OXFORD

Computers Ltd.

What they really can’t do

David Harel

Faculty of Mathematics and Computer Science
The Weizmann Institute of Science, Rebovot, Israel

OXFORD
UNIVERSITY PRESS

This oOne

i

i-

OXFORD

UNIVERSITY PRESS
Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford.
It furthers the University's objective of excellence in research, scholarship,
and education by publishing worldwide in
Oxford New York

Auckland Bangkok Buenos Aires Cape Town
Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi
Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai
Nairobi Sao Paulo Shanghai Taipei Tokyo Toronto

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States by
Oxford University Press Inc., New York

© D. Harel 2000
The moral rights of the author have been asserted
Database right Oxford University Press (maker)

First published 2000
First published as an
Oxford University Press paperback 2003
Reprinted with corrections 2004
All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer

British Library Cataloguing in Publication Data
Data available
Library of Congress Cataloguing in Publication Data
Data available
ISBN 0 19 860 442 4
2

Typeset by Footnote Graphics Limited, Warminster, Wilts
Printed in Great Britain by
Clays Lid., St. Ives plc

|-

Contents

What's it all about? 1

Algorithms 2
Basic instructions 5

The text vs. the process 7
Inputs 9

What do algorithms solve? 10
Isn’t our setup too simplistic? 15
Solving algorithmic problems 16
Programming 18

Errors and correctness 21
Termination 25

Sometimes we can’t do it 27

Finite problems are solvable 29
The tiling problem 30

Do we really mean it? 33
Elementary computing devices 36
The Church-Turing thesis 40
Computability is robust 42
Domino snakes 46

Program verification 48

The halting problem 50

Nothing about computation can be computed! 53
Some problems are even worse 54

Xvi

CONTENTS

=N

Sometimes we can’t afford todo it 59

Resources: time and memory space 60
Improving running time 61

Upper and lower bounds 65

So what? 69

The towers of Hanoi 69

The good, the bad, and the ugly 73
Intractability 77

Roadblocks and chess 81

Problems that are even harder 85
Unreasonable memory requirements 88

Sometimes we just don’t know 91

The monkey puzzle 92
NP-complete problems 95

Finding short paths 97
Scheduling and matching 100
More on puzzles 103
Coloring networks 105

Magic coins 107

Standing of falling together 109

The great mystery: is P equal to NP? 111
Can we come close? 113

Sometimes we succeed 115

Trying to ease the pain 119
Parallelism, or joining forces 121
Can parallelism eliminate the bad news? 125

Randomization, or tossing coins 129
More on Monte Carlo algorithms 132

Testing for primality 134
Randomized primality testing 137
Can randomization eliminate the bad news? 141

Can computers simulate true randomness? 142
Quantum computing 143

CONTENTS Xvii

Quantum algorithms 147
Can there be a quantum computer? 151
Molecular computing 153

6 Turning bad into good 157
Classical cryptography 158
Public-key cryptography 161
Signing messages 165
Can this be made to work? 168
The RSA cryptosystem 171
Interactive proofs 173
Zero-knowledge proofs 178
I can 3-color a network 181
On millionaires, ballots, and more 187

7 Can we ourselves do any better? 191

Algorithmic intelligence? 193

The Turing test 194

ELIZA and zupchoks 198

Heuristics 201

What is knowledge? 206
Understanding natural language 210

Postramble 215
Index 217

Chapter 1

What’s it all about?

Computers are amazing. They seem to have it all. They fly air-
craft and spaceships, and control power stations and hazard-
ous chemical plants. Companies cannot be run without them,
and many medical procedures cannot be performed in their
absence. They serve lawyers and judges who seek judicial
precedents, and help scientists and engineers to perform
immensely involved mathematical computations. They route
and control millions of simultaneous telephone calls and man-
age the remarkable movement of Internet data in enormous
global networks. They execute tasks with great precision —
from map-reading and typesetting to image processing, robot-
aided manufacturing and integrated circuit design. They help
individuals in many boring daily chores and at the same time
provide entertainment through computer games or the delight
of surfing the Web. Moreover, the computers of today are hard
at work helping design the even more powerful computers of
tomorrow.

It is all the more remarkable, therefore, that the digital com-
puter — even the most modern and complex one — is merely a
large collection of switches, called bits, each of which can be
on or off. On is denoted by 1 and off by 0. Typically, the value

2 COMPUTERS LTD.

of a bit is determined by some electronic characteristic, such as
whether a certain point has a positive or negative charge. In a
technical sense, a computer can really execute only a small
number of extremely simple operations on bits, like flipping a
bit’s value, zeroing it, or testing it (that is, doing one thing if the
bit is on and another if it is off).

Computers may differ in size, i.e. in the number of bits avail-
able, and in internal organization, as well as in the types of
elementary operations allowed and the speed at which they are
performed. They can also differ in outward appearance and in
their connections with the external world. However, appear-
ances are peripheral when compared to the bits and their inter-
nal arrangement. It is the bits that ‘sense’ the input stimuli
arriving from the outside world, and it is the bits that ‘decide’
how to react to them by output stimuli. The inputs can arrive
via keyboards, touch screens, control panels, electronic com-
munication lines, or even microphones, cameras, and chemical
sensors. The outputs are fed to the outside world via display
screens, communication lines, printers, loudspeakers, beepers,
robot arms, or whatever.

How do they do it? What is it that transforms simple opera-
tions like flipping zeros and ones into the incredible feats com-
puters perform? The answer lies in the concepts that underlie
the science of computing: the computational process, and the
algorithm, or program, that causes it to take place.

Algorithms

Imagine a kitchen, containing a supply of ingredients, an array
of baking utensils, an oven, and a (human) baker. Baking is a
process that produces a cake, from the ingredients, by the
baker, aided by the oven, and, most significantly, according to

WHAT'S IT ALL ABOUT? 3

the recipe. The ingredients are the input to the process, the
cake is its output, and the recipe is the algorithm. In the world
of electronic computation, the recipes, or algorithms, are
embodied in software, whereas the utensils and oven represent
the hardware. See Fig. 1.1.

Just like computers carrying out bit operations, the baker
with his or her oven and utensils has very limited direct abili-
ties. This cake-baking hardware can pour, mix, spread, drip,
knead, light the oven, open the oven door, measure time, mea-
sure quantities, etc. It cannot directly bake cakes. The recipes —
those magical prescriptions that convert the limited abilities of
novice bakers and kitchen hardware into cakes — are at the
heart of the matter; not the ovens or the bakers.

Ingredients
(Software) (Hardware)
Reci Oven,
ecpe utensils

Fig. 1.1. Baking a cake.

4 COMPUTERS LTD.

In our world, recipes are called algorithms, and the study,
knowledge, and expertise that concerns algorithms has been
termed algorithmics."

The analogy with cooking can be understood as follows: the
recipe, which is an abstract entity, is the algorithm; the formal
written version of the recipe, such as is found in a particular
cookbook, is analogous to a computer program — the precise
representation of an algorithm, written in a special computer-
readable formalism called a programming language. It is import-
ant to realize that, just as a recipe remains the same whether
written in English, French, or Latin, and regardless of where
and by whom it is carried out, so does an algorithm remain the
same whether written in Fortran, C, Cobol, or Java, and regard-
less of the computer it runs on, be it an ultra-light laptop or a
room-size main-frame. The generic term software actually
refers to programs rather than to the abstract notion of algo-
rithms, since software is written for real computers. However,

' The word ‘algorithm’ is derived from the name of the Arabic/Persian
mathematician of the ninth century, Mohammed al-Khowirizmi, who is
credited with providing the step-by-step rules for carrying out the funda-
mental operations of decimal arithmetic. In Latin the name became Algo-
rismus, from which ‘algorithm’ is derived. Historically, the first nontrivial
algorithm was invented somewhere between 400 and 300 Bc by the great
Greek mathematician Euclid. The Euclidian algorithm, as it is called, finds
the greatest common divisor (ged) of two positive integers, i.e. the largest
integer that exactly divides them both. For example, the ged of 80 and 32
is 16. The word ‘algorithmics’ was apparently coined by J. F. Traub
(1964). lterative Methods for the Solution of Equations, Prentice Hall. It
was proposed as the name for the relevant field of study by D. E. Knuth
(1985). ‘Algorithmic Thinking and Mathematical Thinking’, American
Math. Monthly 92, 170-181, and by the present author in Algoritbmics:
The Spirit of Computing, Addison-Wesley (1987).

WHAT'S IT ALL ABOUT? 5

we shall blur the distinction, since the story told in the
following chapters applies just as well to both.

Basic instructions

Let us take the gastronomical analogy a little further. Here is a
recipe for chocolate mousse.? The ingredients — that is, the
recipe’s input - include 8 ounces of semi-sweet chocolate
pieces, 2 tablespoons of water, a 1/4 cup of powdered sugar, 6
separated eggs, and so on. The output is described as six to
eight servings of delicious mousseline au chocolat:

Melt chocolate and 2 tablespoons water in double boiler. When
melted, stir in powdered sugar; add butter bit by bit. Set aside.
Beat egg yolks until thick and lemon-colored, about 5 minutes.
Gently fold in chocolate. Reheat slightly to melt chocolate, if
necessary. Stir in rum and vanilla. Beat egg whites until foamy.
Beat in 2 tablespoons sugar; beat until stiff peaks form. Gently
fold whites into chocolate-yolk mixture. Pour into individual
serving dishes. Chill at least 4 hours. Serve with whipped
cream, if desired. Makes 6 to 8 servings.

This is the ‘software’ relevant to the preparation of the mousse;
it is the algorithm that prescribes the process that produces
mousse from the ingredients. The process itself is carried out
by the person preparing the mousse, together with the ‘hard-
ware’, in this case the various utensils: double boiler, heating
apparatus, beater, spoons, timer, and so on.

One of the basic instructions, or basic actions, present in this
recipe is ‘stir in powdered sugar. Why does the recipe not say
‘take a little powdered sugar, pour it into the melted chocolate,

? From Sinclair and Malinowski (1978). French Cooking. Weathervane
Books, p. 73.

6 COMPUTERS LTD.

stir it in, take a little more, pour, stir, . . ."? Even more specific-
ally, why does it not say ‘take 2,365 grains of powdered sugar,
pour them into the melted chocolate, pick up a spoon and use
circular movements to stir it in, . . . *? Or, to be even more pre-
cise, why not ‘move your arm towards the ingredients at an
angle of 14° at an approximate velocity of 18 inches per sec-
ond, . . ."? The answer, of course, is obvious. The ‘hardware’
knows how to stir powdered sugar into melted chocolate, and
does not need further details.

This begs the question of whether the hardware knows how
to prepare sugared and buttered chocolate mixture, in which
case the entire first part of the recipe could be replaced by the
simple instruction ‘prepare chocolate mixture’. Taking this to
the extreme, perhaps the hardware knows how to do the
whole thing. This would make it possible to replace the entire
recipe by ‘prepare chocolate mousse’, indeed a perfect recipe
for producing the chocolate mousse; it is clear and precise,
contains no mistakes, and is guaranteed to produce the desired
output just as required.

Obviously, the level of detail is very important when it
comes to an algorithm’s elementary instructions. The actions
that the algorithm asks to be carried out must be tailored to fit
the capabilities of the hardware that does this carrying out.
Moreover, the actions should also match the comprehension
level of a human. This is because humans construct algorithms,
humans must become convinced that they operate correctly,
and humans are the ones who maintain those algorithms and
possibly modify them for future use.

Consider another example, which is closer to conventional
computation: multiplying integers manually. Suppose we are
asked to multiply 528 by 46. The usual ‘recipe’ for this is to first

WHAT S IT ALL ABOUT? 7

multiply the 8 by the 6, yielding 48, to write down the units
digit of the result, 8, and to remember the tens digit, 4. The 2 is
then multiplied by the 6, and the 4 is added, yielding 16. The
units digit 6 is then written down to the left of the 8 and the tens
digit 1 is remembered. And so on.

The same questions can be asked here too. Why ‘muitiply
the 8 by the 67 Why not ‘look up the entry appearing in the
eighth row and sixth column of a multiplication table', or ‘add
G to itself 8 times'? Similarly, why can’t we solve the entire prob-
lem in one stroke by the simple and satisfactory algorithm
‘multiply 528 by 46’7 This last question is rather subtle: we are
allowed to multiply 8 by 6 directly, but not 528 by 46. Why?

Again, the level of detail plays a crucial part in our accept-
ance of the multiplication algorithm. We assume that the rele-
vant hardware (in this case, ourselves) is capable of carrying
out 8 times 6 directly, but not 528 times 46, so that the former
can be used as a basic instruction in an algorithm for carrying
out the latter.

Another point illustrated by these examples is that different
problems are naturally associated with different kinds of basic
actions. Recipes entail stirring, mixing, pouring, and heating;
multiplying numbers entails addition, digit multiplication, and
remembering a digit; looking up a telephone number might
entail turning a page, moving a finger down a list, and compar-
ing a given name to the one being pointed out. Interestingly,
we shall see later that when it comes to algorithms intended for
computers these differences are inessential.

The text vs. the process

Suppose we are given a list of personnel records, one for each
employee in the company. Each record contains an employee’s

8 COMPUTERS LTD.

name, some other details, and his or her salary. We are inter-
ested in the total sum of the salaries of all employees. Here is
an algorithm for this:

1. make a note of the number 0;

2. proceed through the list, adding the current employee’s
salary to the noted number;

3. having reached the end of the list, produce the noted
number as output.

Clearly, the algorithm does the job. The ‘noted’ number can be
thought of as a sort of box containing a single number, whose
value can change. Such an object is often called a variable. In
our case, the noted number starts out with the value zero. After
the addition in line 2 is carried out for the first employee, its
value is that employee’s salary. After the addition for the second
employee, its value is the sum of the salaries of the first two
employees, and so on. At the end, the value of the noted
number is the sum of all salaries (see Fig. 1.2).

Start
Name Salary El Value of noted number l
John Brown | $21 000 :
Mary White | $34 400 l
Mike Green | $18 000 |« 73 400
Joan Silver | $26 000 [« i 17 547 200 l
End

Fig. 1.2. Summing salaries.

WHAT’'S IT ALL ABOUTZ 9

It is interesting that the fext of this algorithm is short and is
fixed in length, but the process it describes varies with the size of
the employee list, and can be very, very long. Two companies,
the first with 10 employees and the second with a million, can
both use the very same algorithm to sum their respective
employees’ salaries. The process, though, will be much faster
for the first company than for the second. Moreover, not only is
the text of the algorithm short and of fixed size, but both com-
panies require only a single variable (the noted number) to do
the job. So the quantity of ‘utensils’ is also small and fixed. Of
course, the value of the noted number will be larger for a larger
company, but only a single number is required to be ‘noted’ all
along.

Thus we have a fixed algorithm, that requires no change in
order to be used in different situations (i.e. for each and every
different input list), but the processes it prescribes can differ in
length and duration for different input situations.

Inputs

Even the simple example of salary summation shows a variety
of possible inputs: small companies, large companies, com-
panies in which some salaries are zero, or ones in which all
salaries are equal. The algorithm might also have to deal with
unusual or even bizarre inputs, such as companies with no
employees at all or with employees who receive negative
salaries (that is, the employee pays the company for the plea-
sure of working for it).

Actually, the salary algorithm is supposed to perform satis-
factorily for an infinite number of perfectly acceptable lists of
employees. This is an extreme way of appreciating the ‘short-
algorithm-for-lengthy-process’ principle. Not only the contrast

10 COMPUTERS LTD.

in duration, or length, is interesting; the very number of pro-
cesses prescribed by a single algorithm of fixed length can be
large, and most often is infinite.”

An algorithm’s inputs must be legal relative to its purpose.
This means that the New York Times list of bestsellers would be
unacceptable as an input to the salary summation algorithm,
just as peanut butter and jelly are unacceptable as ingredients
for the mousse recipe. This means that we need a specification
of the allowed inputs. Someone must decide precisely which
employee lists are legal and which ones are not, where an
employee record ends and another begins, where exactly in
each record the salary is to be found and whether it is given in
longhand (for example, $32000) or in some abbreviated form
(e.g. $32K), and so on.

What do algorithms solve?

All this leads us to the central notion underlying the world
of algorithmics and computation — the algorithmic problem,
which is what an algorithm is designed to solve. The descrip-
tion of an algorithmic problem must include two items (see
Fig. 1.3):

¢ a precise definition of the set of legal inputs;
e a precise characterization of the required output as a func-
tion of the input.

* This issue of an infinite number of potential inputs doesn't quite fit the
recipe analogy, since although a recipe should work perfectly well no
matter how many times it is used, ingredients are usually described in
fixed quantities. Hence, the recipe really has only one potential input (at
least as quantities go; clearly the molecules and atoms will be different
each time). However, the chocolate mousse recipe could have been made
generic, to fit varying but proportional quantities of ingredients.

WHAT’S IT ALL ABOUT? 11

Ax_)y legal
Specification input
of all legal
inputs
Y
and =——3» (Thealgorithm
Characterization
of desired output Y
as a function .
of the input The desired
ourput
The algorithmic problem An algorithm solving the problem

Fig. 1.3. The algorithmic problem and its solution

When we discuss an algorithmic problem as applied to a partic-
ular input (like the salary summation problem applied to some
concrete list of employees), we call it an instance of the prob-
lem.

Here now are some additional examples of algorithmic
problems. Each one is defined, as is proper, by its set of legal
inputs and a description of the desired output. They are num-
bered, and we will refer to them at various points in the follow-
ing chapters.

Problem 1
Input: Two integers, Jand K.
Output: The number J? + 3K.

This is a simple problem that calls for an arithmetic calcula-
tion on two input numbers.

12 COMPUTERS LTD.

Problem 2
Input: A positive integer K.
Output: The sum of the integers from 1 to K.

This problem also involves arithmetic, but the number of
elements it deals with varies, and itself depends on the
input.

Problem 3
Input: A positive integer K.
Output: Yes’ if K is prime and ‘No’ if it isn’t.

This is what we shall be referring to as a decision problem.
It calls for deciding the status of its input number. (Recall
that a prime number is a positive integer greater than 1 that
can be divided without a remainder only by 1 and itself.
For example, 2, 17, and 113 are primes, whereas 6, 91, and
133 are not. Non-primes are termed composite.) Solving
this problem will surely involve arithmetic, but it does not
provide a numeric output, only a ‘Yes’ or a ‘No'.

Problem 4

Input: A list L of words in English.

Output: The list L sorted in alphabetic (lexicographic)
order.

This is a non-arithmetical problem, but like Problem 2 it
has to deal with a varying number of elements; in this case
words.

WHAT’'S IT ALL ABOUT? 13

Problem 5
Input: Two texts in English.
Output: A list of the words common to the two texts.

This too involves words, rather than numbers. We assume
that texts have been defined appropriately, say, as a string
of symbols consisting of letters, spaces, and punctuation
marks. A word in a text would be a string of letters enclosed
by spaces or punctuation marks.

Problem 6

Input: A road map of cities with distances attached to road
segments, and two designated cities therein, 4 and B.
Output: A description of the shortest possible path (trip)
between A and B.

This is a search problem, involving points and distances
between them. It calls for some kind of optimization pro-
cess to find the shortest path.

Problem 7

Input: A road map of cities, with distances attached to road
segments, and a number K.

Output: ‘Yes' if it is possible to take a trip that passes
through all the cities, and whose total length is no greater
than K miles, and ‘No’ if such a trip is impossible.

This too asks to search for a short path, not between two
points but, rather, a path that traverses all points. Also, this
problem is not phrased as requiring an optimization (i.e.
find the ‘best’ path), but as a decision problem that asks
just whether there is some path shorter than the given limit.

14 COMPUTERS LTD.

Problem 8

Input: A program P written in Java, with integer input vari-
able X and output variable Y, and a number K.

Output: The number 2K if the program P always sets Y's
value to be equal to X?, and 3K if not.

This problem is about algorithms, in their formal attire as
programs. It wants to know something about the behavior
of a given program in general; not of a particular input.

So algorithmic problems have all kinds of inputs: numbers,
words, texts, maps, and even other algorithms or programs.
Also, some problems are truly computational in nature, some
involve rearrangements (sorting), some require information
retrieval (finding common words), some are optimization prob-
lems (shortest path), and some are decision problems (primal-
ity testing and all-point trips). Thus, a decision problem is a
yes/no algorithmic problem. Decision problems appear not to
compute, retrieve or optimize, only to decide, determining
whether some property is true or false. Some algorithmic prob-
lems are hybrids: Problem 8, for example, combines decision
with computation; its output is the result of one of two simple
computations, but which of these it will be depends on a prop-
erty of the input that has to be decided.

All these sample problems have infinite sets of legal inputs.
To solve them, we have to be able to deal with arithmetic on all
numbers, with sorting a/l lists of words, with finding the short-
est trip in all city maps, etc. Put another way, each problem
requires that we devise a method, a common procedure or
recipe, that will solve any given instance of the problem. The
number of potential instances is infinite. Such a method consti-
tutes an algorithm.

WHAT'S IT ALL ABOUT? 15

Many algorithmic problems in the real everyday world are
not so easy to define. Sometimes the difficulty is in specifying
the required output, as when asking for the best move for a
legal board position in chess (what exactly is ‘best’?). In other
cases, describing the inputs can be complicated. Suppose
20000 newspapers are to be distributed to 1000 delivery points
in 100 towns using 50 trucks. The input contains the road dis-
tances between the towns and between the delivery points in
each town, the number of newspapers required at each point,
the present location of each truck, details of available drivers
including their present whereabouts, and each truck’s news-
paper carrying ability, gasoline capacity, and miles-per-gallon
performance. The output is to be a list, matching drivers and
destinations to trucks in a way that minimizes the total cost to
the distributing company. Actually, the problem calls for an
algorithm that works for any number of newspapers, towns,
delivery points, and trucks.

Some problems have hard-to-pin-down inputs as well as
hard-to-specify outputs, such as the ones required to predict
the weather or to evaluate stock market investments.

In this book, we shall stick to simple-looking algorithmic
problems, usually with easy to describe inputs and outputs. In
fact, for the most part, we will concentrate on decision prob-
lems. So describing our problems will be easy, and the outputs
will usually be just ‘Yes’s and ‘No’s.

Isn’t our setup too simplistic?

Aren’t we oversimplifying things? Computers are busy strug-
gling with tasks far more complicated than merely reading a
simple input, doing some work, producing a ‘Yes' or a ‘No’,
and quitting. Aren’'t we greatly weakening our presentation by
avoiding modern real-world computational frameworks, such as

16 COMPUTERS LTD.

interactive computing, distributed systems, real-time embedded
systems, graphics-intensive applications, multimedia, and the
entire world of the Internet?

To me, the author, you might be saying under your breath
‘Are you just another one of those stuffy academics? Don’t you
know anything about computing? Stop giving us this chit-chat
about simple input/work/output computations. Just get real,
will you?'.

The answer is: indeed, yes. We are simplifying things, and in
fact quite radically. But for a very good reason. Remember that
we are dealing with the bad news. This book is not about
making things better, smaller, stronger, or faster. It is about
showing that very often things cannot be improved in these
ways. That things can become very, very nasty. That certain
tasks are simply impossible. Now, given that we are after bad
news here, our arguments and claims become stronger, not
weaker, by considering a simpler class of problems! We will be
showing that even in a simple computational framework things
can be devastatingly bad; all the more so in an intricate and
seemingly more powerful one. The fact that computers are
hopelessly limited is more striking with a simple input-output
paradigm for computation than with a more complex one.
Moreover, since the book is devoted almost exclusively to deci-
sion problems, we are also implying that the bad news has
nothing to do with the need for complicated and lengthy out-
puts. The desire to generate even a simple ‘Yes' or ‘No’ is
enough to yield real nightmares.

Solving algorithmic problems
An algorithmic problem is solved when an appropriate
algorithm has been found. What is ‘appropriate? Well, the

WHAT'S IT ALL ABOUT? 17

algorithm must provide correct outputs for all legal inputs: if
the algorithm is executed, or run, on any one of the legal
inputs defined in the problem, it must produce the output
specified in the problem for that input. A solution algorithm
that works well for some of the inputs is not good enough.

Finding solutions to most of the sample problems described
earlier is easy. Computing /> + 3K is trivial (assuming, of course,
that we have basic operations for addition and multiplication),
and likewise summing the integers from 1 to K. In the latter
case, of course, we must use a counter to keep track of how far
we have gone and to stop the process when we have dealt with
K itself.

To test whether a number K is prime (Problem 3), we divide
it by all the integers from 2 to K — 1, stopping and saying ‘No’ if
one of them is found to divide K without a remainder, and
stopping and saying ‘Yes’ only when all the divisions have
been completed and they have all yielded a remainder.*

Problem 4 can be solved by numerous different sorting algo-
rithms. A simple one involves repeatedly searching for the
smallest element in the input list Z, removing it from L and add-
ing it to the accumulating output list. The process stops when the

 Of course, this algorithm can be improved: we can stop the process of
testing for divisors at J[?, the square root of K, rather than at K — 1. The
reason is that if K has a clean divisor that is larger than JK it must also
have one that is smaller. We can also avoid testing multiples of the
numbers already tested, thus further expediting the process. Some of the
other problems can also be solved more efficiently than the ways we
mention. However, efficiency and practicality of algorithms are not
addressed until later in the book, so we shall not dwell on these issues
right now. Here we impose only the minimal requirement — that the
algorithm does, in fact, solve the problem, providing correct outputs for
all legal inputs, even though it might do so inefficiently.

18 COMPUTERS LTD.

original list is empty. Problems 6 and 7 can both be solved by
considering all possible paths between cities (that is, one-way
paths between A4 and B in Problem 6, and round-trip paths that
traverse all the cities in Problem 7), and computing their lengths.
Since the number of cities is finite, the number of paths is finite
too, so that an algorithm can be set up to run through them all.
This has to be done with care, however, so as not to miss any
paths.

As mentioned, we shall return to several of these sample
problems in the following chapters.

Programming

An important issue that we should address, although it is not
really critical to the central concerns of the book, is the way
algorithms are executed by real computers. How do computers
bridge the gap between their extremely modest capability to
carry out operations on bits and the high-level actions humans
use to describe algorithms? For example, how can bit manipu-
lation be made to accomplish even such a simple-looking task
as ‘proceed through the list, adding the current employee’s
salary to the noted number? What list? Where does the com-
puter find the list? How does it proceed through the list? Where
exactly is the salary to be found? How is the ‘noted number’
accessed? And so on.

We have already mentioned that algorithms must be pre-
sented to the computer in a rigorous, unambiguous fashion,
since when it comes to precision and unambiguity, ‘proceed
through the list' is not much better than ‘beat egg whites until
Joamy'. This rigor is achieved by presenting the computer with
a program, which is a carefully formulated version of the algo-
rithm, suitable for computer execution. It is written in a pro-

WHAT'S IT ALL ABOUT? 19

gramming language, which provides the notation and rules by
which one writes programs for the computer.

A programming language must have a rigid syntax, allowing
the use of only special words and symbols. Any attempt to
stretch this syntax might turn out to be disastrous. For example,
if ‘input K is written in a language whose input commands are
of the form ‘read K, chances are that the result will be some-
thing like ‘SYNTAX ERROR E4514 IN LINE 108'. And of course,
we cannot hope to address the computer with the like of
‘please read a value for K from the input, or ‘how about getting
me a value for K'. These might result in a long string of obscure
error messages. It is true that nice, talkative instructions, such
as the ones we find in recipes, are more pleasant and perhaps
less ambiguous to a human reader than their terse and imper-
sonal equivalents. It is also true that we strive to make comput-
ers as user-friendly as possible. But since we are still far from
computers that can understand free-flowing natural language
like English (see Chapter 7), a formal, concise, and rigid set of
syntactic rules is essential.

An algorithm for summing the numbers from 1 to K might be
written in a typical programming language as follows:

input K

X:=0

for Y from 1 to K do
X=X+Y

end

output X

The intended meaning of this program is as follows. First, K is
received as an input and the variable X (a ‘noted number’) is
assigned an initial value of zero. Its role will be to accumulate
the running sum we are calculating. Next, a loop is carried out,

20 COMPUTERS LTD.

calling for its body — in our case the X: = X + Y that appears
between the for command and the end - to be executed again
and again. The loop is controlled by the variable Y, which starts
out with the value 1 and increases repeatedly by 1 until it
reaches K, which is the last time the X: = X + Y is executed.
This causes the computer to consider all the integers from 1
to K, in that order, and in each iteration through the loop the
integer considered is added to the current value of X. In this
way X accumulates the required sum. When the loop is com-
pleted, the final sum is output.

Of course, this is what we intend the program to mean,
which is not enough. The computer must somehow be told
about the intended meaning of programs. This is done by a
carefully devised semantics that assigns an unambiguous
meaning to each syntactically allowed phrase in the program-
ming language. Without this, the syntax is worthless. If mean-
ings for instructions in the language have not been provided
and somehow ‘explained’ to the computer, the program seg-
ment ‘for ¥ from 1 to K do’ might, for all we know, mean ‘sub-
tract Y from 1 and store the result in K, instead of it being the
controlling command of the loop, as we intended. Worse still,
who says that the keywords from, to, do, for example, have
anything at all to do with their meaning in English? Maybe the
very same program segment means ‘erase the computer’s entire
memory, change the values of all variables to zero, output “TO
HELL WITH PROGRAMMING LANGUAGES", and stop!. Who
says that : =* stands for ‘assign to’, and that ‘+' denotes addi-
tion? And on and on. We might be able to guess what is meant,
since the language designer probably chose keywords and
special symbols intending their meaning to be similar to some
accepted norm. But a computer cannot be made to act on such
assumptions.

WHAT'S IT ALL ABOUT? 21

To summarize, a programming language comes complete
with rigid rules that prescribe the allowed form of a legal pro-
gram, and also with rules, just as rigid, that prescribe its meaning.
We can now phrase, or code our algorithms in the language,
and they will be unambiguous not only to a human observer,
but to the computer too.

Once the program is read in by the computer, it undergoes a
number of computerized transformations, aimed at bringing it
down to the bit-manipulation level that the computer really
‘understands’. At this point the program (or, rather, its low-level
equivalent) can be run, or executed, on a given input (see
Fig. 1.4).°

Errors and correctness

Coming up with a bright idea for an algorithm, constructing the
algorithm itself carefully and then writing it up formally as a
program, doesn’t mean we are done. Consider the following:

e Several years ago, around her 107th birthday, an elderly lady
received a computerized letter from the local school author-
ity in a Danish county, with registration forms for first grade
in elementary school. It turned out that only two digits were
allotted to the ‘age’ field in the population database.

e In January 1990, one of AT&T’s switching systems in New
York City failed, causing a major crash of the national AT&T
telephone system. For nine hours, almost half of the calls
made through AT&T failed to connect. As a result, the
company lost more than $60 million, not to mention the

* The main transformation among these is called compilation. The com-
piler, which is itself a piece of software, transforms the high-level pro-
gram into a functionally equivalent program written in a low-level
format called assembly language, which is much closer to the machine
language of bit manipulation.

222

INDEX

three-color problem 106
NP-completeness 106
3x+1 problem 51-2
tic-tac-toe 203
tiling problem 30-3
equivalence to halting problem 54-5
highly undecidable variant 57
unboundedness does not imply
undecidability 46-7
undecidability 32-3
variants 33
time, see running time
time complexity 65-9
dependence on language and
compiler 66
not determined by length of output
=3
practical issues 66
upper and lower bounds 65-9
see also exponential time; linear time;
NP; PTIME; QP; quadratic time' RP
timetable problem 91, 100-2
NP-completeness 101
practical compromise solutions 101-2
tractable variants 102
Towers of Hanoi 69-73
algorithm for solution 71
time complexity 72
tractable problem 78, 91
see also P; PTIME
trapdoor function 164, 169-70
traveling salesman problem [Problem 7]
13, 17-18, 97-100, 154
approximation algorithm 113
NP-completeness 100
relevance to applications 99

Turing machine 36—40
multiplication algorithm 38-40
slowness not unreasonable 80
solvability using 40
status as universal machine 40-2

Turing test 194-8

Twinkle 173

undecidable problem 28, 32-6, 47-58
degrees of hardness 54-8
unlimited intractability 87-8
unsolvable problem 27
see also undecidable problem

variable 8
verification of programs 48-50
verification problem 534
more undecidable than halting
problem 55-6
voting 187-8

Waldo 179
witness 137

see also certificate
worst case 62
WS1S 86-8

unlimited intractability 87

Y2K problem 23, 49-50
year 2000 bug 23, 40-50

zero-knowledge protocol 178-86
cryptographic applications 179-80
for three-coloring a network 181-6
P vs. NP question 186

