OREILLY" .
& %o

Data Science at
the Command Line

Obtain, Scrub, Explore, and Model Data
with Unix Power Tools

Jeroen Janssens
Foreword by Tim O'Reilly

Data Science at the Command Line
by Jeroen Janssens

Copyright @ 2021 Jeroen Janssens. All rights reserved.
Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jessica Haberman Indexer: nSight, Inc.

Development Editor: Sarah Grey Interior Designer: David Futato
Production Editor: Kate Galloway Cover Designer: Karen Montgomery
Copyeditor: Arthur Johnson lllustrator: Kate Dullea

Proofreader: Shannon Turlington

October 2014: First Edition
August 2021: Second Edition

Revision History for the Second Edition
2021-08-17: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492087915 for release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. Data Science at the Command Line, the
cover image, and related trade dress are trademarks of O'Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Data Science at the Command Line is available under the Creative Commons Attribution
NonCommercial-No Derivatives 4.0 International License. The author maintains an online version at
https://github.com/jeroenjanssens/data-science-at-the-command-line.

978-1-492-08791-5
[LSI]

Table of Contents

T =0 {1 S Xiii

= 7 T« < XV

—

1o INtroduction. . .. vveeee i e
Data Science Is OSEMN
Obtaining Data
Scrubbing Data
Exploring Data
Modeling Data
Interpreting Data
Intermezzo Chapters
What Is the Command Line?
Why Data Science at the Command Line?
The Command Line Is Agile
The Command Line Is Augmenting
The Command Line Is Scalable
The Command Line Is Extensible
The Command Line Is Ubiquitous
Summary
For Further Exploration

fe=li eI Na o e B = B e ¥ B s T oA~ I

—

2. Getting Started.vvriiniiiieiieiii i i i e "
Getting the Data 11
Installing the Docker Image 12
Essential Unix Concepts 13

The Environment 14
Executing a Command-Line Tool 15

vii

Five Types of Command-Line Tools 16

Combining Command-Line Tools 20
Redirecting Input and Output 22
Working with Files and Directories 26
Managing Output 28
Help! 30
Summary 33
For Further Exploration 33
3. ObtainiNg Data.ovvrreeeir e e 35
Overview 36
Copying Local Files to the Docker Container 36
Downloading from the Internet 37
Introducing curl 37
Saving 38
Other Protocols 39
Following Redirects 39
Decompressing Files 41
Converting Microsoft Excel Spreadsheets to CSV 43
Querying Relational Databases 46
Calling Web APIs 47
Authentication 48
Streaming APIs 49
Summary 51
For Further Exploration 52

4, (reating Command-Line ToolS. ... vvvviivviiiiiiiiiieiiiiieeennireennanees 53

Overview 54
Converting One-Liners into Shell Scripts 55
Step 1: Create a File 58
Step 2: Give Permission to Execute 61
Step 3: Define a Shebang 62
Step 4: Remove the Fixed Input 65
Step 5: Add Arguments 66
Step 6: Extend Your PATH 68
Creating Command-Line Tools with Python and R 69
Porting the Shell Script 70
Processing Streaming Data from Standard Input 72
Summary 74
For Further Exploration 74

vii | Tableof Contents

5. ScrubbingData.oooniii e 77

QOverview 78
Transformations, Transformations Everywhere 78
Plain Text 81
Filtering Lines 81
Extracting Values 86
Replacing and Deleting Values 88
CSV 90
Bodies and Headers and Columns, Oh My! 90
Performing SQL Queries on CSV 93
Extracting and Reordering Columns 94
Filtering Rows 95
Merging Columns 96
Combining Multiple CSV Files 99
Working with XML/HTML and JSON 101
Summary 104
For Further Exploration 105
6. Project ManagementwithMake...........c.coiiiiiiiiiiiiiiiiiiiiiiiiennnn, 107
Overview 108
Introducing Make 109
Running Tasks 109
Building, for Real 112
Adding Dependencies 113
Summary 118
For Further Exploration 118
7. ExploringData.ovieiiiii i i i e 119
Overview 120
Inspecting Data and Its Properties 120
Header or Not, Here [Come 120
Inspect All the Data 121
Feature Names and Data Types 122
Unique Identifiers, Continuous Variables, and Factors 124
Computing Descriptive Statistics 126
Column Statistics 126
R One-Liners on the Shell 129
Creating Visualizations 133
Displaying Images from the Command Line 133
Plotting in a Rush 138
Creating Bar Charts 140
Creating Histograms 142

Table of Contents | ix

Creating Density Plots 143

Happy Little Accidents 144
Creating Scatter Plots 146
Creating Trend Lines 147
Creating Box Plots 149
Adding Labels 150
Going Beyond Basic Plots 152
Summary 152
For Further Exploration 152
8. Parallel Pipelines.ovviiiniii i i e 153
Overview 154
Serial Processing 154
Looping Over Numbers 155
Looping Over Lines 156
Looping Over Files 157
Parallel Processing 158
Introducing GNU Parallel 160
Specifying Input 162
Controlling the Number of Concurrent Jobs 164
Logging and Output 164
Creating Parallel Tools 166
Distributed Processing 167
Get List of Running AWS EC2 Instances 167
Running Commands on Remote Machines 169
Distributing Local Data Among Remote Machines 170
Processing Files on Remote Machines 171
Summary 174
For Further Exploration 175
9. ModelingData.uveeeuiiiiiiii ittt i iaa e, 177
Overview 178
More Wine, Please! 178
Dimensionality Reduction with Tapkee 182
Introducing Tapkee 183
Linear and Nonlinear Mappings 183
Regression with Vowpal Wabbit 187
Preparing the Data 187
Training the Model 188
Testing the Model 190
Classification with SciKit-Learn Laboratory 193
Preparing the Data 193

x | Tableof Contents

Running the Experiment 194
Parsing the Results 195
Summary 197
For Further Exploration 198
10. Polyglot Data Science..........ooveurnuiiiiiiiiiiiiiiiiiiiiiiiiaeeiiies 199
Overview 200
Jupyter 200
Python 203

R 205
RStudio 207
Apache Spark 208
Summary 210
For Further Exploration 211
ToCondusion......oooiiiiiiii i 213
Let’s Recap 213
Three Pieces of Advice 214

Be Patient 214

Be Creative 215

Be Practical 215
Where to Go from Here 215
The Command Line 216

Shell Programming 216
Python, R, and SQL 216

APIs 216
Machine Learning 217
Getting in Touch 217
List of Command-Line Tools.oooniriiiiiiiiii 219
INAEX. ..t e 249
Table of Contents | xi

Caopyrighted material

Foreword

It was love at first sight.

It must have been around 1981 or 1982 that I got my first taste of Unix. Its command-
line shell, which uses the same language for single commands and complex programs,
changed my world, and I never looked back.

I was a writer who had discovered the joys of computing, and regular expressions
were my gateway drug. Id first tried them in the text editor in HP’s RTE operating
system, but it was only when I came to Unix and its philosophy of small cooperating
tools with the command-line shell as the glue that tied them together that I fully
understood their power. Regular expressions in ed, ex, vi (now vim), and emacs were
powerful, sure, but it wasn’t until I saw how ex scripts unbound became sed, the Unix
stream editor, and then AWK, which allowed you to bind programmed actions to
regular expressions, and how shell scripts let you build pipelines not only out of the
existing tools but out of new ones youd written yourself, that I really got it. Program-
ming is how you speak with computers, how you tell them what you want them to do,
not just once, but in ways that persist, in ways that can be varied like human lan-
guage, with repeatable structure but different verbs and objects.

As a beginner, other forms of programming seemed more like recipes to be followed
exactly—careful incantations where you had to get everything right—or like waiting
for a teacher to grade an essay youd written. With shell programming, there was no
compilation and waiting. It was more like a conversation with a friend. When the
friend didn’t understand, you could easily try again. What's more, if you had some-
thing simple to say, you could just say it with one word. And there were already
words for a whole lot of the things you might want to say. But if there weren't, you
could easily make up new words. And you could string together the words you
learned and the words you made up into gradually more complex sentences, para-
graphs, and eventually get to persuasive essays.

xiii

Almost every other programming language is more powerful than the shell and its
associated tools, but for me at least, none provides an easier pathway into the pro-
gramming mindset, and none provides a better environment for a kind of everyday
conversation with the machines that we ask to help us with our work. As Brian Ker-
nighan, one of the creators of AWK as well as the coauthor of the marvelous book The
Unix Programming Environment, said in an interview with Lex Fridman, “[Unix] was
meant to be an environment where it was really easy to write programs.” [00:23:10]
Kernighan went on to explain why he often still uses AWK rather than writing a
Python program when he’s exploring data: “It doesn’t scale to big programs, but it
does pretty darn well on these little things where you just want to see all the some-
things in something.” [00:37:01]

In Data Science at the Command Line, Jeroen Janssens demonstrates just how power-
ful the Unix/Linux approach to the command line is even today. If Jeroen hadn’t
already done so, I'd write an essay here about just why the command line is such a
sweet and powerful match with the kinds of tasks so often encountered in data sci-
ence. But he already starts out this book by explaining that. So I'll just say this: the
more you use the command line, the more often you will find yourself coming back
to it as the easiest way to do much of your work. And whether you're a shell newbie,
or just someone who hasn’t thought much about what a great fit shell programming is
for data science, this is a book you will come to treasure. Jeroen is a great teacher, and
the material he covers is priceless.

— Tim O’Reilly
May 2021

xiv | Foreword

Preface

Data science is an exciting field to work in. It’s also still relatively young. Unfortu-
nately, many people, and many companies as well, believe that you need new technol-
ogy to tackle the problems posed by data science. However, as this book
demonstrates, many things can be accomplished by using the command line instead,
and sometimes in a much more efficient way.

During my PhD program, I gradually switched from using Microsoft Windows to
using Linux. Because this transition was a bit scary at first, I started with having both
operating systems installed next to each other (known as a dual-boot). The urge to
switch back and forth between Microsoft Windows and Linux eventually faded, and
at some point I was even tinkering around with Arch Linux, which allows you to
build up your own custom Linux machine from scratch. All you're given is the com-
mand line, and it’s up to you what to make of it. Out of necessity, I quickly became
very comfortable using the command line. Eventually, as spare time got more pre-
cious, I settled down with a Linux distribution known as Ubuntu because of its ease
of use and large community. However, the command line is still where I'm spending
most of my time.

It actually wasn't too long ago that I realized that the command line is not just for
installing software, configuring systems, and searching files. I started learning about
tools such as cut, sort, and sed. These are examples of command-line tools that take
data as input, do something to it, and print the result. Ubuntu comes with quite a few
of them. Once I understood the potential of combining these small tools, I was
hooked.

After earning my PhD, when I became a data scientist, I wanted to use this approach
to do data science as much as possible. Thanks to a couple of new, open source
command-line tools including xm12json, jq, and json2csv, I was even able to use the
command line for tasks such as scraping websites and processing lots of JSON data.

Xv

In September 2013, I decided to write a blog post titled “7 Command-Line Tools for
Data Science”. To my surprise, the blog post got quite some attention, and I received a
lot of suggestions of other command-line tools. I started wondering whether the blog
post could be turned into a book. I was pleased that, some 10 months later, and with
the help of many talented people (see the acknowledgments), the answer was yes.

I am sharing this personal story not so much because I think you should know how
this book came about, but because I want to you know that I had to learn about the
command line as well. Because the command line is so different from using a graphi-
cal user interface, it can seem scary at first. But if I could learn it, then you can as well.
No matter what your current operating system is and no matter how you currently
work with data, after reading this book you will be able to do data science at the com-
mand line. If you're already familiar with the command line, or even if youre already
dreaming in shell scripts, chances are that you'll still discover a few interesting tricks
or command-line tools to use for your next data science project.

What to Expect from This Book

In this book, we're going to obtain, scrub, explore, and model data—a lot of it. This
book is not so much about how to become better at those data science tasks. There are
already great resources available that discuss, for example, when to apply which stat-
istical test or how data can best be visualized. Instead, this practical book aims to
make you more efficient and productive by teaching you how to perform those data
science tasks at the command line.

While this book discusses more than 90 command-line tools, it’s not the tools them-
selves that matter most. Some command-line tools have been around for a very long
time, while others will be replaced by better ones. New command-line tools are being
created even as youre reading this. Over the years, I have discovered many amazing
command-line tools. Unfortunately, some of them were discovered too late to be
included in the book. In short, command-line tools come and go. But that’s OK.

What matters most is the underlying idea of working with tools, pipes, and data.
Most command-line tools do one thing and do it well. This is part of the Unix philos-
ophy, which makes several appearances throughout the book. Once you have become
familiar with the command line, know how to combine command-line tools, and can
even create new ones, you have developed an invaluable skill.

xvi | Preface

Changes for the Second Edition

While the command line as a technology and as a way of working is timeless, some of
the tools discussed in the first edition have either been superseded by newer tools
(e.g., csvkit has largely been replaced by xsv) or abandoned by their developers (e.g.,
drake), or they’ve been suboptimal choices (e.g., weka). I have learned a lot since the
first edition was published in October 2014, either through my own experience or as
a result of the useful feedback from my readers. Even though the book is quite niche
because it lies at the intersection of two subjects, there remains a steady interest from
the data science community, as evidenced by the many positive messages I receive
almost every day. By updating the first edition, I hope to keep the book relevant for at
least another five years. Here’s a nonexhaustive list of changes I have made:

« I replaced csvkit with xsv as much as possible. xsv is a faster alternative to
working with CSV files.

« In Chapters 2 and 3, I replaced the VirtualBox image with a Docker image.
Docker is a faster and more lightweight way of running an isolated environment.

« I now use pup instead of scrape to work with HTML. scrape is a Python tool I
created myself. pup is much faster, has more features, and is easier to install.

« Chapter 6 has been rewritten from scratch. Instead of drake, I now use make to
do project management. drake is no longer maintained, and make is much more
mature and very popular with developers.

« Ireplaced Rio with rush. Rio is a clunky Bash script I created myself. rush is an R
package that is a much more stable and flexible way of using R from the com-
mand line.

o In Chapter 9 I replaced Weka and BigML with Vowpal Wabbit (vw). Weka is old,
and the way it is used from the command line is clunky. BigML is a commercial
API that I no longer want to rely on. Vowpal Wabbit is a very mature machine
learning tool that was developed at Yahoo! and is now at Microsotft.

« Chapter 10 is an entirely new chapter about integrating the command line into
existing workflows, including Python, R, and Apache Spark. In the first edition I
mentioned that the command line can easily be integrated with existing work-
flows but never delved into the topic. This chapter fixes that.

How to Read This Book

In general, I advise you to read this book in a linear fashion. Once a concept or
command-line tool has been introduced, chances are that I employ it in a later chap-
ter. For example, in Chapter 9, I make heavy use of parallel, which is discussed
extensively in Chapter 8.

Preface | xvii

Data science is a broad field that intersects many other fields such as programming,
data visualization, and machine learning. As a result, this book touches on many
interesting topics that unfortunately cannot be discussed at great length. At the end of
each chapter, I provide suggestions for further exploration. It’s not required that you
read this material in order to follow along with the book, but if you are interested,
just know that there’s much more to learn.

Who This Book Is For

This book makes just one assumption about you: that you work with data. It doesn't
matter which programming language or statistical computing environment you're
currently using. The book explains all the necessary concepts from the beginning.

It also doesn’t matter whether your operating system is Microsoft Windows, macOS,
or some flavor of Linux. The book comes with a Docker image, which is an easy-to-
install virtual environment. It allows you to run the command-line tools and follow
along with the code examples in the same environment as this book was written. You
don’t have to waste time figuring out how to install all the command-line tools and
their dependencies.

The book contains some code in Bash, Python, and R, so it’s helpful if you have some
programming experience, but it's by no means required to follow along with the
examples.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, directory names, and filenames.

Constant width
Used for code and commands, as well as within paragraphs to refer to command-
line tools and their options.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

xviii | Preface

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

0'Reilly Online Learning

R . For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O'Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this at https://oreil.ly/data-science-at-cl.

Preface | xix

Email bookquestions@oreilly.com to comment or ask technical questions about this
book. The author also maintains a version of the book online.

For news and information about our books and courses, visit http://oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments for the Second Edition (2021)

Seven years have passed since the first edition came out. During this time, and espe-
cially during the last 13 months, many people have helped me. Without them, I
would have never been able to write a second edition.

I was once again blessed with three wonderful editors at O'Reilly. I would like to
thank Sarah “Embrace the deadline” Grey, Jess “Pedal to the metal” Haberman, and
Kate “Let it go” Galloway. Their middle names say it all. With their incredible help, I
was able to embrace the deadlines, put the pedal to metal when it mattered, and even-
tually let it go. I'd also like to thank their colleagues Angela Rufino, Arthur Johnson,
Cassandra Furtado, David Futato, Helen Monroe, Karen Montgomery, Kate Dullea,
Kristen Brown, Marie Beaugureau, Marsee Henon, Nick Adams, Regina Wilkinson,
Shannon Cutt, Shannon Turlington, and Yasmina Greco, for making the collabora-
tion with O’Reilly such a pleasure.

Despite having an automated process to execute the code and paste back the results
(thanks to R Markdown and Docker), the number of mistakes I was able to make is
impressive. Thank you Aaditya Maruthi, Brian Eoff, Caitlin Hudon, Julia Silge Mike
Dewar, and Shane Reustle for reducing this number immensely. Of course, any mis-
takes left are my responsibility.

Marc Canaleta deserves a special thank you. In October 2014, shortly after the first
edition came out, Marc invited me to give a one-day workshop about Data Science at
the Command Line to his team at Social Point in Barcelona. Little did we both know
that many workshops would follow. It eventually led me to start my own company:
Data Science Workshops. Every time I teach, I learn something new. They probably
don’t know it, but each student has had an impact, in one way or another, on this
book. To them I say: thank you. I hope I can teach for a very long time.

Captivating conversations, splendid suggestions, and passionate pull requests. I
greatly appreciate each and every contribution by following generous people: Adam
Johnson, Andre Manook, Andrea Borruso, Andres Lowrie, Andrew Berisha, Andrew
Gallant, Andrew Sanchez, Anicet Ebou, Anthony Egerton, Ben Isenhart,
Chris Wiggins, Chrys Wu, Dan Nguyen, Darryl Amatsetam, Dmitriy Rozhkov, Doug

xx | Preface

Needham, Edgar Manukyan, Erik Swan, Felienne Hermans, George Kampolis, Giel
van Lankveld, Greg Wilson, Hay Kranen, Ioannis Cherouvim, Jake Hofman, Jannes
Muenchow, Jared Lander, Jay Roaf, Jeffrey Perkel, Jim Hester, Joachim Hagege, Joel
Grus, John Cook, John Sandall, Joost Helberg, Joost van Dijk, Joyce Robbins, Julian
Hatwell, Karlo Guidoni, Karthik Ram, Lissa Hyacinth, Longhow Lam, Lui Pillmann,
Lukas Schmid, Luke Reding, Maarten van Gompel, Martin Braun, Max Schelker, Max
Shron, Nathan Furnal, Noah Chase, Oscar Chic, Paige Bailey, Peter Saalbrink, Rich
Pauloo, Richard Groot, Rico Huijbers, Rob Doherty, Robbert van Vlijmen, Russell
Scudder, Sylvain Lapoix, T] Lavelle, Tan Long, Thomas Stone, Tim O’Reilly, Vincent
Warmerdam, and Yihui Xie.

Throughout this book, and especially in the footnotes and appendix, you'll find hun-
dreds of names. These names belong to the authors of the many tools, books, and
other resources on which this book stands. I'm incredibly grateful for their hard
work, regardless of whether that work was done 50 years or 50 days ago.

Above all, I would like to thank my wife Esther, my daughter Florien, and my son
Olivier for reminding me daily what truly matters. I promise it'll be a few years before
I start writing the third edition.

Acknowledgments for the First Edition (2014)

First of all, I'd like to thank Mike Dewar and Mike Loukides for believing that my
blog post, “7 Command-Line Tools for Data Science”, which I wrote in September
2013, could be expanded into a book.

Special thanks to my technical reviewers Mike Dewar, Brian Eoff, and Shane Reustle
for reading various drafts, meticulously testing all the commands, and providing
invaluable feedback. Your efforts have improved the book greatly. Any remaining
errors are entirely my own responsibility.

I had the privilege of working with three amazing editors: Ann Spencer, Julie Steele,
and Marie Beaugureau. Thank you for your guidance and for being such great liai-
sons with the many talented people at O’Reilly. Those people include Laura Baldwin,
Huguette Barriere, Sophia DeMartini, Yasmina Greco, Rachel James, Ben Lorica,
Mike Loukides, and Christopher Pappas. There are many others whom I haven’t met
because they are operating behind the scenes. Together they ensured that working
with O'Reilly has truly been a pleasure.

This book discusses more than 80 command-line tools. Needless to say, without these
tools, this book wouldn’t have existed in the first place. I'm therefore extremely grate-
ful to all the authors who created and contributed to these tools. The complete list of
authors is unfortunately too long to include here; they are mentioned in the
Appendix. Thanks especially to Aaron Crow, Jehiah Czebotar, Christoph Groskopf,

Preface | xxi

Dima Kogan, Sergey Lisitsyn, Francisco . Martin, and Ole Tange for providing help
with their amazing command-line tools.

Eric Postma and Jaap van den Herik, who supervised me during my PhD program,
deserve special thanks. Over the course of five years they taught me many lessons.
Although writing a technical book is quite different from writing a PhD thesis, many
of those lessons proved to be very helpful in the past nine months as well.

Finally, I'd like to thank my colleagues at YPlan, my friends, my family, and especially
my wife, Esther, for supporting me and for pulling me away from the command line
at just the right times.

xxii | Preface

CHAPTER 1
Introduction

This book is about doing data science at the command line. My aim is to make you a
more efficient and productive data scientist by teaching you how to leverage the
power of the command line.

Having both data science and command line in the bookss title requires an explana-
tion. How can a technology that is more than 50 years old' be of any use to a field that
is only a few years young?

Today, data scientists can choose from an overwhelming collection of exciting tech-
nologies and programming languages. Python, R, Julia, and Apache Spark are but a
few examples. You may already have experience in one or more of these. And if so,
why should you still care about the command line for doing data science? What does
the command line have to offer that these other technologies and programming lan-
guages do not?

These are valid questions. In this opening chapter I will answer these questions as fol-
lows. First, I provide a practical definition of data science that will act as the backbone
of this book. Second, I'll list five important advantages of the command line. By the
end of this chapter, I hope to have convinced you that the command line is indeed
worth learning for doing data science.

1 The development of the UNIX operating system started back in 1969. It featured a command line since the
beginning. The important concept of pipes, which I will discuss in “Essential Unix Concepts” on page 13, was
added in 1973.

Data Science Is OSEMN

The field of data science is still in its infancy, and as such, there exist various defini-
tions of what it encompasses. Throughout this book I employ a very practical defini-
tion devised by Hilary Mason and Chris H. Wiggins.> They define data science
according to the following five steps: (1) obtaining data, (2) scrubbing data, (3)
exploring data, (4) modeling data, and (5) interpreting data. Together, these steps
form the OSEMN (pronounced awesome) model. This definition serves as the back-
bone of this book because each step (except for step 5, interpreting data, which I'll
explain shortly) has its own chapter.

Although the five steps are discussed in a linear and incremental fashion, in practice
it is very common to move back and forth between them or to perform multiple steps
at the same time. Figure 1-1 illustrates that doing data science is an iterative and non-
linear process. For example, once you have modeled your data and have looked at the
results, you may decide to go back to the scrubbing step to adjust the features of the
dataset.

|

Obtain

i

Scrub

1

Explore

1

Model

1

Interpret

|

Expectation Reality

- J O J

Figure 1-1. Doing data science is an iterative and nonlinear process

In the following pages, I explain what each step entails.

2 “A Taxonomy of Data Science,” dataists (blog), September 25, 2010, http.//www.dataists.com/2010/09/a-
taxonomy-of-data-science.

2 | Chapter 1:Introduction

Obtaining Data

Without any data, there is little data science you can do. So the first step is obtaining
data. Unless you are fortunate enough to already possess data, you may need to do
one or more of the following:

« Download data from another location (e.g., a web page or server)
» Query data from a database or API (e.g., MySQL or Twitter)
« Extract data from another file (e.g., an HTML file or spreadsheet)

 Generate data yourself (e.g., reading sensors or taking surveys)

In Chapter 3, I discuss several methods for obtaining data using the command line.
The obtained data will most likely be in plain text, CSV, JSON, HTML, or XML for-
mat. The next step is to scrub this data.

Scrubbing Data

It is not uncommon for the obtained data to have missing values, inconsistencies,
errors, weird characters, or uninteresting columns. In such cases, you have to scrub,
or clean, the data before you can do anything interesting with it. Common scrubbing
operations include:

« Filtering lines

Extracting certain columns

Replacing values

Extracting words

Handling missing values and duplicates

Converting data from one format to another

While we data scientists love to create exciting data visualizations and insightful mod-
els (steps 3 and 4 of the OSEMN model), usually much effort goes into obtaining and
scrubbing the required data first (steps 1 and 2). In Data Jujitsu(O’Reilly), D] Patil
states that “80% of the work in any data project is in cleaning the data” In Chapter 5, I
demonstrate how the command line can help accomplish such data scrubbing
operations.

Exploring Data

Once you have scrubbed your data, you are ready to explore it. This is where it gets
interesting, because it's when you’re exploring that you truly get to know your data. In
Chapter 7 I show you how the command line can be used to:

DataScience IsOSEMN | 3

« Look at your data
« Derive statistics from your data

« Create insightful visualizations

Command-line tools used in Chapter 7 include csvstat and rush.

Modeling Data

If you want to explain your data or predict what will happen, you probably want to
create a statistical model of the data. Techniques to create a model include clustering,
classification, regression, and dimensionality reduction. The command line is not
suitable for programming a new type of model from scratch. It is, however, very use-
ful to be able to build a model from the command line. In Chapter 9 I will introduce
several command-line tools that either build a model locally or employ an API to per-
form the computation in the cloud.

Interpreting Data

The final and perhaps most important step in the OSEMN model is interpreting data.
This step involves:

« Drawing conclusions from your data
« Evaluating what your results mean

« Communicating your results

To be honest, the computer is of little use here, and the command line does not really
come into play at this stage. Once you have reached this step, it’s up to you. This is the
only step in the OSEMN model that does not have its own chapter. Instead, I refer
you to the book Thinking with Data by Max Shron (O'Reilly).

Intermezzo Chapters

Besides the chapters that cover the OSEMN steps, there are four intermezzo chapters.
Each discusses a more general topic concerning data science and how the command
line is employed for that. These topics are applicable to any step in the data science
process.

In Chapter 4, I discuss how to create reusable tools for the command line. These per-
sonal tools can come from long commands that you have typed on the command line
or from existing code that you have written in, say, Python or R. Being able to create
your own tools allows you to become more efficient and productive.

4 | Chapter1: Introduction

Because the command line is an interactive environment for doing data science, it
can become challenging to keep track of your workflow. In Chapter 6, I demonstrate
a command-line tool called make, which allows you to define your data science work-
flow in terms of tasks and the dependencies between them. This tool increases the
reproducibility of your workflow, not only for you but also for your colleagues and
peers.

In Chapter 8, I explain how your commands and tools can be sped up by running
them in parallel. Using a command-line tool called GNU Parallel, you can apply
command-line tools to very large datasets and run them on multiple cores or even on
remote machines.

In Chapter 10, I discuss how to employ the power of the command line in other envi-
ronments and programming languages, such as R, RStudio, Python, Jupyter Note-
books, and even Apache Spark.

What Is the Command Line?

Before I discuss why you should use the command line for data science, lets take a
peek at what the command line actually looks like (it may be already familiar to you).
Figures 1-2 and 1-3 show a screenshot of the command line as it appears by default
on macOS and Ubuntu, respectively. Ubuntu is a particular distribution of GNU/
Linux, and its the one I'll be using in this book.

Figure 1-2. Command line on macOS

What Is the Command Line? | 5

d jeroen@DESKTOP-BI3E2TR: ~

% whoami

jeroen

4 date

Thu Apr 15 12:04:25 CEST 2021

$ echo 'The command line is awesome!' cowsay -f tux

< The command line is awesome! >

Figure 1-3. Command line on Ubuntu

The window shown in the two screenshots is called the terminal. This is the program
that enables you to interact with the shell. It is the shell that executes the commands
you type in. In Chapter 2, I explain these two terms in more detail.

I'm not showing the Microsoft Windows command line (also
known as the Command Prompt or PowerShell), because it’s fun-
damentally different from and incompatible with the commands
presented in this book. The good news is that you can install a
Docker image on Microsoft Windows so that you're able to follow
along. Installation of the Docker image is explained in Chapter 2.

Interacting with your computer by typing commands is very different from going
through a graphical user interface (GUI). If you are mostly used to processing data in,
say, Microsoft Excel, then this approach may seem intimidating at first. Don’t be
afraid. Trust me when I say that you'll get used to working at the command line very
quickly.

In this book, the commands that I type and the output that they generate are dis-
played as text. For example, the contents of the terminal in the two screenshots would
look like this:

$ whoami
dst

$ date
Tue Jun 29 02:25:17 PM CEST 2021

6 | Chapter1:Introduction

$ echo 'The command line is awesome!' cowsay -f tux

< The command line is awesome! >

\
\
[o_o |
[/ |
11\
4 [)
AV AN
_)=(___/

$

You'll notice that each command is preceded by a dollar sign ($). This is called the
prompt. The prompt in the two screenshots shows more information, namely the
username, the date, and a penguin. It's a convention to show only a dollar sign in
examples, because the prompt (1) can change during a session (when you go to a dif-
ferent directory), (2) can be customized by the user (e.g., it can also show the time or
the current git® branch you’re working on), and (3) is irrelevant for the commands
themselves.

In the next chapter I'll explain much more about essential command-line concepts.
But first, it’s time to explain why you should learn to use the command line for doing
data science.

Why Data Science at the Command Line?

The command line has many great advantages that can really make you a more effi-
cient and productive data scientist. Roughly grouping the advantages, the command
line is agile, augmenting, scalable, extensible, and ubiquitous.

The Command Line Is Agile

The first advantage of the command line is that it allows you to be agile. Data science
has a very interactive and exploratory nature, and the environment that you work in
needs to allow for that. The command line achieves this by two means.

First, the command line provides a so-called read-eval-print loop (REPL). This means
that you type in a command, press Enter, and the command is evaluated immediately.

3 Linus Torvalds and Junio C. Hamano, git - the Stupid Content Tracker, version 2.25.1, 2021, https://git-
sem.com.

Why Data Science at the Command Line? | 7

A REPL is often much more convenient for doing data science than the edit-compile-
run-debug cycle associated with scripts, large programs, and, say, Hadoop jobs. Your
commands are executed immediately, may be stopped at will, and can be changed
quickly. This short iteration cycle really allows you to play with your data.

Second, the command line is very close to the filesystem. Because data is the main
ingredient for doing data science, it is important to be able to work easily with the
files that contain your dataset. The command line offers many convenient tools for
this.

The Command Line Is Augmenting

The command line integrates well with other technologies. Whatever technology
your data science workflow currently includes (whether it's R, Python, or Excel),
please know that 'm not suggesting you abandon that workflow. Instead, consider
the command line as an augmenting technology that amplifies the technologies
you're currently employing. It can do so in three ways.

First, the command line can act as a glue between many different data science tools.
One way to glue tools is by connecting the output from the first tool to the input of
the second tool. In Chapter 2 I explain how this works.

Second, you can often delegate tasks to the command line from your own environ-
ment. For example, Python, R, and Apache Spark allow you to run command-line
tools and capture their output. I demonstrate this with examples in Chapter 10.

Third, you can convert your code (e.g., a Python or R script) into a reusable
command-line tool. That way, the language that it's written in doesn’t matter any-
more; it can be used from the command line directly or from any environment that
integrates with the command line, as mentioned in the previous paragraph. I explain
how to do this in Chapter 4.

In the end, every technology has its strengths and weaknesses, so it’s good to know
several technologies and use the one that is most appropriate for the task at hand.
Sometimes that means using R, sometimes the command line, and sometimes even
pen and paper. By the end of this book you'll have a solid understanding of when you
should use the command line, and when you're better off continuing with your favor-
ite programming language or statistical computing environment.

The Command Line Is Scalable

As I've said before, working on the command line is very different from using a GUI.
On the command line you do things by typing, whereas with a GUI you do things by
pointing and clicking with a mouse.

8 | Chapter1:Introduction

Everything that you type manually on the command line can also be automated
through scripts and tools. This makes it very easy to rerun your commands if you
made a mistake, when the input data has changed, or because your colleague wants to
perform the same analysis. Moreover, your commands can be run at specific inter-
vals, on a remote server, and in parallel on many chunks of data (more on that in
Chapter 8).

Because the command line is automatable, it becomes scalable and repeatable. It's not
straightforward to automate pointing and clicking, which makes a GUI a less suitable
environment for doing scalable and repeatable data science.

The Command Line Is Extensible

The command line itself was invented over 50 years ago. Its core functionality has
largely remained unchanged, but its fools, which are the workhorses of the command
line, are being developed on a daily basis.

The command line itself is language agnostic. This allows the command-line tools to
be written in many different programming languages. The open source community is
producing many free and high-quality command-line tools that we can use for data
science.

These command-line tools can work together, which makes the command line very
flexible. You can also create your own tools, allowing you to extend the effective func-
tionality of the command line.

The Command Line Is Ubiquitous

Because the command line comes with any Unix-like operating system, including
Ubuntu Linux and macOS, it can be found in many places. Plus, 100% of the top five
hundred supercomputers are running Linux.* So if you ever get your hands on one of
those supercomputers (or if you ever find yourself in Jurassic Park with the door
locks not working), youd better know your way around the command line!

But Linux doesn’t run only on supercomputers. It also runs on servers, laptops, and
embedded systems. These days, many companies offer cloud computing, where you
can easily launch new machines on the fly. If you ever log in to such a machine (or a
server in general), it'’s almost certain that you’ll arrive at the command line.

Its also important to note that the command line isn’t just hype. This technology has
been around for more than five decades, and I'm convinced that it’s here to stay for
another five. Learning how to use the command line (for data science and in general)
is therefore a worthwhile investment.

4 See TOP500, which keeps track of how many supercomputers run Linux.

Why Data Science at the Command Line? | 9

Summary

In this chapter I have introduced you to the OSEMN model for doing data science,
which I use as a guide throughout the book. I have provided some background about
the Unix command line and hopefully convinced you that it’s a suitable environment
for doing data science. In the next chapter I'll show you how to get started by instal-
ling the datasets and tools and explain the fundamental concepts.

For Further Exploration

» The book UNIX: A History and a Memoir by Brian W. Kernighan (self-published)
tells the story of Unix, explaining what it is, how it was developed, and why it
matters.

« In 2018, I gave a presentation titled “50 Reasons to Learn the Shell for Doing
Data Science” at Strata London. You can read the slides if you need even more
convincing.

« The short but sweet book Thinking with Data by Max Shron (O’Reilly) focuses on
the why instead of the how and provides a framework for defining your data sci-
ence project that will help you ask the right questions and solve the right
problems.

10 | Chapter1:Introduction

CHAPTER 2
Getting Started

In this chapter, ’'m going to make sure that you have all the prerequisites for doing
data science at the command line. The prerequisites are threefold: (1) having the
same datasets that I use in this book, (2) having a proper environment with all the
command-line tools that I use throughout this book, and (3) understanding the
essential concepts that come into play when using the command line.

First, I describe how to download the datasets. Second, I explain how to install the
Docker image, which is a virtual environment based on Ubuntu Linux that contains
all the necessary command-line tools. Finally, I go over the essential Unix concepts
through examples.

By the end of this chapter, you'll have everything you need to continue with the first
step of doing data science, namely obtaining data.

Getting the Data

The datasets I use in this book can be obtained as follows:

1. Download the ZIP file from the book’s website.

2. Create a new directory. You can give this directory any name you like, but I rec-
ommend you stick to lowercase letters, numbers, and maybe a hyphen or an
underscore so that the name is easier to work with at the command line—for
example, dsatcl2. Remember where this directory is.

3. Move the ZIP file to that new directory and unpack it.

4. This directory now contains one subdirectory per chapter.

n

In the next section I explain how to install the environment containing all the
command-line tools to work with this data.

Installing the Docker Image

In this book we use many different command-line tools. Unix often comes with a lot
of command-line tools preinstalled and offers many packages that contain more rele-
vant tools. Installing these packages yourself is often not too difficult. However, we’ll
also use tools that are not available as packages and require a more manual and more
involved installation. So that you can acquire the necessary command-line tools
without having to go through the installation process for each tool, I encourage you,
whether youre on Windows, macOS, or Linux, to install the Docker image that was
created specifically for this book.

A Docker image is a bundle of one or more applications together with all their depen-
dencies. A Docker container is an isolated environment that runs an image. You can
manage Docker images and containers using the docker command-line tool (which
is what you’'ll do below) or the Docker GUI. In a way, a Docker container is like a
virtual machine, only a Docker container uses far fewer resources. At the end of this
chapter I suggest some resources for learning more about Docker.

If you still prefer to run the command-line tools natively rather
than inside a Docker container, then you can, of course, install the
command-line tools individually yourself. The code to build the
Docker image can be found on GitHub and may serve as a guide to
help you with that. Please be aware that this can be time consuming
for some tools, as they require many nontrivial steps, such as
compiling from source.

To install the Docker image, you first need to download Docker itself from the
Docker website. Once it is installed, you invoke the following command on your ter-
minal or command prompt to download the Docker image (don't type the dollar

sign):
$ docker pull datasciencetoolbox/dsatcl2e
You can run the Docker image as follows:
$ docker run --rm -it datasciencetoolbox/dsatcl2e

You're now inside an isolated environment known as a Docker container that has all
the necessary command-line tools installed. If the following command produces an
enthusiastic cow, then you know everything is working correctly:

12 | Chapter2: Getting Started

$ cowsay "lLet's moove\!"

< Let's moove! >

\ A "

\ (00)\
N\ M\

[1-=-w |

If you want to get data in and out of the container, you can add a volume, which
means that a local directory gets mapped to a directory inside the container. I recom-
mend that you first create a new directory, navigate to this new directory, and then
run the following when you're on macOS or Linux:

$ docker run --rm -it -v "$(pwd)":/data datasciencetoolbox/dsatcl2e

Or run the following when youre on Windows and using the Command Prompt
(also known as cmd):

C:\> docker run --rm -it -v "%cd%":/data datasciencetoolbox/dsatcl2e
Or the following when you're using Windows PowerShell:
PS C:\> docker run --rm -it -v ${PWD}:/data datasciencetoolbox/dsatcl2e

In the above commands, the option -v instructs docker to map the current directory
to the /data directory inside the container, so this is the place to get data in and out of
the Docker container.

If you would like to know more about the Docker image, you can
visit it on Docker Hub.

When you're done, you can shut down the Docker container by typing exit.

Essential Unix Concepts

In Chapter 1, I briefly showed you what the command line is. Now that you are run-
ning the Docker image, we can really get started. In this section, I discuss several con-
cepts and tools that you will need to know to feel comfortable doing data science at
the command line. If up until now you have been mainly working with graphical user
interfaces, then this might be quite a change. But don’t worry—1I'll start at the begin-
ning and very gradually go on to more advanced topics.

Essential Unix Concepts | 13

This section is not a complete course in Unix. I will explain only
the concepts and tools that are relevant to doing data science. One
of the advantages of the Docker image is that a lot is already set up.
If you wish to know more, consult “For Further Exploration” on
page 33.

The Environment

So you've just logged in to a brand-new environment. Before you do anything, it’s
worthwhile to get a high-level understanding of this environment, which is roughly
defined by four layers, listed here from the top down:

Command-line tools
First and foremost, there are the command-line tools that you work with. We use
them by typing their corresponding commands. There are different types of
command-line tools, which I will discuss in the next section. Examples of tools
are 1s,' cat,? and jq.°

Terminal
The terminal, which is the second layer, is the application that we type our com-
mands in. If you see the following text mentioned in the book:

then you would type seq 3 into your terminal and press Enter. (The command-
line tool segq,* as you can see, generates a sequence of numbers.) You do not type
the dollar sign ($). It's just there to tell you that this is a command you can type in
the terminal. This dollar sign is known as the prompt. The text below seq 3 is the
output of the command.

Shell
The third layer is the shell. Once we have typed in our command and pressed
Enter, the terminal sends that command to the shell. The shell is a program that

interprets the command. I use the Z shell, but many other shells are available,
such as Bash and Fish.

1 Richard M. Stallman and David MacKenzie, Is - List Directory Contents, version 8.30, 2019, https://
www.gnu.org/software/coreutils.

2 Torbjorn Granlund and Richard M. Stallman, cat - Concatenate Files and Print on the Standard Output, ver-
sion 8.30, 2018, https://www.gnu.org/software/coreutils.

3 Stephen Dolan, jq - Command-Line JSON Processor, version 1.6, 2021, https://stedolan.github.io/jq/
4 Ulrich Drepper, seq - Print a Sequence of Numbers, version 8.30, 2019, https://www.gnu.org/software/coreutils.

14 | Chapter2: Getting Started

Operating system
The fourth layer is the operating system, which is GNU/Linux in our case. Linux
is the name of the kernel, which is the heart of the operating system. The kernel
is in direct contact with the CPU, disks, and other hardware. The kernel also exe-
cutes our command-line tools. GNU, which stands for “GNU’s not UNIX,” refers
to the set of basic tools. The Docker image is based on a particular GNU/Linux
distribution called Ubuntu.

Executing a Command-Line Tool

Now that you have a basic understanding of the environment, it is high time that you
try out some commands. Type the following in your terminal (without the dollar
sign) and press Enter:

$ pwd
/home/dst

You just executed a command that contained a single command-line tool. The tool
pwd’® outputs the name of the directory where you currently are. By default, when you
log in, this is your home directory.

The command-line tool cd, which is a Z shell builtin, allows you to navigate to a dif-
ferent directory:

$ cd /data/ch@2 1]

$ pwd (2]
/data/che2

$cd .. (3]

$ pwd (4]
/data

$cd chez ©

Navigate to the directory /data/ch02.
Print the current directory.

Navigate to the parent directory.

e © © ©

Print the current directory again.

5 Jim Meyering, pwd - Print Name of Current/ Working Directory, version 8.30, 2019, hitps.//www.gnu.org/soft
ware/coreutils.

Essential Unix Concepts | 15

© Navigate to the subdirectory ch02.

The part after cd specifies the directory you want to navigate to. Values that come
after the command are called command-line arguments or options. The two dots refer
to the parent directory. One dot, by the way, refers to the current directory. While
cd . wouldn't have any effect, you’ll still see one dot being used in other places.

Let’s try a different command:

$ head -n 3 movies.txt
Matrix

Star Wars

Home Alone

Here we pass three command-line arguments to head.® The first one is an option.
Here I used the short option -n. Sometimes a short option has a long variant, which
would be --lines in this case. The second one is a value that belongs to the option.

The third one is a filename. This particular command outputs the first three lines of
the file /data/ch02/movies.txt.

Five Types of Command-Line Tools

I use the term command-line tool a lot, but I havent yet explained what I actually
mean by it. I use command-line tool as an umbrella term for anything that can be
executed from the command line (see Figure 2-1). Under the hood, each command-
line tool is one of the following five types:

A binary executable
A shell builtin

An interpreted script

A shell function

An alias

6 David MacKenzie and Jim Meyering, head — Output the First Part of Files, version 8.30, 2019, https://
www.gnu.org/software/coreutils.

16 | Chapter2: Getting Started

Command-line tool

Binar Alias
executable Shell Shell

builtin Intggﬂretted function

Figure 2-1. I use the term “‘command-line tool” as an umbrella term

It's good to know the difference between the types. The command-line tools that
come preinstalled with the Docker image mostly comprise the first two types (binary
executable and shell builtin). The other three types (interpreted script, shell function,
and alias) allow us to further build up our data science toolbox and become more
efficient and more productive data scientists:

Binary executable
Binary executables are programs in the classical sense. A binary executable is cre-
ated by compiling source code to machine code. This means that when you open
the file in a text editor, you cannot read it.

Shell builtin
Shell builtins are command-line tools provided by the shell, which is the Z shell
(or zsh) in our case. Examples include cd and pwd. Shell builtins may differ
between shells. Like binary executables, they cannot be easily inspected or
changed.

Interpreted script
An interpreted script is a text file that is executed by a binary executable. Exam-
ples include Python, R, and Bash scripts. One great advantage of an interpreted
script is that you can read and change it. The following script is interpreted by
Python not because of the file extension .py but because the first line of the script
defines the binary that should execute it:

Essential Unix Concepts | 17

$ bat fac.py

File: fac.py

#!/usr/bin/env python

T
|

f

|

|

| def factorial(x):

| result = 1

| for 1 in range(2, x + 1):
| result *= 1

| return result

|

|

|

|

|

1

O oo~ h WN

if _name__ == "__main__":
import sys
x = int(sys.argv[1])
sys.stdout.write(f"{factorial(x)}\n")

[
N = O

This script computes the factorial of the integer that we pass as a parameter. It
can be invoked from the command line as follows:

§ ./fac.py 5
120

In Chapter 4, I'll discuss in great detail how to create reusable command-line
tools using interpreted scripts.

Shell function

A shell function is a function that is executed by the shell itself (zsh, in our case).
Shell functions provide similar functionality to a script, but they are usually (but
not necessarily) smaller than scripts. They also tend to be more personal. The fol-
lowing command defines a function called fac, which, just like the interpreted
Python script I just described, computes the factorial of the integer we pass as a
parameter. It does so by generating a list of numbers using seq, putting those
numbers on one line with * as the delimiter using paste,” and passing this equa-
tion into bc,? which evaluates it and outputs the result:

§ fac() { (echo 1; seq $1) | paste -s -d* - | bc; }

§ fac 5
120

7 David M. Thnat and David MacKenzie, paste - Merge Lines of Files, version 8.30, 2019, https://www.gnu.org/
software/coreutils.

8 Philip A. Nelson, bc - an Arbitrary Precision Calculator Language, version 1.07.1, 2017, https://www.gnu.org/
software/bc.

18 | Chapter2: Getting Started

The file ~/.zshre, which is a configuration file for the Z shell, is a good place to
define your shell functions so that they are always available.

Alias
Aliases are like macros. If you often find yourself executing a certain command
with some or all of the same parameters, you can define an alias for the com-
mand to save time. An alias is also very useful when you continue to misspell a
certain command (Chris Wiggins maintains a useful list of aliases). The following
command defines such an alias:

$ alias 1='ls --color -1lhF --group-directories-first'

$ alias les=less

Now, if you type the following on the command line, the shell will replace each
alias it finds with its value:

$ cd /data

$1

total 40K

drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 cho1/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 cho2/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 che3/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 cho4/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 ch@5/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 chos/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 cho7/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 ches/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 ch@9/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 ch1e/

$ cd chez

Aliases are simpler than shell functions, as they don’t allow parameters. The func-
tion fac could not have been defined using an alias because of the parameter.
Still, aliases allow you to save lots of keystrokes. Like shell functions, aliases are
often defined in the file .zshrc, which is located in your home directory. To see all
aliases currently defined, you run alias without arguments. Try it. What do you
see?

In this book I focus mostly on the last three types of command-line tools: interpreted
scripts, shell functions, and aliases. I do so because these tools can easily be changed.
The purpose of a command-line tool is to make your life easier and to make you a
more productive and more efficient data scientist. You can find out the type of a
command-line tool with type (which is itself a shell builtin):

$ type -a pwd
pwd is a shell builtin

Essential Unix Concepts | 19

pwd is [fusr/bin/pwd
pwd is /bin/pwd

$ type -a cd
cd is a shell builtin

$ type -a fac
fac is a shell function

$ type -a 1

1 is an alias for ls --color -lhF --group-directories-first
type returns three command-line tools for pwd. In that case, the first reported
command-line tool is used when you type pwd. In the next section we’ll look at how to
combine command-line tools.

Combining Command-Line Tools

Because most command-line tools adhere to the Unix philosophy,’ they are designed
to do only one thing, and to do it really well. For example, the command-line tool
grep'® can filter lines, wc!! can count lines, and sort® can sort lines. The power of the
command line comes from its ability to combine these small yet powerful command-
line tools.

This power is made possible by managing the communication streams of these tools.
Each tool has three standard communication streams: standard input, standard out-
put, and standard error. These are often abbreviated as stdin, stdout, and stderr.

Both the standard output and standard error are, by default, redirected to the termi-
nal, so that both normal output and any error messages are printed on the screen.
Figure 2-2 illustrates this for both pwd and rev." If you run rev, you'll see that noth-
ing happens. That’s because rev expects input, which by default is any keys pressed on
the keyboard. Try typing a sentence and pressing Enter—rev immediately responds
with your input in reverse. You can stop sending input by pressing Ctrl-D after which
rev will stop.

9 Eric S. Raymond, The Art of Unix Programming (Addison-Wesley).

10 Jim Meyering, grep — Print Lines That Match Patterns, version 3.4, 2019, https://www.gnu.org/software/grep.

11 Paul Rubin and David MacKenzie, wc - Print Newline, Word, and Byte Counts for Each File, version 8.30, 2019,
https://www.gnu.org/software/coreutils.

12 Mike Haertel and Paul Eggert, sort - Sort Lines of Text Files, version 8.30, 2019, https://www.gnu.org/software/
coreutils.

13 Karel Zak, rev — Reverse Lines Characterwise, version 2.36.1, 2021, https://www.kernel.org/pub/linux/utils/util-
linux.

20 | Chapter2:Getting Started

stdout
stderr
stdout
stderr

Figure 2-2. Every tool has three standard streams: standard input (stdin), standard
output (stdout), and standard error (stderr)

A 4

In practice, rather than using the keyboard as a source of input, you'll use the output
generated by other tools and the contents of files. For example, with curl we can
download the book Alices Adventures in Wonderland by Lewis Carroll and pipe that to
the next tool; Figure 2-3 illustrates piping the output from one tool to another tool.
(Pl discuss curl in more detail in Chapter 3.) This is done using the pipe
operator (|).

stdout
stderr

Figure 2-3. 'The output from a tool can be piped to another tool

We can pipe the output of curl to grep to filter lines on a pattern. Imagine that we
want to see the chapters listed in the table of contents—we can combine curl and
grep as follows:

$ curl -s "https://www.gutenberg.org/files/11/11-0.txt" | grep " CHAPTER"

CHAPTER I. Down the Rabbit-Hole

CHAPTER II. The Pool of Tears
CHAPTER III. A Caucus-Race and a Long Tale

CHAPTER 1IV. The Rabbit Sends in a Little Bill
CHAPTER V. Advice from a Caterpillar
CHAPTER VI. Pig and Pepper

CHAPTER VII. A Mad Tea-Party

CHAPTER VIII. The Queen’s Croquet-Ground
CHAPTER IX. The Mock Turtle’s Story
CHAPTER X. The Lobster Quadrille
CHAPTER XI. Who Stole the Tarts?
CHAPTER XII. Alice’s Evidence

Essential Unix Concepts | 21

And if we want to know how many chapters the book has, we can use wc, which is
very good at counting things:

$ curl -s "https://www.gutenberg.org/files/11/11-0.txt" |
> grep " CHAPTER" |

> we -1

12

© The option -1 specifies that we should output only the number of lines that are
passed into it. By default, it also returns the number of characters and words.

You can think of piping as an automated copy and paste. Once you get the hang of
combining tools using the pipe operator, you'll find that there are virtually no limits
to the combinations you can make.

Redirecting Input and Output

Besides piping the output from one tool to another tool, you can also save it to a file.
The file will be saved in the current directory, unless a full path is given. This is called
output redirection, and it works as follows:

$ curl "https://www.gutenberg.org/files/11/11-0.txt" | grep " CHAPTER" > chapter

s.txt
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 1706k 100 176k 0 0 231k O --1--21-- --1--i1-- --1--i-- 231K

$§ cat chapters.txt

CHAPTER I. Down the Rabbit-Hole

CHAPTER II. The Pool of Tears

CHAPTER III. A Caucus-Race and a Long Tale
CHAPTER 1IV. The Rabbit Sends in a Little Bill
CHAPTER V. Advice from a Caterpillar
CHAPTER VI. Pig and Pepper

CHAPTER VII. A Mad Tea-Party

CHAPTER VIII. The Queen’s Croquet-Ground
CHAPTER IX. The Mock Turtle’s Story
CHAPTER X. The Lobster Quadrille

CHAPTER XI. Who Stole the Tarts?

CHAPTER XII. Alice’s Evidence

Here, we save the output of grep to a file named chapters.txt in the directory /data/
ch02. If this file does not exist yet, it will be created. If this file already exists, its con-
tents are overwritten. Figure 2-4 illustrates how output redirection works conceptu-
ally. Note that the standard error is still redirected to the terminal.

22 | (Chapter2:Getting Started

stdout
stderr

A A

Figure 2-4. The output from a tool can be redirected to a file
You can also append the output to a file with >>, meaning the output is added after
the original contents:

$ echo -n "Hello" > greeting.txt

§ echo " World" => greeting.txt

The tool echo outputs the value you specify. The -n option, which stands for newline,
specifies that echo should not output a trailing newline.

Saving the output to a file is useful if you need to store intermediate results, for exam-
ple, to continue with your analysis at a later stage. To use the contents of the file greet-
ing.txt again, we can use cat, which reads a file and prints it:

$ cat greeting.txt
Hello World

$ cat greeting.txt | wc -w @
2

© The -woption instructs we to count only words.
The same result can be achieved by using the less-than sign (<):

§ < greeting.txt wc -w
2

This way, you are directly passing the file to the standard input of wc without running
an additional process." Figure 2-5 illustrates how these two ways work. Again, the
final output is the same.

14 Some consider this a “useless use” of cat, arguing that the purpose of cat is to concatenate files, and not using
it for that purpose is a waste of time and costs you a process. I think this is silly. We've got more important
things to do!

Essential Unix Concepts | 23

stdout .

stderr

stdout
stderr

stdout
stderr

Figure 2-5. Two ways to use the contents of a file as input

Like many command-line tools, wc allows one or more filenames to be specified as
arguments—for example:

$ wc -w greeting.txt movies.txt
2 greeting.txt

11 movies.txt

13 total

Note that in this case, wc also outputs the names of the files.

You can suppress the output of any tool by redirecting it to a special file called /dev/
null. 1 often do this to suppress error messages (see Figure 2-6 for an illustration).
The following causes cat to produce an error message because it cannot find the file
404.txt:

$§ cat movies.txt 404.txt

Matrix

Star Wars

Home Alone

Indiana Jones

Back to the Future

cat: 404.txt: No such file or directory

You can redirect standard error to /dev/null as follows:

$ cat movies.txt 404.txt 2> /dev/null @
Matrix

Star Wars

Home Alone

Indiana Jones

Back to the Future

24 | (Chapter2: Getting Started

@ The 2 refers to standard error.

Figure 2-6. Redirecting stderr fo /dev/null

Be careful not to read from and write to the same file. If you do, you'll end up with an
empty file. That’s because the tool whose output is redirected immediately opens that
file for writing, thereby emptying it. There are two work-arounds for this: (1) write to
a different file and rename it afterward with mv, or (2) use sponge,”” which soaks up
all its input before writing to a file. Figure 2-7 illustrates how this works.

— N

stdout

stderr
Figure 2-7. Unless you use sponge, you cannot read from and write to the same file in
one pipeline

stdout
stdout std
stdm stderr

stderr

For example, imagine that you have used dseq'® to generate a file dates.txt, and now
youd like to add line numbers using nl."” If you run the following, the file dates.txt
will end up empty:

$ dseq 5 > dates.txt

$ < dates.txt nl > dates.txt

15 Colin Watson and Tollef Fog Heen, sponge — Soak Up Standard Input and Write to a File, version 0.65, 2021,
https://joeyh.name/code/moreutils.

16 Jeroen Janssens, dseq — Generate Sequence of Dates, version 0.1, 2021, https://github.com/jeroenjanssens/dsutils.

17 Scott Bartram and David MacKenzie, nl - Number Lines of Files, version 8.30, 2020, https://www.gnu.org/soft
ware/coreutils.

Essential Unix Concepts | 25

$ bat dates.txt

T
| File: dates.txt <EMPTY>
1

Instead, you can use one of the work-arounds I just described:

$ dseq 5 > dates.txt
$ < dates.txt nl > dates-nl.txt

$ bat dates-nl.txt

File: dates-nl.txt

2021-06-30
2021-07-01
2021-07-02
2021-07-03
2021-07-04

v WM
(- O N

$§ dseq 5 > dates.txt
$§ < dates.txt nl | sponge dates.txt

$ bat dates.txt

File: dates.txt

2021-06-30
2021-07-01
2021-07-02
2021-07-03
2021-07-04

LF R VL
(S VR S

Working with Files and Directories

As data scientists, we work with a lot of data. This data is often stored in files. It is
important to know how to work with files (and the directories they live in) on the
command line. Every action that you can do using a GUI can be done with
command-line tools (and you can do much more than that). In this section I intro-
duce the most important tools to list, create, move, copy, rename, and delete files and
directories.

Listing the contents of a directory can be done with 1s. If you don’t specify a direc-
tory, it lists the contents of the current directory. I prefer s to have a long listing for-
mat and to have the directories grouped before files. Instead of typing the
corresponding options each time, I use the alias 1:

26 | Chapter2:Getting Started

$ 1s /data/chi0
alice.txt count.py count.R Untitled1337.1ipynb

$ alias 1
1='1ls --color -lhF --group-directories-first'

$ 1 /data/ch10

total 176K

-rw-r--r-- 1 dst dst 164K Jun 29 14:25 alice.txt
-rwxr-xr-x 1 dst dst 408 Jun 29 14:25 count.py*
-rw-r--r-- 1 dst dst 460 Jun 29 14:25 count.R

-rW-r--r-- 1 dst dst 1.7K Jun 29 14:25 Untitled1337.ipynb

You have already seen how we can create new files by redirecting the output with
either > or >>. If you need to move a file to a different directory, you can use mv:'*

$ mv hello.txt /data/che2
You can also rename files with mv:

S cd data
$ mv hello.txt bye.txt

You can also rename or move entire directories. If you no longer need a file, you can
delete (or remove) it with rm:"

S rm bye.txt

If you want to remove an entire directory with all its contents, specify the -r option,
which stands for “recursive”:

$ rm -r /data/chez/old

If you want to copy a file, use cp.? This is useful for creating backups:
$ cp server.log server.log.bak

You can create directories using mkdir:*!
$ cd [dats

$ mkdir logs

$1
total 44K

18 Mike Parker, David MacKenzie, and Jim Meyering, mv - Move (Rename) Files, version 8.30, 2020, https://
www.gnu.org/software/coreutils.

19 Paul Rubin et al., rm - Remove Files or Directories, version 8.30, 2019, https://www.gnu.org/software/coreutils.

20 Torbjorn Granlund, David MacKenzie, and Jim Meyering, cp - Copy Files and Directories, version 8.30, 2018,
https://www.gnu.org/software/coreutils.

21 David MacKenzie, mkdir - Make Directories, version 8.30, 2019, https://www.gnu.org/software/coreutils.

Essential Unix Concepts | 27

drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 chei/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 che2/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 ch@3/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 ch@4/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 che5/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 chos/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 ch07/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 chos/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 ch@9/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 ch18/
drwxr-xr-x 2 dst dst 4.0K Jun 29 14:25 logs/

Using the command-line tools to manage your files can be scary at
first, because you have no graphical overview of the filesystem to
provide immediate feedback. There are a few visual file managers
that can help with this, such as GNU Midnight Commander,
Ranger, and Vifm. These are not installed in the Docker image, but
you can install one of them yourself by running sudo apt install
followed by either mc, ranger, or vifm.

All of these command-line tools accept the -v option, which stands for verbose, so
that they output what’s going on. For example:

$ mkdir -v backup
mkdir: created directory 'backup'

All tools other than mkdir also accept the -1 option, which stands for interactive, and
which causes the tools to ask you for confirmation. For example:

Srm -1 ¥
zsh: sure you want to delete all 12 files in /data [yn]? n

Managing Qutput

Sometimes a tool or sequence of tools produces too much output to include in the
book. Instead of manually altering such output, I prefer to be transparent by piping it
through a helper tool. You don't necessarily have to do this, especially if you're inter-
ested in the complete output.

Here are the tools I use to make output manageable.

I often use trim to limit the output to a given height and width. By default, output is
trimmed to 10 lines and the width of the terminal. Pass a negative number to disable
trimming the height and/or the width. For example:

$ cat /data/ch@7/tips.csv | trim 5 25
bill, tip,sex,smoker,day,...
16.99,1.01,Female,No,Sun...
10.34,1.66,Male,No,Sun,D...
21.01,3.5,Male,No,Sun,Di..

28 | (Chapter2:Getting Started

23.68,3.31,Male,No,Sun,D. ..
. with 240 more lines

Other tools that I use to massage the output are head, tail, fold, paste, and column.
The Appendix contains an example for each of these.

If a file or an output contains a comma-separated value, I often pipe it through
csvlook to turn it into a nice-looking table. If you run csvlook, you'll see the com-
plete table. I have redefined csvlook such that the table is shortened by trim:

$ which esvlook
csvlook () {

[usr/binfcsvlook "$@" | trim | sed 's/- |
1/3s/1/1/g52s/-1-/9'

-[—t—lg;s/| -//g;s/- |/—

}

$ csvlook /data/ch@7/tips.csv

| bill | tip | sex | smoker | day | time | size |
| I | |] | |
I I I I I I 1 }
| 16.99 | 1.01 | Female | False | Sun | Dinner | 2|
| 10.34 | 1.66 | Male | False | Sun | Dinner | 3|
| 21,01 | 3.50 | Male | False | Sun | Dinner | 3]
23.68	3.31	Male	False	Sun	Dinner	2
24.59	3.61	Female	False	Sun	Dinner	4
25.29	4.71	Male	False	Sun	Dinner	4
8.77	2.00	Male	False	Sun	Dinner	2
26.88	3.12	Male	False	Sun	Dinner	4

. with 236 more lines

I use bat to show the contents of a file where line numbers
matter—for example:

$ bat /data/ch@4/stream.py

and syntax highlighting

File: /data/ch@4/stream.py

W~ W

#!/usr/bin/env python
from sys import stdin, stdout

while True:

line = stdin.readline()

if not line:
break

stdout.write("%d\n" % int(line)**2)

stdout. flush()

Sometimes I add the -A option when I want to explicitly point out the spaces, tabs,
and newlines in a file.

Essential Unix Concepts

29

Occasionally it’s useful to write intermediate output to a file. This allows you to
inspect any step in your pipeline once it has completed. You can insert the tool tee as
often as you like in your pipeline. I often use it to inspect a portion of the final out-
put, while writing the complete output to file (see Figure 2-8). Here, the complete
output is written to even.txt, and the first five lines are printed using trim:

seq 0 2 100 | tee even.txt | trim 5

$
0
2
4
6
8

. with 46 more lines

stdout
stderr

stdout
stderr

Figure 2-8. With tee, you can write intermediate output to a file

Last, to insert images that have been generated by command-line tools (that is, every
image other than screenshots and diagrams) I use display. If you run display, you'll
find that it doesn’t work. In Chapter 7, I explain four options for displaying images
generated from the command line.

Help!

As you're finding your way around the command line, it may happen that you need
help. Even the most seasoned users need help at some point. It is impossible to
remember all the different command-line tools and their possible arguments. Fortu-
nately, the command line offers severals ways to get help.

Perhaps the most important command for getting help is man,” which is short for
manual. It contains information for most command-line tools. In case I've forgotten
the options to the tool tar, which happens all the time, I just access its manual page
using the following:

22 John W. Eaton and Colin Watson, man - an Interface to the System Reference Manuals, version 2.9.1, 2020,
https://mongnu.org/man-db.

30 | Chapter2:Getting Started

$ man tar | trim 20
TAR(1) GNU TAR Manual TAR(1)

NAME
tar - an archiving utility

SYNOPSIS
Traditional usage
tar {A|c|d|r|t|u|x}[GnSkUWOmpsMBiajlzZhPlRvwo] [ARG...]

UNIX-style usage
tar -A [OPTIONS] ARCHIVE ARCHIVE

tar -c [-f ARCHIVE] [OPTIONS] [FILE...]
tar -d [-f ARCHIVE] [OPTIONS] [FILE...]
tar -t [-f ARCHIVE] [OPTIONS] [MEMBER...]
tar -r [-f ARCHIVE] [OPTIONS] [FILE...]

... with 1147 more lines
Not every command-line tool has a manual page. Take cd, for example:

$ man cd
No manual entry for cd

For shell builtins like cd, you can consult the zshbuiltins manual page:

$ man zshbuiltins | trim
ZSHBUILTINS(1) General Commands Manual ZSHBUILTINS(1)

NAME
zshbuiltins - zsh built-in commands

SHELL BUILTIN COMMANDS
Some shell builtin commands take options as described in individual en-
tries; these are often referred to in the list below as "flags' to
avoid confusion with shell options, which may also have an effect on
the behavior of builtin commands. In this introductery section, ‘op-
... with 2735 more lines

You can search by pressing / and exit by pressing q. Try to find the appropriate sec-
tion for cd.

Newer command-line tools often lack a manual page as well. In such cases, your best
bet is to invoke the tool with the - -help (or -h) option. For example:

$ jq --help | trim
jq - commandline JSON processor [version 1.6]

Usage: 7jq [options] <jgq filter> [file...]
ja [options] --args <jq filter> [strings...]

Essential Unix Concepts | 31

jq [options] --jsonargs <jgq filter> [JSON_TEXTS...]

jq is a tool for processing JSON inputs, applying the given filter to
its JSON text inputs and producing the filter's results as JSON on
standard output.

. with 37 more lines

Specifying the --help option also works for command-line tools such as cat. How-
ever, the corresponding manual page often provides more information. If, after trying
these three approaches, you are still stuck, then consulting the internet is perfectly
acceptable. In the Appendix, there’s a list of all the command-line tools used in this
book. Besides showing how each command-line tool can be installed, the Appendix
also shows how you can get help for each tool.

Manual pages can be quite verbose and difficult to read. The tool tldr* (which is
short for “too long; didn’t read”) is a collection of community-maintained help pages
for command-line tools that aims to be a simpler, more approachable complement to
traditional manual pages. Here’s an example of the tldr page for tar:

$ tldr tar | trim 20
tar

Archiving utility.
Often combined with a compression method, such as gzip or bzip2.
More information: https://www.gnu.org/software/tar.

- [c]reate an archive and write it to a [f]ile:
tar cf target.tar filel file2 file3

- [c]reate a g[z]ipped archive and write it to a [f]ile:
tar czf target.tar.gz filel file2 file3

- [c]reate a g[z]ipped archive from a directory using relative paths:
tar czf target.tar.gz --directory=path/to/directory .

- E[x]tract a (compressed) archive [f]ile into the current directory [v]erbos..
tar xvf source.tar[.gz]|.bz2]|.xz]

- E[x]tract a (compressed) archive [f]ile into the target directory:
. with 12 more lines

As you can see, rather than listing the many options alphabetically like man often
does, tldr cuts to the chase by giving you a list of practical examples.

23 Owen Voke, tidr - Collaborative Cheatsheets for Console Commands, version 3.3.7, 2021, https://tldr.sh.

32 | (Chapter2:Getting Started

Summary

In this chapter you learned how to get all the required command-line tools by instal-
ling a Docker image. I also went over some essential command-line concepts and
how to get help. Now that you have all the necessary ingredients, you're ready for the
first step of the OSEMN model for data science: obtaining data.

For Further Exploration

« The subtitle of this book pays homage to the epic Unix Power Tools, 3rd ed. by
Shelley Powers, Jerry Peek, Tim O’Reilly, and Mike Loukides (O’Reilly), and
rightly so. With over 51 chapters and more than a thousand pages, Unix Power
Tools covers just about everything there is to know about Unix. It weighs more
than four pounds, so you might want to consider getting the ebook.

« The website explainshell parses a command or a sequence of commands and pro-
vides a short explanation of each part. This site is useful for quickly understand-
ing a new command or option without having to skim through the relevant
manual pages.

« Docker is truly a brilliant piece of software. In this chapter I've briefly explained
how to download a Docker image and run a Docker container, but it might be
worthwhile to learn how to create your own Docker images. The book Docker:
Up & Running, 2nd ed. by Sean P. Kane and Karl Matthias (O’Reilly) is a good
resource as well.

Summary | 33

Caopyrighted material

CHAPTER 3
Obtaining Data

This chapter deals with the first step of the OSEMN model: obtaining data. After all,
without any data, there is not much data science that we can do. I assume that the
data you need to solve your data science problem already exists. Your first task is to
get this data onto your computer (and possibly also inside the Docker container) in a
form that you can work with.

According to the Unix philosophy, text is a universal interface. Almost every
command-line tool takes text as input, produces text as output, or both. This is the
main reason why command-line tools can work so well together. However, as we'll
see, even just text can come in multiple forms.

Data can be obtained in several ways—for example, by downloading it from a server,
querying a database, or connecting to a Web APL Sometimes the data comes in a
compressed form or in a binary format such as a Microsoft Excel Spreadsheet. In this
chapter, I discuss several tools that help tackle this from the command line, including
curl,! in2csv,” sgl2csv,’ and tar.*

1 Daniel Stenberg, curl - Transfer a URL, version 7.68.0, 2016, https://curl.haxx.se.

2 Christopher Groskopf, in2csv — Convert Common, but Less Awesome, Tabular Data Formats to CSV, version
1.0.5, 2020, https://csvkit.rtfd.org.

3 Christopher Groskopf, sql2csv - Execute an SQL Query on a Database and Output the Result to a CSV File,
version 1.0.5, 2020, https://csvkit.rtfd.org.

4 John Gilmore and Jay Fenlason, tar — an Archiving Utility, version 1.30, 2014, hitps://www.gnu.org/software/
tar.

35

Overview

In this chapter, you'll learn how to:

Copy local files to the Docker image

Download data from the internet

Decompress files

Extract data from spreadsheets

.

Query relational databases

Call web APIs

This chapter starts with the following files:
$ cd [data/ch03

$1
total 924K
-rW-r--r-- 1 dst dst 627K Jun 29 14:26 logs.tar.gz
-rWw-r--r-- 1 dst dst 189K Jun 29 14:26 r-datasets.db
-rwW-r--r-- 1 dst dst 149 Jun 29 14:26 tmnt-basic.csv
-rw-r--r-- 1 dst dst 148 Jun 29 14:26 tmnt-missing-newline.csv
-rw-r--r-- 1 dst dst 181 Jun 29 14:26 tmnt-with-header.csv
1

-rw-r--r-- 1 dst dst 91K Jun 29 14:26 top2000.xlsx

The instructions for getting these files are in Chapter 2. Any other files are either
downloaded or generated using command-line tools.

Copying Local Files to the Docker Container

A common situation is that you already have the necessary files on your own com-
puter. This section explains how you can get those files into the Docker container.

I mentioned in Chapter 2 that the Docker container is an isolated virtual environ-
ment. Luckily, there is one exception to that: files can be transferred in and out of the
Docker container. The local directory from which you ran docker run is mapped to a
directory in the Docker container. This directory is called /data. Note that this is not
the home directory, which is /home/dst.

If you have one or more files on your local computer, and you want to apply some
command-line tools to them, all you have to do is copy or move the files to that map-
ped directory. Lets assume that you have a file called logs.csv in your Downloads
directory.

If you're running Windows, open the Command Prompt or PowerShell and run the
following two commands:

36 | Chapter3:Obtaining Data

> cd %UserProfile%\Downloads

> copy logs.csv MyDataScienceToolbox)\
If you are running Linux or macOS, open a terminal and execute the following com-
mand on your operating system (not inside the Docker container):

$ cp ~/Downloads/logs.csv ~/my-data-science-toolbox

You can also drag and drop the file into the right directory using a graphical file man-
ager such as Windows Explorer or macOS Finder.

Downloading from the Internet

The internet provides, without a doubt, the largest resource for interesting data. The
command-line tool curl can be considered the command line’s Swiss Army knife
when it comes to downloading data from the internet.

Introducing curl

When you browse a URL, which stands for uniform resource locator, your browser
interprets the data it downloads. For example, the browser renders HTML files, plays
video files automatically, and shows PDF files. However, when you use curl to access
a URL, it downloads the data and, by default, prints it to standard output. curl
doesn’t do any interpretation, but luckily other command-line tools can be used to
process the data further.

The easiest invocation of curl is to specify a URL as a command-line argument. Let’s
try downloading an article from Wikipedia:

$ curl "https://en.wikipedia.org/wiki/List_of_windmills_in_the_Netherlands" |

> trim
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 [e e R R R 0<!

DOCTYPE html>

<html class="client-nojs" lang="en" dir="1ltr">

<head>

<meta charset="UTF-8"/>

<title>List of windmills in the Netherlands - Wikipedia</title>
<script>document.documentElement.className="client-js" ;RLCONF={"wgBreakFrames":..

won

"wikitext","wgRelevantPageName":"List_of_windmills_in_the_Netherlands","wgRelev..
"site.styles":"ready","noscript":"ready","user.styles":"ready","ext.globalCssJs..
"ext.growthExperiments.SuggestedEditSession"];</script>
<script>(RLQ=window.RLQ||[]).push(function(){mw.loader.implement("user.options@..
100 244k 100 244k 0 0 1291k O --1--1-- m-1--1-- --1--1-- 1291k

. with 1723 more lines

© Remember, trim is used only to make the output fit nicely in the book.

Downloading from the Interet | 37

As you can see, curl downloads the raw HTML returned by Wikipedia’s server; no
interpretation is being done, and the contents are immediately printed on standard
output. Because of the URL, youd think that this article would list all the windmills in
the Netherlands. However, there are apparently so many windmills that each province
has its own page. Fascinating.

By default, curl outputs a progress meter that shows the download rate and the
expected time of completion. This output isn’t written to standard output but instead
is written to a separate channel known as standard error, so that it doesn’t interfere
when you add another tool to the pipeline. While this information can be useful
when downloading very large files, I usually find it distracting, so I specify the -s
option to silence this output:

$ curl -s "https://en.wikipedia.org/wiki/List_of windmills_in_Friesland" |

> pup -n 'table.wikitable tr'
234

© T'll discuss pup,’ a handy tool for scraping websites, in more detail in Chapter 5.
And what do you know, there are apparently 234 windmills in the province of Fries-
land alone!

Saving

You can let curl save the output to a file by adding the -0 option. The filename will
be based on the last part of the URL:

$ curl -s "https://en.wikipedia.org/wiki/List_of_windmills_in_Friesland" -0

$1
total 1.4M
-rw-r--r-- 1 dst dst 427K Jun 29 14:27 List_of_windmills_in_Friesland
-rw-r--r-- 1 dst dst 627K Jun 29 14:26 logs.tar.gz
-rw-r--r-- 1 dst dst 189K Jun 29 14:26 r-datasets.db
-rw-r--r-- 1 dst dst 149 Jun 29 14:26 tmnt-basic.csv
-rw-r--r-- 1 dst dst 148 Jun 29 14:26 tmnt-missing-newline.csv
-rw-r--r-- 1 dst dst 181 Jun 29 14:26 tmnt-with-header.csv
1

-rw-r--r-- 1 dst dst 91K Jun 29 14:26 top2000.x1lsx

If you don’t like that filename, then you can use the -o option together with a file-
name or redirect the output to a file yourself:

$ curl -s "https://en.wikipedia.org/wiki/List_of_windmills_in_Friesland" > fries
land.html

5 Eric Chiang, pup - Parsing HTML at the Command Line, version 0.4.0, 2016, https://github.com/EricChiang/
pup-

38 | Chapter3:Obtaining Data

Other Protocols

In total, curl supports more than 20 protocols. To download from an FTP server
(FTP stands for “File Transfer Protocol”), you use curl the same way. Here I down-
load the file welcome.msg from ftp.gnu.org:

$§ curl -s "ftp://ftp.gnu.org/welcome.msg" | trim
NOTICE (Updated December 18 2018):

FSF public IP addresses are changing between December 20 and January 7th

If you have hardcoded the IP address of any GNU/FSF servers in those
ranges in any code or configuration files, they will need to be
updated. If you refer to our servers by their DNS name, such as
"gnu.org", then that will continue to work. You should use the DNS name
wherever possible.

... with 68 more lines

If the specified URL is a directory, curl will list the contents of that directory. When
the URL is password protected, you can specify a username and a password with the
-u option.

Or there’s the DICT protocol, which allows you to access various dictionaries and
look up definitions. Here’s the definition of windmill according to the Collaborative
International Dictionary of English:

$ curl -s "dict://dict.org/d:windmill" | trim
220 dict.dict.org dictd 1.12.1/rf on Linux 4.19.0-10-amdé4 <auth.mime> <4623255..
250 ok
150 1 definitions retrieved
151 "Windmill" gcide "The Collaborative International Dictionary of English v.0..
Windmill \Wind"mill"\, n.

A mill operated by the power of the wind, usually by the

action of the wind upon oblique vanes or sails which radiate

from a horizontal shaft. --Chaucer.

[1913 Webster]

. with 2 more lines

When you are downloading data from the internet, however, the protocol will most
likely be HTTP, so the URL will start with either http:// or https://.

Following Redirects

When you access a shortened URL, such as the one that starts with http://bit.ly/ or
http://t.co/, your browser automatically redirects you to the correct location. With
curl, however, you need to specify the -L or --location option in order to be redi-
rected. If you don't, you can get something like:

Downloading from the Internet | 39

$ curl -s "https://bit.ly/2XBxvwK"

<html>

<head><title>Bitly</title></head>

<body>moved here</body>
</html>%

Sometimes you get nothing back, like when we follow the URL just mentioned:

$ curl -s "https://youtu.be/dQwaw9ngXcQ"

If you specify the -I or --head option, curl fetches only the HTTP header of the
response, which allows you to inspect the status code and other information returned
by the server:

§ curl -sI "https://youtu.be/dQwdwSWgXcQ" | trim

HTTP/2 303

content-type: application/binary

x-content-type-options: nosniff

cache-control: no-cache, no-store, max-age=0, must-revalidate
pragma: no-cache

expires: Mon, 01 Jan 1990 00:00:00 GMT

date: Tue, 29 Jun 2021 12:27:13 GMT

location: https://www.youtube.com/watch?v=dQwiwSWgXcQ&feature=youtu.be
content-length: 0

x-frame-options: SAMEORIGIN

. with 9 more lines

The first line shows the protocol followed by the HTTP status code, which is 303 in
this case. You can also see the location this URL redirects to. Inspecting the header
and getting the status code is a useful debugging tool in case curl does not give you
the expected result. Other common HTTP status codes include 404 (not found) and
403 (forbidden). Wikipedia has a page that lists all HTTP status codes.

In summary, curl is a useful command-line tool for downloading data from the
internet. Its three most common options are -s to silence the progress meter, -u to
specify a username and password, and -L to automatically follow redirects. See the
man page for more information (and to make your head spin):

$ man curl | trim 20
curl(1) Curl Manual curl(1l)

NAME
curl - transfer a URL

SYNOPSIS
curl [options / URLs]

DESCRIPTION
curl 1is a tool to transfer data from or to a server, using one of the
supported protocols (DICT, FILE, FTP, FTPS, GOPHER, HTTP, HTTPS, IMAP,
IMAPS, LDAP, LDAPS, MQTT, POP3, POP3S, RTMP, RTMPS, RTSP, SCP, SFTP,

40 | Chapter3:Obtaining Data

SMB, SMBS, SMTP, SMTPS, TELNET and TFTP). The command is designed to
work without user interaction.

curl offers a busload of useful tricks like proxy support, user authen-
tication, FTP upload, HTTP post, SSL connections, cookies, file trans-
fer resume, Metalink, and more. As you will see below, the number of
features will make your head spin!

. with 3986 more lines

Decompressing Files

If the original dataset is very large or is a collection of many files, it may be a com-
pressed archive. Datasets that contain many repeated values (such as the words in a
text file or the keys in a JSON file) are especially well suited for compression.

Common file extensions of compressed archives are .tar.gz, .zip, and .rar. To decom-
press these, you would use the command-line tools tar, unzip,’ and unrar,” respec-
tively. (There are a few less-common file extensions for which you would need other
tools.)

Let’s take tar.gz (pronounced “gzipped tarball”) as an example. To extract an archive
named logs.tar.gz, you would use the following incantation:

$ tar -xzf logs.tar.qz 1]

© It's common to combine these three short options, like I did here, but you can
also specify them separately as -x -z -f. In fact, many command-line tools
allow you to combine options that consist of a single character.

Indeed, tar is notorious for its many command-line arguments. In this case, the
three options -x, -z, and -f specify that tar should extract files from an archive, use
gzip as the decompression algorithm, and use the file logs.tar.gz.

However, since were not yet familiar with this archive, it's a good idea to first exam-
ine its contents. This can be done using the -t option (instead of the -x option):

§ tar -tzf logs.tar.gz | trim

E1FOSPSAYDNUZI.2020-09-01-00.0dd00628
E1FOSPSAYDNUZI.2020-09-01-00.b717c457
E1FOSPSAYDNUZI.2020-09-01-01.05f904a4
E1FOSPSAYDNUZI.2020-09-01-02.36588daf
E1FOSPSAYDNUZI.2020-09-01-02.6cea8bid

6 Samuel H. Smith et al., unzip - List, Test, and Extract Compressed Files in a ZIP Archive, version 6.0, 2009,
http://www.info-zip.org/pub/infozip.

7 Ben Asselstine, Christian Scheurer, and Johannes Winkelmann, unrar - Extract Files from Rar Archives, ver-
sion 0.0.1, 2014, https://web.archive.org/web/20080331080828/http://home.gna.org/unrar.

Decompressing Files | 41

E1FOSPSAYDNUZI.2020-09-01-02.be4bc86d
E1FOSPSAYDNUZI.2020-09-01-03.16f3fa32
E1FOSPSAYDNUZI.2020-09-01-03.1c0a370f
E1FOSPSAYDNUZI.2020-09-01-03.76df64bf
E1FOSPSAYDNUZI.2020-09-01-04.0aladelb
. with 2427 more lines

It seems that this archive contains a lot of files, and they are not inside a directory. To
keep the current directory clean, it’s a good idea to first create a new directory using
mkdir and extract those files there using the -C option:

$ mkdir logs

$ tar -xzf logs.tar.gz -C logs

Let’s verify the number of files and some of their contents:

$ ls logs | wc -1
2437

$ cat logs/* | trim

#Version: 1.0

#Fields: date time x-edge-location sc-bytes c-ip cs-method cs(Host) cs-uri-stem..
2020-09-01 00:51:54 SEA19-C1 391 206.55.174.150 GET
2020-09-01 00:54:59 CPH50-C2 384 82.211.213.95 GET
#Version: 1.0

#Fields: date time x-edge-location sc-bytes c-ip cs-method cs(Host) cs-uri-stem..
2020-09-01 00:04:28 DFW50-C1 391 2a03:2880:11ff:9::face:..
#Version: 1.0

#Fields: date time x-edge-location sc-bytes c-ip cs-method cs(Host) cs-uri-stem..
2020-09-01 01:04:14 ATL56-C4 385 2600:1700:2760:da20:548..
. with 10279 more lines

Excellent. Now, I understand that youd like to scrub and explore these log files, but
we'll get to that later, in Chapter 5 and Chapter 7.

In time you’'ll get used to these options, but I'd like to show you an alternative that
you might find convenient. Rather than you having to remember the different
command-line tools and their options, there’s a handy script called unpack?® that will
decompress many different formats. unpack looks at the extension of the file that you
want to decompress and calls the appropriate command-line tool. Now, in order to
decompress this same file, you would run:

$ unpack logs.tar.gz

8 Patrick Brisbin, unpack - Extract Common File Formats, version 0.1, 2013, https://github.com/jeroenjanssens/
dsutils.

42 | Chapter3:Obtaining Data

