
dom(Y) to dom(Z) if and only if, for some i, the following are true:

1. X/rc € dom(Y)
2. link(Y. Z)
3. WX/ € (Y, W)

One filter function is defined for each /ink predicate. As with the link predicates, if
there is only one filter function, we omit the subscripts.

EXAMPLE: Let (t(Y), (Z)) = T x R. Then any tickets are transferable, assuming
that the other two conditions are met. However, if (7(Y), ©(Z)) = T x R, then only
inert rights are transferable; and if AT(Y), 7(Z)) = @, no rights can be copied.

3.4.1.3 Putting It Al Together
Let us take stock of these terms by considering two examples: an owner-based policy
and the Take-Grant Protection Model.

In an owner-based policy, a subject U can authorize another subject V to
access an object F if and only if U owns F. Here, the set of subjects is the set of users
and the set of objects is the set of files. View these as types. Then:

TS = { user |, TO = { file }
In this model, ownership is best viewed as copy attributes—that is, if U owns F, all
its tickets for F are copyable. Under this interpretation, the set of control rights is
empty because no rights are required to alter the state of the protection graph. All
rights arc inert, For our example, assume that the (read), w (write). a (append), and
x (execute) rights are defined. Then:

RC=@.RI=| re,wc,ac,xc |

Because the owner can give the right to any other subject, there is a connection
between cach pair of subjects and the link predicate is always true:

link(U, V) = true
Finally, tickets can be copied across these connections:

fluser, user) = | filefr, file/w. filefa, file/x |

34 Closingthe Gap 69

EXAMPLE: Suppose a user Peter wishes to give another user Paul execute permis-
sions over a file called doom. Then t(Peter) = user, t(doom) = file, and doom/xc
& dom(Peter). Because any user can give rights away to any other user, all users are
“connected” in that sense, so link(Peter, Paul) = true. Finally, because t(doom) = file,
and t(Paul) = user, we have t(doom)/x € f(t(Peter), T(Paul)). Thus, Peter can copy
the ticket doom/x to Paul.

The Take-Grant Protection Model can be formulated as an instance of SPM.
The set of subjects and objects in the Take-Grant model corresponds to the set of
subjects and objects in SPM:

TS = { subject },TO = { object |

The control rights are 7 (take) and g (grant), because applying them changes the pro-
tection state of the graph. All other rights are inert; for our example, we will take
them to be r (read) and w (write). All rights can be copied (in fact, the Take-Grant
Protection Model implicitly assumes this), so:

RC=(1c.gc|.RI=

re,we)
Rights can be transferred along edges labeled 1 or g, meaning that one vertex on the

edge has take or grant rights over the other. Let p and g be subjects. Then the link
predicate is

link(p, q) = plt & dom(q) v a/g & dom(p)

Finally, any right can be transferred, so the filter function is simply
Sflsubject, subject) = { subject, object) x { 1c, ge, re, we |

We now explore how the transfer of tickets occurs in SPM.

3.4.1.4 Demand and Create Operations

The demand function d:TS—2"® authorizes a subject to demand a right from
another entity. Let @ and b be types. Then a/ric € d(b) means that every subject of
type b can demand a ticket X/r:¢ for all X such that t(X) = a. zati

of the take rule in the Take-Grant model. The fake rule refers Io an individual subject,
The demand rule refers to all subjects of a particular type (here, of type b).

EXAMPLE: In the owner-based policy, no user can force another to give rights;
hence, the range of the demand function is empty: d(user) = @. In the Take-Grant
Protection Model, there is also no demand function. Although the fake right is simi-
lar, to treat it as the demand right would require the creation of additional types to
distinguish between those vertices directly connected by take edges to subjects and
all other vertices. This complicates the system unnecessarily. Hence, d(subject) = @.

70 Chapter3 Foundational Results

Sandhu [871] has that a i ion eliminates
the need for the demand operation. Thus, although the demand rule is present in
SPM, that rule is omitted from the models that followed SPM.

Creating a new entity requires handling of not only the type of the new entity
but also the tickets added by the creation. The type of the new entity is specified by
the relation can-create (cc): cc < TS x T; a subject of type a can create entities of
type b if and only if cc(a, b) holds.

In practice, the rule of acyclic creates limits the membership in this relation.
Represent the types as vertices, and let a directed edge go from a to b if cc(a, b). The
relation cc is acyclic if this graph has no loops except possibly edges from one vertex
to itself. Figure 3-5 gives an example of both cyclic and acyclic can-create relations.
The rationale for this rule is to eliminate recursion in cc; if a subject of type a can
create a subject of type b, none of the descendents of the subject can create a subject
of type a. This simplifies the analysis without unduly limiting the applicability of the
model.

Let A be a subject of type a = T(A) and let B be an entity of type b = ¥(B). The
create-rule cr(a, b) specifies the tickets introduced when a subject of type creates
an entity of type b.

If B is an object, the rule specifies the tickets for B to be placed in dom(A) as
aresult of the creation. Only inert tickets can be created, so cr(a, b) < { bir:ce Rl },
and A gels B/r:c if and only if bfr:c € cr(a, b).

a subject, the rule also specifies that the tickets for A be placed in
danum asa result of the creation. Assume that types @ and b are distinct. Let cr,, (a, b)
be the set of tickets the creation adds to dom(A), and let cr,(a, b) be the set of tickets
the creation adds to dom(B). Then A gets the ticket B/r:c |f B/r
gets the ticket A/ric if afr:c € cr (a, b). We write cr(a, b) = | a/
the types a and b are not disti

To avoid this ambiguity, if a = b, we define selflr:c to be tickets for the creator and
afr:c 1o be tickets for the created, and we say that cr(a, @) = { afric, selffricIric€ R).
ery(a, b) and cr,(a, b) are subsets of cr(a, a), as before.

@ Oe—D ® Q‘O

Figure 3-5 The rule of acyclic creates. (a) The can-create relation cc = { (a, b).
(b.©). (b, d), (d. ¢) }. Because there are no cycles in the graph, cc satisfies the
rule of acyclic creates. (b) Same as (a). except that the can-create relation is
cc”= cc U { (¢, 3) }. which induces a cycle; hence, cc”does not follow the rule
of acyclic creates.

34 Closingthe Gap 73

Sandhu [870] has shown that the flow function requires O(IT x Rl ISUB"P),
and hence the ion’s time ity is ial in the number of sub-
jects in the system.

This definition allows us to sharpen our intuition of what a “maximal state” is
(and will ultimately enable us to define that state formally). Intuitively, a maximal
state maximizes flow between all pairs of subjects. Call the maximal state * and the
flow function corresponding to this state flow"; then if a ticket is in flow" (X, Y), there
exists a sequence of operations that can copy the ticket from X to Y. This brings up
two questions. First, is a maximal state unique? Second, does every system have a
maximal state?

‘We first formally define the notion of maximal state using a relation named <.

Definition 3-18. The relation g <o is true if and only if, for all pairs of sub-
jects X and Y in SUBY, flow$(X, Y) < flow(X, Y). If g < h and h < g, g and
h are equivalent.

In other words, the relation < induces a set of equivalence classes on the set
of derivable states.

Definition 3-19. For a given system, a state m is maximal if and only if
I < m for every derivable state k.

In a maximal state, the flow function contains all the tickets that can be trans-
ferred from one subject to another. Hence, all maximal states are in the same equiva-
lence class and thus are equivalent. This answers our first question.

To show that every system has a maximal state, we first show that for any state
in a finite collection of derivable states, there is a maximal state.

Lemma 3-3. Given an arbitrary finite collection H of derivable states, there
exists a derivable state m such that, forall h e H, h<gm.

Proof By induction on IHI.

Basis. Take H = @ and m to be the initial state. The claim is trivially true.
Induction hypothesis. The claim holds when |H| = n.

Induction step. Let IH'| = n + 1, where H* = G U { & }; thus, IGI = n. Choose
g € G such that, for every state x € G, x <y g; such a state’s existence is guar-
anteed by the induction hypothesis.

Consider the states g and h, defined above. Each of these states is estab-
lished by a history. Let M be an interleaving of these histories that preserves the
relative order of transitions with respect to g and 4, and with only the first cre-
ate operation of duplicate create operations in the two histories. Let M attain
state m. If either parh¥(X, Y) for X, Y € SUB® or path"(X, Y) for X, Y € SUB",
then parh™(X, Y), as g and h are ancestor states of m and SPM is monotonic.

74 Chapter3 Foundational Results

Thus, g o m and h <y m, so m is a maximal state in H”. This concludes the
induction step and the proof.

Take one state from each equivalence class of derivable states. To see that nm
is finite, consider each pair of sub,ecu in SUB. The flow function’s range is 2R

that function can take on at most 27°®! values. Given that there are ISUB’ pairs of
subjects in the initial state, mm can be at most 2RISUBOR distinet equivalence
classes.

Theorem 3-15. There exists a maximal state * for every system.

Proof Take K to be the collection of derivable states that contains exactly one
state from each equivalence class of derivable states. From above, this set is
finite. The theorem follows from Lemma 3-3.

In this model, the safety question now becomes: Is it possible to have a deriv-
able state with X/r:c in dom(A), or does there exist a subject B with ticket X/rc in the
initial state or which can demand Xirc and Y(X)/r:c in flow’(B,A)?

To answer this question, we need to construct a maximal state and test. Gener-
ally, this will require the creation of new subjects. In the general case, this is unde-
cidable. But in special cases, this question is decidable. We now consider an
important case—that of acyclic attenuating schemes—and determine how to con-
struct the maximal state.

Consider a state h. Intuitively, generating a maximal state m from h will
require all three types of operations. Define u to be a state corresponding to h but
with a minimal number of new entities created such that m can be derived from u
without any create operations. (That is, begin in state h. Use create operations to cre-
ate as few new entities as possible such that state m can be derived from the new state
after the entities are created. The state after the entities are created, but before any
other operations occur, is «.) For example, if in the history from / to m, subject X
creates two entities of type y, in u there would be only one entity of type y. That
entity would act as a surrogate for the two entities that X created. Because m can be
derived from « in polynomial time, if u can be created by adding to a finite number
of subjects, the safety question is decidable in polynomial time for such a system.

‘We now make this formal.

Definition 3-20. ([870], p.425) Given any initial state 0 of an acyclic attenu-
ating scheme, the fully unfolded state u is the state derived by the following
algorithm.

(* delete any loops so it's loop-free *)
cc'=cc-{(aalaeTs}
(* mark all suhjects as unfolded *)
for X € SUB® d
Folded - folded {x}

34 Closingthe Gap 75

(* if anything is folded, it has to be unfolded *)
while folded = @ do begin
(* subject X is going to be unfolded *)
folded = folded - { x }
(* for each type X can create, create one entity of *)
(* that type and mark it as folded; this will force *)
(* the new entity to be unfolded *)
for y € TS do begin
if cc’(1(X), y) then
X creates Y of type
(* system is in state g here *)
if y € SUBY then
folded = folded U { X }
end
end
(* now account for the Toops; the system is in state h here *)
for X € SUB" d
if cc(t()(), (X)) then
creates Y of type T(X)
(* currently in desired state u *)

The while loop will terminate because the system is acyclic and attenuating, hence
the types of the created entities must all be different—and 7S is a finite set.

Definition 3-21. Given any initial state of an acyclic attenuating scheme, for
every derivable state) define the surrogate function 6:ENT"—ENT" by

1. o(X) =X if X in ENT®
2. 6(X) = 6(Y) if Y creates X and (Y) = 7(X)
3. 6(X) = 1(Y)-surrogate of o(Y) if Y creates X and 7(Y) # t(X)

Itis easy to show that T(0(A)) = ().

IF 1(X) = 7(Y), then 6(X) = 6(Y). If 7(X) # 7(Y), then in the construction of
1, 6(X) creates 6(Y) (see the while loop of Definition 3-20). Also, in this construction,
G(X) creates entities X of type T(X) = 7((X)) (see the last for loop of Definition
3-20). So, by Definition 3-14, we have the following lemma.

Lemma 3-4. For a system with an acyclic attenuating scheme, if X creates Y,
then tickets that would be introduced by pretending that o(X) creates o(Y) are
in dom*(0(X)) and dom'(a(Y)).

Now, let H be a legal history that derives a state & from the initial state of an
acyelic attenuating system. Without loss of generality, we may assume that H’s oper-
ations are ordered such that all create operations come first, followed by all demand

76 Chapter3 Foundational Results

operations, followed by all copy operations. Replace the transitions in H as follows,
while preserving their relative order.

1. Delete all create operations.
2. Replace “X demands Y/r:c” with “6(X) demands o(Y)/rc”
3. Replace “Z copies X/r:c from Y with “G(Z) copies o(X)/r:c from 6(Y).”

Call the new history G. Then:

Lemma 3-5. Every transition in G is legal, and if X/r:c € dom"(Y), then
o(X)/r:c € dom¥(a(Y)).

Proof By induction on the number of copy operations in H.

Basis. Assume that H consists only of create and demand operations. Then G
consists only of demand operations. By construction, and because G preserves
type, every demand operation in G is legal. Furthermore, X/r:c can appear in
dom"(Y) in one of three ways. If X/r:c € dom%(Y), then X, Y € ENTO and
U(X)/r c € dom®(o(Y)) trivially holds. If a create operation in H put
X/ric € dom"(Y), 0(X)/ric € dom*(6(Y) by Lemma 3-4. And if a demand
operation put X/ric € dom”(Y), then 6(X)/r:c € dom"(a(Y)) follows from the
corresponding demand operation in G. This establishes both parts of the claim.

Induction hypothesis. Assume that the claim holds for all histories with k copy

operations, and consider a history H with k + 1 copy operations. Let H” be the
initial sequence of H composed of k copy operations, and let A~ be the state
derived from H".

Induction step. Let G be the sequence of modified operations corresponding
to H". By the induction hypothesis, G s a legal history. Let g be the state
derived from G . Suppose the final operation of H is “Z copies X/r:c from Y.
By construction of G, the final operation of G is “G(Z) copies o(X)/r:c from
o(Y).” Now, h differs from h” by at most X/r:c € dom(Z). However, the con-
struction causes the final operation of G to be 6(X)/r:c € dom"(c(Z)), proving
the second part of the claim.

Because H " is legal, for H to be legal the following conditions must hold.

1. X/rc e dom" (Y)

2. link}' (Y. Z)

3. WX/ric) € f(Y), U2))

‘The induction hypothesis, the first two conditions above, and X/r:c € dom" (Y)

mean that 6(X)/rc € dom® (6(Y)) and link;* (6(Y), o(Z)). Because &
preserves type, the third condition and the induction hypothesis imply

3.4 Closingthe Gap 77

wo(X)/r:c) € ft(o(Y)), US(Z))). G is legal, by the induction hypothesis: so,
by these conditions, G is legal. This establishes the lemma.

Corollary 3-3. For every i, if link/"(X, Y), then link$(a(X), 6(Y)).
We can now present the following theorem.

Theorem 3-16. For a system with an acyclic attenuating scheme, for every
history H that derives / from the initial state, there exists a history G without
create operations that derives g from the fully unfolded state u such that

(¥ X, Y € SUB"[flow(X, Y) < flows(5(X), 5(Y))]

Proof It suffices to show that for every parh’ from X to Y there is a parh®
from 6(X) to 6(Y) for which cap(path(X. Y)) = cap(path¥(c(X). G(Y)).
Induct on the number of links.

Basis. Let the length of the parh from X to Y be 1. By Definition 316, then,
link{"(X,), so link#(6(X), 5(Y)) by Corollary 3-3. Because & preserves
type, cap(path"(X, Y)) = cap(path®(5(X), 6(Y)), verifying the claim.

Induction hypothesis. Assume that the claim holds for every pari" of length k.

Induction step. Consider a path from X 10'Y of length & + 1. Then there exists an
entity Z with a parh* from X to Z of length k, and link/(Z. Y). By the induction
hypothesis, there is a path® from G(X) to G(Z) with the same capacity as the
path” from X to Z. By Corollary 3-3, we have link(6(Z), 6(Y)). Because
G preserves type, there is a parh® from X to Y with cap(path"(X, Y)) =
cap(path¥(a(X) , 6(Y)), proving the induction step and therefore the theorem.

Thus, any history derived from an initial state « can be simulated by a corre-
sponding history applied to the fully unfolded state v derived from . The maximal
state corresponding to v is #u; the history deriving this state has no creates. From
Theorem 3-16, for every history that derives / from the initial state,

(V X, Y & SUBM[flow'(X, Y) < flow®"((X), 5(Y))]

For X e SUB®, 6(X) = X; therefore, (¥ X, Y & SUB)[flow”(X, Y) < flow*"(X, Y)].
‘This demonstrates the following corollary.

Corollary 3-4. The state #u is a maximal state for a system with an acyclic
attenuating scheme.

Not only is #u derivable from u, it is derivable in time polynomial with respect
to ISUBI (and therefore to ISUBl). Moreover, the straightforward algorithm for
computing flow™" will be exponential in IS in the worst case. This means that for
acyclic attenuating schemes, the safety question is decidable.

80 Chapter3 Foundational Results

‘The child also has a rule of the form

erdnX,

UK. YD) = Y/Ry U X /Ry U U XfRy

These rules are analogous to the single-parent creation rules, but with one for each
parent.

EXAMPLE: To expand on this concept, let’s revisit Anna and Bill's situation. Anna
and Bill are equals, so for modeling purposes they have the same type a. The proxy is
of type p: because the proxy has delegated authority, a and p may be different. We
‘model the rights that Anna and Bill have over the proxy by the right x in R. Thus:

ce(a, a)=p
Crapnal@s a. p
CPproxy (@, @,)

rpin(a. a,p) =2
= Anna/x U Bill/x

Then the proxy can use the right x to transfer whatever set of privileges the proxy
requires.

Considering two-parent joint creation operations i sufficient for modeling
purposes. To demonstrate this, we show how the two-parent joint creation operation
can implement a three-parent joint creation operation.

Let P, P, and P be three subjects; they will create a (child) entity C. With a
three-parent joint creation operation, can-create will be

cc(t(Py), (P WPy) = ZS T
and the type of the child is 7(C) & T. The creation rules are

Crpy((P)). TPy, (Py) =
erle(Py). o). 1) = CIRi 3 U Byl
Crpa(t(Py), WP, WP3)) = C/R, 3 U PRy 3
CrtE(P). TPy, T(P3) = CIRy & v,/le4 O PRy, U PR, 3

C/Ry y UP /Ry,

Our demonstration requires that we use the two-parent joint creation rule, not the
three-parent rule. At the end of the demonstration, the parents and the child should
have exactly the same tickets for one another. We will create additional entities and
types, but they cannot interact with any other entities (in effect, they do not exist for
the rest of the entities). Finally, if the creation fails, the parents get no new tickets.

For convenience, and to simplify the notation, we assume that the parents and
child are all of different types.

Define four new entities Ay, Ay, Ay, and S: each A;, of type a; = T(A,), will act
as an agent for the corresponding parent Py, and S, of type s = T(S), will act as an
agent for the child. Let the type ¢ represent parentage—that is, an entity with the

3.5 Expressive Power and the Models 81

ticket X/t has X as a parent. Again, without loss of generality, we assume that aj, ay,
a3, 5, and t are all new types.

During the construction, each agent will act as a surrogate for its parent; this
agent obtains tickets on behalf of the parent, and only after the child is created does
the agent give the parent the ticket. That way, if the construction fails, the parent has
no new tickets.

Augment the can-create rules as follows:

ce(p)=ay

These rules enable the parents to create the agents. The final agent can create the
agent for the child, which subscquently creates the child. Note that the second agent
has two parents (P, and A), as does the third agent (P3 and Ay); these rules are the
two-parent joint creation operation.

n creation, the creation rules dictate the new tickets given to the parent and
the child. The following rules augment the existing rules.

crp(py.a) =D crdpy, ay) = py/Ric
Tpfirs(P: @1,) = @

CTPsecond P2 A1 "z)
Tpfirs P3, @, G3) =

cre(py, a1, ag) = pyfRtc U ayftc

Tpsecond P3, @20 ﬂx) = crdpa. ay. a3) = pyRic U ayltc
crplaz, 5)= D crlas, s) = agfic
erpls,) = ClRic erdls,) = clRyt

Here, Cripgyy and Crpygcong indicate the tickets given to the first and second parents,
respectively.

The link predicates indicate over which links rights can flow; essentially, no
tickets can flow to the parents until the child is created. The following links restrain
flow to the parents by requiring each agent to have its own “parent” right.

linky(A, Ag) = A/t € dom(Ag) A Ayft € dom(Ag)
linky(Ag, Ag) = Aot € dom(Az) A A€ dom(As)
3/t € dom(S) A CJt € dom(C)
Clte dom(A,)

) =P/t dom(Ay) A/t € dom(Ay)
linky(Ay, Py) = Po/t € dom(A;) A Agft & dom(A)
linky(As, P3) = Pyt € dom(As) A Ayt € dom(A3)

82 Chapter3 Foundational Results

The filter functions dictate which tickets are copied from one entity to another:

filag, ap)=ay/t U c/Ric
fil@, ay) = ayft U c/Rtc

f3(@z,) =palRan
fy(as, ©) =p3y/Ras
falay, py) = /Ry, U p/Ryy
falaz, p) = c/Ryp U pyfRyy
fuaz. p3)

Now we begin the construction. The creations proceed in the obvious order;
after all are completed, we have

P, has no relevant tickets.
P, has no relevant tickets.
P; has no relevant tickets.
A, has Py/Rrc.

Aghas Py/Ric U A frc.
Aghas Py/Ric U Ayfrc.

+ Shas Ay/rc U C/Ric.

+ ChasC/Rs.

We now apply the links and filter functions to copy rights. The only link pred-
icate that is true is finky(S, A), s0 we apply fy; then Ay's set of tickets changes, as
follows:

« Ayhas PyRic U Agftc U Ayt U C/RIc.
Now link;(As, Ay) is true, so applying f; yields

+ Ayhas Py/Ric U Ayfic U Agft U CJRIc.
Now link;(Ag, A,) is true, so applying f; again yields

+ Ay has Py/Ric U A/t U C/Ric.
At this point, all linkys in this construction hold, so

+ Chas C/Ry U Py/Ry; U PyRy; U PyRy .

Then the filter functions associated with link,, all of which are also true, finish the
construction:

3.5 Expressive Power and the Models 83

« Pyhas C/Ryy U PRy,
« Pyhas C/Ryp U PyRy.
+ Pyhas C/Ryg U Py/Rys.

This completes the construction. As required, it adds no tickets to Py, P, P, and C
except those that would be added by the three-parent joint creation operation. The
intermediate entities, being of unique types, can have no effect on other entities.
Finally, if the creation of C fails, no tickets can be added to Py, P, and Py because
none of the link predicates in this construction is true; hence, no filter functions apply.
Generalizing this construction to n parents leads to the following theorem.

Theorem 3-17. [19] The two-parent joint creation operation can implement
an n-parent joint creation operation with a fixed number of additional types
and rights, and augmentations to the link predicates and filter functions.

A logical question is the relationship between ESPM and HRU; Ammann and
Sandhu show that the following theorem holds.

Theorem 3-18. [19] Monotonic ESPM and the monotonic HRU model are
equivalent.

Furthermore, the safety analysis is similar to that of SPM; the only difference is
in the definition of the state function . The corresponding function 6" takes the joint
creation operation into account; given this, the nature of the unfolding algorithm is
roughly analogous to that of SPM. This leads to the equivalent of Theorem 3-16:

Theorem 3-19. [19] For an ESPM system with an acyclic attenuating
scheme, for every history H that derives / from the initial state there exists a
history G without create operations that derives ¢ from the fully unfolded state
u'such that

(V' X, Y € SUB"[fiow"(X, Y) < flow(5"(X), 5"(Y))]

Because the proof is analogous to that of Theorem 316, we omit it.

What is the benefit of this alternative representation? If SPM and ESPM
model the same systems, the addition of n-parent joint creation operations is not at
all interesting. But if ESPM can represent systems that SPM cannot, the addition is
very interesting. More generally, how can we compare different models?

3.5.3 Simulation and Expressiveness

Ammann, Sandhu, and Lipton [21] use a graph-based representation to compare dif-
ferent models. An abstract machine represents an access control model; as usual, that
‘machine has a set of states and a set of transformations for moving from one state to

84 Chapter3 Foundational Results

another. A directed graph represents a state of this machine. A vertex is an entity; it
has an associated type that is static. Each edge corresponds to a right and, like a ver-
tex,;has a static type determined on creation. The source of the edge has some
right(s) over the target. The allowed operations are as follows.

. Initial state operations, which simply create the graph in a particular state
. Node creation operations, which add new vertices and edges with those
vertices as targets
Edge adding operations, which add new edges between existing vertices

~

As an example, we simulate the three-parent joint creation operation with
two-parent joint creation operations. As before, nodes Py, Py, and P are the parents;
they create a new node C of type c with edges of type e. First, P, creates A, which is
of type a, and an edge from Py to A, of type ¢”. Both a and ¢ are used only in this
construction.

p O Or Ors

\O

Ay

Then A, and P, create a new node Ay, which is of type @, and Ay and Py cre-
ate a new node A, with type a, and edges of type ¢”as indicated:

rO. P, O PJO %

Ay Ay Ay

Next, A; creates a new node S, which is of type a, which in turn creates a new
node C, of type c:

O

3.5 Expressive Power and the Models 87

Because edges can be added only by using the two-parent joint creation
me A, all nodes in scheme A have even numbers of incoming
edges. But given the edge adding rule in scheme B, because we can add an edge
from X, to Y. we can also add an edge from X to Y. Thus, there is a state in
scheme B containing a node with three incoming edges. Scheme A cannot enter
this state. Furthermore, because there is no remove rule and only one edge type,
scheme B cannot transition from this state to a state in which Y has an even number
of incoming edges. Hence, scheme B has reached a state not corresponding to any
state in scheme A, and from which no state corresponding to a state in scheme A
can be reached. Thus, scheme B cannot simulate scheme A, and so model N is less
expressive than model M.

Given these definitions, Ammann, Lipton, and Sandhu prove the following
theorem.

Theorem 3-20. [21] Monotonic single-parent models are less expressive than
monotonic multiparent models.

Proof Begin with scheme A in the preceding example. We show by contra-
diction that this scheme cannot be simulated by any monotonic scheme B
with only a single-parent creation operation. (The example does not show
this because we are removing the requirement that scheme B begin in the
same initial state as scheme A.)

Consider a scheme B that simulates scheme A. Let nodes X, and X; in
A create node Y with edges from X; and X; to Y. Then in scheme B there
is a node W that creates Y, with a single incoming edge from W. The simu-
lation must also use edge adding operations to add edges from X to Y, and
from X, to Y, (assuming that W # X; and W # X).

Let W invoke the single-parent creation operation twice more to cre-
ate nodes Y, and Y3 and use the edge adding rules to add edges from X, to
Y}, Y, and Y and from X, to Y}, Y5, and Y3. The resulting state clearly
corresponds (o a state in scheme A.

ecause scheme A has exactly one node type, Y, Yy, and Y are
indistinguishable as far as the application of the node creation and edge add-
ing rules is concerned. So proceed as in the example above: in scheme A, let
Y, and Y create Z. In the simulation, without loss of generality, let Y cre-
ate Z using a single-parent creation operation. Then scheme B uses an edge
adding operation to add an edge from Y to Z—but that same edge adding
rule can be used to add one more edge into Z, from Y3. Thus, there are three
edges coming into Z, which (as we saw earlier) is a state that scheme A can-
not reach, and from which no future state in scheme B that corresponds to a
state in scheme A can be reached. Hence, scheme B does not simulate
scheme A, which contradicts the hypothesis.

Thus, no such scheme B can exist.

88 Chapter3 Foundational Results

This theorem answers the question posed earlier: because ESPM has a multi-
parent joint creation operation and SPM has a single-parent creation operation,
ESPM is indeed more expressive than SPM.

354 Typed Access Matrix Model

The strengths of SPM and ESPM appear to derive from the notion of “types.” In par-
ticular, ESPM and HRU are equivalent, but the safety properties of ESPM are consid-
erably stronger than those of HRU. Sandhu expanded the access control matrix model
by adding a notion of “type” and revisiting the HRU results. This model, called the
Typed Access Matrix (TAM) Model [875]. has safety properties similar to those of
ESPM and supports the notion that types are critical to the safety problem’s analysis.

TAM augments the definitions used in the access control matrix model by
adding types.

Definition 3-26. There is a finite set of types 7, containing a subset of types
TS for subjects.

The type of an entity is fixed when the entity is created (or in the initial state)
and remains fixed throughout the lifetime of the model. The notion of protection
state is similarly augmented.

Definition 3-27. The protection state of a system is (S, 0, T, A), where is
the set of subjects. O is the set of objects, A is the access control matrix, and
Iype function that specifies the type of each object. If X € S, then
dif X € O, then t(X) e T-TS.

The TAM primitive operations are the same as for the access control matrix
model, except that the create operations are augmented with types.

1. Precondition: s & §
Primitive command: create subject s of type is
Pu:(Londluom §'=Suls},0'=0uls),
(Vye O ()
(Vye 0 Ma’ls, ¥l
(Vxe S)(Vye O)a[xy
In other words, this primitive command creates a new subject s. Note that s
‘must not exist as a subject or object before this command is executed.

. Precondition: 0 & O
Primitive command: create object o of type o
Posteonditions: §°=5,0'=0 | o },
(Yye O)t" W], T (") =10,
(Vxe $)a’[x, 0] = @], (Ve S)(Vy e O)a’[x, y] = alx, y1]

2

. (Vre §)a’[x. 5] =@
[, y] = alx, y

©

3.5 Expressive Power and the Models 89

In other words, this primitive command creates a new object o. Note that o
must not exist before this command is executed.
These primitive operations are combined into commands defined as in the access
control matrix model. Commands with conditions are called conditional commands:
commands without conditions are called unconditional commands.
Finally, we define the models explicitly.

Definition 3-28. A TAM authorization scheme consists of a finite set of
rights R. a finite set of types 7, and a finite collection of commands. A TAM
system is specified by a TAM scheme and an initial state.

Definition 3-29. The MTAM (Monotonic Typed Access Matrix) Model is the
TAM Model without the delete, destroy subject, and destroy object primi-
tive operations.

Definition 3-30. Let a(x
3oty e O and 1) =

1. ooy X 1) be a creating command, where
Uxp) = 1. Then 1;is a child type in ol(x, : 1y,

L3 1) if any of create suluecn r, of type 1; or create object x; of type t;
occurs in the body of a(x, : 1},). Otherwise, f; is a parent type in
Oy 5 gy ey Xy)

From this, we can define the notion of acyclic creations.

Definition 3-31. The creation graph of an MTAM scheme is a directed graph
with vertex set V and an edge from u € V to v & V if and only if there s a cre-
ating command in which u is a parent type and v s a child type. If the creation
graph is acyclic, the MTAM system is said to be acyclic; otherwise, the
MTAM system is said to be cyclic.

As an example, consider the following command, where s and p are subjects
and fis an object.

command createshavoc(s : 1, p: u.f:v.q : W)
create subject p of type u;
create object / of type v;
enter own into als. pl;
enter 7 into alg, pl;
enter own into alp, f1;
enter 7 into alp, f1;
enter w into alp, f1;
end

Here, u and v are child types and u and w are parent types. Note that u is both a par-
ent type and a child type. The creation graph corresponding to the MTAM scheme

9 Chapter3 Foundational Resuits

with the single command createshavoc has the edges (u. u), (i, W), (v. u), and (v, w).
Thus, this MTAM scheme is cyclic. Were the create subject p of type u deleted from
the command, however, « would no longer be a child type, and the resulting MTAM
scheme would be acyclic.

Sandhu has shown that the following theorem is true.

Theorem 3-21. [875] Safety is decidable for systems with acyclic MTAM
schemes.

‘The proof is similar in spirit to the proof of Theorem 3-16.
Furthermore, because MTAM subsumes monotonic mono-operational HRU
systems, a complexity result follows automatically:

Theorem 3-22. [875] Safety is NP-hard for systems with acyclic MTAM
schemes.
However, Sandhu [875] has also developed a surprising result. If all MTAM
commands are limited to three parameters, the resulting model (called “ternary
MTAM") is equivalent in expressive power to MTAM. However:

Theorem 3-23. [875] Safety for the acyclic ternary MTAM model is decid-
able in time polynomial in the size of the initial access control matrix.

3.6 Summary

The safety problem is a rich problem that has led to the development of several mod-
els and analysis techniques. Some of these models are useful in other contexts. We
will return, for example, to both the Take-Grant Protection Model and ESPM later.
These models provide insights into the boundary line between decidability and unde-
cidability, which speaks to the degree of generality of analysis. Ultimately, however,
security (the analogue of safety) is analyzed for a system or for a class of systems,
and the models help us understand when such analysis is tractable and when it is not.

3.7 Research Issues

The critical research issue is the characterization of the class of models for which the
safety question is decidable. The SRM results state sufficiency but not necessity. A
set of characteristics that are both necessary and sufficient would show exactly what
causes the safety problem to become undecidable, which is an open issue.

39 Exercises 91

Related questions involve the expressive power of the various models. The
models allow policies to be expressed more succinctly than in the access control
matrix model. Can these more sophisticated models express the same set of policies
that the access control matrix model can express? Are there other models that are
easy to work with yet allow all protection states of interest to be expressed?

3.8 Further Reading

Sandhu and Ganta [877] have explored the effects of allowing testing for the absence
of rights in an access control matrix (as opposed to testing for the presence of rights,
which all the models described in this chapter do). Biskup [119] presents some vari-
ants on the Take-Grant Protection Model, and Budd [154] analyzes safety properties
of grammatical protection schemes, which he and Lipton defined earlier [640].

Sandhu has also presented interesting work on the representation of models,
and has unified many of them with his transform model [873, 874, 878].

3.9 Exercises

The proof of Theorem 3-1 states the following: Suppose two subjects 5,

and s, are created and the rights in A[sy, 0,] and A[sy, 0,] are tested. The

same test for Alsy, o] and A[s,, 03] = Als). 05] U Alsy, 0,] will produce

the same result. Justify this statement. Would it be true if one could test for

the absence of rights as well as for the presence of rights?

. Devise an algorithm that determines whether or not a system is safe by
enumerating all possible states. Ts this problem NP-complete? Justify your

answer.

Prove Theorem 3-3. (Hint: Use a diagonalization argument to test each

system as the set of protection systems is enumerated. Whenever a

protection system leaks a right, add it to the list of unsafe protection

systems.)

Prove or disprove: The claim of Lemma 3-1 holds when x is an object.

Prove or give a counterexample:

‘The predicate cansshare(a., X. y, Go) is true if and only if there is an edge

from x to y in G labeled a, or if the following hold simultaneously.

©

»

b o

a. There is a vertex s € Gy with an s-to-y edge labeled ot
b. There is a subject vertex x” such that X" = x or x” initially spans to x.
c. There is a subject vertex s” such that s” = s or s” terminally spans to’s.

Image
not
avallable

Chapter 4
Security Policies

PORTIA: Of a strange nature is the suit you follow;
Yet in such rule that the Venetian law

Cannot impugn you as you o proceed.

[To Antonio.] You stand within his danger, do you not?
—The Merchant of Venice, IV, i, 177-180.

A security policy defines “secure” for a system or a set of systems. Security policies
can be informal or highly mathematical in nature. After defining a security policy
precisely, we expand on the nature of “trust” and its relationship to security policies.
We also discuss different types of policy models.

4.1 Security Policies

Consider a computer system to be a finite-state automaton with a set of transition
functions that change state. Then:

Definition 4-1. A security policy is a statement that partitions the states of
the system into a set of auhorized, or secure, states and a set of unauthorized,
or nonsecure, states.

A security policy sets the context in which we can define a secure system.
What is secure under one policy may not be secure under a different policy. More
precisely:

ion 4-2. A secure system is a system that starts in an authorized state
and cannot enter an unauthorized state.

Consider the finite-state machine in Figure 4-1. It consists of four states and
five transitions. The security policy partitions the states into a set of authorized states
A= {515,) and a set of unauthorized states UA = { s3, s }. This system is not

s

95

96 Chapter4 Security Policies

Figure 4-1 A simple finite-state machine. In this example, the authorized
states are s, and s,.

secure, because regardless of which authorized state it starts in, it can enter an unau-
thorized state. However, if the edge from s, to s3 were not present, the system would
be secure, because it could not enter an unauthorized state from an authorized state.

Definition 4-3. A breach of security occurs when a system enters an unau-
thorized state.

We informally discussed the three basic properties relevant to security in Sec-
tion 1.1. We now define them precisely.

Definition 4-4. Let X be a set of entities and let / be some information. Then
I'has the property of confidentiality with respect to X if no member of X can
obtain information about

Confidentiality implies that information must not be disclosed to some set of
entities. It may be disclosed to others. The membership of set X is often implicit—for
example, when we speak of a document that is confidential. Some entity has access
to the document. All entities not authorized to have such access make up the set X.

jon 4-5. Let X be a set of entities and let / be some information or a
resource. Then / has the property of integrity with respect to X if all members
of X trust /.

This definition is deceptively simple. In addition to trusting the information
itself, the members of X also trust that the conveyance and storage of I do not change
the information o ts trustworthiness (this aspect is sometimes called data inegrity).
If /i information about the origin of something, or about an identity, the members of
X trust that the information is correct and unchanged (this aspect is sometimes called
origin integrity or, more commonly, authentication). Also, I may be a resource rather
than information. In that case, integrity means that the resource functions correctly
(meeting its specifications). This aspect is called assurance and will be discussed in
Part 6, “Assurance.” As with confidentiality, the membership of X is often implicit.

Definition 4-6. Let X be a set of entities and let / be a resource. Then / has
the property of availability with respect to X if all members of X can access /.

4.1 Security Policies 97

The exact definition of “access” in Definition 4-6 varies depending on the
needs of the members of X, the nature of the resource, and the use to which the
resource is put. If a book-selling server takes up to I hour to service a request to pur-
chase a book, that may meet the client’s requirements for “availability.” If a server of
‘medical information takes up to 1 hour to service a request for information regarding
an allergy to an anesthetic, that will not meet an emergency room’s requirements for
“availability.”

A security policy considers all relevant aspects of confidentiality, integrity,

and With respect to it identifies those states in which
mfm‘malmn leaks to those not authorized to receive it. This includes not only the
leakage of rights but also the illicit transmission of information without leakage of
rights, called information flow. Also, the policy must handle dynamic changes of
authorization, 5o it includes a temporal element. For example, a contractor working
for a company may be authorized to access proprietary information during the life-
time of a nondisclosure agreement, but when that nondisclosure agreement expires,
the contractor can no longer access that information. This aspect of the security pol-
icy is often called a confidentiality pnll(\

‘With respect to integrity, a security policy identifies authorized ways in which
information may be altered and enlmﬂ authorized to alter it. Authorization may
derive from a variety of relationships, and external infiuences may constrain it; for
example, in many transactions, a principle called separation of duties forbids an
entity from completing the transaction on its own. Those parts of the security policy
that describe the conditions and manner in which data can be altered are called the
integrity policy.

With respect to availability, a security policy describes what services must be
provided. It may present parameters within which the services will be accessible—
for example, that a browser may download Web pages but not Java applets. It may
require a level of service—for example, that a server will provide authentication da
within 1 minute of the request being made. This relates directly to issues of quality of
service.

‘The statement of a security policy may formally state the desired properties of
the system. If the system is to be provably secure, the formal statement will allow the
designers and implementers to prove that those desired properties hold. If a formal
proof is unnecessary or infeasible, analysts can test that the desired properties hold
for some set of inputs. Later chapters will discuss both these topics in detail.

In practice, a less formal type of security policy defines the set of authorized
states. Typically, the security policy assumes that the reader understands the context
in which the policy is issued—in particular, the laws, organizational policies, and
other environmental factors. The security policy then describes conduct, actions, and
authorizations defining “authorized users” and “authorized use.”

EXAMPLE: A university disallows cheating, which is defined to include copying
another student’s homework assignment (with or without permission). A computer
science class requires the students to do their homework on the department’s com-
puter. One student notices that a second student has not read protected the file

98 Chapter4 Security Policies

containing her homework and copies it. Has either student (or have both students)
breached security?

‘The second student has not, despite her failure to protect her homework. The
security policy requires no action to prevent files from being read. Although she may
have been too trusting. the policy does not ban this; hence, the second student has not
breached security.

The first student has breached security. The security policy disallows the
copying of homework, and the student has done exactly that. Whether the security
policy specifically states that “files containing homework shall not be copied” or
simply says that “users are bound by the rules of the university” s irrelevant; in the
latter case, one of those rules bans cheating. If the security policy is silent on such
matters, the most reasonable interpretation is that the policy disallows actions that
the university disallows, because the computer science department is part of the
university.

‘The retort that the first user could copy the files, and therefore the action is
allowed, confuses mechanism with policy. The distinction is sharp:

Definition 4-7. A security mechanism is an entity or procedure that enforces
some part of the security policy.

EXAMPLE: In the preceding example, the policy is the statement that no student may
copy another student’s homework. One mechanism is the file access controls; if the
second student had set permissions to prevent the first student from reading the file
containing her homework, the first student could not have copied that file.

EXAMPLE: Another site’s security policy states that information relating to a partic-
ular product is proprietary and is not to leave the control of the company. The com-
pany stores its backup tapes in a vault in the town’s bank (this is common practice in
case the computer installation is completely destroyed). The company must ensure
that only authorized employees have access to the backup tapes even when the tapes
are stored off-site; hence, the bank’s controls on access to the vault, and the proce-
dures used to transport the tapes to and from the bank, are considered security mech-
anisms. Note that these mechanisms are not technical controls built into the
computer. Procedural, or operational, controls also can be security mechanisms.

Security policies are often implicit rather than explicit. This causes confusion,
especially when the policy is defined in terms of the mechanisms. This definition
may be ambiguous—for example, if some mechanisms prevent a specific action and
others allow it. Such policies lead to confusion, and sites should avoid them.

EXAMPLE: The UNIX operating system, initially developed for a small research
group, had mechanisms sufficient o prevent users from accidentally damaging one
another’s files: for example, the user ken could not delete the user dmr’s files (unless
dmr had set the files and the containing directories appropriately). The implied

4.2 Types of Security Policies 99

security policy for this friendly environment was “do not delete or corrupt another’s
filles, and any file not protected may be read.”

When the UNIX operating system moved into academic institutions and com-
mercial and government environments, the previous security policy became inade-
quate; for example, some files had to be protected from individual users (rather than
from groups of users). Not surprisingly, the security mechanisms were inadequate
for those environments.

‘The difference between a policy and an abstract description of that policy is
crucial to the analysis that follows.

Definition 4-8. A security model is a model that represents a particular pol-
icy or set of policies.

A model abiracts details relevant for analysis. Analyses rarely discuss partic-
ular policies; they usually focus on specific characteristics of policies, because many
policies exhibit these characierisice: and the more palcies with those characterie
tics, the more useful the analysis. By the HRU result (see Theorem 3-2), no single
nontrivial analysis can cover all policies, but restricting the class of security policies
sufficiently allows meaningful analysis of that class of policies.

4.2 Types of Security Policies

Each site has its own requi for the levels of confidentiality, integrity, and
availability, and the site policy states these needs for that particular site.

Definition 4-9. A military security policy (also called a governmental secu-
rity policy) is a security policy developed primarily to provide confidentiality.

The name comes from the military’s need to keep information, such as the
date that a troop ship will sail, secret. Although integrity and availability are impor-
tant, organizations using this class of policies can overcome the loss of either—for
example, by using orders not sent through a computer network. But the compromise
of confidentiality would be catastrophic, because an opponent would be able to plan
countermeasures (and the organization may not know of the compromise).
Confidentiality is one of the factors of privacy, an issue recognized in the laws
of many government entities (such as the Privacy Act of the United. Sm(e< and similar
legislation in Sweden). Aside from what i
ity can lgally obiain from individuals, Such acts place constraints on the disclo-
sure and use of that information. Unauthorized disclosure can result in penalties that
include jail or fines; also, such disclosure undermines the authority and respect that
individuals have for the government and inhibits them from disclosing that type of
information to the agencies so compromised.

102 Chaptera Security Policies

executables be owned by the user bin. The vendor’s patch had to be
undone and fixed for the local configuration. This assumption also covers
possible conflicts between different patches, as well as patches that
conflict with one another (such as patches from different vendors of
software that the system is using).

She is assuming that the patch is installed correctly. Some patches are
simple to install, because they are simply executable files. Others are
complex, requiring the system administrator to reconfigure network-
oriented properties, add a user, modify the contents of a registry, give
rights to some set of users, and then reboot the system. An error in any of
these steps could prevent the patch from correcting the problems, as could
an inconsistency between the environments in which the patch was
developed and in which the patch is applied. Furthermore, the patch may
claim to require specific privileges. when in reality the privileges are
unnecessary and in fact dangerous.

&

These assumptions are fairly high-level, but invalidating any of them makes the
patch a potential security problem.

Assumptions arise also at a much lower level. Consider formal verification
(see Chapter 20), an oft-touted panacea for security problems. The important aspect
is that formal verification provides a formal mathematical proof that a given program
P is correct—that is, yv:n any set of inputs i, j. k, the program P will produce the
output x that its specification requires. This level of assurance is greater than most
existing programs provide, and hence makes P a desirable program. Suppose a
security-related program § has been formally verified for the operating system O.
What assumptions would be made when it was installed?

‘The formal verification of S is correct—that is, the proof has no errors.
Because formal verification relies on automated theorem provers as well
as human analysis, the theorem provers must be programmed correctly,

™

The assumptions made in the formal verification of are correct;

. the in which the
program is to be executed. These preconditions are typically fed to the
theorem provers as well as the program . An implicit aspect of this
assumption is that the version of O in the environment in which the
program s to be executed is the same as the version of O used to verify S.
The program will be transformed into an executable whose actions
correspond to those indicated by the source code; in other words, the
compiler, linker, loader, and any libraries are correct, An experiment with
one version of the UNIX operating sysiem demonstrated how devastating
a rigged compiler could be, and attackers have replaced libraries with
others that performed additional functions, thereby increasing security
risks.

4.4 Types of Access Control 103

4. The hardware will execute the program as intended. A program that relies
on floating point calculations would yield incorrect results on some
computer CPU chips, regardless of any formal verification of the program,
owing to a flaw in these chips [202]. Similarly. a program that relies on
inputs from hardware assumes that specific conditions cause those inputs.

The point is that any security policy, mechanism, or procedure is based on
assumptions that, if incorrect, destroy the superstructure on which it is built. Analysts
and designers (and users) must bear this in mind, because unless they understand
what the security policy, mechanism, or procedure is based on, they jump from an
unwarranted assumption to an erroneous conclusion.

4.4 Types of Access Control

A security policy may use two types of access controls, alone or in combination. In
one, access control is left to the discretion of the owner. In the other, the operating
system controls access, and the owner cannot override the controls.

‘The first type is based on user identity and is the most widely known:

Definition 4-13. If an individual user can set an access control mechanism to
allow or deny access to an object, that mechanism is a discretionary access
control (DAC), also called an identity-based access control (IBAC).

Discretionary access controls base access rights on the identity of the subject
and the identity of the object involved. Identity is the key; the owner of the object
constrains who can access it by allowing only particular subjects to have access. The
owner states the constraint in terms of the identity of the subject, or the owner of the
subject.

EXAMPLE: Suppose a child keeps a diary. The child controls access to the diary,
because she can allow someone to read it (grant read access) or not allow someone to
read it (deny read access). The child allows her mother to read it, but no one else.
This is a discretionary access control because access to the diary is based on the
identity of the subject (mom) requesting read access to the object (the diary).

‘The second type of access control is based on fiat, and identity is irrelevas

Definition 4-14. When a system mechanism controls access to an object and
an individual user cannot alter that access, the control is a mandatory access
control (MAC), occasionally called a rule-based access control.

104 Chapterd Security Policies

‘The operating system enforces mandatory access controls. Neither the subject
nor the owner of the object can determine whether access is granted. Typically, the
system mechanism will check information associated with both the subject and
the object to determine whether the subject should access the object. Rules describe
the conditions under which access is allowed.

EXAMPLE: The law allows a court to access driving records without the owners” per-
mission. This is a mandatory control, because the owner of the record has no control
over the court’s accessing the information.

Definition 4-15. An originator controlled access control (ORCON or ORG-
CON) bases access on the creator of an object (or the information it contains).

The goal of this control is to allow the originator of the file (or of the informa-
tion it contains) to control the dissemination of the information. The owner of the file
has no control over who may access the file. Section 7.3 discusses this type of con-
trol in detail.

EXAMPLE: Bit Twiddlers, Inc., a company famous for its embedded systems, con-

tracts with Microhackers Ltd., a company equally famous for its microcoding abili-
ties. The contract requires Microhackers to develop a new microcode language for a
particular processor designed to be used in high-performance embedded systems. Bit
Twiddlers gives Microhackers a copy of its specifications for the processor. The
terms of the contract require Microhackers to obtain permission before it gives any
information about the processor to its subcontractors. This is an originator controlled
access mechanism because, even though Microhackers owns the file containing the
specifications, it may not allow anyone to access that information unless the creator,
Bit Twiddlers, gives permission.

4.5 Policy Languages

A policy language is a language for representing a security policy. High-level policy
languages express policy constraints on entities using abstractions. Low-level policy
languages express constraints in terms of input or invocation options to programs
existing on the s

451 High-Level Policy Languages

A policy is independent of the mechanisms. It describes constraints placed on enti-
ties and actions in a system. A high-level policy language is an unambiguous expres-

45 Policy Languages 105

sion of policy. Such precision requires a mathematical or programmatic formulation
of policy; common English is not precise enough.

Assume that a system is connected to the Internet. A user runs a World Wide
‘Web browser. Web browsers download programs from remote sites and execute them
locally. The local system’s policy may constrain what these downloaded programs
can do.

EXAMPLE: Java is a programming language designed for programs to be down-
loaded by Web browsers. Pandey and Hashii [794] developed a policy constraint lan-
guage for Java programs. Their high-level policy language specifies access
constraints on resources and on how those constraints are inherited.

Their language expresses entities as classes and methods. A class is a set of
objects to which a particular access constraint may be applied; a method is the set of
ways in which an operation can be invoked. Instantiation occurs when a subject 5
creates an instance of a class ¢, and is written s - ¢. Invocation occurs when a subject
51 executes an object s, (which becomes a subject, because it is active) and s written
511 5. A condition is a Boolean condition. Access constraints are of the form

deny(s op x) when b

where op is 4 or =3, s is a subject, x is another subject or a class, and b is a Boolean
expression. This constraint states that subject s cannot perform operation op on x
when condition b is true. If s is omitted, the action is forbidden to all entities.

Inheritance causes access constraints to be conjoined. Specifically, let class ¢,
define a method f, and have a subclass c,. Then c, inherits /. Assume that the con-
straints are

deny(s |- ¢;.f) when b,
deny(s |- c;.7) when b,

A subelass inherits constraints on the parent class. Hence, both constraints by and b,
consirain ¢y’ invocation of /. The appropriate constraint is

deny(s |- c;.f) when by v b,

Suppose the policy states that the downloaded program is not allowed to access the
password file on a UNIX system. The program accesses local files using the follow-
ing class and methods.

class File {

public file(String name);
public String getfilename();
public char read();

106 Chapterd Security Policies

Then the appropriate constraint would be

deny(|- file.read) when (file.getfilename() =
“/etc/passwd”)

As another example, let the class Socker define the network interface, and let the
method Network.numconns define the number of network connections currently
active. The following access constraint bars any new connections when 100 connec-
tions are currently open.

deny(-| Socket) when (Network.numconns >= 100).

This language ignores implementation issues, and so is a high-level policy
language. The domain-type enforcement language (DTEL) [54] grew from an obser.
vation of Boebert and Kain [126] that access could be based on types; they confine
their work to the types “data” and “instructions.” This observation served as the basis for
a firewall [996] and for other secure system components. DTEL uses implementation-
level constructs to express constraints in terms of language types, but not as argu-
ments or input to specific system commands. Hence, it combines elements of low-
level and high-level languages. Because it describes configurations in the abstract, it
is a high-level policy language.

EXAMPLE: DTEL associates a type with each object and a domain with each sub-
ject. The constructs of the language constrain the actions that a member of a domain
can perform on an object of a specific type. For example. a subject cannot execute a
text file, but it can execute an object file.

Consider a policy that restricts all users from writing to system binaries. Only
subjects in the administrative domain can alter system binaries. A user can enter thi
domain only after rigorous authentication checks. In the UNIX world, this suggests
four distinct subject domains:

1. d_user, the domain for ordinary users

2. d_admin, the domain for administrative users (who can alter system
binaries)

3. d_login, the domain for the authentication processes that comply with the
domain-type enforcement

4. d_daemon, the domain for system daemons (including those that spawn
login)

‘The login program (in the d_login domain) controls access between d_user
and d_admin. The system begins in the d_daemon domain because the init proces
lies there (and init spawns the login process whenever anyone tries to log in).

The policy suggests five object types:

45 Policy Languages 109

lines are processed in order, so everything on the system without a type assigned by
the last four lines is of type 1_generic (because of the first line)

If a user process tries to lter a system binary, the enforcement mechanisms
will check to determine if something in the domain d_user is authorized to write to
an object of type ¢_syshin. Because the domain description does not allow this, the
request is refused.

Now augment the policy above to prevent users from modifying system logs.
Define a new type 1_log for the log files. Only subjects in the d_admin domain, and
in a new domain d_log, can alter the log files. The set of domains would be extended
as follows.

type t_readable, t_writable, t_sysbin, t_dte, t_generic, t_log;
domain d_daemon = (/sbin/init),
(crwd->t_writable),
(rxd->t_readable),
[rd >t_generic, t_dte, t_sysbin),
(auto->d_login, d_log);
domain d_log = (/usr/sbin/syslogd),
(crwd->t_log),
(rwd->t_writable),
(rd->t_generic. t_readable);
assign -r t_log /usr/var/log;
assign t_writable /usr/var/log/wtmp, /usr/var/log/utmp;

If a process in the domain d_daemon invokes the syslogd process, the syslogd
process enters the d_log domain. It can now manipulate system logs and can read
and write writable fogs but cannot access system executables. If a user tries to
manipulate a log object, the request is denied. The d_user domain gives its subjects
no rights over 1_log objects.

45.2 Low-Level Policy Languages

A low-level policy language is simply a set of inputs or arguments to commands that
set, or check, constraints on a system.

EXAMPLE: The UNIX-based windowing system X11 provides a language for con-
trolling access to the console (on which X11 displays its images). The language con-
sists of a command, xhost, and a syntax for instructing the command to allow access
based on host name (P address). For example,

xhost +groucho ~chico

sets the system so that connections from the host groucho are allowed but connec-
tions from chico are not.

110 Chapterd Security Policies

EXAMPLE: File sysiem scanning programs check conformance of a file system with
a stated policy. The policy consists of a database with desired settings. Each scanning
program uses its own little language to describe the settings desired.

One such program, rripwire [569], assumes a policy of constancy. It records
an initial state (the state of the system when the program s first run). On subsequent
runs. it reports files whose settings have changed.

The policy language consists of two files. The first, the nw.config file, contains
a description of the attributes to be checked. The second, the database, contains the
values of the attributes from a previous execution. The database is kept in a readable
format but is very difficult to edit (for example, times of modification are kept using
base 64 digits). Hence, o enforce conformance with a specific policy, an auditor
must ensure that the system is in the desired state initially and set up the fw.config file
to ignore the attributes not relevant to the policy.

The attributes that sripwire can check are protection, file type, number of
links. file size, file owner, file group. and times of creation, last access, and last mod-
ification. Tripwire also allows the cryptographic checksumming of the contents of
the file. An example rripwire configuration file looks like

/usr/mab/tripwire-1.1 +gimnpsu012345678-a

“This line states that all atributes are to be recorded, including al nine crypt
checksums, but that the time of last access (the “a") is 1o be ignored (the *
applies to the directory and to all files and subdirectories contained i
wire is executed, the database entry for that README file might be

/usr/mab/tripwire-1.1/README @ ./. 100600 45763 1 917
10 33242 .gtPvf .gtPvY .gtPvY @ ZD4C(0WI'8\ZIZKaI .Luor3
.0fwoS:hfded.8TAqdOV4uby ?.
1M4GX@1xbGIX0oVuGolh1523 9jfa@4rdzM1q:eqtlAPng
?.Eb9yo.2zkEh1XKovX1:dOwFOk fAvC
71M4GX01xbGIX2947jdyrior3ghlsz3 0

Clearly, administrators are not expected to edit the database to set attributes properly.
Hence, if the administrator wishes to check conformance with a particular policy (as
opposed to looking for changes), the administrator must ensure that the system files
conform to that policy and that the configuration file reflects the attributes relevant to
the policy.

EXAMPLE: The RIACS file system checker [105] was designed with different goals.
It emphasized the ability to set policy and then check for conformance. It uses a data-
base file and records fixed attributes (with one exception—the cryptographic check-
sum). The property relevant to this discussion is that the database entries are casy to
understand and edit:

/etc/pac 0755 1 root root 16384 12 22341 Jan 12, 1987 at 12:47:54

4.6 Example: Academic Computer Security Policy 111

The attribute values follow the file name and are permissions, number of
links, owner and group, size (in bytes). checksum, and date and time of last modifi-
cation. After generating such a file, the analyst can change the values as appropriate
(and replace those that are rrelevant with a wild card “*”). On the next run, the file
system state is compared with these values

4.6 A ic Ci Security Policy

Security policies can have few details, or many. The explicitness of a security policy
depends on the environment in which it exists. A research lab or office environment
may have an unwritten policy. A bank needs a very explicit policy. In practice, poli-
cies begin as generic statements of constraints on the members of the organization.
These statements are derived from an analysis of threats, as described in Chapter I,
“An Overview of Computer Security.” As questions (or incidents) arise. the policy is
refined to cover specifics. As an example, we present an academic security policy.
‘The full policy is presented in Chapter 35, “Example Academic Security Poiicy.”

4.6.1 General University Policy

This policy is an “Acceptable Use Policy” (AUP) for the Davis campus of the Uni-
versity of California. Because computing services vary from campus unit to campus
unit, the policy does not dictate how the specific resources can be used. Instead. it
presents generic constraints that the individual units can tighten.

y first presents the goals of campus computing: to provide access to
resources and to allow the users to communicate with others throughout the world. It
then states the responsibilities associated with the privilege of using campus comput-
ers. All users must “respect the rights of other users, respect the integrity of the sys-
tems and related physical resources, and observe all relevant laws, regulations. and
contractual obligations.”!

The policy states the intent underlying the rules, and notes that the system
managers and users must abide by the law (for example, “Since electronic informa-
tion s volatile and easily reproduced. users must exercise care in acknowledging and
respecting the work of others through strict adherence to software licensing agree-
ments and copyright laws”).>

The enforcement mechanisms in this policy are procedural. For minor viola-
tions, either the unit itself resolves the problem (for example, by asking the offender
not to do it again) or formal warnings are given. For more serious infractions, the
administration may take stronger action such as denying access to campus computer

! See Section 35.2.1.2,
2See Section 35.2.1.2.

112 Chapter4 Security Policies

systems. In very serious cases. the university may invoke disciplinary action. The
Office of Student Judicial Affairs hears such cases and determines appropriate conse-
quences.

‘The policy then enumerates specific examples of actions that are considered to
be imesponsibie use. Among these are liitly monitorng others, spamming, and
locating and exploiting security vulnerabilities. These are examples; they are not
exhaustive. The policy concludes with references to other documents of i intorot,

“This is a typical AUP. It is written informally and is aimed at the user commu-
nity that is to abide by it. The electronic mail policy presents an interesting contrast
to the AUP, probably because the AUP is for UC Davis only, and the electronic mail
policy applies to all nine University of California campuses.

462 Electro

Mail Policy

The university has several auxiliary policies, which are subordinate to the general
university policy. The electronic mail policy describes the constraints imposed on
access to, and use of, electronic mail. It conforms to the general university policy but
details additional constraints on both users and system administrators.

The electronic mail policy consists of three parts. The first is a short summary
intended for the general user community, much as the AUP for UC Davis is intended
for the general user community. The second part is the full policy for all university
campuses and is written as precisely as possible. The last document describes how
the Davis campus implements the general university electronic mail policy.

4.6.21 The Electronic Mail Policy Summary

The summary first warns users that their electronic mail is not private. It may be read
accidentally, in the course of normal system maintenance, or in other ways stated in
the full policy. It also warns users that electronic mail can be forged or altered as well
as forwarded (and that forwarded messages may be altered). This section is interest-
ing because policies rarely alert users to the threats they face; policies usually focus
on the remedial techniques.

The next two sections are lists of what users should, and should not, do. They
may be summarized as “think before you send; be courteous and respectful of others;
and don’t interfere with others” use of electronic mail.” They emphasize that supervi-
sors have the right to examine employees’ electronic mail that relates to the job. Sur-
prisingly, lhc umvemiy does nul mn personal use of electronic mail, probably in the
people and that the overhead of car-
rying perwndl mdll is mlnlmdl in a university environment. The policy does require
that users not use personal mail to such an extent that it interferes with their work or
causes the university to incur extra expense.

Finally, the policy concludes with a statement about its application. In a pri-
vate company, this would be unnecessary, but the University of California is a quasi-
governmental institution and as such is bound to respect parts of the United States

4.6 Example: Academic Computer Security Policy 113

Constitution and the California Constitution that private companies are not bound to
respect. Also, as an educational institution, the university takes the issues surround-
ing freedom of expression and inquiry very seriously. Would a visitor to campus be
bound by these policies? The final section says yes. Would an employee of Lawrence
Livermore National Laboratories, run for the Department of Energy by the Univer-
sity of California, also be bound by these policies? Here, the summary suggests that
they would be, but whether the employees of the lab are Department of Energy
employees or University of Califoria employees could affect this. So we turn to the
full policy.

4.6.22 The Full Policy

‘The full policy also begins with a description of the context of the policy, as well as
its purpose and scope. The scope here is far more explicit than that in the summary.
For example, the full policy does not apply to e-mail services of the Department of
Energy laboratories run by the university, such as Lawrence Livermore National
Laboratories. Moreover, this policy does not apply to printed copies of e-mail,
because other university policies apply to such copies.

‘The general provisions follow. They state that e-mail services and infrastruc-
ture are university property, and that all who use them are expected to abide by the
law and by university policies. Failure to do so may result in access to e-mail being
revoked. The policy reiterates that the university will apply principles of academic
freedom and freedom of speech in its handling of e-mail, and so will seek access to
e-mail without the holder’s permission only under extreme circumstances, which are
enumerated, and only with the approval of a campus vice chancellor or a university
vice president (essentially, the second ranking officer of a campus or of the university
system). If this is infeasible, the e-mail may be read only as is needed to resolve the
emergency, and then authorization must be secured after the fact.

The next section discusses legitimate and illegitimate use of the university’s
e-mail. The policy allows anonymity to senders provided that it does not violate laws
or other policies. It disallows using mail to interfere with others, such as by sending
spam or letter bombs. It also expressly permits the use of university facilities for
sending personal e-mail, provided that doing so does not interfere with university
business; and it cautions that such personal e-mail may be treated as a “University
record” subject to disclosure.

The discussion of security and confidentiality emphasizes that, although the
university will not go out of its way to read e-mail, it can do so for legitimate busi-
ness purposes and to keep e-mail service robust and reliable. The section on
archiving and retention says that people may be able to recover e-mail from end sys-
tems where it may be archived as part of a regular backup.

The last three sections discuss the consequences of violations and direct the
chancellor of each campus to develop procedures to implement the policy.

An interesting sidelight occurs in Appendix A, “Definitions.” The definition of
“E-mail” includes any computer records viewed with e-mail systems or services, and

116 Chapter4 Security Policies

Now we define a confidentiality policy.

Definition 4-18. A confidentiality policy for the program p:f, x
is a function c:fy X ... X I, = A, where A €Iy X ... X,

x1,—R

In this definition, A corresponds to the set of inputs that may be revealed. The
complement of A with respect 10 /; X ... X ,, corresponds to the confidential inputs. In
some sense, the function c filters out inputs that are to be kept confidential.

‘The next definition captures how well a security mechanism conforms to a
stated confidentiality policy.

Definition 4-19. Let c:/, x .. x I, — A be a confidentiality policy for a pro-
gram p. Let m:ly X ... X 1, = R U E be a security mechanism for the same
program p. Then the mechanism 1 is secure if and only if there s a function
m’A — R U E such that, for all ig € I, 1 S kS, miy, .o i) = m (i o i)

In other words, given any set of inputs, the protection mechanism returns
values consistent with the stated confidentiz
synonym for “confidential.” We can derive analogous results for integrity policies.

EXAMPLE: If ¢(iy, ..., i,) is a constant, the policy’s intent is to deny the observer any
information, because the output does not vary with the inputs. But if c(iy, ... i,) =
(i1, o), and "= m, then the policy’s intent is to allow the observer full access to vhe
information. As an intermediate policy, if c(ij, .., i,) = iy, then the policy’s intent is to
allow the observer information about the first input bt n0 information aboutother inputs.

‘The distinguished policy allow:I, X ... x I, = A generates a selective permuta-
tion of its inputs. By “selective.” we mean that it may omit inputs. Hence, the func-
tion ¢(iy, ..., i,) = iy is an example of allow, because its output is a permutation of
some of its inputs. More generally, for k < n,

allow(iy

=Gy

where iy, ..., iy is a permutation of any k of iy, . .
EXAMPLE: Revisit the program that checks user name and password association. As
a function, auth: Ux P x D — { T, F }, where U is the set of potential user names, D
is the databases, and P is the set of potential passwords. T and F represent true and
false, respectively. Then for u e U, p € P.and d € D, auth(u, p, d) =T if and only if
the pair (u, p) € d. Under the policy allow(iy, ix, i3) = (iy, i), there is no function
auth” such that

auth (allow(u, p, d)) = auth (u, p) = auth(u, p, d)

for all d. So auth is not secure as an enforcement mechanism.

4.7 Security and Precision 117

EXAMPLE: Consider a program ¢ with k non-negative integer inputs; it computes a
single non-negative integer. A Minsky machine [717] can simulate this program by
starting with the input ; € /; in register j (for 1 < j < k). The output may disclose
information about one or more inputs. For example, if the program is to return the
third input as its output, it is disclosing information. Fenton [345] examines these
functions to determine if the output contains confidential information.

The observability postulate does not hold for the program g above, because ¢
ignores runtime. The computation may take more time for certain inputs, revealing
information about them. This is an example of a covert channel (see Section 17.3). It
also illustrates the need for precise modeling. The policy does not consider runtime
as an output when, in reality, it is an output.

As an extreme example, consider the following program.

if x = null then halt;

Fenton does not define what happens if x is not null. If an error message is printed,
the resulting mechanism may not be secure. To see this, consider the program

Here, the value of y is the error message. It indicates whether or not the value of
0 when the program terminates. If the security policy says that information about is
not to be revealed, then this mechanism is not secure.

A secure mechanism ensures that the policy is obeyed. However, it may
also disallow actions that do not violate the policy. In that sense, a secure mechanism
may be overly restrictive. The notion of precision measures the degree of overrestric-
tiveness.

Definition 4-20. Let m; and my be two distinct protection mechanisms for
the program p under the policy c. Then m is as precise as my (my = my)
provided that, for all inputs iy, ..., i), if my(iy, .., i) = plits .oy i), then
= Pli, s i) We say that my is more precise than my (my ~ my)
,) such that my iy i,") = pliy ; -... i,") and

“ lu

An obvious question is whether or not two protection mechanisms can be com-
bined to form a new mechanism that is as precise as the two original ones. To answer
this, we need to define “combines,” which we formalize by the notion of “union.

118 Chapterd Security Policies

Definition 4-21. Let n1, and m, be protection mechanisms for the program p.
“Then their union m3 = nty U m is defined as

i) when iy
in) =pliy, -
i) otherwis

i) = pliy. ... i) or

i, s

This definition says that for inputs on which either n1; and m return the same
value as p. their union does also. Otherwise, that mechanism returns the same value
as my. From this definition and the definitions of secure and precise, we have:

Theorem 4-1. Let n1; and m, be secure protection mechanisms for a program
pand policy c. Then ;U m, is also a secure protection mechanism for p and
c. Furthermore, my U my = my and mty U my = my.

Generalizing, we have:
Theorem 4-2. For any program p and security policy ., there exists a precise,

secure mechanism nr* such that, for all secure mechanisms m associated with
pand ¢, m* =m.

Proof Immediate by induction on the number of secure mechanisms
ated with p and c.

This “maximally precise” mechanism r1* is the mechanism that ensures secu-
rity while minimizing the number of denials of legitimate actions. If there is an effec-
tive procedure for this we can develop that are
both secure and precise. Unfortunately:

Theorem 4-3. There is no effective procedure that determines a maximally
precise. secure mechanism for any policy and program.

Proof Let the policy c be the constant function—that is, no information about
any of the inputs is allowed in the output. Let p be a program that computes
the value of some total function T(x) and assigns it to the variable z. We may
without loss of generality take T(0) =

Let ¢ be a program of the following form:

0
if 2= 0 then y := 1 else y
halt;

Now consider the value of the protection mechanism at 0. Because ¢ is
constant, m must also be constant, Using the program above, either m(0) = 1 (if p,
and hence g, completes) or it is undefined (if p halts before the *if” statement).

4.9 Research Issues 119

If. for all inputs x, T(x) = 0, then m(x) = 1 (because m is secure). If there is
an input x”for which 7(x") # 0, then m(x") = 2 (again, because m is secure) or is
undefined (if p halts before the assignment). In cither case, m is not a constant;
hence, no such p can exist. Thus, m(0) = 1 if and only if 7(x) = 0 for all x.

If we can effectively determine m, we can effectively determine
whether 7(x) = 0 for all x. This contradicts the security policy . so no such
effective procedure can exist.

There is no general procedure for devising a mechanism that conforms exactly
10 a specific security policy and yet allows all actions that the policy allows. It may
be possible to do so in specific cases, especially when a mechanism defines a policy,
but there is no general way to devise a precise and secure mechanism.

4.8 Summary

Security policies define “security” for a system or site. They may be implied policies
defined by the common consensus of the community, or they may be informal poli-
cies whose interpretations are defined by the community. Both of these types of
policies are usually ambiguous and do not precisely definé “security.” A policy may
be formal, in which case ambiguities arise either from the use of natural languages
such as English or from the failure to cover specific area

Formal mathematical models of policies enable analysts to deduce a rigorous
definition of “sceurity” but do little to improve the average user's understanding of
what “security” means for a site. The average user is not mathematically sophisti-
cated enough to read and interpret the mathema

Trust underlies all policies and enforcement mechanisms. Policies themselves
make assumptions about the way systems, software, hardware, and people behave. At a
lower level, security mechanisms and procedures also make such assumptions. Even
when rigorous methodologies (such as formal mathematical models or formal verifica-
tion) are applied. the methodologies themselves simply push the assumptions, and there-
fore the trust, to a lower level. Understanding the assumptions and the trust involved in
any policies and mechanisms deepens one’s understanding of the security of a system.

‘This brief overview of policy, and of policy expression, lays the foundation
for understanding the more detailed policy models used in pract

4.9 Research Issues

The critical issue in security policy research is the expression of policy in an easily
understood yet precise form. The development of policy languages focuses on

120 Chapterd Security Policies

supplying mathematical rigor that is intelligible to humans. A good policy language
allows not only the expression of policy but also the analysis of a system to deter-
mine if it conforms to that policy. The latter may require that the policy language be
compiled into an enforcement program (to enforce the stated policy, as DTEL does)
or into a verification program (to verify that the stated policy is enforced, as tripwire
does). Balancing enforcement with requirements is also an important area of
research, particularly in real-time environments.

e underlying role of trust is another crucial issue in policy research. Devel-
‘opment of methodologies for exposing underlying assumptions and for analyzing the
effects of trust and the results of belief is an interesting area of formal mathematics
as well as a guide to understanding the safety and security of systems. Design and
implementation of tools to aid in this work are difficult problems on which research
will continue for a long time to come.

4.10 Further Reading

Much of sccurity analysis involves definition and refinement of security policies.
Wood [1059] has published a book of templates for specific parts of policies. That
book justifies each part and allows readers to develop policies by selecting the appro-
priate parts from a large set of possibilities. Essays by Bailey [55] and Abrams and
Bailey [4] discuss management of security issues and explain why different members
of an organization interpret the same policy differently. Sterne’s wonderful paper
[970] discusses the nature of policy in general.

Jajodia and his colleagues [520] present a “little language” for expressing
authorization policies. They show that their language can express many aspects of
existing policies and argue that it allows elements of these policies to be combined
into authorization schemes.

Fraser and Badger [371] have used DTEL to enforce many policies. Cholvy
and Cuppens [194] describe a method of checking policies for consistency and deter-
mining how they apply to given situations.

Son, Chaney, and Thomlinson (951] discuss enforcement of partial security
policies in real-time databases to balance real-time requirements with security. Their
idea of “partial security policies” has applications in other environments. Zurko and
Simon [1074] present an alternative focus for policies.

41 Exercises

1. In Figure 41 supposc that edge 5 went from s 0 55 Would the resulting
system be secure?

Chapter 5
Confidentiality Policies

SHEPHERD: Sir, there lies such secrets in this fardel
and box which none must know but the king:

and which he shall know within this hour, if I

may come to the speech of him.

—The Winter's Tale, IV, iv, 785-788.

Confidentiality policies emphasize the protection of confidentiality. The importance
of these policies lies in part in what they provide, and in part in their role in the
development of the concept of security. This chapter explores one such policy—the
Bell-LaPadula Model—and the controversy it engendered.

5.1 Goals of Confidentiality Policies

A confidentiality policy,also clled an nformarion flow policy. pevents the unautho-
rized disclosure of i alteration of i is secondary.
For example, the navy must kc:p confidential the date on which a troop ship will sail.
If the date is changed, the redundancy in the systems and paperwork should catch
that change. But if the enemy knows the date of sailing, the ship could be sunk.

Because of extensive in military channels, y
is also less of a problem.
The term * " covers several requi that protect citizens’

privacy. In the United States, the Privacy Act requires that certain personal data be
kept confidential. Income tax returns are legally confidential and are available only to
the Internal Revenue Service or to legal authorities with a court order. The principle
of “executive privilege” and the system of nonmilitary classifications suggest that the
people working in the government need to limit the distribution of certain documents
and information. Governmental models represent the policies that satisfy these
requirements.

124 Chapters Confidentiality Policies

5.2 The Bell-LaPadula Model

The Bell-LaPadula Model [67. 68] to military-style
has influenced the development of many other models and indeed much of the devel—
opment of computer security technologies.!

5.2.1 Informal Description

The simplest type of confidentiality classification is a set of security clearances
arranged in a linear (total) ordering (sce Figure 5-1). These clearances represent sen-
sitivity levels. The higher the security clearance, the more sensitive the information
(and the greater the need to keep it confidential). A subject has a security clearance.
In the figure, Claire’s security clearance is C (for CONFIDENTIAL), and Thomas’ is
TS (for TOP SECRET). An object has a security classification: the security classifi-
cation of the electronic mail files is S (for SECRET), and that of the telephone list
files is UC (for UNCLASSIFIED). (When we refer to both subject clearances and
object we use the term) The goal of the Bell-LaPadula
security model is to prevent read access to objects at a security classification higher
than the subject’s clearance.

The Bell-LaPadula security model combines mandatory and discretionary
access controls. In what follows, “S has discretionary read (write) access to 0"
means that the access control matrix entry for § and O corresponding to the discre-
tionary access control component contains a read (write) right. In other words, were
the mandatory controls not present, S would be able to read (write) O.

TOP SECRET (TS) Tamara, Thomas Personnel Files

SECRET (S) Sally, ‘Sxmuel Electmnic‘Mail Files
CONFIDE‘NT!AL © Claire, Clarence Activity Lng Files
UNCLASS;FIED (o) Ulalcy,‘ Ursula Telephone‘ List Files

Figure 5-1 At the left is the basic confidentiality classification system. The
four security levels are arranged with the most sensitive at the top and the

least sensitive at the bottom. In the middle are individuals grouped by their
security clearances, and at the right is a set of documents grouped by their
security levels.

! The terminology in this section follows that of the unified exposition of the Bell-LaPadula
Model [68].

5.2 The Bell-LaPadula Model 125

Let L(S) = , be the security clearance of subject S, and let L(0) = I, be the secu-
rity classification of object 0. For all security classifications fj i =0, .., k— 1, [, < .

« Simple Security Condition, Preliminary Version: S can read O if and only
if 1, </, and § has discretionary read access to 0.

In Figure 5-1, for example, Claire and Clarence cannot read personnel files, but Tam-
ara and Sally can read the activity log files (and, in fact, Tamara can read any of the
files, given her clearance), assuming that the discretionary access controls allow it.
Should Tamara decide to copy the contents of the personnel files into the
activity log files and set the discretionary access Claire
could then read the personnel files. Thus, for all practical purposes, Claire could read
the files at a higher level of security. A second property prevents this:

« *-Property (Star Property), Preliminary Version: S can write O if and
only if I, < 1, and § has discretionary write access to 0.

Because the activity log files are classified C and Tamara has a clearance of TS, she
cannot write to the activity log files.

Define a secure system as one in which both the simple security condition,
preliminary version, and the *property, p y version, hold. A straightforwar
induction éstablishes the following theorem.

Theorem 5-1. Basic Security Theorem, Preliminary Version: Let be a sys-
tem with a secure initial state Gg, and let T'be a set of state transformations. If
every element of T preserves the simple security condition, preliminary version,
and the *-property, preliminary version, then every state G, i 2 0, is secure.

Expand the model by adding a set of categories to each security classification.
Each category describes a kind of information. Objects placed in multiple categories
have the kinds of information in all of those categories. These categories arise from
the “need to know” principle, which states that no subject should be able to read
objects unless reading them is necessary for that subject to perform its functions. The
sets of categories to which a person may have access is simply the power set of the
set of categories. For example, if the categories are NUC, EUR, and US, someone
can have access to any of the following sets of categories: @ (none), { NUC },
{EUR },{ US }, { NUC,EUR |, (NUC, US }, { EUR, US }, and { NUC, EUR, US }.
These sets of categories form a lattice under the operation < (subset of); see Figure
5-2. (Chapter 30, “Lattices.” discusses the mathematical nature of lattices.)

Each security level and category form a security level.2 As before, we say that
subjects have clearance at (or are cleared into, o are in) a security level and that

2 There is less than full agreement on this terminology. Some call security levels “compartments.”
However, others use this term as & synonym for “categories.” We follow the terminology of the
unified exposition [68],

126 Chapter 5 Confidentiality Policies

{ NUC, ;EURA Us }

{ NUC, EUR } { NUC, US } { EUR, US}
{NUC } { EUR } {Us}
(%]

Figure 5-2 Lattice generated by the categories NUC, EUR, and US. The lines
represent the ordering relation induced by c.

objects are at the level of (or are in) a security level. For example, William may be

cleared into the level (SECRET, [EUR }) and George into the level (TOP SECRET,
{ NUC, US }). A document may be classified as (CONFIDENTIAL, (EUR).

Security levels change access. Because categories are based on a “need to

i to the category set | NUC, US } presumably has no

se m) clearance of the subject is higher than the security classification of the
object. But if the desired object is in any of the security levels @, { NUC }, { US },
or { NUC, US | and the subject’s security clearance is no less than the document’s
security classification, access should be granted because the subject is cleared into
the same category set as the object.

This suggests a new relation for capturing the combination of security classifi-
cation and category set. Define the relation dom (dominates) as follows.

Definition 5-1. The security level (L, C) dominates the security level (L', C")
if and only if L°< L and C" ¢

We write (L, C) —=dom (L’, C") when (L, C) dom (L", C") is false. This rela-
tion also induces a lattice on the set of security levels [267].

EXAMPLE: George is cleared into mumy level (SECRET, { NUC, EUR), DocA is
classified as (CONFIDENTIAL, { NUC }), DocB is classified as (SECRET,
{ EUR, US}), and DocC is ed as (SECRET { EUR }). Then:

George dom DocA as CONFIDENTIAL < SECRET and { NUC | < { NUC, EUR |

George —~dom DocB as { EUR, US } ¢ { NUC, EUR |}

George dom DocC as SECRET < SECRET and { EUR } < { NUC, EUR }

Let C(S) be the category set of subject S, and let C(0) be the category set of
object O. The simple security condition, preliminary version, is modified in the obvi-
ous way:

5.2 The Bel-LaPadula Model 127

« Simple Security Condition: S can read O if and only if § dom O and § has
discretionary read access to 0.

In the example above, George can read DocA and DocC but not DocB (again, assum-
ing that the discretionary access controls allow such access).

Suppose Paul is cleared into security level (SECRET, | EUR, US, NUC })
and has discretionary read access to DocB. Paul can read DocB; were he to copy its
contents to DocA and set its access permissions accordingly, George could then read
DocB. The modified *-property prevents this:

« *-Property: S can write 10 O if and only if O dom S and § has discretionary
write access to 0.

Because DocA dom Paul is false (because C(Paul) ¢ C(DocA)), Paul cannot write to
DocA.

The simple security condition is often described as “no reads up” and the
*_property as “no writes down.

edefine a secure system as one in which both the simple security property
and the *—vroperly hold. The analogue to the Basic Security Theorem, preliminary
version, can also be established by induction.

Theorem 5-2. Basic Security Theorem: Let L be a system with a secure ini-
tial state oy, and let T be a set of state transformations. If every element of 7'
preserves the simple security condition and the *-property, then every Gj, i > 0,
is secure.

At times, a subject must communicate with another subject at a lower level.
‘This requires the higher-level subject to write into a lower-level object that the lower-
level subject can read.

EXAMPLE: A colonel with (SECRET, { NUC, EUR }) clearance needs to send a
message to a major with (SECRET, { EUR }) clearance. The colonel must write a
document that has at most the (SECRET, { EUR }) classification. But this violates
the *-property, because (SECRET, { NUC, EUR }) dom (SECRET. { EUR }).

‘The model provides a mechanism for allowing this type of communication. A
subject has a maximum security level and a current security level. The maximum
security level must dominate the current security level. A subject may (effectively)
decrease its security level from the maximum in order to communicate with entities
at lower security levels.

EXAMPLE: The colonel’s maximum security level is (SECRET, { NUC, EUR .
She changes her current security level to (SECRET, { EUR }). This is valid, beca
the maximum security leve dominates the current Security Ievel, She can then créate
the document at the major’s clearance level and send it to him.

130 Chapter5 Confidentility Policies

stat(“.”, &stat_buffer)

returns a different inode number for each process, because it returns the inode num-
ber of the current working directory—the hidden directory. The system call

dg_mstat(“.", &tat_buffer)

translates the notion of “current working directory” to the multilevel directory when
the current working directory is a hidden directory.

Mounting unlabeled file systems requires the files to be labeled. Symbolic
links aggravate this problem. Does the MAC label the target of the link control, or
does the MAC label the link itself? DG/UX uses a notion of inherited labels (called
implicit labels) to solve this problem. The following rules control the way objects are
labele

. Roots of file systems have explicit MAC labels. If a file system without
labels is mounted on a labeled file system, the root directory of the
mounted file system receives an explicit label equal to that of the mount
point. However, the label of the mount point, and of the underlying tree, is
no longer visible, and so its label is unchanged (and will become visible
again when the file system is unmounted).

An object with an implicit MAC label inherits the label of its parent.
When a hard link to an object is created, that object must have an
explicit label; if it does not, the object’s implicit label is converted
to an explicit label. A corollary is that moving a file to a different
directory makes its label explicit.

If the label of a directory changes, any immediate children with implicit
labels have those labels converted to explicit labels before the parent
directory’s label is changed.

When the system resolves a symbolic link, the label of the object is the
label of the target of the symbolic link. However, to resolve the link, the
process needs access to the symbolic link itself.

W

-

Rules | and 2 ensure that every file system object has a MAC label, either implicit or
explicit. But when a file object has an implicit label, and two hard links from differ-
ent directories, it may have two labels. Let /x/y/z and /x/alb be hard links to the same
object. Suppose y has an explicit label IMPL_HI and a an explicit label IMPL_B.
Then the file objéct can be accessed by a process at IMPL_HI as /x/y/z and by a pro-
cess at IMPL_B as /x/alb. Which label is correct? Two cases arise.

Suppose the hard link is created while the file system is on a DG/UX B2 sys-
tem. Then the DG/UX system converts the target’s implicit label to an explicit one
(rule 3). Thus, regardless of the path used to refer to the object, the label of the object
will be the same.

5.2 The Bell-LaPadula Model 131

Suppose the hard link exists when the file system is mounted on the DG/UX
B2 system. In this case, the target had no file label when it was created, and one
must be added. If no objects on the paths to the target have explicit labels, the tar-
get will have the same (implicit) label regardless of the path being used. But if any
object on any path to the target of the link acquires an explicit label, the target’s
label may depend on which path is taken. To avoid this, the implicit labels of a
directory’s children must be preserved when the directory’s label is made explicit.
Rule 4 does this.

Because symbolic links interpolate path names of files, rather than store inode
numbers, computing the label of symbolic links is straightforward. If /v/y/z is a sy
bolic link to /a/b/c, then the MAC label of ¢ is computed in the usual way. However,
the symbolic link itself is a file, and so the process must also have access to the link
file z.

5.22.2 Using MAC Labels

The DG/UX B2 system uses the Bell-LaPadula notion of dominance, with one
change. The system obeys the simple security condition (reading down is permitted),
but the implementation of the *-property requires that the process MAC label and the
object MAC label be equal, so writing up is not permitted, but writing is permitted in
the same compartment.

Because of this restriction on writing, the DG/UX system provides processes
and objects with a range of labels called a MAC ruple. A range is a set of labels
expressed by a lower bound and an upper bound. A MAC tuple consists of up to
three ranges (one for each of the regions in Figure 5-3).

EXAMPLE: A system has two security levels, TS and S, the former dominating the
latter. The categories are COMP, NUC, and ASIA. Examples of ranges are

[(S, { COMP }), (TS, { COMP })]
[(S.@). (TS. { COMP,NUC, ASIA })]
[(S, { ASIA }), (TS, { ASIA,NUC })]

The label (TS, (COMP}) is in the first two ranges. The label (S, (NUC, ASIA|) is
in the last two ranges. However,

[(S, [ASIA}), (TS, { COMP,NUC})]
is not a valid range because not (TS, { COMP, NUC |}) dom (S, [ASIA }).

An object can have a MAC tuple as well as the required MAC label. If both
are present, the tuple overrides the label. A process has read access when its MAC

label grants read access to the upper bound of the range. A process has write
when its MAC label grants write access to any label in the MAC tuple range.

132 Chapter5 Confidentiality Policies

EXAMPLE: Suppose an object’s MAC tuple is the single range
[(S, (ASIA |), (TS, (ASIA, COMP})]

A subject with MAC label (S, { ASIA |) cannot read the object, because
(TS, { ASIA, COMP)) dom (S, { ASIA })

It can write to the object, because (S, { ASIA }) dominates the lower bound and is
dominated by the upper bound. A subject with MAC label (TS, { ASIA, COMP,
NUC |) can read the object but cannot write the object. A subject with MAC label
(TS, { ASIA, COMP |) can both read and write the object. A subject with MAC
label (TS, {EUR}) can neither read nor write the object, because its label is incom-
parable to that of the object, and the dom relation does not hold.

A process has both a MAC label and a MAC tuple. The label always lies
within the range for the region in which the process is executing. Initially, the sub-
ject's accesses are restricted by its MAC label. However, the process may extend its
read and write capabilities to within the bounds of the MAC tuple.

5.23 Formal Model
Let S be the set of subjects of a system and let O be the set of objects. Let P be the set

of rights for read, a for write, w for read/write, and ¢ for empty.® Let M be a set of
le access control matrices for the system. Let C be the set of classifications (or

pos
clearances), let K be the set of categories. and let L = C X K be the set of security levels.
Finally, let F be the set of 3-tuples (7., ;). where f; and f, associate with each subject
maximum and current security levels, respectively, and f, associates with each object a
security level. The relation dom from Definition 5-1 is defined here in the obvious way.

‘The system objects may be organized s a set of hierarchies (trees and single

nodes). Let H represent the set of hierarchy functions 4: O — P(0).% These functions

have two properties. Let 0;. 0;. o € O.

1. 1f o, # 0. then h(0) O h(oj) = @.
2. There is no set { 01,03, ... 0 | € O such that for each i
(o)), and o4 = 0;.
(See Exercise 6.)

wkoy e

The right calld “empty” here i called “execute” in Belland LaPadula [68]. However,they
defin wither observation nor alteration” (and note that it differs from the notion
of "execute” that most systems implemen). For clarity, we changed the ¢ right's name to the
more descriptive “empty.”

©P(O) i the power set of O—that is, the set of all possible subsets of O.

5.2 The Bell-LaPadula Model 133

Astate ve Vof asystem is a 4-tuple (b, m, f, h), where b € P(S x O X P) indi-
cates which subjects have access to which objects, and what those access rights are;
m € M is the access control matrix for the current state; f € F is the 3-tuple indicat-
ing the current subject and object clearances and categories; and h € H is the hierar-
chy of objects for the current state. The difference between b and m is that the rights
in m may be unusable because of differences in security levels; b contains the set of
rights that may be exercised, and m contains the set of discretionary rights.

R denotes the set of requests for access. The form of the requests affects the
instantiation, not the |onndl model, and is not discussed further here. Four outcomes
of each request are possible: y for yes (allowed), n for no (not allowed), i for illegal
request, and o for error (mulfiple outcomes are possible). D) denotes the set of out-
comes. The set W < R x D x Vx Vis the set of actions of the system. This notation

nitions, we can now define the history of a system as it executes.

Let N be the set of positive integers. These integers mprcv:nl times. Let X = RV
be a set whose elements x are sequences of requests, let be a set whose ele-
ments y are sequences of decisions, and let Z = V" be a set whese elements z are

a subject makes request x, € R, the system makes a decision y, € D, and as a result
the system transitions into a (possibly new) state z, €

A system is represented as an initial state and a sequence of requests, deci-
sions, and states. In formal terms, (R, D, W, z9) € X x ¥ X Z represents the sys-

tem, and z is the initial state of the system. (x.
& e Wiorallre N. (x

€ X(R, D, W, z9) if and only if
) is an appearance of X(R, D, W, zo).

EXAMPLE: Consider a system with two levels (HIGH and LOW), one category
(ALL), one subject s, one object 0, and two rights, read (r) and write (w). Then:

S={5),0={0},P={rw} C={HIGHLOW },K = ALL }

For every function f € F, f,(s) s either (LOW, { ALL}) or (HIGH, { ALL}), and f,(0)
is cither (LOW, [ALL}) or (HIGH, { ALL}). Now, suppose by = | (s, 0,1) }.m; €
gives s read access over o, and for fj € F, fo,(s) = (HIGH, { ALL}) and f,,,)(0) =
(LOW, { ALL]). This describes a state of the system in which s has read rights to o,
s0vg=(by.my.fi) € V.

pose S={ 5,5}, fn1(") = (LOW, { ALL}), and m, gives s~ write access over
0.as well as giving s read access over 0. Because s” has not yet written o, b, is unchanged.
Take 29.= (by, my. f;) and consider the system Z(R, D, W, zo). If s” makes the request r{ o
wiite t0 0, the system wiudeu;ed, ¥ (yes), and will transition Iolhesute i 7(»1 my.fe
V, where by = { (5, 0,), (5", 0, w) . Inthis case, x= (1), y= (5 00 Vi
‘The next request 75 is Tor s o write 10 0 hwever,his i disallowed (d =, or
10). The resulting state is the same as the preceding one. Now x = (ry.). y = (.).
and 2= (vg, v, v), where vy = vy.

13 Chapters Confidentiality Policies

5.2.3.1 Basic Security Theorem

The Basic Security Theorem combines the simple security condition, the *-property,

and a discretionary security property. We now formalize these three properties.
Formally, the simple security condition is:

Definition 5-2. (s, 0, p) € § X O x P satisfies the simple security condition
relative to f (written ssc rel f) if and only if one of the following holds:

ind £,(s) dom f,(0)

In other worc f 5 can read o (or read and write to it), s must dominate 0. A
state (b, m, f, h) satisfies the simple security condition if all elements of b satisfy ssc
relf. A system satisfies the simple security condition if all its states satisfy the simple
security condition.

Define b(s: py, -, p,) 10 be the set of all objects that s has p). ..., p, access to:

bis: pro s p) = (010 OAL(s.0.p) € bV ..V (s.0.p) € b])

Definition 5-3. A state (b, m, f, h) satisfies the *-property if and only if, for
cach s € S, the following hold:

s:0)#@ = [V o€ bis:) [f,(0) dom f(s)1]
W) [f(0) =f(5) 1]
D [f(s) dom f,(0) 1]

‘This definition says that if a subject can write to an object, the object’s classi-
fication must dominate the subject’s clearance (“write up"); if the subject can also
read the object, the subject’s clearance must be the same as the object’s classification
(“equality for read”). A system satisfies the *-property if all its states satisfy the
*-property. In many systems, only a subset S of subjects satisfy the *-property; in
this case, we say that the *-property is satisfied relative to §"C

Definition 5-4. A state (b, m, f. h) satisfies the discretionary security prop-
erty (ds-property) if and only if, for each triple (s, 0, p) € b.p € mls. o).

The access control matrix allows the controller of an object to condition
access based on identity. The model therefore supports both mandatory and discre-
tionary controls, and defines “secure in terms of both. A system satisfies the discre-
tionary security property if all its states satisfy the discretionary security property.

Definition 5-5. A system s secure if it satisfies the simple security condition,
the *-property, and the discretionary security property.

The notion of an action, or a request and decision that moves the system from
one state to another, must also be formalized, as follows.

5.2 The Bell-LaPadula Model 137

Definition 5-8. Let @ = { py, ..., py | be a set of rules. For request r € R,
decision d € D, and states v, v" € V.(r,d, v,v’) € W(®) if and only if d #i and
there is a unique integer i, 1 < i < m, such that py(r, v*) = (d, v).

‘This definition says that if the request is legal and there is only one rule that
will change the state of the system from v to v", the corresponding action is in W(®).
e next theorem presents conditions under which a set of rules preserves the

simple security condition.

Theorem 5-7. Let o be a set of ssc-preserving rules, and let z, be a state sat-
isfying the simple security condition. Then X(R, D, W), 2o) satisfies the sim-
ple security condition.

Proof By contradiction. Let (x, y, z) € (R, D, W(), zo) be a state that does
not satisfy the simple security property. Without loss of generality, choose
I Nsuch that (x,, y,, 2 is the first appearance of (R, D, W(®), z) that does
not satisfy the simple security property. Because (x,, v, 2. 2,.1) € W(w), there
is a unique rule p € o such that p(x,, z,1) = (v, 2,), and y, # i. Because p is
ssc-preserving, and z,_; satisfies the slmp]e secumv condition, by Definition
5-7. 2, must meet the simple security condition. This contradicts our choice of
1, and the assumption that (v, y, 2) does not meet the simple sccurity property.
Hence, the theorem is proved.

When does adding a state preserve the simple security property?

Theorem S, Let v = (b . f) satsfy he simple sccurty conditon. Let
(s.0,p) (s,0,p) }, and v m, f, h). Then v satisfies the
slmpl: security condition if and only if either of the following conditions is

a. Eitherp=gorp=
b. Either p = ror p = w, and f,(s) dom f,(0).

Proof For (a), the theorem follows from Definition 5-2 and v* satisfying ssc
rel f. For (b), if v* satisfies the simple security condition, then, by definition,

f(\) dom, . Moreover if£,(5) dom f,(0), then (s, 0, p) € b” satisfies ssc rel f.
hence, v s se

Similar theorems hold for the *-property:

Theorem 5-9. Let ® be a set of *-property-preserving rules, and let z be a
state satisfying the *-property. Then X(R, D, W, z) satisfies the *-property.

Proof See Exercise 11.

138

Chapter 5 Confidentiality Policies

Theorem 5-10. Let v = (b, m, f, h) satisfy the *-property. Let (s. 0. p) € b,
b'=bU | (s.0,p) }.and v = (b", m, f, h). Then v" satisfies the *-property if
and only if one of the following conditions holds.

a. p=aand (o) dom f(s)
b. p=wandf,(0) =fu(s)

c. p=rand f(s) dom f, (o)
dp

e

Proof If v* satisfies the *-property, then the claim follows from Definition
5-3 and the definition of ¢. Conversely, assume that conditions (a) holds.
Let (5", 0", p') & b". If (s", 0", p’) € b, the assumption that v satisfies the *-prop-
erty means that v also satisfies the *-property. Otherwise, (5°, 0', p*) = (s, 0, p)
and, by condition (a) and Definition 5-3, the *-property holds. The proof
for each of the other conditions is similar. Thus, v satisfies the *-property.

Theorem 5-11. Let ® be a set of ds-property-preserving rules, and let zo be a
state satisfying the ds-property. Then (R, D, W(), o) satisfies the ds-property.

Proof See Exercise 1.
Theorem 5-12. Let v = (b, m, /) satisty he ds-propery. Let s, 0.) € by

b=bU [(s.0.p) J.and v m. f. h). Then v satisfies the ds-property if
and only if p & s, o).

Proof If v" satisfies the ds-property, then the claim follows immediately from
Definition 54. Conversely, assume that p & m]s, o). Because (5", 0", p’) €
the ds-property holds for v". Thus, v* satisfies the ds-property.

Finally, we present the following theorem.

Thcoremi 13, Lelpbeqruleandp(r v) = (d, v'), where v = (b, m, f, h) and
b’ m’,). Then:

s

and v satisfies the simple security condition, then v*
ple security condition.

=

v satisfies the *-property, then v” satisfies the

cb.f
*-property.
. Ifb b, mls,0] cm’[s, o] foralls€ Sand 0 € O, and v satisfies the
ds-property, then v satisfies the ds-property.

Proof Suppose that v satisfies the simple security property. Because b’ C b,
(s,0,1) € b”implies (s, 0, 1) € b, and (s, 0, w) € b~ implies (s, 0, w) € b. So
£(s) dom f(0). But f*= f. Thus, f, (s) dom f, (0). So v" satisfies the simple
securiy condiion.

‘The proofs of the other two parts are analogous.

5.2 The Bell-LaPadula Model 139

5.2.4 Example Model Instantiation: Multics

We now examine the modeling of specific actions. The Multics system [68, 788] has
11 rules affecting the rights on the system. These rules are divided into five groups.
Let the set Q contain the set of request operations (such as get, give, and so forth).
Then:

. RM =0 x5 x 0x M. This i the set of requests to request and release
access. The rules are ger-read, get-append, get-execute, get-write, and
release-read/executelwritelappend. These rules differ in the conditions
necessary for the subject to be able to request the desired right. The rule
get-read s discussed in more detail in Section 5.2.4.1.

2. R? = §x QxS x0xM.This is the set of requests to give access to and

remove access fmm a different subject. The rules are e mud/('xa ute/
d resci n, the rules
differ i the conditions needed to acquire and delete the nghn but within
each rule, the right being added or removed does not affect the conditions.

Whether the right is being added or deleted does affect them. The rule

give-read/executelwritelappend is discussed in more detail in Section

5242,

3. R® = QxSx 0 xL. This is the set of requests to create and reclassify
objects. It contains the create-object and change-object-security-level

rules. The object’s security level is either assigned (create-object) or

changed (thnng(' object-security-level).

R™ =5 x 0. This is the set of requests to remove objects. It contains only

the rule delete-object-group, which deletes an object and all objects

beneath it in the hierarchy.

5. R® =§x L. This s the set of requests to change a subject’s security level.
It contains only the rule change-subject-current-security-level, which
changes a subject’s current security level (not the maximum security
level).

»

Then, the set of requests R = R U R® U R U RW U RO,

‘The Multics system includes the notion of trusted users. The system does not
enforce the *-property for this set of subjects Sy C S; however, members of S7 are
trusted not to violate that property.

For each rule p, define A(p) as the domain of the request (that is, whether or
not the components of the request form a valid operand for the rule).

We next consider two rules in order to demonstrate how to prove that the rules
preserve the simple security property, the *-property, and the discretionary security
property.

140 Chapter5 Confidentiality Policies

5.2.4.1 The get-read Rule

The get-read rule enables a subject s to request the right to read an object 0. Repre-
sent this request as 7 = (get, 5, 0. 1) € R'", and let the current state of the system be
v= (b, m, f, h). Then get-read is the rule p(r, v):

if (- € A(py) then py(r,v) = (. v);

else if (f,(s) dom f,(0) and [s € Sy or f,(s) dom f,(0)] and £ € ms, o])
then py(r,v) = (v, (b U { (5.0, },m,f, h);

else py(r,v) = (0, v);

‘The first if tests the parameters of the request; if any of them are incorrect, the deci-
sion is “illegal” and the system state remains unchanged. The second if checks three
conditions. The simple security property for the maximum security level of the sub-
ject and the classification of the object must hold. Either the subject making the
request must be trusted, or the *-property must hold for the current security level of
the subject (this allows trusted subjects to read information from objects above their
current security levels but at or below their maximum security levels; they are trusted
not to reveal the i). Finally, the y security
property must hold. If these three conditions hold. so does the Basic Security Theo-
rem. The decision is “yes” and the system state is updated to reflect the new access.
Otherwise, the decision is “no” and the system state remains unchanged.

‘We now show that if the current state of the system satisfies the simple secu-
rity condition, the *-property, and the ds-property, then after the ger-read rule is
applied, the state of the system also satisfies those three conditions.

‘Theorem 5-14. The get-read rule p, preserves the simple security condition,
the *-property, and the ds-property.

Proof Let v satisfy the simple security condition, the *-property, and the ds-
property. Let p,(r, ¥) = (d,). Either v Ul (s 0.0 Lom,fih),
by the ger- read rule, In the former case. because » satizfes the simple
security condition, the *-property, and the ds-property, so does v”. So let
V=l (20,0) m.fh).

Consider the simple security condition. From the choice of v*, cither
h —b=@orb ~b=|{ (s 0,0)16 ~b=2,then { (s3,0,1) | € b, 50
. proving that v” satisfies the simple security condition. Otherwise,
because the get-read rule requires that f,(s) dom f,(0), Theorem 5-8 says that
V" satisfies the simple security condition.

Consider the *-property. From the definition of the ger-read rule, either
s € Sgorfi(s) dom (o). f s & S, then s is trusted and the *-property holds by
the definition of S7 Otherwise, by Theorem 5-10, because f,(s) dom f,(0), v
satisfies the *-property.

Finally, consider the ds-property. The condition in the ger-read rule
requires that g € ms, o) and b’ ~b=@orb’ —b={ (sp, 0,0 }.If b’ ~b=,

5.2 The Bell-LaPadula Model 141

then { (s, 0,1) } € b, 50 =", proving that v" ds-property. Oth-
erwise, { (s;.0,1) } € b, which meets the conditions of Theorem 5-12. From
that theorem, v” satisfies the ds-property.

Hence, the ger-read rule preserves the security of the system.

5.24.2 The give-read Rule

The give-read rule’ enables a subject s to give subject s, the (discretionary) right to
read an object 0. Conceptually, a subject can give another subject read access to an
object if the giver can alter (write to) the parent of the object. If the parent is the root
of the hierarchy containing the object, or if the object itself is the root of the hierar-
chy, the subject must be specially authorized to grant access.

Some terms simplify the definitions and proofs. Define roof(o) as the root
object of the hierarchy / containing o, and define parent(o) as the parent of o in h. If
the subject is specially authorized to grant access to the object in the situation just
mentioned, the predicate canallow(s. o, v) is true. Finally, define m A m[s, o}er as
the access control matrix m with the right r added to entry m(s, o).

Represent the give-read request as r = (s, give, sy, 0.1) € R and let the cur-
rent siate of the system be v = (b, m, f,). Then. give-read is the rule pe(r, v):

if (r & A(p)) then pe(r, v) = (i, v
else if ([0% ro0t(o) and parent(0) # root(0) and parent(0) € b(s: w)] or
[parent(0) = root(0) and canallow(s,, 0, v) | or
[0 = ro0t(0) and canallow(s,, mm(a).)
then pg(r, v) = (v, (b, m A mlsy, ol £, h));
else pg(r, v) = (0, v);

The first if tests the parameters of the request: if any of them are incorrect, the
decision is “illegal” and the system state remains unchanged. The second if checks
several conditions. If neither the object nor its parent is the root of the hierarchy con-
taining the object, then s, must have write rights to the parent. If the object or its par-
ent is the root of the hierarchy, then s, must have special permission to give s, the
read right to 0. The decision is “yes” and the access control matrix is updated to
reflect the new access. Otherwise, the decision is “no” and the system state remains.
unchanged.

We now show that if the current state of the system satisfies the simple secu-
rity condition, the *-property, and the ds-property, then after the give-read rule is
applied, the state of the system also satisfies those three conditions.

7 Actually, the rule is give-read/execute/writelappend. The generalization is left as an exercise
for the reader.

144 Chapters Confidentalty Policies

Further, what is captured by the [Basic Security Theorem] is so trivial that it is hard
to imagine a realistic security model for which it does not hold” (6821, p. 47). The
basis for McLean's argument was that given assumptions known to be nonsecure, the
Basic Security Theorem could prove a nonsecure system to be secure. He defined a
complement to the *-property:

Definition 5-11. A state (b, m. £, h) satisfies the tpmpem if and only i, for
cach subject s € S, the following conditions hold:

a. blsia) 2@ = [V o€ bls: a) [fi(s) dom (o) 1]
b b(ssw) 2@ = [V oe b
¢ bssn#D=[Voe b

) L£() dom f(0) 11

In other words, the #-property holds for a subject s and an object o if and only if the

clearance of 5 dominates the classification of o. This is exactly the reverse of the

*property, which holds if and only if the classification of o dominates the clearance

of 5. A state satisfies the +-property if and only if, for every triplet (s. 0. p), where the

right p involves writing (that is. = w), the {-property holds for s and o.
MeLean then proved the analogue to Theorem 5-4:

Theorem 5-16. (R, D, W, zo) satisfies the -property relative to $” < S for any
secure state z) if and only if, for every action (r, d, (b, m.f, h), (b", m".f", k), W
satisfies the following conditions for every s € §°

a. Every (s.0.p) € b~ b’ satisfies the #-property with respect 10 5”.
b. Every (5. 0.p) € b” that does not satisfy the +-property with respect to § is
not in b

Proof See Exercise 8, with “*-property” replaced by “f-property.”

From this theorem, and from Theorems 5-3 and 5-5, the analogue to the
Basic Security Theorem follows.

‘Theorem 5-17. Basic Security Theorem: (R, D, W, z) is a secure system if
s a secure state and W satisfies the conditions of Theorems 5-3,

stem E(R. D, W, z0) is clearly nonsecure, because a subject
with HIGH clearance can write information to an object with LOW classification.
Information can flow down, from HIGH to LOW. This violates the basic notion of
security in the confidentiality policy.

Consider the role of the Basic Security Theorem in the Bell-LaPadula Model.
The goal of the model is to demonstrate that specific rules, such as the ger-read rule,
preserve security. But what is security? The model defines that term using the Basic
Security Theorem: an instantiation of the model is secure if and only if the initial

5.4 The Controversy over the Bell-LaPadula Model 145

state satisfies the simple security condition, the *-property, and the ds-property, and
the transition rules preserve those properties. In essence, the theorems are assertions
about the three properties.

The rules describe the changes in a particular system instantiating the model.
Showing that the system is secure, as defined by the analogue of Definition 5-5,
requires proving that the rules preserve the three properties. Given that they do, the
Basic Security Theorem asserts that reachable states of the system will also satisfy
the three properties. The system will remain secure, given that it starts in a secure
state.

LaPadula pointed out that McLean’s statement does not reflect the assump-
tions of the Basic Security Theorem [617]. Specifically, the Bell-LaPadula Model
assumes that a transition rule introduces no changes that violate security, but does
not assume that any existing accesses that violate security are eliminated. The rules
instantiating the model do no elimination (see the get-read rule, Section 5.2.4.1, as
an example).

Furthermore, the nature of the rules is irrelevant to the model. The model
accepts a definition of “secure” as axiomatic. The specific policy defines “security”
and is an instantiation of the model. The Bell-LaPadula Model uses a military defini-
tion of security: information may not flow from a dominating entity to a dominated
entity. The *-property captures this requirement. But McLean’s variant uses a differ-
ent definition: rather than meet the *-property, his policy requires that information
not flow from a dominated entity to a dominating entity. This is not a confidentiality
policy. Hence, a system satisfying McLean’s policy will not satisfy a confidentiality
policy. McLean’s argument eloquently makes this point.

However, the sets of properties in both policies (the confidentiality policy and
McLean’s variant) are inductive, and the Basic Security Theorem holds. The proper-
ties may not make sense in a real system, but this is irrelevant to the model. It is ves
relevant to the interpretation of the model, however. The confidentiality policy
requires that information not flow from a dominating subject to a dominated object.
McLean substitutes a policy that allows this. These are alternative instantiations of
the model.

McLean makes these points by stating problems that are central to the use of
any security model. The model must abstract the notion of security that the system is
to support. For example, McLean’s variant of the confidentiality policy does not pro-
vide a correct definition of security for military purposes. An analyst examining a
system could not use this variant to show that the system implemented a confidential-
ity classification scheme. The Basic Security Theorem, and indeed all theorems, fail
to capture this, because the definition of “security” is axiomatic. The analyst must
establish an appropriate definition. All the Basic Security Theorem requires is that
the definition of security be inductive.

McLean’s second observation asks whether an analyst can prove that the sys-
tem being modeled meets the definition of “security.” Again, this is beyond the prov-
ince of the model. The model makes claims based on hypotheses. The issue is
whether the hypotheses hold for a real system.

146 Chapter5 Confidentiality Policies

5.4.2 McLean’s System Z and More Questions

In a second paper [683], McLean sharpened his critique. System transitions can alter
any system component, including b, £, m, and h, as long as the new state does not vio-
late security. McLean used this property to demonstrate a system, called System Z,
that satisfies the model but is not a confidentiality security policy. From this, he con-
cluded that the Bell-LaPadula Model is inadequate for modeling systems with confi-
dentiality security policies.

System Z has the weak tranquility property and supports exactly one action.
When a subject requests any type of access to any object, the system downgrades all
subjects and objects to the lowest security level, adds access permission to the access
control matrix, and allows the access.

Let System Z’s initial state satisfy the simple security condition, the
*-property, and the ds-property. It can be shown that successive states of System Z
also satisfy those properties and hence System Z meets the requirements of the Basic
Security Theorem. However, with respect to the confidentiality security policy
requirements, the system clearly is not secure, because all entities are downgraded.

McLean reformulated the notion of a secure action. He defined an alternative
version of the simple security condition, the *-property, and the discretionary secu-
rity property. Intuitively, an action satisfies these properties if, given a state that satis-
fies the properties, the action transforms the system into a (possibly different) state
that satisfies these properties, and eliminates any accesses present in the transformed
state that would violate the property in the initial state. From this, he shows:

Theorem 5-18. £(R, D, W,) is a secure system if zo is a secure state and
each action in W satisfies the alternative versions of the simple security condi-
tion, the *-property, and the discretionary security property.

Proof See [683].

Under this reformulation, System Z is not secure because this rule is not
secure. Specifically, consider an instantiation of System Z with two security clear-
ances, (HIGH, { ALL }) and (LOW, { ALL }) (HIGH > LOW). The initial state has a

t nd an object o, Take () = (LOW. [ALL 1) £,0) = (HIGH, { ALL)
{w J,and b = { (5, 0. w)). When s requests read access to o, the rule trans-
forms the system into a state wherein £, (0) = (LOW, { ALL }). (s, 0.1 € b’, and
I, w |. However, because (s, 0. 1) € b’ ~ b and f,(0) dom f(s), an illegal
access has been added. Yet, under the traditional Bell-LaPadula formulation, in the
final state £, (s) = f, (0), so the read access is legal and the state is secure, hence the

McLean’s conclusion is that proving that states are secure is insufficient to
prove the security of system. One must consider both states and transitions.
Bell [64] fesponded by exploring the fundamental nature of modeling. Model-
ing in the physical sciences abstracts a physical phenomenon to its fundamental
properties. For example, Newtonian mathematics coupled with Kepler’s laws of

5.4 The Controversy over the Bell-LaPadula Model 147

planetary motion provide an abstract description of how planets move. When observ-
ers noted that Uranus did not follow those laws, they calculated the existence of
another, trans-Uranean planet. Adams and Lavoisier, observing independently, con-
firmed its existence. Refinements arise when the theories cannot adequately account
for observed phenomena. For example, the precession of Mercury’s orbit suggested
another planet between Mercury and the sun. But none was found.? Einstein’s theory
of general relativity, which modified the theory of how planets move, explained the
precession, and observations confirmed his theory.

Modeling in the foundations of mathematics begins with a set of axioms. The
model demonstrates the consistency of the axioms. A model consisting of points, lines,
planes, and the axioms of Euclidean geometry can demonstrate the consistency of those
axioms. Attempts to prove the inconsistency of a geometry created without the Fifth Pos-
tulate’ failed; eventually, Riemann replaced the plane with a sphere, replaced lines with
great circles, and using that model demonstrated the consistency of the axioms (which
became known as “Riemannian geometry”). Godel demonstrated that consistency cannot
be proved using only axioms within a system (hence Riemannian geometry assumes the
consistency of Euclidean geometry, which in turn assumes the consistency of another axi-
omatizable system, and so forth). So this type of modeling has natural limits.

The Bell-LaPadula Model was developed as a model in the first sense. Bell
pointed out that McLean’s work presumed the second sense.

In the first sense of modeling, the Bell-LaPadula Model is a tool for demon-
strating certain properties of rules. Whether the properties of System Z are desirable
is an issue the model cannot answer. If no rules should change security compart-
ments of entities, the system should enforce the principle of strong tranquility. Sys-
tem Z clearly violates this principle, and hence would be considered not secure. (The
principle of tranquility adds requirements to state transitions, so given that principle,
the Bell-LaPadula Model actually constrains both states and state transitions.)

In the second sense, Bell pointed out that the two models (the original Bell-
LdPJdII]d Model, and McLean’s variant) define security differently. Hence, that Sys-
tem Z i not secure under one model, but secure under the other, is not surprising. As
an example consider the following definitions of prime number.

Definition 5-12. A prime number is an integer n > 1 that has only 1 and itself
as divisors.

Definition S-13. A prime number is an integer > 0 that has only 1 and itself
as divisors.

¥ Observers reported seeing this pum, called Vlcan, in the mid-1800s. The sighting was never
officially confirmed, and the refinements discussed above explained the precession adequately.
Willy Ley’s book [625] relates he charming history of this episode.

9The Fifth Postulate of Euclid states that given a line and a point, there is exactly one line that
in be drawn through that point parallel to the existing line. Attempts to prove this postulate
ailed; in the 18005, Riemann and Lobachevsky demonstrated the axiomatic nature of the
postulate by developing geometries in which the postulate does not hold [774].

148 Chapter5 Confidentiality Policies

Both definitions, from a mathematical point of view, are acceptable and consis-
tent with the laws of mathematics. So, is the integer 1 prime? By Definition 5-12, no;
by Definition 5-13, yes. Neither answer is “right” or “wrong” in an absolute sense.'*

54.3 Summary

MecLean’s questions and observations about the Bell-LaPadula Model raised issues
about the foundations of computer security, and Bell and LaPadula’s responses
fueled interest in those issues. The annual Foundations of Computer Security Work-
shop began shortly after to examine foundational questions.

55 Summary

The influence of the Bell-LaPadula Model permeates all policy modeling in com-
puter security. It was the first mathematical model to capture attributes of a real sys-
tem in its rules. It formed the basis for several standards, including the Department of
Defense’s Trusted Computer System Evaluation Criteria (the TCSEC o the “Orange
Book” discussed in Chaper 21) [285]. Even in controversy, the model spurred further
studies in the foundations of computer security.

Other models of confidentiality arise in practical contexts. They may not form
lattices. In this case, they can be embedded into a lattice model. Still other confiden-
tiality models are not multilevel in the sense of Bell-LaPadula. These models include
integrity issues, and Chapter 7, “Hybrid Policies,” discusses several.

Confidentiality models may be viewed as models constraining the way infor-
mation moves about a system. The notions of noninterference and nondeducibility
provide an alternative view that in some ways matches reality better than the Bell-
LaPadula Model; Chapter 8, “Noninterference and Policy Composition,” discusses
these models.

5.6 Research Issues

Research issues in confidentiality arise in the application of multilevel security mod-
els. One critical issue is the inclusion of declassification within the model (as
opposed to being an exception, allowed by a trusted user such as the system security

19 By convention, mathematicians use Definition 5-12. The integer 1 is neither prime nor
composite.

Chapter 6

Integrity Policies

ISABELL.

: Some one with child by him? My cousin Juliet?
Lucio: Is she your cousin?

s school-maids change their names
By vain, though apt affection,
—Measure for Measure, 1 iv, 45-48.

ISABELLA: Adoptedly:

An inventory control system may function correctly if the data it manages is

leased; but it cannot function correctly if the data can be randomly changed. So
integrity, rather than confidentiality. is key. Integrity policies focus on integrity rather
than confidentiality. because most commercial and industrial firms are more con-
cerned with accuracy than disclosure. In this chapter we discuss the major integrity
security policies and explore their design

6.1 Goals

Commercial requirements differ from military requirements in their emphasis on
preserving data integrity. Lipner [636] identifies five requirements:

. Users will not write their own programs, but will use existing production
programs and databases.

Programmers will develop and test programs on a nonproduction syste
if they need access to actual data, they will be given production data via a
special process, but will use it on their development system.

A special process must be followed to install a program from the
development system onto the production system.

The special process in requirement 3 must be controlled and audited.

©

oo

‘The managers and auditors must have access to both the system state and
the system logs that are generated.

‘These requirements suggest several principles of operation.

152 Chapter6 Integrity Policies

First comes separation of duty. The principle of separation of duty states
that if two or more steps are required to perform a critical function, at least two
different people should perform the steps. Moving a program from the develop-
ment system to the production system is an example of a critical function. Sup-
pose one of the application programmers made an invalid assumption while
developing the program. Part of the installation procedure is for the installer to
certify that the program works “correctly,” that is, as required. The error is more
likely to be caught if the installer is a different person (or set of people) than the
developer. Similarly, if the developer wishes to subvert the production data with
a corrupt program, the certifier either must not detect the code to do the corrup-
tion, or must be in league with the developer.

Next comes separation of function. Developers do not develop new pro-
grams on production systems because of the potential threat to production data.
Similarly, the developers do not process production data on the development sy:
tems. Depending on the sensitivity of the data, the developers and testers may
receive sanitized production data. Further, the development environment must be
as similar as possible to the actual production environment.

Last comes auditing. Commercial systems emphasize recovery and
accountability. Auditing is the process of analyzing systems to determine what
ons took place and who performed them. Hence, commercial systems must
allow extensive auditing and thus have extensive logging (the basis for most
auditing). Logging and auditing are especially important when programs move
from the development system to the production system, since the integrity mech-
anisms typically do not constrain the certifier. Audu g is, in many senses, exter-
nal to the model.

Even when disclosure is at issue, the needs of a commercial environment
differ from those of a military environment. In a military environment, clearance
to access specific categories and security levels brings the ability to access infor-
‘mation in those compartments. Commercial firms rarely grant access on the basis
of “clearance™; if a particular individual needs to know specific information, he
or she will be given it. While this can be modeled using the Bell-LaPadula
Model, it requires a large number of categories and security levels, increasing the
complexity of the modeling. More difficult is the issue of controlling this proli
eration of categories and security levels. In a military environment, creation of
security levels and categories is centralized. In commercial firms, this creation
would usually be decentralized. The former allows tight control on the number of
compartments, whereas the latter allows no such control.

More insidious is the problem of information aggregation. Commercial
firms usually allow a limited amount of (innocuous) information to become pub-
lic, but keep a large amount of (sensitive) information confidential. By aggregat-
ing the innocuous information, one can often deduce much sensitive information.
Preventing this requires the model to track what questions have been asked, and
this complicates the model enormously. Certainly the Bell-LaPadula Model lacks
this ability.

Security

COMPUTER SECURITY

“This is an excellent fext
that should be read by
every computer security
professional and student.”

—Dick Kemmerer, University of California,
Santa Barbara

“This is the most complete
book on information

security theory, technology,

and practice that I have
encountered anywbere!”

—Marvin Schaefer, Former Chief Scientist,
National Computer Security Center, NSA

This highly anticipated book fully introduces the theory and practice
of computer security. It is both a comprehensive text, explaining the
most fundamental and pervasive aspects of the field, and a detailed
reference filled with valuable information for even the most seasoned
practitioner. In this one extraordinary volume the author incorporates
concepts from computer systems, networks, human factors, and
cryptography. In doing so, he effectively demonstrates that computer
security is an art as well as a science.

Computer Security: Art and Science includes detailed discussions on:

* The nature and challenges of computer security
= The relationship between policy and security

* The role and application of cryptography

» The mechanisms used to implement policies

* Methodologies and technologies for assurance
* Vulnerability analysis and intrusion detection

Computer Security discusses different policy models, and presents
mechanisms that can be used to enforce these policies. It concludes
with examples that show how to apply the principles discussed in
earlier sections, beginning with networks and moving on to systems,
users, and programs.

This important work is essential for anyone who needs to understand,
implement, or maintain a secure network or computer system.

Matt Bishop is Associate Professor in the Department of Computer Science at the University of California at
Davis. He is widely recognized as an expert in vulnerability analysis, the design of secure systems and software,
network security, formal models of access control, user authentication, and UNIX security. A well-known educator,
Matt is focused on improving the teaching of computer security. He earned his Ph.D. from Purdue University in 1984,

http://www.awprofessional.com

Cover design by Karin Hansen

Cover photograph by G.1. Bernard, Oxford Scientific Films

€3 Text printed on recycled paper

v¥ Addison-Wesley
Pearson Education
o

JINIERRNON n?i

802014

IHB\. I] "HI -44099-7

$79.99 US
$120.99 CCANADA

|

- —

[orre

e

