Praise for Concept-Based Mathematics

“I attended a Concepts Based Curriculum training course led by Jennifer Wathall
and was really inspired by what I learned. Far too often, as teachers, we can
become narrowly focused on the topics that we are covering; with concepts there
is a whole new opportunity for students to understand the big ideas and the
connections between different subjects. Jennifer skillfully guided us through how
we can introduce students to a concept-based curriculum. I was really impressed
with the method of writing generalizations which provide a framework for
exploration. These generalizations can in fact make the focus of a lesson or series
of lessons much more exciting, allowing students to break out of the constraints
of a limited topic range. Ultimately, I left the course determined to try out a
concepts-based model with a new unit we are developing on human rights. With
the conceptual lens, this promises to be a much more thought-provoking unit for
our students.”

—John Edwards, Head of History Department

King George V School, Hong Kong

“Secondary teachers are constantly being encouraged to change their practice but
few books have addressed the topics of secondary mathematics or given examples
that secondary teachers can relate to. This book does that. Another strength is the
connection of the content to the math processes and practices—the heart of good
instruction. The figures provided to summarize big ideas are excellent. I love the
potential of this book for using it as a text for middle and secondary teachers, a
guide for professional development, and a place for individual reflection. I know
for sure that I would use it for my student teacher seminar class and anytime that
[ was instructing upper level math teachers. I've been waiting for this!”

—Barbara Fox, Adjunct Professor, Student Teacher Supervisor

University of Massachusetts, Lesley University, Regis College

“Jennifer Wathall’s Concept-Based Mathematics is one of the most forward-thinking
mathematics resources on the market. While highlighting the essential tenets of

Concept-Based Curriculum design, her accessible explanations and clear examples
show how to move students to deeper conceptual understandings. This book



Contents

1. List of Figures
2. Foreword
3. Preface
4. Acknowledgments
5. About the Author
6. Author’s Note
7. Part 1. What Is Concept-Based Curriculum and Instruction in
MATHEMATICS: RESEARCH and Theory
1. 1. Why Is It Important for My Students to Learn Conceptually?

1. Why Do We Need to Develop Curriculum and Instruction to Include
the Conceptual Level?

2. The Structure of Knowledge and the Structure of Process

3. Applying the Structure of Knowledge and the Structure of Process

4. Teaching for Inquiry

5. Chapter Summary

6. Discussion Questions

2. 2. What Are the Levels of the Structures of Knowledge and Process for
Mathematics?
1. The Levels of the Structure of Knowledge
2. The Levels of the Structure of Process

3. Macro, Meso, and Micro Concepts in Mathematics

4. The Marriage of the Structure of Knowledge and the Structure of
Process

5. Two-Di ional vs. Three-Di ional Curriculum Model

6. Chapter Summary

7. Discussion Questions
8. Part I1. How to Craft Generalizations and Plan Units of Work to Ensure Deep
Conceptual Understanding

1. 3. What Are Generalizations in Mathematics?
1. What Is the Difference Between a Generalization and a Principle in
Mathematics?
2. How Do We Craft Quality Mathematics Generalizations?

3. How Do We Draw Out Conceptual Understandings From Our
Students?
4, Chapter Summary

5. Discussion Questions




2. 4. How Do I Plan Units of Work for a Concept-Based Curriculum?

1
2

. Unit Webs
. Unit Planning

3. Guiding Questions

=

. Planning a Unit of Work for Functions
. Planning a Unit of Work for Circles

. Planning a Unit of Work for Calculus: Differentiation and Integration

. Chapter Summary

5
6
7
8

9, Part III.

. Discussion Questions
How Do We Engage Students Through Instructional Practice?

Strategies to Engage and Assess

1. 5. How Do I Captivate Students? Eight Strategies for Engaging the Hearts

and

1.
2.

Minds of Students
Strategy 1: Create a Social Learning Environment
Strategy 2: Provide an Open, Secure Environment to Allow for

Mistakes as Part of the Learning Process

. Strategy 3: Use Appropriate Levels of Inquiry and Employ Inductive
Approaches to Develop Conceptual Understanding

4, Strategy 4: Reduce Whole Class Teacher Talk Time

5. Strategy 5: Cater to Everyone in your Class; Use Differentiation

8.
9.

Strategies
Strategy 6. Assessment Strategies

Strategy 7: Be Purposeful When Asking Students to Answer
Questions; There is Safety in Numbers

Strategy 8: Flexible Fronts: Arranging your Classroom

Chapter Summary

10.

Discussion Questions

2. 6. How Do I Know My Students Understand the Concepts? Assessment
Strategies

1.

b EA o o

Assessments With Conceptual Depth

Open Inquiry Tasks and Open-Ended Questions
Visible Thinking Routines

Performance Assessment Tasks

The Frayer Model

Concept Attainment Cards

Agree, Disagree, and Depends

8.

Zero, One, Two, or Three

9. Assessing and Developing Core Transdisciplinary Skills
10. Assessing the Developing Concept-Based Student




11. Self-Assessments
12. Chapter Summary
13. Discussion Questions
3. 7.How Do I Integrate Technology to Foster Conceptual Understanding?
. Mathematics Graphing Software and Graphical Display Calculators

. Flipped Classroom

. Multimedia Projects

. Collaboration Tools: Google Applications
. Apps on Mobile Devices

. When Not to Use Technology

1

2

3

4

5

6

7. Chapter Summary

8. Discussion Questions
W

1

2

3

4

4. 8. What Do Ideal Concept-Based Mathematics Classrooms Look Like?
. Foster a Culture of Growth Mindset
. Pedagogical Principles in an Ideal Classroom

. Developing the Ideal Concept-Based Mathematics Lesson

. Developing Concept-Based Lesson Planning in the Ideal Mathematics
Classroom
5. Common Concerns and Misconceptions About Concept-Based
Curriculum and Instruction
6. Chapter Summary
7. Last Wor
8. Discussion Questions

10. Glossary
11. Teaching for Deep Understanding in Secondary Schools Book Study
12. References and Further Reading

13, Index




List of Figures

Chapter 1

Figure 1.1 Side by Side: The Structure of Knowledge and the Structure of Process
5

Figure 1.2 The Structure of Knowledge for Functions 6

Figure 1.3 The Structure of Process for Functions 8

Figure 1.4 The Structure of Knowledge and the Structure of Process for
Functions, Side by Side 10

Figure 1.5 Inductive vs. Deductive Approaches 12

Figure 1.6 Two-Dimensional vs. Three-Dimensional Curriculum/Instruction
Models 13

Figure 1.7 Developing Intellect Through Inquiry Process Continuum Model 14
Figure 1.8 Levels of Inquiry 16

Figure 1.9 Levels of Inquiry Hierarchy 16

Figure 1.10 Levels of Inquiry for Proving the Pythagorean Theorem Task 17

Figure 1.11 A Structured Inquiry Example 18
Figure 1.12 A Guided Inquiry Example 19
Figure 1.13 An Open Inquiry Example 20




Chapter 2

Figure 2.1 The Structure of Knowledge for Trigonometry 26

Figure 2.2 The Fundamental Theorem of Calculus in the Structure of Knowledge
29

Figure 2.3 The Structure of Process for Trigonometry 31

Figure 2.4 Comparison of Mathematics Processes in Different Parts of the World
33

Figure 2.5 The Six Mathematical Processes, Algorithms, Strategies, and Skills 35
Figure 2.6 An Example of a PEMDAS Algorithm 36

Figure 2.7 Examples of Six Mathematical Processes Broken Down Into Skills and

Strategies 37
Figure 2.8 An Example of Reasoning and Proof 39

Figure 2.9 Number Talks Template 42

Figure 2.10 Example of a Student’s Number Talk 43

Figure 2.11 An Example of Making Connections and Creating Representations:
Graphic Organizer for the Number System 46

Figure 2.12 The Different Uses of the Grid Method 50

Figure 2.13 Examples of Macro, Meso, and Micro Concepts in Mathematics 53
Figure 2.14 Examples of Micro Concepts in the International Baccalaureate

Diploma Mathematics Courses 54

Figure 2.15 How Processes, Skills, and Facts Contribute to an Understanding of
Concepts 55

Figure 2.16 Structures Example Side by Side for the Meso Concept Trigonometry
57

Figure 2.17 Table of Values 58




Chapter 3

Figure 3.1 The Two Types of Enduring Understandings: Overarching and Topical
64

Figure 3.2 The Structure of Process for Equations 65

Figure 3.3 The Structure of Knowledge for Vectors 66

Figure 3.4 The Structure of Process for Logarithms 67

Figure 3.5 The Structure of Knowledge for Quadratics 68

Figure 3.6 Side by Side: The Structure of Knowledge and the Structure of Process
for Quadratics 70

Figure 3.7 Scaffolding Template 71

Figure 3.8 Scaffolding Generalization for Sequences and Series 73
Figure 3.9 Scaffolding a Process Generalization 73

Figure 3.10 An Example of Inductive Inquiry to Draw a Generalization 75

Figure 3.11 An Example of a Graphic Organizer to Draw Generalizations From
Students for Trigonometry 80
Figure 3.12 Strategies to Draw Generalizations From Students 81




Chapter 4

Figure 4.1 Unit Web for Functions 84
Figure 4.2 Examples of Conceptual Lenses for Mathematics 85

Figure 4.3 Generic Mathematics Unit Web Template 86
Figure 4.4 Step-by-Step Unit Planning Checklist 87

Figure 4.5 Examples of Debatable/Provocative Questions 89
Figure 4.6 Unit Planner for Functions 90

Figure 4.7 Weekly Planner for Functions 94

Figure 4.8 Teacher Notes for Coordinates Game 96

Figure 4.9 Unit Web for Circle Geometry 98

Figure 4.10 Unit Planner for Circle Geometry 99
Figure 4.11 Meso Concept: Calculus Unit Web 103
Figure 4.12 Unit Planner for Calculus 104

Figure 4.13 Calculus Weekly Planner 109

Figure 4.14 Gradients and Slopes 111

Figure 4.15 Increasing and Decreasing Functions 115

Figure 4.16 Stationary Points 116

Figure 4.17 The Product Rule 117

Figure 4.18 Real-Life Problems for Calculus 120

Figure 4.19 Student Solutions to Real-Life Problems for Calculus 123

Figure 4.20 Integration 126




Chapter 5

Figure 5.1 Placemat Activity 132

Figure 5.2 An Example of a Structured Inquiry Task 136

Figure 5.3 An Example of a Guided Inquiry Task 141

Figure 5.4 Student’s Response to a Structured Inquiry Task 142

Figure 5.5 Tri-Mind Activity on Functions 145

Figure 5.6 Student’s Example of an Analytical Approach to Functions 146

Figure 5.7 Hint Cards for Functions 148

Figure 5.8 Know, Want, Learn Routine 149

Figure 5.9 The Learning Curve: When You Learn Something New... 150
Figure 5.10 No Front! An Example of How to Structure Your Classroom 153




Chapter 6

Figure 6.1 Examples of Inquiry-Based Assessment Questions and Prompts 159
Figure 6.2 Examples of Visible Thinking Routines 161

Figure 6.3 More Examples of Visible Thinking Routines 162

Figure 6.4 Connect, Extend, Challenge Thinking Routine 163

Figure 6.5 Mathematics Performance Task on Linear Functions 166

Figure 6.6 Using the RAFTS Model to Design a Performance Task 166

Figure 6.7 Performance Task: Setting a Scenario 167

Figure 6.8 The Trigonometric Ratios of Similar Right-Angled Triangles 168

Figure 6.9 How to Use Trigonometry to Measure the Heights of Buildings 170
Figure 6.10 The Frayer Model Template 173
Figure 6.11 Example of the Frayer Model for Polygons 174

Figure 6.12 Table of Examples and Non-Examples for Rational Numbers 175

Figure 6.13 Probe for Agree, Disagree, or Depends 176
Figure 6.14 Assessing Approaches to Learning Skills 179
Figure 6.15 Rubric: The Developing Concept-Based Student 181

Figure 6.16 Example of a Self-Assessment Worksheet 183



Chapter 7

Figure 7.1 SAMR Integration of Technology Model 189

Figure 7.2 The TPACK Model Framework 190

Figure 7.3 Using Graphing Software 193

Figure 7.4 Using Graphing Software for Circle Theorems 196
Figure 7.5 Flipped Classroom Lesson on Complex Numbers 200

Figure 7.6 Sine Curves Using Spaghetti 206
Figure 7.7 The Unit Circle 209
Figure 7.8 Triangle Inequality 213




Chapter 8

Figure 8.1 Rubric: Concept-Based Instruction by Dr. Lois A. Lanning 222
Figure 8.2 Mastery Level for Concept- Based Lesson Planning 224

Figure 8.3 The Developing Concept-Based Teacher: Concept-Based Lesson
Planning 225




Book Study Resources

A Participant’s Metacognition Log 244



Foreword
H. Lynn Erickson

How many times have you heard the lament, “I was so bad at mathematics in school?”
Yet, those with an affinity for mathematics view it as a beautiful abstract language that
cuts across fields of knowledge to solve problems, raise questions, explain mysteries,
and create wondrous works of art. Jennifer Wathall is one of those people with this
affinity. She desires to share her understanding and passion for mathematics with the
world. How lucky we are!

[ wish all of my prior mathematics teachers had been able to read Jennifer’s book and
learn from her. As I reflect on my years as a student and my mathematics education
specifically, I remember feeling confused as we drilled on daily computations and
struggled with word problems. I could do math but I did not understand math. In my
own journey as a teacher, I came to realize the critical importance of conceptual
understanding across all of the disciplines. Why had I not been trained to teach for
deeper conceptual understanding?

Secondary mathematics teachers across the world will appreciate reading Jennifer’s
insights about the other half of the equation—the conceptual understanding of
mathematics. In traditional mathematics education, we have “assumed” students
understand the concepts of mathematics if they could perform the algorithms. It was a
step forward as we required students to “explain their thinking” on mathematical
problems, but this still did not ensure that students really understood the conceptual
relationships inherent in the problem. Jennifer shows us that students need to
demonstrate and verbalize their conceptual understanding of mathematics as well as
apply it across multiple contexts.

Concept-Based Mathematics: Teaching for Deep Understanding in Secondary Classrooms is a
clear explanation of the content and process structures of mathematics supported by
salient examples. Jennifer provides practical, engaging, and meaningful learning
experiences that draw students to the beauty and power of mathematical concepts and
their relationships.

One of the strengths of concept-based curriculum and instruction models is that they
are not “programs.” They are the explicit expression of the previously implied design
principles for quality curriculum design and pedagogy. They overlay any curriculum
and instruction model and should not be a choice. They are the principles that ensure
deeper conceptual thinking and the transfer of understandings through time, across



cultures, and across situations. Whether school curricula are textbook based or teacher
developed, they must reflect the three-dimensional design principles expressed in this
book and other books on concept-based curriculum and instruction, or they will
remain a lower level, two-dimensional design model—coverage of facts and skills.

This book is cutting edge. It is the next step to bring mathematics education into the
21st century. It needs to be in the hand of every secondary mathematics teacher and
teacher educator. All students deserve to experience the wonder and passion for
mathematics that Jennifer so obviously feels. It is time to change the age-old lament to

(13

empowering testimonials—*I love mathematics!” “I can use mathematics every day to

think and create!” “Math is fun!” “I get math!”



Preface

Purpose of the Book

Traditional curriculum focuses on rules and procedures with little understanding of
the conceptual relationships of mathematics—and mathematics is a language of
conceptual relationships. Traditional curriculum assumes the deep understanding of
concepts and fails to teach for transferability or to consider context. This book
expands and develops the work of Lynn Erickson and Lois Lanning on concept-based
curriculum into the realm of mathematics.

When learning math, students need to be given time and space to explore and discover
the beauty and creativity in math without being fearful of mistakes. Math anxiety
exists because of an overemphasis on the processes and skills of this discipline. This
book addresses how to create concept-based and inquiry-led curriculum and
instruction with a goal to make math enjoyable and accessible to all of our students.

Concept-based curriculum is a three-dimensional design model of curriculum and
instruction that frames factual content and skills and processes with disciplinary
concepts, generalizations, and principles. In concept-based curriculum and
instruction, the development of intellect is achieved through higher order, synergistic
thinking in which teachers use the facts, processes, and skills in concert with the
concepts, generalizations, and principles. A traditional two-dimensional design model
for curriculum and instruction focuses on factual content, processes, and skills and
assumes conceptual understanding. The research and consensus on the benefits of
developing conceptual understanding is undeniable. Concept-based curriculum
produces deeper emotional and intellectual engagement in learning and therefore
develops attributes such as critical thinking, reasoning, and creativity.

The intention of this book is to extend the work of Lynn Erickson and Lois Lanning on
the Structure of Knowledge and the Structure of Process specifically to mathematics
and to help math educators understand how to convey mathematical concepts and
ideas using the vehicle of inquiry. All definitions used in the Structure of Knowledge
and the Structure of Process derive from the work of Lynn Erickson and Lois Lanning.
We need to help students understand that everyone is capable doing math and it is not
a matter of whether you can or can’t do math.

This book expands and develops the work of Lynn Erickson and Lois Lanning on
concept-based curriculum into the realm of mathematics.



Special Features

Special features include sample lessons, samples of student work, vignettes from
international educators, and discussion questions that may be used in a book study
with fellow teachers or in a professional development setting. As an individual teacher
or as part of a study group, read each chapter and use the discussion questions at the
end of each chapter to reflect on your own practice. Metacognition logs are included at
the end of the book, to help you to process, synthesize, and self-reflect on each chapter
of the book. There is a chapter on integrating technology to enhance learning and
conceptual understanding (Chapter 7) and a Glossary to guide you through the terms
used in the book.

The main text is accompanied by a suite of free online resources, which include more
sample instructional units and templates for worksheets that foster deeper conceptual
understanding of particular math topics for secondary school.

After reading this book, you will be able to focus instruction on deeper conceptual
understandings and equip students for future success. It will provide you with
practical examples of concept-based lessons, unit webs, unit planners, and different
assessment tools to enable you to develop a concept-based approach to your
curriculum and instruction.

Concept-based mathematics is grounded in the philosophy that in order to develop
intellect, instruction and curriculum needs to focus on the big ideas or conceptual
understandings. This can be achieved through instructional practice and designing
tasks that do not sacrifice the content or rigor of any prescribed syllabus. In fact,
concept-based curriculum challenges students to employ higher order thinking skills.
Concept-based curriculum can overlay any curriculum, such as the Common Core State
Standards and Basal curriculum (United States), GCSE and A Levels (UK), as well as the
International Baccalaureate Middle Years (MYP) and Diploma (DP) mathematics
programs.

In this ever changing, dynamic and complex world, mathematics education must
engage students intellectually and emotionally. The ability to think conceptually,
transfer understandings across contexts and situations, and to enjoy learning and
problem solving are major goals for mathematics education today so we can prepare
our students for future success. Technological advancements of even the last decade
have influenced instruction, and the key to utilizing technology effectively is not what
tool is being used but how the technology is used to enhance learning.

I hope this book inspires you on your journey to develop conceptual understanding in



your students and to eradicate math anxiety and fear by fostering a growth mindset. I
hope you will join me on this journey for this much-needed math education reform.

In this ever changing, dynamic and complex world, mathematics education must
engage students intellectually and emotionally.

How to Use the Companion Website

http://www.resources.corwin.com/WathallConceptBasedMathematics

o

The companion website offers the following resources to supplement this book:

e Straightforward activities designed to help teachers understand and apply
concept-based curriculum and instruction;

¢ Examples that model each aspect of concept-based curricula;

 Blank templates for designing unit planners and writing quality generalizations;

e Guiding questions to help you and your book study group to reflect on the
process of implementation and next steps;

e A metacognition log: a powerful tool for self-reflection that focuses on the end-
of-chapter discussion questions in this book.

If you are working with a book study group or PLC, you might want to upload the
activities, templates, companion website discussion questions, and the metacognition
log to a cloud on an app such as Google Drive so that you can share your personal
written reflections with your team as you write them.

Here are some suggestions for how an individual educator can use the website:

e Read Concept-Based Mathematics: Teaching for Deep Understanding in Secondary
Schools, ensuring you address the discussion questions at the end of each chapter,
and write a reflection on the metacognition log template. You can write your
reflections on a piece of paper, on your personal computer, or you can upload
them to a cloud to share with your book study group.

e Make notes on areas you would like to develop from the main book.

e Go through the website, using the templates to create your own examples, and
answer the discussion questions.

¢ Think about a unit of work you would like to develop to ensure more conceptual
understanding and use the templates to support your planning.

e Trial your ideas in the classroom and modify accordingly.



e Share with colleagues.

Here are some suggestions for how a group of educators can use the website as a book
study. Read one chapter a week and meet with the book study group to discuss them.

» Read a chapter of Concept-Based Mathematics: Teaching for Deep Understanding in
Secondary Schools and write a reflection in the metacognition log.

¢ Share your metacognition log notes, one chapter at a time, with your book study
group.

e Use the discussion questions from each chapter to stimulate sharing of ideas
during your meetings with your study group.

e Go through the website, using the templates to create your own examples.

e Think about a unit of work you would like to develop to ensure more conceptual
understanding, and use the templates to support your planning. This could be a
collaborative effort with three or four other teachers.

e Trial your ideas in the classroom.

e Share and review your unit planners with colleagues, either in person or in a
cloud.

Audience

Drawn from my 24 years as an international educator and presenter, this book will
uncover the secrets to help all students in middle and high school understand how to
convey the conceptual language of mathematics. This book is intended for middle and
high school teachers, trainee teachers in undergraduate education programs, and
graduate education courses ranging from bachelor of education, diploma in education,
to masters in arts specializing in education.

Chapter Overview

Part I (Chapters 1 and 2) of this book discusses what a concept-based curriculum looks
like for mathematics and explains, in detail, Lynn Erickson’s Structure of Knowledge
and Lois Lanning’s Structure of Process applied to the topic of functions. Examples of
levels of inquiry (structured and guided) and inductive teaching are given. The key to
inductive teaching is that students draw and form generalizations by working on
specific examples initially.

Part II (Chapters 3 and 4) guides readers in the practice of applying concept-based
curriculum and instruction to math. Chapter 3 deals with crafting generalizations,
which are statements of conceptual understanding. Lynn Erickson provides a three-



step guide to writing quality generalizations, which are statements of what we want
our students to understand from their program of study. Chapter 4 includes models of
unit webs and unit planners.

Part III (Chapters 5 through 8) looks at instructional strategies to intellectually and
emotionally engage students to ensure deep conceptual understanding. Chapter 5
discusses eight strategies for lesson planning and captivating your students’ hearts and
minds. Chapter 6 looks into more detail about formative assessment strategies to track
student learning. Chapter 7 discusses how to integrate technology effectively and gives
practical activities and digital tools that support conceptual understanding. These
tools include using mathematical graphing software, flipped classroom models,
multimedia projects, collaborative digital tools, and various educational apps for the
classroom. Chapter 8 looks at the elements of an ideal math classroom. It includes
rubrics to support the developing concept-based teacher and for developing concept-
based instruction. Chapter 8 also addresses common concerns and misconceptions
about concept-based curriculum and instruction.

After reading this book,

e You will have a better understanding of the benefits of a concept-based
instructional design model;

¢ You will be able to overlay a concept-based curriculum and instruction model
onto any curriculum and implement it in your classroom; and

e You will have ideas and resources to engage your students and increase their
conceptual understanding and enjoyment of mathematics.
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Author’s Note

I was born to be a teacher. I love being in the classroom and just spending time with
my students with the goal of inspiring a love for learning. Nothing excites me more
than seeing those light bulb moments during a lesson when students have a gleam in
their eye because they get it. That gleam tells me my students understand on a deeper
level than what a textbook or video can explain. I have been so lucky that all of my life
I knew what my vocation would be.

My father fostered my love of learning and teaching, as he was a teacher himself. He
taught English in the air force before joining the diplomatic corps. He read to me most
nights: sometimes Jane Austen or Charles Dickens and sometimes famous Chinese
fables to teach me about Chinese culture and history. He was patient, intelligent, and
possessed a lifelong thirst for knowledge. His passing in July 2014 inspired me to
complete my two years of research and to write this book. Math education needs to
change. Too many students have been scarred for life because of their negative
experiences in math classrooms. Everybody can do math in an environment focused on
conceptual understanding and a growth mindset. I hope to start a revolution in math
classrooms and help teachers to think and reflect about what they are teaching. What
do we want our students to learn and understand, and what is mathematics? Is it a
discipline of processes?

Mathematics comes from the Greek word mdthe-ma, which means “that which is
learnt.” In Modern Greek, mdthe-ma means “to learn.” Math lessons need to focus on
learning and not on performing. Many mathematicians have different interpretations of
what mathematics is. Below are my favorite quotes from mathematicians.

Pure mathematics is, in its way, the poetry of logical ideas.

—Albert Einstein, German-born theoretical physicist and 1921 Nobel Prize winner,

1879-1955

Nature’s great book is written in mathematics.

—Galileo Galilei; Italian physicist, mathematician, astronomer, and philosopher;

1564-1642

Mathematics is the queen of sciences and number theory is the queen of mathematics. She



often condescends to render service to astronomy and other natural sciences, but in all
relations she is entitled to the first rank.

—Carl Friedrich Gauss; German mathematician, physicist, and prodigy; 1777-1855

A mathematician, like a painter or poet, is a maker of patterns. If his patterns are more
permanent than theirs, it is because they are made with ideas.

—Godfrey H. Hardy, English mathematician known for his achievements in
number theory and mathematical analysis, 1877-1947

Mathematics is a more powerful instrument of knowledge than any other that has been
bequeathed to us by human agency.

—René Descartes; French philosopher, mathematician, scientist, and writer; 1596-
1650

The essence of mathematics is not to make simple things complicated, but to make
complicated things simple.

—Stan Gudder, mathematics professor, University of Denver

Whenever I am in a social situation and tell someone I am a math teacher, I receive one
of two reactions: anxiety alongside an alarming panic, with people expressing how
much they hated math at school; and the less common response—how much they loved
math—which begins a lively conversation about the usefulness of math. The first
response saddens me. How can mathematics elicit such fear and negativity? English,
art, and even science teachers do not elicit such strong emotions in people. A
longstanding tradition sees mathematics as an elusive discipline that few could
comprehend. Many people recall negative experiences when learning mathematics
that have instilled fear of the discipline. Timed tasks, rote memorization of formulae
with little conceptual understanding, and a focus on performance have created math
fear and reinforce these negative experiences.

As a person who made mathematics education her career, 1 fortunately did not have
those negative experiences as a child. I loved the challenge of puzzles and problems
that were presented and possessed a passion for mathematics throughout my school
life. When I was 12 years old, my mother took me to a fortune teller in Taiwan who
looked into my eyes and said I would follow my passion to become a math teacher.



Who knows if the fortune teller could really tell, but from that day as a child, I felt I
knew my destiny and have been fortunate enough to be able to share my joy for math
education well into my third decade.



In loving memory of my father,
David Kuo Cheng Chang,

who inspired me to be a lifelong learner

1929-2014



Part I What Is Concept-Based Curriculum and
Instruction in Mathematics? Research and Theory



Chapter 1 Why Is It Important for My Students to
Learn Conceptually?

Around the world, mathematics is highly valued and great importance is placed on
learning mathematics. Private tutors in non-Asian countries serve a remedial purpose,
whereas in Asia, everyone has a tutor for providing an increased knowledge base and
skill development practice. Many students in Asia enroll in programs like “Kumon,”
which focus on practicing skills (which has its place) and “doing” math rather than
“doing and understanding” math. When you ask students who are well rehearsed in
skills to problem solve and apply their understanding to different contexts, they
struggle. The relationship between the facts, skills, and conceptual understandings is
one that needs to be developed if we want our students to be able to apply their skills
and knowledge to different contexts and to utilize higher order thinking.

Why Do We Need to Develop Curriculum and
Instruction to Include the Conceptual Level?

According to Daniel Pink (2005), author of A Whole New Mind, we now live in the
Conceptual Age. It is unlike the Agricultural Age, Information Age, or the Industrial
Age because we no longer rely on the specialist content knowledge of any particular
person. The Conceptual Age requires individuals to be able to critically think, problem
solve, and adapt to new environments by utilizing transferability of ideas. “And now
we're progressing yet again—to a society of creators and empathizers, of pattern
recognizers and meaning makers” (Pink, 2005, p. 50).

Gao and Bao (2012) conducted a study of 256 college-level calculus students. Their
findings show that students who were enrolled in concept-based learning
environments scored higher than students enrolled in traditional learning
environments. Students in the concept-based learning courses also liked the
approaches more. A better grasp of concepts results in increased understanding and
transferability.

With the exponential growth of information and the digital revolution, success in this
modern age requires efficient processing of new information and a higher level of
abstraction. Frey and Osborne (2013) report that in the next two decades, 47% of jobs
in the United States will no longer exist due to automation and computerization. The
conclusion is that we do not know what new jobs may be created in the next two
decades. Did cloud service specialists, android developers, or even social marketing



companies exist 10 years ago?

How will we prepare our students for the future? How will our students be able to
stand out? What do employers want from their employees? It is no longer about having
a wider knowledge base in any one area.

Hart Research Associates (2013) report the top skills that employers seek are the
following:

Critical thinking and problem solving,
Collaboration (the ability to work in a team),
Communication (oral and written), and

The ability to adapt to a changing environment.

How do we develop curriculum and instruction to prepare our students for the future?

We owe our students more than asking them to memorize hundreds of
procedures. Allowing them the joy of discovering and using mathematics for
themselves, at whichever level they are able, is surely a more engaging,
interesting and mind-expanding way of learning. Those “A-ha” moments that you
see on their faces; that’s why we are teachers.

David Sanda, Head of Mathematics Chinese International School, Hong Kong

The Structure of Knowledge and the Structure of
Process

Knowledge has a structure like other systems in the natural and constructed world.
Structures allow us to classify and organize information. In a report titled Foundations
for Success, the U.S. National Mathematics Advisory Panel (2008) discussed three facets
of mathematical learning: the factual, the procedural, and the conceptual. These facets
are illustrated in the Structure of Knowledge and the Structure of Process, developed
by Lynn Erickson (2008) and Lois Lanning (2013).

The Structure of Knowledge is a graphical representation of the relationship between
the topics and facts, the concepts that are drawn from the content under study, and
the generalization and principles that express conceptual relationships (transferable
understandings). The top level in the structure is Theory.

Theory describes a system of conceptual ideas that explain a practice or phenomenon.



Examples include the Big Bang theory and Darwin’s theory of evolution.

The Structure of Process is the complement to the Structure of Knowledge. It is a
graphical representation of the relationship between the processes, strategies, skills
and concepts, generalizations, and principles in process-driven disciplines like English
language arts, the visual and performing arts, and world languages.

For all disciplines, there is interplay between the Structure of Knowledge and the
Structure of Process, with particular disciplines tipping the balance beam toward one
side or another, depending on the purpose of the instructional unit. The Structure of
Knowledge and the Structure of Process are complementary models. Content-based
disciplines such as science and history are more knowledge based, so the major topics
are supported by facts. Process-driven disciplines such as visual and performing arts,
music, and world languages rely on the skills and strategies of that discipline. For
example, in language and literature, processes could include the writing process,
reading process, or oral communication, which help to understand the author’s craft,
reader’s craft, or the listener’s craft. These process-driven understandings help us
access and analyze text concepts or ideas.

Both structures have concepts, principles, and generalizations, which are positioned
above the facts, topics, or skills and strategies. Figure 1.1 illustrates both structures.
Figure 1.1 can also be found on the companion website, to print out and use as a
reference.

o

The Structure of Knowledge and the Structure of Process
for Functions

Mathematics can be taught from a purely content-driven perspective. For example,
functions can be taught just by looking at the facts and content; however, this does not
support learners to have complete conceptual understanding. There are also processes
in mathematics that need to be practiced and developed that could also reinforce the
conceptual understandings. Ideally it is a marriage of the two, which promotes deeper
conceptual understanding. Figure 1.2 illustrates the Structure of Knowledge for the
topic of functions.

Topics organize a set of facts related to specific people, places, situations, or things.
Unlike history, for example, mathematics is an inherently conceptual language, so
“Topics” in the Structure of Knowledge are actually broader concepts, which break down



into micro-concepts at the next level.

Figure 1.1: Side by Side: The Structure of Knowledge and the Structure of Process
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Transitioning to Concept-Based Curriculum and Instruction, Corwin Press Publishers,
Thousand Oaks, CA.

As explained by Lynn Erickson (2007), “The reason mathematics is structured
differently from history is that mathematics is an inherently conceptual language of
concepts, subconcepts, and their relationships. Number, pattern, measurement,
statistics, and so on are the broadest conceptual organizers” (p. 30).

More about concepts in mathematics will be discussed in Chapter 2.

Facts are specific examples of people, places, situations, or things. Facts do not
transfer and are locked in time, place, or a situation. In the functions example seen in

Figure 1.2, the facts are y = mx + ¢, y = ax? + bx + ¢, and so on. The factual content in
mathematics refers to the memorization of definitions, vocabulary, or formulae. When
my student knows the fact that y = mx + ¢, this does not mean she understands the



concepts of linear relationship, y-intercept, and gradient.

According to Daniel Willingham (2010), automatic factual retrieval is crucial when
solving complex mathematical problems because they have simpler problems
embedded in them. Facts are the critical content we wish our students to know, but
they do not themselves provide evidence of deep conceptual understanding.

Figure 1.2: The Structure of Knowledge for Functions

Structure of Knowledge
Encksen, D 1995
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Adapted from original Structure of Knowledge figure from Transitioning to Concept-
Based Curriculum and Instruction, Corwin Press Publishers, Thousand Oaks, CA.

Formulae, in the form of symbolic mathematical facts, support the understanding of
functions. This leads to a more focused understanding of the concepts of linear
functions, quadratic functions, cubic functions, exponential functions, variables, and
algebraic structures in Figure 1.2, The generalization “Functions contain algebraic
structures that describe the relationship between two variables based on real-world
situations” is our ultimate goal for conceptual understanding related to the broad
concept of functions. Please take a look at the companion website for more examples
of the Structure of Knowledge and the Structure of Process on the topic of linear
functions. See Figures M1.1 and M1.2.



o

Concepts are mental constructs, which are timeless, universal, and transferable across
time or situations. Concepts may be broad and abstract or more conceptually specific
to a discipline. “Functions” is a broader concept, and the micro-concepts at the next
level are algebraic structures, variables, linear, quadratic, cubic, and exponential.
Above the concepts in Figure 1.2 are the principles and generalizations.

Principles and generalizations are transferable understandings that allow students to
make connections between two or more concepts. In mathematics, the principles are
the theorems, the cornerstone truths. Though generalizations and principles are both
statements of conceptual relationship, the principles do not contain a qualifier such as
often, can, or may because they are immutable “truths” as we know them. Because
generalizations do not rise to the level of a law or theorem, they may require a
qualifier if they do not hold true in all cases. Principles and generalizations are often
exemplified in a real-life context for mathematics; however, they are not exclusively
portrayed in this way. In Figure 1.2, another generalization could have been the
following: “Algebraic tools allow highly complex problems to be solved and displayed
in a way that provides a powerful image of change over time” (Fuson, Kalchman, &
Bransford, 2005, p. 351).

Although the Structure of Knowledge provides the deep understanding of the content
of mathematics, the processes, strategies, and skills also provide important conceptual
understanding.

The Structure of Process represents the procedural facet of learning mathematics.
Processes, skills, and strategies are included in the lowest levels in the Structure of
Process. “Skills are smaller operations or actions that are embedded in strategies, and
when appropriately applied ‘allow’ the strategies to work. Skills underpin a more
complex strategy” (Lanning, 2013, p. 19).

Strategies are systematic plans that learners consciously adapt and monitor to
improve learning performance. As explained by Erickson and Lanning (2014),
“Strategies are complex because many skills are situated within a strategy. In order to
effectively employ a strategy, one must have control over a variety of the skills that
support the strategy.” (p. 46). An example of a strategy in math would be making
predictions or drawing conclusions.

Processes are actions that produce results. A process is continuous and moves through
stages during which inputs (materials, information, people’s advice, time, etc.) may



transform or change the way a process flows. A process defines what is to be done—for
example, the writing process, the reading process, the digestive process, the
respiratory process, and so on.

Figure 1.3 illustrates an example of the mathematical process of creating
representations and the generalizations associated with this mathematical process.
Throughout this functions unit, students will learn different strategies and skills that
support the process of creating representations. This could include using a table of
values or an algebraic or geometric form of a function.

Concepts that can be drawn from this process include substitution, revision,
interpretation, and models. Two or more of the concepts are used to write unit
generalizations, which are also known as process generalizations. The process
generalizations in Figure 1.3 are as follows:

Mathematicians create different representations—table of values, algebraic,
geometrical—to compare and analyze equivalent functions.

The revision of a mathematical model or substitution of data may enhance or
distort an accurate interpretation of a problem.

When students are guided to these generalizations, they demonstrate their
understanding of the creating representations process.

Figure 1.3: Structure of Process Example for Functions
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Adapted from original Structure of Process figure from Transitioning to Concept-
Based Curriculum and Instruction, Corwin Press Publishers, Thousand Oaks, CA.

Other strategies and skills, such as graphing and analytical skills, support the process
of creating representations. This process supports the concepts of mathematical
models, substitution, interpretation, revision, variables, equivalence, and so on.

In Figure 1.4, we look at the dual part that the Structure of Knowledge and the
Structure of Process each play in ensuring a deep understanding of content and
process in mathematics. For the concept of functions, we include the content that
needs to be learned as well as the skills and strategies that are employed fluently to aid
the process of creating representations. The ability to employ strategies and skills
fluently is referred to as procedural fluency. Visit the companion website to see
additional summaries of the components of the Structures of Knowledge and Process.
See Figures M1.3 and M1.4.

o

To help understand the generalization “Functions contain algebraic structures that
describe the relationship between two variables based on real-world situations,” we



work to ensure the conceptual relationships are revealed. The concepts of algebraic
structures, variables, linear, quadratic, and cubic help us connect the facts to give
mathematical content more meaning and promote deeper understanding. The
mathematical process involved is creating representations, and it supports the
understanding of the concepts substitution, interpretation, revision, variables,
mathematical models, and equivalence. Mathematical processes will be discussed in
detail in the next chapter.

Generalizations are statements that connect two or more concepts.

The language of mathematics is different to languages like English and Chinese.
There are things that are strictly allowed and there are things that are strictly
not. It is the formal nature of the language that often causes confusion and errors
in learners. However, overemphasis on the formality, and some teachers are only
concerned with practicing formal exercises, prevents understanding of the
beauty, creativity, and utility of mathematics.

Chris Binge, Principal Island School, Hong Kong

Applying the Structure of Knowledge and the
Structure of Process

Inductive vs. Deductive Teaching

In my first years of teaching, it was common practice in the mathematics classroom to
adopt the PPP model (presentation, practice, and production) of deductive, teacher-
led instruction. The PPP approach typically looks like this:

Step 1: Teacher introduces the formula, such as the Pythagorean theorem, and
demonstrates three working examples.

Step 2: Ask students to practice using the formula.
Step 3: Ask students to produce their own examples.

Figure 1.4: The Structure of Knowledge and The Structure of Process for the Topic
Functions, Side by Side
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The two-dimensional model of instruction, which focuses on the facts and content of
the subject and the rote memorization of procedures and topics, is intellectually
shallow. A two-dimensional curriculum and instruction model focuses on the bottom
levels of the Structure of Knowledge and the Structure of Process. This encourages
students to work at a low-order level of thinking (such as memorization of facts or
perfunctory performance of lower level skills) in a content/skill-based, coverage-
centered curriculum. A two-dimensional model often presents the generalization or
new concepts at the beginning of the learning cycle and follows a direct teaching
methodology.

This is typical of a deductive approach in teaching. I have witnessed many, many
lessons utilizing this approach, and to me, this is like telling our students what the
present is before they open it! The concept-based model is generally an inductive
teaching model that draws the understandings from the students as a result of
structured or guided inquiry.



An inductive approach, like mathematical induction, allows learners to start with
specific examples and form generalizations for themselves. In his research on how the
brain learns mathematics, David Sousa (2015) states that the human brain is a powerful
pattern seeker, and we have an innate number sense or what scientists call
“numerosity.” The inductive approach utilizes this innate quality for number sense
and pattern finding. The teacher acts as a facilitator, helping students to discover
relationships and seek patterns for themselves.

The three-dimensional model of instruction suggests a more sophisticated design
with a third level: the conceptual level. In a three-dimensional curriculum and
instruction model, the lower levels of the Structure of Knowledge and the Structure of
Process are important components, but the third dimension of concepts, principles,
and generalizations ensures that conceptual thinking and understanding are
prominent.

A three-dimensional, inductive approach encourages students to construct
generalizations at the end of the learning cycle through the use of inquiry. As stated by
Erickson and Lanning (2014), “Deep understanding and the transfer of knowledge and
skills require that teachers understand the relationship between the factual/skill level
and the conceptual level, and use this relationship effectively in instruction” (p. 23).

Figure 1.5 illustrates the difference between inductive and deductive approaches.

Figure 1.5: Inductive vs. Deductive Approaches
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specific examplas at the generalizations from
beginning of the lesson

An inductive model is a student-centered approach, helping students to think logically
and scientifically and allowing students to generalize by utilizing higher order
thinking. Discovering inductive approaches changed my entire teaching practice and
influences every student learning experience I plan for my students. The inductive
approach provides a framework; it is a structure for all mathematical concepts to be
conveyed to students in an analytical, coherent fashion. The key to inductive teaching
is that students draw and form generalizations by working on specific examples
initially.

Introducing the Pythagorean theorem utilizing an inductive approach would look like
this:



1. Look at the following right-angled triangles and work out the squares of each of
the sides. (Students work out specific numerical examples.)

2. What generalization can you make about the relationship between all three sides
when they are squared? (Students now generalize by pattern seeking.)

Bransford, Brown, and Cocking (2000) offer a comprehensive survey of neurological
and psychological research that provides strong support for constructivism and
inductive methods. “All new learning involves transfer of information based on
previous learning” (p. 53).

Inductive instruction presents new information in the context of situations, issues, and
problems to which students can relate, so there is a much greater chance that the
information can be linked to their existing cognitive structures. John D. Bransford et
al. (2000) explain, “Motivation to learn affects the amount of time students are willing
to devote to learning. Learners are more motivated when they can see the usefulness
of what they are learning and when they can use it to do something that has an impact
on others” (p. 61).

Inductive methods, such as problem-based learning, support techniques that use
authentic situations and problems.

Generalizations and principles in the Structure of Knowledge and the Structure of
Process are timeless, universal, transcend cultures, and are transferable ideas. They
allow the learner to connect the facts and concepts for deeper meaning and
understanding. The three-dimensional model of curriculum and instruction, according
to Erickson and Lanning (2014), includes concepts, generalizations, and principles to
ensure that curriculum and instruction focus on intellectual depth, the transfer of
understanding, and the development of conceptual brain schemata. The three-
dimensional model is contrasted with the traditional two-dimensional model of
coverage and memorization.

Figure 1.6 illustrates the two-dimensional model, also known as the “inch deep, mile
wide” approach to curriculum. In contrast, the three-dimensional model represents a
more comprehensive, sophisticated design for curriculum and instruction.

Figure 1.6: Two-Dimensional vs. Three-Dimensional Curriculum/Instruction Models
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Inductive approaches lead to generalization formation.

Teaching for Inquiry

Inquiry is a vehicle and is about not telling students what the surprise is before
opening the present. I have met many teachers in my travels, and often I hear the
following about inquiry:

“I don’t have time for inquiry! I need to get through the content!”
“I have inquiry lessons once per week!”
l?‘l

“Inquiry just doesn’t work with my students; they need to be spoon fed
“Inquiry does not work for my students; they do not have the ability!”

Inquiry refers to posing questions, problems, or scenarios rather than providing
established facts or knowledge. Inquiry means to seek truth, information, or
knowledge, and individuals carry out the natural process of inquiry throughout their
lives. Unfortunately, traditional curriculum discourages inquiry; students learn not to
ask questions and to accept facts that are given. A study by Gelman, Gruber, and
Ranganath (2014) found that learning is more effective when students are curious.
Memory is also enhanced when students are in a state of curiosity. Inquiry encourages
curiosity in students by posing questions to engage thought and interest.



Through inquiry and a variety of pedagogical approaches, such as cooperative and
problem-based learning, students can develop skills for success while understanding
the concepts involved (Barron & Darling-Hammond, 2008). Lynn Erickson encapsulates
this idea as follows: “Information without intellect is meaningless.” Figure 1.7
illustrates the synergistic relationship between the facts, skills, and concepts all being
achieved through a continuum of inquiry.

In order to develop intellect in our students we need to establish synergistic thinking
through the inquiry continuum.

Figure 1.7: Developing Intellect Through Inquiry Process Continuum Model
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Erickson and Lanning (2014) state that “Synergistic thinking requires the interaction
of factual knowledge and concepts. Synergistic thinking requires a deeper level of
mental processing and leads to an increased understanding of the facts related to
concepts, supports personal meaning making, and increases motivation for learning”
(p. 36).

The vehicle of inquiry is used to foster synergistic thinking. The design of guiding
questions in the form of factual, conceptual, and debatable questions also supports
synergistic thinking and allows students to bridge the gap between the facts and skills
and conceptual understandings.

For additional resources, visit the companion website where you will find an example
of a traditional activity as well as guidance on how to facilitate synergistic thinking



and a template to plan a synergistic student activity of your own. See Figures M1.6 &
M1.7.

o

As an example, in order to understand the concepts of linear functions, parameters,
and variables, one must know facts, such as y = mx + c or Ax + By + C = 0, and be able to
plot points and create different representations. The inquiry process would ask
students to investigate linear functions for different values for the parameters m and c.
This supports the understanding of the concepts of linear, parameters, variables, and
functions. Inquiry also stimulates student motivation and interest and leads to a
deeper understanding of transferable concepts.

I have had the pleasure of working with Mike Ollerton, a pioneer in inquiry-based
learning of mathematics from the United Kingdom. In his short piece on “Enquiry-
Based Learning” (2013) he writes, “The underpinning pedagogy of enquiry-based
learning (EBL) is for learners to gain and to use & apply knowledge in ways which
places responsibility for the learning upon students. This is at the heart of supporting
independent learning and requires the teacher become a facilitator of students’
knowledge construction; as a key aspect of sense making.”

Different levels of inquiry are used as appropriate to the context and classroom
situation. Figure 1.8 describes the levels of inquiry, adapted from the work of Andrew
Blair (http://www.inquirymaths.com). Figure 1.9 shows the hierarchy of the levels of
inquiry. The triangle represents the progression of inquiry levels, which can start off
being quite narrow and structured, then move to a guided approach, and then
ultimately to open inquiry, giving all students more opportunities to explore.

The three levels of inquiry—structured, guided, and open—originated in the learning
approaches of science-based disciplines (Banchi & Bell, 2008). The important questions
here are why and when do we use the different levels of inquiry?

Figure 1.8: Levels of Inquiry
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Figure 1.9: Levels of Inquiry Hierarchy
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Structured inquiry is heavily scaffolded and suitable perhaps for learners and
teachers who are new to inquiry. Structured inquiry fosters confidence in learners
while promoting autonomy and independence. Teachers who are not accustomed to
using inquiry find it difficult to “let go” of control, and structured inquiry provides a
happy medium. The outcomes are predictable and predetermined by the design of the
task.

Guided inquiry presents learners with opportunities for different lines of inquiry,
with predicable outcomes. For example, ask students for different methods to prove a
particular theorem (e.g., the Pythagorean theorem). Guided inquiry has fewer prompts
and gives the learner more freedom to choose his or her own pathways to the desired
outcome.

Open inquiry promotes different lines of inquiry with unpredictable outcomes. Truly
authentic, open inquiry engages the learner’s interest and creativity. For example, the
International Baccalaureate Mathematics Standard and Higher Levels include an
internal assessment called a “personal exploration.” Students are asked to choose an
area of mathematics, conduct their own research, and draw their own conclusions. One
of my past students, who was a ranked Hong Kong tennis champion, chose to write
about tennis and binomial theorem. Another student with scoliosis looked at the
curvature of her spine over the years using statistical analysis.

Open inquiry is not to be confused with pure “discovery” learning, when very little
guidance is given to the learner. There is a misconception that inquiry is about giving
students an open problem and letting them “run with it” with little guidance or input
from the teacher. This is far from the intention of inquiry. Inquiry is student centered,
inherently inductive, and peaks students’ motivation and interest. Inquiry is not an
excuse for passivity. The teacher’s role is vital in facilitating and guiding the students
during different stages of learning.



On the following pages there are three examples of student tasks on the same topic:
proving the Pythagorean theorem. The topic is presented in three different ways to
illustrate structured, guided, and open levels of inquiry.

Figure 1.10 summarizes the main features and the difference between the three levels
of inquiry for the Pythagorean theorem task. Figures 1.11, 1.12, and 1.13 are the
student tasks.

Figure 1.10: Levels of Inquiry for Proving the Pythagorean Theorem Task
Task Proving the

Pythagorean Thearem Features

Structured approach Step-by-step scaffolded questions and prompts

Thea table allows students to calculate the areas
of different shapes within the large square and
prompts students to find a relationship.

Guided approach Fewer scaffolded prompts

Given the large square with the tilted square
inside, students must work out that finding the
areas of the shapes inside.

Open approach Students are asked to research their own proof
with hundreds to choose from. They need to
explain and show understanding of their proof.

Through inductive inquiry, students are given opportunities to find generalizations
and patterns they observe from specific examples. Studies have shown that a concept-
based curriculum using an inductive approach results in a higher level of retention and
conceptual understanding of the content.

According to Borovik and Gardiner (2007, pp. 3-4), the following are some of the top
traits of mathematically able students:

¢ Ability to make and use generalizations—often quite quickly. One of the basic
abilities, easily detectable even at the level of primary school: after solving a
single example from a series, a child immediately knows how to solve all
examples of the same kind.

 Ability to utilize analogies and make connections.

e Lack of fear of “being lost” and having to struggle to find one’s way through the
problem.

Notice these abilities are described as traits that are not genetic predispositions but
qualities that can be nurtured and developed in students. Opportunities to fail or “get
stuck” give students the ability to lack fear of being lost or “stuck.” In her 2008
Harvard commencement address, J. K. Rowling, author of the Harry Potter books, said,



“It is impossible to live without failing at something, unless you live so cautiously that
you might as well not have lived at all—in which case, you fail by default.”

There are three principles outlined in the report How Students Learn: Mathematics in the
Classroom (Bransford et al., 2005) that are consistent with the concept-based
curriculum model:

Principle 1: Teachers must engage students’ preconceptions. (p. 219)

This refers to recognition of students’ prior knowledge and prior strategies and the
need to build on them to create new strategies and new learning.

Principle 2: Understanding requires factual knowledge and conceptual
frameworks. (p. 231)

This principle suggests the importance of the factual and conceptual and providing a
framework for learners to connect the two in the form of generalizations. Learners
need to have procedural fluency as well as know the conceptual relationships in order
to develop mathematical proficiency.

Principle 3: A metacognitive approach enables student self-monitoring. (p. 236)

Learners need to be given time and space to explore mathematical concepts—in other
words, to self-monitor. More opportunities to reflect on their experiences will help
learners to construct their ideas into larger categories and take control of their own
learning.

With this overwhelming evidence, you may now ask, how do we develop curriculum
and instruction using a concept-based and inquiry-led model? In Chapter 2, we will
look at the facts, skills, and strategies in mathematics and how to use them to build
conceptual understanding through the Structure of Knowledge and the Structure of
Process. Subsequent chapters provide practical activities to guide your journey in
developing a three-dimensional concept-based model for curriculum and instruction.

Open inquiry is student centered, with extensive input from the teacher.

Sample Student Learning Experience



Figure 1.11: A structured inquiry example

Proving Pythagorean Theorem

Find the area of the following shapes and complete this table.

A G
Area of the | Area of the | Area of the Connecting
large square | tilted square | four triangles | B+ C A, B ,and C
a c b
b c a
a b

Explain in words the relationship you have discovered. Use a diagram to illustrate your explanation.

=

For a completed version of Figure 1.11, please visit the companion website.

Sample Student Learning Experience

Figure 1.12: A Guided Inquiry Example



Proving the Pythagorean Theorem

Investigate the relationship between a, b, and c using the following diagram.

b a
a C b
b - a
a b

Sample Student Learning Experience

Figure 1.13: An Open Inquiry Example



Proving the Pythagorean Theorem

There are hundreds of proofs for the Pythagorean theorem. Research one
proof and explain the proof with diagrams. Use any medium to explain your
proof. This could include a poster, movie, applet, or Google presentation.

To state a theorem and then to show examples of it is literally to teach backwards.

E. Kim Nebeuts From Inspirational Quotes, Word, Sayings (2015)

Deductive approaches are the norm in traditional math classrooms—we rote-learn
processes in a mechanical way without understanding the true reasoning and
meaning behind the problem itself. Inquiry-based learning requires us to think
and analyze for ourselves, then come up with a conclusion or generalization,
which is the fun and beauty behind learning mathematics. We are encouraged to
challenge ourselves and step away from our comfort zones in order to expand our
knowledge of mathematics. Both learning methods are effective in the short term
for an exam. But I have found inductive, inquiry-based approaches allow new
information and working methods to be stored in my long-term memory as I
actually understand what I am doing.

Chun Yu Yiu, Grade 12 student Island School, Hong Kong



Northside ISD (San Antonio, TX) has been involved in concept-based curriculum
for 10 years. It was important for this district that serves 103,000 students to have
a K-12 curriculum in all major content areas that was developed using the tenets
of concept-based curriculum. Our curriculum staff have been trained and certified
by Lynn Erickson. Our teachers and administrators are clear about what our
students are expected to know, understand, and do. Concept-based curriculum is
without a doubt one of the main reasons Northside ISD continues to be a high
performing district.

Linda Mora, Deputy Superintendent for Curriculum and Instruction Northside ISD,
San Antonio, Texas

Chapter Summary

This chapter laid the foundation for why we need to move from a two-dimensional to a
three-dimensional curriculum and instruction model to include the conceptual level.
Evidence supports the effectiveness of a concept-based curriculum, which is grounded
in an inductive and inquiry-led approach. Concept-based models lead to increased
mathematical proficiency and understanding. The chapter discussed what a concept-
based curriculum looks like for math and the benefits to students’ learning. An
overview of the symbiotic relationship between the Structure of Knowledge and the
Structure of Process in the realm of mathematics was also provided. Developing
intellect requires synergistic thinking, which, according to Lynn Erickson (2007), is an
interplay between the factual and conceptual levels of thinking. Synergistic thinking is
at the heart of a concept-based curriculum and instruction.

An inductive model is a student-centered approach, helping students to think logically
and scientifically, allowing students to generalize by utilizing higher order thinking.
The inductive approach provides a framework; it is a structure for all mathematical
concepts to be conveyed to students in an analytical, coherent fashion. The key to
inductive teaching is that students draw and form generalizations by working on
specific examples initially.

Levels of inquiry provide teachers and learners with the opportunity to gain
confidence when exploring mathematical concepts. Structured and guided inquiry
facilitates differentiation and promotes student and teacher confidence.

Extensive studies in mathematics education indicate a need for curriculum and
instruction to include the conceptual level for enduring, deeper understandings. If we
are to prepare our students for an unknown future, due to vast technological advances,



we must ensure we foster higher order thinking skills.

The next chapter will explain, in detail, the Structure of Knowledge and the Structure
of Process as applied to the facts, skills, strategies, and processes of mathematics.

Discussion Questions

1. Does math education need to undergo a reform? Why or why not?

2. Why do educators need to include the conceptual understandings of a topic
represented in a three-dimensional curriculum model?

3. How do the Structures of Knowledge and Process apply to the mathematics
realm?

4. What are the features of inductive teaching and the benefits of an inductive
approach when learning mathematics?

5. How does synergistic thinking develop intellect?

6. How would you use the different levels of inquiry in your classroom? Think of
examples of when you might use each (structured, guided, open).



Chapter 2 What Are the Levels of the Structures of
Knowledge and Process for Mathematics?

Quite a few years ago, in my first lesson on trigonometry with a new class, I asked my
students whether they had learned about trigonometric ratios in right-angled
triangles. They all replied, “No.” When I wrote SOHCAHTOA on the board, they said,
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“Oh, that’s what you mean.” They all knew the formula hypotemise but did not

understand that SOHCAHTOA represents similarity in a set of right-angled triangles
sharing a common acute angle. This was a mere memorized fact and algorithm for
them, and they had little understanding of the concepts of ratio, similarity, and angles
in right-angled triangles. They had been taught to focus on the facts and algorithms
first, and there was an assumption of conceptual understanding. These lower levels of
thinking are represented in the Structure of Knowledge and the Structure of Process.

As mentioned in Chapter 1, knowledge has an inherent structure, just as the animal
and plant kingdoms have structures. With this structure, we are able to classify and
recognize similarities, differences, and relationships. Concept-based curriculum
requires an understanding of the different levels in the Structure of Knowledge and
the Structure of Process and how they affect curriculum design and instruction.
Concept-based models include the higher level of intellectual thinking: the conceptual
level. An understanding of the Structure of Knowledge and the Structure of Process
gives us the ability to plan curriculum and instruction for intellectual development.
Let us recap the levels in the Structure of Knowledge.

The Levels of the Structure of Knowledge

The Factual Level

The lowest level in the Structure of Knowledge is the factual level. Factual knowledge
includes rote memorization and does not guarantee conceptual depth of
understanding.

Facts are specific examples of people, places, situations, or things. They are locked in
time, place, or situation. Facts are not transferable and include definitions, formulae in
the form of symbols (e.g., y = mx + ¢), and the different names of polygons (e.g.,
pentagon, hexagon).

Figure 2.1 illustrates the Structure of Knowledge applied to the topic of trigonometry.



Figure 2.1: The Structure of Knowledge for Trigonometry
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Adapted from original Structure of Knowledge figure from Transitioning to Concept-
Based Curriculum and Instruction, Corwin Press Publishers, Thousand Oaks, CA.

The factual level includes knowing the shape of the graph of » = @< without necessarily

adjacent

osx =
understanding how this is generated and memorized formula such as hypotenns,

These facts help students to support the understanding of the concepts of ratio,
magnitude, angle, and direction when learning about right-angled trigonometry in a
concept-based curriculum.

Knowing a definition or a formula does not imply understanding. Memorized formulae
in mathematics are facts that support the broader concepts in mathematics. These
facts include the vocabulary, definitions, and formulae in the form of mathematical
symbols. For mathematical proficiency and understanding, learners need to know the
facts to reinforce their understanding of the related concepts. To know means to
memorize facts or definitions that are critical to understanding the generalizations
(statements of conceptual relationships) for a particular unit.



To continue with the theme of right-angled trigonometry, let us look at the example of
the Pythagorean theorem to illustrate this point:

For right-angled triangles, the area of the square drawn from the hypotenuse
represents the sum of the areas of the squares drawn from the other sides.

This is a statement of conceptual understanding, which connects the concepts of
hypotenuse, area, squares, and sum applied to right-angled triangles. There are
numerous inquiry tasks that guide students to understand this principle, one being
from http://nrich.maths.org/2293 called “Tilted Squares.” In this task, students are
asked to spot patterns, make generalizations, and even discover the Pythagorean
theorem by finding the areas of tilted squares.

The formula for the Pythagorean theorem is a + b? = 2. This is a memorized fact,
which does not reflect conceptual understanding. This fact only applies to a specific
question, such as the following:

Find cwhena=3and b =4.

\'1
.

b

The recall of these facts is highly compressible in the brain and is crucial when
problem solving and learning math. Once you understand the process or concept, the
brain has an incredible capacity to file this information away for later use—in other
words, compress it in the brain.

William Thurston (1990), a Fields Medal winner in mathematics, defined compression
particularly well when he wrote, “Mathematics is amazingly compressible: you may
struggle a long time, step by step, to work through some process or idea from several
approaches. But once you really understand it and have the mental perspective to see
it as a whole, there is often a tremendous mental compression. You can file it away,
recall it quickly and completely when you need it, and use it as just one step in some
other mental process. The insight that goes with this compression is one of the real
joys of mathematics (p. 847).

The Difference Between Formulae and Theorems in the



Structure of Knowledge

A formula is an equation that uses mathematical symbols or variables to show a
relationship and is represented by the facts in the Structure of Knowledge.

Theorems are statements that have been proven and connect explanations of
conceptual understandings. Theorems are represented by principles in the Structure of
Knowledge.

Let us look at the fundamental theorem of calculus. The first part of this theorem
describes the relationship between differentiation and integration as inverse processes
of each other. The second part of the fundamental theorem of calculus helps students
to evaluate a definite integral without having to go back to the definition of taking the
limit of a sum of rectangles.

The fundamental theorem of calculus may also be expressed as a fact or formula in
mathematical symbols:

Let f{x) be continuous in the interval [a, b] and F'(x)= f(x], then

Fx)=[ fyat

If students know this fact or formula, do they have a deep understanding of the
fundamental theorem of calculus? Do they understand the concept of integration as
being an inverse process of differentiation or understand that calculus allows the
evaluation of a definite integral without having to go back and take the limiting sum of
abounded area?

Figure 2.2 shows the fundamental theorem of calculus depicted in the Structure of
Knowledge.

Figure 2.2: The Fundamental Theorem of Calculus in the Structure of Knowledge



Structure of Knowledge
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Adapted from original Structure of Knowledge figure from Transitioning to Concept-
Based Curriculum and Instruction, Corwin Press Publishers, Thousand Oaks, CA.

Facts in math include memorized formulae in math symbols and vocabulary and
definitions.

The Topic and Concepts Levels

Topics in math are broader concepts that break down to specific micro concepts at the
next level. In Figure 2.2, the topic “integration” is supported by the micro concepts
“limits,” “summation,” and “bounded areas.” More on the classification of math
concepts will be discussed later in this chapter.

The Generalizations and Principles Level

Generalizations and principles are statements of conceptual understanding that allow
students to make connections between two or more concepts. In mathematics, the
principles are theorems—the cornerstone truths. In Figure 2.1, the generalizations are
as follows:



Similar right-angled triangles share a common acute angle
Similar right-angled triangles share common ratios of corresponding sides
In Figure 2.2, the fundamental theorem of calculus represents a principle:

Theorems in calculus allow the evaluation of a definite integral without having to
go back to the definition and take the limiting sum of a bounded area.

Crafting quality generalizations requires an investment of time. How to craft
generalizations will be discussed in the next chapter.

The Levels of the Structure of Process

Mathematical Processes, Algorithms, Strategies, and
Skills in the Structure of Process

Students in my first trigonometry class were able to easily find lengths of sides and
angles in right-angled triangles, but when I asked them to explain why this worked, no
one could explain using the concepts of similarity and ratios of sides. To my students,
SOHCAHTOA were buttons on a calculator and a memorized procedure or algorithm to
get an answer. These students had been exposed to traditional methods that focused
on memorizing algorithms. Mathematics classrooms worldwide have tended to focus
on rote learning procedures or algorithms, and often too little attention is paid to why
or how. Why do we multiply by the reciprocal of the divisor when we divide fractions?
Why can we not divide by zero? Why do two negatives make a positive? These are
examples of important questions that need to be addressed to support conceptual
understanding.

Waterbury School System in Connecticut embarked on the concept-based curriculum
model in 2012. Darren Schwartz, the Instructional Leadership Director of Waterbury
Public Schools, explains the reasoning behind adopting the concept-based approach:

The mission of the Waterbury School System is to establish itself as the leader in
Connecticut for urban education reform in partnership with the State Department
of Education and the entire Waterbury community. The school system will
provide opportunities for all students to maximize their skills and talents in an



atmosphere where teaching and learning flourish under the never-wavering belief
that all students can be exemplary students, while becoming respectful,
responsible, productive citizens vital to our community.

There has been a long-standing tradition in math instruction to teach and model
using algorithms first. In our district we focus firstly on the conceptual
understanding of math and provide the opportunity for students to discover
algorithms through an inquiry based learning process.

Darren Schwartz, Instructional Leadership Director Waterbury Public Schools,
Connecticut
Strategies are a number of skills that learners use in a methodical and systematic way

to support learning.

Figure 2.3: The Structure of Process for Trigonometry
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Adapted from original Structure of Knowledge figure from Transitioning to Concept-
Based Curriculum and Instruction, Corwin Press Publishers, Thousand Oaks, CA.



