Data Science for
Cyber-security

Nick Heard = Niall Adams
Patrick Rubin-Delanchy ¢ Melissa Turcotte

editors
T .
\w World Scientific

r 4 »

Security Science and Technology - Vol. 3

Data Science for
Cyber-Security

Editors

Nick Heard

Imperial College London, UK

Niall Adams

Imperial College London, UK

Patrick Rubin-Delanchy

University of Bristol, UK

Melissa Turcotte
Los Alamos National Laboratory, USA

\\E‘% World Scientific

NEW JERSEY « LONDON - SINGAPORE « BEIJING « SHANGHAI « HONG KONG - TAIPEI - CHENNAI « TOKYO

Published by

World Scientific Publishing Europe Ltd.

57 Shelton Street, Covent Garden, London WC2H 9YHE
Head office: 5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

Library of Congress Cataloging-in-Publication Data

Names: Heard, Nicholas, editor. | Rubin-Delanchy, Patrick, editor. | Turcotte, Melissa, editor.

Title: Data science for cyber-security / edited by Nick Heard (Imperial College London, UK),
Niall Adams (Imperial College London, UK), Patrick Rubin-Delanchy (University of Bristol, UK),
Melissa Turcotte (Los Alamos National Laboratory, USA).

Description: [Hackensack] New Jersey : World Scientific, [2018] | Series: Security science and
technology ; volume 3 | Includes bibliographical references and index.

[dentifiers: LCCN 2018021228 | ISBN 9781786345639 (hc : alk. paper)

Subjects: LCSH: Internet--Security measures--Data processing--Congresses. |
Data protection--Statistical methods--Congresses.

Classification: LCC TK5105.59 .D383 2018 | DDC 005.8--dc23

L.C record available at https://lcen.loc.gov/2018021228

British Library Cataloguing-in-Publication Data
A catalogue record for this book 1s available from the British Library.

Copyright © 2019 by World Scientific Publishing Europe Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
1s not required from the publisher.

For any available supplementary material, please visit
https://www.worldscientific.com/worldscibooks/10.1142/Q0167#t=suppl
Desk Editors: Anthony Alexander/Jennifer Brough/Shi Ying Koe

Typeset by Stallion Press

Email: enquiries(@stallionpress.com

Printed in Singapore

Contents

Preface \

1. Unified Host and Network Data Set]
Melissa J. M. Turcotte, Alexander D. Kent and Curtis Hash

2. Computational Statistics and Mathematics
for Cyber-Security 23

David J. Marchette

3. Bayesian Activity Modelling tor Network Flow Data 55
Henry Clausen, Mark Briers and Niall M. Adams

4. Towards Generalisable Network Threat Detection 77

Blake Anderson, Martin Vejman, David McGrew
and Subharthi Paul

5. Feature Trade-Off Analysis for Reconnaissance Detection 95

Harsha Kumara Kalutarage and Sivaj Ahmed Shaikh

6. Anomaly Detection on User-Agent Strings 127

Eirini Spyropoulou, Jordan Noble and
Christoforos Anagnostopoulos

1X

X Contents

7. Discovery of the Twitter Bursty Botnet 145
Juan Echeverria, Christoph Besel and Shi Zhou

8. Stochastic Block Models as an Unsupervised Approach
to Detect Botnet-Infected Clusters in Networked Data 161

Mark Patrick Roeling and Geoff Nicholls

Q. Classification of Red Team Authentication Events
in an Enterprise Network 179

John M. Conroy

10. Weakly Supervised Learning: How to Engineer Labels
for Machine Learning in Cyber-Security 195

Christoforos Anagnostopoulos

11. Large-scale Analogue Measurements and Analysis
for Cyber-Security 227

George Cybenko and Gil M. Raz

12. Fraud Detection by Stacking Cost-Sensitive Decision Trees 251

Alejandro Correa Bahnsen, Sergio Villegas,
Djamila Aouada and Bjorn Ottersten

13. Data-Driven Decision Making for Cyber-Security 267
Mike Fisk

Index 293

Chapter 1

Unified Host and Network Data Set

Melissa J. M. Turcotte®*, Alexander D. Kent* and Curtis Hash'

“Los Alamos National Laboratory,
Los Alamos, NM 87545, USA
"Ernst & Young, New Mexico, USA

*mturcotte @lanl.gov

The lack of data sets derived from operational enterprise networks continues to
be a critical deficiency 1n the cyber-security research community. Unfortunately,
releasing viable data sets to the larger community is challenging for a number
of reasons, primarily the difficulty of balancing security and privacy concerns
against the fidelity and utility of the data. This chapter discusses the importance
of cyber-security research data sets and introduces a large data set derived from the
operational network environment at Los Alamos National Laboratory (LANL).
The hope 1s that this data set and associated discussion will act as a catalyst for
both new research in cyber-security as well as motivation for other organisations
to release similar data sets to the community.

1. Introduction

The lack of diverse and useful data sets for cyber-security research continues
to play a profound and limiting role within the relevant research commu-
nities and their resulting published research. Organisations are reticent to
release data for security and privacy reasons. In addition, the data sets that
are released are encumbered 1n a variety of ways, from being stripped of so
much information that they no longer provide rich research and analytical
opportunities, to being so constrained by access restrictions that key details
are lacking and independent validation 1s difficult. In many cases, organisa-
tions do not collect relevant data 1n sutficient volumes or with high enough

[~

Data Science for Cyber-Security

fidelity to provide cyber-research value. Unfortunately, there 1s generally
little motivation for organisations to overcome these obstacles.

In an attempt to help stimulate a larger research effort focused on opera-
tional cyber-data as well as to motivate other organisations to release useful
data sets, Los Alamos National Laboratory (LANL) has released two data
sets for public use (Kent, 2014, 2016). A third, entitled the Unified Host
and Network Data Set, 1s introduced in this chapter.

The Unified Host and Network Data Set 1s a subset of network flow
and computer events collected from the LANL enterprise network over
the course of approximately 90 days.” The host (computer) event logs
originated from the majority of LANL’s computers that run the Microsoft
Windows operating system. The network flow data originated from many
of the internal core routers within the LANL enterprise network and are
derived tfrom router netflow records. The two data sets include many of the
same computers but are not fully inclusive; the network data set includes
many non-Windows computers and other network devices.

Identifying values within the data sets have been de-identified
(anonymised) to protect the security of LANL’s operational IT environ-
ment and the privacy of individual users. The de-identified values match
across both the host and network data allowing the two data elements to
be used together for analysis and research. In some cases, the values were
not de-identified, including well-known network ports, system-level user-
names (not associated to people) and core enterprise hosts. In addition, a
small set of hosts, users and processes were combined where they repre-
sented well-known, redundant entities. This consolidation was done for both
normalisation and security purposes.

In order to transtorm the data into a format that 1s useful for researchers
who are not domain experts, a significant effort was made to normalise the
data while mimmimising the artefacts that such normalisation might introduce.

1.1. Related public data sets

A number of public, cyber-security relevant data sets currently are refer-
enced 1n the literature (Glasser and Lindauer, 2013; Ma et al., 2009) or

“The network flow data are only 89 days due to missing data on the first day.

Unified Host and Network Data Set 3

are available online.” Some of these represent data collected from opera-
tional environments, while others capture specific, pseudo real-world events
(for example, cyber-security training exercises). Many data sets are syn-
thetic and created using models intended to represent specific phenomenon
of relevance; for example, the Carnegie Melon Software Engineering Insti-
tute provides several insider threat data sets that are entirely synthetic
(Glasser and Lindauer, 2013). In addition, many of the data sets commonly
seen within the research community are egregiously dated. The DARPA
cyber-security data sets (Cyber-Systems and Technology Group, 1998)
published in the 1990s are still regularly used, even though the systems,
networks and attacks they represent have almost no relevance to modern
computing environments.

Another 1ssue 1s that many of the available data sets have restric-
tive access and constraints on how they may be used. For example, the
U.S. Department of Homeland Security provides the Information Market-
place for Policy and Analysis of Cyber-risk and Trust (IMPACT,® which 1s
intended to facilitate information sharing. However, the use of any of the
data hosted by IMPACT requires registration and vetting prior to access.
In addition, data owners may (and often do) place limitations on how and
where the data may be used.

Finally, many of the existing data sets are not adequately characterised
for potential researchers. It 1s important that researchers have a thorough
understanding of the context, normalisation processes, 1diosyncrasies and
other aspects of the data. Ideally, researchers should have sufficiently
detailed information to avoid making false assumptions and to reproduce
similar data. The need for such detailed discussion around published data
sets 18 a primary purpose of this chapter.

The remainder of this chapter 1s organised as follows: a description of
the Network Flow Data 1s given in Section 2 followed by the Windows Host
LLog Data in Section 3. Finally, a discussion of potential research directions
1s given in Section 4.

b https://www.ll.mit.edu/ideval/data/, http://malware-traffic-analysis.net/, http://www.unb.ca/cic/resea
rch/datasets/index.html.
“https://www.dhs.gov/csd-impact.

4 Data Science for Cyber-Security

2. Network Flow Data

The network flow data set included 1n this release 1s comprised of records
describing communication events between devices connected to the LANL
enterprise network. Each flow 1s an aggregate summary of a (possibly)
bi-directional network communication between two network devices. The
data are derived from Cisco NetFlow Version 9 (Claise, 2004) flow records
exported by the core routers. As such, the records lack the payload-level
data upon which most commercial intrusion detection systems are based.
However, research has shown that flow-based techniques have a number of
advantages and are successful at detecting a variety of malicious network
behaviours (Sperotto ef al., 2010). Furthermore, these techniques tend to be
more robust against the vagaries of attackers, because they are not searching
tor specific signatures (tor example, byte patterns) and they are encryption-
agnostic. Finally, in comparison to full-packet data, collection, analysis
and archival storage of flow data at enterprise scales 1s straightforward and
requires minimal infrastructure.

2.1. Collection and transformation

As mentioned previously, the raw data consisted of NetFlow V9 records
that were exported from the core network routers to a centralised collection
server. While V9 records can contain many different fields, only the tollow-
ing are considered: Startlime, EndTime, SrclIP, DstlIP, Protocol, SrcPort,
DstPort, Packets and Bytes. The specifics of the hardware and flow export
protocol are largely wrrelevant, as these fields are common to all network
flow formats of which the authors are aware.

This data can be quite challenging to model without a thorough under-
standing of 1ts various 1diosyncrasies. The following paragraphs discuss two
of the most relevant 1ssues with respect to modelling. For a comprehensive
overview of these issues, among others, readers can refer to Hofstede et al.
(2014).

Firstly, note that these flow records are uni-directional (uniflows): each
record describes a stream of packets sent from one network device (SrclP)

to another (DstIP). Hence, an established TCP connection — bi-directional
by definition — between two network devices, A and B, results in two flow
records: one from A to B and another from B to A. It follows that there
is no relationship between the direction of a flow and the initiator of a

Unified Host and Network Data Set S

bi-directional connection (i.e., it 1s not known whether A or B connected
first). This 1s the case for most netflow implementations as bi-directional
flow (biflow) protocols such as Trammell and Boschi (2008) have yet to
gain widespread adoption. Clearly, this presents a challenge for detection
of attack behaviours, such as lateral movement, where directionality 1s of
primary concern.

Secondly, significant duplication can occur due to flows encountering
multiple netflow sensors 1n transit to their destination. Routers can be con-
figured to track flows on 1ngress and egress, and, in more complex network
topologies, a single flow can traverse multiple routers. More recently, the
introduction of netflow-enabled switches and dedicated nettlow appliances
has exacerbated the i1ssue. Ultimately, a single flow can result in many
distinct flow records. To add further complexity, the flow records are not
necessarily exact duplicates and their arrival times can vary considerably;
these inconsistencies occur for many reasons, the particulars of which are
too complex to discuss 1n this context.

In order to simplity the data for modelling, a transformation process
known as biflowing or stitching was employed. This 1s a process intended
to aggregate duplicates and marry the opposing uniflows of bi-directional
connections into a single, directed bitlow record (Table 1). Many approaches
to this problem can be found 1n the literature (Barbosa, 2014; Berthier et al.,
2010; Minarik et al., 2009; Nguyen et al., 2017), all of them 1mperfect. A
straightforward approach was used that relies on simple port heuristics to

Table 1: Bi-directional flow data.

Field Name Description

Time The start time of the event 1n epoch time format.

Duration The duration of the event 1n seconds.

SrcDevice The device that likely initiated the event.

DstDevice The receiving device.

Protocol The protocol number.

SrcPort The port used by the SrcDevice.

DstPort The port used by the DstDevice.

SrcPackets The number of packets the SreDevice sent during the event.
DstPackets The number of packets the DstDevice sent during the event.
SrcBytes The number of bytes the SreDevice sent during the event.
DstBytes The number of bytes the DstDevice sent during the event.

6 Data Science for Cyber-Security

decide direction. These heuristics are based on the assumption that SrcPorts
are generally ephemeral (1.e., they are selected from a predefined, high range
by the operating system), while DstPorts tend to have lower numbers that
correspond to established, shared network services and will therefore be
observed more frequently than ephemeral ports. The heuristics are given
below 1n order of precedence.

e Destination ports are less than 1024 and source ports are not.
e The top 90 most frequently observed ports are destination ports.
e The smaller of the two ports 1s the destination port.

Each uniflow was transtformed into a bitlow by renaming the Packets
and Bytes fields to SrcPackets and SrcBytes, respectively. DstPackets and
DstBytes tields were added with initial values of zero. Next, the port heuris-
tics were considered and, 1f any were violated or ambiguous, the Src and
Dst attributes were swapped, effectively reversing the direction. Finally, the
5-tuple was extracted from each record and used as the key 1n a lookup table.

SrclIP, DstIP, SrcPort, DstPort, Protocol

If a match was found, the flows were aggregated by keeping the min-
imum StartTime, maximum EndTime and summing the other attributes. If
no match was tound, the flow was simply added to the table. This process
was performed 1n a streaming tashion on all of the records in the order in
which they were received by the collector. Flows were periodically evicted
from the lookup table after 30 minutes of nactivity (1.e., failing to match
with any incoming flows). Flows that remained active for long periods of
time were reported approximately every 3 hours, but were not evicted from
the table until mactive.

While biflowing the data mitigates the problems posed by duplicates
and ambiguous directionality, 1t does not address another significant obsta-
cle: the lack of stable identifiers upon which to build models. In some
cases, IP addresses are transient (e.g., Dynamic Host Configuration Proto-
col (DHCP), Virtual Private Network (VPN)). In other cases, devices have
multiple IP addresses (e.g., multthoming) or one IP address 1s shared by
multiple devices (e.g., load-balancing, NAT). Whatever the case may be,
modelling the behaviour of IP addresses on a typical network 1s clearly

Unified Host and Network Data Set 7

£2.59+DB-
O
=
= 2.0e+08 1
o
e
a
E 1.5e+08+ /
=
(a)
0.5+
2
s 0.4 4 1T 7% 1;.
= -7 A 5 A I
R R N W - TN AR P T TR T
0.3 5 v r - \ N e - I (L LI T
"E "..-' ~ 7 i‘.ﬁ Ve 11-1t \-\.-fl't\! L II'.,nr""'- .'#,.r?*" Ny \;'l'lllf‘l:l!tlr'.;ill :\F\ A
- LR ! L TV
E DE_ ! L - ‘!I!
5 X
(o A
™ 0.1 7
G'G- I.-‘-.l_._.T‘-.-II---II_.-_II---I_I--.-I T -""'I_"'":'_"_I _____ l"'."T"-'_l“"r;"_‘l_L-"-"-
0 5 10 15 20 25 30 35 40 45 a0 55 60 &5 70 75 80 85
Day
- = = SrcPackefs=0 +---.. DstPackets = 0 - =-= missing SrcDevice name missing DstDevice name
(b)

Fig. 1: (a)Daily count of biflows by end time. (b) Fraction of biflows where SrcPackets =0,
DstPackets =0, SrcDevice FQDN-mapping failed and DstDevice FQDN-mapping failed.

2

0.6 -

o Protocol
=

£ — 1
e

Q 0.4 1

- - - - % - §= s % === E
o N A . sl i "'*\ 17N Pt ; A T N

— i -4 - - WS - ! 3 Fi * 7 \ y !

5 w - Mo’ = o N 7 L o - i

Q - s N - - I v \ —
@ 0.2~

L

o
]
i

Fig. 2: Daily proportions of each Protocol.

error prone. Instead, one should endeavour to map IP addresses to more
stable 1dentifiers such as media access control (MAC) addresses or fully-
qualified domain names (FQDN), interchangeably referred to as hostnames
throughout the rest of the chapter. As with directionality, there 1s no perfect
solution to this problem. The most appropriate identifier will depend greatly
on the configuration of the target network, as well as the availability of aux-
thary data sources from which a mapping can be constructed. An 1deal
solution will likely involve some combination of supplementary network

8 Data Science for Cyber-Security

data (e.g., Domain Name Service (DNS) logs, DNS zone transfers, DHCP
logs, VPN logs, NAC logs), business rules and considerable trial and
eITOr.

For this data release, a combination of DNS and DHCP logs was used to
construct a mapping of IP addresses to FQDNSs over time. The IP addresses
in each biflow were then replaced with their corresponding FQDNSs at the
time of the flow. Where a given IP address and timestamp mapped to multiple
FQDNSs, business rules were incorporated to give preference to the least-
ephemeral name. IP addresses that failed to map to any FQDN were left as 1s.
The resulting mix of names and IP addresses correspond to the SrcDevice
and DstDevice fields 1n the final data.

Finally, the data were de-1dentified by mapping SrcDevice, DstDevice,
SrcPort and DstPort to random 1dentifiers. In the event that the IP-to-FQDN
mapping failed, the random identifier was prepended with “I1P”. Well-known
ports were not de-identified. Records with protocol numbers other than
6 (TCP), 17 (UDP) and (1) ICMP were removed entirely. The output from
this process 1s provided in CSV format, one record per line, with fields in
the order shown 1n Table 1.

3e+07 1
. Protocol
.1_l
C 2e+07 - .‘l
- —
S 6
O I
1e+07 - 17
Oe+00 == -
L] | Ll I | LI | I LI | LI B | IR N B | | | I LI B I LI . | I I B | | I B I L I | I . I LI . LI
oD Wy =5 W) =r o O 0N O 0 0~ 0 W OO = a0 I [N = O U WOoOSr—dMOMaOwMr~o
~roSTonnfcoras N TR RO SR OO NS AN O T SNOMANDTOND O N =S
M~ 0TS0 OO~ T OONANNDS—NNNS:ESNSS0VPO0SMNUVORONULNNO TS
LU ROTHO FONTOE T O0ONO~INRO~MCIOIDE Do oD STOONOW oo NN O
— O Lo O Ol £l OO — == 0 A 2 WD < {1 2 O 0 O — Ly B B O = 07 ~— W WD O = O) — 1)
TL TELEL £ Tttt TETLLttLt T£tLTLELt t = ELTL TLTLttttctcttet
OO0 OO0 O OO0OD0DO0 CODODO0OOD ©OOO0O0 O O DO0OD O0DDO0ODO0OO0OO0O0OO0O0O0
Ol Odd O oCoodd ooddod dodo o o o0 dododdoodoocd
Top source ports
Je+09 +
Protocol
— 2e+09 - 1
C
a - .
6
O ____
1e+09 -
17
DE""DG“ || I I I I I S— 1 8) — — y — u . — — Wil N S S S S —
L I I I I I | | I I I I I] I I I I I I I I I I I I I I I i I I I I]] I I I I I I 1 1 | L I L
L o0 L 0 o= b e Al T] 0 oo O U () L P P
moovano-wdEtoud Al a g R - S INBARIel s RRATeRYed85-NBEE
o RSPl TIr—slaosgsroofsoo~ocoN sV oos T smgonocow s 5
ToeOT TTomBrTootssNodFBocnon FRoE osnTEORuo~oaaoE R
) O N—mD " ODnm S — Oy @ I~ SIS = TOMmMO—mNm
- Lo T Tt g i i = - = LT T
o 0 [o o oD o0 0 00 [o o 0) LI I I I g
oo oo oo ooodod o oo o ododdoo
Top dest ports

Fig. 3: Histogram of the top 50 SrcPorts and DstPorts.

Unified Host and Network Data Set 9

2.2. Data quality

Several figures have been provided in order to assess the quality of the
network flow data set. The top plot in Figure 1, which shows the number
of biflows over time, demonstrates the periodicity that one would expect
for data whose volume 1s driven by the comings and goings of employees
during a typical 5-day workweek.

The bottom plot of Figure 1 1s intended to measure the success rate
of the biflowing and IP-to-FQDN mapping processes. TCP biflows where
either SrcPackets or DstPackets 1s zero suggests a failure to find matching
uniflows for both directions of the exchange. Fifty Seven percent of TCP
and approximately 70% of all biflows fall within this category. This can
largely be attributed to LANL’s netflow sensor infrastructure, which has
been specifically configured to export only one direction on many routes.
In addition, some devices — namely vulnerability scanners and the like —
attempt to connect to all possible IP addresses within a range; this results in
a significant number of uniflows for which no response is possible. Likely
for the same reason, IP-to-FQDN mapping tailed for significantly more
DstDevices than SrcDevices.

1e+08 - Protocol
I= o 1
=
8 1e+05 - + B
1le+02 - e 17
Oe+00 = Y . i
Oe+00 5e+04 1e+05
Duration (minutes)
?
1e+08 - Protocol
= 1
|
S 1e+05 4 . . 6
i
fe+02 am 17
'DE"'E":}_' T - “-“'_M* & a o : @ & '-. a
0 500000 1000000 1500000
Source Mbs
?
1e+08 - Protocol
= 0
3 letd54 = o &
U .
1e+02 - s ‘ v + 17
0e+00 - R i W U 000 e T, ® OO e Wy o P PP NP e me s e @

EELGS 49#05

Dest Mbs

Fig. 4: Distribution of Duration, SrcBytes and DstBytes.

6e+05

10 Data Science for Cyber-Security

Day 14

2e+05

Te+05 -

Se+04 4
T
—
o
O

06400 - uu_ I‘n_n_ NI VT W A —

0 2500 5000 7500
In-degree

30000 -

10000 -
IS
=
O
O

04 L I | |

0 20000 40000 60000
Out-degree

Count

Count

Ln—=pud

Oe+00 -

20000 1
10000 -

Day 26

L0non
] i

e+()
e+()5 4
e+()

MHILI
0

(I 10 S | T O T

T 1 1 1
2500 5000 7500 10000
In-degree

-

- IIII

20000 40000 60000
Out-degree

Fig. 5: In-degree and out-degree distribution for two randomly-selected days.

Figure 2 shows the daily proportion of biflows corresponding to each
Protocol. Figure 3 contains two histograms of the top SrcPorts and
DstPorts respectively. Note the non-uniformity in the SrcPort histogram;
this 1llustrates either a consistent tailure of the biflowing process to choose
the appropriate direction or the presence of protocols that use non-ephemeral
source ports. For example, the network time protocol (NTP) uses port 123
for both the source and destination ports per the specification.

Figure 4 shows the distribution of Duration, SrcBytes and DstBytes per
Protocol. Of particular interest 1s the presence of many long-lived UDP
and ICMP biflows in the data. This indicates frequent, persistent UDP and
ICMP tratfic sharing the same 5-fuple and 1s an unfortunate side etfect of
not limiting the biflow transformation to TCP uniflows. Finally, Figure 5

shows exemplar in-degree and out-degree distributions for two randomly-

selected days.

3. Windows Host Log Data

As remote attackers and malicious insiders increasingly use encryption,
network-only detection mechanisms are becoming less effective, particu-
larly those that require the inspection of payload data within the network

Unified Host and Network Data Set I

traffic. As a result, cyber-defenders now rely heavily on endpoint agents
and host event logs to detect and investigate incidents. Host event logs
capture nuanced details for a wide range of activities; however, given the
vast number of logged events and their specificity to an individual host,
human analysts struggle to discover the few useful log entries amid the
huge number of innocuous entries. Statistical analytics for host event data
are 1n their infancy. Advanced analytical capabilities on this host data,
including computer and user profiling, which move beyond signature-
based methods, will increase network awareness and detection of advanced
cyber-threats.

The host event data set 1s a subset of host event logs collected from all
computers running the Microsoft Windows operating system on LANL’S
enterprise network. The host logs were collected with windows logging
service (WLS), which 1s a Windows service that forwards event logs, along
with administrator-defined contextual data to a set of collection servers.‘
The released data are in JSON format in order to preserve the structure of
the original events, unlike the two previously released data sets based on
this log source (Kent, 2014, 2016). The events from the host logs included
in the data set are all related to authentication and process activity on each
machine.

Table 2 contains the subset of EventIDs included from the event logs
in the released data set and a brief description of each; a more detailed
description is available online.® Figure 6 shows the percentage of EventIDs
contained 1n the logs, as well as the LogonTypes tor EventlDs 4624, 4625
and 4634.

Each record in the data set will have some of the event attributes listed
in Appendix A and Table B.1 specifies which EventIDs have each attribute.
Note that not all events with a given EventID share the same set of attributes.
It an expected attribute was missing from the original host log record, then
the attribute was not included 1n the corresponding record in the de-1dentified
data set.

All records will contain the attributes EventID, LogHost and Time.
LogHost 1ndicates the network host where the record was logged. For

http://honeywell.com/sites/aero-kep/SiteCollectionDocuments/WindowsLogging ServiceSummary.

pdf.
“https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx.

12 Data Science for Cyber-Security

Table 2: Host log EventIDs.

EventlD Description

Authentication events

4768 Kerberos authentication ticket was requested (TGT)
4769 Kerberos service ticket was requested (TGS)

4770 Kerberos service ticket was renewed

4774 An account was mapped for logon

4776 Domain controller attempted to validate credentials
4624 An account successfully logged on, see Logon Types
4625 An account failed to logon, see LLogon Types

4634 An account was logged off, see Logon Types

4647 User nitiated logoft

4648 A logon was attempted using explicit credentials
4672 Special privileges assigned to a new logon

4800 The workstation was locked

43801 The workstation was unlocked

4802 The screensaver was invoked

4803 The screensaver was dismissed

Process events

4688
4689

System events

Process start
Process end

4608 Windows 1s starting up
4609 Windows is shutting down
1100 Event logging service has shut down

(often recorded 1nstead of EventID 4609)

LogonTypes (EventIDs: 4624, 4625 and 4634)

2 — Interactive 5 — Service O — New Credentials
3 — Network 7 — Unlock 10 — Remote Interactive
4 — Batch 8 — Network Clear Text 11 — Cached Interactive

12 — Cached Remote-Interactive 0 — Used only by the
system account

directed authentication events, this attribute will always correspond to the
computer to which the user 1s authenticating, and the source computer will
be given by Source. For the user associated with the record, if the UserName
ends in $ then it will correspond to the computer account for the specified
computer. These computer accounts are host-specific accounts within the

Unified Host and Network Data Set 13

4609 -
12 -
4770 -
4689 - "
11004
46084 | 0-
46471
48031 10 -
48024
47741 @ 4
2 48014 | =
= | - Y -
L 48004 S
L o
46251 | A -
47681 |
6481 [8-
47691 |
s6241 [
3-
0.0 0.1 0.2 0.00 0.25 0.50 0.75 1.00
Density Density
Fig. 6: Histogram of the EventIDs and LogonTypes.
log_hosts -

comp accounts -

UISers A

source hosts -

Processes -

=

10000 20000
Count

Fig. 7: Histogram of unique processes, usernames, log hosts (LogHost), source hosts
(Source) and computer accounts for the whole time period.

Microsoft Active Directory domain that allow the computer to authenticate
as a unique entity within the network. Figure 7 shows the count of unique
processes, log hosts (LogHost), source hosts (Source), computer accounts
(UserName ending in $) and users (UserName not ending in $) for the
90-day period. Note that the set of source hosts includes devices running
non-Windows operating systems, hence there are more source hosts than
log hosts. Figure 8 shows the number of wls records on a per-day basis,
showing the diurnal patterns that one would expect and good collection

14 Data Science for Cyber-Security

8e+07 - \

be+07 1

Count
A

4e+07 -

2e+07 -

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Day

Fig. 8: Daily count of host log records.

throughout the 90 days minus a noticeable drop on day 61 similar to that of
the nettlow data set, Figure 1.

Requests to the Kerberos ticket granting service (TGS) (EventID 4769)
correspond to a user requesting Kerberos authentication credentials from
the Active Directory domain to a service or account name on a network
computer. Hence, the LogHost attribute should always be an Active Direc-
tory machine and the service or account name the user 1s requesting access
to will be given by ServiceName. The ServiceName often corresponds
to a computer account on the target computer. Because this event only
grants a credential, a subsequent network logon event (EventID 4624-
LogonType 3) to the computer indicated by ServiceName 1s common.
This differs from the previous data release (Kent, 2016), in which TGS
events were assumed to be directed authentication events from the user’s
machine to the computer indicated by ServiceName, 1gnoring the Kerberos
intermediary.

When de-1dentifying the process events, only the base process name was
de-identified and the extension was left as is. Further, the parent process
names (ParentProcessName) do not have file extensions unlike the child
process names (ProcessName); this 1s a direct artefact of how the process

Unified Host and Network Data Set 15

information is logged within WLS. The missing extension can be obtained
by using the ParentProcessID to 1identify the parent process start event.

Finally, many events include the DomainName attribute that indicates
what Active Directory domain the event 1s associated with. The domain,
combined with the UserName, should be considered a unique account iden-
tity. For example, user u/ with domain d/ 1s not necessarily user u/ in
domain d2. In addition, the domain may actually be a hostname, indicat-
ing the event does not 1involve a user or account associated with an Active
Directory domain, but 1s instead a local account. Again, these accounts
should be considered unique to the host indicated within the DomainName
attribute. For example, the Administrator account on host ¢/ likely does not
have a relationship to the Administrator account on ¢2 or the Administrator
account in domain d/. The LANL data sets have a single primary domain,
with a number of much smaller, secondary domains, and most computers
have a small set of local accounts.

3.1. Data parsing considerations

While host logs can be an extremely valuable data resource for cyber-
security research, the tormatting and content of the logs can vary drastically
between enterprises depending upon the audit policy and technologies used
to collect and forward the logs to a centralised server. Hence, parsing the data
and extracting the relevant attributes 1s an important first step in analysing
these data; see also Kent (2016).

Even though WLS provides more content and normalisation around the
raw Windows logs, some challenges were still faced to provide the de-
1dentified data.

Firstly, the semantics of attribute names are not necessarily the same for
different EventIDs and the attribute names themselves may differ accord-
ing to what tool 1s being used to collect and torward the logs. For exam-
ple, with WLS the UserName tor EventID 4774 1s MappedName, tor
EventID 4778 and 4779 1t 1s AccountName and for most other events it
1s TargetUserName. When parsing the data, these names were all standard-
1sed to UserName.

As with the network flow data, an extremely important task i1s mapping
IP addresses to FQDNSs. Further, unlike netflow, each record may contain
both IP addresses and hostnames. The machine where the event is recorded

16 Data Science for Cyber-Security

(LogHost for the de-1dentified data) 1s provided as a hostname, whereas the
Source computer for network logons 1s often given as an 1P address.

Finally, both usernames and process names were standardised. In some
records, usernames appear with the domain name or additional charac-
ters. These discrepancies were removed from the released data in order
to ensure all usernames were 1n canonical form. In addition, some user-
names, such as “Anonymous”, “Local Service” and “Network Service”,
do not map to a computer or user account. For some analyses, one may
want to remove these events. In the de-identified data these commonly-
seen usernames were not anonymised. For the process names, dates, ver-
sion numbers, operating systems and hexadecimal strings were removed
where possible so that processes run on different operating systems or
with different versions would map to the same process name. For exam-
ple, flashplayerplugin_20_0_0_286.exe would be mapped to flashplayer-
plugin_VERSION . .exe.

4. Research Directions

Anomaly detection for the defensive cyber-domain 1s a major yet evolv-
ing research area, with much work still to be done 1n characterising and
finding anomalies within complex cyber-data sets. Finding viable attack
indicators and per computer, user and computer-to-computer models that
enable anomaly detection and fingerprinting are all interesting and 1mpor-
tant research opportunities.

Although research on anomaly detection for cyber-detence spans more
than two decades, operational tools are still almost exclusively rule- or
signature-based. Two reasons that statistical methods have not been more
widely adopted 1n practice are a high talse-positive rate and un-interpretable
alerts. Analysts are inundated with alarge number of alerts and triaging them
takes significant time and resources; this results in low tolerance for false
alarms and alerts that provide no contextual information to guide investiga-
tion. Signature-based systems can be finely tuned to reduce false positives
as they rely on very specific peculiarities that have been previously i1den-
tified and documented as indicative of a cyber-attack. Further, they are
interpretable as they refer to specific patterns within the data, such as weird
domains, network protocols or process names.

Unified Host and Network Data Set 17

However, despite their inherent challenges, anomaly detection methods
have the advantage of being able to detect new variants of cyber-attacks
and are able to keep pace with the rapidly changing cyber-attack land-
scape by dynamically learning patterns for normal behaviour and detecting
deviations. Further, with the increasing level of encrypted network traffic,
the importance of this research and the use of these methods can not be
understated. Research into ways to reduce false-positives and providing
interpretable anomalies will have significant impact 1n furthering the use of
anomaly detection systems. In fact, providing interpretable anomalies can
help overcome the false-positive issue as interpretability leads to quickly
identitying alerts that are false positives 1n the same way i1t would enable
understanding true positives. Research approaches to tackle these problems
could include combining different data sets and signals, borrowing strength
across entities that are similar by incorporating peer-based behaviour, com-
munity detection approaches and ways to provide meaningful context sur-
rounding alerts to human analysts.

When using the host log data set for research, some notable character-
istics of these data that need to be considered, especially if looking at the
events as a time series, 1s periodicity and significant correlations between
arrivals of different event types. This can be seen clearly 1n Figure 9, which
shows the event times for various EventIDs for User205265. Periodicity in
the data 1s often an artefact of the computer regularly renewing credentials.
This explains why EventlD 4624—LogonType 3 (network logon) constitutes
such a significant portion of the events as seen in Figure 6. For a given entity,
extrapolating higher-level, interpretable actions from the sequence of low-
level events would improve modelling efforts, understanding of these data,
and would itself be very useful tor security analysts. See Heard er al. (2014)
and Price-Williams e al. (2017) for relevant research 1n this area.

Another area for research with the host logs 1s exploring the records
related to process starts and stops 1n detail, in particular looking at process
trees. To date, little has been done 1n this area. Computer systems operate
hierarchically; an initial root process starts many other processes, which
in turn start and run descendants. A process tree 1s the dynamic structure
that results. In theory, any process can be traced, through its ancestors, to
the root process. Unusual or atypical events in process trees could indicate
potential cyber-security anomalies.

18 Data Science for Cyber-Security

-H-c W _ '*'J : S 'H'i'c_ .-
12 4
o
xR _EE OER o K ¥ ok Kk ¥k K
. L O . L B L i [) | X
114 ' A A
%ﬁ x, o oM o v b oo x
EventiD
ﬁ: & [Z , * %X o % ¥, ¥ % i ok 0 462412
107 A X & A A X
- T - o 462413
- b 4 X o X, .4 X M poap oy X X X
v & 462417
0 _ . .
&_ :j': X)] :*: i.: * - x 's) * s’ {_1:*: pate I + 4768
9 - : A A A A A A A A A © 4769
A x = X i o M M A o b K o e
% 4776
% * = * ¥* ¥ * 3 Aok s e
aC i { i X
81 A A A A A AX A &
= O A b4 X, X, X s b il 4
?) * ¥ ¥
1)) 0 oo O 0
7 . A A A
e W OK X o WX %

07:00 0800 09:00 10:00 11:00 12:00 13:00 1400 1500 16:00
Time

Fig. 9: Event times for User205265. 462412 corresponds to EventlD 4624—LogonType 2.

Moving beyond anomaly detection, there are other important research
directions for which these data could prove useful. For example, prelimi-
nary work has been done using similar data to model network segmentation
and associated risk (Pope ef al., 2017). Using the data to build new, poten-
tial network topologies 1n order to reduce risk and improve security posture
are viable directions. Another potential research problem i1s to quantity and
understand data loss within cyber-data sets. The collection and normali-
sation processes in place for these data can result in information loss and
understanding this data loss 1s an open problem both 1n general and specific
to each element of the data. As most of the data elements represent peo-
ple and their actions on computers, research on organisational and social
behaviour 1s also viable using these data.

5. Conclusion

Operational cyber-security data sets are paramount to ensuring valuable and
productive research continues to improve the state of cyber-defence. The
network tlow and host log event data discussed 1n this chapter are intended
to enable such research as well as to provide an example tor other potential

Unified Host and Network Data Set 19

data set providers. In particular, while there is a considerable amount of
relevant work on network data, relatively little attention has been given
to host log data 1n the literature. Host log data are becoming increasingly
relevant as endpoint security tools gain popularity within the cyber-security
ecosystem. It 1s important that researchers embrace both the opportunity and
challenge that they present. Finally, even less consideration has been given to
meaningtul analyses that combine these and other data sets. This paradigm
shift towards a holistic approach to cyber-security defence 1s critical to
advancing the state of the art.

Acknowledgement

This work was supported by the US Department of Energy through the
Los Alamos National Laboratory. Los Alamos National Laboratory 1s
operated by Los Alamos National Security, LLLC, for the National Nuclear
Security Administration of U.S. Department of Energy (Contract DEACS2-
06NA25396). The United States Government retains and the publisher,
by accepting this work for publication, acknowledges that the United
States Government retains a nonexclusive, paid-up, irrevocable, world-wide
license to publish or reproduce this work, or allow others to do so tor United
States Government purposes.

Appendix A. Host Log Fields

e /ime: The epoch time of the event 1n seconds.

e EventID: Four digit integer corresponding to the event 1d of the record.

e LogHost: The hostname of the computer that the event was recorded on.
In the case of directed authentication events, the LogHost will correspond
to the computer that the authentication event 1s terminating at (destination
computer).

e Logonlype: Integer corresponding to the type of logon, see Table 2.

e LogonTypeDescription: Description of the LogonType, see Table 2.

e UserName: The user account initiating the event. If the user ends in §,
then 1t corresponds to a computer account for the specified computer.

e DomainName: Domain name of UserName.

e LogonID: A semi-unique (unique between current sessions and LogHost)
number that identifies the logon session just initiated. Any events logged

Data Science for Cyber-Security

subsequently during this logon session should report the same LogonlID
through to the logott event.

SubjectUserName: For authentication mapping events, the user account
specified by this field 1s mapping to the user account in UserName.
SubjectDomainName: Domain name ot SubjectUserName.
SubjectLogonlID: See LogonlD.

Status: Status of the authentication request. “0 x 0” means success
otherwise failure; tailure codes for the appropriate EventID are available
online.!

Source: For authentication events, this will correspond to the the computer
where the authentication originated (source computer), 1f 1t 1s a local
logon event then this will be the same as the LogHost.

ServiceName: The account name of the computer or service the user is
requesting the ticket for.

e Destination: This 1s the server the mapped credential 1s accessing. This

may indicate the local computer when starting another process with new
account credentials on a local computer.

e AuthenticationPackage: The type of authentication occurring including

Negotiate, Kerberos, NTLM plus a few more.

FailureReason: The reason for a failed logon.

ProcessName: The process executable name, for authentication events
this 1s the process that processed the authentication event. ProcessNames
may include the file type extensions (1.e., exe).

ProcessID: A semi-unique (unique between currently running processes
AND LogHost) value that 1dentifies the process. ProcessID allows you
to correlate other events logged in association with the same process
through to the process end.

ParentProcessName: The process executable that started the new process.

ParentProcessNames often do not have file extensions like ProcessName
but can be compared by removing file extensions from the name.
ParentProcessID: Identifies the exact process that started the new process.
Look for a preceding event 4688 with a ProcessID that matches this
ParentProcessiD.

Uhttps //www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx.

Unified Host and Network Data Set 2]

Appendix B
Table B.1: Event attributes.
EventIDs Attribute
All Time
All EventlD
A LogHost
4624, 4625, 4634 LogonType
4624, 4625, 4634 LogonTypeDescription
All except System Events UserName
All except System Events DomainName

All except 4768, 4769, 4770, 4774, 4776 LogonlD

4624 (LogonTvype 9), 4648, 4774 SubjectUserName

4624 (LogonType 9), 4648, 4774 SubjectDomainName

4624 (LogonType 9), 4648 SubjectLogonlD

4768, 4769, 4776 Status

4624, 4625, 4648, 4768, 4769, 4770, 4776 Source

4769, 4770 ServiceName

4648 Destination

4624, 4625, 4776 AuthenticationPackage

4625 FailureReason

4624, 4625, 4648, 4688, 4689 ProcessName

4624, 4625, 4648, 4688, 4689 ProcessID

4688 ParentProcessName

4688 ParentProcesslD
References

Barbosa, R. R. R. (2014). Anomaly
Approach, Ph.D. thesis, Centre

sity of Twente, Netherlands.
Berthier, R., Cukier, M., Hiltunen, M.,

Detection in SCADA Systems — A Network Based
for Telematics and Information Technology, Univer-

Kormann, D.., Vesonder, G. and Sheleheda, D. (2010).

Nfsight: Netflow-based network awareness tool, in Proceedings of LISAIO: 24th
Large Installation System Administration Conference, p. 119.
Claise, B. (2004). Cisco systems NetFlow services export, Version 9, RFC 3954, Internet

Engineering Task Force.

Cyber Systems and Technology Group (1998). DARPA intrusion detection data sets, URL:

https://www.ll.mit.edu/i1deval/c

ata/.

Glasser, J. and Lindauer, B. (2013).

3ridging the gap: A pragmatic approach to generat-

ing insider threat data, 20712 IEEE Symposium on Security and Privacy Workshops,

pp. 98—104.

22 Data Science for Cyber-Security

Heard, N., Rubin-Delanchy, P. and Lawson, D. J. (2014). Filtering automated polling traf-
fic in computer network flow data, in 2014 IEEE Joint Intelligence and Security
Informatics Conference, pp. 268-271.

Hofstede, R., Celeda, P., Trammell., B.. Drago, I., Sadre, R., Sperotto, A. and Pras, A. (2014).
Flow monitoring explained: From packet capture to data analysis with NetFlow and
IPFIX, IEEE Communications Surveys & Tutorials 16, 4, pp. 2037-2064.

Kent, A. D. (2014). User-computer authentication associations in time, L.os Alamos National
Laboratory, do1:10.11578/1160076.

Kent, A. D. (2016). Cyber security data sources for dynamic network research, in N. Adams
and N. Heard. eds., Dynamic Networks and Cyber-Security, Vol. 1, p. 37, World
Scientific, UK.

Ma, J., Saul, L. K., Savage, S. and Voelker, G. M. (2009). Identitying suspicious URLs:
An application of large-scale online learning, in Proceedings of the 26th Annual
International Conference on Machine Learning, pp. 681-688.

Minarik, P., Vykopal, J. and Krmicek, V. (2009). Improving host profiling with bidirectional
fHows, in International Conference on Computational Science and Engineering, 2009.
CSE’09., Vol. 3, pp. 231-237.

Nguyen, K. V., Tyagi, N. K. and Lau, R. M. (2017). Flow de-duplication for network
monitoring, US Patent 9,548,908.

Pope, A., Tauritz, D. and Kent, A. (2017). Evolving bipartite authentication graph partitions,
IEEE Transactions on Dependable and Secure Computing, 99, pp. 1-1.

Price-Williams, M., Heard, N. and Turcotte, M. (2017). Detecting periodic subsequences 1n
cyber security data, in IEEE European Intelligence and Security Informatics Confer-
ence (EISIC2017), pp. 84-90.

Sperotto, A., Schafirath, G., Sadre, R., Morariu, C., Pras, A. and Stiller, B. (2010). An
overview of IP flow-based intrusion detection, IEEE Communications Surveys and
Tutorials 12, 3, pp. 343-356.

Trammell, B. and Boschi, E. (2008). Bidirectional flow export using IP Flow Information
Export (IPFIX), RFC 5103, Internet Engineering Task Force.

Chapter 2

Computational Statistics and Mathematics
for Cyber-Security

David J. Marchette

Naval Surface Warfare Center,
Dahlgren, VA 22448, USA

david.marchette @navy.mil

Computer and network security relies on many different tools, such as secure
programming practices, firewalls, virus scanners and various algorithms to detect
attacks and malicious software. The latter require the analysis of complex and
varied data such as packet streams, emails, potential malicious binary executable
files and user activity on a computer and on the network. Modern data analytics
has a number of tools to analyse these data streams and to design detection algo-
rithms. This chapter discusses several such tools that come from the computational
statistics literature and from pure mathematics: nonparametric probability density
estimation, graph-based manifold learning, topological data analysis. These 1deas
are illustrated on a problem of malware classification and on network data.

1. Introduction

[n an influential paper in statistical science (Breiman, 2001b), Leo Breiman
described two cultures of data analysis, which Donoho (2015) refers to as
prediction and inference. The 1dea is that there are those who focus on
the bottom line — how well does the algorithm perform on a given task
of interest, such as classification or regression — and those who are more
concerned with making inference, such as using a model, and the parameters
of the model fitted from data, to make statements about the world (or some
small piece of it of particular interest to the analyst). Of course, these are
not mutually exclusive, and we all (one hopes) have at least some of both
of these 1n our make-up; however, there 1s a distinct difference 1n these two

23

24 Data Science for Cyber-Security

cultures. One way of making the distinction, which Donoho discusses at
some length, 1s between those who are primarily interested in elucidating
the model that generated the data, and those interested simply in how well
the model predicts (some aspect of) future observations.

In cyber-security, one 1s mostly interested in the latter. While there 1s
considerable interest 1n things like packet arrival times and other statistics
of networks, these are more important for the design and implementations
of networks rather than for the security aspects. From a security perspective
one mostly cares about whether one can protect the network, computer and
data. The focus 1s more on whether attacks and intrusions can be detected
rather than 1n modelling these attacks. With that said, 1t 1s important to note
that often one 1s reduced to modelling what 1s normal, or at least benign,
and looking for deviations from this model, and so one must not completely
remove oneselt from the inference camp.

In this chapter, I will discuss several statistical methods for analysing,
modelling, and predicting in complex data that are of interest for applica-
tions 1n computer security. I will use for 1llustration a data set provided by
Kaggle.* The data consist of 10,868 examples of malware, grouped into
nine malware families. The task 1s to construct a classifier that can deter-
mine the family of new malware. The data comes in two forms: a byte-dump
of the executable programme, and a decompilation of the programme 1nto
assembly code. In both cases, some adjustments have been made so that
an executable version of the programme cannot be generated by a simple
manipulation of the data. I will use the byte-dump data from this data set.

In addition to this data set, I will also utilise the network data available
from the Los Alamos National Laboratory (LANL) (Kent, 2016).” There
are several interesting data sets there, and I will use the network flows data.

The layout of the chapter 1s as follows. First, I will consider some basic
applications of computational statistics 1 Section 2. In Section 3, I will
consider some dimensionality reduction techniques that allow one to go
from complex, high-dimensional observations to lower-dimensional data
which (one hopes) 1s easier to model, without losing “too much™ of the
information in the data. Finally, Section 4 will discuss some new methods

“https://www.kaggle.com/c/malware-classification.
bData available at http://csr.lanl.gov/data/cyberl/.

Computational Statistics and Mathematics for Cyber-Security 25

derived from algebraic topology that have potential for becoming a new
generation of data analysis tools.

2. Computational Statistics

Computational statistics 1s generally described as the interface between
statistics or data analysis and computing.© Itis the collection of tools and the-
ory developed to model large, high-dimensional and complex data, and the
algorithms and computer code that implement these i1deas. Generally the
tools are nonparametric rather than parametric, and the data of interest are
either high dimensional (more than three or four variables), consist of a
large number of observations (more than a few hundred), complex (a mix
of continuous and categorical variables, or other data types) or a combi-
nation of the above. Cyber-security data has all of these properties, and
in many cases the data volumes are truly massive. Thus, computationally
efficient methods are essential for the analysis of the data. In this section,
I will look at a few common methods from computational statistics related
to probability density estimation, classification and machine learning.

2.1. Density estimation

First, let’s focus on univariate data. Everyone 1s familiar with the histogram,
which can be thought of as simply counting the number (proportion) of
observations that fall in each of a set of bins.? In one extreme case, where
the data are discrete, the bins can correspond to the unique values of the
data, and the histogram 1s simply the empirical estimate of the probabil-
ity mass function. In the continuous case, one generally takes the range ot
the data and selects equal-sized bins that cover this range. For example, 1f
the data fall in the interval [0, 1] and one wants m bins, the bins can be
[O, ﬁ] : (ﬁ} %] e (%j |] It 1s well known (and often not emphasised
enough 1n school) that the shape of the histogram (the estimate of the prob-
ability density function) can vary quite a bit by changing the placement of
the bins. For example, instead of placing the center of the first bin at ﬁ,
placing 1t at the smallest observation will result 1n a different “picture” and,

“https://en.wikipedia.org/wiki/Computational _statistics.
dFor this discussion, the histogram consists of equal-sized adjacent bins.

20 Data Science for Cyber-Security

more importantly, a different estimate of the density.” Many solutions have
been proposed to solve this problem (David Scott’s book (Scott, 1992) i1s
an excellent reference). The one I will consider 1s kernel density estima-
tion (Silverman, 1986). If one thinks of the histogram as “place the bins,
then count the points”, the kernel density estimate corresponds to “place
the points and count the bins”. Formally

[— X;
fkc*(x.):EZK(x hx)

=1

Here, K, the kernel, 1s a probability density function, such as the normal
(Gaussian) distribution.! The idea is that one places the “kernel” at every
point, and then adds up the contribution from all of the kernels.

Note that the kernel estimator, like the histogram, has a single parame-
ter. /. called the bandwidth." Larger values of /1 give a smoother estimate of
the density, smaller values produce less-smooth estimates, and can detect
fine structure in the density. Note that, like the number of bins in a his-
togram, the bin width should be chosen as a function of n, with larger n
corresponding to smaller bandwidths. There are many rules of thumb for
bandwidth selection (Silverman, 1986; Wand and Jones, 1994). An impor-
tant fact about kernel estimators 1s that they are “consistent”, in the sense
that (with weak assumptions) the estimate converges to the true density so
long as the bandwidth decreases in n, the number ot observations, at an
appropriate rate. Asymptotic results of this type may not be directly useful
in a practical application,' but they do provide some confidence that as long
as one has “enough™ data, one will obtain a “good” estimate, and if this

“Changing the number of bins will also change the density estimate, and this will be illustrated in
discussion of the kernel estimator.
fTEChHiCEl”}’, K needs to be positive, integrate to one, and have finite variance — be square-integrable —

but some of these conditions can be weakened.
£Technically, as mentioned above, the histogram has a second parameter, the position of the first bin.

Since this 1s almost always set according to the minimum value of the data, or a priori by knowledge
of the possible data range, 1t 1s reasonable to think of the histogram as being parametrised by the bin
width.

B The bandwidth corresponds to the bin width (or equivalently the number of bins, assuming adjacent
bins) of the histogram.

'The curse of dimensionality means that for high-dimensional data, asymptotic results are particularly
unhelpful.

Computational Statistics and Mathematics for Cyber-Security 27

estimate performs well on the prediction task, there is reason to believe it
1s likely to perform well on new data.

Although there are good reasons to select the kernel K according to some
knowledge of the data, I will use Gaussian (normal density) kernels 1n this
work. The reader 1s encouraged to look at the discussions about kernels 1n
the references.

The kernel estimator can be seen as an extreme case of a mixture
model (MclLachlan and Peel, 2000): one fits a mixture of a given density to
the data. For example, the Gaussian mixture model (with m terms) 1s

m
f:_i;*mm(x) — Z?{f@(-x: His O-,r)

j=1

The mixture proportions z; are positive and sum to one. There are many
variations on this theme (Fraley and Raftery, 2002; Marchette et al., 1996;
Priebe, 1994). Fitting the parameters of the mixture can be tricky, but
there are good methods using variations of the expectation-maximisation
(EM) algorithm (McLachlan and Krishnan, 1997) and clever computer sci-
ence (Moore, 1998). In text data analysis, these show up (using different
densities and usually a Bayesian approach to the parameters) as topic mod-
els (Ble1 and Lafferty, 2009; Blei er al., 2003).

Consider the distribution of bytes in malware. That 1s, for each value
from O to 255, one computes the proportion of times each byte 1s found in
the file.) This seems (and is) a pretty naive set of features to use, but I'll use
it to 1llustrate some of these 1deas.

Figure 1 shows the empirical probability distribution (the proportions
of times each byte occurs 1n the file) for one of the pieces of malware. The
curve 1s the kernel estimator. The graph has been scaled — the proportion
of 0 bytes tor this code 1s 0.14, which accounts for the vertical offset of
the kernel estimator — 1t 1S smoothing out this value. It 1s clear, though,
that some of the structure of the data 1s represented in the kernel estimator.
Further, the structure 1s not simply a random mess — there are what appear
to be clusters of similar bytes 1n the data.

There are multivariate versions of kernel estimators and mixture mod-
els. These essentially replace the kernel or mixture component with a

JIn the data provided by Kaggle, there are bytes with value 77", corresponding to obfuscation to
prevent the reconstruction of an executable from the data. In these studies, I remove these values.

28 Data Science for Cyber-Security

0.015 0.020
I

Density
0.010
I

| \ I 1

\ , IIH '
ARt IIIIIIIIIIII il

I I I I
0 50 100 150 200 250
Byte

0.005
I

0.000
I

Fig. I: A one-dimensional kernel estimator of one of the malware programmes. The bars
correspond to the empirical estimate of the probability mass function (the histogram with
bins centred on the integers). The y-axis has been scaled to show the fine-scale structure.

multivariate kernel or density. Details can be tound in the references. See
Figure 2 for an example computed on a single malware programme. Here,
instead of counting the number of times a byte occurs, we are counting the
number of times a pair of adjacent bytes occur.

Now let’s imvestigate the utility of the byte-counts for a simple task:
classity the malware according to family. For this, and other tests, I have
selected (at random) 100 observations trom each class (except for class 5
which only has 42 observations — I select 21 of them) to use as training,
and use the rest of the observations for testing. All errors reported in this
paper are computed on the testing data.

Using the histogram, a nearest neighbour classifier' has an error of
0.162. The kernel estimate of the density function (treating the data as 1f
they were continuous) results in a nearest neighbour error of 0.124. The
McNemar test (Agresti, 1990), which 1s a Chi-square test for symmetry of

KIn this case, the histogram 1s simply the byte-counts (proportions) for the 256 possible byte values
and the bin size is 1. This is the empirical estimate of the probability mass function.

IThe use of a nearest nei ghbour classifier 18 for the purposes of comparison only. As 1s well known,
this classifier 1s rarely a viable choice for real-world problems, but it can be instructive for getting a
feel for the data, and for upper bounds on the error one can expect for the problem.

Computational Statistics and Mathematics for Cyber-Security 29

Fig. 2: A two-dimensional kernel estimator of one of the malware programmes. Adjacent
bytes correspond to the two axes. This has been smoothed to a 32x32 grid.

Table 1: Confusion matrix for the nearest neighbour classifier on
byte-counts for the nine class malware data. Blank entries are Os.

True Class

1291 116 6 2 53 12 75 128
5 1525 | 4 | 6 5

0 33 2807 3 I 2 2 0

] 63 29 352 12 2 7 10

27 89 19 13 8 23 21
55 166 2 10 554 2 32 28
30 6 4 3 4 244 45 0
28 243 3 15 920 12

4 137 7 12 18 709

the contingency table (whether the two classifiers miss the same number
of observations) has a p-value essentially O, and so the kernel estimator on
these data 1s a better classifier (see Tables 1 and 2). Note that although the
kernel estimator produces better performance overall, 1t 1s not better for all
classes.

Figure 3 shows how the individual bytes are correlated with class mem-
bership, a crude indicator of their importance for classification. Byte value

30 Data Science for Cyber-Security

Table 2: Confusion matrix for the nearest neighbour classifier on a
kernel estimator from byte-counts for the nine class malware data.

True Class
1232 133 | 4 17 0 65 64
16 1816 2 5 6 6 26
0 13 2811 2] 3 3
4 31 15 363 14 6 7
34 4 | p) 15 0 19 8
52 57 8 4 I 581 2 |7 15
7 30 4] 271 24]
43 74 3 I 17 7 957 32
53 220 | 6 3 31 757
<
-
H N _
T o
O
—
=
s o
"'(.E -
o
o
O
A
S -
|
=
S -
| | | | | I |
0 50 100 150 200 250
Byte

Fig. 3: Correlation with class for the byte proportions (dots) and the kernel estimator
(curve).

0 1s the most correlated, with values 198, 201, 237 and 242 being the most
negatively correlated. The kernel estimator, which smooths the histogram,
also smooths this correlation and suggests that the last two may not be as
important. Note also that the kernel estimator has a very different profile of
correlation.

Computational Statistics and Mathematics for Cyber-Security 3]

Criticisms of this little experiment are easy to come by, but I want to
make two points. First, simple 1deas (byte-counts, nearest neighbour clas-
sifiers) can often provide surprising performance and can be used to gain
further insight into the problem. Second, statistical ideas such as smoothing
(kernel density estimation), variable selection and dimensionality reduc-
tion (which we’ll see below) and modelling can improve performance
dramatically even in the case where domain knowledge does not provide
much help.™

If one uses only the first 1000 bytes 1n the file, the results swap: 1n this
case, the histogram obtains an error of 0.130 and the kernel estimator an
error of 0.176. Note that the kernel estimate on the entire file 1s still the
superior classifier. Domain knowledge can be used to determine what the
optimal approach 1s: Is it important to process the entire file, or are there
particular sections (such as the beginning) that are more informative? Should
different sections be weighted differently?

[t 1s important to note that the bytes represent a fairly complicated type
of data. On the one hand, they are categorical, representing (one byte of)
a machine instruction code. On the other hand, some of them represent
memory locations or data, in which case they are integers, and also may
correspond to (one byte of) floating point numbers. If the data were purely
categorical, the kernel estimator approach above would be nonsensical, and
(presumably) this would be reflected in the performance.

Another important consideration when using kernel estimators 1s to
account for a known (or suspected) constraint on the range. Since we know
there are no values outside of [0, 255], 1t makes sense to use a variant of the
kernel estimator that constrains the estimate to be within this range. I didn’t
bother, since the ultimate purpose 1s not to produce the best estimate of
the probability density possible, but to produce the best performance of a
classifier.”

" Admittedly, in this case I chose to use no domain knowledge, to illustrate the idea. At a minimum,
knowing (and utilising) the word size should be a first step when processing data corresponding to
machine instructions.

"Note that the Bayes error is given by the classifier that uses the true joint probability distribution of
the data, not the probability distribution of individual byte-counts. So, 1t 1s not the case that a better
estimate will necessarily produce a better classifier.

32 Data Science for Cyber-Security

It 1s important to note that the above 1s not an estimate of the proba-
bility density function of the (256-dimensional) data. Instead, I am using
density estimates as the features which are then passed to the machine
learning algorithm. This 1s 1n the spirit of much of the text processing liter-
ature (Aggarwal and Zhai, 2012; Gupta and Lehal, 2009), where one often
starts with term-frequencies computed on a per-document basis.

2.2. Streaming data

The malware problem discussed 1n the previous section has the property that
it comes 1n discrete chunks (single files) at a relatively slow pace. Internet
packet traffic 1s an example of streaming data: there is an extremely high
volume of data that comes at a very rapid pace, making 1t difficult to store and
process all the data in the manner described above. Streaming, or “on-line”
methods are needed to allow the processing of the data.

To 1llustrate, consider the problem of estimating the mean of a univariate
random variable X. One observes data in time, {x, x», ...} and can only
store a small number of bytes. We'd like to know, at any given time, what
the sample mean 1s for all the data seen to date. Fortunately, there 1s a simple

recursive formula for the sample mean that only requires the storage of the
current estimate and the number of observations seen to date:

~ n—1~]
XH — Xﬂ—] + _XH* (1)
I Il

———

Note that (1) 1s exact: after n observations, X,, 1s the sample mean of the
data {x{, xo, ..., x,}.

One can implement an exponential window on the data, “forgetting”
past data, which can be useful 1n a nonstationary environment, by making
a simple change to the equation:

x N3 —|—1X (2)
n N n—1 N K

Here, N 1s fixed, with 1ts value controlling the width of the exponential
window.
There are many approaches to analysing streaming data in the litera-

ture. Various streaming density estimates have been investigated, including
kernel estimators (Wegman and Marchette, 2003), wavelet-based density
estimators (Caudle ef al., 2015) and mixture models (Priebe, 1994). The

Computational Statistics and Mathematics for Cyber-Security 33

first two citations were applied to network data, and are thus of particular
interest to the computer security community.
The basic 1dea of most streaming algorithms comes down to a rewriting

of (2). For example, a streaming density estimator (Wegman and Marchette,
2003) can be defined as

fux) =0 fu1(x) + (1 = 0)y (x, X,). (3)

Here, y () 1s whatever is appropriate for a single observation (such as the
contribution of the observations to a kernel estimator, or an update to the
parameters of a mixture model). It 1s generally straightforward to modity (3)
to allow a small number of recent observations to be used, rather than just
a single observation, provided the data rates and memory overhead allows
for this.

In particular, consider

S S] T vn
fo) =0 Fum(0) + (1 = 0) - K ('x h'x) (4)

This presupposes that one knows the values at which one 1s going to want to
apply the estimator: one needs to keep track of (4) at each point at which one
wishes to evaluate the kernel estimator. For the malware data ot byte-counts,
we only have a finite number of possible values. Otherwise one would want
to assign a grid to the possible values.

The flows data from Los Alamos consists of number of packets and bytes
tor a collection of flows between computers over time. Figure 4 depicts the
number of packets and bytes for a single day. Note the obvious lines in
this plot, indicating flows that have very similar payloads per packet —
this 1s an indication of the type of application that 1s associated with the

flow. The linear structure indicates that a polar coordinates representation
1s appropriate for these data, and this 1s depicted 1n Figure 5. In both cases
I have used alpha-blending to reduce the overplotting. Thus, dark regions
are regions with many points overplotted within the region.

There 1s a lot of structure evident in these figures. Diagonal lines in
Figure 4 and vertical lines 1n Figure 5 are indicative of applications with
the same ratio of bytes to packets — presumably applications whose tlows
consist of many same sized packets.

To 1illustrate the streaming kernel estimator, consider Figure 6. Here,
we are estimating the probability density of the log of the number of bytes

34 Data Science for Cyber-Security

1.5e+09 2.0e+09

#Bytes

1.0e+09

5.0e+08

0.0e+00

0 500,000 1,000,000 1,500,000
#Packets

Fig. 4: Number of packets against the number of bytes for one day’s worth of data.

in a web session: ports 80, 8080 or 443. We start with an estimate on the
first 1000 sessions, and then update the estimate using (4) with each new
session. This figure corresponds to 9 hours of data.

There 1s obvious temporal structure in the data; however, the time period
1S too short to see 1t the periodic structures that are apparent in the figure
are continued. There 1s also some structure in the sizes (number of bytes)
of the web sessions. Clear peaks are evident, and persist through time. This
shows that there is some stability in the application, which is probably
due to the way web interactions work; the text of a web page may be
transferred via one session while the (substantially larger) images on the
page are transferred via other sessions. There 1s also some standardisation
In 1mage size, in the sense that these are often designed to fit in a standard
window, and often use the same type of compression (JPEG) throughout.

Computational Statistics and Mathematics for Cyber-Security 35

16+08

16+06

1e+04
LA R

16+02

1,550 1,955 1,560 1,965 1,570

B
o
-
=y
td
23
i
§ S
E T
=
o
=
(Tp)
- _ﬂ_p"l- A k , A P, —-Pﬁ_n- MM—MMM—MW
1,550 1,555 1,560 1,565 1,570

N- 8366223 Bandwidth—2.769e-06

Fig. 5: Polar coordinates of the flows data (top) and a kernel density estimator of the angle
0 (bottom). This corresponds to a single day’s worth of data.

This may account for the fairly consistent peaks in the higher ranges of the
X-axIs.

2.3. Machine learning

The field of machine learning deals with the problems of developing algo-
rithms to allow the computer to “learn™ patterns from data. For the purposes
of cyber-data analytics, one wants to perform one of three basic tasks: clas-
sification (also called supervised learning), where the computer is given
labelled data and the task 1s to learn how to correctly label new obser-
vations; clustering (also called unsupervised learning), where the data are

36 Data Science for Cyber-Security

0.6 —

00 7

Fig. 6: Streaming kernel density estimate for web traffic from the flows data. The x-axis
(front) correspond to the log of the number of bytes in the flow, the y-axis (into the page) is
time, and the z-axis 1s density.

unlabelled, and the task is to group the data into “appropriate” groups; and
outlier or abnormality detection, where the data are “normal”, and the com-
puter 1s tasked to recognise when new data do not fit well with the training
data.

There are a myriad of classification algorithms. Recently (Fernandez-
Delgado er al., 2014), it was observed that from a practical standpoint, there
are only a few classifiers that are robust enough to be both easily applicable
to a wide range of data sets and at the top of the performance curve. One of
the best, 1f not the best, 1s random forests (Bretman, 2001a).

The 1dea of random forests comes from decision trees (Breiman et al.,
1984). Think of a physician diagnosing a patient. She may go through a
set of rules like: Does the patient exhibit a tfever? If not, does the patient
complain of abdominal pain? One can imagine building a tree of simple
univariate tests of the data, where at each node 1n the tree, the data are split
on the value of the variable, until one reaches a leaf node, where the decision
18 made based on the class labels of the training data 1n that node.

Computational Statistics and Mathematics for Cyber-Security 37

This works quite well in practice, and there are a number of software
systems that implement variations on this 1dea. The advantage is that the
classifier 1s easy to understand as a series of if-tests, and a physician can
look at the individual decisions to determine whether she believes that the
algorithm 1s computing something that makes sense. The disadvantage 1s
that it 1s extremely sensitive to the data — changing the training data a little
bit, can dramatically change the tree. Also, although the approach works
quite well, a single tree 1s limited 1n practice and 1s generally not the best
classifier that can be obtained.

The random forest takes advantage of the variability limitation men-
tioned above. It operates by taking a sample of the data, building a tree
on that sample, then repeating many times. The resulting collection of
trees (the forest) 1s then used in a voting scheme to classify new data.
In practice, this works amazingly well, as indicated in the reference
(Fernandez-Delgado et al., 2014). When we apply the random forest to
the malware data, we obtain an error of 0.040, far better than the ker-
nel estimator approach. Recall that the data used 1s simply byte-counts,
which we have already noted 1s a particularly naive set of features, and
without a doubt could be improved upon with a bit of domain knowledge,
and yet we obtain better than 95% correct classification on the malware
task. Note that unlike the nearest neighbour classifier, the random for-
est does slightly worse on the kernel estimator (an error of 0.064) — it
may be that the correlation introduced by the smoothing 1s harming the
performance.

3. Manifold Learning

It 1s generally believed that most real high-dimensional data tall on or near
a lower-dimensional structure. Here, “near” 1s generally considered in a
probabilistic sense; crudely, we think of the data as being drawn from a
distribution on this structure, with additive (high-dimensional) noise. This
structure 1s the “manitold™ of the section title, but technically 1t need not be a
manifold in the strict topological or geometric sense. Manitold learning, also
known as manifold discovery, 1s a collection of techniques for “discovering”
this structure, usually by way of an embedding into a lower-dimensional
(Euclidean) space.

38 Data Science for Cyber-Security

This idea that there 1s a lower-dimensional representation of the data
that contains the information relevant for inference 1s the basis of prin-
cipal component analysis (Jolliffe, 2002), multi-dimensional scaling (Cox
and Cox, 2000), feature selection (Guyon and Elisseetft, 2003), projection
pursuit (Friedman and Stuetzle, 1981), etc.

Many manifold learning techniques utilise graphs defined on the
data (Belkin and Niyogi, 2003; Cayton, 20035; Huo et al., 2007; Pless and
Souvenir, 2009), and so we will start with a discussion of graph theory.

3.1. Graph theory

A graph 1s a set V of vertices (or nodes) and a set of edges £ C V x V.
We assume that there are no self loops (if (u, v) € E then u # v). We will
also assume the graph is undirected, and so (#, v) and (v, u) correspond
to the same edge, so the elements of E are unordered pairs (in spite of the
notation). The order of a graph ¢ = (V, E) is |V, the number of vertices,
and the size 1s | E|, the number of edges. The adjacency matrix of a graph
IS the binary matrix A = (a;;) where a;; = 1 if and only if there is an edge
from vertex 1 to vertex j. The degree of a vertex 1s the number of edges
incident to it.

One can construct a graph from data by treating the points as vertices
and defining edges 1n terms of proximity. Usually, one defines a distance
or dissimilarity measure and uses this to join ““close” vertices. The most
common such graphs are the k-nearest neighbour graph — in which each
vertex 18 joined to the k£ points nearest to 1t — and the e-ball graph — 1n
which each vertex is joined to all points whose distance 1s within €.

Generally, especially with high-dimensional data, the e-ball graph is
disconnected. One way to mitigate this without adding an excessive number
of edges, 1s to add 1n the edges from a k-nearest neighbour graph, with k
chosen to be minimal such that the resulting graph is connected.” Performing
this operation with the malware training data results in a graph with 130035
edges. Laying the graph out using a spring embedding algorithm (Kamada
and Kawai, 1989) is depicted in Figure 7. Here, k = 9 connects the graph

®A (possibly) better approach is to compute the minimal spanning tree first, then add the edges from
the e-ball graph.

Computational Statistics and Mathematics for Cyber-Security 39

15

10

Xo

-10

Fig.7: Two-dimensional layout of the connected ¢ = .01 ball graph on the malware training
data. Numbers correspond to the class of the observation.

(the & = 9 nearest neighbour graph has two connected components). The
9-nearest neighbour graph 1s depicted in Figure 8.

3.2. Dimensionality reduction

The graph embedding discussed above 1s one way ot reducing the dimension
of the data. However, using graph layout algorithms 1s clearly not what
1s needed. These algorithms are designed for two- and three-dimensional
layouts, and are meant to be visually appealing, or have other measures of
quality, that are not necessarily well suited to the inference task at hand.

Instead, we wish to use the graph to provide an embedding into R¢ for
any (reasonable) d, and fturther, we’d like this embedding to be well suited
for inference. The Isomap (Tenenbaum et al., 2000) algorithm 1s one method
worth considering.

Given a graph, g, we compute the shortest path distance between each
pair of vertices. This produces an inter point distance matrix between each
pair of our observations (treated as vertices of the graph). One then applies
multi-dimensional scaling (Borg and Groenen, 1997) to this matrix to pro-
duce the embedding.

40 Data Science for Cyber-Security

10

Xo

-10

-15

Fig. 8: Two-dimensional layout of the k = 9 nearest neighbour graph on the malware
training data. Numbers correspond to the class of the observation.

Figure 9 shows the [somap embedding using the connected e-ball graph.
The 9-nearest neighbour graph 1s problematic, since it is not connected.
There are two approaches: embed each component separately, or increase
k until the graph 1s connected. Since the 11-nearest neighbour graph is
connected, we use this 1n Figure 10.

Another popular method of embedding 1s the Laplacian eigenmap. The
Laplacian of a graph 1s L = D — A where A 1s the adjacency matrix and
D 1s the diagonal matrix of the degrees of the vertices (the row-sums of
A). It 1s well known that L 1s positive semi-definite with a O eigenvalue for
each connected component of the graph. Assuming the graph 1s connected,
the d eigenvectors associlated with the d smallest non-zero eigenvalues 1s
often used as an embedding of the graph into R“. The normalised Laplacian
L = D~3LD"? is also often used, and empirically seems to provide better
embeddings for most classification and clustering tasks.

An 1nteresting model for graphs 1s the latent position model (Hott ef al.,
2002), in which the edges of a graph depend probabilistically on their rela-
tionship 1n a latent (unobserved) “*social space”. A simple version of this 1s
the random dot product graph (RDPG) (Marchette and Priebe, 2008 ; Nickel,
2008; Scheinerman and Tucker, 2010). The model 1s as follows. Assume

Computational Statistics and Mathematics for Cyber-Security 41

X1

Fig. 9. Two-dimensional Isomap of the connected € = .01 ball graph on the malware
training data. Numbers correspond to the class of the observation.

Xz

Fig. 10: Two-dimensional Isomap embedding of the & = 11 nearest neighbour graph on
the malware training data. Numbers correspond to the class of the observation.

42 Data Science for Cyber-Security

there are (unobservable) vectors (vy,...,v,) € R4, one per vertex, with
the property that all pairwise dot products between vectors lie in [0, 1]. The
graph 1s generated according to

P((i,j) € E) =vv;.

The random dot product graph has a couple of nice properties. In partic-
ular, 1t can utilise the spectral theorem to estimate the vectors. Recall that
the spectral theorem for symmetric square matrices M can be written as:

M=UAU' = (UA 2 UA"?Y. (5)

The columns of U are the eigenvectors, and A 1s the diagonal matrix of
eigenvalues, and U and A are real valued. We’ll assume the eigenval-
ues are in decreasing size, so the first column of U corresponds to the
largest eigenvalue. Further, the best (in Frobenius norm) representation of
M with (n x d)-dimensional matrices is to take the first d eigenvectors
in (5).

Given a graph, the obvious thing to do 1s to use (5) applied to the
adjacency matrix, taking the top d eigenvectors/values. There are two
problems with this. First 1s the fact that the adjacency matrix is hollow —
the diagonal 1s structurally zero — and so the statement about the ““best
d-dimensional representation” 1sn’t quite right. Second 1s that there’s no
reason to think the adjacency matrix is positive, and so there is a very real
possibility that the square root 1s going to result in imaginary numbers 1f d 1s
too large.

The second observation can be eliminated by noticing that the eigen-
values are simply a coordinate-wise scaling, and so one could simply use
the eigenvectors, since the purpose 1s to produce an embedding of the data,
not necessarily a good estimate of the latent vectors.P The first problem
1s a bit trickier. If we really want an estimate of the latent vectors, we
don’t want the diagonal of the resultant dot-product matrix to be 0. What
we’d like to do 1s “fill in” the diagonal matrix with “the right” values —
the lengths of the latent vectors. Adding a diagonal matrix to the adja-
cency matrix changes only the eigenvalues, not the eigenvectors, and so
we need an estimate of the lengths of the latent vectors. A reasonable

P Alternatively, we could simply choose d to be small enough that the first d eigenvalues are positive.

Computational Statistics and Mathematics for Cyber-Security 43

estimate is D/(n — 1) where n is the order of the graph. So, we operate
on A+ D/(n—1).

It the graph 1s a stochastic block model (Athreya ef al., 2016), and one
chooses k to be the number of blocks (actually, the rank of the probabil-
ity matrix), the resultant embedded points are distributed as a mixture of
Gaussians.9 Note that this statement 1s not changed by whether the vectors
are or are not scaled by the eigenvalues — since this 1s only a scaling of the
embedding, the mixture model 1s still the appropriate model.

Figure 11 depicts the RDPG embedding. As with the other embeddings,
this 1s misleading, since we are depicting a two-dimensional representation,
and 1t 1s unlikely that this 1s the intrinsic dimension of the data. However, it
illustrates the 1dea of the RDPG embedding.

3.3. Fusion

Often, one has more than one way of looking at an object — more than one
sensor or more than one way to construct features. For example, with the

g 6°
LD
— _ 66
o %5@ 2]
6
= ° 73 3
- B §344 4
© 444 4 .4
' 4 4" ,
< - 6 4
AR 4
b4 ﬁ% §
o | { ;
o 4 a4
L) 3
-
':II - ¢
o 3
o (g’?
j
I I I I |
0.00 0.02 0.04 0.06 0.08 0.10

X1

Fig. 11: Random dot product embedding of the connected e-ball graph on the malware
training data, with € = 0.1. Numbers correspond to the class of the observation.

9This is an asymptotic result, and there are a couple of technical details, but from a practical standpoint,
a mixture of normals will be a good model for the embedded data.

44 Data Science for Cyber-Security

malware data, one can look at the hex dump of the bytes (as we have done
here) or one could look at a decompilation of the programme. Each view of
the data can produce features, and we would like to “fuse” these features
into a single representation ot the data.

The obvious way to do this 1s to simply stick the features together. That
18, 1f we compute the byte-count histogram from the hex dump and the word-
count histogram from the decompilation, we can append these columns and
use this (massively large) number of teatures as our fteature set. This 1s,
generally speaking, a bad i1dea. The curse of dimensionality (Jain er al.,
2000; Scott, 1992) says that the noise added by these new features can
overcome any extra information inherent in the features. See Trunk (1979)
for an excellent illustration of this fact.

One method for “fusing” information can be done at the inter point
distance matrix level. Compute the distances from data from the first sensor
(the byte-count histogram), producing D; and from the second sensor (the
word-count histogram), producing D,. Combine these distances into an
omnibus iter point distance matrix D and use multi-dimensional scaling to
embed these into a manageable space for inference. There are several ways

to do this, one of which (Ma ef al., 2012; Priebe et al., 2013) 1s to form the

matrix:
D, W,
D = L
(WA Dz)"

where W, = 4D, + (1 — 4)D,.

Note that the above leads to a similar approach if the distance matrices
are replace by the adjacency matrices of graphs defined on the data from
the two sensors. This leads to a “joint” manitold discovery approach and 1s
the subject of further research.

4. Topological Data Analysis

The field of algebraic topology seeks to understand topological spaces —
such as the support regions of distributions — through the study of invariants
computed on the spaces. These measures are invariant to smooth distortions
of the space.

Computational Statistics and Mathematics for Cyber-Security 45

Topological data analysis (TDA) utilises the tools of algebraic topology
for the analysis of data by first defining a sequence of topological spaces
associated with the data and computing certain invariants on these spaces to
learn information about the global structure of the data. Information about
TDA can be found 1n Carlsson (2009), and 1n the book by Ghrist (2014).

Usually one uses TDA to explore a data set of points in some space, and
extract features that describe some of the characteristics of the points, or
more generally, the distribution from which the points were drawn. 1 will
instead look at applying TDA to the malware data, where each piece of
malware 1s viewed as a set of points, and TDA 1s used to extract features of
the malware.

Much of the topological background we will use can be found in
Greenberg and Harper (1981), as well as many other standard algebraic
topology books. We will define the basic tools that will be used tor TDA,
then discuss how these may be used to make inferences about the classifi-
cation boundary.

4.1. Simplicial homology

A (geometric) simplex of dimension d 1s a set of d + 1 points in relative
position, see Figure 12. So, a0-simplex is apoint, a 1 -simplex a line segment,
a 2-simplex a triangle, and so on. We will write a k-simplex as k+ 1 vertices:
0o, ..., 0], and any subset of k vertices is called a (kK — 1)-face. We will
say that a k-simplex 1s k-dimensional.

Fig. 12: Examples of a 0-simplex, a 1-simplex, and a 3-simplex (the figure on the right
should be considered as a solid three-dimensional tetrahedron).

40 Data Science for Cyber-Security

A simplicial complex is a collection & of simplices that satisfies the
following conditions:

(1) If o € &, then so are the faces of o.
(2) If 01,0, € & are k simplices, then either they are disjoint or they
intersect 1n a lower-dimensional simplex which 1s a face of both.

We write the set of k-simplices of S as S;. We impose an orientation
on the simplices by giving a positive orientation to vertices in lexico-
graphic order, and asserting that any odd permutation of a k-simplex
[vo, ..., 0] reverses the ortentation. Thus, [vg, ..., 0, ..., 0, ..., 0p] =

—lvo, ..., 0, ..., 0iy ..., U]

All of this can be abstracted by defining an abstract simplicial complex
as a collection A of non-empty finite sets such that ¥ € X € A implies
Y € A. In this case, Y 1s called a face of X.

Given a simplicial complex, we form the chain complex as follows. For
each §; of k-simplices, we form the vector space (over some field, usually
finite) C; whose basis 1s the set of k-simplices 1n S;. This can be thought of
as all formal sums of the form »_a;0; for a; € Z,, 0; € Si. The boundary
of a k simplex 1s the set of kK — 1 simplices formed by deleting a vertex. This
gives rise to a boundary map ¢y : C, — Cy—; fork > 1 as

olvg, ..., 0] = Z(—I)I[Um ey D15 Uity -« s U]
i

The chain complex 1s the set {Cy, J;}, often presented as

Ok+1 O H 1 co
S N AN F LN s LIS NN |}

It1s easy to check that ¢, 6,1 = 0. We call the kernel of ¢; the k-cycles, writ-
ten Z;, and the 1mage of ¢, the k-boundaries, written B;. The homology
1s the quotient H, = Z, / B,.

The rank of the kth homology is referred to as the kth Betti number, and
it 1s these numbers that we will compute. Given a space, one constructs a
simplicial complex, for example by triangulating the space, and then com-
putes the homology. This 1s a topological invariant, meaning that continuous
distortions of the space do not change the topology, and 1n particular do not
change the Betti numbers.

Computational Statistics and Mathematics for Cyber-Security 47

In some sense, the homology of a space tells something about the
k-dimensional holes, or voids, in the space. For example, Betti 1s the num-
ber of connected components of the space. For an n-sphere, the Betti num-
bers are 1 for k = 0, n and zero otherwise. The homology ot the 2-torus
S! x S'is 2 for k = 1 (note that this corresponds to the two circles which
generate the torus) and 1 for k = 0, 2, zero elsewhere.

Homology has an interesting connection to the Euler characteristic. One
defines the Euler characteristic as

H

7(X) =D (—1)/Betti;(X). (6)

j=0

This 1s equivalent to the standard Euler characteristic one learns in grade
school, extended to general topological spaces and higher dimensions.

4.2. Homology of data

The above 1s all 1n the context of an abstract space — these abstract simpli-
cies and chain complexes. How does one take a data set and apply any of
this to learn anything about the data?

Just as with manifold discovery, the 1dea 1s to construct a graph on the
data, such as a k-nearest neighbour graph, an e-ball graph, or some other
graph that encodes the local structure of the data. This graph then defines a
simplicial complex through one of a number of mechanisms. The simplest
1s to treat each clique on k 4 1 vertices as a k-simplex.

Given a data set, we construct a graph from which we construct a sim-
plicial complex and compute the homology of the complex, which then cor-
responds to the homology of the data. This procedure 1s highly dependent
on the choices made to define the graph. There are two obvious approaches
to consider. The first 1s to construct a graph that 1s defined on data without
regard to any parameters such as k£ or €. Relative neighbourhood graphs
or Gabriel graphs (Marchette, 2004) are two such graphs. The second is to
consider a sequence of graphs (such as several values of £ or ¢) and look at
how the homology changes as we change these values. This latter approach
leads to the 1dea of persistent homology: those Betti numbers that “persist™
across scales are ones that are indicative of true structure, while those that
“come and go” are driven by noise and can be i1gnored.

43 Data Science for Cyber-Security

4.3. Euler trajectory

We define the Euler Trajectory as the Euler characteristic as a function of
¢ 1n the e-ball graph of the persistent homology. Figure 13 shows the Euler
trajectories for the nine families of malware. These trajectories are computed
from the persistent homology of the two-dimensional kernel estimators,
using the TDA (Fasy et al., 2015) package in R (Ihaka and Gentleman,
1996). There 1s some difference 1n the trajectories between the families, but
for these data the difference 1s not large.

Fig. 13: The Euler trajectories for each of the nine classes of malware. In this figure
¢ € [0, 0.0001].

Computational Statistics and Mathematics for Cyber-Security

There are several distances between persistent homologies in the litera-
ture. The bottleneck distance (Cohen-Steiner et al., 2007; Veltkamp, 2001)
looks at all bijections between the pairs of points in the diagram and com-
putes the mimimum of the maximum distances between points and their
images. Applying multi-dimensional scaling to this distance matrix into
R results in Figure 14. This gives another view of the data that may pro-
vide 1nsight into its structure, and can provide a set of features to use for

subsequent inference.

T T

|

|

-0.25 -0.10
[1 1 1 1 1
o -
¢ 1 wvar1
-
Lt
S -
S 7]
=
o)
= var 2
2 _
=
o 2
S - 222
=
o
S . , var 3
P
o -
$~ 2
2 2
S _ 2
= 2| |2
- 7 var 4
| 2 B g2 32
o 2 2 2 2
'E:E_.
-
| 8 8 8
w 2] 21 2 2
i
=
o _|
S) var 5
2 577 45 8
E—-
© = 22 ??2%2 29
= 1 P 1 29
= [1 T 1 | I I | | I I [| I P10 7T 1 1 1
I

-0.25 -0.10 0.00 0.02

Fig. 14: The multi-dimensional scaling projection of the distances between the persistent

0.04 -0.010 0.000 0.010

—-0.005

0.005 -0.006 0.000 0.006

homologies for the malware data. Plotting character indicates malware family.

49

0.006

-0.006 0.000

50 Data Science for Cyber-Security

5. Discussion

This has been a very high-level and 1diosyncratic look at some techniques
from computational statistics and statistical pattern recognition. There 1s a
huge literature 1n feature selection, manifold discovery, and machine learn-
ing that we have only very briefly touched on. It 1s hoped that this will
provide some suggestions for directions to look for future work, and some
references for methods that may be of value for the analysis of computer
security data.

One of the take-aways from this work 1s that very simple ideas can
be very powerful. The simplistic features extracted from the malware data
turn out to go a long way towards providing the information necessary for
classification. The very simple 1dea of averaging — computing the sample
mean — 1S used 1n the kernel estimator, the streaming data algorithms and
the random forest.

Hand (2006) notes the power of simple classifiers and warns against
putting too much effort into squeezing out the last bit of performance on a
given data set. He points out many problems such as: changes in the under-
lying distribution of the data; training/testing data that 1s not representative;
model misspecification; uncertainty in the classification labels and 1ssues
of interpretability.

With this said, it 1s important to remember that some things, cyber-
security being one of them, are inherently complicated, and we should be
wary of oversimplifying. Careful thought needs to be put into incorporating
domain knowledge into the models, and the models need to be adaptable
to the changing environment — here streaming methods can be helpful.
Interpretation and validation of the model, particularly in the case of random
forests, can be quite difficult, and we need more tools to address these
1Ssues.

The field ot deep learning (neural networks) has been completely missed
in this discussion. This 1s not to denigrate 1t or to suggest that it 1s not
important. There 1s reason to believe that the techniques that are currently
available for training these deep networks may lead to very usetul algorithms
and solutions for the problems of cyber-security. These methods do suffer
from some of the same issues of interpretability and validation that random
forests have, so they should not be viewed as a panacea.

Computational Statistics and Mathematics for Cyber-Security 51

Acknowledgements

This work was funded 1n part by the Naval Surface Warfare Center (NSWC)
In-House Laboratory Independent Research (ILIR) programme.

References

Aggarwal, C. C. and Zhati, C. (2012). Mining Text Data, Springer Science & Business Media,
LLC, New York, USA.

Agresti, A. (1990). Categorical Data Analysis, Wiley, New York.

Athreya, A., Priebe, C. E., Tang, M., Lyzinski, V., Marchette, D. J. and Sussman, D. L. (2016).
A limit theorem for scaled eigenvectors of random dot product graphs, Sankhya A
78, 1, pp. 1-18.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and
data representation, Neural Computation 15, 6, pp. 1373-1396.

Blei, D. M. and Lafferty, J. D. (2009). Topic Models, Chapman & Hall/CRC.

Blei, D. M., Ng, A. Y. and Jordan, M. 1. (2003). Latent Dirichlet allocation, Journal of
Machine Learning Research 3, pp. 993-1022.

Borg, I. and Groenen, P. (1997). Modern Multidimensional Scaling, Springer, New York.

Breiman, L. (2001a). Random forests, Machine Learning 45, 1, pp. 5-32.

Breiman, L. (2001b). Statistical modeling: The two cultures, Statistical Science 16, 3, pp.
199-231.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and
Regression Trees, Wadsworth & Brooks, Monterey, CA.

Carlsson, G. (2009). Topology and data, Bulletin of the American Mathematical Society 46,
2, pp. 255-308.

Caudle, K. A., Karlsson, C. and Pyeatt, L. D. (2015). Using density estimation to detect
computer intrusions, in Proceedings of the 2015 ACM International Workshop on
Security and Privacy Analytics, pp. 43-48.

Cayton, L. (2005). Algorithms for manifold learning, University of California at San Diego
Technical Report, pp. 1-17.

Cohen-Steiner, D., Edelsbrunner, H. and Harer, J. (2007). Stability of persistence diagrams,
Discrete & Computational Geometry 37, 1, pp. 103—120.

Cox, T. F. and Cox, M. A. (2000). Multidimensional Scaling, CRC Press, Boca Raton, FL.

Donoho, D. (2015). 50 years of data science, in Tukey Centennial Workshop, Princeton NJ.

Fasy, B. T., Kim, J., Lecci, F., Maria, C., included GUDHI 1s authored by C. Maria, V. R. T.,
by D. Morozov, D. and PHAT by U. Bauer, M. K. J. R. (2015). TDA: Statistical Tools
for Topological Data Analysis, URL: https://CRAN.R-project.org/package=TDA, R
package, Version 1.4.1.

Fernandez-Delgado, M., Cernadas, E., Barro, S. and Amorim, D. (2014). Do we need hun-
dreds of classifiers to solve real world classification problems? Journal of Machine
Learning Research 15, pp. 3133-3181.

Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis and
density estimation, Journal of the American Statistical Association 97, pp. 611-631.

52 Data Science for Cyber-Security

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression, Journal of the Amer-
ican Statistical Association 76, 376, pp. 817-823.

Ghrist, R. (2014). Elementary Applied Topology, Createspace Independent Publishing
Platform.

Greenberg, M. J. and Harper, J. R. (1981). Algebraic Topology: A First Course, CRC Press,
Boca Raton, FL.

Gupta, V. and Lehal, G. S. (2009). A survey of text mining techniques and applications,
Journal of Emerging Technologies in Web Intelligence 1, 1, pp. 60-76.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection, Journal
of Machine Learning Research 3, pp. 1157-1182.

Hand, D. J. (2006). Classifier technology and the illusion of progress, Statistical Science
21, 1, pp. 1-14.

Hoff, P. D., Raftery, A. E. and Handcock, M. S. (2002). Latent space approaches
to social network analysis, Journal of the American Statistical Association 97,
pp. 1090-1098.

Huo, X., N1, X. S. and Smith, A. K. (2007). A survey of manifold-based learning methods, in
Recent Advances In Data Mining Of Enterprise Data, pp. 691-745, World Scientific,
Singapore.

[haka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics, Journal
of Computational and Graphical Statistics 3, 3, pp. 299-314.

Jain, A. K., Duin, R. P. W. and Mao, J. (2000). Statistical pattern recognition: A review,
IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1, pp. 4-37.

Jollifte, I. T. ed. (2002). Principal Component Analysis, Springer Verlag, New York.

Kamada, T. and Kawai, S. (1989). An algorithm for drawing general undirected graphs,
Information Processing Letters 31, 1, pp. 7-15.

Kent, A. D. (2016). Cyber security data sources for dynamic network research, in N. Adams
and N. Heard. eds., Dynamic Networks and Cyber-Security, Vol. 1, p. 37, World
Scientific, Singapore.

Ma, Z., Marchette, D. J. and Priebe, C. E. (2012). Fusion and inference from multiple data
sources in a commensurate space, Statistical Analysis and Data Mining S, 3, pp.
[87-193.

Marchette, D. J. (2004). Random Graphs for Statistical Pattern Recognition, John Wiley &
Sons, New York.

Marchette, D. J. and Priebe, C. E. (2008). Predicting unobserved links 1n incompletely
observed networks, Computational Statistics and Data Analysis 32, pp. 1373—1386.

Marchette, D. J., Priebe, C. E., Rogers, G. W. and Solka, J. L. (1996). Filtered kernel density
estimation, Computational Statistics 11, 2, pp. 95-112.

McLachlan, G. J. and Krishnan, T. (1997). The EM Algorithm and Extensions, Wiley,
New York.

McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models, Wiley, New York.

Moore, A. (1998). Very fast EM-based mixture model clustering using multiresolution kd-
trees, citeseer.nj.nec.com/moore98very.html.

Nickel, C. L. M. (2008). Random Dot Product Graphs: A Model For Social Networks, Ph.D.
thesis, Johns Hopkins University, Baltimore, MD.

Pless, R. and Souvenir, R. (2009). A survey of manifold learning for images, IPSJ Trans-
actions on Computer Vision and Applications 1, pp. 83-94.

Computational Statistics and Mathematics for Cyber-Security 33

Priebe, C. E. (1994). Adaptive mixture density estimation, Journal of the American Statis-
tical Association 89, pp. 796-806.

Priebe, C. E., Marchette, D. J., Ma, Z. and Adali, S. (2013). Manifold matching: Joint
optimization of fidelity and commensurability, Brazilian Journal of Probability and
Statistics 27, pp. 377-400.

Scheinerman, E. R. and Tucker, K. (2010). Modeling graphs using dot product representa-
tions, Computational Statistics 25, 1, pp. 1-16.

Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization,
Wiley, New York.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman
and Hall, New York.

Tenenbaum, J. B., de Silva, V. and Langford, J. C. (2000). A global geometric framework
for nonlinear dimensionality reduction, Science 290, pp. 2319-2323.

Trunk, G. V. (1979). A problem of dimensionality: A simple example, IEEE Transactions
on Pattern Analysis and Machine Intelligence 1, 3, pp. 306-307.

Veltkamp, R. C. (2001). Shape matching: Similarity measures and algorithms, in SMI 2001
International Conference on Shape Modeling and Applications, pp. 188—197.
Wand, M. P. and Jones, M. C. (1994). Kernel Smoothing, Chapman and Hall/CRC, London.
Wegman, E. J. and Marchette, D. J. (2003). On some techniques for streaming data: A case
study of internet packet headers, Journal of Computational and Graphical Statistics

12, pp. 893-914.

This page 1s intentionally left blank

