¥

s E (40 "vf:\’,j.;
W st (L
3 - g?:_ "_JFT ‘I.-.;-I?r_;...- =
' LA ,' A o),

W o

ﬁ'
" '

!
¥

DEEP LEARN

lan Goodfellow, Yoshua Bengio,
and Aaron Courville

o ol ! Vi oL
- 4™ 15, e |
gt :' - f: LR -5.':? '\ ~—
b s ") '--"_-' _;':';‘“ .
St Y o PR AT U TN
P o g [l r e

o Y g
- ¥ -'l-.._
".,-n. i = -5 K
'J - - :' -_L.‘
i a3 = . £
% 5 L

Deep Learning

Ian Goodfellow

Yoshua Bengio and
Aaron Courville

The MIT Press
Cambridge, Massachusetts
London, England

(©) 2016 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

This book was set in SFRM1095 by diacriTech, Chennali.
Printed and bound in the United States of America.
Library of Congress Cataloging-in-Publication Data

Names: Goodfellow, Ian, author. | Bengio, Yoshua, author. | Courville, Aaron,
author.
Title: Deep learning / lan Goodfellow, Yoshua Bengio, and Aaron Courville.
Description: Cambridge, MA : MIT Press, [2017| | Series: Adaptive computation
and machine learning series | Includes bibliographical references and
index.
[dentifiers: LCCN 2016022992 | ISBN 9780262035613 (hardcover : alk. paper)
Subjects: LOCSH: Machine learning,
Classification: LCC Q325.5 .G66 2017 | DDC 006.3/1-dc23 LC record available
at https://lcen.loc.gov /2016022992

109876043 21

Contents

Website x1ii
Acknowledgments XV
Notation X1X

1 Introduction
1.1 Who Should Read This Book? 8

1.2 Historical Trends in Deep Learning 12

I Applied Math and Machine Learning Basics 27

2 Linear Algebra 29
2.1 Scalars, Vectors, Matrices and Tensors 29
2.2 Multiplying Matrices and Vectors 32
2.3 Identity and Inverse Matrices 3
2.4 Linear Dependence and Span 35
25 Norms. e ... 36
2.6 Special Kinds of Matrices and Vectors 38
2.7 Higendecomposition0.039
2.8 Singular Value Decomposition 42
2.9 The Moore-Penrose Pseudoinverse 43
2.10 The Trace Operator 44

2.11 The Determinant 45

2.12 Example: Principal Components Analysis 4b

CONTENTS

|

Probability and Information Theory 51
3.1 Why Probability? H2
3.2 Random Variables 000 54
3.3 Probability Distributions 54
3.4 Margmal Probability 0L, 56
3.5 Conditional Probability D7
3.6 The Chain Rule of Conditional Probabilities b7
3.7 Independence and Conditional Independence D&
3.8 Expectation, Variance and Covariance H8&
3.9 Common Probability Distributions 60
3.10 Useful Properties of Common Functions 65
3.11 Bayes"Rule 68
3.12 Technical Details of Continuous Variables 68
3.13 Information Theory 70
3.14 Structured Probabilistic Models 4
Numerical Computation 77
4.1 Overflow and Underflow 77
4.2 Poor Conditioning o 79
4.3 Gradient-Based Optimization 79
4.4 Constrained Optimization 89
4.5 Example: Linear Least Squares 92
Machine Learning Basics 95
5.1 Learning Algorithms L. 96
5.2 Capacity, Overfitting and Underfitting 107
5.3 Hyperparameters and Validation Sets 117
5.4 Bstimators, Bias and Variance 119
5.0 Maximum Likelihood Estimation 128
5.6 Bayesian Statisticso 132
5.7 Supervised Learning Algorithms 136
5.8 Unsupervised Learning Algorithms 142

vi

JONTENTS

I1

5.9 Stochastic Gradient Descent 147
5.10 Building a Machine Learning Algorithm 149
5.11 Challenges Motivating Deep Learning 151
Deep Networks: Modern Practices 161
Deep Feedforward Networks 163
6.1 Example: Learning XOR 166
6.2 Gradient-Based Learning L. 171
6.3 Hidden Units 185
6.4 Architecture Design 191
6.0 Back-Propagation and Other Differentiation
Algorithms 197
6.6 Historical Notes 217
Regularization for Deep Learning 221
7.1 Parameter Norm Penalties 223
7.2 Norm Penalties as Constrained Optimization 230
7.3 Regularization and Under-Constrained Problems 232
7.4 Dataset Augmentation 233
7.5 Noise Robustness L L. 235
7.6 Semi-Supervised Learning 236
7.7 Multitask Learning o000 237
7.8 Early Stopping 239
7.9 Parameter Tying and Parameter Sharing 246
7.10 Sparse Representations 247
7.11 Bagging and Other Ensemble Methods 249
7.12 Dropout. e 201
7.13 Adversarial Training 261

7.14 Tangent Distance, Tangent Prop and Manifold Tangent Classifier . 263

Optimization for Training Deep Models 267
8.1 How Learning Differs from Pure Optimization 268

vil

JONTENTS

10

8.2 Challenges in Neural Network Optimization 275
8.3 Basic Algorithms L 286
8.4 Parameter Initialization Strategies 292
8.0 Algorithms with Adaptive Learning Rates 298
8.6 Approximate Second-Order Methods 302
8.7 Optimization Strategies and Meta-Algorithms 309
Convolutional Networks 321
9.1 The Convolution Operation 322
9.2 Motivation e e 324
9.3 Pooling 330
9.4 Convolution and Pooling as an Infinitely Strong Prior 334
9.5 Variants of the Basic Convolution Function 337
9.6 Structured Outputs L. 347
9.7 Data Types e 348
9.8 Efficient Convolution Algorithms 350
9.9 Random or Unsupervised Features 351
9.10 The Neuroscientific Basis for Convolutional

Networks e 353
9.11 Convolutional Networks and the History of Deep Learning 359
Sequence Modeling: Recurrent and Recursive Nets 363
10.1 Unfolding Computational Graphs 365
10.2 Recurrent Neural Networks 368
10.3 Bidirectional RNNs 383
10.4 Encoder-Decoder Sequence-to-Sequence Architectures 385
10.5 Deep Recurrent Networks 387
10.6 Recursive Neural Networks 338
10.7 The Challenge of Long-Term Dependencies 390
10.8 Echo State Networks. 392
10.9 Leaky Units and Other Strategies for Multiple Time Scales . 395
[0.10 The Long Short-Term Memory and Other Gated RNNs 397

viil

JONTENTS

10.11 Optimization for Long-Term Dependencies 401
10.12 Explicit Memory 405
11 Practical Methodology 409
11.1 Pertormance Metrics, 410
11.2 Default Baseline Models 413
1.3 Determining Whether to Gather More Data 414
11.4 Selecting Hyperparameters 415
11.5 Debugging Strategies 424
11.6 Example: Multi-Digit Number Recognition 428
12 Applications 4131
12.1 Large-Scale Deep Learning 431
12.2 Computer Vision 440
12.3 Speech Recognition 446
12.4 Natural Language Processing 448
12.5 Other Applications« . . 465
III Deep Learning Research 475
13 Linear Factor Models 479
13.1 Probabilistic PCA and Factor Analysis 480
13.2 Independent Component Analysis (ICA). 481
13.3 Slow Feature Analysis 484
13.4 Sparse Codingo 486
13.5 Manifold Interpretation of PCA 489
14 Autoencoders 493
14.1 Undercomplete Autoencoders 494
14.2 Regularized Autoencoders 495
14.3 Representational Power, Layer Size and Depth 499
14.4 Stochastic Encoders and Decoders 500

1%

JONTENTS

14.5 Denoising Autoencoders 501
14.6 Learning Manifolds with Autoencoders 506
14.7 Contractive Autoencoders 510
14.8 Predictive Sparse Decomposition 514
14.9 Applications of Autoencoders 515
15 Representation Learning 517
15.1 Greedy Layer-Wise Unsupervised Pretraining 519
15.2 Transfer Learning and Domain Adaptation 526
15.3 Semi-Supervised Disentangling of Causal Factors 032
15.4 Distributed Representation 536
15.5 Exponential Gains from Depth 543
15.6 Providing Clues to Discover Underlying Causes 544
16 Structured Probabilistic Models for Deep Learning 549
16.1 The Challenge of Unstructured Modeling 550
16.2 Using Graphs to Describe Model Structure 554
16.3 Sampling from Graphical Models 570
16.4 Advantages of Structured Modeling D72
16.5 Learning about Dependencies D72
16.6 Inference and Approximate Inference 573

16.7 The Deep Learning Approach to Structured Probabilistic Models . 575

17 Monte Carlo Methods 581
17.1 Sampling and Monte Carlo Methods H81
17.2 Importance Sampling 583
17.3 Markov Chain Monte Carlo Methods H86
17.4 Gibbs Sampling Lo 590
17.5 The Challenge of Mixing between Separated Modes 591

18 Confronting the Partition Function 597
18.1 The Log-Likelihood Gradient 598
18.2 Stochastic Maximum Likelihood and Contrastive Divergence . . . 599

Website

www.deeplearningbook.org

This book is accompanied by the above website. The website provides a variety of
supplementary material, including exercises, lecture slides, corrections of mistakes,
and other resources that should be useful to both readers and instructors.

Copyrighted material

Acknowledgments

This book would not have been possible without the contributions of many people.

We would like to thank those who commented on our proposal tor the book
and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho.
Caglar Giilcehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas
Rohée.

We would like to thank the people who offered feedback on the content of the
book itself. Some offered feedback on many chapters: Martin Abadi, Guillaume
Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Bicici, Matko
Bosnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc
Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent
Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis,
Nando de Freitas, Caglar Giilcehre, Jurgen Van Gael, Javier Alonso Garcia.,
Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade,
Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf
Mathey, Matias Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Miirk, Roman
Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli.
Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca.
Halis Sak, César balgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian
Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, David Slate, Scott Stanley, David
Sussillo, Ilya Sutskever, Carles Gelada Saez, Graham Taylor, Valentin Tolmer,
Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Ummnov, Vincent
Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin
Webb, Kelvin Xu, Wei Xue, Ke Yang, L.i Yao, Zygmunt Zajac and Ozan Caglayan.

We would also like to thank those who provided us with useful feedback on
individual chapters:

e Notation: Zhang Yuanhang.

e Chapter 1, Introduction: Yusuf Akgul, Sebastien Bratieres, Samira Ebrahimi,

ACKNOWLEDGMENTS

Charlie Gorichanaz, Brendan Loudermilk, Eric Morris, Cosmin Parvulescu
and Alfredo Solano.

e Chapter 2, Linear Algebra: Amjad Almahairi, Nikola Bani¢, Kevin Bennett.
Philippe Castonguay, Oscar Chang, Eric Fosler-Lussier, Andrey Khalyavin,
Sergey Oreshkov, Istvan Petras, Dennis Prangle, Thomas Rohée, Gitanjali

Gulve Sehgal, Colby Toland, Alessandro Vitale and Bob Welland.

e Chapter 3, Probability and Information Theory: John Philip Anderson, Kai
Arulkumaran, Vincent Dumoulin, Rui Fa, Stephan Gouws, Artem Oboturov,
Antti Rasmus, Alexey Surkov and Volker Tresp.

e Chapter 4, Numerical Computation: Tran Lam Anlan Fischer and Hu
Yuhuang.

e Chapter 5, Machine Learning Basics: Dzmitry Bahdanau, Justin Domingue,
Nikhil Garg, Makoto Otsuka, Bob Pepin, Philip Popien, Bharat Prabhakar.
Emmanuel Rayner, Peter Shepard, Kee-Bong Song, Zheng Sun and Andy Wu.

e Chapter 6, Deep Feedforward Networks: Uriel Berdugo, Fabrizio Bottarel,
Elizabeth Burl, Ishan Durugkar, Jeff Hlywa, Jong Wook Kim, David Krueger,
Aditya Kumar Praharaj and Sten Sootla.

e Chapter 7, Regularization for Deep Learning: Morten Kolbak, Kshitij Lauria,
Inkyu Lee, Sunil Mohan, Hai Phong Phan and Joshua Salisbury.

e Chapter 8, Optimization for Training Deep Models: Marcel Ackermann, Peter
Armitage, Rowel Atienza, Andrew Brock, Tegan Maharaj, James Martens.
Mostata Nategh, Kashit Rasul, Klaus Strobl and Nicholas Turner.

e Chapter 9, Convolutional Networks: Martin Arjovsky, Eugene Brevdo, Kon-
stantin Divilov, Eric Jensen, Mehdi Mirza, Alex Paino, Marjorie Sayer, Ryan
Stout and Wentao Whu.

e Chapter 10, Sequence Modeling: Recurrent and Recursive Nets: Gokcen
FEraslan, Steven Hickson, Razvan Pascanu, Lorenzo von Ritter, Rui Rodrigues,
Dmitriy Serdyuk, Dongyu Shi and Kaiyu Yang.

e Chapter 11, Practical Methodology: Daniel Beckstein.

e Chapter 12, Applications: George Dahl, Vladimir Nekrasov and Ribana
Roscher.

e Chapter 13, Linear Factor Models: Jayanth Koushik.

XV

ACKNOWLEDGMENTS

e Chapter 15, Representation Learning: Kunal Ghosh.

e Chapter 16, Structured Probabilistic Models for Deep Learning: Minh Lé
and Anton Varfolom.

e Chapter 18, Confronting the Partition Function: Sam Bowman.
e Chapter 19, Approximate Inference: Yujia Bao.

e Chapter 20, Deep Generative Models: Nicolas Chapados, Daniel Galvez,
Wenming Ma, Fady Medhat, Shakir Mohamed and Grégoire Montavon.

e Bibliography: Lukas Michelbacher and Leslie N. Smith.

We also want to thank those who allowed us to reproduce images, figures or
data from their publications. We indicate their contributions in the figure captions
throughout the text.

We would like to thank Lu Wang for writing pdf2htmlEX, which we used to
make the web version of the book, and for offering support to improve the quality

of the resulting HTML.

We would like to thank lan’s wife Daniela Flori Goodfellow for patiently
supporting Ian during the writing of the book as well as for help with proofreading.

We would like to thank the Google Brain team for providing an intellectual
environment where lan could devote a tremendous amount of time to writing this
book and receive feedback and guidance from colleagues. We would especially like
to thank Ian’s former manager, Greg Corrado, and his current manager, Samy
Bengio, for their support of this project. Finally, we would like to thank Geoffrey
Hinton for encouragement when writing was difficult.

XVil

NOTATION

Sets and Graphs

A A set
R The set of real numbers
{0,1} The set containing 0 and 1
{0,1,...,n} The set of all integers between 0 and n
a, b The real interval including a and b
(a,b The real interval excluding a but including b
A\B Set subtraction, 1.e., the set containing the ele-

ments ot A that are not in B
G A graph

Pag(x;) The parents of x; in G

Indexing

a; Element ¢ of vector a, with indexing starting at 1
a_; All elements of vector a except for element 7

A; ; Element ¢, j of matrix A

A;. Row ¢ of matrix A

A.; Column ¢ of matrix A
A;ir Element (7,7, k) of a 3-D tensor A
A..; 2-D slice of a 3-D tensor

a; Flement 7 of the random vector a

Linear Algebra Operations
Al Transpose of matrix A
A Moore-Penrose pseudoinverse of A
A ® B Element-wise (Hadamard) product of A and B

det(A) Determinant of A

8.4

NOTATION

Calculus

Derivative of y with respect to x

Partial derivative of y with respect to =
Gradient of y with respect to x
Matrix derivatives of y with respect to X

Tensor containing derivatives of y with respect to

X

Jacobian matrix J € R™*" of f: R" — R™
The Hessian matrix of f at input point x

Definite integral over the entire domain of @

Definite integral with respect to @ over the set S

Probability and Information Theory

an~ P
Exp[f(z)] or Ef ()
Var(f(z))
Cov(f(z),9(x))
H(x)
DxL(P|Q)
N(z; p, 3)

The random variables a and b are independent
They are conditionally independent given ¢
A probability distribution over a discrete variable

A probability distribution over a continuous vari-
able, or over a variable whose type has not been
specified

Random variable a has distribution P
Expectation of f(x) with respect to P(x)
Variance of f(x) under P(x)

Covariance of f(x) and g(x) under P(x)
Shannon entropy of the random variable x
Kullback-Leibler divergence of P and Q

Gaussian distribution over x with mean p and
covariance X

X1

NOTATION

Functions
f:A— B The function f with domain A and range BB

fog Composition of the functions f and g

f(x;0) A function of & parametrized by 6. (Sometimes
we write f(a) and omit the argument @ to lighten

notation)
log x Natural logarithm of x
o(x) Logistic sigmoid, o F‘le(—’}‘)
((x) Softplus, log(1 + exp(x))
| ||p LP norm of x
14l L? norm of x
x" Positive part of z, i.e., max(0, x)

lcondition 18 1 if the condition is true, 0 otherwise

Sometimes we use a function f whose argument is a scalar but apply it to a
vector, matrix, or tensor: f(x), f(X), or f(X). This denotes the application of f
to the array element-wise. For example, if C = o(X), then G = o(X; ;) for all
valid values of 7, 7 and k.

Datasets and Distributions

Ddata The data generating distribution
Ddata The empirical distribution defined by the training
set
X A set of training examples
) The i-th example (input) from a dataset
v or y The target associated with (@ for supervised
learning
X The m x n matrix with input example (¥ in row
X?.".':

Yo el

Introduction

Inventors have long dreamed of creating machines that think. This desire dates back
to at least the time of ancient Greece. The mythical figures Pygmalion, Daedalus,
and Hephaestus may all be interpreted as legendary imventors, and Galatea, Talos,
and Pandora may all be regarded as artificial life (Ovid and Martin, 2004; Sparkes,
1996; Tandy, 1997).

When programmable computers were first conceived, people wondered whether
such machines might become intelligent, over a hundred years before one was
built (Lovelace, 1842). Today, artificial intelligence (Al) is a thriving field with
many practical applications and active research topics. We look to intelligent
software to automate routine labor, understand speech or images, make diagnoses
in medicine and support basic scientific research.

In the early days of artificial intelligence, the field rapidly tackled and solved
problems that are intellectually difficult for human beings but relatively straight-
forward for computers—problems that can be described by a list of formal, math-
ematical rules. The true challenge to artificial intelligence proved to be solving
the tasks that are easy for people to perform but hard for people to describe
formally—problems that we solve intuitively, that feel automatic, like recognizing
spoken words or faces in images.

This book i1s about a solution to these more intuitive problems. This solution is
to allow computers to learn from experience and understand the world in terms ot
a hierarchy of concepts, with each concept defined through its relation to simpler
concepts. By gathering knowledge from experience, this approach avoids the need
for human operators to formally specify all the knowledge that the computer needs.
The hierarchy of concepts enables the computer to learn complicated concepts by
building them out of simpler ones. If we draw a graph showing how these concepts

CHAPTER 1

are built on top of each other, the graph is deep, with many layers. For this reason,
we call this approach to AI deep learning.

Many of the early successes of Al took place in relatively sterile and formal
environments and did not require computers to have much knowledge about
the world. For example, IBM’s Deep Blue chess-playing system defeated world
champion Garry Kasparov in 1997 (Hsu, 2002). Chess is of course a very simple
world, containing only sixty-four locations and thirty-two pieces that can move in
only rigidly circumscribed ways. Devising a successtul chess strategy is a tremendous
accomplishment, but the challenge is not due to the difficulty of describing the
set of chess pieces and allowable moves to the computer. Chess can be completely
described by a very brief list of completely formal rules, easily provided ahead ot
time by the programmer.

[ronically, abstract and formal tasks that are among the most difficult mental
undertakings for a human being are among the easiest for a computer. Computers
have long been able to defeat even the best human chess player but only recently
have begun matching some of the abilities of average human beings to recognize
objects or speech. A person’s everyday life requires an immense amount of knowledge
about the world. Much of this knowledge is subjective and intuitive, and therefore
difficult to articulate in a formal way. Computers need to capture this same
knowledge in order to behave in an intelligent way. One of the key challenges in
artificial intelligence is how to get this informal knowledge into a computer.

Several artificial intelligence projects have sought to hard-code knowledge
about the world in formal languages. A computer can reason automatically about
statements in these formal languages using logical inference rules. This is known as
the knowledge base approach to artificial intelligence. None of these projects has
led to a major success. One of the most famous such projects is Cyc (Lenat and
Guha, 1989). Cyc is an inference engine and a database of statements in a language
called Cycl.. These statements are entered by a stafl of human supervisors. It is an
unwieldy process. People struggle to devise formal rules with enough complexity
to accurately describe the world. For example, Cyc failed to understand a story
about a person named Fred shaving in the morning (Linde, 1992). Its inference
engine detected an inconsistency in the story: it knew that people do not have
electrical parts, but because Fred was holding an electric razor, it believed the
entity “FredWhileShaving” contained electrical parts. It therefore asked whether
Fred was still a person while he was shaving.

The difficulties faced by systems relying on hard-coded knowledge suggest
that Al systems need the ability to acquire their own knowledge, by extracting
patterns from raw data. This capability is known as machine learning. The

INTRODUCTION

objects or unobserved forces in the physical world that affect observable quantities.
They may also exist as constructs in the human mind that provide useful simplifying
explanations or inferred causes of the observed data. They can be thought of as
concepts or abstractions that help us make sense of the rich variability in the data.
When analyzing a speech recording, the factors of variation include the speaker’s
age, their sex, their accent and the words they are speaking. When analyzing an
image of a car, the factors of variation include the position of the car, its color,
and the angle and brightness of the sun.

A major source of difficulty in many real-world artificial intelligence applications
1s that many of the factors of variation influence every single piece of data we are
able to observe. The individual pixels in an image of a red car might be very close
to black at night. The shape of the car’s silhouette depends on the viewing angle.
Most applications require us to disentangle the factors of variation and discard the
ones that we do not care about.

Of course, it can be very difficult to extract such high-level, abstract features
from raw data. Many of these factors of variation, such as a speaker’s accent,
can be identified only using sophisticated, nearly human-level understanding of
the data. When 1t is nearly as difficult to obtain a representation as to solve the
original problem, representation learning does not, at first glance, seem to help us.

Deep learning solves this central problem in representation learning by intro-
ducing representations that are expressed in terms of other, simpler representations.
Deep learning enables the computer to build complex concepts out of simpler con-
cepts. Figure 1.2 shows how a deep learning system can represent the concept of
an image of a person by combining simpler concepts, such as corners and contours,
which are in turn defined in terms of edges.

The quintessential example of a deep learning model is the feedforward deep
network, or multilayer perceptron (MLP). A multilayer perceptron is just a
mathematical function mapping some set of input values to output values. The
function is formed by composing many simpler functions. We can think of each
application of a different mathematical function as providing a new representation
of the input.

The idea of learning the right representation for the data provides one per-
spective on deep learning. Another perspective on deep learning is that depth
enables the computer to learn a multistep computer program. Each layer of the
representation can be thought of as the state of the computer’s memory after
executing another set of instructions in parallel. Networks with greater depth can
execute more instructions in sequence. Sequential instructions offer great power
because later instructions can refer back to the results of earlier instructions.

CHAPTER 1

Output
sbject identity)

rd hidden laver

object parts
(object p

'nd hidden layer
(corners and

contours)

t hidden layer
(edges)

Visible laver

input pixels)

Figure 1.2: lllustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).

INTRODUCTION

According to this view of deep learning, not all the information in a layer’s ac-
tivations necessarily encodes factors of variation that explain the input. The
representation also stores state information that helps to execute a program that
can make sense of the input. This state information could be analogous to a counter
or pointer in a traditional computer program. It has nothing to do with the content
of the input specifically, but it helps the model to organize its processing.

There are two main ways of measuring the depth of a model. The first view is
based on the number of sequential instructions that must be executed to evaluate
the architecture. We can think of this as the length of the longest path through
a flow chart that describes how to compute each of the model’s outputs given
1ts inputs. Just as two equivalent computer programs will have different lengths
depending on which language the program is written in, the same function may
be drawn as a flowchart with different depths depending on which functions we
allow to be used as individual steps in the flowchart. Figure 1.3 illustrates how this
choice of language can give two different measurements for the same architecture.

Another approach, used by deep probabilistic models, regards the depth of a
model as being not the depth of the computational graph but the depth of the
ocraph describing how concepts are related to each other. In this case, the depth

Figure 1.3: Illustration of computational graphs mapping an input to an output where
each node performs an operation. Depth is the length of the longest path from input to
output but depends on the definition of what constitutes a possible computational step.
The computation depicted in these graphs is the output of a logistic regression model,
o(w' x), where o is the logistic sigmoid function. If we use addition, multiplication and
logistic sigmoids as the elements of our computer language, then this model has depth
three. If we view logistic regression as an element itself, then this model has depth one.

CHAPTER 1

of the flowchart of the computations needed to compute the representation of
cach concept may be much deeper than the graph of the concepts themselves.
This is because the system’s understanding of the simpler concepts can be refined
eiven information about the more complex concepts. For example, an Al system
observing an image of a face with one eye in shadow may initially see only one
eye. After detecting that a face is present, the system can then infer that a second
eye 1s probably present as well. In this case, the graph ot concepts includes only

two layers—a layer for eyes and a layer for faces—but the graph of computations

includes 2n layers if we refine our estimate of each concept given the other n times.

Because it 1s not always clear which of these two views—the depth of the
computational graph, or the depth of the probabilistic modeling graph—is most
relevant, and because different people choose different sets of smallest elements from
which to construct their graphs, there is no single correct value for the depth of an
architecture, just as there is no single correct value for the length of a computer
program. Nor 1s there a consensus about how much depth a model requires to
qualify as “deep.” However, deep learning can be safely regarded as the study of
models that involve a greater amount of composition of either learned functions or
learned concepts than traditional machine learning does.

To summarize, deep learning, the subject of this book, is an approach to Al
Specifically, it is a type of machine learning, a technique that enables computer
systems to improve with experience and data. We contend that machine learning
is the only viable approach to building Al systems that can operate in complicated
real-world environments. Deep learning is a particular kind of machine learning
that achieves great power and flexibility by representing the world as a nested
hierarchy of concepts, with each concept defined in relation to simpler concepts, and
more abstract representations computed in terms of less abstract ones. Figure 1.4
illustrates the relationship between these different Al disciplines. Figure 1.5 gives
a high-level schematic of how each works.

1.1 Who Should Read This Book?

This book can be useful for a variety of readers, but we wrote it with two target
audiences in mind. One of these target audiences is university students (under-
egraduate or graduate) learning about machine learning, including those who are
beginning a career in deep learning and artificial intelligence research. The other
target audience is software engineers who do not have a machine learning or statis-
tics background but want to rapidly acquire one and begin using deep learning in
their product or platform. Deep learning has already proved useful in many soft-

8

INTRODUCTION

Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to Al. Each section of the Venn diagram includes an example of an Al technology.

ware disciplines, including computer vision, speech and audio processing, natural
language processing, robotics, bioinformatics and chemistry, video games, search
engines, online advertising and finance.

This book has been organized into three parts to best accommodate a variety
of readers. Part | introduces basic mathematical tools and machine learning
concepts. Part 11 describes the most established deep learning algorithms, which
are essentially solved technologies. Part 111 describes more speculative ideas that
are widely believed to be important for future research in deep learning.

Readers should feel free to skip parts that are not relevant given their interests
or background. Readers familiar with linear algebra, probability, and fundamental
machine learning concepts can skip part I, for example, while those who just want

9

CHAPTER 1

We do assume that all readers come from a computer science background. We
assume familiarity with programming, a basic understanding of computational
performance issues, complexity theory, introductory level calculus and some of the
terminology ot graph theory.

1.2 Historical Trends in Deep Learning

[t is easiest to understand deep learning with some historical context. Rather than
providing a detailed history of deep learning, we identify a few key trends:

e Deep learning has had a long and rich history, but has gone by many names,
reflecting different philosophical viewpoints, and has waxed and waned in
popularity.

e Deep learning has become more useful as the amount of available training
data has increased.

e Deep learning models have grown in size over time as computer infrastructure
(both hardware and software) for deep learning has improved.

e Deep learning has solved increasingly complicated applications with increasing
accuracy over time.

1.2.1 The Many Names and Changing Fortunes of Neural
Networks

We expect that many readers of this book have heard of deep learning as an exciting
new technology, and are surprised to see a mention of “history” in a book about an
emerging field. In fact, deep learning dates back to the 1940s. Deep learning only
appears to be new, because it was relatively unpopular for several years preceding
its current popularity, and because it has gone through many different names, only
recently being called “deep learning.” The field has been rebranded many times,
reflecting the influence of different researchers and different perspectives.

A comprehensive history of deep learning is beyond the scope of this textbook.
Some basic context, however, is useful for understanding deep learning. Broadly
speaking, there have been three waves of development: deep learning known as
cybernetics in the 1940s-1960s, deep learning known as connectionism in the
1980s—1990s, and the current resurgence under the name deep learning beginning
in 2006. This i1s quantitatively illustrated in figure 1.7.

12

INTRODUCTION

0.00025t
0.000201
0.00015¢
0.000 1O

0.00005

Frequency of Word or Phrase

0.00000

A L A e PLY AN rLr Aaf WL A F LR Ao e R L

Year

Figure 1.7: Two of the three historical waves of artificial neural nets research, as measured
by the frequency of the phrases “cybernetics” and “connectionism” or “neural networks,”
according to Google Books (the third wave is too recent to appear). The first wave
started with cybernetics in the 1940s-1960s, with the development of theories of biological
learning (McCulloch and Pitts, 1943; Hebb, 1949) and implementations of the first models,
such as the perceptron (Rosenblatt, 1958), enabling the training of a single neuron.
The second wave started with the connectionist approach of the 1980-1995 period, with
back-propagation (Rumelhart et al., 1986a) to train a neural network with one or two
hidden layers. The current and third wave, deep learning, started around 2006 (Hinton
et al., 2006; Bengio et al., 2007; Ranzato et al., 2007a) and is just now appearing in book
form as of 2016. The other two waves similarly appeared in book form much later than
the corresponding scientific activity occurred.

Some of the earliest learning algorithms we recognize today were intended to
be computational models of biological learning, that is, models of how learning
happens or could happen in the brain. As a result, one of the names that deep
learning has gone by is artificial neural networks (ANNs). The corresponding
perspective on deep learning models is that they are engineered systems inspired
by the biological brain (whether the human brain or the brain of another animal).
While the kinds of neural networks used for machine learning have sometimes
been used to understand brain function (Hinton and Shallice, 1991), they are
generally not designed to be realistic models of biological function. The neural
perspective on deep learning is motivated by two main ideas. One idea is that
the brain provides a proof by example that intelligent behavior is possible, and a
conceptually straightforward path to building intelligence is to reverse engineer the
computational principles behind the brain and duplicate its functionality. Another

perspective 1s that it would be deeply interesting to understand the brain and the
principles that underlie human intelligence, so machine learning models that shed
light on these basic scientific questions are usetul apart from their ability to solve
engineering applications.

13

CHAPTER 1

The modern term “deep learning” goes beyond the neuroscientific perspective
on the current breed of machine learning models. It appeals to a more general
principle of learning multiple levels of composition, which can be applied in machine
learning frameworks that are not necessarily neurally inspired.

The earliest predecessors of modern deep learning were simple linear models
motivated from a neuroscientific perspective. These models were designed to
take a set of n input values z;,...,x, and associate them with an output v.
These models would learn a set of weights wq,...,w, and compute their output
flx,w) = zywy + -+ + x,w,. This first wave of neural networks research was
known as cybernetics, as illustrated in figure 1.7.

The McCulloch-Pitts neuron (McCulloch and Pitts, 1943) was an early model
of brain function. This linear model could recognize two different categories of
inputs by testing whether f(x,w) is positive or negative. Of course, for the
model to correspond to the desired definition of the categories, the weights needed
to be set correctly. These weights could be set by the human operator. In the
1950s, the perceptron (Rosenblatt, 1958, 1962) became the first model that could
learn the weights that defined the categories given examples of inputs from each
category. The adaptive linear element (ADALINE), which dates from about
the same time, simply returned the value of f(ax) itself to predict a real num-
ber (Widrow and Hoff, 1960) and could also learn to predict these numbers
from data.

These simple learning algorithms greatly affected the modern landscape of ma-
chine learning. The training algorithm used to adapt the weights of the ADALINE
was a special case of an algorithm called stochastic gradient descent. Slightly
modified versions of the stochastic gradient descent algorithm remain the dominant
training algorithms for deep learning models today.

Models based on the f(a,w) used by the perceptron and ADALINE are called
linear models. These models remain some of the most widely used machine
learning models, though in many cases they are trained in different ways than the
original models were trained.

Linear models have many limitations. Most famously, they cannot learn the
XOR function, where f(|0,1],w) = 1 and f(|1,0],w) = 1 but f([1,1,w) =0
and f([0,0], w) = 0. Critics who observed these flaws in linear models caused a
backlash against biologically inspired learning in general (Minsky and Papert,
1969). This was the first major dip in the popularity of neural networks.

Today, neuroscience is regarded as an important source of inspiration for
deep learning researchers, but it is no longer the predominant guide for the
field.

14

INTRODUCTION

The main reason for the diminished role of neuroscience in deep learning
research today is that we simply do not have enough information about the brain
to use it as a guide. To obtain a deep understanding of the actual algorithms used
by the brain, we would need to be able to monitor the activity of (at the very
least) thousands of interconnected neurons simultaneously. Because we are not
able to do this, we are far from understanding even some of the most simple and
well-studied parts of the brain (Olshausen and Field, 2005).

Neuroscience has given us a reason to hope that a single deep learning algorithm
can solve many different tasks. Neuroscientists have found that ferrets can learn to

“see” with the auditory processing region of their brain if their brains are rewired
to send visual signals to that area (Von Melchner et al., 2000). This suggests
that much of the mammalian brain might use a single algorithm to solve most of
the different tasks that the brain solves. Before this hypothesis, machine learning
research was more fragmented, with different communities of researchers studying
natural language processing, vision, motion planning and speech recognition. Today,
these application communities are still separate, but it is common for deep learning
research groups to study many or even all these application areas simultaneously.

We are able to draw some rough guidelines from neuroscience. The basic idea ot
having many computational units that become intelligent only via their interactions
with each other is inspired by the brain. The neocognitron (Fukushima, 1980)
introduced a powerful model architecture for processing images that was inspired
by the structure of the mammalian visual system and later became the basis
for the modern convolutional network (LeCun et al., 1998b), as we will see in
section 9.10. Most neural networks today are based on a model neuron called
the rectified linear unit. The original cognitron (Fukushima, 1975) introduced
a more complicated version that was highly inspired by our knowledge of brain
function. The simplified modern version was developed incorporating ideas from
many viewpoints, with Nair and Hinton (2010) and Glorot et al. (2011a) citing
neuroscience as an influence, and Jarrett et al. (2009) citing more engineering-
oriented influences. While neuroscience is an important source of inspiration, it
need not be taken as a rigid guide. We know that actual neurons compute very
different functions than modern rectified linear units, but greater neural realism
has not yet led to an improvement in machine learning performance. Also, while
neuroscience has successfully inspired several neural network architectures, we
do not yet know enough about biological learning for neuroscience to offer much
cuidance for the learning algorithms we use to train these architectures.

Media accounts often emphasize the similarity of deep learning to the brain.
While it 1s true that deep learning researchers are more likely to cite the brain as an
influence than researchers working in other machine learning fields, such as kernel

B -

85}

CHAPTER 1

machines or Bayesian statistics, one should not view deep learning as an attempt
to simulate the brain. Modern deep learning draws inspiration from many fields,
especially applied math fundamentals like linear algebra, probability, information
theory, and numerical optimization. While some deep learning researchers cite
neuroscience as an important source of inspiration, others are not concerned with
neuroscience at all.

[t is worth noting that the effort to understand how the brain works on an algo-
rithmic level is alive and well. This endeavor is primarily known as “computational
neuroscience’ and is a separate field of study from deep learning. It is common
for researchers to move back and forth between both fields. The field of deep
learning is primarily concerned with how to build computer systems that are able
to successtully solve tasks requiring intelligence, while the field of computational
neuroscience is primarily concerned with building more accurate models of how
the brain actually works.

In the 1980s, the second wave of neural network research emerged in great
part via a movement called connectionism, or parallel distributed process-
ing (Rumelhart et al., 1986¢; McClelland et al., 1995). Connectionism arose in the
context of cognitive science. Cognitive science is an interdisciplinary approach to
understanding the mind, combining multiple different levels of analysis. During
the early 1980s, most cognitive scientists studied models of symbolic reasoning.
Despite their popularity, symbolic models were difficult to explain in terms of
how the brain could actually implement them using neurons. The connectionists

began to study models of cognition that could actually be grounded in neural
implementations (Touretzky and Minton, 1985), reviving many ideas dating back
to the work of psychologist Donald Hebb in the 1940s (Hebb, 1949).

The central idea in connectionism is that a large number of simple computational
units can achieve intelligent behavior when networked together. This insight applies
equally to neurons in biological nervous systems as it does to hidden units in
computational models.

Several key concepts arose during the connectionism movement of the 1980s
that remain central to today’s deep learning.

One of these concepts is that of distributed representation (Hinton et al.,
1986). This is the idea that each input to a system should be represented by many
features, and each feature should be involved in the representation of many possible
inputs. For example, suppose we have a vision system that can recognize cars.
trucks, and birds, and these objects can each be red, green, or blue. One way
of representing these iputs would be to have a separate neuron or hidden unit

16

INTRODUCTION

important new development is that today we can provide these algorithms with
the resources they need to succeed. Figure 1.8 shows how the size of benchmark
datasets has expanded remarkably over time. This trend is driven by the increasing
digitization of society. As more and more of our activities take place on computers,
more and more of what we do is recorded. As our computers are increasingly
networked together, it becomes easier to centralize these records and curate them
into a dataset appropriate for machine learning applications. The age of “Big Data”
has made machine learning much easier because the key burden of statistical
estimation—generalizing well to new data after observing only a small amount

10
10
10
10
10
10
10
10
10
10

Dataset size (number examples)

e AN A A o rr LAl T L LN R

Figure 1.8: Increasing dataset size over time. In the early 1900s, statisticians studied
datasets using hundreds or thousands of manually compiled measurements (Garson, 1900;
Gosset, 1908; Anderson, 1935; Fisher, 1936). In the 1950s through the 1980s, the pioneers
of biologically inspired machine learning often worked with small synthetic datasets, such
as low-resolution bitmaps of letters, that were designed to incur low computational cost and
demonstrate that neural networks were able to learn specific kinds of functions (Widrow
and Hoff, 1960; Rumelhart et al., 1986b). In the 1980s and 1990s, machine learning
became more statistical and began to leverage larger datasets containing tens of thousands
of examples, such as the MNIST dataset (shown in figure 1.9) of scans of handwritten
numbers (LeCun et al., 1998b). In the first decade of the 2000s, more sophisticated datasets
of this same size, such as the CIFAR-10 dataset (Krizhevsky and Hinton, 2009), continued
to be produced. Toward the end of that decade and throughout the first half of the
2010s, significantly larger datasets, containing hundreds of thousands to tens of millions
of examples, completely changed what was possible with deep learning. These datasets
included the public Street View House Numbers dataset (Netzer et al., 2011), various
versions of the ImageNet dataset (Deng et al., 2009, 2010a; Russakovsky et al., 2014a),
and the Sports-1M dataset (Karpathy et al., 2014). At the top of the graph, we see that
datasets of translated sentences, such as IBM’s dataset constructed from the Canadian
Hansard (Brown et al., 1990) and the WMT 2014 English to French dataset (Schwenk,
2014), are typically far ahead of other dataset sizes.

19

CHAPTER 1

Figure 1.9: Example inputs from the MNIST dataset. The “NIST” stands for National
Institute of Standards and Technology, the agency that originally collected this data.
The “M” stands for “modified,” since the data has been preprocessed for easier use with
machine learning algorithms. The MNIST dataset consists of scans of handwritten digits
and associated labels describing which digit 0-9 is contained in each image. This simple
classification problem is one of the simplest and most widely used tests in deep learning
research. It remains popular despite being quite easy for modern techniques to solve.
Geoffrey Hinton has described it as “the drosophila of machine learning,” meaning that it
enables machine learning researchers to study their algorithms in controlled laboratory
conditions, much as biologists often study fruit flies.

of data—has been considerably lightened. As of 2016, a rough rule of thumb
1s that a supervised deep learning algorithm will generally achieve acceptable
performance with around 5.000 labeled examples per category and will match or
exceed human performance when trained with a dataset containing at least 10

million labeled examples. Working successfully with datasets smaller than this is

20

INTRODUCTION

an important research area, focusing in particular on how we can take advantage
of large quantities of unlabeled examples, with unsupervised or semi-supervised
learning.

1.2.3 Increasing Model Sizes

Another key reason that neural networks are wildly successful today after enjoying
comparatively little success since the 1980s is that we have the computational
resources to run much larger models today. One of the main insights of connection-
ism is that animals become intelligent when many of their neurons work together.
An individual neuron or small collection of neurons is not particularly useful.

Biological neurons are not especially densely connected. As seen in figure 1.10,
our machine learning models have had a number of connections per neuron within
an order of magnitude of even mammalian brains for decades.

In terms of the total number of neurons, neural networks have been astonishingly
small until quite recently, as shown in figure 1.11. Increasing neural network size
over time. Since the introduction of hidden units, artificial neural networks have
doubled in size roughly every 2.4 years. This growth is driven by faster computers
with larger memory and by the availability of larger datasets. Larger networks are
able to achieve higher accuracy on more complex tasks. This trend looks set to
continue for decades. Unless new technologies enable faster scaling, artificial neural
networks will not have the same number of neurons as the human brain until at
least the 2050s. Biological neurons may represent more complicated functions than
current artificial neurons, so biological neural networks may be even larger than
this plot portrays.

In retrospect, it is not particularly surprising that neural networks with fewer
neurons than a leech were unable to solve sophisticated artificial intelligence prob-
lems. Even today’s networks, which we consider quite large from a computational
systems point of view, are smaller than the nervous system of even relatively
primitive vertebrate animals like frogs.

The increase in model size over timme, due to the availability of faster CPUs,
the advent of general purpose GPUs (described in section 12.1.2), faster network
connectivity and better software infrastructure for distributed computing, is one of
the most important trends in the history of deep learning. This trend is generally
expected to continue well into the tuture.

2]

CHAPTER 1

10 - [Human)
~
E Cat
= 10 '—'[M[Duse]
3
ot
o
B
E 10 "[Fruit ﬂ}rj
=
-2
L
10

Figure 1.10: Number of connections per neuron over time. Initially, the number of connec-
tions between neurons in artificial neural networks was limited by hardware capabilities.
Today, the number of connections between neurons is mostly a design consideration. Some
artificial neural networks have nearly as many connections per neuron as a cat, and it
is quite common for other neural networks to have as many connections per neuron as
smaller mammals like mice. Even the human brain does not have an exorbitant amount
of connections per neuron. Biological neural network sizes from Wikipedia (2015).

1. Adaptive linear element (Widrow and Hoff, 1960)
Neocognitron (Fukushima, 1980)

sPU-accelerated convolutional network (Chellapilla et al., 2006)

L

Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)

L

Unsupervised convolutional network (Jarrett et al., 2009)

6. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

7. Distributed autoencoder (Le et al., 2012)

8. Multi-GPU convolutional network (Krizhevsky et al., 2012)

9. COTS HPC unsupervised convolutional network (Coates et al., 2013)

10. GoogleNet (Szegedy et al., 2014a)

1.2.4 Increasing Accuracy, Complexity and Real-World Impact

Since the 1980s, deep learning has consistently improved in its ability to provide
accurate recognition and prediction. Moreover, deep learning has consistently been
applied with success to broader and broader sets of applications.

The earliest deep models were used to recognize individual objects in tightly
cropped, extremely small images (Rumelhart et al., 1986a). Since then there has
been a gradual increase in the size of images neural networks could process. Modern
object recognition networks process rich high-resolution photographs and do not
have a requirement that the photo be cropped near the object to be recognized

22

INTRODUCTION

2 !
= 10
% 10!
E 10
= 10
'% 10
10
o
= 10
Z 10
% 10
S 10
= 10
E 10
10~
5 10~
"z

LS B — L NF R — L B — R R R

Figure 1.11: Increasing neural network size over time. Since the introduction of hidden
units, artificial neural networks have doubled in size roughly every 2.4 years. Biological
neural network sizes from Wikipedia (2015).

1. Perceptron (Rosenblatt, 1958, 1962)

2. Adaptive linear element {Widrow and Hoff, 1960)

3. Neocognitron (Fukushima, 1980)

4. Harly back-propagation network (Rumelhart et al., 1986b)

5. Recurrent neural network for speech recognition (Robinson and Fallside, 1991)

6. Multilayer perceptron for speech recognition (Bengio et al., 1991)
Mean field sigmoid belief network (Saul et al., 1996)
LeNet-5 (LeCun et al., 1998b)
Echo state network (Jaeger and Haas, 2004)
10. Deep beliel network (Hinton et al., 2006)
11. GPU-accelerated convolutional network (Chellapilla et al., 2006)
12. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)
13. GPU-accelerated deep belief network (Raina et al., 2009)
14. Unsupervised convolutional network (Jarrett et al., 2009)
15. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)
16. OMP-1 network (Coates and Ng, 2011)
17. Distributed autoencoder (Le et al., 2012)
18, Multi-GPU convolutional network (Krizhevsky et al., 2012)
19. COTS HPC unsupervised convolutional network (Coates et al., 2013)
20. GoogleNet (Szegedy et al., 2014a)

(Krizhevsky et al., 2012). Similarly, the earliest networks could recognize only
two kinds of objects (or in some cases, the absence or presence of a single kind of
object), while these modern networks typically recognize at least 1,000 different
categories of objects. The largest contest in object recognition is the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) held each year. A dramatic
moment in the meteoric rise of deep learning came when a convolutional network

23

CHAPTER 1

images used to construct a 3-D map of the human brain (Knowles-Barley et al.,
2014). We expect deep learning to appear in more and more scientific fields in the
future.

In summary, deep learning is an approach to machine learning that has drawn
heavily on our knowledge of the human brain, statistics and applied math as it
developed over the past several decades. In recent years, deep learning has seen
tremendous growth in its popularity and usefulness, largely as the result of more
powerful computers, larger datasets and techniques to train deeper networks. The
vears ahead are full of challenges and opportunities to improve deep learning even
further and to bring it to new frontiers.

26

|

Applied Math and Machine

Learning Basics

PART I

This part of the book introduces the basic mathematical concepts needed to
understand deep learning. We begin with general ideas from applied math that
enable us to define functions of many variables, find the highest and lowest points
on these functions, and quantify degrees of belief.

Next, we describe the fundamental goals of machine learning. We describe how
to accomplish these goals by specifying a model that represents certain beliefs,
designing a cost function that measures how well those beliefs correspond with
reality, and using a training algorithm to minimize that cost function.

This elementary framework is the basis for a broad variety of machine learning
algorithms, including approaches to machine learning that are not deep. In the
subsequent parts of the book, we develop deep learning algorithms within this
framework.

28

Linear Algebra

Linear algebra is a branch of mathematics that is widely used throughout science
and engineering. Yet because linear algebra is a form of continuous rather than
discrete mathematics, many computer scientists have little experience with it. A
cood understanding of linear algebra is essential for understanding and working
with many machine learning algorithms, especially deep learning algorithms. We
therefore precede our introduction to deep learning with a focused presentation of
the key linear algebra prerequisites.

If you are already familiar with linear algebra, feel free to skip this chapter. It
yvou have previous experience with these concepts but need a detailed reference
sheet to review key formulas, we recommend The Matriz Cookbook (Petersen and
Pedersen, 2006). If you have had no exposure at all to linear algebra, this chapter
will teach you enough to read this book, but we highly recommend that you also
consult another resource focused exclusively on teaching linear algebra, such as
Shilov (1977). This chapter completely omits many important linear algebra topics
that are not essential for understanding deep learning.

2.1 Scalars, Vectors, Matrices and Tensors
The study of linear algebra involves several types of mathematical objects:

e Scalars: A scalar is just a single number, in contrast to most of the other
objects studied in linear algebra, which are usually arrays of multiple numbers.
We write scalars in italics. We usually give scalars lowercase variable names.
When we introduce them, we specify what kind of number they are. For

CHAPTER 2

example, we might say “Let s € R be the slope of the line,” while defining a
real-valued scalar, or “Let n € N be the number of units,” while defining a
natural number scalar.

e Vectors: A vector is an array ol numbers. The numbers are arranged in
order. We can identity each individual number by its index in that ordering.
Typically we give vectors lowercase names in bold typeface, such as x. The
elements of the vector are identified by writing its name in italic typetace,
with a subscript. The first element of @ is 21, the second element is x5, and
so on. We also need to say what kind of numbers are stored in the vector. It
each element is in R, and the vector has n elements, then the vector lies in
the set formed by taking the Cartesian product of R n times, denoted as R".
When we need to explicitly identity the elements ot a vector, we write them
as a column enclosed in square brackets:

Il

p)
xr = - (2.1)

T

b— —

We can think of vectors as identifying points in space, with each element
oiving the coordinate along a different axis.

Sometimes we need to index a set of elements of a vector. In this case, we
define a set containing the indices and write the set as a subscript. For
example, to access z1, 3 and xg, we define the set S = {1,3,6} and write
xs. We use the — sign to index the complement of a set. For example x_; is
the vector containing all elements of & except for 1, and x_g is the vector
containing all elements of & except for x1, 3 and xg.

e Matrices: A matrix is a 2-D array of numbers, so each element is identified
by two indices instead of just one. We usually give matrices uppercase variable
names with bold typeface, such as A. If a real-valued matrix A has a height
of m and a width of n, then we say that A € R™*", We usually identify
the elements of a matrix using its name in italic but not bold font, and the
indices are listed with separating commas. For example, A; ; is the upper
left entry of A and A,,, is the bottom right entry. We can identify all
the numbers with vertical coordinate ¢ by writing a “:” for the horizontal
coordinate. For example, A; . denotes the horizontal cross section of A with
vertical coordinate 7. This is known as the i-th row of A. Likewise, A.; is

30

LINEAR ALGEBRA

Matrix multiplication is not commutative (the condition AB = BA does not
always hold), unlike scalar multiplication. However, the dot product between two
vectors is commutative:

v y=vy'x (2.8)
The transpose of a matrix product has a simple form:

(AB)' =B'A". (2.9)

This enables us to demonstrate equation 2.8 by exploiting the fact that the value
of such a product is a scalar and therefore equal to its own transpose:

-
x'y = (:I:Ty) =y x. (2.10)

Since the focus of this textbook i1s not linear algebra, we do not attempt to
develop a comprehensive list of useful properties of the matrix product here, but
the reader should be aware that many more exist.

We now know enough linear algebra notation to write down a system of linear
equations:

Ax =0b (2.11)
where A € R™*"™ is a known matrix, b € R™ is a known vector, and & € R" is a
vector of unknown variables we would like to solve for. Each element x; of @ is one
of these unknown variables. Each row of A and each element of b provide another
constraint. We can rewrite equation 2.11 as

A .x = b (2.12
A‘g?;ﬂ: — bz (2 13
(2.14

)
)
)
Am,:ﬂ: — bm (2 ld)

or even more explicitly as

Al:liﬂl + Al,2$2 T Al,niﬂn = by (th)
Az 121 + Agoxo + -+ - + Aoy = by (2.17)
(2.18)

Amzliﬂl + Am.,E:L'E T T Am,n:ﬂn = bp,. (2]9)

Matrix-vector product notation provides a more compact representation for
equations of this form.

33

CHAPTER 2

2.3 Identity and Inverse Matrices

Linear algebra offers a powertul tool called matrix inversion that enables us to
analytically solve equation 2.11 for many values of A.

To describe matrix inversion, we first need to define the concept of an identity
matrix. An identity matrix is a matrix that does not change any vector when we
multiply that vector by that matrix. We denote the identity matrix that preserves
n-dimensional vectors as I,,. Formally, I,, € R"*", and

Yz € R" I,z = . (2.20)

The structure of the identity matrix is simple: all the entries along the main
diagonal are 1, while all the other entries are zero. See figure 2.2 for an example.

The matrix inverse of A is denoted as A~!. and it is defined as the matrix
such that

A'A=1,. (2.21)

We can now solve equation 2.11 using the following steps:

Ax =b (2.22

A 'Az =A"'b (2.23
I,x = A"'b (2.24
r = A "'b. (2.25

Of course, this process depends on it being possible to find A~'. We discuss
the conditions for the existence of A~! in the following section.

When A~! exists, several different algorithms can find it in closed form. In
theory, the same inverse matrix can then be used to solve the equation many times
for different values of b. A~! is primarily useful as a theoretical tool, however, and
should not actually be used in practice for most software applications. Because A~
can be represented with only limited precision on a digital computer, algorithms
that make use of the value of b can usually obtain more accurate estimates of .

L

1 0 0
01 0
000 1

Figure 2.2: Example identity matrix: This 1s I3.

34

LINEAR ALGEBRA

2.4 Linear Dependence and Span

For A~! to exist, equation 2.11 must have exactly one solution for every value of
b. It is also possible for the system of equations to have no solutions or infinitely
many solutions for some values of b. It is not possible, however, to have more than
one but less than infinitely many solutions for a particular b; if both & and y are
solutions, then

z=ax+ (1 —a)y (2.26)

1s also a solution for any real a.

To analyze how many solutions the equation has, think of the columns of A as
specifying different directions we can travel in from the origin (the point specified
by the vector of all zeros), then determine how many ways there are of reaching b.
In this view, each element of & specifies how far we should travel in each of these
directions, with x; specifying how far to move in the direction of column ¢:

Ax = :EE'A;:-;_‘ (2.27)

In general, this kind of operation is called a linear combination. Formally, a
linear combination of some set of vectors {vm, ...,v™} is given by multiplying
each vector vV by a corresponding scalar coefficient and adding the results:

Z (:.1-1?[?:}. (2.28)

7

The span of a set of vectors i1s the set of all points obtainable by linear combination
of the original vectors.
Determining whether Aax = b has a solution thus amounts to testing whether

b is in the span of the columns of A. This particular span is known as the column
space, or the range, of A.

In order for the system Ax = b to have a solution for all values of b € R™,
we therefore require that the column space of A be all of R™. If any point in R™
1s excluded from the column space, that point is a potential value of b that has
no solution. The requirement that the column space of A be all of R™ implies
immediately that A must have at least m columns, that is, n > m. Otherwise, the
dimensionality of the column space would be less than m. For example, consider a
3 x 2 matrix. The target b is 3-D, but « is only 2-D, so modifying the value of @
at best enables us to trace out a 2-D plane within R?. The equation has a solution
it and only it b lies on that plane.

CHAPTER 2

Having n > m is only a necessary condition for every point to have a solution.

It 1s not a sufficient condition, because it 1s possible for some of the columns to

be redundant. Consider a 2 x 2 matrix where both of the columns are identical.
This has the same column space as a 2 x 1 matrix containing only one copy of the
replicated column. In other words, the column space is still just a line and fails to
encompass all of R?, even though there are two columns.

Formally, this kind of redundancy is known as linear dependence. A set of
vectors is linearly independent if no vector in the set is a linear combination
of the other vectors. If we add a vector to a set that is a linear combination of
the other vectors in the set, the new vector does not add any points to the set’s
span. This means that for the column space of the matrix to encompass all of R™,
the matrix must contain at least one set of m linearly independent columns. This
condition is both necessary and sufficient for equation 2.11 to have a solution for
every value of b. Note that the requirement is for a set to have exactly m linear
independent columns, not at least m. No set of m-dimensional vectors can have
more than m mutually linearly independent columns, but a matrix with more than
m columns may have more than one such set.

For the matrix to have an inverse, we additionally need to ensure that equa-
tion 2.11 has at most one solution for each value of b. To do so, we need to make
certain that the matrix has at most m columns. Otherwise there is more than one
way of parametrizing each solution.

Together, this means that the matrix must be square, that is, we require that
m = n and that all the columns be linearly independent. A square matrix with
linearly dependent columns is known as singular.

[f A is not square or is square but singular, solving the equation is still possible,
but we cannot use the method of matrix inversion to find the solution.

So far we have discussed matrix inverses as being multiplied on the left. It is
also possible to define an inverse that is multiplied on the right:

AA ' =1T. (2.29)

For square matrices, the left inverse and right inverse are equal.

2.5 Norms

Sometimes we need to measure the size of a vector. In machine learning, we usually
measure the size of vectors using a function called a norm. Formally, the LP norm

36

LINEAR ALGEBRA

1s given by

||y =) |al? (2.30)

i
forpeR,p > 1.

Norms, including the L? norm, are functions mapping vectors to non-negative
values. On an intuitive level, the norm of a vector & measures the distance from
the origin to the point ®. More rigorously, a norm is any function f that satisfies
the following properties:

e f(x)=0=2x =0
e flx+1vy) < f(x)+ f(y) (the triangle inequality)
e Va €R, faz) = |a|f(z)

The L? norm, with p = 2, is known as the Euclidean norm, which is simply
the Euclidean distance from the origin to the point identified by «. The L? norm
|
with the subscript 2 omitted. It is also common to measure the size of a vector

using the squared L? norm, which can be calculated simply as x ' z.

1s used so frequently in machine learning that it is often denoted simply as

3

The squared L? norm is more convenient to work with mathematically and
computationally than the L? norm itself. For example, each derivative of the squared
L? norm with respect to each element of depends only on the corresponding
element of x, while all the derivatives of the L? norm depend on the entire vector.
In many contexts, the squared L? norm may be undesirable because it increases
very slowly near the origin. In several machine learning applications, it is important
to discriminate between elements that are exactly zero and elements that are small
but nonzero. In these cases, we turn to a function that grows at the same rate in
all locations, but that retains mathematical simplicity: the L' norm. The L' norm
may be simplified to

| =)

7

£g

. (2.31)

The L' norm is commonly used in machine learning when the difference between
zero and nonzero elements is very important. Every time an element of & moves
away from 0 by ¢, the L' norm increases by e.

We sometimes measure the size of the vector by counting its number of nonzero
elements. Some authors refer to this function as the “L" norm.” but this is incorrect
terminology. The number of nonzero entries in a vector is not a norm, because

37

CHAPTER 2

For example, integers can be decomposed into prime factors. The way we
represent the number 12 will change depending on whether we write it in base ten
or in binary, but it will always be true that 12 = 2 X 2 X 3. From this representation
we can conclude useful properties, for example, that 12 is not divisible by 5, and
that any integer multiple of 12 will be divisible by 3.

Much as we can discover something about the true nature of an integer by
decomposing it into prime factors, we can also decompose matrices in ways that
show us information about their functional properties that is not obvious from the
representation of the matrix as an array of elements.

One of the most widely used kinds of matrix decomposition is called eigen-
decomposition, in which we decompose a matrix into a set of eigenvectors and
eigenvalues.

An eigenvector of a square matrix A is a nonzero vector v such that multi-
plication by A alters only the scale of v:

Av =). (2.39)

The scalar A is known as the eigenvalue corresponding to this eigenvector. (One
can also find a left eigenvector such that v' A = Mv', but we are usually
concerned with right eigenvectors.)

If v is an eigenvector of A, then so is any rescaled vector sv for s € R, s # 0.
Moreover, sv still has the same eigenvalue. For this reason, we usually look only
for unit eigenvectors.

Suppose that a matrix A has n linearly independent eigenvectors { o
v with corresponding eigenvalues {1, ..., A\,}. We may concatenate all the
eigenvectors to form a matrix V' with one eigenvector per column: V = ['U'il):, ey
'u{’”’}]. Likewise, we can concatenate the eigenvalues to form a vector A = [\, ...,
AH]T. The eigendecomposition of A is then given by

A = Vdiag A\) V1 (2.40)

We have seen that constructing matrices with specific eigenvalues and eigen-
vectors enables us to stretch space in desired directions. Yet we often want to
decompose matrices into their eigenvalues and eigenvectors. Doing so can help
us analyze certain properties of the matrix, much as decomposing an integer into
its prime factors can help us understand the behavior of that integer.

Not every matrix can be decomposed into eigenvalues and eigenvectors. In some
cases, the decomposition exists but involves complex rather than real numbers.

40

LINEAR ALGEBRA

Fortunately, in this book, we usually need to decompose only a specific class of
matrices that have a simple decomposition. Specifically, every real symmetric
matrix can be decomposed into an expression using only real-valued eigenvectors
and eigenvalues:

A=QAQ", (2.41)

where) 1s an orthogonal matrix composed of eigenvectors of A, and A is a diagonal
matrix. The eigenvalue A;; 1s associated with the eigenvector in column 7 of @,
denoted as Q. ;. Because @ is an orthogonal matrix, we can think of A as scaling
space by \; in direction v®). See figure 2.3 for an example.

While any real symmetric matrix A is guaranteed to have an eigendecomposi-
tion, the eigendecomposition may not be unique. If any two or more eigenvectors
share the same eigenvalue, then any set of orthogonal vectors lying in their span
are also eigenvectors with that eigenvalue, and we could equivalently choose a @
using those eigenvectors instead. By convention, we usually sort the entries of A
in descending order. Under this convention, the eigendecomposition is unique only
if all the eigenvalues are unique.

'.T:D .’]?ID

Figure 2.3: Effect of eigenvectors and eigenvalues. An example of the effect of eigenvectors
and eigenvalues. Here, we have a matrix A with two orthonormal eigenvectors, v') with
eigenvalue \; and v(?) with eigenvalue As. (Left[We plot the set of all unit vectors u € R?
as a unit circle. (Right)We plot the set of all points Awu. By observing the way that A
distorts the unit circle, we can see that it scales space in direction v*) by \;.

CHAPTER 2

The eigendecomposition of a matrix tells us many useful facts about the
matrix. The matrix is singular if and only it any of the eigenvalues are zero.
The eigendecomposition of a real symmetric matrix can also be used to optimize
quadratic expressions of the form f(x) = &' Az subject to ||z||s = 1. Whenever
x is equal to an eigenvector of A, f takes on the value of the corresponding
eigenvalue. The maximum value of f within the constraint region is the maximum
cigenvalue and its minimum value within the constraint region i1s the minimum
eigenvalue.

A matrix whose eigenvalues are all positive is called positive definite. A matrix
whose eigenvalues are all positive or zero valued is called positive semidefinite.
Likewise, if all eigenvalues are negative, the matrix is negative definite, and if
all eigenvalues are negative or zero valued, it i1s negative semidefinite. Positive
semidefinite matrices are interesting because they guarantee that Vo, ' Az > 0.
Positive definite matrices additionally guarantee that ' Az =0 = x = 0.

2.8 Singular Value Decomposition

In section 2.7, we saw how to decompose a matrix into eigenvectors and eigenvalues.
The singular value decomposition (SVD) provides another way to factorize
a matrix, into singular vectors and singular values. The SVD enables us to
discover some of the same kind of information as the eigendecomposition reveals:
however, the SVD is more generally applicable. Every real matrix has a singular
value decomposition, but the same is not true of the eigenvalue decomposition.
For example, if a matrix is not square, the eigendecomposition is not defined, and
we must use a singular value decomposition instead.
Recall that the eigendecomposition involves analyzing a matrix A to discover
a matrix V of eigenvectors and a vector of eigenvalues A such that we can rewrite
A as
A = Vdiag(\)V . (2.42)

The singular value decomposition is similar, except this time we will write A
as a product of three matrices:

A=UDV'. (2.43)

Suppose that A 1s an m X n matrix. Then U is defined to be an m X m matrix,
D to be an m x n matrix, and V to be an n x n matrix.

LINEAR ALGEBRA

Fach of these matrices is defined to have a special structure. The matrices U
and V' are both defined to be orthogonal matrices. The matrix D is defined to be
a diagonal matrix. Note that D is not necessarily square.

The elements along the diagonal of D are known as the singular values of
the matrix A. The columns of U are known as the left-singular vectors. The
columns of V' are known as as the right-singular vectors.

We can actually interpret the singular value decomposition of A in terms of
the eigendecomposition of functions of A. The left-singular vectors of A are the
eigenvectors of AA . The right-singular vectors of A are the eigenvectors of A" A.
The nonzero singular values of A are the square roots of the eigenvalues of A" A.
The same is true for AA".

Perhaps the most usetul feature of the SVD is that we can use it to partially
generalize matrix inversion to nonsquare matrices, as we will see in the next section.

2.9 The Moore-Penrose Pseudoinverse
Matrix inversion is not defined for matrices that are not square. Suppose we want
to make a left-inverse B of a matrix A so that we can solve a linear equation
Ax =y (2.44)
by left-multiplying each side to obtain
x = By. (2.45)

Depending on the structure of the problem, it may not be possible to design a
unique mapping from A to B.

If A is taller than it is wide, then it is possible for this equation to have no
solution. If A i1s wider than it i1s tall, then there could be multiple possible solutions.

The Moore-Penrose pseudoinverse enables us to make some headway in
these cases. The pseudoinverse of A is defined as a matrix

At — 113‘10(ATA +al) AT (2.46)

Practical algorithms for computing the pseudoinverse are based not on this defini-
tion, but rather on the formula

AT =VD'U', (2.47)

43

CHAPTER 2

where U, D and V are the singular value decomposition of A, and the pseudoinverse
D™ of a diagonal matrix D is obtained by taking the reciprocal of its nonzero
elements then taking the transpose ot the resulting matrix.

When A has more columns than rows, then solving a linear equation using the
pseudoinverse provides one of the many possible solutions. Specifically, it provides
the solution = A"y with minimal Euclidean norm ||z||s among all possible
solutions.

When A has more rows than columns, it is possible for there to be no solution.
In this case, using the pseudoinverse gives us the @ for which Ax is as close as
possible to ¢ in terms of Euclidean norm |[Axz — y|

2.

2.10 The Trace Operator
The trace operator gives the sum of all the diagonal entries of a matrix:
i
The trace operator i1s useful for a variety of reasons. Some operations that are
difficult to specify without resorting to summation notation can be specified using

matrix products and the trace operator. For example, the trace operator provides
an alternative way of writing the Frobenius norm of a matrix:

|A]|F = |/ TH(AAT). (2.49)

Writing an expression in terms of the trace operator opens up opportunities
to manipulate the expression using many useful identities. For example, the trace
operator is invariant to the transpose operator:

Tr(A) = Tr(A'). (2.50)

The trace of a square matrix composed of many factors is also invariant to
moving the last factor into the first position, if the shapes of the corresponding
matrices allow the resulting product to be defined:

Tr(ABC)=Tr(CAB) =Tr(BCA) (2.51)
or more generally,
i) n—1
Te(] [FO) = Te(F™ || FW). (2.52)
1=1 1—1

44

LINEAR ALGEBRA

To make further progress, we must substitute in the definition of g(e):

¢* = argmin —2a' De+¢' D' De (2.60)
C
e 1 T T .
= argmin —2x Dc+ ¢ Ijc (2.61)
C

(by the orthogonality and unit norm constraints on D)

— argmin —2z ' Dc+c¢' ¢ (2.62)

L

We can solve this optimization problem using vector calculus (see section 4.3 if
you do not know how to do this):

Ve(—2x"'De+¢'e)=0 (2.63)
—2D 'z +2c=0 (2.64)
c=D'x. (2.65)

This makes the algorithm efficient: we can optimally encode x using just a
matrix-vector operation. To encode a vector, we apply the encoder function

f(x) =D"x. (2.66)

Using a further matrix multiplication, we can also define the PCA reconstruction
operation:
| : T .
r(x) =g (f (@) = DD a. (2.67)

Next, we need to choose the encoding matrix ID. To do so, we revisit the idea
of minimizing the L* distance between inputs and reconstructions. Since we will
use the same matrix D to decode all the points, we can no longer consider the
points in isolation. Instead, we must minimize the Frobenius norm of the matrix
of errors computed over all dimensions and all points:

D* = argmi ubject to D' D = 1. (2.68)
D

To derive the algorithm for finding D™, we start by considering the case where
[= 1. In this case, D is just a single vector, d. Substituting equation 2.67 into
equation 2.68 and simplifying D into d, the problem reduces to

d* = argmin » ||z —dd "z |[3 subject to ||d||2 = 1. (2.69)
d ;
(!

47

JHAPTER 2

The above formulation is the most direct way of performing the substitution but
15 not the most stylistically pleasing way to write the equation. It places the scalar
value d' (V) on the right of the vector d. Scalar coefficients are conventionally
written on the left of vector they operate on. We therefore usually write such a

tformula as

d* =argmin Y |[z) — d" 2" d|[3 subject to ||d]|2 = 1, (2.70)
d ;

or, exploiting the fact that a scalar 1s 1ts own transpose, as

d" = arg;minz |2 — 2D T dd||3 subject to ||d||s = 1. (2.71)
d

The reader should aim to become familiar with such cosmetic rearrangements.

At this point, it can be helpful to rewrite the problem in terms of a single
design matrix of examples, rather than as a sum over separate example vectors.
This will enable us to use more compact notation. Let X € R™*™ be the matrix

. . _ . NT
defined by stacking all the vectors describing the points, such that X;. = ()
We can now rewrite the problem as

¥ ey 1 T2, cubiec Td =
d* = argmin || X — Xdd || subject tod d = 1. (2.72)

d
Disregarding the constraint for the moment, we can simplify the Frobenius norm

portion as follows:

argmin || X — Xdd'||% (2.73)
d
T T T
— arg min Tr ((X ~ Xdd) (X ~ Xdd)) (2.74)
d

(by equation 2.49)

— arg min TI'(XTX ~X'Xdd' —dd'X"X + ddTXTdeT) (2.75)
d

—argminTr(X ' X) —Tr(X ' Xdd') —Tr(dd' X' X)+Tr(dd' X ' Xdd')
d

(2.76)
— argmin — Tr(X ' Xdd') — Tr(dd' X' X) + Tr(dd' X' Xdd') (2.77)
d
(because terms not involving d do not affect the arg min)
— argmin —2Tr(X ' Xdd') + Tr(dd' X' Xdd") (2.78)

I
d

48

LINEAR ALGEBRA

(because we can cycle the order of the matrices inside a trace, equation 2.52)

— argmin —2Tr(X ' Xdd') + Tr(X ' Xdd'dd")
d
(using the same property again).
At this point, we reintroduce the constraint:

argmin —2Tr(X ' Xdd') + Tr(X ' Xdd'dd') subject tod'd =1
d

— argmin —2Tr(X ' Xdd') + Tr(X " Xdd") subject tod'd =1
d
(due to the constraint)

— argmin — Tr(X ' Xdd') subject tod'd =1
d

— argmax Tr(X ' Xdd') subject tod'd =1
d

— argmax Tr(d' X " Xd) subject to d'd = 1.
d

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

This optimization problem may be solved using eigendecomposition. Specifically,
the optimal d is given by the eigenvector of X ' X corresponding to the largest

cigenvalue.

This derivation is specific to the case of [= 1 and recovers only the first

principal component. More generally, when we wish to recover a basis of principal

components, the matrix D 1s given by the [eigenvectors corresponding to the

largest eigenvalues. This may be shown using proot by induction. We recommend

writing this proof as an exercise.

Linear algebra is one of the fundamental mathematical disciplines necessary to

understanding deep learning. Another key area of mathematics that is ubiquitous

in machine learning is probability theory, presented next.

19

Copyrighted material

3

Probability and Information
Theory

In this chapter, we describe probability theory and information theory:.

Probability theory is a mathematical framework for representing uncertain
statements. It provides a means of quantifying uncertainty as well as axioms for
deriving new uncertain statements. In artificial intelligence applications, we use
probability theory in two major ways. First, the laws of probability tell us how Al
systems should reason, so we design our algorithms to compute or approximate
various expressions derived using probability theory. Second, we can use probability
and statistics to theoretically analyze the behavior of proposed Al systems.

Probability theory is a fundamental tool of many disciplines of science and
engineering. We provide this chapter to ensure that readers whose background is
primarily in software engineering, with limited exposure to probability theory, can
understand the material in this book.

While probability theory allows us to make uncertain statements and to reason
in the presence of uncertainty, information theory enables us to quantify the amount
of uncertainty in a probability distribution.

[f you are already familiar with probability theory and information theory, you
may wish to skip this chapter except for section 3.14, which describes the graphs
we use to describe structured probabilistic models for machine learning. If you have
absolutely no prior experience with these subjects, this chapter should be sufficient
to successfully carry out deep learning research projects, but we do suggest that
you consult an additional resource, such as Jaynes (2003).

CHAPTER 3

has certain symptoms. For more details about why a small set of common sense
assumptions implies that the same axioms must control both kinds of probability.
see Ramsey (1926).

Probability can be seen as the extension of logic to deal with uncertainty.
Logic provides a set of formal rules for determining what propositions are implied
to be true or false given the assumption that some other set of propositions is
true or false. Probability theory provides a set of formal rules for determining the
likelihood of a proposition being true given the likelihood of other propositions.

3.2 Random Variables

A random variable is a variable that can take on different values randomly. We
typically denote the random variable itself with a lowercase letter in plain typeface,
and the values it can take on with lowercase script letters. For example, 1 and x9
are both possible values that the random variable x can take on. For vector-valued
variables, we would write the random variable as x and one of i1its values as . On
1ts own, a random variable 1s just a description of the states that are possible; it
must be coupled with a probability distribution that specifies how likely each ot
these states are.

Random variables may be discrete or continuous. A discrete random variable
is one that has a finite or countably infinite number of states. Note that these
states are not necessarily the integers; they can also just be named states that
are not considered to have any numerical value. A continuous random variable is
associated with a real value.

3.3 Probability Distributions

A probability distribution is a description of how likely a random variable
or set of random variables is to take on each of its possible states. The way we
describe probability distributions depends on whether the variables are discrete or
continuous.

3.3.1 Discrete Variables and Probability Mass Functions

A probability distribution over discrete variables may be described using a proba-
bility mass function (PMF). We typically denote probability mass functions with
a capital P. Often we associate each random variable with a different probability

04

PROBABILITY AND INFORMATION THEORY

mass function and the reader must infer which PMF to use based on the identity
of the random variable, rather than on the name of the function; P(x) is usually
not the same as P(y).

The probability mass function maps from a state of a random variable to
the probability of that random variable taking on that state. The probability
that x = x is denoted as P(x), with a probability of 1 indicating that x = x is
certain and a probability of 0 indicating that x = x is impossible. Sometimes
to disambiguate which PMF to use, we write the name of the random variable
explicitly: P(x = x). Sometimes we define a variable first, then use ~ notation to

specify which distribution it follows later: x ~ P(x).

Probability mass functions can act on many variables at the same time. Such
a probability distribution over many variables is known as a joint probability
distribution. P(x = z,y = y) denotes the probability that x = x and y = y
simultaneously. We may also write P(z,y) for brevity.

To be a PMF on a random variable x, a function P must satisty the following
properties:

e The domain of PP must be the set of all possible states of x.

e Vr € x,0 < P(x) <1. An impossible event has probability 0, and no state
can be less probable than that. Likewise, an event that is guaranteed to
happen has probability 1, and no state can have a greater chance of occurring.

> .. P(x) = 1. We refer to this property as being normalized. Without
this property, we could obtain probabilities greater than one by computing
the probability of one of many events occurring.

For example, consider a single discrete random variable x with &k different
states. We can place a uniform distribution on x—that is, make each of its
states equally likely—by setting its PMF to

1

P(x = x;) = . (3.1)

for all 2. We can see that this fits the requirements for a probability mass function.
The value % is positive because k is a positive integer. We also see that

;P(xmf)giil, (3.2)

so the distribution is properly normalized.

09D

CHAPTER 3

3.3.2 Continuous Variables and Probability Density Functions

When working with continuous random variables, we describe probability distri-
butions using a probability density function (PDF) rather than a probability
mass function. To be a probability density tunction, a function p must satisty the
following properties:

e The domain of p must be the set of all possible states of x.
e YV € x,p(x) > 0. Note that we do not require p(z) < 1.

° fp(:l:)d:c = 1.

A probability density function p(x) does not give the probability of a specific
state directly; instead the probability of landing inside an infinitesimal region with
volume dx is given by p(x)dx.

We can integrate the density function to find the actual probability mass of a
set of points. Specifically, the probability that = lies in some set S is given by the
integral of p(x) over that set. In the univariate example, the probability that x lies
in the interval [a,b| is given by | b plx)d.

For an example of a PDF corresponding to a specific probability density over
a continuous random variable, consider a uniform distribution on an interval of
the real numbers. We can do this with a function u(z;a, b), where a and b are the
endpoints of the interval, with b > a. The ;" notation means “parametrized by”; we
consider x to be the argument of the function, while a and b are parameters that
define the function. To ensure that there is no probability mass outside the interval,
we say u(z;a,b) = 0 for all x & [a,b]. Within [a, b], u(x;a,b) = . We can see
that this is non-negative everywhere. Additionally, it integrates to 1. We often
denote that x follows the uniform distribution on |a, b| by writing x ~ U(a, b).

3.4 Marginal Probability

Sometimes we know the probability distribution over a set of variables and we want
to know the probability distribution over just a subset of them. The probability
distribution over the subset is known as the marginal probability distribution.

For example, suppose we have discrete random variables x and y, and we know
P(x,v). We can find P(x) with the sum rule:

Ve ex,Plx=ux)= Z Px=x,y=1y). (3.3)
Y

o6

PROBABILITY AND INFORMATION THEORY

The name “marginal probability” comes from the process of computing marginal
probabilities on paper. When the values of P(x,y) are written in a grid with different
values of x in rows and different values of ¥ in columns, it is natural to sum across
a row of the grid, then write P(x) in the margin of the paper just to the right of
the row.

For continuous variables, we need to use integration instead of summation:

p(x) = / p(x,y)dy. (3.4)

3.5 Conditional Probability

In many cases, we are interested in the probability of some event, given that some
other event has happened. This is called a conditional probability. We denote
the conditional probability that vy = y given x = x as P(y = y | x = z). This
conditional probability can be computed with the formula

P(y = y,x = x)
P(x = x)

Ply=y|x=1x)= (3.5)
The conditional probability is only defined when P(x = x) > 0. We cannot compute
the conditional probability conditioned on an event that never happens.

It is important not to confuse conditional probability with computing what
would happen if some action were undertaken. The conditional probability that
a person is from Germany given that they speak German is quite high, but if
a randomly selected person is taught to speak German, their country of origin
does not change. Computing the consequences of an action is called making an
intervention query. Intervention queries are the domain of causal modeling,
which we do not explore in this book.

3.6 The Chain Rule of Conditional Probabilities

Any joint probability distribution over many random variables may be decomposed
into conditional distributions over only one variable:

P(x", ... xM) = P(x{”)ﬂ?:sz P(xW | xM o xE=)y, (3.6)

This observation is known as the chain rule, or product rule, of probability.
[t follows immediately from the definition of conditional probability in equation 3.5.

o7

CHAPTER 3

For example, applying the definition twice, we get
P(a,b,c¢) = P(a|b,c)P(b,c)

,¢) = P(blc)P(c)
P(a,b,c) = P(a|b,c)P(b|c)P(c).

— h
-
P
L

3.7 Independence and Conditional Independence

Two random variables x and y are independent if their probability distribution
can be expressed as a product of two factors, one involving only x and one involving
only v:

Vrexyey, px=z,y=y) =px=1z)p(y = v9). (3.7)

Two random variables x and y are conditionally independent given a random
variable z if the conditional probability distribution over x and y factorizes in this
way for every value of z:

7= z).

(3.8)

We can denote independence and conditional independence with compact

Z:E):p(}{:m‘zzﬁ)p(}f:y

Vrex,yceyv,z€z, px=x,y=1y

notation: x Ly means that x and y are independent, while x 1y | z means that x
and y are conditionally independent given z.

3.8 Expectation, Variance and Covariance

The expectation, or expected value, of some function f(x) with respect to a
probability distribution P(x) is the average, or mean value, that f takes on when
x 1s drawn from P. For discrete variables this can be computed with a summation:

Explf(z)] =) _ P(2)f(x) (3.9)
r
while for continuous variables, it is computed with an integral:

Explf(z)] = /;}(I)j(i)d.t, (3.10)

o8

PROBABILITY AND INFORMATION THEORY

is parametrized by a vector p € [0, 1]‘%_1, where p; gives the probability of the
i-th state. The final, k-th state’s probability is given by 1 — 1'"p. Note that
we must constrain 1'p < 1. Multinoulli distributions are often used to refer
to distributions over categories of objects, so we do not usually assume that
state 1 has numerical value 1, and so on. For this reason, we do not usually
need to compute the expectation or variance of multinoulli-distributed random
variables.

The Bernoulli and multinoulli distributions are sufficient to describe any dis-
tribution over their domain. They are able to describe any distribution over their
domain not so much because they are particularly powertul but rather because their
domain is simple; they model discrete variables for which it is feasible to enumerate
all the states. When dealing with continuous variables, there are uncountably many
states, so any distribution described by a small number of parameters must impose
strict limits on the distribution.

3.9.3 Gaussian Distribution

The most commonly used distribution over real numbers is the normal distribu-
tion, also known as the Gaussian distribution:

——(z—p)*). (3.21)

See figure 3.1 for a plot of the normal distribution density function.

The two parameters u € R and o € (0,00) control the normal distribution.
The parameter i gives the coordinate of the central peak. This 1s also the mean of
the distribution: E[x] = u. The standard deviation of the distribution is given by

o, and the variance by o2.

When we evaluate the PDF, we need to square and invert o. When we need to
frequently evaluate the PDF with different parameter values, a more efficient way
of parametrizing the distribution is to use a parameter 3 € (0,00) to control the
precision, or inverse variance, of the distribution:

—— Bz — pu)*). (3.22)

Normal distributions are a sensible choice for many applications. In the absence
of prior knowledge about what form a distribution over the real numbers should
take, the normal distribution is a good default choice for two major reasons.

61

CHAPTER 3

0.4(
0.3¢
0.3(
0.2¢
o 0.2(
0.1¢
0. 1(
0.0¢

0.0(
—Z2.0 —1.0 —1.U —U.D U.u U.o 1.U 1.9 Z.U

Figure 3.1: The normal distribution. The normal distribution A (x; s, 02) exhibits a classic
“bell curve” shape, with the 2 coordinate of its central peak given by p, and the width of
its peak controlled by ¢. In this example, we depict the standard normal distribution,
with =0 and o = 1.

First, many distributions we wish to model are truly close to being normal
distributions. The central limit theorem shows that the sum of many indepen-
dent random variables 1s approximately normally distributed. This means that
in practice, many complicated systems can be modeled successfully as normally
distributed noise, even if the system can be decomposed into parts with more
structured behavior.

Second, out of all possible probability distributions with the same variance,
the normal distribution encodes the maximum amount of uncertainty over the real
numbers. We can thus think of the normal distribution as being the one that inserts
the least amount of prior knowledge into a model. Fully developing and justifying
this idea requires more mathematical tools and 1s postponed to section 19.4.2.

The normal distribution generalizes to R™, in which case 1t 1s known as the
multivariate normal distribution. It may be parametrized with a positive
definite symmetric matrix 3J:

N(x;p, X) = P (—%(:{r —p) BN - p,)) . (3.23)

The parameter p still gives the mean of the distribution, though now it is
vector valued. The parameter X gives the covariance matrix of the distribution.

62

PROBABILITY AND INFORMATION THEORY

As in the univariate case, when we wish to evaluate the PDF several times for
many different values of the parameters, the covariance is not a computationally
efficient way to parametrize the distribution, since we need to invert 3 to evaluate
the PDF. We can instead use a precision matrix 3:

N(z;p,) = Xp(—%@%—mfﬁ@w—#g- (3.24)

We often fix the covariance matrix to be a diagonal matrix. An even simpler
version is the isotropic Gaussian distribution, whose covariance matrix is a scalar
times the identity matrix.

3.9.4 Exponential and Laplace Distributions

In the context of deep learning, we often want to have a probability distribution
with a sharp point at x = 0. To accomplish this, we can use the exponential
distribution:

px; A) = Alg>pexp (—Az). (3.25)
The exponential distribution uses the indicator function 1,> to assign probability

zero to all negative values of x.

A closely related probability distribution that allows us to place a sharp peak
of probability mass at an arbitrary point u is the Laplace distribution

1 €T —
Laplace(x; j1,y) = 5 €XP (—- 2 _u\) . (3.26)
Y Y

3.9.5 The Dirac Distribution and Empirical Distribution

In some cases, we wish to specify that all the mass in a probability distribution
clusters around a single point. This can be accomplished by defining a PDF using
the Dirac delta function, 6(x):

p(x) = o(z — p). (3.27)

The Dirac delta function is defined such that it 1s zero valued evervwhere except
0, vet integrates to 1. The Dirac delta function is not an ordinary function that
associates each value x with a real-valued output; instead it is a different kind of
mathematical object called a generalized function that is defined in terms of its
properties when integrated. We can think of the Dirac delta function as being the

63

CHAPTER 3

limit point of a series of functions that put less and less mass on all points other
than zero.

By defining p(x) to be ¢ shifted by —u we obtain an infinitely narrow and
infinitely high peak of probability mass where z = pu.

A common use of the Dirac delta distribution is as a component of an empirical

distribution,
Tri

§5(x — ' 3.2
mz x—x\") (3.28)

}

which puts probability mass % on each of the m points &V, ... z(™) , forming

a given data set or collection of samples. The Dirac delta d]‘-—-tl]butli_}lfl is only
necessary to define the empirical distribution over continuous variables. For discrete
variables, the situation is simpler: an empirical distribution can be conceptualized
as a multinoulli distribution, with a probability associated with each possible
input value that is simply equal to the empirical frequency of that value in the
training set.

We can view the empirical distribution formed from a dataset of training
examples as specitying the distribution that we sample from when we train a model
on this dataset. Another important perspective on the empirical distribution is
that it 1s the probability density that maximizes the likelihood of the training data
(see section 5.5).

3.9.6 Mixtures of Distributions

It 1s also common to define probability distributions by combining other simpler
probability distributions. One common way of combining distributions is to con-
struct a mixture distribution. A mixture distribution is made up of several
component distributions. On each trial, the choice of which component distribution
should generate the sample is determined by sampling a component identity from
a multinoulli distribution:

P(x) = Z Plc =i)P(x|c=1), (3.29)

where P(c) is the multinoulli distribution over component identities.
We have already seen one example of a mixture distribution: the empirical

distribution over real-valued variables 1s a mixture distribution with one Dirac
component for each training example.

64

PROBABILITY AND INFORMATION THEORY

The mixture model is one simple strategy for combining probability distributions
to create a richer distribution. In chapter 16, we explore the art of building complex
probability distributions from simple ones in more detail.

The mixture model allows us to briefly glimpse a concept that will be of
paramount importance later—the latent variable. A latent variable is a random
variable that we cannot observe directly. The component identity variable ¢ of the
mixture model provides an example. Latent variables may be related to x through
the joint distribution, in this case, P(x,c) = P(x | ¢)P(c¢). The distribution P(c)
over the latent variable and the distribution P(x | ¢) relating the latent variables
to the visible variables determines the shape of the distribution P(x), even though
it is possible to describe P(x) without reference to the latent variable. Latent
variables are discussed turther in section 16.5.

A very powerful and common type of mixture model is the Gaussian mixture
model, in which the components p(x | ¢ = 7) are Gaussians. Fach component has
a separately parametrized mean p'¥ and covariance (V). Some mixtures can have
more constraints. For example, the covariances could be shared across components
via the constraint () = ¥, Vi. As with a single Gaussian distribution, the mixture
of Gaussians might constrain the covariance matrix for each component to be
diagonal or isotropic.

In addition to the means and covariances, the parameters of a Gaussian mixture
specify the prior probability «; = P(c = i) given to each component 7. The word
“prior” indicates that it expresses the model’s beliefs about ¢ before it has observed
x. By comparison, P(c |) is a posterior probability, because it is computed
after observation of x. A Gaussian mixture model is a universal approximator
of densities, in the sense that any smooth density can be approximated with
any specific nonzero amount of error by a Gaussian mixture model with enough
components.

Figure 3.2 shows samples from a Gaussian mixture model.

3.10 Useful Properties of Common Functions

Certain functions arise often while working with probability distributions, especially
the probability distributions used in deep learning models.

One of these functions is the logistic sigmoid:

1
1 +exp(—z)

o(x) = (3.30)

CHAPTER 3

The function o~ () is called the logit in statistics, but this term is rarely used in
machine learning.

ql

Equation 3.41 provides extra justification for the name “softplus.” The softplus
function is intended as a smoothed version of the positive part function, z™ =
max{0, z}. The positive part function is the counterpart of the negative part
function, r= = max{0, —z}. To obtain a smooth function that is analogous to the
negative part, one can use ((—x). Just as 2 can be recovered from its positive part

|

and its negative part via the identity 27 — &~ = x, it is also possible to recover x

using the same relationship between ((x) and ((—x), as shown in equation 3.41.

3.11 Bayes’ Rule

We often find ourselves in a situation where we know P(y | x) and need to know
P(x | y). Fortunately, if we also know P(x), we can compute the desired quantity

using Bayes’ rule:
P(x)P(y

P(y)
Note that while P(y) appears in the formula, it is usually feasible to compute

P(y)=)>_. P(y | x)P(x), so we do not need to begin with knowledge of P(y).

Bayes’ rule is straightforward to derive from the definition of conditional

x)

P(x|y) = (3.42)

probability, but it is useful to know the name of this formula since many texts refer
to it by name. It is named after the Reverend Thomas Bayes, who first discovered
a special case of the formula. The general version presented here was independently
discovered by Pierre-Simon Laplace.

3.12 Technical Details of Continuous Variables

A proper formal understanding of continuous random variables and probability
density functions requires developing probability theory in terms of a branch of
mathematics known as measure theory. Measure theory is beyond the scope of
this textbook, but we can briefly sketch some of the issues that measure theory is
employed to resolve.

In section 3.3.2, we saw that the probability of a continuous vector-valued x
lying in some set S is given by the integral of p(a) over the set S. Some choices of set
S can produce paradoxes. For example, it is possible to construct two sets §; and
So such that p(x € S1) + p(x € S3) > 1 but $; N'Se = (). These sets are generally
constructed making very heavy use of the infinite precision of real numbers, for

68

PROBABILITY AND INFORMATION THEORY

example by making fractal-shaped sets or sets that are defined by transforming
the set of rational numbers.? One of the key contributions of measure theory is
to provide a characterization of the set of sets we can compute the probability ot
without encountering paradoxes. In this book, we integrate only over sets with
relatively simple descriptions, so this aspect of measure theory never becomes a
relevant concern.

For our purposes, measure theory is more useful for describing theorems that
apply to most points in R"™ but do not apply to some corner cases. Measure theory
provides a rigorous way of describing that a set of points is negligibly small. Such
a set 1s said to have measure zero. We do not formally define this concept in this
textbook. For our purposes, it is sufficient to understand the intuition that a set
of measure zero occupies no volume in the space we are measuring. For example,
within R?, a line has measure zero, while a filled polygon has positive measure.
Likewise, an individual point has measure zero. Any union of countably many sets
that each have measure zero also has measure zero (so the set of all the rational
numbers has measure zero, for instance).

Another useful term from measure theory is almost everywhere. A property
that holds almost everywhere holds throughout all space except for on a set ot
measure zero. Because the exceptions occupy a negligible amount of space, they
can be safely ignored for many applications. Some important results in probability
theory hold for all discrete values but hold “almost everywhere” only for continuous
values.

Another technical detail of continuous variables relates to handling continuous
random variables that are deterministic functions of one another. Suppose we have
two random variables, x and y, such that y = g(x), where ¢ is an invertible, con-
tinuous, differentiable transformation. One might expect that p,(y) = p.(9 ' (y)).
This is actually not the case.

As a simple example, suppose we have scalar random variables x and vy.
q e vr . X, _) o S .) .) v . S
Suppose y = 3 and x ~ U(0,1). If }%-{_“: use the rule p,(y) = p»(2y) then p, will be 0
everywhere except the interval |0, g]j and 1t will be 1 on this interval. This means

. | .
/ py(y)dy = 5 (3.43)

which violates the definition of a probability distribution. This is a common mistake.
The problem with this approach is that 1t tails to account for the distortion of
space introduced by the function g. Recall that the probability of & lying in an
infinitesimally small region with volume d2 is given by p(x)dx. Since g can expand

“The Banach-Tarski theorem provides a fun example of such sets.

69

CHAPTER 3

or contract space, the infinitesimmal volume surrounding x in @ space may have
different volume in y space.

To see how to correct the problem, we return to the scalar case. We need to
preserve the property

py(9(x))dy| = [ps(x)da (3.44)
Solving from this, we obtain
Ox
—1 . _
Py(y) = pz(9~ (y)) o (3.45)
or equivalently
dg(x) 0 Ap
Pa(x) = py(9()) “ar | (3.46)
X
In higher dimensions, the derivative generalizes to the determinant of the Jacobian
matrix—the matrix with J; ; = g;’*‘ Thus, for real-valued vectors x and vy,
' J
dg(x ;
pel) = py(g(@)) |det (222) | (3.47

3.13 Information Theory

Information theory is a branch of applied mathematics that revolves around
quantifying how much information is present in a signal. It was originally invented
to study sending messages from discrete alphabets over a noisy channel, such as
communication via radio transmission. In this context, information theory tells how
to design optimal codes and calculate the expected length of messages sampled from
specific probability distributions using various encoding schemes. In the context of
machine learning, we can also apply information theory to continuous variables
where some of these message length interpretations do not apply. This field is
fundamental to many areas of electrical engineering and computer science. In this
textbook, we mostly use a few key ideas from information theory to characterize
probability distributions or to quantify similarity between probability distributions.
For more detail on information theory, see Cover and Thomas (2006) or MacKay
(2003).

The basic intuition behind information theory is that learning that an unlikely
event has occurred is more informative than learning that a likely event has
occurred. A message saying “the sun rose this morning” is so uninformative as
to be unnecessary to send, but a message saying “there was a solar eclipse this
morning” is very informative.

70

PROBABILITY AND INFORMATION THEORY

We would like to quantify information in a way that formalizes this intuition.

e Likely events should have low information content, and in the extreme case.
events that are guaranteed to happen should have no information content
whatsoever.

o Less likely events should have higher information content.

e Independent events should have additive information. For example, finding
out that a tossed coin has come up as heads twice should convey twice as
much information as finding out that a tossed coin has come up as heads
once.

To satisty all three of these properties, we define the self-information of an
event x = x to be

I(z) = —log P(x). (3.48)

In this book, we always use log to mean the natural logarithm, with base e. Our
definition of /(z) is therefore written in units of nats. One nat is the amount of
information gained by observing an event of probability ﬁ Other texts use base-2
logarithms and units called bits or shannons; information measured in bits is

just a rescaling of information measured in nats.

When x is continuous, we use the same definition of information by analogy:,
but some of the properties from the discrete case are lost. For example, an event
with unit density still has zero information, despite not being an event that is
cguaranteed to occur.

Seli-information deals only with a single outcome. We can quantify the amount
of uncertainty in an entire probability distribution using the Shannon entropy,

H(x) = Expll(2)] = —Exp|log P(x)], (3.49)

also denoted H(P). In other words, the Shannon entropy of a distribution is the
expected amount of information in an event drawn from that distribution. It gives
a lower bound on the number of bits (if the logarithm is base 2, otherwise the units
are different) needed on average to encode symbols drawn from a distribution P.
Distributions that are nearly deterministic (where the outcome is nearly certain)
have low entropy; distributions that are closer to uniform have high entropy. See
figure 3.5 for a demonstration. When x is continuous, the Shannon entropy is
known as the differential entropy.

I[f we have two separate probability distributions P(x) and ()(x) over the same
random variable x, we can measure how different these two distributions are using

71

CHAPTER 3

0.
0.
0.
0.

0.

Shannon entropy in nats

0.

Tt Rl Tt et L el & Tt” L L ol # R

Figure 3.5: Shannon entropy of a binary random variable. This plot shows how distributions
that are closer to deterministic have low Shannon entropy while distributions that are close
to uniform have high Shannon entropy. On the horizontal axis, we plot p, the probability of
a binary random variable being equal to 1. The entropy is given by (p—1) log(1—p)—plog p.
When p is near 0, the distribution is nearly deterministic, because the random variable is
nearly always 0. When p is near 1, the distribution is nearly deterministic, because the
random variable is nearly always 1. When p = 0.5, the entropy is maximal, because the
distribution is uniform over the two outcomes.

the Kullback-Leibler (KL) divergence:

Dir(P||Q) = Eyup |log 58 — E,..p [log P(z) — log Q(z)] . (3.50)

[n the case of discrete variables, it is the extra amount of information (measured
in bits if we use the base-2 logarithm, but in machine learning we usually use nats
and the natural logarithm) needed to send a message containing symbols drawn
from probability distribution P, when we use a code that was designed to minimize
the length of messages drawn from probability distribution (.

The KL divergence has many useful properties, most notably being non-
negative. The KL divergence is 0 if and only if P and () are the same distribution
in the case of discrete variables, or equal “almost everywhere” in the case of
continuous variables. Because the KL divergence is non-negative and measures
the difference between two distributions, it is often conceptualized as measuring
some sort of distance between these distributions. It is not a true distance measure
because it is not symmetric: Dk, (P||Q) # Dx1,(Q| P) for some P and (). This
asymmetry means that there are important consequences to the choice of whether
to use Dkr,(P||Q) or Dk, (Q| P). See figure 3.6 for more detail.

72

PROBABILITY AND INFORMATION THEORY

Figure 3.7: A directed graphical model over random variables a, b, ¢, d and e. This graph
corresponds to probability distributions that can be factored as

p(a,b,c,d,e) =pla)p(b | a)p(c | a,b)p(d | b)ple | c). (3.54)

This graphical model enables us to quickly see some properties of the distribution. For
example, a and c interact directly, but a and e interact only indirectly via c.

See figure 3.7 for an example of a directed graph and the factorization of probability
distributions it represents.

Undirected models use graphs with undirected edges, and they represent
factorizations into a set of functions; unlike in the directed case, these functions
are usually not probability distributions of any kind. Any set of nodes that are all
connected to each other in G is called a clique. Each clique C') in an undirected
model is associated with a factor ¢ (C()). These factors are just functions, not
probability distributions. The output of each factor must be non-negative, but
there is no constraint that the factor must sum or integrate to 1 like a probability
distribution.

The probability of a configuration of random variables is proportional to the
assignments that result in larger factor values are

product of all these factors
more likely. Of course, there is no guarantee that this product will sum to 1. We
therefore divide by a normalizing constant 7, defined to be the sum or integral
over all states of the product of the ¢ functions, in order to obtain a normalized
probability distribution:

1 (i ; -
p(x) = ~ qu){*} (Cm> . (3.59)

See figure 3.8 for an example of an undirected graph and the factorization of
probability distributions it represents.

CHAPTER 3

Figure 3.8: An undirected graphical model over random variables a, b, ¢, d and e. This
graph corresponds to probability distributions that can be factored as

1 F . |
pla,b,c,d,e) = Egﬁvm(aj b, cjfﬁau} (b, {I)Q}{d) (c,e). (3.56)

This graphical model enables us to quickly see some properties of the distribution. For
example, a and ¢ interact directly, but a and e interact only indirectly via c.

Keep in mind that these graphical representations of factorizations are a
language for describing probability distributions. They are not mutually exclusive
families of probability distributions. Being directed or undirected is not a property
of a probability distribution; it is a property of a particular description of a
probability distribution, but any probability distribution may be described in both
ways.

Throughout parts I and II of this book, we use structured probabilistic models
merely as a language to describe which direct probabilistic relationships different
machine learning algorithms choose to represent. No further understanding of
structured probabilistic models 1s needed until the discussion of research topics, in
part 111, where we explore structured probabilistic models in much greater detail.

This chapter has reviewed the basic concepts of probability theory that are
most relevant to deep learning. One more set of fundamental mathematical tools
remains: numerical methods.

76

4

Numerical Computation

Machine learning algorithms usually require a high amount of numerical
computation. This typically refers to algorithms that solve mathematical problems
by methods that update estimates of the solution via an iterative process, rather
than analytically deriving a formula to provide a symbolic expression for the
correct solution. Common operations include optimization (finding the value of an
argument that minimizes or maximizes a function) and solving systems of linear
equations. Even just evaluating a mathematical function on a digital computer can
be difficult when the tunction involves real numbers, which cannot be represented
precisely using a finite amount of memory:.

4.1 Overflow and Underflow

The fundamental difficulty in performing continuous math on a digital computer is
that we need to represent infinitely many real numbers with a finite number of bit
patterns. This means that for almost all real numbers, we incur some approximation
error when we represent the number in the computer. In many cases, this is just
rounding error. Rounding error is problematic, especially when it compounds across
many operations, and can cause algorithms that work in theory to fail in practice
if they are not designed to minimize the accumulation of rounding error.

Omne form of rounding error that is particularly devastating is underflow.
Underflow occurs when numbers near zero are rounded to zero. Many functions
behave qualitatively differently when their argument is zero rather than a small
positive number. For example, we usually want to avoid division by zero (some
software environments will raise exceptions when this occurs, others will return a

CHAPTER 4

result with a placeholder not-a-number value) or taking the logarithm of zero (this
1s usually treated as —oo, which then becomes not-a-number if it 1s used for many
further arithmetic operations).

Another highly damaging form of numerical error is overflow. Overflow occurs
when numbers with large magnitude are approximated as oo or —oo. Further
arithmetic will usually change these infinite values into not-a-number values.

One example of a function that must be stabilized against underflow and
overflow is the softmax function. The softmax function is often used to predict
the probabilities associated with a multinoulli distribution. The softmax function
is defined to be

softmax(x); = (4.1)

Consider what happens when all the z; are equal to some constant ¢. Analytically,
we can see that all the outputs should be equal to % Numerically, this may not
occur when ¢ has large magnitude. If ¢ is very negative, then exp(c) will underflow.
This means the denominator of the softmax will become 0, so the final result is
undefined. When c is very large and positive, exp(c) will overflow, again resulting in
the expression as a whole being undefined. Both of these difficulties can be resolved
by instead evaluating softmax(z) where z = — max; ;. Simple algebra shows
that the value of the softmax function is not changed analytically by adding or
subtracting a scalar from the input vector. Subtracting max; x; results in the largest
argument to exp being 0, which rules out the possibility of overflow. Likewise, at
least one term in the denominator has a value of 1, which rules out the possibility
of underflow in the denominator leading to a division by zero.

There is still one small problem. Underflow in the numerator can still cause
the expression as a whole to evaluate to zero. This means that if we implement
log softmax(a) by first running the softmax subroutine then passing the result to
the log function, we could erroneously obtain —oc. Instead, we must implement
a separate function that calculates log softmax in a numerically stable way. The
log softmax function can be stabilized using the same trick as we used to stabilize
the softmax function.

For the most part, we do not explicitly detail all the numerical considerations
involved in implementing the various algorithms described in this book. Developers
of low-level libraries should keep numerical issues in mind when implementing
deep learning algorithms. Most readers of this book can simply rely on low-
level libraries that provide stable implementations. In some cases, it is possible
to implement a new algorithm and have the new implementation automatically

L

stabilized. Theano (Bergstra et al., 2010; Bastien et al., 2012) is an example

78

NUMERICAL COMPUTATION

of a software package that automatically detects and stabilizes many common
numerically unstable expressions that arise in the context of deep learning.

4.2 Poor Conditioning

Conditioning refers to how rapidly a function changes with respect to small changes
in its inputs. Functions that change rapidly when their inputs are perturbed slightly
can be problematic for scientific computation because rounding errors in the inputs
can result in large changes in the output.

Consider the function f(x) = A7 'xz. When A € R™™™ has an eigenvalue
decomposition, its condition number is
Ai
max [—| . (4.2)
g | A
This is the ratio of the magnitude of the largest and smallest eigenvalue. When
this number is large, matrix iversion 1s particularly sensitive to error in the mput.
T'his sensitivity is an intrinsic property of the matrix itself, not the result
of rounding error during matrix inversion. Poorly conditioned matrices amplity
pre-existing errors when we multiply by the true matrix inverse. In practice, the
error will be compounded further by numerical errors in the inversion process itself.

4.3 Gradient-Based Optimization

Most deep learning algorithms involve optimization of some sort. Optimization
refers to the task of either minimizing or maximizing some function f(a) by altering
x. We usually phrase most optimization problems in terms of minimizing f(x).
Maximization may be accomplished via a minimization algorithm by minimizing

—f(x).

The function we want to minimize or maximize is called the objective func-
tion, or criterion. When we are minimizing it, we may also call it the cost
function, loss function, or error function. In this book, we use these terms
interchangeably, though some machine learning publications assign special meaning
to some of these terms.

We often denote the value that minimizes or maximizes a function with a

superscript *. For example, we might say ® = argmin f(x).

We assume the reader is already familiar with calculus but provide a briet
review of how calculus concepts relate to optimization here.

79

CHAPTER 4

For functions with multiple inputs, we must make use of the concept of partial
derivatives. The partial derivative d"—;;‘(m) measures how f changes as only the
variable x; increases at point . The gradient generalizes the notion of derivative
to the case where the derivative is with respect to a vector: the gradient of f is
the vector containing all the partial derivatives, denoted Vg f(a). Element i of the

oradient is the partial derivative of f with respect to z;. In multiple dimensions,
critical points are points where every element of the gradient 1s equal to zero.
The directional derivative in direction v (a unit vector) is the slope of the
function f in direction u. In other words, the directional derivative is the derivative
of the function f(x + aw) with respect to «a, evaluated at o« = 0. Using the chain
ATy @ at O al11atec T : _
rule, we can see that 5~ f(x + au) evaluates to u' Vg f(x) when a = 0.

To minimize f, we would like to find the direction in which f decreases the
fastest. We can do this using the directional derivative:

min u' Vgf(x) (4.3)

(TR TR TES)

— min ||ull2||Va/ (@)
1

w, ! u=

9 cos 0 (4.4)

where 0 is the angle between w and the gradient. Substituting in ||u|l2 = 1 and
ignoring factors that do not depend on wu, this simplifies to min,, cos@. This is
minimized when w points in the opposite direction as the gradient. In other
words, the gradient points directly uphill, and the negative gradient points directly
downhill. We can decrease f by moving in the direction of the negative gradient.
This is known as the method of steepest descent, or gradient descent.

Steepest descent proposes a new point
! '
T =x —eVyf(x) (4.5)

where € is the learning rate, a positive scalar determining the size of the step.
We can choose € in several different ways. A popular approach is to set € to a small
constant. Sometimes, we can solve for the step size that makes the directional

derivative vanish. Another approach is to evaluate f (x — eVf(x)) for several
values of € and choose the one that results in the smallest objective function value.
This last strategy is called a line search.

Steepest descent converges when every element of the gradient is zero (or,
in practice, very close to zero). In some cases, we may be able to avoid running
this iterative algorithm and just jump directly to the critical point by solving the
equation V,f(x) = 0 for x.

82

NUMERICAL COMPUTATION

Although gradient descent is limited to optimization in continuous spaces, the
general concept of repeatedly making a small move (that is approximately the best
small move) toward better configurations can be generalized to discrete spaces.
Ascending an objective function of discrete parameters is called hill climbing
(Russel and Norvig, 2003).

4.3.1 DBeyond the Gradient: Jacobian and Hessian Matrices

Sometimes we need to find all the partial derivatives of a function whose input
and output are both vectors. The matrix containing all such partial derivatives is
known as a Jacobian matrix. Specifically, if we have a function f : R™ — R"™,
then the Jacobian matrix J € R"*™ of f is defined such that J; ; = %}‘(m)?

We are also sometimes interested in a derivative of a derivative. This is known
as a second derivative. For example, for a function f : R" — R, the derivative
with respect to x; of the derivative of f with respect to x; 1s denoted as deW f.

In a single dimension, we can denote gg f by f”(x). The second derivative tells
us how the first derivative will change as we vary the input. This is important
because it tells us whether a gradient step will cause as much of an improvement
as we would expect based on the gradient alone. We can think of the second
derivative as measuring curvature. Suppose we have a quadratic function (many
functions that arise in practice are not quadratic but can be approximated well
as quadratic, at least locally). If such a function has a second derivative of zero,
then there i1s no curvature. It is a perfectly flat line, and its value can be predicted
using only the gradient. If the gradient is 1, then we can make a step of size e
along the negative gradient, and the cost function will decrease by €. If the second
derivative is negative, the function curves downward, so the cost tfunction will
actually decrease by more than e. Finally, if the second derivative is positive,
the function curves upward, so the cost function can decrease by less than e. See
figure 4.4 to see how different forms of curvature affect the relationship between
the value of the cost function predicted by the gradient and the true value.

When our function has multiple input dimensions, there are many second
derivatives. These derivatives can be collected together into a matrix called the
Hessian matrix. The Hessian matrix H(f)(x) is defined such that

07

{L}iLISS_IJ '

H(f)(x)i; = fz). (4.6)

Equivalently, the Hessian is the Jacobian of the gradient.

83

CHAPTER 4

¥ T L] &
hT.i'\!..r'-!"l"'\. ‘-4--—.!"\. -‘-Iq'l'I'F'F'I'ﬁJ"I'F“-‘-\I h o R W e '1--!1-4.1#'\1 T}.—"\.-'-"--I-I-—.lﬁ-\. rlq‘ﬂ'F'FﬁJ"I'F“ﬁ

fir)

wli ol wls

Figure 4.4: The second derivative determines the curvature of a function. Here we show
quadratic functions with various curvature. The dashed line indicates the value of the
cost function we would expect based on the gradient information alone as we make a
gradient step downhill. With negative curvature, the cost function actually decreases
faster than the gradient predicts. With no curvature, the gradient predicts the decrease
correctly. With positive curvature, the function decreases more slowly than expected and
eventually begins to increase, so steps that are too large can actually increase the function
inadvertently.

Anywhere that the second partial derivatives are continuous, the differential
operators are commutative; that is, their order can be swapped:
0? 9?
flzx) = .
8:1:1-3:1:3- 8LjaLLg

f(x). (4.7)

This implies that H; ; = H;;, so the Hesslan matrix 1s symmetric at such points.
Most of the functions we encounter in the context of deep learning have a symmetric
Hessian almost everywhere. Because the Hessian matrix is real and symmetric,
we can decompose it into a set of real eigenvalues and an orthogonal basis of
cigenvectors. The second derivative in a specific direction represented by a unit
vector d is given by d' Hd. When d is an eigenvector of H, the second derivative
in that direction is given by the corresponding eigenvalue. For other directions of
d, the directional second derivative is a weighted average of all the eigenvalues,
with weights between 0 and 1, and eigenvectors that have a smaller angle with d
receiving more weight. The maximum eigenvalue determines the maximum second
derivative, and the minimum eigenvalue determines the minimum second derivative.

The (directional) second derivative tells us how well we can expect a gradient
descent step to perform. We can make a second-order Taylor series approximation

84

NUMERICAL COMPUTATION

to the function f(x) around the current point x(%):

f@) ~ @) + (@ —2®) g+ 5 (@ —a®) Hz—2®), (48)
where g is the gradient and H is the Hessian at (9. If we use a learning rate
of €, then the new point & will be given by x(¥) — eg. Substituting this into our
approximation, we obtain

f@ —eg) ~ f(2") —eg'g + %EEQTH{}'- (4.9)
There are three terms here: the original value of the function, the expected
improvement due to the slope of the function, and the correction we must apply
to account for the curvature of the function. When this last term is too large, the
eradient descent step can actually move uphill. When g' Hg is zero or negative,
the Taylor series approximation predicts that increasing e forever will decrease f
forever. In practice, the Taylor series is unlikely to remain accurate for large ¢, so
one must resort to more heuristic choices of € in this case. When g ' Hg is positive,
solving for the optimal step size that decreases the Taylor series approximation of
the function the most yields

-
X g g :
€ = . (4.10)
T
g Hg
In the worst case, when g aligns with the eigenvector of H corresponding to the
maximal eigenvalue Apax, then this optimal step size is given by ~——. To the

}‘T't"l a2

extent that the function we minimize can be approximated well by a quadratic

function, the eigenvalues of the Hessian thus determine the scale of the learning
rate.

The second derivative can be used to determine whether a critical point is
a local maximum, a local minimum, or a saddle point. Recall that on a critical
point, f'(z) = 0. When the second derivative f”(xz) > 0, the first derivative f’(z)
increases as we move to the right and decreases as we move to the left. This means
f'(r—€) <0 and f'(x 4+ €) > 0 for small enough €. In other words, as we move
right, the slope begins to point uphill to the right, and as we move left, the slope
begins to point uphill to the left. Thus, when f'(z) = 0 and f"(x) > 0, we can
conclude that x is a local minimum. Similarly, when f/(z) =0 and f”(x) < 0, we
can conclude that x 1s a local maximum. This is known as the second derivative
test. Unfortunately, when f”(z) = 0, the test is inconclusive. In this case = may
be a saddle point or a part of a flat region.

In multiple dimensions, we need to examine all the second derivatives of the
function. Using the eigendecomposition of the Hessian matrix, we can generalize

85

CHAPTER 4

the second derivative test to multiple dimensions. At a critical point, where
Vaf(x) =0, we can examine the eigenvalues of the Hessian to determine whether
the critical point i1s a local maximum, local minimum, or saddle point. When the
Hessian is positive definite (all its eigenvalues are positive), the point is a local
minimum. This can be seen by observing that the directional second derivative
in any direction must be positive, and making reference to the univariate second
derivative test. Likewise, when the Hessian is negative definite (all its eigenvalues
are negative), the point is a local maximum. In multiple dimensions, it is actually
possible to find positive evidence of saddle points in some cases. When at least
one eigenvalue is positive and at least one eigenvalue is negative, we know that
x 1s a local maximum on one cross section of f but a local minimum on another
cross section. See figure 4.5 for an example. Finally, the multidimensional second
derivative test can be inconclusive, just as the univariate version can. The test
is inconclusive whenever all the nonzero eigenvalues have the same sign but at
least one eigenvalue is zero. This is because the univariate second derivative test is
inconclusive in the cross section corresponding to the zero eigenvalue.

In multiple dimensions. there is a different second derivative for each direction
at a single point. The condition number of the Hessian at this point measures
how much the second derivatives differ from each other. When the Hessian has a
poor condition number, gradient descent performs poorly. This is because in one

Figure 4.5: A saddle point containing both positive and negative curvature. The function
in this example is f(x) = 2% — z35. Along the axis corresponding to z, the function curves
upward. This axis is an eigenvector of the Hessian and has a positive eigenvalue. Along the
axis corresponding to xq, the function curves downward. This direction is an eigenvector of
the Hessian with negative eigenvalue. The name “saddle point” derives from the saddle-like
shape of this function. This is the quintessential example of a function with a saddle point.
In more than one dimension, it is not necessary to have an eigenvalue of 0 to get a saddle
point: it is only necessary to have both positive and negative eigenvalues. We can think of
a saddle point with both signs of eigenvalues as being a local maximum within one cross
section and a local minimum within another cross section.

86

NUMERICAL COMPUTATION

cuarantees by making stronger restrictions. These algorithms are applicable only
to convex functions—tunctions for which the Hessian i1s positive semidefinite
everywhere. Such functions are well-behaved because they lack saddle points, and
all their local minima are necessarily global minimma. However, most problems in
deep learning are difficult to express in terms of convex optimization. Convex
optimization is used only as a subroutine of some deep learning algorithms. Ideas
from the analysis of convex optimization algorithms can be useful for proving
the convergence of deep learning algorithms, but in general, the importance of
convex optimization is greatly diminished in the context of deep learning. For more
information about convex optimization, see Boyd and Vandenberghe (2004) or
Rockafellar (1997).

4.4 Constrained Optimization

Sometimes we wish not only to maximize or minimize a function f(a) over all
possible values of x. Instead we may wish to find the maximal or minimal value
of f(a) for values of @ in some set S. This is known as constrained optimiza-
tion. Points & that lie within the set S are called feasible points in constrained
optimization terminology:.

We often wish to find a solution that is small in some sense. A common approach
in such situations is to impose a norm constraint, such as ||z|| < 1.

One simple approach to constrained optimization is simply to modity gradient
descent taking the constraint into account. If we use a small constant step size €,
we can make gradient descent steps, then project the result back into S. If we use
a line search, we can search only over step sizes e that yield new @ points that are
feasible, or we can project each point on the line back into the constraint region.
When possible, this method can be made more ethcient by projecting the gradient
into the tangent space of the teasible region before taking the step or beginning
the line search (Rosen, 1960).

A more sophisticated approach is to design a different, unconstrained opti-
mization problem whose solution can be converted into a solution to the original,
constrained optimization problem. For example, if we want to minimize f(x) for
x € R? with & constrained to have exactly unit L* norm, we can instead minimize
g(0) = f([cos@,sinf] ") with respect to 6, then return [cos 6, sin #] as the solution
to the original problem. This approach requires creativity; the transformation
between optimization problems must be designed specifically for each case we
encounter.

89

CHAPTER 4

The Karush-Kuhn-Tucker (KKT) approach! provides a very general
solution to constrained optimization. With the KK'T approach, we introduce
a new function called the generalized Lagrangian or generalized Lagrange
function.

To define the Lagrangian, we first need to describe 5 in terms of equations
and inequalities. We want a description of S in terms of m functions ¢*) and n
functions h7) so that S = {x | Vi, ¢ (x) = 0 and V4, A% (x) < 0}. The equations
involving ¢'¥) are called the equality constraints, and the inequalities involving
h'9) are called inequality constraints.

We introduce new variables A\; and «; for each constraint, these are called the
KKT multipliers. The generalized Lagrangian is then defined as

L(z, A o) = f(x) + > NigW(x)+) a;hY (z). (4.14)
2 J

We can now solve a constrained minimization problem using unconstrained
optimization of the generalized Lagrangian. As long as at least one feasible point
exists and f(x) is not permitted to have value oo, then

min max max L(x, A\, a) (4.15)
T A aac=l)

has the same optimal objective function value and set of optimal points x as

min f(x). (4.16)

rcS

This follows because any time the constraints are satisfied,

max max L(xz, A\, a) = f(x), (4.17)

A a,a>()

while any time a constraint is violated,

max max L(x, A\, a) = oc. (4.18)
A oozl

These properties guarantee that no infeasible point can be optimal, and that the
optimum within the feasible points 1s unchanged.

"The KKT approach generalizes the method of Lagrange multipliers, which allows equality
constraints but not inequality constraints.

90

NUMERICAL COMPUTATION

To perform constrained maximization, we can construct the generalized
Lagrange function of — f(x), which leads to this optimization problem:

min max max —f(x) + Z \ig'V () + Z a;hY)(x). (4.19)
i j

T A ool

We may also convert this to a problem with maximization in the outer loop:

max min min f(ax) + Z Xig' (x) — Z (kjf'a(jj(m), (4.20)

A a,a>0

J
The sign of the term for the equality constraints does not matter; we may define it
with addition or subtraction as we wish, because the optimization is free to choose
any sign for each A;.

The inequality constraints are particularly interesting. We say that a constraint
h) (&) is active if h()(x*) = 0. If a constraint is not active, then the solution to
the problem found using that constraint would remain at least a local solution if
that constraint were removed. It 1s possible that an immactive constraint excludes
other solutions. For example, a convex problem with an entire region of globally
optimal points (a wide, flat region of equal cost) could have a subset of this
region eliminated by constraints, or a nonconvex problem could have better local
stationary points excluded by a constraint that is inactive at convergence. Yet the
point found at convergence remains a stationary point whether or not the inactive
constraints are included. Because an inactive h{") has negative value, then the
solution to ming maxy maxq,a>0 L(x, A, &) will have a; = 0. We can thus observe
that at the solution, e @ h(@x) = 0. In other words, for all 7, we know that at least
one of the constraints «; > 0 or h.(i)(ﬂ::) < 0 must be active at the solution. To gain
some intuition for this idea, we can say that either the solution is on the boundary
imposed by the inequality and we must use its KKT multiplier to influence the
solution to @, or the inequality has no influence on the solution and we represent
this by zeroing out its KK'T multiplier.

A simple set of properties describe the optimal points of constrained opti-
mization problems. These properties are called the Karush-Kuhn-Tucker (KKT)
conditions (Karush, 1939; Kuhn and Tucker, 1951). They are necessary conditions,
but not always sufficient conditions, for a point to be optimal. The conditions are:

e The gradient of the generalized Lagrangian is zero.
e All constraints on both & and the KKT multipliers are satisfied.
¢ The inequality constraints exhibit “complementary slackness™ a @ h(x) = 0.

For more information about the KK'T approach, see Nocedal and Wright (2006).

91

CHAPTER 4

4.5 Example: Linear Least Squares

Suppose we want to find the value of & that minimizes
. 1 9
f(z) = 5||Az — b]}3. (4.21)

Specialized linear algebra algorithins can solve this problem efficiently; however.,
we can also explore how to solve it using gradient-based optimization as a simple
example of how these techniques work.

First, we need to obtain the gradient:

Vef(x) =A'(Ax —b)= A" Az — A'b. (4.22)

We can then follow this gradient downhill, taking small steps. See algorithm 4.1
for details.

Algorithm 4.1 An algorithm to minimize f(z) = ;||Az — b
using gradient descent, starting from an arbitrary value of @.

% with respect to x

Set the step size (€) and tolerance (d) to small, positive numbers.
while [|[A' Az — A'b||s > 6 do
r—x—c(A Axr — A'Db)

end while

One can also solve this problem using Newton’s method. In this case, because
the true function is quadratic, the quadratic approximation employed by Newton’s
method is exact, and the algorithm converges to the global minimum in a single
step.

Now suppose we wish to minimize the same function, but subject to the
constraint ' < 1. To do so, we introduce the Lagrangian

L(z,\) = f(z) + A (me _ 1) | (4.23)
We can now solve the problem

min max L(x, \). (4.24)
T A AZ0

The smallest-norm solution to the unconstrained least-squares problem may be
found using the Moore-Penrose pseudoinverse: & = A" b. If this point is feasible,
then it 1s the solution to the constrained problem. Otherwise, we must find a

92

NUMERICAL COMPUTATION

solution where the constraint is active. By differentiating the Lagrangian with
respect to &, we obtain the equation

A'Az — A'b+2\z = 0. (4.25)
This tells us that the solution will take the form
r=(A"A+2\I)"'A"Db. (4.26)

The magnitude of A must be chosen such that the result obeys the constraint. We
can find this value by performing gradient ascent on A. To do so, observe

0
O\
When the norm of & exceeds 1, this derivative is positive, so to follow the derivative
uphill and increase the Lagrangian with respect to A, we increase . Because the
coefficient on the & '@ penalty has increased, solving the linear equation for

will now yield a solution with a smaller norm. The process of solving the linear

equation and adjusting A continues until & has the correct norm and the derivative
on A is 0.

Llx\)=a'x—1. (4.27)

This concludes the mathematical preliminaries that we use to develop machine
learning algorithms. We are now ready to build and analyze some full-fledged
learning systems.

93

CHAPTER 5

descent. We describe how to combine various algorithm components, such as an
optimization algorithm, a cost function, a model, and a dataset, to build a machine
learning algorithm. Finally, in section 5.11, we describe some of the factors that have
limited the ability of traditional machine learning to generalize. These challenges

have motivated the development of deep learning algorithms that overcome these
obstacles.

5.1 Learning Algorithms

A machine learning algorithm is an algorithm that is able to learn from data.
But what do we mean by learning? Mitchell (1997) provides a succinct definition:
“A computer program is said to learn from experience F with respect to some
class of tasks 7" and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience F.” One can imagine a wide variety of
experiences F, tasks T', and performance measures P, and we do not attempt in
this book to formally define what may be used for each of these entities. Instead,
in the following sections, we provide intuitive descriptions and examples of the
different kinds of tasks, performance measures, and experiences that can be used
to construct machine learning algorithms.

5.1.1 The Task, T

Machine learning enables us to tackle tasks that are too difficult to solve with
fixed programs written and designed by human beings. From a scientific and
philosophical point of view, machine learning is interesting because developing our
understanding of it entails developing our understanding of the principles that
underlie intelligence.

In this relatively formal definition of the word “task.,” the process of learning
itself is not the task. Learning is our means of attaining the ability to perform
the task. For example, if we want a robot to be able to walk, then walking is the
task. We could program the robot to learn to walk, or we could attempt to directly
write a program that specifies how to walk manually.

Machine learning tasks are usually described in terms of how the machine
learning system should process an example. An example is a collection of features
that have been quantitatively measured from some object or event that we want
the machine learning system to process. We typically represent an example as a
vector & € R™ where each entry x; of the vector is another feature. For example,
the features of an image are usually the values of the pixels in the image.

96

