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Preface

In recent years, life science and data science have converged. Advances in robotics
and automation have enabled chemists and biologists to generate enormous amounts
of data. Scientists today are capable of generating more data in a day than their prede-
cessors 20 years ago could have generated in an entire career. This ability to rapidly
generate data has also created a number of new scientific challenges. We are no longer
in an era where data can be processed by loading it into a spreadsheet and making a
couple of graphs. In order to distill scientific knowledge from these datasets, we must
be able to identify and extract nonobvious relationships.

One technique that has emerged over the last few years as a powerful tool for identi-
fying patterns and relationships in data is deep learning, a class of algorithms that
have revolutionized approaches to problems such as image analysis, language transla-
tion, and speech recognition. Deep learning algorithms excel at identifying and
exploiting patterns in large datasets. For these reasons, deep learning has broad appli-
cations across life science disciplines. This book provides an overview of how deep
learning has been applied in a number of areas including genetics, drug discovery,
and medical diagnosis. Many of the examples we describe are accompanied by code
examples that provide a practical introduction to the methods and give the reader a
starting point for future research and exploration.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.
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Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/deepchem/DeepLearningLifeSciences.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Deep Learning for the Life Sciences by
Bharath Ramsundar, Peter Eastman, Patrick Walters, and Vijay Pande (O’Reilly).
Copyright 2019 Bharath Ramsundar, Karl Leswing, Peter Eastman, and Vijay Pande,
978-1-492-03983-9”
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If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

R . For almost 40 years, O'Reilly has provided technology and
O REILLY business training, knowledge, and insight to help companies

succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/deep-lrng-for-life-science.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER1
Why Life Science?

While there are many directions that those with a technical inclination and a passion
for data can pursue, few areas can match the fundamental impact of biomedical
research. The advent of modern medicine has fundamentally changed the nature of
human existence. Over the last 20 years, we have seen innovations that have trans-
formed the lives of countless individuals. When it first appeared in 1981, HIV/AIDS
was a largely fatal disease. Continued development of antiretroviral therapies has dra-
matically extended the life expectancy for patients in the developed world. Other dis-
eases, such as hepatitis C, which was considered largely untreatable a decade ago, can
now be cured. Advances in genetics are enabling the identification and, hopefully
soon, the treatment of a wide array of diseases. Innovations in diagnostics and instru-
mentation have enabled physicians to specifically identify and target disease in the
human body. Many of these breakthroughs have benefited from and will continue to
be advanced by computational methods.

Why Deep Learning?

Machine learning algorithms are now a key component of everything from online
shopping to social media. Teams of computer scientists are developing algorithms
that enable digital assistants such as the Amazon Echo or Google Home to under-
stand speech. Advances in machine learning have enabled routine on-the-fly transla-
tion of web pages between spoken languages. In addition to machine learning’s
impact on everyday life, it has impacted many areas of the physical and life sciences.
Algorithms are being applied to everything from the detection of new galaxies from
telescope images to the classification of subatomic interactions at the Large Hadron
Collider.

One of the drivers of these technological advances has been the development of a
class of machine learning methods known as deep neural networks. While the tech-




nological underpinnings of artificial neural networks were developed in the 1950s
and refined in the 1980s, the true power of the technique wasn't fully realized until
advances in computer hardware became available over the last 10 years. We will pro-
vide a more complete overview of deep neural networks in the next chapter, but it is
important to acknowledge some of the advances that have occurred through the
application of deep learning:

« Many of the developments in speech recognition that have become ubiquitous in
cell phones, computers, televisions, and other internet-connected devices have
been driven by deep learning.

« Image recognition is a key component of self-driving cars, internet search, and
other applications. Many of the same developments in deep learning that drove
consumer applications are now being used in biomedical research, for example,
to classify tumor cells into different types.

+ Recommender systems have become a key component of the online experience.
Companies like Amazon use deep learning to drive their “customers who bought
this also bought” approach to encouraging additional purchases. Netflix uses a
similar approach to recommend movies that an individual may want to watch.
Many of the ideas behind these recommender systems are being used to identify
new molecules that may provide starting points for drug discovery efforts.

+ Language translation was once the domain of very complex rule-based systems.
Over the last few years, systems driven by deep learning have outperformed sys-
tems that had undergone years of manual curation. Many of the same ideas are
now being used to extract concepts from the scientific literature and alert scien-
tists to journal articles that they may have missed.

These are just a few of the innovations that have come about through the application
of deep learning methods. We are at an interesting time when we have a convergence
of widely available scientific data and methods for processing that data. Those with
the ability to combine data with new methods for learning from patterns in that data
can make significant scientific advances.

Contemporary Life Science Is About Data

As mentioned previously, the fundamental nature of life science has changed. The
availability of robotics and miniaturized experiments has brought about dramatic
increases in the amount of experimental data that can be generated. In the 1980s a
biologist would perform a single experiment and generate a single result. This sort of
data could typically be manipulated by hand with the possible assistance of a pocket
calculator. If we fast-forward to today’s biology, we have instrumentation that is capa-
ble of generating millions of experimental data points in a day or two. Experiments
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like gene sequencing, which can generate huge datasets, have become inexpensive
and routine.

The advances in gene sequencing have led to the construction of databases that link
an individual’s genetic code to a multitude of health-related outcomes, including dia-
betes, cancer, and genetic diseases such as cystic fibrosis. By using computational
techniques to analyze and mine this data, scientists are developing an understanding
of the causes of these diseases and using this understanding to develop new treat-
ments.

Disciplines that once relied primarily on human observation are now utilizing data-
sets that simply could not be analyzed manually. Machine learning is now routinely
used to classify images of cells. The output of these machine learning models is used
to identify and classify cancerous tumors and to evaluate the effects of potential dis-
ease treatments.

Advances in experimental techniques have led to the development of several data-
bases that catalog the structures of chemicals and the effects that these chemicals have
on a wide range of biological processes or activities. These structure-activity relation-
ships (SARs) form the basis of a field known as chemical informatics, or cheminfor-
matics. Scientists mine these large datasets and use the data to build predictive models
that will drive the next generation of drug development.

With these large amounts of data comes a need for a new breed of scientist who is
comfortable in both the scientific and computational domains. Those with these
hybrid capabilities have the potential to unlock structure and trends in large datasets
and to make the scientific discoveries of tomorrow.

What Will You Learn?

In the first few chapters of this book, we provide an overview of deep learning and
how it can be applied in the life sciences. We begin with machine learning, which has
been defined as “the science (and art) of programming computers so that they can
learn from data™

Chapter 2 provides a brief introduction to deep learning. We begin with an example
of how this type of machine learning can be used to perform a simple task like linear
regression, and progress to more sophisticated models that are commonly used to
solve real-world problems in the life sciences. Machine learning typically proceeds by
initially splitting a dataset into a training set that is used to generate a model and a
test set that is used to assess the performance of the model. In Chapter 2 we discuss

1 Furbush, James. “Machine Learning: A Quick and Simple Definition.” https://www.oreilly.com/ideas/machine-
learning-a-quick-and-simple-definition. 2018.
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some of the details surrounding the training and validation of predictive models.
Once a model has been generated, its performance can typically be optimized by
varying a number of characteristics known as hyperparameters. The chapter provides
an overview of this process. Deep learning is not a single technique, but a set of
related methods. Chapter 2 concludes with an introduction to a few of the most
important deep learning variants.

In Chapter 3, we introduce DeepChem, an open source programming library that has
been specifically designed to simplify the creation of deep learning models for a vari-
ety of life science applications. After providing an overview of DeepChem, we intro-
duce our first programming example, which demonstrates how the DeepChem
library can be used to generate a model for predicting the toxicity of molecules. In a
second programming example, we show how DeepChem can be used to classify
images, a common task in modern biology. As briefly mentioned earlier, deep learn-
ing is used in a variety of imaging applications, ranging from cancer diagnosis to the
detection of glaucoma. This discussion of specific applications then motivates an
explanation of some of the inner workings of deep learning methods.

Chapter 4 provides an overview of how machine learning can be applied to mole-
cules. We begin by introducing molecules, the building blocks of everything around
us. Although molecules can be considered analogous to building blocks, they are not
rigid. Molecules are flexible and exhibit dynamic behavior. In order to characterize
molecules using a computational method like deep learning, we need to find a way to
represent molecules in a computer. These encodings can be thought of as similar to
the way in which an image can be represented as a set of pixels. In the second half of
Chapter 4, we describe a number of ways that molecules can be represented and how
these representations can be used to build deep learning models.

Chapter 5 provides an introduction to the field of biophysics, which applies the laws
of physics to biological phenomena. We start with a discussion of proteins, the molec-
ular machines that make life possible. A key component of predicting the effects of
drugs on the body is understanding their interactions with proteins. In order to
understand these effects, we begin with an overview of how proteins are constructed
and how protein structures differ. Proteins are entities whose 3D structure dictates
their biological function. For a machine learning model to predict the impact of a
drug molecule on a protein’s function, we need to represent that 3D structure in a
form that can be processed by a machine learning program. In the second half of
Chapter 5, we explore a number of ways that protein structures can be represented.
With this knowledge in hand, we then review another code example where we use
deep learning to predict the degree to which a drug molecule will interact with a pro-
tein.

Genetics has become a key component of contemporary medicine. The genetic
sequencing of tumors has enabled the personalized treatment of cancer and has the
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potential to revolutionize medicine. Gene sequencing, which used to be a complex
process requiring huge investments, has now become commonplace and can be rou-
tinely carried out. We have even reached the point where dog owners can get inex-
pensive genetic tests to determine their pets’ lineage. In Chapter 6, we provide an
overview of genetics and genomics, beginning with an introduction to DNA and
RNA, the templates that are used to produce proteins. Recent discoveries have
revealed that the interactions of DNA and RNA are much more complex than origi-
nally believed. In the second half of Chapter 6, we present several code examples that
demonstrate how deep learning can be used to predict a number of factors that influ-
ence the interactions of DNA and RNA.

Earlier in this chapter, we alluded to the many advances that have come about
through the application of deep learning to the analysis of biological and medical
images. Many of the phenomena studied in these experiments are too small to be
observed by the human eye. In order to obtain the images used with deep learning
methods, we need to utilize a microscope. Chapter 7 provides an overview of micro-
scopy in its myriad forms, ranging from the simple light microscope we all used in
school to sophisticated instruments that are capable of obtaining images at atomic
resolution. This chapter also covers some of the limitations of current approaches,
and provides information on the experimental pipelines used to obtain the images
that drive deep learning models.

One area that offers tremendous promise is the application of deep learning to medi-
cal diagnosis. Medicine is incredibly complex, and no physician can personally
embody all of the available medical knowledge. In an ideal situation, a machine learn-
ing model could digest the medical literature and aid medical professionals in making
diagnoses. While we have yet to reach this point, a number of positive steps have been
made. Chapter 8 begins with a history of machine learning methods for medical diag-
nosis and charts the transition from hand-encoded rules to statistical analysis of med-
ical outcomes. As with many of the topics we've discussed, a key component is
representing medical information in a format that can be processed by a machine
learning program. In this chapter, we provide an introduction to electronic health
records and some of the issues surrounding these records. In many cases, medical
images can be very complex and the analysis and interpretation of these images can
be difficult for even skilled human specialists. In these cases, deep learning can aug-
ment the skills of a human analyst by classifying images and identifying key features.
Chapter 8 concludes with a number of examples of how deep learning is used to ana-
lyze medical images from a variety of areas.

As we mentioned earlier, machine learning is becoming a key component of drug dis-
covery efforts. Scientists use deep learning models to evaluate the interactions
between drug molecules and proteins. These interactions can elicit a biological
response that has a therapeutic impact on a patient. The models we've discussed so far
are discriminative models. Given a set of characteristics of a molecule, the model gen-
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erates a prediction of some property. These predictions require an input molecule,
which may be derived from a large database of available molecules or may come from
the imagination of a scientist. What if, rather than relying on what currently exists, or
what we can imagine, we had a computer program that could “invent” new mole-
cules? Chapter 9 presents a type of deep learning program called a generative model.
A generative model is initially trained on a set of existing molecules, then used to
generate new molecules. The deep learning program that generates these molecules
can also be influenced by other models that predict the activity of the new molecules.

Up to now, we have discussed deep learning models as “black boxes” We present the
model with a set of input data and the model generates a prediction, with no explana-
tion of how or why the prediction was generated. This type of prediction can be less
than optimal in many situations. If we have a deep learning model for medical diag-
nosis, we often need to understand the reasoning behind the diagnosis. An explana-
tion of the reasons for the diagnosis will provide a physician with more confidence in
the prediction and may also influence treatment decisions. One historic drawback to
deep learning has been the fact that the models, while often reliable, can be difficult
to interpret. A number of techniques are currently being developed to enable users to
better understand the factors that led to a prediction. Chapter 10 provides an over-
view of some of these techniques used to enable human understanding of model pre-
dictions. Another important aspect of predictive models is the accuracy of a model’s
predictions. An understanding of a model’s accuracy can help us determine how
much to rely on that model. Given that machine learning can be used to potentially
make life-saving diagnoses, an understanding of model accuracy is critical. The final
section of Chapter 10 provides an overview of some of the techniques that can be
used to assess the accuracy of model predictions.

In Chapter 11 we present a real-world case study using DeepChem. In this example,
we use a technique called virtual screening to identify potential starting points for the
discovery of new drugs. Drug discovery is a complex process that often begins with a
technique known as screening. Screening is used to identify molecules that can be
optimized to eventually generate drugs. Screening can be carried out experimentally,
where millions of molecules are tested in miniaturized biological tests known as
assays, or in a computer using virtual screening. In virtual screening, a set of known
drugs or other biologically active molecules is used to train a machine learning
model. This machine learning model is then used to predict the activity of a large set
of molecules. Because of the speed of machine learning methods, hundreds of mil-
lions of molecules can typically be processed in a few days of computer time.

The final chapter of the book examines the current impact and future potential of
deep learning in the life sciences. A number of challenges for current efforts, includ-
ing the availability and quality of datasets, are discussed. We also highlight opportuni-
ties and potential pitfalls in a number of other areas including diagnostics,
personalized medicine, pharmaceutical development, and biology research.
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CHAPTER 2
Introduction to Deep Learning

The goal of this chapter is to introduce the basic principles of deep learning. If you
already have lots of experience with deep learning, you should feel free to skim this
chapter and then go on to the next. If you have less experience, you should study this
chapter carefully as the material it covers will be essential to understanding the rest of

the book.

In most of the problems we will discuss, our task will be to create a mathematical
function:

y = f(x)

Notice that x and y are written in bold. This indicates they are vectors. The function
might take many numbers as input, perhaps thousands or even millions, and it might
produce many numbers as outputs. Here are some examples of functions you might
want to create:

« x contains the colors of all the pixels in an image. f(x) should equal 1 if the image
contains a cat and 0 if it does not.

« The same as above, except f(x) should be a vector of numbers. The first element
indicates whether the image contains a cat, the second whether it contains a dog,
the third whether it contains an airplane, and so on for thousands of types of
objects.

« x contains the DNA sequence for a chromosome. y should be a vector whose
length equals the number of bases in the chromosome. Each element should
equal 1 if that base is part of a region that codes for a protein, or 0 if not.

« x describes the structure of a molecule. (We will discuss various ways of repre-
senting molecules in later chapters.) y should be a vector where each element




describes some physical property of the molecule: how easily it dissolves in water,
how strongly it binds to some other molecule, and so on.

As you can see, f(x) could be a very, very complicated function! It usually takes a
long vector as input and tries to extract information from it that is not at all obvious
just from looking at the input numbers.

The traditional approach to solving this problem is to design a function by hand. You
would start by analyzing the problem. What patterns of pixels tend to indicate the
presence of a cat? What patterns of DNA tend to distinguish coding regions from
noncoding ones? You would write computer code to recognize particular types of fea-
tures, then try to identify combinations of features that reliably produce the result
you want. This process is slow and labor-intensive, and depends heavily on the exper-
tise of the person carrying it out.

Machine learning takes a totally different approach. Instead of designing a function
by hand, you allow the computer to learn its own function based on data. You collect
thousands or millions of images, each labeled to indicate whether it includes a cat.
You present all of this training data to the computer, and let it search for a function
that is consistently close to 1 for the images with cats and close to 0 for the ones
without.

What does it mean to “let the computer search for a function”? Generally speaking,
you create a model that defines some large class of functions. The model includes
parameters, variables that can take on any value. By choosing the values of the param-
eters, you select a particular function out of all the many functions in the class
defined by the model. The computer’s job is to select values for the parameters. It tries
to find values such that, when your training data is used as input, the output is as
close as possible to the corresponding targets.

Linear Models

One of the simplest models you might consider trying is a linear model:
y=Mx+b

In this equation, M is a matrix (sometimes referred to as the “weights”) and b is a
vector (referred to as the “biases”). Their sizes are determined by the numbers of
input and output values. If x has length T and you want y to have length S, then M
will be an S x T matrix and b will be a vector of length S. Together, they make up the
parameters of the model. This equation simply says that each output component is a
linear combination of the input components. By setting the parameters (M and b),
you can choose any linear combination you want for each component.

8 | Chapter2: Introduction to Deep Learning



This was one of the very earliest machine learning models. It was introduced back in
1957 and was called a perceptron. The name is an amazing piece of marketing: it has a
science fiction sound to it and seems to promise wonderful things, when in fact it is
nothing more than a linear transform. In any case, the name has managed to stick for
more than half a century.

The linear model is very easy to formulate in a completely generic way. It has exactly
the same form no matter what problem you apply it to. The only differences between
linear models are the lengths of the input and output vectors. From there, it is just a
matter of choosing the parameter values, which can be done in a straightforward way
with generic algorithms. That is exactly what we want for machine learning: a model
and algorithms that are independent of what problem you are trying to solve. Just
provide the training data, and parameters are automatically determined that trans-
form the generic model into a function that solves your problem.

Unfortunately, linear models are also very limited. As demonstrated in Figure 2-1, a
linear model (in one dimension, that means a straight line) simply cannot fit most
real datasets. The problem becomes even worse when you move to very high-
dimensional data. No linear combination of pixel values in an image will reliably
identify whether the image contains a cat. The task requires a much more compli-
cated nonlinear model. In fact, any model that solves that problem will necessarily be
very complicated and very nonlinear. But how can we formulate it in a generic way?
The space of all possible nonlinear functions is infinitely complex. How can we define
a model such that, just by choosing values of parameters, we can create almost any
nonlinear function we are ever likely to want?
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Figure 2-1. A linear model cannot fit data points that follow a curve. This requires a
nonlinear model.
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Multilayer Perceptrons

A simple approach is to stack multiple linear transforms, one after another. For
example, we could write:
y=MpMx+b,)+b,
Look carefully at what we have done here. We start with an ordinary linear transform,
M,x +b,. We then pass the result through a nonlinear function ¢(x), and then apply
a second linear transform to the result. The function ¢(x), which is known as the
activation function, is an essential part of what makes this work. Without it, the model
would still be linear, and no more powerful than the previous one. A linear combina-
tion of linear combinations is itself nothing more than a linear combination of the

original inputs! By inserting a nonlinearity, we enable the model to learn a much
wider range of functions.

We don't need to stop at two linear transforms. We can stack as many as we want on
top of each other:

h = gol(M]x+ bl)

h, = p)(M;h, +b,)

h, ,=¢,_(M,_h, ,+b

n-1"n-2 n—l)

y= E‘:)1'1(]'\/Iﬂhr1 -1 + bn)

This model is called a multilayer perceptron, or MLP for short. The middle steps h; are
called hidden layers. The name refers to the fact that they are neither inputs nor out-
puts, just intermediate values used in the process of calculating the result. Also notice
that we have added a subscript to each (x). This indicates that different layers might
use different nonlinearities.

You can visualize this calculation as a stack of layers, as shown in Figure 2-2. Each
layer corresponds to a linear transformation followed by a nonlinearity. Information
flows from one layer to another, the output of one layer becoming the input to the
next. Each layer has its own set of parameters that determine how its output is calcu-
lated from its input.
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Figure 2-2. A multilayer perceptron, viewed as a stack of layers with information flowing
from one layer to the next.

Multilayer perceptrons and their variants are also sometimes called neural networks.
The name reflects the parallels between machine learning and neurobiology. A bio-
logical neuron connects to many other neurons. It receives signals from them, adds
the signals together, and then sends out its own signals based on the result. As a very
rough approximation, you can think of MLPs as working the same way as the neu-
rons in your brain!

What should the activation function ¢(x) be? The surprising answer is that it mostly
doesn’t matter. Of course, that is not entirely true. It obviously does matter, but not as
much as you might expect. Nearly any reasonable function (monotonic, reasonably
smooth) can work. Lots of different functions have been tried over the years, and
although some work better than others, nearly all of them can produce decent results.

The most popular activation function today is probably the rectified linear unit
(ReLU), p(x) = max(0, x). If you aren’t sure what function to use, this is probably a
good default. Other common choices include the hyperbolic tangent, tanh(x), and the
logistic sigmoid, p(x) = 1/(1 + e *). All of these functions are shown in Figure 2-3.
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Figure 2-3. Three common activation functions: the rectified linear unit, hyperbolic tan-
gent, and logistic sigmoid.

We also must choose two other properties for an MLP: its width and its depth. With
the simple linear model, we had no choices to make. Given the lengths of x and y, the
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sizes of M and b were completely determined. Not so with hidden layers. Width
refers to the size of the hidden layers. We can choose each h; to have any length we
want. Depending on the problem, you might want them to be much larger or much
smaller than the input and output vectors.

Depth refers to the number of layers in the model. A model with only one hidden
layer is described as shallow. A model with many hidden layers is described as deep.
This is, in fact, the origin of the term “deep learning”; it simply means “machine
learning using models with lots of layers”

Choosing the number and widths of layers in your model involves as much art as sci-
ence. Or, to put it more formally, “This is still an active field of research.” Often it just
comes down to trying lots of combinations and seeing what works. There are a few
principles that may provide guidance, however, or at least help you understand your
results in hindsight:

1. An MLP with one hidden layer is a universal approximator.

This means it can approximate any function at all (within certain fairly reason-
able limits). In a sense, you never need more than one hidden layer. That is
already enough to reproduce any function you are ever likely to want. Unfortu-
nately, this result comes with a major caveat: the accuracy of the approximation
depends on the width of the hidden layer, and you may need a very wide layer to
get sufficient accuracy for a given problem. This brings us to the second princi-

ple.
2. Deep models tend to require fewer parameters than shallow ones.

This statement is intentionally somewhat vague. More rigorous statements can be
proven for particular special cases, but it does still apply as a general guideline.
Here is perhaps a better way of stating it: every problem requires a model with a
certain depth to efficiently achieve acceptable accuracy. At shallower depths, the
required widths of the layers (and hence the total number of parameters)
increase rapidly. This makes it sound like you should always prefer deep models
over shallow ones. Unfortunately, it is partly contradicted by the third principle.

3. Deep models tend to be harder to train than shallow ones.

Until about 2007, most machine learning models were shallow. The theoretical
advantages of deep models were known, but researchers were usually unsuccess-
ful at training them. Since then, a series of advances has gradually improved the
usefulness of deep models. These include better training algorithms, new types of
models that are easier to train, and of course faster computers combined with
larger datasets on which to train the models. These advances gave rise to “deep
learning” as a field. Yet despite the improvements, the general principle remains
true: deeper models tend to be harder to train than shallower ones.
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Training Models

This brings us to the next subject: just how do we train a model anyway? MLPs pro-
vide us with a (mostly) generic model that can be used for any problem. (We will dis-
cuss other, more specialized types of models a little later.) Now we want a similarly
generic algorithm to find the optimal values of the model’s parameters for a given
problem. How do we do that?

The first thing you need, of course, is a collection of data to train it on. This dataset is
known as the training set. It should consist of a large number of (x,y) pairs, also
known as samples. Each sample specifies an input to the model, and what you want
the model’s output to be when given that input. For example, the training set could be
a collection of images, along with labels indicating whether or not each image con-
tains a cat.

Next you need to define a loss function L(y, ¥), where y is the actual output from the
model and y is the target value specified in the training set. This is how you measure
whether the model is doing a good job of reproducing the training data. It is then
averaged over every sample in the training set:

N
average loss = % ,’El Ly»¥;)

L(y,¥) should be small when its arguments are close together and large when they are
far apart. In other words, we take every sample in the training set, try using each one
as an input to the model, and see how close the output is to the target value. Then we
average this over the whole training set.

An appropriate loss function needs to be chosen for each problem. A common
choice is the Euclidean distance (also known as the L, distance),

L(y,¥) =y Z; (y;— 7,)- (In this expression, y, means the i‘th component of the vector
y.) When y represents a probability distribution, a popular choice is the cross
entropy, L(y,¥) = - X, y,log y,. Other choices are also possible, and there is no uni-
versal “best” choice. It depends on the details of your problem.

Now that we have a way to measure how well the model works, we need a way to
improve it. We want to search for the parameter values that minimize the average loss
over the training set. There are many ways to do this, but most work in deep learning
uses some variant of the gradient descent algorithm. Let 0 represent the set of all
parameters in the model. Gradient descent involves taking a series of small steps:

d
0« 60— e=5(L)
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where (L) is the average loss over the training set. Each step moves a tiny distance in
the “downhill” direction. It changes each of the model’s parameters by a little bit, with
the goal of causing the average loss to decrease. If all the stars align and the phase of
the moon is just right, this will eventually produce parameters that do a good job of
solving your problem. € is called the learning rate, and it determines how much the
parameters change on each step. It needs to be chosen very carefully: too small a
value will cause learning to be very slow, while too large a value will prevent the algo-
rithm from learning at all.

This algorithm really does work, but it has a serious problem. For every step of gradi-
ent descent, we need to loop over every sample in the training set. That means the
time required to train the model is proportional to the size of the training set! Sup-
pose that you have one million samples in the training set, that computing the gradi-
ent of the loss for one sample requires one million operations, and that it takes one
million steps to find a good model. (All of these numbers are fairly typical of real
deep learning applications.) Training will then require one quintillion operations.
That takes quite a long time, even on a fast computer.

Fortunately, there is a better solution: estimate (L) by averaging over a much smaller
number of samples. This is the basis of the stochastic gradient descent (SGD) algo-
rithm. For every step, we take a small set of samples (known as a batch) from the
training set and compute the gradient of the loss function, averaged over only the
samples in the batch. We can view this as an estimate of what we would have gotten if
we had averaged over the entire training set, although it may be a very noisy estimate.
We perform a single step of gradient descent, then select a new batch of samples for
the next step.

This algorithm tends to be much faster. The time required for each step depends only
on the size of each batch, which can be quite small (often on the order of 100 sam-
ples) and is independent of the size of the training set. The disadvantage is that each
step does a less good job of reducing the loss, because it is based on a noisy estimate
of the gradient rather than the true gradient. Still, it leads to a much shorter training
time overall.

Most optimization algorithms used in deep learning are based on SGD, but there are
many variations that improve on it in different ways. Fortunately, you can usually
treat these algorithms as black boxes and trust them to do the right thing without
understanding all the details of how they work. Two of the most popular algorithms
used today are called Adam and RMSProp. If you are in doubt about what algorithm
to use, either one of those will probably be a reasonable choice.
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Validation

Suppose you have done everything described so far. You collected a large set of train-
ing data. You selected a model, then ran a training algorithm until the loss became
very small. Congratulations, you now have a function that solves your problem!

Right?

Sorry, it’s not that simple! All you really know for sure is that the function works well
on the training data. You might hope it will also work well on other data, but you cer-
tainly can’t count on it. Now you need to validate the model to see whether it works
on data that it hasn’t been specifically trained on.

To do this you need a second dataset, called the test set. It has exactly the same form
as the training set, a collection of (x,y) pairs, but the two should have no samples in
common. You train the model on the training set, then test it on the test set. This
brings us to one of the most important principles in machine learning:

« You must not use the test set in any way while designing or training the model.

In fact, it is best if you never even look at the data in the test set. Test set data is only
for testing the fully trained model to find out how well it works. If you allow the test
set to influence the model in any way, you risk getting a model that works better on
the test set than on other data that was not involved in creating the model. It ceases to
be a true test set, and becomes just another type of training set.

This is connected to the mathematical concept of overfitting. The training data is sup-
posed to be representative of a much larger data distribution, the set of all inputs you
might ever want to use the model on. But you can't train it on all possible inputs. You
can only create a finite set of training samples, train the model on those, and hope it
learns general strategies that work equally well on other samples. Overfitting is what
happens when the training picks up on specific features of the training samples, such
that the model works better on them than it does on other samples.

Regularization

Overfitting is a major problem for anyone who uses machine learning. Given that,
you won't be surprised to learn that lots of techniques have been developed for avoid-
ing it. These techniques are collectively known as regularization. The goal of any reg-
ularization technique is to avoid overfitting and produce a trained model that works
well on any input, not just the particular inputs that were used for training.

Before we discuss particular regularization techniques, there are two very important
points to understand about it.
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First, the best way to avoid overfitting is almost always to get more training data. The
bigger your training set, the better it represents the “true” data distribution, and the
less likely the learning algorithm is to overfit. Of course, that is sometimes impossi-
ble: maybe you simply have no way to get more data, or the data may be very expen-
sive to collect. In that case, you just have to do the best you can with the data you
have, and if overfitting is a problem, you will have to use regularization to avoid it.
But more data will probably lead to a better result than regularization.

Second, there is no universally “best” way to do regularization. It all depends on the
problem. After all, the training algorithm doesn’t know that it’s overfitting. All it
knows about is the training data. It doesn't know how the true data distribution dif-
fers from the training data, so the best it can do is produce a model that works well
on the training set. If that isn’t what you want, it’s up to you to tell it.

That is the essence of any regularization method: biasing the training process to pre-
fer certain types of models over others. You make assumptions about what properties
a “good” model should have, and how it differs from an overfit one, and then you tell
the training algorithm to prefer models with those properties. Of course, those
assumptions are often implicit rather than explicit. It may not be obvious what
assumptions you are making by choosing a particular regularization method. But
they are always there.

One of the simplest regularization methods is just to train the model for fewer steps.
Early in training, it tends to pick up on coarse properties of the training data that
likely apply to the true distribution. The longer it runs, the more likely it is to start
picking up on fine details of particular training samples. By limiting the number of
training steps, you give it less opportunity to overfit. More formally, you are really
assuming that “good” parameter values should not be too different from whatever
values you start training from.

Another method is to restrict the magnitude of the parameters in the model. For
example, you might add a term to the loss function that is proportional to |6|2, where
0 is a vector containing all of the model’s parameters. By doing this, you are assuming
that “good” parameter values should not be any larger than necessary. It reflects the
fact that overfitting often (though not always) involves some parameters becoming
very large.

A very popular method of regularization is called dropout. It involves doing some-
thing that at first seems ridiculous, but actually works surprisingly well. For each hid-
den layer in the model, you randomly select a subset of elements in the output vector
hl. and set them to 0. On every step of gradient descent, you pick a different random
subset of elements. This might seem like it would just break the model: how can you
expect it to work when internal calculations keep randomly getting set to 0? The
mathematical theory for why dropout works is a bit complicated. Very roughly speak-
ing, by using dropout you are assuming that no individual calculation within the
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model should be too important. You should be able to randomly remove any individ-
ual calculation, and the rest of the model should continue to work without it. This
forces it to learn redundant, highly distributed representations of data that make
overfitting unlikely. If you are unsure of what regularization method to use, dropout
is a good first thing to try.

Hyperparameter Optimization

By now you have probaly noticed that there are a lot of choices to make, even when
using a supposedly generic model with a “generic” learning algorithm. Examples
include:

« The number of layers in the model

« The width of each layer

« The number of training steps to perform
» The learning rate to use during training

» The fraction of elements to set to 0 when using dropout

These options are called hyperparameters. A hyperparameter is any aspect of the
model or training algorithm that must be set in advance rather than being learned by
the training algorithm. But how are you supposed to choose them—and isn’t the
whole point of machine learning to select settings automatically based on data?

This brings us to the subject of hyperparameter optimization. The simplest way of
doing it is just to try lots of values for each hyperparameter and see what works best.
This becomes very expensive when you want to try lots of values for lots of hyper-
parameters, so there are more sophisticated approaches, but the basic idea remains
the same: try different combinations and see what works best.

But how can you tell what works best? The simplest answer would be to just see what
produces the lowest value of the loss function (or some other measure of accuracy)
on the training set. But remember, that isn't what we really care about. We want to
minimize error on the test set, not the training set. This is especially important for
hyperparameters that affect regularization, such as the dropout rate. A low training
set error might just mean the model is overfitting, optimizing for the precise details
of the training data. So instead we want to try lots of hyperparameter values, then use
the ones that minimize the loss on the test set.

But we mustn’t do that! Remember: you must not use the test set in any way while
designing or training the model. Its job is to tell you how well the model is likely to
work on new data it has never seen before. Just because a particular set of hyperpara-
meters happens to work best on the test set doesn’t guarantee those values will always
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work best. We must not allow the test set to influence the model, or it is no longer an
unbiased test set.

The solution is to create yet another dataset, which is called the validation set. It must
not share any samples with either the training set or the test set. The full procedure
now works as follows:

1. For each set of hyperparameter values, train the model on the training set, then
compute the loss on the validation set.

2. Whichever set of hyperparameters give the lowest loss on the validation set,
accept them as your final model.

3. Evaluate that final model on the test set to get an unbiased measure of how well it
works.

Other Types of Models

This still leaves one more decision you need to make, and it is a huge subject in itself:
what kind of model to use. Earlier in this chapter we introduced multilayer percep-
trons. They have the advantage of being a generic class of models that can be applied
to many different problems. Unfortunately, they also have serious disadvantages.
They require a huge number of parameters, which makes them very susceptible to
overfitting. They become difficult to train when they have more than one or two hid-
den layers. In many cases, you can get a better result by using a less generic model
that takes advantage of specific features of your problem.

Much of the content of this book consists of discussing particular types of models
that are especially useful in the life sciences. Those can wait until later chapters. But
for the purposes of this introduction, there are two very important classes of models
we should discuss that are widely used in many different fields. They are called con-
volutional neural networks and recurrent neural networks.

Convolutional Neural Networks

Convolutional neural networks (CNNs for short) were one of the very first classes of
deep models to be widely used. They were developed for use in image processing and
computer vision. They remain an excellent choice for many kinds of problems that
involve continuous data sampled on a rectangular grid: audio signals (1D), images
(2D), volumetric MRI data (3D), and so on.

They are also a class of models that truly justify the term “neural network” The
design of CNNs was originally inspired by the workings of the feline visual cortex.
(Cats have played a central role in deep learning from the dawn of the field.) Research
performed from the 1950s to the 1980s revealed that vision is processed through a
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series of layers. Each neuron in the first layer takes input from a small region of the
visual field (its receptive field). Different neurons are specialized to detect particular
local patterns or features, such as vertical or horizontal lines. Cells in the second layer
take input from local clusters of cells in the first layer, combining their signals to
detect more complicated patterns over a larger receptive field. Each layer can be
viewed as a new representation of the original image, described in terms of larger and
more abstract patterns than the ones in the previous layer.

CNNs mirror this design, sending an input image through a series of layers. In that
sense, they are just like MLPs, but the structure of each layer is very different. MLPs
use fully connected layers. Every element of the output vector depends on every ele-
ment of the input vector. CNNs use convolutional layers that take advantage of spatial
locality. Each output element corresponds to a small region of the image, and only
depends on the input values in that region. This enormously reduces the number of
parameters defining each layer. In effect, it assumes that most elements of the weight
matrix M, are 0, since each output element only depends on a small number of input

elements.

Convolutional layers take this a step further: they assume the parameters are the same
for every local region of the image. If a layer uses one set of parameters to detect hori-
zontal lines at one location in the image, it also uses exactly the same parameters to
detect horizontal lines everywhere else in the image. This makes the number of
parameters for the layer independent of the size of the image. All it has to learn is a
single convolutional kernel that defines how output features are computed from any
local region of the image. That local region is often very small, perhaps 5 by 5 pixels.
In that case, the number of parameters to learn is only 25 times the number of output
features for each region. This is tiny compared to the number in a fully connected
layer, making CNNs much easier to train and much less susceptible to overfitting
than MLPs.

Recurrent Neural Networks

Recurrent neural networks (RNNs for short) are a bit different. They are normally
used to process data that takes the form of a sequence of elements: words in a text
document, bases in a DNA molecule, etc. The elements in the sequence are fed into
the network’s input one at a time. But then the network does something very differ-
ent: the output from each layer is fed back into its own input on the next step! This
allows RNNs to have a sort of memory. When an element (word, DNA base, etc.)
from the sequence is fed into the network, the input to each layer depends on that
element, but also on all of the previous elements (Figure 2-4).
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Figure 2-4. A recurrent neural network. As each element (x,, x,, ...) of the sequence is fed
into the input, the output (yl, Y ...) depends both on the input element and on the
RNN’s own output during the previous step.

So, the input to a recurrent layer has two parts: the regular input (that is, the output
from the previous layer in the network) and the recurrent input (which equals its own
output from the previous step). It then needs to calculate a new output based on
those inputs. In principle you could use a fully connected layer, but in practice that
usually doesn’t work very well. Researchers have developed other types of layers that
work much better in RNNs. The two most popular ones are called the gated recurrent
unit (GRU) and the long short-term memory (LSTM). Don’t worry about the details
for now; just remember that if you are creating an RNN, you should usually build it
out of one of those types of layers.

Having memory makes RNNs fundamentally different from the other models we
have discussed. With a CNN or MLP, you simply feed a value into the network’s input
and get a different value out. The output is entirely determined by the input. Not so
with an RNN. The model has its own internal state, composed of the outputs of all its
layers from the most recent step. Each time you feed a new value into the model, the
output depends not just on the input value but also on the internal state. Likewise, the
internal state is altered by each new input value. This makes RNNs very powerful,
and allows them to be used for lots of different applications.
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Further Reading

Deep learning is a huge subject, and this chapter has only given the briefest introduc-
tion to it. It should be enough to help you read and understand the rest of this book,
but if you plan to do serious work in the field, you will want to acquire a much more
thorough background. Fortunately, there are many excellent deep learning resources
available online. Here are some suggestions for material you might consult:

« Neural Networks and Deep Learning by Michael Nielsen (Determination Press)
covers roughly the same material as this chapter, but goes into far more detail on
every subject. If you want a solid working knowledge of the fundamentals of deep
learning, sufficient to make use of it in your own work, this is an excellent place
to start.

o Deep Learning by lan Goodfellow, Yoshua Bengio, and Aaron Courville (MIT
Press) is a more advanced introduction written by some of the top researchers in
the field. It expects the reader to have a background similar to that of a graduate
student in computer science and goes into far more detail on the mathematical
theory behind the subject. You can easily use deep models without understanding
all of the theory, but if you want to do original research in deep learning (rather
than just using deep models as a tool to solve problems in other fields), this book
is a fantastic resource.

o TensorFlow for Deep Learning by Bharath Ramsundar and Reza Zadeh (O'Reilly)
provides a practitioner’s introduction to deep learning that seeks to build intu-
ition about the core concepts without delving too deeply into the mathematical
underpinnings of such models. It might be a useful reference for those who are
interested in the practical aspects of deep learning.
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CHAPTER 3
Machine Learning with DeepChem

This chapter provides a brief introduction to machine learning with DeepChem, a
library built on top of the TensorFlow platform to facilitate the use of deep learning
in the life sciences. DeepChem provides a large collection of models, algorithms, and
datasets that are suited to applications in the life sciences. In the remainder of this
book, we will use DeepChem to perform our case studies.

Why Not Just Use Keras, TensorFlow, or PyTorch?

This is a common question. The short answer is that the developers
of these packages focus their attention on supporting certain types
of use cases that prove useful to their core users. For example,
there’s extensive support for image processing, text handling, and
speech analysis. But there’s often not a similar level of support in
these libraries for molecule handling, genetic datasets, or micro-
scopy datasets. The goal of DeepChem is to give these applications
first-class support in the library. This means adding custom deep
learning primitives, support for needed file types, and extensive
tutorials and documentation for these use cases.

DeepChem is also designed to be well integrated with the Tensor-
Flow ecosystem, so you should be able to mix and match Deep-
Chem code with your other TensorFlow application code.

In the rest of this chapter, we will assume that you have DeepChem installed on your
machine and that you are ready to run the examples. If you don’t have DeepChem
installed, never fear. Just head over to the DeepChem website and follow the installa-
tion directions for your system.
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Windows Support for DeepChem

At present, DeepChem doesn't support installation on Windows. If
possible, we recommend that you work through the examples in
this book using a Mac or Linux workstation. We have heard from
our users that DeepChem works on the Windows Subsystem for
Linux (WSL) in more modern Windows distributions.

If it’s not feasible for you to get access to a Mac or Linux machine
or work with WSL, wed love to have your help getting Windows
support for DeepChem. Please contact the authors with the specific
issues you're seeing, and we will try to address them. Our hope is to
remove this restriction in a future edition of the book and support
Windows for future readers.

DeepChem Datasets

DeepChem uses the basic abstraction of theDataset object to wrap the data it uses for
machine learning. A Dataset contains the information about a set of samples: the
input vectors x, the target output vectors y, and possibly other information such as a
description of what each sample represents. There are subclasses of Dataset corre-
sponding to different ways of storing the data. The NumpyDataset object in particular
serves as a convenient wrapper for NumPy arrays and will be used extensively. In this
section, we will walk through a simple code case study of how to use NumpyDataset.
All of this code can be entered in the interactive Python interpreter; where appropri-
ate, the output is shown.

We start with some simple imports:

import deepchem as dc
import numpy as np

Let’s now construct some simple NumPy arrays:

np.random.random((4, 5))
np.random.random( (4, 1))

X
y

This dataset will have four samples. The array x has five elements (“features”) for each
sample, and y has one element for each sample. Let’s take a quick look at the actual
arrays we've sampled (note that when you run this code locally, you should expect to
see different numbers since your random seed will be different):

In : x

Out:

array([[0.960767 , 0.31300931, 0.23342295, 0.59850938, 0.30457302],
[0.48891533, 0.69610528, 0.02846666, 0.20008034, 0.94781389],
[0.17353084, 0.95867152, 0.73392433, 0.47493093, 0.4970179 ],
[0.15392434, 0.95759308, 0.72501478, ©.38191593, 0.16335888]])
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In:y

Out:

array([[0.00631553],
[0.69677301],
[0.16545319],
[0.04906014]])

Let’s now wrap these arrays in a NumpyDataset object:
dataset = dc.data.NumpyDataset(x, y)
We can unwrap the dataset object to get at the original arrays that we stored inside:

In : print(dataset.X)

[[0.960767 ©.31300931 ©.23342295 0.59850938 0.30457302]
[0.48891533 0.69610528 0.02846666 0.20008034 0.94781389]
[0.17353084 0.95867152 0.73392433 0.47493093 0.4970179 ]
[0.15392434 0.95759308 0.72501478 0.38191593 0.16335888]]

In : print(dataset.y)
[[0.00631553]
[0.69677301]
[0.16545319]
[0.04906014]]

Note that these arrays are the same as the original arrays x and y:

In : np.array_equal(x, dataset.X)
Out : True

In : np.array_equal(y, dataset.y)
Out : True

Other Types of Datasets

DeepChem has support for other types of Dataset objects, as men-
tioned previously. These types primarily become useful when deal-
ing with larger datasets that can’t be entirely stored in computer
memory. There is also integration for DeepChem to use Tensor-
Flow’s tf.data dataset loading utilities. We will touch on these
more advanced library features as we need them.

Training a Model to Predict Toxicity of Molecules

In this section, we will demonstrate how to use DeepChem to train a model to predict
the toxicity of molecules. In a later chapter, we will explain how toxicity prediction
for molecules works in much greater depth, but in this section, we will treat it as a
black-box example of how DeepChem models can be used to solve machine learning
challenges. Lets start with a pair of needed imports:

Training a Model to Predict Toxicity of Molecules | 25



import numpy as np
import deepchem as dc

The next step is loading the associated toxicity datasets for training a machine learn-
ing model. DeepChem maintains a module called dc.molnet (short for MoleculeNet)
that contains a number of preprocessed datasets for use in machine learning experi-
mentation. In particular, we will make use of the dc.molnet.load_tox21() function,
which will load and process the Tox21 toxicity dataset for us. When you run these
commands for the first time, DeepChem will process the dataset locally on your
machine. You should expect to see processing notes like the following:

In : tox21_tasks, tox21_datasets, transformers = dc.molnet.load_tox21()
Out: Loading raw samples now.

shard_size: 8192

About to start loading CSV from /tmp/tox21.CSV.gz
Loading shard 1 of size 8192.

Featurizing sample ©

Featurizing sample 1000

Featurizing sample 2000

Featurizing sample 3000

Featurizing sample 4000

Featurizing sample 5000

Featurizing sample 6000

Featurizing sample 7000

TIMING: featurizing shard @ took 15.671 s
TIMING: dataset construction took 16.277 s
Loading dataset from disk.

TIMING: dataset construction took 1.344 s
Loading dataset from disk.

TIMING: dataset construction took 1.165 s
Loading dataset from disk.

TIMING: dataset construction took 0.779 s
Loading dataset from disk.

TIMING: dataset construction took 0.726 s
Loading dataset from disk.

The process of featurization is how a dataset containing information about molecules
is transformed into matrices and vectors for use in machine learning analyses. We
will explore this process in greater depth in subsequent chapters. Let’s start here,
though, by taking a quick peek at the data we've processed.

The dc.molnet.load_tox21() function returns multiple outputs: tox21_tasks,
tox21_datasets, and transformers. Let’s briefly take a look at each:

In : tox21_tasks
Out:

['NR-AR',
'NR-AR-LBD',
'NR-AhR',
'NR-Aromatase’,
'NR-ER',
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'NR-ER-LBD'

E

'"NR-PPAR-gamma',

'SR-ARE',
'SR-ATADS',
'SR-HSE',
'SR-MMP',
'SR-p53']

In : len(tox21_tasks)

Out: 12

Each of the 12 tasks here corresponds with a particular biological experiment. In this
case, each of these tasks is for an enzymatic assay which measures whether the mole-
cules in the Tox21 dataset bind with the biological target in question. The terms NR-AR
and so on correspond with these targets. In this case, each of these targets is a partic-
ular enzyme believed to be linked to toxic responses to potential therapeutic mole-

cules.

How Much Biology Do | Need to Know?

For computer scientists and engineers entering the life sciences, the
array of biological terms can be dizzying. However, it’s not neces-
sary to have a deep understanding of biology in order to begin
making an impact in the life sciences. If your primary background
is in computer science, it can be useful to try understanding biolog-
ical systems in terms of computer scientific analogues. Imagine that
cells or animals are complex legacy codebases that you have no
control over. As an engineer, you have a few experimental measure-
ments of these systems (assays) which you can use to gain some
understanding of the underlying mechanics. Machine learning is
an extraordinarily powerful tool for understanding biological sys-
tems since learning algorithms are capable of extracting useful cor-
relations in a mostly automatic fashion. This allows even biological
beginners to sometimes find deep biological insights.

In the remainder of this book, we discuss basic biology in brief
asides. These notes can serve as entry points into the vast biological
literature. Public references such as Wikipedia often contain a
wealth of useful information, and can help bootstrap your biologi-
cal education.

Next, let’s consider tox21_datasets. The use of the plural is a clue that this field is
actually a tuple containing multipledc.data.Dataset objects:

In : tox21_datasets

Out:

(<deepchem.data.datasets.DiskDataset at 0x7f9804d6c390>,
<deepchem.data.datasets.DiskDataset at 0x7f9804d6c780>,
<deepchem.data.datasets.DiskDataset at 0x7f9804c5a518>)

Training a Model to Predict Toxicity of Molecules
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In this case, these datasets correspond to the training, validation, and test sets you
learned about in the previous chapter. You might note that these are DiskDataset
objects; the dc.molnet module caches these datasets on your disk so that you don't
need to repeatedly refeaturize the Tox21 dataset. Let’s split up these datasets correctly:

train_dataset, valid_dataset, test_dataset = tox21 datasets

When dealing with new datasets, it's very useful to start by taking a look at their
shapes. To do so, inspect the shape attribute:

In : train_dataset.X.shape
Out: (6264, 1024)

In : valid_dataset.X.shape
Out: (783, 1024)

In : test_dataset.X.shape
Out: (784, 1024)

The train_dataset contains a total of 6,264 samples, each of which has an associated
feature vector of length 1,024. Similarly, valid_dataset and test_datasetcontain
respectively 783 and 784 samples. Let’s now take a quick look at the y vectors for these
datasets:

In : np.shape(train_dataset.y)
Out: (6264, 12)

In : np.shape(valid_dataset.y)
Out: (783, 12)

In : np.shape(test_dataset.y)

Out: (784, 12)
There are 12 data points, also known as labels, for each sample. These correspond to
the 12 tasks we discussed earlier. In this particular dataset, the samples correspond to
molecules, the tasks correspond to biochemical assays, and each label is the result of a
particular assay on a particular molecule. Those are what we want to train our model
to predict.

There’s a complication, however: the actual experimental dataset for Tox21 did not
test every molecule in every biological experiment. That means that some of these
labels are meaningless placeholders. We simply don’t have any data for some proper-
ties of some molecules, so we need to ignore those elements of the arrays when train-
ing and testing the model.

How can we find which labels were actually measured? We can check the dataset’s w
field, which records its weights. Whenever we compute the loss function for a model,
we multiply by w before summing over tasks and samples. This can be used for a few
purposes, one being to flag missing data. If a label has a weight of 0, that label does
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not affect the loss and is ignored during training. Let’s do some digging to find how
many labels have actually been measured in our datasets:

In : train_dataset.w.shape
Out: (6264, 12)

In : np.count_nonzero(train_dataset.w)
Out: 62166

In : np.count_nonzero(train_dataset.w == 0)
Out: 13002

Of the 6,264 x 12 = 75,168 elements in the array of labels, only 62,166 were actually
measured. The other 13,002 correspond to missing measurements and should be
ignored. You might ask, then, why we still keep such entries around. The answer is
mainly for convenience; irregularly shaped arrays are much harder to reason about
and deal with in code than regular matrices with an associated set of weights.

Processing Datasets Is Challenging

It's important to note here that cleaning and processing a dataset
for use in the life sciences can be extremely challenging. Many raw
" datasets will contain systematic classes of errors. If the dataset in
question has been constructed from an experiment conducted by
an external organization (a contract research organization, or
CRO), its quite possible that the dataset will be systematically
wrong. For this reason, many life science organizations maintain
scientists in-house whose job it is to verify and clean such datasets.

In general, if your machine learning algorithm isn't working for a
life science task, there’s a significant chance that the root cause
stems not from the algorithm but from systematic errors in the
source of data that you're using.

Now let’s examine transformers, the final output that was returned by
load_tox21(). A transformer is an object that modifies a dataset in some way. Deep-
Chem provides many transformers that manipulate data in useful ways. The data-
loading routines found in MoleculeNet always return a list of transformers that have
been applied to the data, since you may need them later to “untransform” the data.
Let’s see what we have in this case:

In : transformers
Out: [<deepchem.trans.transformers.BalancingTransformer at ©x7f99dd73c6d8>]

Here, the data has been transformed with a BalancingTransformer. This class is used
to correct for unbalanced data. In the case of Tox21, most molecules do not bind to
most of the targets. In fact, over 90% of the labels are 0. That means a model could
trivially achieve over 90% accuracy simply by always predicting 0, no matter what
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input it was given. Unfortunately, that model would be completely useless! Unbal-
anced data, where there are many more training samples for some classes than others,
is a common problem in classification tasks.

Fortunately, there is an easy solution: adjust the dataset’s matrix of weights to com-
pensate. BalancingTransformer adjusts the weights for individual data points so that
the total weight assigned to every class is the same. That way, the loss function has no
systematic preference for any one class. The loss can only be decreased by learning to
correctly distinguish between classes.

Now that we've explored the Tox21 datasets, let’s start exploring how we can train
models on these datasets. DeepChem’s dc.models submodule contains a variety of
different life science-specific models. All of these various models inherit from the
parent class dc.models.Model. This parent class is designed to provide a common
API that follows common Python conventions. If you've used other Python machine
learning packages, you should find that many of the dc.models.Model methods look
quite familiar.

In this chapter, we won't really dig into the details of how these models are construc-
ted. Rather, we will just provide an example of how to instantiate a standard Deep-
Chem model, dc.models.MultitaskClassifier. This model builds a fully connected
network (an MLP) that maps input features to multiple output predictions. This
makes it useful for multitask problems, where there are multiple labels for every sam-
ple. It’s well suited for our Tox21 datasets, since we have a total of 12 different assays
we wish to predict simultaneously. Let’s see how we can construct a MultitaskClassi
fier in DeepChem:

model = dc.models.MultitaskClassifier(n_tasks=12,

n_features=1024,

layer_sizes=[1000])
There are a variety of different options here. Let’s briefly review them. n_tasks is the
number of tasks, and n_features is the number of input features for each sample. As
we saw earlier, the Tox21 dataset has 12 tasks and 1,024 features for each sample.
layer_sizes is a list that sets the number of fully connected hidden layers in the net-
work, and the width of each one. In this case, we specify that there is a single hidden
layer of width 1,000.

Now that we've constructed the model, how can we train it on the Tox21 datasets?
Each Model object has a fit() method that fits the model to the data contained in a
Dataset object. Fitting our MultitaskClassifier object is then a simple call:

model.fit(train_dataset, nb_epoch=10)

Note that we added on a flag here. nb_epoch=10 says that 10 epochs of gradient
descent training will be conducted. An epoch refers to one complete pass through all
the samples in a dataset. To train a model, you divide the training set into batches and
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take one step of gradient descent for each batch. In an ideal world, you would reach a
well-optimized model before running out of data. In practice, there usually isn't
enough training data for that, so you run out of data before the model is fully trained.
You then need to start reusing data, making additional passes through the dataset.
This lets you train models with smaller amounts of data, but the more epochs you
use, the more likely you are to end up with an overfit model.

Let’s now evaluate the performance of the trained model. In order to evaluate how
well a model works, it is necessary to specity a metric. The DeepChem class
dc.metrics.Metric provides a general way to specify metrics for models. For the
Tox21 datasets, the ROC AUC score is a useful metric, so let’s do our analysis using it.
However, note a subtlety here: there are multiple Tox21 tasks. Which one do we com-
pute the ROC AUC on? A good tactic is to compute the mean ROC AUC score across
all tasks. Luckily, it’s easy to do this:

metric = dc.metrics.Metric(dc.metrics.roc_auc_score, np.mean)

Since we've specified np.mean, the mean of the ROC AUC scores across all tasks will
be reported. DeepChem models support the evaluation function model.evaluate(),
which evaluates the performance of the model on a given dataset and metric:

ROCAUC

We want to classify molecules as toxic or nontoxic, but the model
outputs continuous numbers, not discrete predictions. In practice,
you pick a threshold value and predict that a molecule is toxic
whenever the output is greater than the threshold. A low threshold
will produce many false positives (predicting a safe molecule is
actually toxic). A higher threshold will give fewer false positives but
more false negatives (incorrectly predicting that a toxic molecule is
safe).

The receiver operating characteristic (ROC) curve is a convenient
way to visualize this trade-off. You try many different threshold
values, then plot a curve of the true positive rate versus the false
positive rate as the threshold is varied. An example is shown in
Figure 3-1.

The ROC AUC is the total area under the ROC curve. The area
under the curve (AUC) provides an indication of the model’s ability
to distinguish different classes. If there exists any threshold value
for which every sample is classified correctly, the ROC AUC score
is 1. At the other extreme, if the model outputs completely random
values unrelated to the true classes, the ROC AUC score is 0.5. This
makes it a useful number for summarizing how well a classifier
works. It's just a heuristic, but it's a popular one.
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train_scores = model.evaluate(train_dataset, [metric], transformers)
test_scores = model.evaluate(test_dataset, [metric], transformers)

Now that we've calculated the scores, let’s take a look!

In : print(train_scores)
: print(test_scores)
Out
{'mean-roc_auc_score': 0.9659541853946179}
{'mean-roc_auc_score': 0.7915464001982299}

Notice that our score on the training set (0.96) is much better than our score on the
test set (0.79). This shows the model has been overfit. The test set score is the one we
really care about. These numbers aren’t the best possible on this dataset—at the time
of writing, the state of the art ROC AUC scores for the Tox21 dataset are a little under
0.9—but they aren’t bad at all for an out-of-the-box system. The complete ROC curve
for one of the 12 tasks is shown in Figure 3-1.
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Figure 3-1. The ROC curve for one of the 12 tasks. The dotted diagonal line shows what
the curve would be for a model that just guessed at random. The actual curve is consis-
tently well above the diagonal, showing that we are doing much better than random
guessing.

Case Study: Training an MNIST Model

In the previous section, we covered the basics of training a machine learning model
with DeepChem. However, we used a premade model class, dc.models.Multitask
Classifier. Sometimes you may want to create a new deep learning architecture
instead of using a preconfigured one. In this section, we discuss how to train a convo-
lutional neural network on the MNIST digit recognition dataset. Instead of using a
premade architecture like in the previous example, this time we will specify the full
deep learning architecture ourselves. To do so, we will introduce the
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dc.models.TensorGraph class, which provides a framework for building deep archi-
tectures in DeepChem.

When Do Canned Models Make Sense?

In this section, we're going to use a custom architecture on MNIST.
In the previous example, we used a “canned” (that is, predefined)
architecture instead. When does each alternative make sense? If
you have a well-debugged canned architecture for a problem, it will
likely make sense to use it. But if youre working on a new dataset
where no such architecture has been put together, you'll often have
to create a custom architecture. It's important to be familiar with
using both canned and custom architectures, so we've included an
example of each in this chapter.

The MNIST Digit Recognition Dataset

The MNIST digit recognition dataset (see Figure 3-2) requires the construction of a
machine learning model that can learn to classify handwritten digits correctly. The
challenge is to classify digits from 0 to 9 given 28 x 28-pixel black and white images.
The dataset contains 60,000 training examples and a test set of 10,000 examples.
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Figure 3-2. Samples drawn from the MNIST handwritten digit recognition dataset.
(Source: GitHub)

The MNIST dataset is not particularly challenging as far as machine learning prob-
lems go. Decades of research have produced state-of-the-art algorithms that achieve
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close to 100% test set accuracy on this dataset. As a result, the MNIST dataset is no
longer suitable for research work, but it is a good tool for pedagogical purposes.

Isn't DeepChem Just for the Life Sciences?

As we mentioned earlier in the chapter, it’s entirely feasible to use
other deep learning packages for life science applications. Similarly,
it’s possible to build general machine learning systems using Deep-
Chem. Although building a movie recommendation system in
DeepChem might be trickier than it would be with more special-
ized tools, it would be quite feasible to do so. And for good reason:
there have been multiple studies looking into the use of recommen-
dation system algorithms for use in molecular binding prediction.
Machine learning architectures used in one field tend to carry over
to other fields, so it's important to retain the flexibility needed for
innovative work.

A Convolutional Architecture for MNIST

DeepChem uses the TensorGraph class to construct nonstandard deep learning archi-
tectures. In this section, we will walk through the code required to construct the con-
volutional architecture shown in Figure 3-3. It begins with two convolutional layers
to identify local features within the image. They are followed by two fully connected
layers to predict the digit from those local features.

- — —
A

5x5 Convolution 5x5 Convolution Full Connection

Figure 3-3. An illustration of the architecture that we will construct in this section for
processing the MNIST dataset.

To begin, execute the following commands to download the raw MNIST data files
and store them locally:

mkdir MNIST_data

cd MNIST_data

wget http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/t10k-1abels-idx1-ubyte.qgz
cd ..
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Let’s now load these datasets:

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST data/", one_hot=True)
We're going to process this raw data into a format suitable for analysis by DeepChem.
Let’s start with the necessary imports:

import deepchem as dc
import tensorflow as tf
import deepchem.models.tensorgraph.layers as layers

The submodule deepchem.models. tensorgraph.layers contains a collection of “lay-
ers” These layers serve as building blocks of deep architectures and can be composed
to build new deep learning architectures. We will demonstrate how layer objects are
used shortly. Next, we construct NumpyDataset objects that wrap the MNIST training
and test datasets:

train_dataset = dc.data.NumpyDataset(mnist.train.images, mnist.train.labels)
test_dataset = dc.data.NumpyDataset(mnist.test.images, mnist.test.labels)

Note that although there wasn’t originally a test dataset defined, the input_data()
function from TensorFlow takes care of separating out a proper test dataset for our
use. With the training and test datasets in hand, we can now turn our attention
towards defining the architecture for the MNIST convolutional network.

The key concept this is based on is that layer objects can be composed to build new
models. As we discussed in the previous chapter, each layer takes input from previous
layers and computes an output that can be passed to subsequent layers. At the very
start, there are input layers that take in features and labels. At the other end are out-
put layers that return the results of the performed computation. In this example, we
will compose a sequence of layers in order to construct an image-processing convolu-
tional network. We start by defining a newTensorGraphobject:

model = dc.models.TensorGraph(model_dir="mnist"')

The model_dir option specifies a directory where the model’s parameters should be
saved. You can omit this, as we did in the previous example, but then the model will
not be saved. As soon as the Python interpreter exits, all your hard work training the
model will be thrown out! Specifying a directory allows you to reload the model later
and make new predictions with it.

Note that since TensorGraph inherits from Model, this object is an instance of
dc.models.Model and supports the same fit() and evaluate() functions we saw
previously:

In : isinstance(model, dc.models.Model)
Out: True
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We haven’t added anything to model yet, so our model isn't likely to be very interest-
ing. Let’s start by adding some inputs for features and labels by using the Feature and
Label classes:

feature = layers.Feature(shape=(None, 784))
label = layers.Label(shape=(None, 10))

MNIST contains images of size 28 x 28. When flattened, these form feature vectors of
length 784. The labels have a second dimension of 10 since there are 10 possible digit
values, and the vector is one-hot encoded. Note that None is used as an input dimen-
sion. In systems that build on TensorFlow, the value None often encodes the ability for
a given layer to accept inputs that have any size in that dimension. Put another way,
our object feature is capable of accepting inputs of shape (20, 784) and (97, 784)
with equal facility. In this case, the first dimension corresponds to the batch size, so
our model will be able to accept batches with any number of samples.

One-Hot Encoding

The MNIST dataset is categorical. That is, objects belong to one of
a finite list of potential categories. In this case, these categories are
the digits 0 through 9. How can we feed these categories into a
machine learning system? One obvious answer would be to simply
feed in a single number that takes values from 0 through 9. How-
ever, for a variety of technical reasons, this encoding often doesn't
seem to work well. The alternative that people commonly use is to
one-hot encode. Fach label for MNIST is a vector of length 10 in
which a single element is set to 1, and all others are set to 0. If the
nonzero value is at the Oth index, then the label corresponds to the
digit 0. If the nonzero value is at the 9th index, then the label corre-
sponds to the digit 9.

In order to apply convolutional layers to our input, we need to convert our flat feature
vectors into matrices of shape (28, 28). To do this, we will use a Reshape layer:

make_1image = layers.Reshape(shape=(None, 28, 28), in_layers=feature)

Here again the value None indicates that arbitrary batch sizes can be handled. Note
that we have a keyword argument in_layers=feature. This indicates that the
Reshape layer takes our previous Feature layer, feature, as input. Now that we have
successfully reshaped the input, we can pass it through to the convolutional layers:

conv2d_1 = layers.Conv2D(num_outputs=32, activation_fn=tf.nn.relu,
in_layers=make_image)

conv2d_2 = layers.Conv2D(num_outputs=64, activation_fn=tf.nn.relu,
in_layers=conv2d_1)
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Here, the Conv2D class applies a 2D convolution to each sample of its input, then
passes it through a rectified linear unit (ReLU) activation function. Note how in_lay
ers is used to pass along previous layers as inputs to succeeding layers. We want to
end by applying Dense (fully connected) layers to the outputs of the convolutional
layer. However, the output of Conv2D layers is 2D, so we will first need to apply a Flat
ten layer to flatten our input to one dimension (more precisely, the Conv2D layer pro-
duces a 2D output for each sample, so its output has three dimensions; the Flatten
layer collapses this to a single dimension per sample, or two dimensions in total):

flatten = layers.Flatten(in_layers=conv2d_2)
densel = layers.Dense(out_channels=1024, activation_fn=tf.nn.relu,
in_layers=flatten)

dense2 = layers.Dense(out_channels=10, activation_fn=None, in_layers=densel)
The out_channels argument in a Dense layer specifies the width of the layer. The first
layer outputs 1,024 values per sample, but the second layer outputs 10 values, corre-
sponding to our 10 possible digit values. We now want to hook this output up to a
loss function, so we can train the output to accurately predict classes. We will use the
SoftMaxCrossEntropy loss to perform this form of training:

smce = layers.SoftMaxCrossEntropy(in_layers=[label, dense2])

loss = layers.ReduceMean(in_layers=smce)
model.set_loss(loss)

Note that the SoftMaxCrossEntropy layer accepts both the labels and the output of
the last Dense layer as inputs. It computes the value of the loss function for every
sample, so we then need to average over all samples to obtain the final loss. This is
done with the ReduceMean layer, which we set as our model’s loss function by calling
model.set_loss().

SoftMax and SoftMaxCrossEntropy

You often want a model to output a probability distribution. For MNIST, we want to
output the probability that a given sample represents each of the 10 digits. Every out-
put must be positive, and they must sum to 1. An easy way to achieve this is to let the
model compute arbitrary numbers, then pass them through the confusingly named
softmax function:

i
e

cri.(x) =—
Eje J

The exponential in the numerator ensures that all values are positive, and the sum in the
denominator ensures they add up to 1. If one element of x is much larger than the others,
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the corresponding output element is very close to 1 and all the other outputs are very
close to 0.

SoftMaxCrossEntropy first uses a softmax function to convert the outputs to proba-
bilities, then computes the cross entropy of those probabilities with the labels.
Remember that the labels are one-hot encoded: 1 for the correct class, 0 for all others.
You can think of that as a probability distribution! The loss is minimized when the
predicted probability of the correct class is as close to 1 as possible. These two opera-
tions (softmax followed by cross entropy) often appear together, and computing them
as a single step turns out to be more numerically stable than performing them sepa-
rately.

For numerical stability, layers like SoftMaxCrossEntropy compute in log probabili-
ties. We'll need to transform the output with a SoftMax layer to obtain per-class out-
put probabilities. We'll add this output to model with model.add_output():

output = layers.SoftMax(in_layers=dense2)
model.add_output(output)

We can now train the model using the same fit() function we called in the previous
section:

model.fit(train_dataset, nb_epoch=10)

Note that this method call might take some time to execute on a standard laptop! If
the function is not executing quickly enough, try using nb_epoch=1. The results will
be worse, but you will be able to complete the rest of this chapter more quickly.

Let’s define our metric this time to be accuracy, the fraction of labels that are correctly
predicted:
metric = dc.metrics.Metric(dc.metrics.accuracy_score)

We can then compute the accuracy using the same computation as before:

train_scores = model.evaluate(train_dataset, [metric])

test_scores = model.evaluate(test_dataset, [metric])
This produces excellent performance: the accuracy is 0.999 on the training set, and
0.991 on the test set. Our model identifies more than 99% of the test set samples cor-

rectly.
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Try to Get Access to a GPU

As you saw in this chapter, deep learning code can run pretty
slowly! Training a convolutional neural network on a good laptop
can take more than an hour to complete. This is because this code
depends on a large number of linear algebraic operations on image
data. Most CPUs are not well equipped to perform these types of
computations.

If possible, try to get access to a modern graphics processing unit.
These cards were originally developed for gaming, but are now
used for many types of numeric computations. Most modern deep
learning workloads will run much faster on GPUs. The examples
you'll see in this book will be easier to complete with GPUs as well.

If it'’s not feasible to get access to a GPU, don't worry. You'll still be
able to complete the exercises in this book—they might just take a
little longer (you might have to grab a coffee or read a book while
you wait for the code to finish running).

Conclusion

In this chapter, you've learned how to use the DeepChem library to implement some
simple machine learning systems. In the remainder of this book, we will continue to
use DeepChem as our library of choice, so don’t worry if you don’t have a strong
grasp of the fundamentals of the library yet. There will be plenty more examples
coming.

In subsequent chapters, we will begin to introduce the basic concepts needed to do
effective machine learning on life science datasets. In the next chapter, we will intro-
duce you to machine learning on molecules.

Conclusion | 39



Caopyrighted material



CHAPTER 4
Machine Learning for Molecules

This chapter covers the basics of performing machine learning on molecular data.
Before we dive into the chapter, it might help for us to briefly discuss why molecular
machine learning can be a fruitful subject of study. Much of modern materials science
and chemistry is driven by the need to design new molecules that have desired prop-
erties. While significant scientific work has gone into new design strategies, much
random search is sometimes still needed to construct interesting molecules. The
dream of molecular machine learning is to replace such random experimentation
with guided search, where machine-learned predictors can propose which new mole-
cules might have desired properties. Such accurate predictors could enable the cre-
ation of radically new materials and chemicals with useful properties.

This dream is compelling, but how can we get started on this path? The first step is to
construct technical methods for transforming molecules into vectors of numbers that
can then be passed to learning algorithms. Such methods are called molecular featuri-
zations. We will cover a number of them in this chapter, and more in the next chap-
ter.Molecules are complex entities, and researchers have developed a host of different
techniques for featurizing them. These representations include chemical descriptor
vectors, 2D graph representations, 3D electrostatic grid representations, orbital basis
function representations, and more.

Once featurized, a molecule still needs to be learned from. We will review some algo-
rithms for learning functions on molecules, including simple fully connected net-
works as well as more sophisticated techniques like graph convolutions. We'll also
describe some of the limitations of graph convolutional techniques, and what we
should and should not expect from them. We'll end the chapter with a molecular
machine learning case study on an interesting dataset.
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