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Part I
INTRODUCTION




Chapter 1

Computers and Creativity

“The heavens call to you, and circle about you, displaying to you
their eternal splendors, and your eye gazes only to earth.”

Dante

Imagine a world with no shadows, no sun.

Imagine computing, with no mystery, no creativity, no human dreamer. The
beauty and importance of computers lie mainly in their usefulness as a tool for
reasoning, creating and discovering. Computers are one of our most important



tools for reasoning beyond our own intuition. In order to show the eclectic
nature of computer “territory,” this book contains a collage of topics which
have in common their highly visual nature, and each can be effectively
explored using a computer.

Imagery is the heart of much of the work described in this book. To help
understand what is around us, we need eyes to see it. Computers with graphics
can be used to produce visual representations with a myriad of perspectives.
These perspectives are demonstrated by the subjects presented in this book.
The applications are varied and include fields as diverse as speech synthesis,
molecular biology, mathematics, and art. Yet it is hoped that they all combine
to illustrate the wonder in “lateral thinking” with computers (defined in Sect.
1.2 “Lateral Use of Computer Software Tools” on page 4).

1.1 Objectives

Where possible, the material is organized by subject area. The purpose of this
book is:
1. to present several novel graphical ways of representing complicated data,
2. to show the role of the aesthetics in mathematics and to suggest how
computer graphics gives an appreciation of the complexity and beauty
underlying apparently simple processes,
3. to show, in general, the beauty, adventure and potential importance of
creative thinking using computers,
4. to show how the computer can be used as an instrument for simulation
and discovery.

1.2 Lateral Use of Computer Software Tools

“He calmly rode on, leaving it to his horse’s discretion to go which
way it pleased, firmly believing that in this consisted the very
essence of adventures. ”

Cervantes, Don Quixote

“Lateral thinking” is a term discussed by writer/philosopher, Robert Pirsig
(author of Zen and the Art of Motorcycle Maintenance). As he explains it,
lateral thinking is reasoning in a direction not naturally pointed to by a
scientific discipline. It is reasoning in a direction unexpected from the actual
goal one is working toward (see also de Bono, 1975). In this book, the term
“lateral thinking” is used in an extended way to indicate not only action
motivated by unexpected results, but also the deliberate drift of thinking in new



directions to discover what can be learned. It is also used to indicate the
application of a single computer software tool to several unrelated fields.

Let’s list a few examples of the lateral use of computer software tools. These
examples will be discussed in greater detail later in the book. To give some
personal history and examples: while creating analysis tools for speech
synthesis research (Chapter 3), the author drifted laterally and examined their
application to the study of the breathing motions of proteins. This naturally led
to other biological molecules such as genes. In this application, the sequence of
bases in a human bladder cancer gene is treated as if it were a speech
waveform in order to gain a new perspective. These studies presented
traditional graphics and analysis in new applications in an effort to visualize
complex data.

This idea of novel ways for making complicated data understandable led to
the application of Chernoff faces (cartoon faces whose facial coordinates
depend on the input data). These faces can be applied to a range of sounds,
mathematical equations, and genetic sequences. The faces rely on the feature-
integration abilities of the human brain to condense a vast amount of data.

Does there exist an optimal representation for visual characterization and
detection of significant information in data? This question, along with the face
research, further stimulated my interest in the human visual system. Part of
Chapter 4 discusses the use of a perceptual illusion, achieved with patterns of
dots, to the characterization of subunit relationships in proteins. These patterns,
called “Moire interference patterns,” resemble galaxies and whirlpools. The
interference patterns led to another question concerning vision and data
characterization: Can symmetry operators, like the mirrors in a child’s
kaleidoscope, help us to understand data? To answer this question, another dot-
based tool was developed; this representation is comprised of snowflake-like
patterns of colored dots and is used to characterize sounds.

Intriguing even as an art form, these dot patterns may be a way of visually
fingerprinting natural and synthetic sounds and of allowing researchers to
detect patterns not easily captured with traditional analyses.

A short quote from Robert Pirsig can apply to the joy computer
programmers, artists, and scientists often experience when experimenting on a
computer:

“It’s the sides of the mountain which sustain life, not the top.
Here’s where things grow.”



1.3 Reading List for Chapter 1

Two interesting books on the topics of creativity and lateral thinking are De
Bono (1970) and Pirsig (1975).
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Chapter 2

Hidden Worlds

“If we wish to understand the nature of the Universe we have an
inner hidden advantage: we are ourselves little portions of the
universe and so carry the answer within us.”

Jacques Boivin, The Heart Single Field Theory

2.1 Digits, Symbols, Pictures

We live in a civilization where numbers play a role in virtually all facets of
human endeavor. Even in our daily lives we encounter multidigit zip-codes,
social security numbers, credit card numbers, and phone numbers. In many
ways the requirements for ordinary living are a great deal more complicated
than ever before. Digits...digits...digits.... It all seems so dry sometimes. And
yet, when one gazes at a page in a scientific journal and sees a set of
complicated-looking equations, such as those chosen from pages of scientific
texts (Figure 2.1), a sense of satisfaction is generated: the human mind, when
aided by numbers and symbols, is capable of expressing and understanding
concepts of great complexity. Ever since “visionary” mathematical and
physical relations trickled like rain onto the rooftop of 20th century man, we
have begun to realize that some descriptions of nature lie beyond our
traditional, unaided ways of thinking.

The expression of complicated relations and equations is one magnificent
step — insight gained from these relations is another. Today, computers with
graphics can be used to produce representations of data from a number of
perspectives and to characterize natural phenomena with increasing clarity and
usefulness. “Mathematicians couldn’t solve it until they could see it!” a
caption in a popular scientific magazine recently exclaimed when describing
work done on curved mathematical surfaces (Science Digest, January, 1986, p.
49). In addition, cellular automata and fractals — classes of simple
mathematical systems with exotic behavior — are beginning to show promise
as models for a variety of physical processes (see “Genesis Equations” on page



104 and “Tesselation Automata Derived from a Single Defect” on page 295).
Though the rules governing the creation of these systems are simple, the
patterns they produce are complicated and some-times seem almost random,
like a turbulent fluid flow or the output of a cryptographic system.
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Figure 2.1. The symbols of mathematics.

Today, in almost all branches of the scientific world, computer graphics is
helping to provide incito and to reveal hidden relationships in complicated
systems. Figure 2.2 is just one example of the use of graphics to represent the
behavior of mathematical functions. Notice the complexity of the behavior
exhibited by the function used to create Figure 2.2 — behavior mathematicians
could not fully appreciate before computers could display it.

Like computer models of a host of natural phenomena such as vortices, fluid
flow, and other chaotic (irregular) systems, pictures such as these reveal an
unpredictable, exciting and visually attractive universe.




2.2 Computers and Art

“Salvador Dali once exploded a bomb filled with nails against a
copper plate, producing a striking but random pattern. Many other
artists have also utilized explosives in their work, but the results
have generally been unpredictable.”

Febr. 1989, Scientific American

Not only can computers and graphics be used in counting and measuring, but
they also are of enormous help in producing visual art (Figure 2.3). (See the



vl..l.\.

<d3rd

Figure 2.2. Mathematics and beauty. Appealing as an art form, this intricate
diagram is called a Halley map, and it can be used to represent properties of



numerical methods. The generating functionisz — z” 1 (see “Numerical
Approximation Methods” on page 275).

Reading List at the end of the chapter for more information on computer art.)
The break between artistic and scientific pursuits is often apparent today.
Whereas the earlier thinkers pursued science and art in the light of guiding
principles such as harmony and proportion, today some hold the view that
science stifles the artistic spirit. Nevertheless, the computer is capable of
creating images of captivating beauty and power. Techniques such as
animation, color and shading all help to create fantastic effects (Figure 2.4).

In much of the work in this book, beauty, science and art are intertwined,
and — judging from the response from readers — this contributes to the
fascination of these approaches for both scientists and laypeople. From an
artistic standpoint, mathematical equations provide a vast and deep reservoir
from which artists can draw. New algorithms (“recipes”), such as those
outlined in this book, interact with such traditional elements as form, shading
and color to produce futuristic images. The mathematical recipes function as
the artist’s assistant, quickly taking care of much of the repetitive and
sometimes tedious detail. By becoming familiar with advanced computer
graphics, the computer artist may change our perception of art.

2.3 Computer Graphics: Past and Present

2

“Computers are useless. They can only give you answers.
Pablo Picasso

In the beginning of the modern computer age, computer graphics consisted of
the multitude of Abe Lincolns, Mona Lisas, and Charlie Brown cartoons
spewed forth from crude character line-printers in campuses and laboratories.
Better hardware led to better images. In the 1970s we saw an increasing
amount of computer animation, computer generated-commercials and films —
and Pacman. Today, in science, computer graphics is used to reveal a variety of
subtle patterns in nature and mathematics. The field of computer graphics is
very important in: 1) revealing hidden correlations and unexpected
relationships (and as an adjunct to numerical analysis), 2) simulating nature,
and 3) providing a source of general scientific intuition. Naturally, these three
uses overlap. Pseudo-color, animation, three-dimensional figures, and a variety
of shading schemes are among the techniques used to reveal relations not
easily visible in more traditional data representations.



2.4 Computers: Past and Present

Taking a step back: how long ago did computing really begin? Probably, the
first calculating machine to help expand the mind of man was the abacus. The
abacus is a manually operated storage device which aids a human calculator. It
consists of beads and rods and originated in the Orient more than 5,000 years
ago. Archeologists have since found geared calculators, dated back to 80 BC,
in the sea off northwestern Crete. Since then, other primitive calculating
machines have evolved, with a variety of esoteric sounding names, including:
Napier’s bones (consisting of sticks of bones or ivory), Pascal’s arithmetic
machine (utilizing a mechanical gear system), Leibniz’ Stepped Reckoner, and
Babbage’s analytical engine (which used punched cards) (see Gardner, 1986,
for more detail).

Continuing with more history: the Atanasoff-Berry computer, made in 1939,
(Mackintosh, 1988), and the 1500 vacuum tube Colossus, were the first
program-mable electronic machines. The Colossus first ran in 1943 in order to
break a German coding machine named Enigma. The first computer able to
store programs was the Manchester University Mark I. It ran its first program
in 1948. Later, the transistor and the integrated circuit enabled micro-
miniaturization and led to the modern computer.






Figure 2.3. Complexity and simplicity. This iteration map represents the

complicated behavior of a simple function, z 2+ . (See “More Beauty
from Complex Variables” on page 113 for more information on this plot).

Figure 2.4. Computers and art. Many of the ornaments of modern man and his

ancient cultures consist of symmetrical and repeating designs. Here, this tiled

egg-shape is produced from a simple generating formula, z y = (sinx+sin
y) (see “Synthesizing Ornamental Textures” on page 227).

In 1988, one of the world’s most powerful and fastest computers is the



liquid-cooled Cray-2 produced by Cray Research. It performs 250 million
floating point arithmetic operations per second — much more expensive than
the abacus or Napier’s bones, but also much faster!

2.5 The Human Brain vs. the Computer Brain

2.5.1 The Human Brain

While it’s clear that the computer “brain” is vastly superior to man’s brain in
certain tasks, for perspective it is useful to mention some of the lesser known
capacities of the human mind-machine.

The human brain weighs about three pounds and is made of roughly 10
billion neurons, each neuron receiving connections from perhaps 100 other
neurons and connecting to still 100 more (Figure 2.5). The web of
interconnections is so complex that the whole cortex can be thought of as one
entity of integrated activity. Many neurobiologists believe that memory,
learning, emotions, creativity, imagination — all the unique elements of human
character — will ultimately be shown to reside in the precise patterns of
synaptic interconnections in the human brain. The importance of the brain’s
system of pathways has led some scientists to hypothesize an equation for
consciousness itself: C = f1(n)f>(s) (Rose, 1976). Consciousness C is
represented on the cellular level by a function of neural cell number, n, and
connectivity s. It has been shown that small systems of neurons (i.e., under
10,000 neurons), such as those in simple invertebrates, are capable of learning
and memory. In 1987, computer models of neural networks helped researchers

begin to untangle the complexities of biological processes such as vision.
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Figure 2.5. The human brain and an electronic circuit.

2.5.2 Human Computers

We know that the human brain is capable of profound and important functions
such as creativity and imagination, but often little is said of its computing and
storage capabilities. In some instances, the human memory can be great. For
example, in 1974, one individual recited 16,000 pages of Buddhist texts
without error. Later, a 23-year old Indian man recited  from memory to
31,811 places in about 3 hours. (Note that in 1987 a NEC SX-2 supercomputer
calculated  to more than 134 million digits. In 1989, the Chudnovsky
brothers, two Columbia University mathematicians, computed over one billion
digits of  using a Cray 2 and an IBM 3090-VF computer.)

As an example of computational capabilities of the human brain, Willem
Klein in 1981 was able to extract the 13th root of a 100-digit number in about
one minute. In addition, there are the autistic savants — people who can
perform mental feats at a level far beyond the capacity of a normal person but
whose overall IQ is very low.

2.6 New Applications of Calculating: A Sampling and
Digression



In many branches of science, progress is enhanced by finding new ways to
calculate and simulate. Among these fields are plasma physics, astrophysics,
molecular biology, and geology. In music and speech, computers are making
an impact. With the increasing availability and improvement of voice synthesis
technology, singing synthesizers may herald the next revolution in music,
much as did the electronic music synthesizers of the 1970s. Not only will
computers be singing songs, but they will be writing the songs they sing (see
“Singing Computers” on page 23).

In medicine, carefully designed computer programs and systems assist in
making medical diagnoses. Psychiatrists at the Salt Lake City Veterans’
Administration Hospital have been testing such systems to diagnose mental
illness. A patient is first greeted by a human receptionist who takes him to a
private room containing a computer terminal. A computer program then
presents a battery of tests, and twenty minutes later a staff psychiatrist reviews
the questions to make a final judgement about the person’s condition.
Diagnosis by computer programs has meant substantial savings in time and
money for the patient, and, most importantly, computer diagnosis has proved to
be remarkably accurate. The computer never tires, never is biased — and the
impersonal relationship appears actually to help. Another medical use is in the
hospital operating room which has become increasingly colonized by
“electronic nurses”: computers that allow doctors to regulate operating-room
lighting, adjust instruments, or even call “scalpel” with just the punch of a
keyboard.

Advances in bioengineering allow, in some cases, the restoration of sight to
the blind and hearing to the deaf. Computer-driven prostheses have been
designed to take over the function of body organs such as bladders, blood
vessels, testicles, and fallopian tubes. Perhaps one of the greatest advances in
computers and medicine is the display and reconstruction of the interior of
portions of the body (tomography). Magnetoencephalography and
magnetocardiography now describe the subtle magnetic fields emanating from
the brain and heart.

In short, computer calculations are now beginning to radically change how
scientists pursue and conceptualize problems, and computer models open up
entire new areas of exploration. In fact, of all the changes in scientific
methodology, probably none is more important than the use of computers. The
sheer amount of data generated by experiments is so large that comparisons
and conclusions could not be made without computers. For example, massive
DNA sequences have been uncovered — and only with the computer can
hidden correlations be found within these bases in the genetic materials of
organisms. Not unlike the search for extraterrestrial signals from space,
scientists try to reconstruct “messages” and patterns in DNA strands,
mathematical progressions, and a range of natural phenomena.



Educational areas vastly benefit from computerization. With appropriate
software, university networks of personal workstations are facilitating remedial
learning. Students are also using the computer as a tool for learning
computational physics. The computer-assisted videodisc combines computer
and video technique in an instructional tool which is changing the way
chemistry, physics, and engineering is taught. Even Chaucer has become
computerized; for example, a student studying Chaucer’s Canterburry Tales
can now display the original text side-by-side with notes on the meanings of
individual words and a modern English translation.

The remarkable panoply of computer applications seems to be growing:
computers play a role in the design of other computers, in video analysis
systems, in protein structure determination and design, cryptographic systems,
robotics, and molecular evolution studies. Computer-drawn 3-D structures of
viruses, such as polio viruses, may lead us to new cures. Thunderstorm
modelling today involves the simulation of the growth of a single cloud into
storms that can produce tornadoes. Extensive earthquake-detecting systems
consist of the interplay of computers, instrumentation, telemetry and data
reduction. The search for extraterrestrial intelligence employs the automatic
detection of interstellar signals and requires sophisticated computers. Flight-
deck automation is changing the role of the human pilot. Computer information
services offer biographies and high-resolution graphics of the FBI’s most
wanted fugitives (Science Digest, 1986, January, p. 15). Now some computers
not only learn how to draw artistically in the style of famous artists, but
actually improve with practice (Kluger, 1987). (Readers interested in computer
programs which mimic the artwork of Miro should see Kirsh and Kirsh, 1988.)

Computer-aided design (CAD) is rendering the blueprint obsolete. CAD
programs can allow on-screen tours inside buildings, and future systems will
be able to simulate the flow of sunlight at various times of the day. Finally, just
a week before this chapter was written, an article appeared which described the
use of high-speed computers to create the perfect bowling ball! After seven
years of research, a precisely weighted polyester ball has been created that is
almost entirely free of minute wiggles and bounces that bedevil the average
bowler.

2.7 One Final Word

“Au fond de I’Inconnu pour trouver du nouveau” (Into the depths
of the Unknown in quest of something new)

Charles Baudelaire, in Le Voyage



If the properties we assign to the natural world are partly expressions of the
way we think and our capacity for understanding, then the introduction of new
tools such as the computer will change those properties. The computer, like a
microscope, expands the range of our senses. The world made visible by the
computer seems limitless.

2.8 Reading List for Chapter 2

Gardner (1986) gives additional information on one of the early computing
machines mentioned in this chapter (Napier’s bones). Mackintosh (1988)
describes the early 1939 Atanasoff-Berry computer. For interesting speculative
information on the brain, computers, and consciousness, see Rose (1976).

There has been a well-developed history of computer art since the 1960s.
Some references to this work are given in “Reading List for Chapter 13” on
page 238. Of particular interest is J. Reichardt’s book Cybernetic Serendipity:
The Computer and the Arts which contains a very stimulating collection of
papers on the alliance of art and technology. J. Kluger’s 1987 article in
Discover Magazine presents some beautiful artwork from many contemporary
computer artists such as Yoichiro Kawaguchi, Jennifer Bartlett, Larry Rivers,
Harold Cohen, and Melvin Prueitt, just to name a few. The reader is also
directed to the wonderful journal Leonardo (2030 Addison St, Suite 400
Berkeley, CA 94704) which is devoted to the interaction of the arts, sciences,
and technology. The journal focuses on the visual arts and also addresses
music, video, and performance.

The endpiece figure for this chapter is entitled “A Twilight Friend,” and the
computer graphic illustration is from a collection of the author’s
mathematically derived sculptures entitled I Have Dreams at Night. Only three
trigonometric curves are used to shape the creature’s body.
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Part 11
REPRESENTING NATURE




Chapter 3

Fourier Transforms (The Prisms of Science)

“It is indeed a surprising and fortunate fact that nature can be
expressed by relatively low-order mathematical functions.”

Rudolf Carnap

“Art, literature, and music create order. Science searches for
order that already exists.”

Anonymous

We live in a world filled with a maze of aural and visual patterns. Later
chapters deal with the characterization of patterns residing in infinitely
complicated mathematical worlds. In this chapter we are interested in
representing the many facets of nature, that is, in finding patterns in
phenomena as diverse as animal vocalizations, music and the genetic
sequences of cancer genes. To help characterize this cacophony of complicated
data, we first review a famous mathematical technique called the Fourier
transformation. Like a prism which separates white light passing through it into
its rainbow-colored components, the Fourier transform give us an idea of the
hidden components in complicated input. The varied topics in the following
sections all have in common the fact that the Fourier transform was used as a
tool for finding patterns.

3.1 Fourier Analysis: A Digression and Review

The advent of the personal computer simplifies explorations of the patterns in
nature. Let us begin gradually, with the introduction of a simple sine wave. A
sine wave is a mathematical function that has unique and important properties.
Usually it is graphed as a wiggly curve that periodically rises and falls.
Mathematically, the sine wave has two attributes: amplitude and frequency.? A

sine wave can be represented by the equation y(t) = Asin(2 ft), where A is the
amplitude or maximum displacement of a varying quantity from its average



value. f is the frequency, which tells us about the number of peaks occurring

per second, and t represents time.> The higher the frequency, the more times
the sine wave goes up and down each second. fis often expressed in cycles per
second or Hertz. The sound heard from a loudspeaker producing air pressure
varying sinusoidally in time is a “pure tone.”

Generally speaking, a waveform can be represented as the sum of a group of
sinusoids. To those who are knowledgeable in mathematics, this statement is
equivalent to saying that one can represent a wave by a Fourier series. For
example, a complicated wave can actually be constructed by summing three
sine waveg: y(t) = 3 sin(2 200t) + 5sin(2 500t) + 10 sin(2  1500¢). This
equation represents a Fourier series, named after the French mathematician
Joseph Fourier (1768-1830). What Fourier showed is that the behavior of the
most complicated wave-shape can be described in terms of sines and cosines. If
we had some way to solve for the amplitudes of each frequency component, we
could decompose a function into its sinusoidal components and find the
amplitude of each component. In fact, solving for the amplitude(s) is relatively
simple. The process is called a Fourier transformation, and simple pseudocode

is included here for its computation.* Usually what is plotted is the energy, or
“power”, at each frequency; power is calculated from the square of the
amplitudes. In the previous equation, all A’s are zero, except for three
frequencies. A power spectrum, computed from the Fourier transform, is
visually shouting at the viewer, “hey, your input has repeating features which
occur at three different, prominent frequencies.” The three peaks indicate three
important periodicities: one with frequency 100, one with frequency 500, and
another with frequency 1500. For more mathematical information on the power
spectrum, see Koopmans (1974). Pseudocode 3.1 shows the necessary steps for
power spectrum computation.

[The operation in the inner DO loop is essentially an averaging of the
product of the analyzed signal and a sine and cosine of each examined
frequency. The method in the pseudocode is more rigorously known as a
discrete Fourier transform and it allows one to compute the energy of each
sinusoidal component with frequency, f (Morgan, 1984).]

Of course, most phenomena of nature are not nearly as simple as in the
previous waveform example (see speech waveform in next section). Figure 3.1
contrasts an example of a three-dimensional power spectrum for the waveform
representing sounds of a speech synthesizer and a human saying the word
“seventeen.” The 3-D power spectrum is an assemblage of 2-D spectra (such as
in the simple sine wave example power spectra) stacked through time to help

us see how the occurrence of different frequencies changes through time.”



ALGORITHM: How to create a power spectrum

VARIABLES: TimeInterval - the time between data points (seconds)
NPTS - the number of original data points.
INPUT: Input(t) - waveform as a function of time.
OUTPUT: Power (f) - amount of energy at each
frequency (Hz).

Notes: The power spectrum is useful for detecting patterns in
complicated waveforms. Simply plot Power(f) vs. f. Peaks
should occur at prominent fregquencies.

Real(f) and Imag(f) are simply real-valued arrays which hold
intermediate values needed in the computation., See referenced
boocks for windowing technigues used to improve spectrum.

twopi = 6.283; TimeInterval = 00,0001 (* sec. *)

MAXF = 1/(2*TimeInterval); (¢* set the highest fregquency *)
DO £ = 1 to MAXF; (* x-axis range is 1 to MAXF (Hz) *)
real (f),image(£f) = 0; {(* initialize for summation *)
arg=twopi*f*TimelInterval;
DO 1 = 1 to NPTS; (¢ Locp over points in input *)

real(f) = real(f) + input(i)*cos(arg®*i);
imag(f) = imag(f) + input(i)®*sin(arg®*i);
END;
(* compute power spectrum - amcunt of energy at each f %)
Power(f) = real(f)**2 + imag(f)e*2;
END;

Pseudocode 3.1. How to create a power spectrum.

In the next sections, a variety of applications will be presented in which the
3-D Fourier transform has been used to analyze and detect patterns in data.
Though the applications are varied, the idea that binds them is the use of this
standard analysis tool in new ways. After one has developed a tool for analysis
in a specific area, it can sometimes be applied to totally unrelated fields. For
example, in the following section, the synthesis of a singing chorus by
computer is discussed. Here, a 3-D power spectrum was used to examine the
frequency composition of the various vocal parts.

3.2 Singing Computers

Speech synthesizers are common; we hear talking toasters, microwave ovens,
scales, toys, and cars. These may seem like unimportant applications, but as
devices become more complex some will become unworkable without speech.
As equipment manufacturers begin to add sensors to determine different
conditions, hazard monitoring by visual means alone will become difficult and
dangerous. New speech products are also aiding the blind (for an excellent



review of speech synthesis, see Morgan (1984) and Witten (1982)). Most of
these methods have one limitation — they have “canned” or recorded speech
stored in their memory chips. Of greater interest are techniques for
synthesizing a potentially unlimited variety of continuous speech utterances.
With the method of synthesis discussed here, 11 parameters (Figure 3.2 shows
these parameters in bubbles) are changed 100 times a second to control the
output sound. (Using fewer than 11 parameters produced a less intelligible
vocal output.) These parameters control such factors as how loudly vowels are
spoken relative to consonants, and also the frequencies of filters which
simulate various vocal tract resonances known as formants. As a useful
analogy, think of a coffee filter which lets the coffee liquid go through but
retains the coffee grounds. Similarly, an audio filter permits some frequencies
to “go through,” while stopping others. Filters consist of mathematical
formulae which act somewhat like the tone knob on a hi-fi system — turning
the knob, or altering the filter equation, reshapes the frequency characteristics
of the resulting sound. The reader may be interested in viewing pseudocode for
producing a simple singing sound (Pseudocode 3.2). The code is presented here
without a detailed explanation of all the variables. For more information on
filter theory, see Witten (1982) and Morgan (1984). [For readers interested in
more detail, the filter in the pseudocode produces a waveform with constant
center frequency and bandwidth. Bandwidth controls the spread of frequencies.
In synthetic singing, both bandwidth and band center vary slowly and
smoothly, since they change as a result of motion of articulators (such as the
tongue). The filter in the pseudocade is known as a second-order resonance
filter.]
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Figure 3.1. Three-dimensional power spectrum for speech. Graphs are
computed for a synthesizer (top) and human (bottom) saying the word
“seventeen.” Time goes into the back of the page. The heights of the various
maxima give an indication of how loud a particular frequency is. Frequency
goes from 0 Hz (left) to 5000 Hz (right). By comparing the various mountain
peaks, researchers are able to understand why a synthesizer does not always
sound human.
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Figure 3.2. How can computers sing? In humans, the lungs act as a power
supply forcing air through the vibrating vocal cords. In certain speech
synthesizers, simple waveform generators substitute for the lungs. These are
marked vowel, nasal, and fricative generators in the diagram. Filters shape the
waveform further (taking the place of the changing vocal tract shape).

2]

Speech production uses generating functions which simulate the air pressure
waves produced by the lungs. These simple pressure waveforms are then
shaped by filter functions in order to produce a more complicated speech-like
signal. In other words, the generator functions simulate the pulses of air
through the lungs and mouth. [For those already familiar with this field’s
terminology, the 11 control bytes which guide the synthesizer are: AN (nasal
amplitude), FN (frequency of nasal resonance), F1, F2, F3, F4, F5 (frequencies
of formants 1,2,3,4 and 5), A0 (voice amplitude), AH (hiss amplitude), FH
(primary fricative frequency), FO (fundamental frequency), and CO (binary
data, controlling: aspiration/frication, formant bandwidths (f1, 2, {3, f4, {5),



and hiss modulation).

ALGORITHM: A FILTER TO PRODUCE A SINGING
WAVEFORM "M" (as in "mom")

INPUT: freq - formant frequency of a singing sound

QUTPUT: a waveform (amplitude vs. time)

VARIABLES: freq, bw

Notes: If the waveform is converted to sound, it should sound
like a steady state nasal sound. "Output(i)" must be initialized
with a simple driving function such as a sine wave with f=120 Hz
to simulate puffs of air through the vocal cords.

{(* center fregquency of resonance (Hertz) *)
freq = 260; (* center frequency .)
bw = 100; (* bandwidth of rescnance *)
npts = 1000; (* number of waveform points =)
fs = 10000 (* sample at 10,000 samples per sec *)

t2pi=6.2831853/fs;
if gender = 'FEMALE' then freq = freq * 1.15;

vZn=0;y1n=0;
{Bmedinin calculate filter coefficients ————-———-—c——— *)
bb = exp(-bw*t2pi);

aa = 2.0 * exp(~-(bw/2)*t2pi) * cos(freq*t2pi);

cc 1 - aa + bb;
£ f apply the filter to npts of data------—-----—- *)
do 1 = 1 to npts;

output (i) = (ccr*output(i))+(aa*yin)-(bb*y2n};
an = yin; yln = output(i);
end;

Pseudocode 3.2. A filter to produce a singing sound.

This sequence of control data, after having been passed through the synthesizer
and a digital-to-analog converter, results in speech output. |

A typical speech waveform (amplitude vs. time) looks like:

——
—p—
——
——

In order to establish the feasibility of using a synthetic speech system for




producing a high-quality singing ensemble, the vocal parts of an excerpt of
Handel’s Hallelujah chorus were generated and mixed. The 3-D power
spectrum (energy vs. frequency vs. time, discussed in the last section) was
useful in analyzing and shaping the sounds (Figure 3.3). As suggested in the
last section, one can look at the various spectral prominences and see the
overall frequency composition and the relative loudness of vowels and
consonants. One can also make comparisons with human speech. The spectrum
from one of the synthetic voices is included so that the reader can visualize the
complexity of the various mountain peaks representing the frequencies in the
singing voice.
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Figure 3.3. Computer chorus. This three-dimensional map was used to analyze
the synthetic singing of the Hallelujah chorus. In particular, this was computed
for the synthetic bass singing voice: “Hal-le-lu-jah!” Again, loudness of the
different frequencies is represented by height of the various hills.

The Hallelujah chorus is a piece from The Messiah, Handel’s most
successful and best-known oratorio, composed in the year 1741. The soprano,
alto, tenor, and bass voices were each created separately and subsequently
combined with a multi-track recorder. Short pieces introducing the work have
appeared in popular magazines such as Omni (Rivlin, 1986) and business
journals such as Voice News (Creitz, 1984). The most detailed report appears in



Computer Tech. Rev. (see references). For more information on precisely how
to generate the chorus, see these articles. Through this interesting exercise, it is
apparent that with the increasing availability and improvement of voice
synthesis technology, singing synthesizers may herald the next revolution in
music, much as did the electronic music synthesizers of the 1970s.

Mormon Tabernacle Choir, watch out! Even the most proficient soprano or
“basso profundo” is limited in the range, duration, and timbre of notes able to
be generated due to the physical constraints of the vocal apparatus. The
machine discussed here (Figure 3.2) has no such limits, and future composers
will no doubt create songs which only synthesizers can sing. As stated earlier,
not only will computers be singing songs, but they will be writing the songs
they sing. In a preliminary exploration of this concept, programs were created
which produce lyrics from lists containing 10 categories of English parts of
speech (nouns, verbs, adjectives, etc.). Simple grammatical rules were used.
Subsequently these lyrics were spoken by a commercially available voice
synthesizer (Speech Plus PR2020 speech synthesizer) and mixed with several
musical tracks. As strange as these songs sounded, they’re just the first step.
Using graphics, non-human, vowel-like sounds were constructed (by changing
the vocal tract resonances), and it is clear that such novel near-human sounds
can provide the musician with an entirely unexplored milieu within which to
work. Perhaps similar speech systems will be developed for use by individuals
dedicated to applying the resources of modern technology to the needs and
problems of contemporary musical expression. (Pick88b, Computer Tech.
Rev.)

3.3 Bach, Beethoven, The Beatles

In the last section, graphical representations of the 3-D Fourier transform were
presented for synthetic and human speech sounds. Another useful application
of the 3-D Fourier Transform is in the area of musical score representation. In
this application the output spectrum is plotted as intensity vs. frequency vs.
position in the melodic sequence of notes (explained below).

Various techniques of music visualization, music transcription, melody
storage, and melody matching have been proposed (see Mitroo, 1979, and
Dillon and Hunter, 1982). However, none of these methods has had as their
primary focus the mathematical characterization of melody patterns using an
interactive graphics system with a wide variety of controlling parameters.
Spectra have been used to characterize instruments, voices, and large mixed
musical ensembles (Cogan, 1984). In the work described in this section, a
research system was developed which accepts as input a coded version of the
musical score and subsequently computes digital spectrograms and topographic
spectral distribution functions (another name for “power spectra”) of melodic
sequences.



While the power spectral analysis of instrument sounds, such as violins, has
significantly advanced our understanding of psychoacoustics, it should be
stressed that the methods presented in this section are sensitive to the
periodicities in the melodic pitch sequence, and they do not have as an input a
traditional acoustic sound source. The computer is not analyzing time
waveforms as in the last section. Therefore, such parameters as loudness,
attack, and timbre are not characterized. What is analyzed is something akin to
the frequencies of the progression of hills and valleys of the musical score
(which themselves represent fundamental frequencies of notes on a keyboard).
The sounds are not analyzed.

Both the spectrogram and 3-D power spectrum present melodic sequence
data in a way which allows patterns to be visually detected. As input, the ups
and downs of a score were used (thereby producing an input resembling a
picket fence). As output, 3-D maps were computed. A range of classical and
contemporary pieces were tested. Duration-weighted mean and standard
deviation of the input sequence of notes can be reported; for example, of the
tested pieces, standard deviations ranged from a low of 49 Hertz for “Let the
Sun Shine In” (from the rock opera “Hair”) to a high of 371 Hertz for “Flight
of the Bumblebee” (by Rimsky-Korsakoff). The resultant displays contain a
rich variety of spectral features. The various mountain peaks indicate
prominent periodicities and patterns in the musical score. The classical pieces
tested appear to have a greater number of spectral prominences than do the
more contemporary ones, and of the seven tested musical sequences, the Bach
piece shows the greatest spectral amplitudes — followed closely by Chopin
(Figure 3.4). Interestingly, the music of Frederic Chopin has been previously
represented by a simple bar graph of the notes on the musical staff (by D.
Hofstadter in Scientific American). His graph also suggests visually distinctive,
regular patterns of the melodic sequence. In general, both Bach and Chopin
(who revered Bach’s music) were especially interested in the forms and
patterns of music.
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Figure 3.4. Musical scores. The hills and valleys of musical scores (top) can
be analyzed with the same tool used in the previous figures. Top: spectrogram.
Bottom: 3-D power spectrum. Here, the three-dimensional plots’ axes are:
intensity, frequency, and position in the melodic sequence of notes. Songs
shown are Cantata No. 96 Aria. Ach, ziehe die Seele mit Seilen der Liebe, by J.
S. Bach (left), and The Entertainer (a Ragtime Two-Step), by Scott Joplin
(right). High frequency patterns are shown towards the right of each of these
“fingerprints.”

Many music researchers have yet to incorporate the power of the computer
in their theorizing, and by far the most prevalent methods of computer analysis
have involved the simple tallying of such features as “the number of C-sharps”
in a composition (for a recent review of the research on music and artificial
intelligence, see Roads (1985)). While there are theories to describe musical
patterns and progressions, no current methods exist which truly distinguish
compositions which will touch man’s spirit from those which will not.
However, it may be possible to use spectra, like those described here, as digital
“fingerprints” for either certain historical musical eras or for certain
composers, much as similar analyses are used in forensic voice identification
and authentication.



Theories of musical quality are still primarily descriptive and do not allow
one to create a new piece of extreme aesthetic interest. Those knowledgeable in
noise theory will appreciate R. Voss’s demonstration that melodies generated

using 1/f noise generators produce progressions closest to “real” music when

=1 (compared with =0or = 2).> However, none of the results would
be judged as a sophisticated composition of a specific type of music. With the
analysis routines presented here, we would certainly predict that a power
spectrum with just one spectral peak corresponds to an input melody which is
boring. Would it be possible to state that a certain number of peaks per unit
time is most appealing for most people? This question remains unanswered.
However, it may be possible to start with the 3-D map, isolate prominent
spectral peaks, shift minor ones, and then inverse transform the spectra to
create a new piece with characteristics of a particular author or musical era.
(For more information on these topics, see Pick86b, Computer Music J.)

3.4 Breathing Proteins

This book’s Introduction discusses the lateral use of computer software tools.
The topics in this section and the previous section are good examples. The 3-D
surface produced by a Fourier transform is used commonly in speech analysis.
In this section, the same tools are used to study the “breathing motions” of
proteins where the protein size-changes are represented as a waveform input to
a Fourier transform.

As background, proteins are the structural building blocks of life and the
catalysts for life’s chemical reactions. Like all matter at room temperature, the
protein molecules are continually vibrating due to thermal energy (M. Karplus
has conducted extensive work in this area; see, for example, Karplus and
McCammon (1979)). When large groups of atoms in the protein move in
unison, this is sometimes referred to as “breathing™ of the protein molecule. A
complete description of a globular protein requires not only a static three-
dimensional x-ray structure, but also an understanding of its flexibility and the
role that structural fluctuations play in the protein’s function. Two useful ways
of describing the frequency composition of the breathing motions of globular
proteins are the spectrogram and three-dimensional power spectrum,
representations similar to those frequently used in the field of speech analysis
(see sections “Fourier Analysis: A Digression and Review” on page 21 and
“Singing Computers” on page 23). In this section, we are most interested in
low frequency vibrations of globular proteins which correspond to the
collective oscillations of atoms from many different amino acids. Fluctuations
in radii of gyration (Rg) (defined below) provide a sensitive way to characterize

such concerted motions of proteins. One protein of interest is bovine pancreatic
trypsin inhibior (BPTI), a small globular protein of molecular weight 6,500



daltons, consisting of one polypeptide chain with 58 amino acids and three
disulfide bonds (Figure 3.5).
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Figure 3.5. Representing the motions of a breathing protein. This three-
dimensional map (bottom) computed from a Fourier transform gives an
indication of the fluctuations in the shape of a small protein, bovine pancreatic

trypsin inhibitor (top). 96 picoseconds (1 ps = 1 x 10 12 s) of data are
represented in this plot.

The radius of gyration of an object is an interesting physical measurement. It
gives an idea of an object’s spatial extent and shape (see Pseudocode 3.3 ).” Ry
is in the same units as the input, for example, inches or angstroms. For



proteins, Ry changes with time. The radius of gyration of BPTI, derived from
atomic coordinates, is given by:

224
2
Ry = E Z

(3.1)

where Z; is the atomic number for atom i, increased by the number of attached
hydrogen atoms. The sums are over all atoms. g; is the distance of atom i from
the electronic center of gravity. Equation (3.1) is described in detail in Science
magazine. & The reader may be interested in computing Ry for a collection of

dots. Figure 3.5 shows a stick-figure diagram of the protein where dots
represent atoms.

ALGORITHM: COMPUTE RADIUS OF GYRATION (RG)

INPUT: x(i), v(i) = coordinates of collection of points

OUTPUT: Rg = the radius of gyration

VARIABLES: Numpts - number of points used

Notes: The radius of gyration is a parameter useful fc:

comparing the spatial extent of collections of points. Some
readers may wish to compute the radius of gyration for a group of
dots on a paper or for something more scientifically interesting.

sumx¥ = 0; sumy = 0; sumdist=0;

(* compute the "center of gravity's)

DO L = 1 to numpts;
sumxssumx+x (1) ; sumy=gsumy+y (i) ;

END;

sumx = sumx/numpts; sumy = sumy/numpts;

(* compute distances from center #)

DO 1 = 1 to numpts;
dist=((x(1i)-sumx)**2+(y(i)-sumy)**2);
sumdist=sumdist+diast;

END;

Rg=sgrt (sumdist/numpts); (* compute radius of gyration *}

Pseudocode 3.3. Compute radius of gyration.




A 3-D power spectrum computed for the Ry fluctuations (Figure 3.5)

indicates that most of the power is below 1 picosecond, with a particularly
prominent breathing mode centered at 3 picoseconds. Higher frequencies are
evident to a lesser degree. The high ridge close to zero frequency may
correspond to a slower radial oscillation or an infrequent process which is not
observed long enough for adequate characterization in this conventional
molecular dynamics simulation. Longer simulations would be required to
determine the significance of such a slower oscillation. There is experimental
evidence for the existence of low frequency breathing vibrations in other
proteins.

Since both the spectrogram and 3-D power spectrum present breathing
motion data in a way which can easily be understood by the biophysicist,
characterization of the dynamical richness of proteins is greatly facilitated.
Why do we care about breathing motions? It has been hypothesized that the
motions of globular proteins play an essential role in their function and may
affect a number of important processes such as: binding of ligands, enzyme
catalysis, hemoglobin cooperativity, immunoglobin action, electron transfer,
and the assembly of supra-molecular structures such as viruses. From the work
described in this section and other studies, it is clear that a compact, rigid view
of globular proteins is incomplete. In addition to the relatively fast processes
including collisions between neighboring atoms and localized group vibrations,
proteins may undergo somewhat regular low frequency breathing motions of
varying complexity. These motions involve the collective motion of a large
number of different atoms. The functional importance of such breathing
modes, and protein motion in general, has begun to attract the interest of an
increasing number of physical chemists as evidenced by the growing number
of spectroscopic, kinetic, and theoretical studies of protein dynamics. (Much of
the material in section 3.4 appeared in: Pick84a, Science. Related material on
protein dynamics and conformation appears in: Pickover et al., 1979, J. Biol.
Chem.; Pickover and Engelman, 1982, Biopolymers; McKay, Pickover, and
Steitz, 1982, J. Mol. Biol.; Pickover and Engelman, 1982, Biophys. J.;
Levinson, Pickover, and Richards, 1983, J. Biol. Chem.)

3.5 Cancer Genes (DNA Waveforms)

The 3-D Fourier transform representations may be applied to genetic
sequences. In this work, the sequence of bases in a human bladder cancer gene
is treated as if it were a speech waveform. As background, DNA contains the
basic genetic information for all life on earth and is expressed in a four letter
code: A, C, G and T (adenine, cytosine, guanine, and thymine). By associating
each letter to a number we can treat the DNA sequence as a waveform, thereby
opening up the whole array of speech analysis tools for molecular genetics.



The search for patterns in the sequence of bases in long DNA sequences is
an active topic in molecular graphics. Periodicities and various patterns affect
physical, chemical and biological properties of the DNA. An example of the
output of a graphics system for an actual DNA sequence is presented in Figure
3.6. The calculation was performed for a 4000 base human bladder oncogene
sequence. Oncogenes have been detected in tumors representative of each of
the major forms of human cancer, and some have been shown to be able to
induce malignant transformations in certain cell lines. This bladder carcinoma
oncogene is derived from a sequence of similar structure present in the normal
human genome (Reddy, 1983). Several prominent features can be seen on the
map, and, interestingly, these features correspond to biologically important
areas of the DNA sequence. The largest peak (1) occurring roughly between
bases 590 and 900 corresponds with the sequence which, when deleted,
drastically reduces the transforming activity of the oncogene, indicating the
crucial role played by this non-coding sequence.



GGATCCCAGCCTTTCCCCAGCCCGTAGCCCCGGGACCTCCGCGGTGGGCG 50
GCGCCGCGCTGCCGGCGCAGGGAGGGCCTCTGGTGCACCGGCACCGCTGA 100

el

Figure 3.6. A cancer gene. Another three-dimensional map (amplitude vs.
frequency vs. position in sequence) computed for the DNA sequence of a 4000
base human bladder cancer gene (bottom). The three peaks (1,2,3) are areas of
biological interest. The spectrogram (inset), portrays position in sequence
(ordinate) vs. frequency (abscissa). Amplitude is indicated by darkness on the
plot.

It may be possible to discover interesting periodicities in the DNA sequence
by having the program produce many DNA maps by automatically iterating



through a large number of different base-to-number assignments for input
parameters (e.g. G=1, C=1, A=0, T=0; G=1, C=2, A=3, T=4 etc.). These
assignments can be based on relative molecular weight, electrostatic potential,
or other physical parameters. In this way, the program may suggest to the
human analyst important features and parameters which would not even be
considered otherwise. (More information can be found in Pick89, Speculations
in Science and Tech.; Pick84b, J. Mol. Graphics.)

3.6 Reading List for Chapter 3

The history and theory of Fourier analysis has been extensively covered in the
literature, and there have been many excellent books published on the practical
use of Fourier transforms. For some general overviews, the reader should see
Bendat and Piersol (1966), Koopmans (1974), MacDonald (1962), and Otnes
and Enochson (1978). Readers wishing to explore the use of the 2-D Fourier
transform for DNA pattern analysis should see Silverman and Linsker (1986).

There is also an extensive literature on speech science and computer
synthesis of speech. For further information on human speech pathology see
Borden and Harris (1983), and Ladefoged (1982). For information specific to
the computer synthesis of speech, see Dixon and Maxey (1968), and Morgan
(1984). For additional information on the visual representation of musical
signals, see Cogan, R. (1984). A personal favorite on the subject of music and
acoustics is: Pierce, J. (1983) The Science of Musical Sound. Scien. Amer.
Library: New York. The reader may also consult The Computer Music Journal
published by MIT Press.

The bibliography at the end of this book has additional references.
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Chapter 4

Unusual Graphic Representations

“Who knows what secrets of nature lay buried in the terabytes of
data being generated each day by physicists studying the results of
numerical simulations or the image of a distant galaxy. Given the
volume and complexity of scientific data, visualization in the
physical sciences has become a necessity in the modern scientific
world.”

Robert Wolff

In the last chapter, we saw some brief examples of how a Fourier transform
could be used to capture patterns in data. The various mountain peaks indicated
the frequency composition of data ranging from speech to breathing proteins.
Unfortunately, the traditional techniques don’t always distinguish potentially
interesting features in input data. As an example, let’s first consider speech.
With the traditional Fourier representation, many perceptibly different sounds
may give rise to only very subtle differences in the spectra. There has been past
research which points out the limitations of the Fourier method in displaying
acoustic features which are of importance in auditory perception. Such
limitations naturally motivate the development of novel display techniques to
help capture subtleties which may be difficult to see in the traditional displays.

This chapter includes several novel ways of displaying data which are
applied to a range of fields including acoustics and genetics. Note that this
chapter does not attempt to give a detailed historical background to the visual
display of quantitative information. For background, the reader should consult
the various books in the reference section, and in particular, the works of Tufte
(Graphics Press, 1983), Wainer and Thissen (Ann. Rev. Psychol., 1981), and
Wolff (Comput. in Sci., 1988) (all cited in “Recommended Reading” on page
349). Also note that some of the display methods devised by the author are new
and speculative; however it is hoped that many of the methods presented here
will stimulate other researchers to extend and further test these techniques in
related fields in order to assess their usefulness.



4.1 Acoustics

From the dull, stentorian roar of a lion to the clanging of a cathedral bell, the
remarkable range of audible sounds makes analysis exceedingly difficult. It is
difficult to rigorously compare and characterize sounds by ear alone since the
listening process is subject to the limitations and artifacts of both memory and
perception. Also, there are individual variations in listeners’ ability to localize
and describe acoustic features. This problem is the primary motivation for
graphic displays of speech. Some novel ways of graphically representing
speech waveforms in order to capture information missing in the spectrogram
will be discussed in the following sections; these include phase-vectorgrams
displaying phase, frequency and amplitude in a cylindrical plot resembling a
pipe cleaner, and autocorrelation-faces displaying speech in visually
memorable ways for children.

The speech waveform is a complex entity which is difficult to manage,
manipulate and characterize (see example waveform, “Singing Computers” on
page 23). Simply recording the pressure variation over time in the acoustic
signal generated by human speech produces a complicated waveform. The
signal itself alternates between quasi-periodic vowel-like sounds, which often
look something like smooth rippling ocean waves when plotted, and certain
consonants “looking” much like plots of random noise. Scattered through the
signal are rapidly occurring high-energy pops known as plosives interspersed
by perceptually important silences. While traditional graphic analyses, such as
the spectrogram (intensity vs. frequency vs. time), have been invaluable in
showing the general frequency content of an input signal, sometimes it is
difficult for users to see on the spectrogram differences which are perceptible
to the ear. These difficulties motivate representations which can make subtle
differences in input signals obvious to the human analyst. First, a review of
data display methods in general.

4.2 New Ways of Displaying Data

The use of visual displays to present quantitative material has a long history.
There are many examples in the chronicle of science where important
phenomena have been detected using visual displays and have heralded the

emergence of entire new fields of scientific endeavor.? The usefulness of a
particular display is determined by the embodiment of desirable characteristics
such as descriptive capacity, potential for comparison, aid in focussing
attention, and versatility. New representations called iconic graphs are now
being explored. In contrast to the most common graphs which are restricted to
two or three dimensions, “icons” (or symbols) such as computer-generated
faces are now sometimes used to represent multidimensional data. With icons,



the data parameters are mapped into figures with n features, each feature
varying in size or shape according to the point’s coordinate in that dimension.
Such figures capitalize on the feature-integration abilities of the human visual
system. Icons will be described in more detail in following sections.

4.3 Snowflakes from Sound: Art and Science

Of the many displays of acoustical data developed, one of the most striking and
colorful data-display techniques produces figures with the six-fold symmetry
of a snowflake. The trick is to convert sound waves (or any data) into a
collection of dots which are then reflected through mirror planes by a simple
computer program. The resulting representation, a symmetrized dot-pattern
(SDP), provides a stimulus in which local visual correlations are integrated to
form a global percept. It can potentially be applied to the detection and
characterization of significant features of any sampled data. The symmetry,
color and redundancy of the dot-pattern is useful in the visual detection and

memorization of patterns by the human analyst.10 The 1986 J. Acoust. Soc.
Am. paper describes a simple recipe for taking points on a speech amplitude-

time waveform and computing the pattern.!!

Figure 4.1 shows a symmetrized dot-pattern (SDP) for the “EE” sound of a
human and a synthesizer producing the same vowel sound. Since SDPs can be
considered, to a first approximation, merely a replotting of the time waveform,
it could be suggested that one would do as well to “look” at the waveform to
compare and contrast signals. However, as indicated by the superimposed input
signals, waveform similarities can often obscure differences. Figure 4.2 shows
some more SDP examples — three different occurrences of the sound “O0” as
in “boot” spoken by three people. Despite sensitivity to speaker individualities,
SDPs have a global similarity for all “O0’s.” SDPs may also help differentiate
nasalized and nonnasalized sounds (Figure 4.3). In general, it is hoped that
SDPs can supplement traditional analysis to make for faster detection and
diagnosis of certain important features in data.

To implement a symmetrized dot-pattern on a personal computer, start with
a digitized waveform. The waveform may represent sound where the jagged
trace on a graph indicates how the sound’s loudness changes through time. The
data is mapped to a snowflake-like pattern by comparing the loudness of pairs
of adjacent points and plotting the result on a polar coordinate graph (a graph
that looks a little like a polar view of the earth, with the North Pole at the
graph’s center). The points are then reflected, as though looking at them
through a kaleidoscope (see Pseudocode 4.1). The correlations (relationships)
between adjacent pairs of points determine the structure of the SDP.



Figure 4.1. Symmetrized dot-patterns for “EE” vowel sound. Human-made
“EE” sound (top) and a synthesized version of the same sound (bottom).
Despite similar waveforms, symmetrized dot-patterns clearly show differences.
(This figure and several others in this section appeared in J. Acoust. Soc. Am.
(Pick86d).)

The concentration in this section is focused on human speech sounds, but the
SDP can also be applied to handwriting, and musical and animal sounds. To



give the reader an indication of the variety of patterns sound can produce,
Figure 4.4 shows symmetrized dot patterns computed from animal
vocalizations. Of the animal vocalizations cataloged, dolphin-SDP were most
similar to human-SDPs. Since dolphins have a developed and complex acoustic
repertoire for communication and echolocation, SDPs may be of use in the
visual characterization of their vocalizations. See (Pick86d, J. Acoust. Soc.
Am.) for the use of the SDP to assess frequency content and waveform
variability, and for the various pros and cons of the SDP approach for
representing waveforms. See Pseudocode 4.1 for SDP color options, which
make SDPs more useful in detecting data features (and more interesting from
an artistic standpoint).



Figure 4.2. Family similarities for different speakers. These SDPs were
computed from three individuals ((a), (b), and (c)) for three different
occurrences of the sound “O0” as in “boot.” Despite sensitivity to speaker
individualities, SDPs have a global similarity for all “O0’s.”

The use of this data display in representing cardiac sounds is discussed in the
next section.



4.4 Medicine: Cardiology and SDPs

Symmetrized dot-patterns may have applications in representing heart sounds.
Nearly a million Americans die each year of cardiovascular disease, according
to the American Heart Association. The traditional diagnostic methods for
cardiac disease — listening with a stethoscope (auscultation), examination of
graphic records of the audible sounds (phonocardiography), or
electrocardiogram (ECG) analysis — have been used for years by physicians
and other medical personnel to detect abnormalities of the heart. The
symmetrized dot-pattern display mentioned in the previous section can be used
to represent normal and pathological heart sounds (mild mitral stenosis, and
mitral regurgitation). Figure 4.5 shows example SDPs for cardiac sounds.
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Figure 4.3. SDPs computed for oral and nasalized sounds. (a) “AH” and
nasalized “AH” produced by a male speaker (as in the first vowel sound in
“father” and “mom,” respectively). (b) “AH” and nasalized “AH” produced
by a female speaker. (c) Spectrograms for “AH” and nasalized “AH."” SDPs
can mabke the differences obvious, even for inexperienced users of SDPs. For
comparisons of these patterns before and after symmetrization, see (Pick86d, J.
Acoust. Soc. Am.).



Unlike the ECG which measures electrical activity of the heart, the SDP
described here uses acoustic input. The symmetrized dot-pattern (SDP)
characterizes waveforms using patterns of dots and requires very limited
computational time as prerequisite. Previous studies in texture discrimination
and pattern recognition have shown that symmetry elements can make features
more obvious to the human observer, and for this reason the SDPs have a high
degree of induced symmetry (and redundancy) in order to aid the human
analyst in recognizing and remembering patterns. In Figure 4.5, the SDP
marked “normal” was computed from a normal heart beat. Another SDP
represents the sounds from a patient with mild mitral stenosis. Mitral stenosis
is an abnormal narrowing of the mitral valve usually resulting from a disease
such as rheumatic fever, and obstructing the free flow of blood from left atrium
to left ventricle. Figure 4.5 also shows an SDP computed from a patient with
mitral regurgitation, the abnormal back-flow of blood into the left atrium. Prior
work in speech (last section) has suggested that the SDP functions somewhat
like an autocorrelator and is also sensitive to general frequency content and
waveform variability. The higher frequency noise characterizing the back-flow
segment in mitral regurgitation gives rise to the characteristic “fuzzy” pattern
in the SDP in Figure 4.5. An intermediate amplitude region in mitral stenosis
gives rise to the dark “flying v” formations. These SDPs were computed for
samples of about one-half second duration; however, other time-lengths were
tried, including the capturing of several heart beats per frame, with essentially
identical results. Also, when studying different segments in time, essentially
the same SDP was generated.



ALGORITHM: How to create a Symmetrized Dot-Pattern

INFUT: W(t) a waveform with npts sample points
OUTPUT; snowflake-like SDP
VARIABLES: npts is the number of data points.
angle controls the symmetry angle of the dot pattern.
lag determines the time relationship between points. ;
Notes: Try changing the angle, top and lag parameters to optimize
these values for finding features of interest in the data.

top = 50; {* scaling upper bound *)
(#* find low and high values in data *)
hi=1.0 e=10; lo=1.0 el0;
do i = 1 to npts;
if W(i) > hi then hi = W(i);
if W(i) < low then low = W(i);
end;
do i = 1 to npts; (* rescale data to range: 0 - top *)
W(i) = (W(i)-low)*top/(hi-low);

end;
call set('POLAR'); (* place graphics in polar mode ¥)
call axis(-top,top,0,360); (* set up axes in r and theta .)
angle=60; (* choose a symmetry angle *)
lag= 1; (* choose a lag *)
do j = 1 to npts-lag;

(* Color dots »)

if w(j+lag)-W(j) >= 0 then Color(Red) else Color(Green);
do i = 1 to 360 by angle;

PlotDot (W(j),i+W(j+lag)); (* place dot at (r, theta) *)
PlotDot(W(j),i-W(jt+tlag));

end;

end;

Pseudocode 4.1. How to create a symmetrized dot-pattern (“speech flake”).

The several demonstrations included in this section indicate that SDPs can
make differences obvious even to inexperienced persons. Unlike SDPs, the
traditional cardiac displays are not the same as pictures, since pictures have
numerous visual features that can be readily identified, labeled, remembered,
and integrated into a coherent whole. The ease with which patterns can be
recognized may have value in instances where feedback to the patient or other
medical personnel is useful, particularly when a physician is unavailable. This
recognition ease and SDP-sensitivity may also be useful for researchers and
physicians when comparing and studying heart sounds. Obviously, more
cardiac sounds and many subjects need to be studied to fully assess the extent
of SDPs’ usefulness. The specific visual correlates of acoustic-cardiac features
which people use to distinguish one member of a cardiac class from another



would provide an interesting avenue of future research. (Pick89, Leonardo.)

Figure 4.4. Animal vocalizations. SDP are sensitive to frequency variations.
This set shows the differences evident in the sounds of (clockwise, starting at
upper left) a rooster, a dolphin, a frog and a cat.
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Figure 4.5. Heart sounds. A normal heart sound can be contrasted with
cardiac sounds associated with various pathological conditions.

4.5 Another Dot-Display Used in Molecular Biophysics

Sections 4.3 and 4.4 showed how symmetrized dot-patters can represent data.
Another example of a display used for data characterization at a more
fundamental level of perception than the SDP is the random dot-display. This
type of pattern was first researched in detail by Leon Glass in 1969 while



studying visual perception. These patterns, also called random-dot moire
patterns, are potentially useful in the global characterization of conformational
changes occurring in biomolecules. As background, if a pattern of random dots
is superimposed on itself and rotated by a small angle, concentric circles are
perceived about the point of rotation. If the angle of rotation is increased, the
perceived circles gradually disappear until a totally unstructured dot display is
seen. This effect demonstrates the ability of the human visual system to detect
local autocorrelations and may suggest a physiological basis of form
perception in higher animals (Glass, 1969). Figure 4.6 shows an example of a
dot interference pattern. The pattern is comprised of a set of ten thousand
random dots which was superimposed on itself and subsequently rotated and
uniformly expanded. Though the pattern was calculated by computer, similar
patterns can easily be generated using sprinkled ink and transparencies.
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Figure 4.6. Random dot-patterns. Random dot-display produced by
superimposing a figure containing 10,000 random dots upon itself and
subsequent rotation by three degrees and uniform expansion by a factor of 1.1.



Note: if the rotation is much larger, the eye looses the ability to perceive the
spiral patterns.

As an example of lateral use of computer software tools (“Lateral Use of
Computer Software Tools” on page 4), the “Glass patterns” can be applied to a
problem in biophysics. By placing random dots on a graphics representation of
a protein molecule before and after rotation, the center of rotation can easily be
found (just as we can easily perceive the center in Figure 4.6). There are
sometimes crystal structures of two forms of a biomolecule related by a
conformational change. Often it is desirable to ascertain an equivalent axis of
rotation relating two structures in conformational space regardless of the fact
that the actual transformation between the starting and ending form of the
molecule may have involved many small intermediate rotational and
translational components. (To learn more about how to use these techniques to
visually capture motions in proteins and advantages over brute-force numerical
methods, see Pick84, J. Mol. Graph.)

ALGORITHM: How to Create a Moire Dot-Pattern

Variables:

NumDots = the number of dots (e.g. 10,000)

Angle = the rotation angle (e.g. 1 degree)

af = gcale factor (e.g. 1.1)

Notes: The display area is assumed to go from 0 to 100. Random
numbers are generated on the interval (0,1). The reader may
experiment by gradually increasing the angle until the eye can no
longer detect correlations.

DO i = 1 to NumDots;
GenRand (randx) ; GenRand(randy); (® Generate random numbers %)
randx=randx*100; randy=randy=100;
PrintDot (randx,randy) ;
(* Rotate and Scale; Center is at (50,50) *)
randxx =sf+*{ (randx-50)*cosd(angle)+(randy-50)*sind{angle)) + 50;
randy =sf*((randy-50)*cosd{angle)-(randx-50)*sind(angle}) + 50;
randx = randxx;
PrintDot(randx,randy); (® Print superimpcsed pattern *)
END;

Pseudocode 4.2. How to create a Moire dot-pattern.

4.6 Autocorrelation Cartoon-Faces for Speech



“The most exotic journey would not be to see a thousand different
places, but to see a single place through a thousand person’s
eyes.”

Presented in this section is a rather unorthodox computer graphics
characterization of sound and DNA sequences using computer generated
cartoon faces. As background, computer graphics has become increasingly
useful in the representation and interpretation of multidimensional data with
complex relationships. Pseudo-color, animation, three-dimensional figures, and
a variety of shading schemes are among the techniques used to reveal
relationships not easily visible from simple correlations based on two-
dimensional linear theories.

Showing correlations between two or three variables is easy: simply plot a
two-dimensional or three-dimensional graph. But what if one is trying to
present four or five or even ten different variables at once? The face method of
representing multivariate data was first presented in 1973 by Chernoff, a
Harvard statistician. Using gradations of various facial features, such as the
degree of eyebrow slant or pupil size, a single face can convey the value of
many different variables at the same time (Figure 4.7). Such faces have been
shown to be more reliable and more memorable than other tested icons (or
symbols), and allow the human analyst to grasp many of the essential
regularities and irregularities in the data. In general, n data parameters are
mapped into a figure with n features, each feature varying in size or shape
according to the point’s coordinate in that dimension. The data sample
variables are mapped to facial characteristics; thus, each multivariate
observation is visualized as a computer-drawn face. This aspect of the
graphical point displays capitalizes on the feature integration abilities of the
human visual system and is particularly useful for higher levels of cognitive
processing. Figure 4.8 shows the range of faces produced when random
numbers (“white noise”) are mapped to facial coordinates.
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Figure 4.7. Cartoon faces and data analysis. These cartoon faces can be used
to represent the values of as many as 10 variables, each variable
corresponding to a facial feature. Here only one facial feature, horizontal eye
length, is changed. Other facial coordinates are set to a constant middle-
position.

For speech applications, an autocorrelation analysis coupled to computer
generated cartoon faces can be used to represent speech sounds. The
autocorrelation of a signal x(n) with lag k is defined as

Y

o(k) = D x(n) x(n + k).

H=m oo

(4.1)

The autocorrelation function for data describes the general dependance of the
values of the data at one time on its values at another time. On a computer an
autocorrelation function for a finite window in time can be implemented as
shown in Pseudocode 4.3. For more on autocorrelation theory, see Bendat and
Piersol (1968) and Witten (1982). In 1985, I devised the “autocorrelation-face”
where 10 facial parameters are computed from the first 10 points of the
autocorrelation function of a 50 ms sample of the speech sound. This process is
described in more detail in the J. Educ. Tech. Syst.
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Figure 4.8. The diversity of computer-generated faces. The settings for each of
the ten facial parameters were computed using a random number generator.

In this and the following applications, ten facial parameters, F(1, 2, 3, 4, 5,
6, 7, 8,9, 10) are used, and each facial characteristic has ten settings, S(1, 2, 3,
4,5,6,7,8,9, 10), providing for 10 billion possible different faces. The
controlled features are: head eccentricity, eye eccentricity, pupil size, eyebrow
slant, nose size, mouth shape, eye spacing, eye size, mouth length, and degree
of mouth opening. Head eccentricity, for example, controls how elongated the
head is in either the horizontal or vertical direction. The mouth is constructed
using parabolic interpolation routines, and the other features are derived from
circles, lines, and ellipses. Pseudocode B.3 (in Appendix B) gives details on



the computer generation of faces. Figure 4.9 shows some examples computed

from human speech.12 The resultant speech-faces could provide useful
biofeedback targets for helping deaf and severely hearing-impaired individuals
to modify their vocalizations in selective ways — especially since they may
provide simple and memorable features to which children could relate. The
traditional speech spectrogram displays are not the same as pictures, since
pictures have numerous visual features that can be readily identified, labeled,
and integrated into a coherent whole. To compare SDPs (previous section) and
faces: note that unlike faces, SDPs do not elicit an emotional reaction. Emotion
does confer a mnemonic advantage for the faces, but can sometimes obscure
the association, e.g. a smiling face representing cancer statistics. (Pick85a, J.
Educ. Tech. Syst.)

ALGORITHM: Autocorrelation Function

Variables: npts = the number of data points
Input = array of samples from a digitized waveform.

Auto = autocorrelation function

Motes: If the input data is a function of time then the
autocorrelation function is also a function of time.
auto(*) = 0; (* initialize array *)
de p = 0 to npts-1;

do g = 1 to npts - p;

auto(p) = auto(p) + inputig)®*input(g+p):;

end;

(* correction factor ¥)

auto(p) = auto(p)* (1/(npts-p));
End.‘

Pseudocode 4.3. Autocorrelation function.

4.7 Cartoon Faces in Education

A number of recreational and educational uses for the faces are suggested in
the following sections. As background, research has demonstrated the potential
value that visualization and iconic systems play in learning and instruction.
Popular educational software for home computers is becoming available (e.g.,
the “FaceMaker” by Spinnaker (see references)) which allows children to
create faces from sets of eyes, ears, and noses. Programs such as these help
children become comfortable with computer fundamentals such as menus and
cursors. The computer-drawn faces presented in the current section have
particular value in that they are created under parametric control and can




provide immediate visual feedback to the user. In addition, any face can easily
be regenerated at a later time from its control-data.

4.7.1 Cognitive Association of Coordinates with Facial
Features

There have been several studies in the literature which have explored the
child’s ability to organize and represent body location information. Here, a
simple face-drawing system was developed where children can type numbers
at the terminal keyboard and immediately view the results on an adjacent
graphics screen. For example, faces were constructed from the control-data
entered by Lisa, a 6-year-old girl with no prior experience with computers. One
face in particular was her favorite, because she found the shape of the mouth
amusing. She worked on the figure for several minutes, developing the mouth
to her specifications, and subsequently she recorded the final control-data on a
piece of paper. This indicated that she understood the concept of number-to-
face parameter mapping.
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Figure 4.9. Faces from sound. Cartoon faces can be used to characterize
speech sounds. The top row represents the fricative sound “s”; the second,
“sh”; the third, “z”; and the fourth, “v.” Sounds were repeated three times.

For vowel and nasal sounds, see J. Educ. Tech. Syst. See Appendix B for

pseudocode for face generation.
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4.7.2 Target-Pictures for Children



The faces may also serve as target-pictures for children to draw. [For
background information on the differential cue utilization by children in
pattern copying, the development of drawing rules by children, and “tadpole
drawing” (body representations where the legs and arms are attached to the
head), see Taylor and Bacharach (1981).] Since the computer faces are created
from control-data, the resultant faces can easily be regenerated at a later time,
or altered slightly, in order to test hand-eye coordination and development.
Figure 4.10 includes four computer-drawn faces and children’s attempts to
reproduce them. The drawing task can be made much more difficult if the child
is asked to view the face first and then required to draw it as well as possible
from memory. Computer software, and hardware such as digitization tablets,
make an analytic comparison between computer- and child-generated faces
easy. Simple parameters such as center of gravity, and radius of gyration
(“Breathing Proteins” on page 30) can be computed to characterize the
drawings in an objective way.
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Figure 4.10. Target faces. Drawings made by children in an attempt to
reproduce the four computer-drawn targets at top. From top to bottom, the
ages of the children were 6 , 6, 8, and 10.

For years psychologists have tried to determine when infants first realize
how the features of the human face are naturally arranged and when an infant’s
ability to perceive facial expressions begins. Computer-generated faces might
be ideal for the study of infant’s perception of natural and distorted
arrangements of a schematic face. In the study of Maurer and Barrera (1981), it
was shown that 2-month-old infants show a preference for a natural
arrangement of facial features on a cartoon face, as opposed to scrambled



features. Though their cartoon faces were not computer-generated, computers
could be used in the placement (random or otherwise) of the facial features on
the head, giving the researcher rigorous control of the resultant expressions.
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Figure 4.11. Which two are the same? The faces can be used to illustrate the
concept of similarity, sameness, and difference. Since the facial parameters are
accurately controlled, the degree of difficulty of the task can be specified.

4.7.3 Learning by Means of Analogy

The faces can be used to illustrate the concept of similarity, sameness, and
difference. Since the facial parameters are accurately controlled, the degree of
difficulty of the task can be specified (Figure 4.11). Possible tasks include:
Which two are the same? and Which one is different? The faces can be used to
explore memory abilities: initially, one face is shown, then erased, and the user
can subsequently be asked to choose the face from a small group, somewhat
like picking from a police line-up.

4.8 Educational Aid for the Presentation of Statistical
Concepts



The faces may be suitable as visual supplements in the presentation of
statistical concepts, particularly distribution theory, to individuals
inexperienced in mathematics and with no prior knowledge of the methods of
statistical evaluation. In this work, faces were used to illustrate the concept of
white noise (totally random distribution) such as that shown in Figure 4.8, in
contrast to Gaussian noise (normal error distribution) (Figure 4.12), theories
usually not introduced to indi-viduals prior to the high-school level due to the
mathematical complexity of the subject matter. For the case of white noise, one
hundred faces were generated, each facial characteristic having a setting
determined from a random number generator. In the case of the Gaussian
noise, the facial settings S; are given by:

(4.2)

where ; are random numbers, and N is 5 for weakly Gaussian noise or 20 for

strongly Gaussian noise. i signifies the facial parameter used (from 1 to 10).
Gaussian random noise was mapped to facial parameters (notice the faces have
a more “middle of the road” look). For very young students, the faces could be
used, in addition to standard techniques, for visualizing simpler concepts such
as the mean, median, mode, and other measures of central tendency. For
additional information, see Glossary entry Gaussian white noise. (Pick84e,
Computers and Graph.)
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Figure 4.12. Faces produced by Gaussian noise.
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4.9 Commercial and Military Air Traffic Control

One may speculate about potentially useful applications of the computer-drawn
faces in the cockpit of airplanes. The growing complexity of aircraft controls
and readouts are making aircraft almost too complex to fly. The faces can
accommodate analog or digital input from a multitude of readouts, each facial
parameter receiving input from one or more gauges. Deviations in the controls
from their expected values would give rise to excursions of the facial
parameters from their middle settings. While it is true that the more standard
concept of having a gauge blink or beep when a parameter has gone beyond a
critical value is valuable, the faces would be especially useful in alerting the



pilot of conditions where several readings are not themselves at critical stages,
but where the combined effect may be dangerous.

4.10 Faces and Cancer Genes

Face icons can be used to detect irregularities in DNA sequences. The
deviation of the DNA statistical properties from their expected (random) value
causes deviations of the facial parameters from their middle positions. The
number of possible DNA characteristics that can be visualized by this method
is large. (For further reading see: Pick89, Speculations in Science and Tech.;
Pick84b, J. Mol. Graph.)

4.11 Back to Acoustics: Phase Vectorgrams

In this section, we return to a discussion of graphics for representing sounds.
Here the “phase vectorgram” representation is presented, developed with
colleagues in 1985.

Until recently it had been believed that the perceived sound of an audio
signal could be completely characterized by its power spectrum (energy vs.
frequency). As suggested in “Fourier Analysis: A Digression and Review” on
page 21, a sine wave is characterized by amplitude (or extreme height), its
period (the time between one peak and the next) and its phase (the position of
the sine wave in time). Recent psychoacoustic experiments have revealed that
phase relations between the sinusoidal components in signals can be perceived
— yet they are not represented on spectrograms. This suggests that there is a
more appropriate domain than that of the power spectrum in which to process
signals. The phase information normally discarded via transformation to the
domain of the power spectrum must be reconsidered. Unfortunately, the short-
term phase of a dynamic signal is difficult to quantify and plot. [These
difficulties are overcome in an analysis using an autocorrelation-based pitch
detector, followed by discrete Fourier transform, and normalization of the plot
to the phase of the fundamental frequency () :

$; = ¢; — k¢,

(4.3)

where k is the harmonic number and 4 is the phase of the fundamental.

(These terms may be unfamiliar to some readers; see Otnes and Enochson
(1978) for more information.) With knowledge of the fundamental frequency



we can adjust the Fourier analysis so the reference point is synchronized to the
fundamental period of the waveform, and the frequency sample points can be
taken at more meaningful points corresponding to the harmonics of the
fundamental. |
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Figure 4.13. Phase vectorgram. Harmonics of a vowel sound are plotted as
“bristles” emanating from a central axis, with an angle equal to the phase of
each harmonic.

In the phase vectorgram (Figure 4.13) amplitude, frequency and phase are
presented in a cylindrical plot resembling a pipe-cleaner or bottle-brush.
Shown is a vectorgram for different regions in time for the human utterance
“ee,” as in “meet.” Given the amplitudes for components k and the corrected
phases (see Equation (4.3)), the “bristles” in the cylindrical plot may be drawn.
The length of each bristle is determined by the gain at each frequency.
Frequency extends from low frequency (0 Hz) to high frequency (5000 Hz) as
the cylinder goes from front to back. Phase is represented by the angle the
bristle makes with the central axis. Cylindrical plots are normalized so that all
bristles may be accommodated in the same size graph. The cylindrical plot
represents the phases more meaningfully than traditional two dimensional
phase-vs.-frequency plots which typically have phase from -180 to +180
degrees on the ordinate and frequency on the abscissa — amplitude is not a
factor in such plots. In our plots, the length of the bristle reflects the
importance of that particular phase component since the bristle length is related
to the amplitude. Low amplitude bristles due to noise or computational artifacts
therefore do not obscure the plot. In addition, the cylindrical representation
eliminates the need for “phase unwrapping” (Otnes and Enochson (1978)).



Generally, the cylindrical plot gives a clear indication of both phase and
amplitude as a function of frequency. It may be of use in a variety of signal
processing applications. Evidence of speaker-independent phase “signatures”
for phonemes (the basic building blocks of speech) suggests the use of phase
vectorgrams in speech recognition. (The phase vectorgram represents a
collaboration between the author and M. Martin and M. Kubovy.)

4.12 Fractal Characterization of Speech Waveform Graphs

Presented in this section is an alternate way of characterizing speech. The
methods use the concepts of fractal geometry set forth in B. Mandelbrot’s book
The Fractal Geometry of Nature (Mandelbrot (1983)). The beauty and
complexity of fractal shapes in pure mathematics is discussed in Part III of this
book.

4.12.1 Scale Invariance

Many objects and patterns in the natural world possess the quality of “self-
similarity” — for a range of scales used to view the pattern, the magnified
portion of the shape looks (qualitatively) like the original pattern. Such objects
include mountains and coastlines, as well as several classes of patterns derived
purely from mathematics. This scale invariance has been studied extensively
by B. Mandelbrot, who coined the word “fractal” (in 1975) to describe such
irregular shapes.

4.12.2 Fractal Characterization of Speech

A fractal object has a shape with increasingly detailed features revealed with
increasing magnification, and examples include mountains and coastlines (this
is explained in greater detail in the section on self-similarity). In contrast, the
edge of a circle is not fractal since it is featureless upon increasing
magnification (i.e., it becomes a straight line).

The fact that such complicated, and seemingly random, shapes of nature can
be characterized by a single number, the “fractal dimension” D, motivates the
test of fractal characterization in speech science. The speech waveform is a
very irregularly shaped signal which can be treated as a coastline and studied
using fractal mathematics. If speech waveforms can also be globally quantified
and compared using a single number, a new way of understanding (and a new
focus on) many problems in acoustics and phonetics might be provided.

In this work, the speech waveform in the time-range of ~ 2 seconds to ~ 10
milliseconds (ms) was studied, since this time scale represents the area in
which important prosodic and phonetic events occur. Prosody includes a
description of the “music” of speech (pitch, amplitude, timing and other



“suprasegmental” features). Phonetics includes the study of the basic building
blocks of speech such as phonemes, diphones, and coarticulation. The speech
waveform is studied to determine whether its structure can be considered self-
similar and whether a dimension (D) can be calculated. Synthetic and natural
speech are also compared using this approach, and the effect of voice quality
and nasality on D is determined. Graphic representations of speech and other
natural phenomena are compared. The analyses and graphics are presented
only for acoustic waveforms; however, these techniques can easily be applied
to any data where one variable fluctuates through time or space. Past work by
R. Voss in the global characterization of certain noise signals, and speech and
music in a longer range of time ( ~ 10 seconds to several minutes), can be
found in Clarke and Voss (1975). First, a classification of shapes and definition
of terms used in this section are presented.

4.12.3 Classification of Shapes

4.12.3.1 Richardson’s Coastlines and the Fractal Dimension

If one were to attempt to measure a coastline or the boundary of two nations,
the value of the measurement would depend on the length of the measuring
stick used. As the measuring stick decreased in length, the measurement would
become sensitive to smaller and smaller bumps, and in fact the coastline’s
length would become infinite as the stick’s length approached zero. Lewis
Richardson was one of the first to quantify this phenomenon in an attempt to
correlate the occurrence of wars with the shape of the boundary separating two
or more nations (Richardson, (1960)). Mandelbrot built extensively upon
Richardson’s work and suggested that the relationship between the measuring-
stick length () and the apparent total length (L) of a coastline could be
expressed by the parameter D, the fractal dimension. [An equivalent way to
understand and calculate D is to study the relationship between the number of
measuring sticks (N) and the length of the measuring stick (). For a smooth
curve such as a circle, the relationship is:

N(e) = ~Z—

(4.4)

c is a constant. The number of sticks (N) needed to measure the circle’s
circumference increases as the length of the stick decreases. However for a
fractal curve this relationship is altered slightly:
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If we multiply both sides of Equation (4.5) by  the relation can be expressed
in terms of the length of the measuring stick:

e
D
E

Lie) =

(4.6)

D corresponds somewhat to the traditional notion of dimension (a line is one-
dimensional, a plane two-dimensional) except that D can be a fraction. Since a
coastline is so convoluted (and has bumps upon bumps as it is magnified), it
tends to fill space, and its dimension lies somewhere between a line and a
plane. The fractal structure implies that repeated magnification of its graph
reveals ever-finer levels of detail.] Fractals have many intriguing properties,
such as being continuous everywhere but differentiable nowhere. Mandelbrot
gives D = 1.26 for the coastline of Britain. For smooth lines, such as a circle, D
=1, and L quickly converges to the “true” circumference of a circle as
decreases.

4.12.3.2 Self-similarity

If the features of an object (i.e., the general nature of its irregular bumpy
structure) remains constant through successive magnifications, such as is the
case for coastlines and mountains, the object is considered self-similar. This is
the same as saying that the D calculated from the relationship between  and
N in Equation (4.5) remains constant for different . Researchers have no
problem with the idea that an object can be self-similar only in a certain range
of length scales. For practical purposes, D need only be constant for a suitably
wide range of , a factor of 10 or more for example. Fractal objects need not
be self-similar at all scales. Fractals need only show a certain amount of
bumpiness with increasing magnification. However, researchers are most
interested in self-similar fractals, and today the terms are often interchanged in
the literature.



4.12.3.3 Types of Self-similarity: Definition of Terms

Figure 4.14 includes much of the self-similarity sub-classifications, as well as
example patterns for some types. Self-similarity implies scaling similarity (i.e.
the shapes are invariant under magnification). The edges of circles and lines
are self-similar since they look the same at different magnification; however,
they are smooth (and hence not fractal). They possess what is known as
standard scaling symmetry. Objects with “bumpiness” but with scaling
symmetry possess nonstandard scaling symmetry. Certain mathematical
constructs such as the Koch curve, which can be made by superimposing
smaller and smaller triangles, have exact scale invariance. However, most
objects are only statistically scale invariant, since they are only invariant in an
average sense (magnifications of coastlines are qualitatively identical, not
quantitatively). Recently, a host of statistically scale-invariant fractals derived
from the iteration of complex functions has been described (Julia sets).
Algorithms for the generation of these beautiful and complicated structures, as
well as color computer graphics, are being studied, and their popularity is
evidenced by the proliferating number of articles in the scientific and popular
literature (see Part III of this book). As will be shown later, speech waveforms
at sentence time scales can be classified as a statistically scale-invariant natural
phenomenon.

4.12.4 Speech Fractal Dimension

4.12.4.1 Coastlines and Speech Compared

What do coastlines and speech time waveforms have in common, and how can
they be visually and analytically compared? Figure 4.15 shows the coastline of
England and a “speech-island” side-by-side to facilitate comparison. The
speech island was computed by mapping the amplitude of the speech wave into
radius and time into angle. For each sampled time point a line is drawn from
zero radius to that point, thereby tending to fill the figure; this places a visual
emphasis on the “texture” of the edge and facilitates visual comparison with
other “closed-curve” natural objects (e.g., islands, clouds, leaves). This island
comprises a sentence containing 2 seconds of speech (20,000 points at the
digitization rate of 10,000 samples/second). Notice that both England and the
speech graph have a highly convoluted surface, but that the speech looks much
rougher. The fractal dimension D, in a sense, quantifies roughness, and is
discussed in the following section.
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Figure 4.14. Classification of the shapes of nature and math. Self-similar
structures, when magnified, look like the original shape. “Random” self-
similar structures are self-similar only in the statistical sense so even though
they don’t repeat their pattern exactly, they clearly have the same look at
different magnifications. Speech waveforms, at sentence time scales, are
statistically self-similar.
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Figure 4.15. Comparison between coastlines and speech waveforms. Notice
that the coast of England (A) and speech (B) have a highly convoluted surface,
but speech looks somehow rougher. Mandelbrot’s fractal dimension D
quantifies the degree to which such irregular curves “fill space,” and D = 1.26
for England’s coast. For speech waveform graphs, D ~ 1.66 (here the
amplitude trace is plotted in polar space with the middle filled in to focus
visual attention on the “texture” of its edge and to facilitate comparison with
other natural forms).

4.12.4.2 Speech-Wave Structure

If the waveforms were statistically self-similar, they could be characterized
with just one number, D. Though the irregularity continues with each
magnification, the degree of roughness seems to fluctuate slightly when
looking at isolated magnifications. This does not invalidate the self-similarity
judgement, since self-similarity applies only in the statistical sense and cannot
be captured in just a few sample magnifications. In order to solve this problem,
an approach like the one suggested by Equation (4.5) is used. The waveform
graph is laid upon a grid (by computer), and the number of grid points (N)



intersected is measured as a function of grid size, . Plots of log N vs. log
are calculated; the slope determined by a least squares line fit to the data gives
an estimate of — D (Figure 4.16). This relationship gives the same information
as the measuring stick relationships, but is easier for the computer to calculate.
The log plot for different values of ~ were computed for the utterance, “Nine
men were hired to dig the ruins.” “Self-similarity” was indicated by the
remarkable straightness of the plotted line, and the slope indicated a fractional
dimension D of 1.6 in the range studied ( ~ 2 s to ~ 10 ms). Note that
technically, because the speech waveform’s axes have different physical
meanings, the term “self-affinity” might be used; in this section the term “self-
similarity” is used in a general way to suggest the scale invariance of a time-
waveform when initially scaled to fit (graphically) in a square box. The D-
computation is also based on the square-box scaling.
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Figure 4.16. Example speech graph. A plot of log N(e) vs. log  is shown for
a male human speaker, superimposed with a plot for a digitized diagonal line
(D = 1). The slope of these plots gives an estimate for the fractal dimension, D.
The sentence plotted is: “Nine men were hired to dig the ruins.” The  axis is
in units of the sampled data, so at 10,000 samples / second, “100” corresponds
to 10 ms.



4.12.4.3 Numerical Evaluation

For Richardson’s coastline measurements, published posthumously in 1960, a
computer was not used, and the labor-intensive nature of his work is evident:

“At first I tried to measure the frontiers by rolling a wheel of 1.8
centimeters diameter on maps; but there is often fine detail which
the wheel cannot follow...considerable skill would be needed to
guide the wheel...Much more definite measurements have been
made by walking a pair of dividers along a map of the frontier...”

Note that as the measure gets smaller, measurement accuracies become critical.
For example, in tracing a map boundary with a pair of dividers, the difficulty
associated with accurately hitting the border line can greatly affect the
measurement. A computer-based numerical approach helps to overcome this
problem. Using the methods described above, D was computed for a variety of
acoustic signals. For human speech, by averaging different sentence utterances
for both male and female speakers of ~ 2 seconds in duration, D = 1.66 + .05
This remarkable invariance suggests that D is a characteristic parameter for
speech (at least for the simple declarative English sentences studied). D seems
to be unaffected by pitch (fundamental frequency), which is useful because it
facilitates comparing different voices.

In humans, vocal stress is produced by increasing the subglottal air pressure
via the lungs and is signaled by increased effort on the speaker’s part and
usually by increased intensity and pitch (overall intensity and pitch do not
show up in the D calculation ). One motivation for this work was the
comparison of natural and synthetic speech with the goal of improving
synthetic speech. For this work, synthetic speech was produced using a digital
speech synthesizer (see Section 3.2). Interestingly, synthesized speech
sentences gave a D very close to human speech (D = 1.57 + .03), suggesting
that the global structure of the human and synthetic speech is very similar.
However, when D for vocal stress was calculated just for vowels, D
monotonically increased with increasing stress for humans (D climbed to ~
1.88 over the range of stress studied) but decreased or stayed the same for the
synthesizer, suggesting a problem with vocal stress modelling for this
synthesizer.

In human speech, the fractal dimension for nasalized and non-nasalized
vowels is significantly different, though unlike the case for vocal stress, the
direction of change differs with the vowel (e.g. for the “ah” vowel sound in
father, D decreases by a few tenths, but for “ee” vowel sound in meet, D



increases).'3 In the synthesizer, no change in D is detected. Again, the fact that
the D trend for human and synthetic speech differs suggests that the
nasalization method employed is not sufficient to adequately simulate nasality
in human speech.

4.12.5 Catalog of Other Acoustic Sounds

The diversity and range of D for speech and other natural sounds is not fully
known at this time. D computations were made for animal sounds (of about 2
seconds duration) and are: dolphin, D = 1.90; cat, D = 1.74; angry cat, D =
1.78; and very angry cat, D = 1.91. Whispered human speech gave D = 1.49.

It should be noted that D gives information which spectrograms do not
provide (see Pickover and Khorasani, 1986). A power spectral slope cannot be
directly related to D because it omits phase information which describes the
arrangement of bumps in the graph of an object. In fact, two objects with
different Ds can have identical power spectra. For some educational
demonstrations of this, see Pickover and Khorasani (1986e). A provocative
area for future research would be to assess the extent to which D sensitivity to
nasalization could be useful in providing feedback or diagnostic capabilities for
certain speech pathologies where hyper/hyponasality can indicate anatomical
or neurological difficulties in velar control or closure. Deaf speakers also
produce inappropriate degrees of nasal resonance since they cannot hear the
oral-nasal distinctions made by hearing speakers. (Pick86e and Khorasani,
Computers and Graph.; Pick86f, Computer Graph. Forum.)

4.13 A Monte Carlo Approach to Fractal Dimension

Unfortunately, large amounts of computer time are sometimes needed to
accurately do self-similarity studies. It is possible to develop fast computer
techniques for the characterization of self-similar shapes and signals based
upon Monte Carlo methods. The algorithm is specifically designed for
digitized input (e.g. pictures, acoustic waveforms, analytic functions) where the
self-similarity is not obvious from visual inspection of just a few sample
magnifications. Pickover (1986) has several visual aids for conceptualizing the
Monte Carlo process (see reference above).

In brief, a Monte Carlo approach can be used for choosing grid points (as in
the last section) which can speed the D computation considerably. The name
“Monte Carlo” conveys the idea of chance or randomness inherent in a method.
Monte Carlo calculations are often used in physics when modelling complex
phenomena requiring an exorbitant number of terms and calculations if done
explicitly, for example using only a percentage of the number of atoms in a
molecule when simulating x-ray scattering phenomena. For fractals, instead of
searching every grid square of a picture or graph at a particular value of e, only



a small random subset of grid squares is studied to represent the entire
population of grid elements. This was tested for many speech sentence
waveforms for different speakers, using different random numbers, and the
Monte Carlo method gave D values very close to D determined by the explicit
method. D was computed from the slope of a line fit by linear regression in
plots of log N( ) vs.log . Normally intractable problems, such as the
assessment of self-similarity for several minutes of speech, now become
manageable. (Pick86f, Computer Graph. Forum.)

4.14 Other Speech Graphics, Wigner Distributions, FM
Synthesis

Other interesting ways to display and synthesize speech are described in the
above references which discuss, among other things, Wigner distributions and
FM synthesis of speech sounds. I present some technical notes on these areas
below, and the reader is directed to the published papers for a more detailed
account. Readers not intimate with signal processing theory should skip the
next section.

4.14.1 Wigner Distribution

The Wigner distribution, originally used in quantum statistical mechanics, can
be used to create trivariate representations for speech signals which are similar
to spectrograms. [In the past few years there has been considerable interest in a
class of joint distributions which potentially offer a powerful technique for the
study of signals. The unique feature of these distributions is that they satisfy
the correct marginals,

fﬁ‘(r‘m)dm = |s(n]?
4.7)
fF(f,ca]dr = |S(w)|?

(4.8)



where F(t, ) is the joint distribution, s(t) the signal, and S( ) the spectrum:

S(ew) = s(t)e™" 4t

(4.9)

Furthermore the joint distribution is uniquely related to the signal s(t):
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(4.10)

where the signal s(t) is obtained by taking any convenient value for ¢’ such as
zero. The standard spectrogram does not posses either of these two properties.
In particular, we studied bilinear distributions. All bilinear distributions can be

obtained from
fff‘,—rf?: r'u,+fl.‘hfﬂ:& 7)

o S*(u—=1/2)58(u+ 7v/2)du dr db

F(1, w) =

(4.11)

and particular distributions are obtained by choosing different functions for the
kernel f{ , )suchthatf(0, )=f ,0)=1.Usingf( , )=1,

cos( /2), ! | V2 one obtains the Wigner-Ville, the Margenau-Hill-
Rihaczek, and the Page distributions respectively. | Our research compares
several joint time-frequency distributions for speech (Cohen and Pickover,
1986c, IEEE Int. Conf. on Circuits & Syst.).



4.14.2 FM Synthesis of Speech

In 1985, the Yamaha Corporation offered the first commercial music
synthesizer based on FM synthesis. FM synthesis involves the modulation of
one pure sine wave with another; this produces a variety of complex and
natural-sounding waveforms. In conventional music (and speech) synthesizers,
basic input waveforms (such as sawtooth and rectangular) are filtered to create
the final output sounds. In our research, we have applied the FM synthesis
approach to speech sounds (Pick87d). See also Chowning (1973) for
pioneering work in this field. Note that (Pick85f) describes a system called
“TUSK” with 30 different displays for analyzing speech.

4.15 Molecular Genetics: DNA Vectorgram

4.15.1 Background

As we said in “Cancer Genes (DNA Waveforms)” on page 33, DNA contains
the basic genetic information of all living cells. The sequences of bases of
DNA (adenine, cytosine, guanine, and thymine — A,C,G, and T) may hold
information concerning protein synthesis as well as a variety of regulatory
signals. For example, specific AT-rich regions are thought to be codes for
beginning transcription. Also, certain specific viral sequences elicit cancerous
changes in cells in artificial media and in animals. In addition to containing
such regulatory codes and tumor-promoting codes, DNA sequence and
composition are often correlated with physical properties of the DNA such as
the DNA melting temperature.

Fairly detailed comparisons between DNA sequences are useful and can be
achieved by a variety of brute-force statistical computations, but sometimes at
a cost of the loss of an intuitive feeling for the structures. Differences between
sequences may obscure the similarities. Even determining whether a particular
sequence is random is curiously difficult. The approaches described in this
section provide a way for simply representing and comparing random and
DNA sequences in such a way that several sequence features may be detected
by the analyst’s eye.

4.15.2 DNA Vectorgram

The “vectorgrams” sometimes look like the steps a drunkard would take
wandering in an open field. They can also be used to search for patterns in the
sequence of bases in DNA. The method involves the conversion of the DNA
sequence to binary data and subsequent mapping of the data to a two-
dimensional pattern on a cellular lattice. For the example presented in this
section, triply bonded bases (GC) are differentiated from doubly bonded bases
(AT) by assigning nucleotide input values as follows: G=1, C=1, A=0, T=0. As



region another combination which is the logical inverse (e.g. G and A
interchanged; 010 vs. 101), then the net movement will be zero. A repeating
sequence such as ...GGGGAAGAATACGAGGGGAA... generates a trace that
returns to its starting point.
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Figure 4.18. DNA transformation. The mapping of the digit strings into
characteristic two-dimensional patterns traced out on a cellular lattice of cell
length L. Each of the three digit combinations causes a vector to be drawn
from a point on the lattice to one of the eight points immediately adjacent
according to the coding system shown.

Figure 4.19 shows a DNA vectorgram for a random input sequence. This is
useful for comparison with the DNA sequence to follow which is visually far
from random. The radius of the circle centered at the origin indicates how far
the sequence is expected to travel by chance.

It was quite startling to see such a large difference in the vectorgram
produced by a real DNA sequence as compared with the vectorgram in Figure
4.19. An example of the output of the graphics system for a large DNA
sequence represented by the dots in Figure 4.17 is presented in Figure 4.20.
The calculation was performed for a human bladder oncogene consisting of
about 4000 bases (Reddy, 1983). The vectorgram, far from being random,



travels a mostly downward course indicating strings containing a
predominance of 1°s (011,101,111). The most prominent feature on the map is
the “kink” (global shift in direction) at about 1350, and interestingly this
feature corresponds to a biologically important area of the DNA sequence.
Magnifications of the fine structure of the vectorgram reveal additional
interesting patterns (loops, hairpins, etc.). The authors’s current work using 3-
D lattices indicates the usefulness of intricate 3-D spatial patterns to represent
genetic sequences and other kinds of data (Figure 4.21).

One can study a number of other cancer genes with this approach and
examine the usefulness of the vectorgram in capturing patterns not easy to find
using other traditional approaches. (See: Pick87a, IBM J. of Res. and Dev. for
magnifications of the regions in bubbles in Figure 4.20. Also see: Pick89,
Speculations in Science and Tech.)

4.16 Reading List for Chapter 4

Several excellent reference books describing prior work in the field of unusual
graphic representations were listed in the beginning of this chapter. In addition,
there is a growing literature on the Chernoff face representation. For some
good references, see: Chernoff, H. (1973), Chernoff and Rizvi (1975), Flury
and Riedwyl (1981), and Jacob et al. (1976).

For more information on the fractal characterization of natural objects, see
Mandelbrot’s work (Mandelbrot, 1983). For information on 1/ noise in music
and speech, see the various papers by Voss (e.g., Clark and Voss (1975), Voss
and Clarke (1978), and Voss (1979)). The bibliography at the end of this book
has additional references.



Figure 4.19. Random nucleotide-base input sequence. This is useful for visual
comparison with the DNA sequence in Figure 4.20, which is far from random.
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