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Preface

[n the emerging era of Web 3.0, securing cyberspace has gradually evolved into a
critical organizational and national research agenda inviting interest from a multidis-
ciplinary scientific worktorce. "There are many avenues into this area, and, in recent
research, machine-learning and data-mining techniques have been applied to design,
develop, and improve algorithms and frameworks for cybersecurity system design.

[ntellectual products in this domain have appeared under various topics, including

machine learning, data mining, cybersecurity, data management and modeling,
and privacy preservation. Several conterences, workshops, and journals focus on the
fragmf:ntﬁd research topics 1n this area. However, transcendent and intt:rdisciplinary
assessment of past and current works in the field and possible paths for future research
in the area are essential for consistent research and development.

'This interdisciplinary assessment is especially useful for students, who typically
learn cybersecurity, machine learning, and data mining in independent courses.
Machine learning and data mining play significant roles in cybersecurity, especially
as more challﬁﬂgvzs appear with the rapid dt‘,vﬂﬂpmﬁnt of information diSCUVﬁI‘}/
techniqueﬂ, such as those originating from the sheer dimenﬁinnality and hetermge~
neous nature of the network data, the dynamic change of threats, and the severe
imbalanced classes of normal and anomalous behaviors. In this book, we attempt
to combine all the above knowledge for a single advanced course.

This book SUI'VEYS cyberfgecurity pmblems and state-of-the-art machin&learning
and data-mining solutions that address the overarching research problems, and it is
designed for students and researchers studying or working on machine learning and
data mining in cybersecurity applications. The inclusion of cybersecurity in machine-
lﬁarning research is Important for academic research. Such an inclusion Inspires fun-
damental research in machine 1earning and data mining, such as research in the
subfields of imbalanced learning, feature extraction for data with Evnlving character-

istics, and privacy-preserving data mining.



xviii M Preface

Organization

In Chaptvzr 1, we introduce the vulnerabilities of c;ybf:rinfrastructurﬁ and the
conventional apprnaches to cyher defense. Then, we present the vulnerabilities of
these conventional cyber protection methods and introduce }]igl’lEPlE‘v'El method-
ologies that use advanced machine learning and data mining to build more reliable
cyber defense systems. We review the cybersecurity solutions that use machine-
learning and data-mining techniques, including privacy-preservation data mining,
misuse detection, anomaly detection, hybrid detection, scan detection, and pmﬁl—
Ing detection. In addition, we list a number of references that address cyhers&curity
issues using machine-learning and data-mining technology to help readers access
the related material easily.

In Chaptcr 2. we introduce machinﬁ—ltarﬂing paradigms and cybcrs&curity
along with a brief overview of machine—learning formulations and the applicatiﬂn
of machine-learning methods and data mining/management in cybersecurity. We
discuss challenging problems and future research directions that are possible when
machine-learning methods are applied to the huge amount of temporal and unbal-
anced network darta.

In Chaptvzr 3, we address misusc/aignaturﬁ detection. We introduce fundamen-
tal knnwledge, key issues, and challenges In misu:aefsignature detection systems,
such as building efhcient rule-based algorithms, feature selection for rule match-
ing and accuracy improvement, and supervised machine-learning classification
of attack patterns. We investigate several supervised learning methods in misuse
detection. We E}{plﬂl't‘ the limitations and difhiculties of using these machine-learn-
Ing methods in misuse detection systems and outline p::rssih]e pmh]emﬁ, such as
the inadequate ability to detect a novel attack, irregular performance for different
attack types, and requirements of the intelligent feature selection. We guide readers
to questions and resources that will help them learn more about the use of advanced
machine-learning techniques to solve these problems.

In Chapter 4, we pmvidﬁ an overview of anc::-maly detection tf:c:hniqut‘s. We
Investigate and claﬁsify a large number of machine—learning methods in annma]y
detection. In this chapter, we briefly describe the applications of machine-learning
methods in anomaly detection. We focus on the limitations and difhculties that
encumber mac:hinﬁ—lt:arning methods in anumaly detection systems. Such pmb—
lems include an inaclequate :;1bility to mailntain a high detection rate and a low
false-alarm rate. As anomaly detection is the most concentrative application area of
machine-learning methods, we perform in-depth studies to explain the appropriate
learning procedures, e.g., feature selection, in detail.

[n Chapter 5, we address hybrid intrusion detection techniques. We describe how
hyhrid detection methods are designed and Emplﬂyﬁd to detect unknown intrusions
and :;111::111131}! detection with a lower False—pﬂsitive rate. We categorize the hybrid
intrusion detection techniques into three groups based on combinational methods.
We demonstrate several machine-learning hybrids that raise detection accuracies in
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the intrusion detection system, including correlation techniques, artificial neural
networks, association rules, and random forest classifiers.

In Chaptﬁ*r 6, we address scan detection techniques using machine~learning
methods. We explain the dynamics of scan attacks and focus on smlving scan detec-
tion pmhlems 1N applicatimns. We pr::rvidf: several E}{H[TIPIES of n1achine~learning
methods used for scan detection, including the rule-based methods, threshold
random walk, association memory learning techniques, and expert knowledge-
rule-based lt:arning model. This {;haptt‘r addresses the issues pertaining to the high
percentage of false alarms and the evaluation of efhiciency and effectiveness of scan
detection.

In Chapter 7, we address machine-learning techniques for profiling network
trathc. We illustrate a number of profiling modules that profile normal or anoma-
lous behaviors in cybﬁrinf‘rastructurﬂ for intrusion detection. We introduce and
Investigate a number of new concepts for cluﬁtering methods in intrusion detection
systems, including association rules, shared nearest neighbor clustering, EM-based
clustering, subspace, and informatics theoretic techniques. In this chapter, we
address the difhculties of mining the huge amount of streaming data and the neces-
sity of interpreting the profiling results in an understandable way.

In Chapter 8, we pmvide a -:Dmprf:hfinsive overview of available machine-
]earning EEC}‘II‘IDIDgiES In privacy-preserving data mining. In this chapter, we
concentrate on how data-mining techniques lead to privacy breach and how privacy-
preserving data mining achieves data protection via machine-learning methods.
Privacy-preserving data mining 1s a new area, and we hupc to inspire research
beycmd the foundations of data mining and privacy-preserving data mining.

In Chapter 9, we describe the emerging challenges in fixed computing or
mobile applications and existing and potential countermeasures using machine-
learning methods in cybersecurity. We also explore how the emerging cyber threats
may evolve in the future and what corresponding strategies can combat threats.
We describe the emerging 1ssues In network monitoring, pmﬁling, and privacy
preservation and the emerging cha”enges in intrusion detection, especia”y those

challenges for anomaly detection systems.
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Chapter T

Introduction

Many of the nation’s essential and emergency services, as well as our criti-

cal infrastructure, rely on the uninterrupted use of the Internet and the
communications systems, data, monitoring, and control systems that
comprise our f.:ybt:r infrastructure. A cybt:r attack could be dﬂbilitating
to our highly interdependent Ciritical Infrastructure and Key Resources
(CIKR) and ultimately to our economy and national security.

Homeland Security Council
National Strategy for Homeland Security, 2007

The uhiquity of cyherinfraﬁtructurﬁ facilitates beneficial activities thrnugh rapid
information sharing and utilization, while its vulnerabilities generate opportuni-
ties for our adversaries to perform malicious activities within the infrastructure.”
Because of these opportunities for malicious activities, nt::arly every aspect of r_:ybt?r—
infrastructure needs protection (Homeland Security Council, 2007).
Vulnerabilities in cyberinfrastructure can be attacked horizontally or vertically.
Hence, cyber threats can be evaluated horizontally from the perspective of the
attacker(s) or vertically from the perspective of the victims. First, we look at cyber
threats vertically, from the perspective of the victims. A variety ot adversarial agents
such as nation-states, criminal organizations, terrorists, hackers, and other mali-

clous users can compmmiﬂe gDVEI’ﬂIﬂEﬂtH] l'lDI'I"lElElI]d SEC’U_I’itY thI’Dngh ﬂEtWDI’l{S.

* C}r’bcrinfrastructurc consists of digiml data, data Hows, and the supportive hardware and soft-
ware. The infrastructure is responsible for data collection, data transformation, traffic flow, data
processing, privacy protection, and the supervision, administration, and control of working envi-
ronments. For example, in our daily activities in cyberspace, we use healcth Supervisory Control

and Data Acquisition (SCADA) systems and the Internet (Chandola et al., 2009).
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For example, hackers may utilize personal computers remotely to conspire,
pmsclytizt, recrult accumpliu:s, raise funds, and collude during ongoing attacks.
Ad"\-’rﬁrﬁ}lrial gDHEI‘I’lIﬂEI’ltS Ell_ld agEI]CiES can 13L1n|:h C}-’bﬁf HttﬂCkS On thE hﬂrdwarﬁ
and software of the opponents’ cyberinfrastructures by supporting financially and
technically malicious network E}(plnitatinns.

Cyber criminals threaten financial infrastructures, and they could pose threats
to national economies if recruited by the adversarial agents or terrorist organiza-
tions. Similarly, private organizations, €.g., banks, must protect confidential busi-
ness or private information from such hackers. For E}{amplﬁ*, the disclosure of
business or private financial data to cyber criminals can lead to financial loss via
[nternet banking and related online resources. In the pharmaceutical industry,
disclosure of protected company information can benefit competitors and lead to
market-share loss. Individuals must also be vigilant agalnst r.:yb er crimes and mali-
cious use of Internet technology.

As technology has improved, users have become more tech savvy. People com-
municate and cooperate efhciently through networks, such as the Internet, which
are facilitated by the rapid development of digital informartion technologies, such
as personal computers and personal digital assistants (PDAs). Through these digital
devices linked by the Internet, hackers also attack permnal privacy using a varl-
ety of weapons, such as viruses, Trojans, worms, botnet attacks, rootkits, adware,
spam, and social engineering platform:s.

Next, we look at cyber threats horizontally trom the perspective of the victims.
We consider any malicious activity in {;ybcrspacc asa cybcr threat. A :::yb er threat may
TESUlt il’l thE lDSS G{: or d}lrﬂﬂgﬁ to C}/bEr Cﬂﬂ]PﬂﬂEﬂtS or Phy.ﬁic}ll FreSOUrces. Mﬂﬂt CYI:IEI'
threats are categorized into one of three groups according to the intruder’s purpose:
stealing confidential information, manipulating the components of cyberinfrastruc-
ture, and/or denying the functions of the infrastructure. If we evaluate cyber threats
hurizﬂntally, we can Investigate cybf:r threats and the SleSEquEﬂt pmbl&ms. We will
focus on intentional cybcr crimes and will not address breaches caused by normal
users th rough unintentional operations, such as errors and omissions, since education
and proper habits could help to avoid these threats. We also will not explain cyber
threats caused by natural disasters, such as accidental breaches caused by earthquakes,
storms, or hurricanes, as these threats happen suddenly and are beyond our control.

1.1 Cybersecurity

To secure cyberinfrastructure against intentional and potentially malicious threats, a
Y 5 P Y
growing collaborative effort between cyherﬁecurity prnfegsinnals and researchers from

institutions, private industries, academia, and government agencies has engaged in

* We define a normal cybcr user as an individual or group of individuals who do not intend to

intrude on the cybersecurity of other individuals.
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Figure 1.1 Conventional cybersecurity system.

exploiting and designing a variety of cyber defense systems. Cybersecurity researchers
and designers aim to maintain the confidentiality, integrity, and availability of infor-
mation and information management systems through various cyber defense systems
that protect computers and networks from hackers who may want to intrude on a
system or steal financial, medical, or other identitmesed information.*

As shown in Figure 1.1, conventional cybersecurity systems address various
cybersecurity threats, including viruses, Trojans, worms, spam, and botnets.
These cybersecurity systems combat cybersecurity threats at two levels and provide
network- and host-based defenses. Network-based defense systems control network
How by network firewall, spam filter, antivirus, and network intrusion detection
techniques. Host-based defense systems control upcoming data in a workstation by
firewall, antivirus, and intrusion detection techniques installed in hosts.

Conventional approaches to cyber defense are mechanisms designed in fire-
walls, authentication tools, and network servers that monitor, track, and block
viruses and other malicious cyber attacks. For EIEI.ITIPLE, the Microsoft Windows®™
operating system has a built-in Kerberos cryptography system that protects user
information. Antivirus software is designed and installed in personal computers
and cyberinfrastructures to ensure customer information is not used maliciously.
'These approaches create a protective shield for cyberintrastructure.

However, the vulnerabilities of these methods are ubiquimus 1n applica—

tions because of the Hawed degign and implementatinn of software and network

* The three requirements of cybersecurity correspond to the three types of intentional threats:
confidentiality signifies the ability to prevent sensitive data from being disclosed to third
parties; integrity ensures the infrastructure is complete and accurate, and availability refers
to the acccssibilit}f of the normal operations of C}’bcrinfraﬁtructur{:s, such as dclivcring and

storing, data.
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infrastructure. Patches have been developed to protect the cyber systems, but attack-
ers u;:::rntinuﬂus]y c}(pluit m:wly discovered Haws. Because of the cunstantl}f {:Vulving
cyber threats, bui]ding defense systems for discovered attacks is not EﬂDngh to pro-
tect users. Higher-level methodologies are also required to discover the embedded
and 1L1rking cyber intrusions and cyber intrusion techniques, so that a more reliable
security cyberinfrastructure can be utilized.

Many higher-level adaptive cyber defense systems can be partitioned into com-
ponents as shown in Figure 1.2. Figure 1.2 outlines the ﬁvc-stcp process for those
defense systems. We discuss each step below.

Data-capturing tools, such as Libpcap for Linux®, Solaris BSM for SUN®,
and Winpcap for Windows®, capture events from the audit trails of resource
information sources (e.g., network). Events can be host-based or network-based
dﬁptnding on where they originate. [f an event originates with ng files, then it
1S categf}rized as a host-based event. If it originates with network trafhic, then it is
categorized as a network-based event. A host-based event includes a sequence
of commands executed by a user and a sequence of system calls launched by an
application, e.g., send mail. A network-based event includes network trafhc data,
e.g., a sequence of internet protocol (IP) or transmission control protocol (TCP)
network packets. The data-preprocessing module filters out the attacks tor which
good signatures have been learned.

A feature extractor derives basic features that are useful in event analysis
engines, including a sequence of system calls, start time, duration of a network

How, source IP and source port, destination IP and destination port, prutuc:ﬂl,

Information sources

'

Data capturing tools

l

Data preprocessing

I

Feature extraction

l

Analysis engines

l

Decision of responses

Figure 1.2 Adaptive defense system for cybersecurity.
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number of bytes, and number of packets. In an analysis engine, various intrusion
detection methods are implcmcntcd to investigate the behavior of the {:ybt:rin—
FI'HST:I'UCI:UI'E} Whi{:h ITIEI}" or ITIH.}" not hHVE prﬁﬂrﬂd bEFﬂI'E il_l thE I‘ECDI‘d, E.g., to
detect anomalous trafhic. The decision of responses is deployed once a cyber attack
is identified. As shown in Figure 1.2, ana]ysig engines are the core tech nnlngies for
the generation of the adaptation ability of the cyber defense system. As discussed
above, the solutions to cybersecurity problems include proactive and reactive secu-
rity solutions.

Proactive appmaches anticipate and eliminate vulnerabilities in the cyber
system, while remaining prepared to defend effectively and rapidly against attacks.
To function correctly, proactive security solutions require user authentication
(e.g., user password and biometrics), a system capable of avoiding programming
errors, and information protection [e.g., privacy-preserving data mining (PPDM)].
PPDM protects data from being explored by data-mining techniques in cybersecu-
rity applications. We will discuss this technique in detail in Chapter 8. Proactive
approaches have been used as the first line of defense against cybersecurity breaches.

[tis not possible to build a system that has no security vulnerabilities. Vulnerabilities
in common security components, such as firewalls, are inevitable due to design and
programming errors.

The second line of cyhf:r defense is cnmpnsed of reactive security solutions,
such as intrusion detection systems (IDSs). [DSs detect intrusions based on the
information from log files and network flow, so that the extent of damage can be
determined, hackers can be tracked down, and similar attacks can be pr{:vcnt{:d in
the future.

1.2 Data Mining

Due to the avai]ability of larg:: amounts of data in cybt:rinf‘rastructl_lr{i and the
number of cyber criminals attempting to galn access to the darta, data mining,
machine learning, statistics, and other interdisciplinary capabilities are needed to
address the challenges of cybersecurity. Because [DSs use data mining and machine
learning, we will focus on these areas. Data mining is the extraction, or “mining,”
of knowledge from a large amount of data. The strong patterns or rules detected by
data~mining techniqueg can be used for the nontrivial predi{:tif}n of new data. In
nontrivial prediction, information that is implicitly presented in the data, but was
previously unknown is discovered. Data-mining techniques use statistics, artificial
intcllig&nca, and pattern recognition of data in order to group or extract behaviors
or entities. Thus, data mining 1s an interdiﬁciplinar}f field that employs the use
of analysis tools from statistical models, mathematical algorithms, and machine-
learning methods to discover previously unknown, valid patterns and relationships
in large data sets, which are useful for inding hackers and preserving privacy in
cybersecurity.
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Data mining is used in many domains, including finance, engineering, biomedi-
cine, and cybﬁrsvf:curity. There are two categories deata—mining methods: suptrvii.'::d
and unsupervised. Supervised data—mining tEchniquES predict a hidden function
using training data. The training data have pairs of input variables and output labels
or classes. The output of the method can predict a class label of the input variables.
Examples of supervised mining are classification and prediction. Unsupervised data
mining is an attempt to identity hidden patterns from given data without introduc-
Ing tralning data (i.e., pairs Ufinput and class labels). Typir.:al ttxamplt:s of unsuper-
vised mining are clustering and associative rule mining.

Data mining is also an integral part of knowledge discovery in databases
(KDDs), an iterative process of the nontrivial extraction of information from data
and can be applied to developing secure cyberintrastructures. KDD includes sev-
eral steps from the collection of raw data to the creation of new knowledge. The
Iterative process consists of the Fﬂ]lnwing steps: data cleaning, data Integration, data
selection, data transformation, data mining, pattern evaluation, and knowledge
representation, as described below.

Step 1. During data cleaning, which is also known as data cleansing, noise and
irrelevant data are removed from the collection.

Step 2. Data integration combines data from multiple and heterngeneﬂus sources
into one database.

Step 3. Data-selection techniques allow the user to obtain a reduced representa-
tion of the data set to ktcp the integrity of the Uriginal data set in a reduced
VD]UITIE.

Step 4. In data transformation, the selected data is transformed into suitable formats.

Step 5. Data mining is the stage in which analysis tools are applied to discover
potentially usetul patterns.

Step 6. Pattern evaluation identifies Interesting and usetul patterns using given
validation measures.

Step 7. In knowledge representation, the final phase of the knowledge-discovery

process, discovered knowledge is presented to the users in visual forms.

Data-mining techniques are used to aid in the development of predictive models
that enable a real-time cyber response after a sequence of cybersecurity processes,
which include real-time data f-.:ampling, selection, ana]ysiﬁ and query, and mining
peta-scale data to classify and detect attacks and intrusions on a computer network
(Denning, 1987; Lee and Stolfo, 1998; Axelsson, 2000; Chandola et al., 2006;
Homeland Security Council, 2007). Learning user patterns and/or behaviors is
critical for intrusion detection and attack predictinnﬁ. Learning these behaviors is
important, as they can identify and describe structural patterns in the data automat-
ically and theoretically explain data and predict patterns. Automatic and theoretic
learning require complex computation that calls for abundant machine-learning
algorithms. We will discuss the concept of machine learning in Section 1.3.



