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Organisation of the book

The reader needs to be aware that this book has two very different kinds of ‘chapters’:

The Articles form the backbone of the book; they roughly correspond to the written
material given to our students the first time we taught the course.

The Sessions, reflecting the informal classroom discussions, provide additional
examples and exercises. Students who had difficulties with some of the exercises in
the Articles could often solve them after the ensuing Sessions. We have tried in the
Sessions to preserve the atmosphere (and even the names of the students) of that first
class. The more experienced reader could gain an overview by reading only the Articles,
but would miss out on many illuminating examples and perspectives.

Session 1 is introductory. Exceptionally, Session 10 is intended to give the reader a
taste of more sophisticated applications; mastery of it is not essential for the rest of the
book.

Each Article is further discussed and elaborated in the specific subsequent Sessions
indicated below:

Article I Sessions 2 and 3
Article I1 Sessions 4 through 9
Article 11T Sessions 11 through 17
Article IV Sessions 19 through 29
Article V Sessions 30 and 31
Article VI Sessions 32 and 33
Article VII Sessions 34 and 35

The Appendices, written in a less leisurely manner, are intended to provide a rapid
summary of some of the main possible links of the basic material of the course with
various more advanced developments of modern mathematics.
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The flight of a bird as a map from time to space

TIME SPACE
starting just ending
time later time
Schematically:
flight of bird
TIME > SPACE

You have no doubt heard the legend; Galileo dropped a heavy weight and a light
weight from the leaning tower of Pisa, surprising the onlookers when the weights hit
the ground simultaneously. The study of vertical motion, of objects thrown straight
up, thrown straight down, or simply dropped, seems too special to shed much light
on general motion; the track of a dropped rock is straight, as any child knows.
However, the motion of a dropped rock is not quite so simple; it accelerates as it
falls, so that the last few feet of its fall takes less time than the first few. Why had
Galileo decided to concentrate his attention on this special question of vertical
motion? The answer lies in a simple equation:

SPACE = PLANE x LINE

but it requires some explanation!
Two new maps enter the picture. Imagine the sun directly overhead, and for each
point in space you’ll get a shadow point on the horizontal plane:

SPACE
shadow
PLANE i
shadow of p

This is one of our two maps: the ‘shadow’ map from space to the plane. The second
map we need is best imagined by thinking of a vertical line, perhaps a pole stuck into
the ground. For each point in space there is a corresponding point on the line, the
one at the same level as our point in space. Let’s call this map ‘level’:



Galileo and multiplication of objects

Together, we have:

SPACE level LINE
»¢ level of p
¢ level of g
level
SPACE LINE
shadow
PLANE

These two maps, ‘shadow’ and ‘level’, seem to reduce each problem about space to
two simpler problems, one for the plane and one for the line. For instance, if a bird is
in our space, and you know only the shadow of the bird and the level of the bird,
then you can reconstruct the position of the bird. There is more, though. Suppose
you have a motion picture of the bird’s shadow as it flies, and a motion picture of its
level — perhaps there was a bird-watcher climbing on our line, keeping always level
with the bird, and you filmed the watcher. From these two motion pictures you can
reconstruct the entire flight of the bird! So not only is a position in space reduced to a
position in the plane and one on the line, but also a motion in space is reduced to a

motion in the plane and one on the line.
Let’s assemble the pieces. From a motion, or flight, of a bird

TIME

flight of bird

we get two simpler motions by ‘composing’ the flight map with the shadow and level

maps. From these three maps,

Y

SPACE




TIME

\flight of bird

level
SPACE e LINE
1 shadow
PLANE
we get these two maps:
level of flight of bird
TIME = | LINE
shadow of
flight of bird
PLANE

and now space has disappeared from the picture.

Galileo’s discovery is that from these two simpler motions, in the plane and on
the line, he could completely recapture the complicated motion in space. In fact, if
the motions of the shadow and the level are ‘continuous’, so that the shadow does
not suddenly disappear from one place and instantaneously reappear in another,
the motion of the bird will be continuous too. This discovery enabled Galileo to
reduce the study of motion to the special cases of horizontal and vertical motion. It
would take us too far from our main point to describe here the beautiful experi-
ments he designed to study these, and what he discovered, but I urge you to read

about them.

Session 1

Does it seem reasonable to express this relationship of space to the plane and the

line, given by two maps,

SPACE

shadow

PLANE

level

LINE
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by the equation SPACE = PLANE x LINE? What do these maps have to do with
multiplication? It may be helpful to look at some other examples.

3. Other examples of multiplication of objects

Multiplication often appears in the guise of independent choices. Here is an exam-
ple. Some restaurants have a list of options for the first course and another list for
the second course; a ‘meal’ involves one item from each list. First courses: soup,
pasta, salad. Second courses: steak, veal, chicken, fish.

So, one possible *meal’ is: ‘soup, then chicken’; but ‘veal, then steak’ is not
allowed. Here is a diagram of the possible meals:

Meals 2" courses
soup, steak pasta, steak steak
soup, veal veal

soup, chicken — chicken
soup, fish fish
Y
I soup pasta | salad |

1%t courses

(Fill in the other meals yourself.) Notice the analogy with Galileo’s diagram:

MEALS (—| 2" COURSES SPACE |—| LINE

| |

1* COURSES

PLANE

This scheme with three ‘objects” and two ‘maps’ or ‘processes’ is the right picture
of multiplication of objects, and it applies to a surprising variety of situations. The
idea of multiplication is the same in all cases. Take for example a segment and a disk
from geometry. We can multiply these too, and the result is a cylinder. I am not
referring to the fact that the volume of the cylinder is obtained by multiplying the
area of the disk by the length of the segment. The cylinder itself is the product,
segment times disk, because again there are two processes or projections that take
us from the cylinder to the segment and to the disk, in complete analogy with the
previous examples.
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Q)
Csone D

Every point in the cylinder has a corresponding ‘level’ point on the segment and a
corresponding ‘shadow’ point in the disk, and if you know the shadow and level
points, you can find the point in the cylinder to which they correspond. As before,
the motion of a fly trapped in the cylinder is determined by the motion of its level
point in the segment and the motion of its shadow point in the disk.

An example from logic will suggest a connection between multiplication and the
word ‘and’. From a sentence of the form ‘A and B’ (for example, ‘John is sick and
Mary is sick’) we can deduce 4 and we can deduce B:

John is sick and Mary is sick John is sick
‘A and B’ ‘A’
Mary is sick
(Bl

But more than that: to deduce the single sentence ‘John is sick and Mary is sick’ from
some other sentence C is the same as deducing each of the two sentences from C. In
other words, the two deductions

C

B

amount to one deduction C—(A and B). Compare this diagram

—» 4

C

Aand B —= 4

|

with the diagram of Galileo’s idea.



PART 1

The category of sets

A map of sets is a process for getting from one set to another.
We investigate the composition of maps (following one process
by a second process), and find that the algebra of composition of
maps resembles the algebra of multiplication of numbers, but its
interpretation is much richer.
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ARTICLE 1

Sets, maps, composition
A first example of a category

Before giving a precise definition of ‘category’, we should become familiar with one
example, the category of finite sets and maps.

An in this category is a finite set or collection. Here are some exam-
ples:

(the set of all students in the class) is one object,
(the set of all desks in the classroom) is another,
(the set of all the twenty-six letters in our alphabet) is another.

You are probably familiar with some notations for finite sets:
{John, Mary, Sam}

is a name for the set whose three elements are, of course, John, Mary, and Sam. (You
know some infinite sets also, e.g. the set of all natural numbers: {0,1,2,3,...}.)
Usually, since the order in which the elements are listed is irrelevant, it is more
helpful to picture them as scattered about:

John

Mary

Sam

where a dot represents each element, and we are then free to leave off the labels when
for one reason or another they are temporarily irrelevant to the discussion, and
picture this set as:

Such a picture, labeled or not, is called an internal diagram of the set.

13
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A £ in this category consists of three things:

1. a set A, called the domain of the map,

2. a set B, called the codomain of the map,

3. a rule assigning to each element ¢ in the domain, an eclement b in the
codomain. This & is denoted by f o a (or sometimes ‘f(a)’), read °f of a’.

(Other words for map are ‘function’, ‘transformation’, ‘operator’, ‘arrow’, and
‘morphism’.)

An example will probably make it clearer: Let 4 = {John, Mary, Sam}, and let
B = {eggs, oatmeal, toast, coffee}, and let f assign to each person his or her favorite
breakfast. Here is a picture of the situation, called the internal diagram of the map:

John f= favorite breakfast eggs
2 I
Mary ® toast
e oatmeal
Safn .coﬁ%e

This indicates that the favorite breakfast of John is eggs, written f(John) = eggs,
while Mary and Sam prefer coffee. Note some pecularities of the situation, because
these are features of the internal diagram of any map:

(a) From each dot in the domain (here {John, Mary, Sam}), there is exactly one
arrow leaving.

(b) To a dot in the codomain (here {eggs, catmeal, toast, coffee}), there may be
any number of arrows arriving: zero or one or more.

The important thing is: For each dot in the domain, we have exactly one arrow
leaving, and the arrow arrives at some dot in the codomain.

Nothing in the discussion above is intended to exclude the possibility that 4 and
B, the domain and codomain of the map, could be the same set. Here is an internal
diagram of such a map g:

(Many 1950s movie plots are based on this diagram.)
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A map in which the domain and codomain are the same object is called an
endomap. (Why? What does the prefix ‘endo’ mean?) For endomaps only, an alter-
native form of internal diagram is available. Here it is, for the endomap above:

For each object A, there is a special, especially simple, endomap which has domain
and codomain both A. Here it is for our example:

Here is the corresponding special internal diagram, available because the map is an
endomap:

A map like this, in which the domain and the codomain are the same set 4, and for
each ain A4, f(a) = a, is called an [identity map|. To state it more precisely, this
map is ‘the identity map from {John, Mary, Sam} to {John, Mary, Sam},’ or ‘the
identity map on the object {John, Mary, Sam}.’ (Simpler still is to give that object a
short name, A = {John, Mary, Sam}; and then call our map ‘the identity map on 4’,
or simply ‘1,’.)

Sometimes we need a scheme to keep track of the domain and codomain, with-
out indicating in the picture all the details of the map. Then we can use just a letter
to stand for each object, and a single arrow for each map. Here are the external
diagrams corresponding to the last five internal diagrams:
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1. The identity laws:

(a)

Note that this is
the same as g

(b)

Note that this is
the same as f°

2. The associative law:

- -
o geof
® / ‘e
4 ho(gof)
@
D
S hog
o ()T G
D
(hog)ef
)
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Exercise 1:

Check to be sure you understand how we got diagrams (ii) and (iii) from the
given diagram (i). Then fill in (iv) and (v) yourself, starting over from (i). Then
check to see that (v) and (iii) are the same.

Is this an accident, or will this happen for any three maps in a row? Can you give a
simple explanation why the results

he(gef)and (hog)-f
will always come out the same, whenever we have three maps in a row
y Lyt z e
What can you say about four maps in a row?
One very useful sort of set is a ‘singleton’ set, a set with exactly one element. Fix

one of these, say , and call this set ‘1’. Look at what the maps from 1 to {John,
Mary, Sam} are. There are exactly three of them:

Definition: A4 point of a set X is a map 1—X.

(If 4 is some familiar set, a map from 4 to X is called an ‘A-element’ of X; thus ‘1-
elements’ are points.) Since a point is a map, we can compose it with another map,
and get a point again. Here is an example:

O foJohn = eggs
. eggs

coffee

The equation f o John = eggs is read ‘f following John is eggs’ or more briefly, °f of
John is eggs’ (or sometimes ‘f sends John to eggs’).
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To help familiarize yourself with the category of finite sets, here are some
exercises. Take A = {John, Mary, Sam}, B = {eggs, coffee} in all of these.

Exercise 2:
How many different maps f are there with domain 4 and codomain B? One
example is

but there are lots of others: How many in all?

Exercise 3: P
Same, but for maps 4 — A4

Exercise 4: ;
Same, but for maps B — A4

Exercise 5:
Same, but for maps B ir B

Exercise 6: ;
How many maps 4 — A satisfy fof = 7

Exercise 7:
How many maps B 2. B satisfy go g = g7

Exercise 8: p
Can you find a pair of maps 4 — B £, A for which gof =147
If so, how many such pairs?

Exercise 9: \ i
Can you find a pair of maps B — 4 — B for which ko h = 1p?
If so, how many such pairs?

1. Guide

Our discussion of maps of sets has led us to the general definition of category,

presented for reference on the next page. This material is reviewed in Sessions 2
and 3.
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Definition of CATEGORY

A category consists of the DATA:
(1) OBJECTS
(2) MAPS

(3) For each map f, one object as
DOMAIN of f and one object
as CODOMAIN of

(4) For each object A an
IDENTITY MAP, which has
domain A and codomain A

(5) For each pair of maps
4Bt
a COMPOSITE MAP

A g following | C

satisfying the following RULES:

() IDENTITY LAWS: If A - B,
Ihen IBUf:fandfOIA =f

(i) ASSOCIATIVE LAW:
a2 B-—2.c".p,

then (hog)of =ho(geof)

21

. . with corresponding notation
A,B,C,...
f} g? h} *

To indicate that / is a map,

with domain 4 and codomain B,

we write 4 —— B (or f: A ——B)

and we say ‘f is a map from 4 to B’

We denote this map by 1, so
A4

is one of the maps from 4 to 4.

We denote this map by

42 ¢
(and sometimes say ‘g of /7).

These notations are used in the following
external diagrams illustrating the rules:

B, A p
f I
A/;\:—B A/—I—-—-\:B

Igef=f fel=f

ho(gof)

The associative law allows us to leave out the parentheses and just write ‘hegef”, which
we read as ‘h following g following f°. A longer composite like /e gofeoecd is also unambigu-
ous; all ways of building it by composition of pairs give the same result.

Hidden in items (4) and (5) above are the BOOKKEEPING rules. Explicitly these are:

the domain and codomain of 1, are both 4;

gof is only defined if the domain of g is the codomain of f;

the domain of g o f is the domain of f and the codomain of g f is the codomain of g.
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Sets, maps and composition

1. Review of Article I

Before discussing some of the exercises in Article I, let’s have a quick review. A set is
any collection of things. You know examples of infinite sets, like the set of all natural
numbers, {0,1,2,3,...}, but we'll take most of our examples from finite sets. Here is
a typical internal diagram of a function, or map:

Today's seat selection

Other words that mean the same as function and map are transformation, operator,
morphism, and functional; the idea is so important that it has been rediscovered and
renamed in many different contexts.

As the internal diagram suggests, to have a map f of sets involves three things:

1. a set A, called the domain of the map f;
2. a set B, called the codomain of the map f; and then the main ingredient:

3. a rule (or process) for f, assigning to each element of the domain A exactly one
element of the codomain B.

That is a fairly accurate description of what a map is, but we also need a means to
tell when two different rules give the same map. Here is an example. The first map
will be called /" and has as domain and as codomain the set of all natural numbers.
The rule for f will be: ‘add 1 and then square’. (This can be written in mathematical
shorthand as f(x) = (x + 1), but that is not important for our discussion.) Part of
the internal picture of f is:

The second map will be called g. As domain and codomain of g we take again the set
of all natural numbers, but the rule for g will be ‘square the input, double the input,

22
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which Chad has done like this:

Is this correct? Not quite, because we are supposed to draw two maps, and the thing
drawn for 4 g is not a map; one of the points of the domain of 4o g has been left
without an assigned output. This deficiency won’t matter for the next step, because
that information is going to get lost anyhow, but it belongs in this step and it is
incorrect to omit it. Chad’s trouble was that in drawing /4 - g, he noticed that the last
arrow would be irrelevant to the composite (h g) - f, so he left it out.

CHAD: It seems the principle is like in multiplication, where the order in which
you do things doesn’t matter; you get the same answer.

I am glad you mention order. Let me give you an example to show that the order
does matter. Consider the two maps
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Now work out the composite in the opposite order:

Mike
Sheri
Fatima

Mike
Sheri
Fatima

The two results are different. In composition of maps the order matters.

When I was little I had a large family, and in large families there are always many
small chores to be done. So my mother would say to one of us: ‘Wouldn’t you like to
wash the dishes?” But as we grew, two or more tasks were merged into one, so that
my mother would say: “Wouldn’t you like to wash and then rinse the dishes? or:
‘scrape and wash and then rinse and dry the dishes?” And you can’t change the
order. You'll make a mess if you try to dry before scraping. The ‘associative law for
tasks’ says that the two tasks:

(scrape then wash) then (rinse then dry)
and
scrape then [(wash then rinse) then dry]

accomplish the same thing. All that matters is the order, not when you take your
coffee break. All the parentheses are unnecessary; the composite task is:

scrape then wash then rinse then dry

Think about this and see if it suggests an explanation for the associative law. Then
look back at the pictures, to see how you can directly draw the picture for a com-
posite of several maps without doing ‘two at a time’.

Several students have asked why some arrows disappear when you compose two
maps, i.e. when you pass from the diagrams

f g

and
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to the diagram for ‘g following f~

To understand this you should realize that the composite of two maps is supposed
to be another map, so that it just has a domain, a codomain and a rule. The pasting
together of two diagrams is not the composite map, it is just a rule to find the
composite map, which can be done easily by ‘following the arrows’ to draw the
diagram of the resulting (composite) map. The point of erasing all the irrelevant
detail (like the extra arrows) is that the simplified picture really gives a different rule
which defines the same map, but a simpler rule.

Suppose you carry a sleeping baby on a brief walk around town, first walking in
the hot sun, then through the cool shade in the park, then out in the sun again.

City of
Buffalo

w = your walk t = temperature

Interval Temperature
. ————— .
of time fow line

baby's experience

The map w assigns to each instant your location at that time, and the map ¢ assigns to
each spot in Buffalo the temperature there. (‘Temperature line’ has as its points phy-
sical temperatures, rather than numbers which measure temperature on some scale; a
baby is affected by temperature before learning of either Fahrenheit or Celsius.) The
baby was hot, then cool, then hot again, but doesn’t know the two maps that were
composed to get this one map.

2. An example of different rules for a map

The measurement of temperature provides a nice example of different rules for a
‘numerical’ map. If one looks at a thermometer which has both scales, Celsius and
Fahrenheit, it becomes obvious that there is a map,

change from Fahrenheit to Celsius

Numbers Numbers
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which sends the measure in degrees Fahrenheit of a temperature to the measure in
degrees Celsius of the same temperature. In other words, it is the map that fits in the
diagram

oF oC
212 1 100 Temperatures
90 °p oC
32 0 Numbers » Numbers
0 Change from °F to °C
—-40 —-40

How is this map calculated? Well, there are several possible rules. One of them is:
‘subtract 32, then multiply by 5/9.” Another is: ‘add 40, multiply by 5/9, then subtract
40.” Notice that each of these rules is itself a composite of maps, so that we can draw
the following diagram:

Numbers
-32 x5/9
Numbers Change F to °C > Numbers
+40 -40
Numbers X5/9 = Numbers

The above example illustrates that a single map may arise as a composite in several
ways.

3. External diagrams

The pasting of the diagrams to calculate composition of maps is nice because from it
you can read what f does, what g does, and also what the composite g o f does. This
i8 much more information than is contained in g - f alone. In fact internal diagrams
aren’t always drawn. We use schematic diagrams like those in our ‘temperature’
example, or this:
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gef

These are called external diagrams because they don’t show what’s going on inside.
In Session 1 we met an external diagram when discussing Galileo’s ideas:

TIME

\fli ght of bird
level

SPACE ——— | LINE

l shadow

PLANE

4. Problems on the number of maps from one
set to another

Let’s work out a few problems that are not in Article [. How many maps are there
from the set 4 to the set B in the following examples?

Answer: There are four maps because all a map does is to tell where Emilio goes, and
there are four choices for that.

(3) Now the set A4 is ... What shall I say? Ah! The set of all purple people-eaters in
this room, and B is as before:
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to

(Fill in any missing arrows yourself.) Then, repeating the process, we get

(keh)o(gof)

But this piecemeal work is unnecessary. The analogy of scrape, then wash, then rinse,
then dry is meant to suggest that we can go from the beginning to the end in one step,
if we stick to the idea that the diagram

itself gives a good rule for calculating the composite ko hogof. Just ‘look at the
whole diagram and follow the arrows’; for example:
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Now let’s see if we can find a way to tell the number of maps between any two
finite sets. For that we should start by working out simple cases. For example,
Exercise 4 is to find the number of maps from a three-element set to a two-element
set. How can we do this? The most immediate way I can think of is to draw them
(taking care not to repeat any and not to omit any), and then count them. Say we
begin with

Then we can do something else,

egas
—

coffee

and then perhaps

I
T ——

3= coffee

and let’s see . ... Do we have all the maps that send John to eggs? Right, we need one
more, sending Mary to eggs and Sam to coffee. So there are four maps that send
‘John’ to ‘eggs’, and I hope it is clear that there are also four maps that send ‘John’ to
‘coffee’, and that their diagrams are the same as the four above, but changing the
arrow from ‘John’. Thus the answer to this exercise is 8 maps. The same method of
drawing all possibilities should give you the answers to Exercises 5, 6, and 7, so that
you can start to fill in a table like this:

Number of DOMAIN 3 3 2 2
Number of CODOMAIN | 2 3 3 2
Number of MAPS 8 [27] 9 4

hoping to find a pattern that may allow you to answer other cases as well.

ALYSIA: It seems that the number of maps is equal to the number of elements
of the codomain raised to a power (the number of elements of the domain.)

That’s a very good idea. One has to discover the reason behind it. Let’s see if it also
works with the extreme cases that we found at the end of last session.
Adding those results to our table we get:
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Number of DOMAIN | 3|3 (2(2(4]1{0]|4]0 n|1|0|n#0
Number of CODOMAIN| 2 (3|3 |2|1|4|4|0|0fand |1 |n|n| O
Number of MAPS 8(2719(4|1|4]|1(0]1 1|n|fl1]| O
2230 32 22 14 4 40 0 (° 1" B w0

where n is any natural number, with the only exception that in the last column it
must be different from zero. Now you should think of some reason that justifies this
pattern.

cHAD: For every element of the domain there are as many possibilities as there
are elements in the codomain, and since the choices for the different elements of
the domain are independent, we must multiply all these values, so the number of
maps is the number of elements of the codomain multiplied by itself as many
times as there are elements in the domain.

Chad’s answer seems to me very nice. Still we might want a little more explanation.
Why multiply? What does ‘independent’ mean? If John has some apples and Mary
has some apples, aren’t Mary’s apples independent of John’s? So, if you put them all
in a bag do you add them or multiply them? Why?

Going back to Alysia’s formula for the number of maps from a set 4 to a set B, it
suggests a reasonable notation, which we will adopt. It consists in denoting the set of
maps from 4 to B by the symbol B”, so that our formula can be written in this nice
way

#(BY = (#B)*Y or (B =B

where the notations #4 and |A| are used to indicate the number of elements of the
set 4. The notation #4 is self-explanatory since the symbol # is often used to denote
‘number’, while | 4| is similar to the notation used for the absolute value of a number.
The bars indicate that you forget everything except the ‘size’; for numbers you forget
the sign, while for sets you forget what the elements are, and remember only how
many of them there are. So, for example, if

P ) R )
dining room

then we wouldn’t say P = R, but rather |P| = |R|. To remember which set goes in the
base and which one in the exponent you can imagine that the maps are lazy, so that
they go down from the exponent to the base. Another way to remember this is to
think of an especially simple case, for instance the case in which the codomain has
only one element, and therefore the set of maps has also only one element (and, of
course, remember that 1" = 1).

In Exercise 9, we don’t ask for the total number of maps from one set to another,
but only the number of maps g
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eggs egegs

such that g g = g. Can you think of one? Right,

eggs —> > e8gs
coffee » coffee

This is the first example anybody would think of. Remember from Article I that this
map is called an identity map. Any set B has an identity map, which is denoted

B2 B

and sends each element of the domain to itself. This map certainly satisfies
1ge 15 = 15. In fact it satisfies much more; namely, for any map 4 — B, and
any map B Nyl

Igef=f and geolp=g

(These two equations give two different proofs of the property 1z 15 = 1: one by
taking f/ = 1z and one by taking g = 15.) These properties of the identity maps are
like the property of the number 1, that multiplied by any number gives the same
number. So, identity maps behave for composition as the number 1 does for multi-
plication. That is the reason a ‘1’ is used to denote identity maps. What’s another

map g
eggs eges

which satisfies g - g = g? What about the map

eggs eggs
coffee coffee

This map also has the property, since the composite

eggs eggs egas
coffee coffee coffee

is

eggs eggs
coffee coffee

Now try to do the exercises again if you had difficulty before. One suggestion is to
look back and use the special diagrams available only for endomaps explained in
Article 1.

Here are some exercises on the ‘bookkeeping rules’ about domains and codomains
of composites.
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Exercise 1:
A, B, and C are three different sets (or even three different objects in any cate-
gory); f, g, h, and k are maps with domains and codomains as follows:

4B B2 4 a4c ctoB

Two of the expressions below make sense. Find each of the two, and say what its
domain and codomain are:

(@) kohogof (b)kefeg (c)gofogekeh

Exercise 2:
Do Exercise 1 again, first drawing this diagram:

f
~ T
A -—— R
g
N
C

Now just read each expression from right to left; so (a) is °f then g then & then k.’
As you read, follow the arrows in the diagram with your finger, like this:

f
T Q
A B 4 Z B A4 B 4 B
h k
C c c C

The composite makes sense, and goes from A to B. See how much easier this
external diagram makes keeping track of domains, etc.
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Isomorphisms

Retractions, sections, idempotents, automorphisms

1. Isomorphisms

It seems probable that before man learned to count, it was first necessary to notice
that sometimes one collection of things has a certain kind of resemblance to another
collection. For example, these two collections

Mother

feather

A \ Father stone

Child

flower

are similar. In what way? (Remember that numbers had not yet been invented, so it
is not fair to say ‘the resemblance is that each has three elements.”)

After some thought, you may arrive at the conclusion that the resemblance is
actually given by choosing a map, for instance this one:

What special properties does this map / have? We would like them to be expressed
entirely in terms of composition of maps so that we can later use the same idea in
other categories, as well as in the category of finite sets. The properties should
exclude maps like these:

Mother

Father
Child

39
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—» feather

Mother

stone

Father
flower

The crucial property that / has, and the other two maps do not have, is that there
is an inverse map g for the map f. Here is a picture of g:

B A

» Mother

stone ) <= Father

Sflower

Sfeather

» Child

The important thing to notice is that g and f are related by two equations
gof=14 fog=1Ip

As we will see, neither of these equations by itself will guarantee that A and B have
the same size; we need both. This gives rise to the following concepts:

Definitions: 4 map A LR B is called an isomorphism®, or invertible map, if
there is a map B N A for which gof = 14 and fog = Ip.

A map g related to f by satisfying these equations is called an inverse for f.

Two objects A and B are said to be isomorphic if there is at least one isomorphism
A— B

Notice that there are other isomorphisms from {Mother, Father, Child} to {feather,
stone, flower}, for instance

Mother

Father

but to show that these two sets are isomorphic, we only need to find one of the many
— how many? — isomorphisms from A4 to B.

Once mankind had noticed this way of finding ‘resemblance’ between collections,
it was probably not too long before some names for the ‘sizes’ of small collections —
words like pair, or triple — came about. But first a crucial step had to be made: one

"The word isomorphism comes from Greek: iso = same; morph = shape, form; though in our category
of finite sets same size might seem more appropriate.
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had to see that the notion of isomorphic or ‘equinumerous’ or ‘same-size’, or what-
ever it was called (if indeed it had any name at all yet), has certain properties:

Reflexive: A is isomorphic to A.

Symmetric:  If A is isomorphic to B, then B is isomorphic to A.

Transitive:  If A is isomorphic to B, and B is isomorphic to C, then A is
isomorphic to C.

Surprisingly, all these properties come directly from the associative and identity
laws for composition of maps.

Exercise 1:

(R) Show that 4 La, A is an isomorphism.
(Hint: find an inverse for /,.)

(S) Show that if 4 =N B is an isomorphism, and B £, A is an inverse for f,
then g is also an isomorphism.
(Hint: find an inv?rse for g.) Kos

(T) Show that if 4 — B and B — C are isomorphisms, 4 —— C is also
an isomorphism.

These exercises show that the three properties listed before them are correct, but
the exercises are more explicit: solving them tells you not just that certain maps have
inverses, but how actually to find the inverses.

All this may seem to be a lot of fuss about what it is that all three-element sets have
in common! Perhaps you will be partially persuaded that the effort is worthwhile if
we look at an example from geometry, due to Descartes. P is the plane, the plane
from geometry that extends indefinitely in all directions. [R? is the set of all lists of
two real numbers (positive or negative infinite decimals like /3 or —7 or 2.1397).
Descartes’ analytic approach to geometry begins with an isomorphism

rl R

assigning to each point its coordinate-pair, affer choosing two perpendicular lines in
the plane and a unit of distance:

RZ
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The map f assigns to each point p in the plane a pair of numbers, called the
‘coordinates of p in the chosen coordinate system’. (What does the inverse map g
do? It must assign to each pair of numbers, like (7, 7), a point. Which point?)

By systematically using this kind of isomorphism, Descartes was able to translate
difficult problems in geometry, involving lines, circles, parabolas, etc., into easier
problems in algebra, involving equations satisfied by the coordinate-pairs of the
points on the curves. We still use this procedure today, and honor Descartes by
calling these coordinate systems ‘cartesian coordinates’. Our notion of
‘isomorphism’ is what makes this technique work perfectly: we can ‘translate’ any
problem about a plane — i.e. apply the map f to it — to a problem about pairs of
numbers. This problem about pairs of numbers may be easier to solve, because we
have many algebraic techniques for dealing with it. Afterwards, we can ‘translate
back’ — i.e. apply the inverse map for f — to return to the plane. (It should be
mentioned that Descartes” method has also proved useful in the opposite way —
sometimes algebraic problems are most easily solved by translating them into geo-
metry!)

You will notice that we have sneaked in something as we went along. Before, we
talked of an inverse for f, and now we have switched to the inverse for f. This is
justified by the following exercise, which shows that, while a map f may not have any
inverse, it cannot have two different inverses!

Exercise 2: . 7
Suppose B £, A4 and B - A are both inverses for A — B. Show that g = k.

Since the algebra of composition of maps resembles the algebra of multiplication
of numbers, we might expect that our experience with numbers would be a good
guide to understanding composition of maps. For instance, the associative laws are
parallel:

feol(geh)=(f<g)oh
3x(5xT)=03x5x7
But we need to take some care, since
feg#gof

in general. The kind of care we need to take is exemplified in our discussion of
inverses. For numbers, the ‘inverse of 5°, or %, is characterized by: it is the number
x such that 5 x x = 1; but for the inverse of a map, we needed two equations, not just
one.
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More care of this sort is needed when we come to the analog of division. For
numbers, % (or 3 = 5) is characterized as the number x for which

Sxx=3;
but it can also be obtained as
_1
X = g X 3

Thus for numbers we really don’t need division in general; once we understand
inverses (like %) and multiplication, we can get the answers to more general division
problems by inverses and multiplication. We will see that a similar idea can be used
for maps, but that not all ‘division problems’ reduce to finding inverses; and also that
there are interesting cases of ‘one-sided inverses’, where f - g is an identity map but
gof is not.

Before we go into general ‘division problems’ for maps, it is important to master
isomorphisms and some of their uses. Because of our earlier exercise, showing that a
map A — B can have at most one inverse, it is reasonable to give a special name, or
symbol, to that inverse (when there is an inverse).

Notation: If 4 Z, B has an inverse, then the (one and only) inverse for f is
denoted by the symbol /! (read ‘f-inverse’, or ‘the inverse of f°.)
Two things are important to notice:

1. To show that a map B %, A4 satisfies g=f -1 you must show that
gef=14 and fog=1Ip

2. If f does not have an inverse, then the symbol /" does not stand for anything:

it’s a nonsense expression like ‘grlbding’ or <.
0

Exercise 3:
If f has an inverse, then f satisfies the two cancellation laws:

(@) If foh=f ok, then h = k.
(b) If hof =kof, then h = k.

Warning: The following ‘cancellation law’ is not correct, even if f has an inverse.
(c) (wrong): If hoef =f <k, then h=k.

When an exercise is simply a statement, the task is to prove the statement. Let’s do
part (a). We assume that / has an inverse and that f o h = f o k, and we try to show
that h = k. Well, since /o and f o k are the same map, the maps /' o (f o h) and
S~V (f k) are also the same:
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Example 2, a ‘choice’ problem

Now consider the following example in which B has three elements and & = 1, where
A = C has two elements, while B - C is a given map with the property that every
element of C is a value of g, such as

Grp ]
T
w c=4

How many maps f can we find with g - f = 1,7 Such an f must be a map from 4 = C
to B and satisfy g(f(x)) = x for both elements x. That is, f must ‘choose’ for each x
an element z of B for which g(z) = x. From the picture we see that this determines
the value of f at one x but leaves two acceptable choices for the value of f at the
other x. Therefore there are exactly two solutions f* to the question as follows:

Gep o Cap ]
Iy 1)
CHOl D

On the other hand, suppose the first of these /" is considered given, and we ask for
all maps g for which gof =14, a ‘determination’ problem. The equation
g(f(x)) = x can now be interpreted to mean that for each element of B which is
of the form f(x), g is forced to be defined so as to take it to x itself; there is one



