John Wiaeda Design By Numbers

Design By Numbers Contents

CEBLELEBEE Bo

e 109

135

189

203
217

2581

oo NMEWN=

NEB

g

Touch
Network
Change
Numbers
End

Bibliography

Paola Antonelli Foreword About fifteen years ago, the desktop computer entered the profes-
sional world. This fantastic brand-new medium demanded and
deserved experimentation. Wherever it was implemented in the
world of the arts, it changed not only the final product, but also the
creative process itself. As always happens with disruptive innova-
tions, the computer provoked much criticism. Self-discipline,
its detractors said, was being abandoned in favor of less rigorous
trial-and-error, cut-and-paste habits, The attraction of immediate
results appeared to work against the strategic thought made
necessary by earlier technologies. Thanks to the computer, writers
could jot down concepts, and designers visual fragments, appar-
ently at random and without a strong leading idea, rearranging
them only at the end to form a finished text or design. Because
of this apparently time-saving technology. its detractors concluded,
texts, images, and objects would lose power and generate a
world of diluted intensity and rigor.

Copyrighted material

In graphic design, in particular, the computer created a tidal wave
whose impact was quick and massive. It quickly generated factions
and ignited debate. On one side, against the computer, sat some

of the best champions of hand-made modernism, like Paul Rand
and Massimo Vignelli. On the other side sat many young talented
designers and thinkers, like the group Emigre and Lorraine Wild,
who were confident enough in their self-discipline and ability to
exploit and ride the new medium. Modern design is about showing
clarity of process and purpose, and the best among them relied on
their post-modern flexibility to update the positive qualities of
modern design and to express the most contemporary visual
culture. As a matter of fact, modern design objects display in their
function and form the process that generated them. Such objects
are determined not by the process, but rather by the use that is
made of it. When this characteristic is taken as a definition, modern
design becomes timeless and styleless and can be found alike

in ancient Greece, in 1938, and today.

10

The battle that is now history had many famous episodes and
many less famous epilogues. Among the most emblematic is

the encounter between Paul Rand, the idolized and cantankerous
master who believed he rejected the new, and John Maeda,

a younger designer who could play his computer like a violin,
who happened to be a fervent fan of Rand. Maeda showed Rand
that the computer is indeed a powerful tool that can be used

to produce powerful designs, by generating with it brand new
examples of historical modernism.

The most important part of Maeda’'s production, and the one he is
most proud of, is not the final object, but rather the process. In
his work, the process is the core that informs the final outcome.
Maeda’s fundamental idea is that to successfully design with a
computer, one has to design, or at least understand, the program
one uses. This position brings him close to post-modern pioneers
like Rudy VanderLans and Zuzana Licko of Emigre, who in 1985

Copyrighted material

designed on their small Macintosh the low-resolution typefaces that
they used in their graphics. It also brings Maeda close to the best
contemporary industrial designers, who not only master the design
process, but also influence the design of the materials they will use.

By stressing the necessity of knowing in depth the tools and meth-
ods of design, Maeda also responds to one of the major criticisms
advanced by the detractors of the computer, the lack of self-
discipline that it allegedly allows. Even though it is true that, in
general, the new fields of design, like computer-based graphic
design ten years ago and websites or wearable computing today,
seem to attract many amateurs and to provoke in designers a short
circuit that erases the school memory of a correct design process,
it is also true that it always takes time. Graphic design is under-
going a postindustrial revolution similar to the industrial revolution
that shook object design more than a century ago. It took some
time and some polemic before design thinkers could give order to

the exuberance of the hideous new objects, such as beflowered
cast-iron toilets and chairs, that sang the praise of the industrial
technology in the second half of the nineteenth century. It is
still taking time for the graphic design profession as a whole to
feel comfortable with this new and ever-improving technology.

With this book, Maeda teaches both professional and amateur
designers a design process that paradoxically has a hands-on,
almost Arts and Crafts feeling. His approach to computer

graphic design is not different from an approach to wood carving.
Aimed at exemplifying the basic design of a programming method
that transforms itself into a visual design process, this book is

an unmatched attempt to share precious knowledge. As
awareness of the new medium continues to disseminate, the
more designers will learn to incorporate the digital medium

in their practice without being unsettled by it.

Paola Antonelli

Associate Curator
The Museum of Modern Art

1

Copyrighted material

iy Nighisal e

Copyrighted material

/*** DBN VERSION 0, by John Maeda. An attempt to create a programming language that can teach the basics of computation to the non-mathematically inclined person. ***/ import java.awt.’
static int tMSG=0, tCMD=1; Image icll; Image ic2[l; String dir = “stuff/”; Image title; Image imp, ims; bufpanel bp; env app; Rectangle loadr = new Rectangle(); Rectangle saver = new Rectangle
app.getimage(app.getDocumentBase(),dir+ “play.GIF"); for(int i=0;i<=100;i+=10) { int v = 100-134*i*i/10000+34*i*i*i/1000000; System.out.printin(i+”: “+v); } } Graphics myg=null; int pw; public
setmsg(String s) { msg = s; repaint(); } public Dimension preferredSize() { return new Dimension(100,24); } public boolean mouseUp(Event ev, int x, int y) { if ix<24) { if (!playp) { app.gosheadanc
app.doload(); } else if (saver.inside(x,y)) { f System.out.printin| “saver....... “); app.dosave(); } return true; } Font f = new Font{“Helvetica”,Font.PLAIN, 10); public void paint{Graphics g) { Rectangle
24,0.24,r.height); g.setColor(Color.darkGray); g.fillRect(0,0,r.width,.r.height); g.setColoriColor.white); g.setFont(fl; pw = g.getFontMetrics().stringWidthimsg); g.drawStringimsg,23,15); g.setColor
g.fillRect{saver.x+4,saver.y+4,saver.width-8,saver.height-8); g.setColor(Color.white); g.drawString(“rd”,loadr.x+4+3.loadr.y+16); g.drawString(“wr”,saver.x+4+3,saver.y+18); } } } class StringToke
return s.substring(start,i); } else { b=i+1; return s.substring(start,i+1); } } public String getuntilmatchedint start, char c1, char c2) { int i; int level = 0; forli=start;i<len;i++) { if (s.charAtlil==c 1) e
forli=b;i<len;i++) { char ¢ = s.charAtli); switch(c) { case ‘<": return getuntilmatched(i.'<",’>"); case ‘(": // do balanced version return getuntilmatched(i,’(",’)); case ‘[': return getuntilmatched(i,’|
netinitp = false; boolean setting = false; int numgets; // hiresbuf int cbw, cbh; int pgcol = 0; int pencol = 100; int bw,bh; int [l[Ibits; byte [l[ldbits; accessorypanel msg=null; long curt; Image bim
boolean stepp = false; // Image bimcp; public void createpage(int w, int h) { bw = w+1; bh = h+1; bits = new int{bw][bh]; dbits = new byte[bwi[bh]; if (bim!=null) bim = nuli; bim = createlmage(bv
= new Color{101]; forli =0;i<101i++) { int g = (int)(float)i*255(/100f+.5f); bitscollil = new Colorig.g.g): } } forli=0;i<26;i++) { keys(i]l = false; keytli] = -1; } } int szw = 358, szh = 318: Font f = new
bufpanel(String code, int sc) { doinits(); progstr = code; szw = 102; szh = 102; margx = margy = 4; runtimep = true; } int margx = 12, margy = 12; Image pat=null; Rectangle framer = new Rectar
g.setColor(Color.white); g.fillRect|0,0,r.width,r.height); g.setColoriColor.black); g.drawRectiframer.x-1.framer.y-1,framer.width+1,framer.height+1); return; } if (pat == null) { pat = createlmage(186,
g.drawlmage(pat,i®16,j"16,this); g.setColoriColor.white); g.fillRect{framer.x-1,framer.y-1,framer.width+ 1, framer.height+ 1); g.setColoriColor.black); g.drawRect(framer.x-1,framer.y-1,framer.width-
step; if (sc==1) step = 50; else step = 10; for(i=0;i<=100:i+=step) { int x,y: y = framer.y+framer.height-framer.height*i/100-1; g.drawLine(framer.x-2,y,framer.x-4,y); g.drawString(" " +i,framer.x-4-g.
g.drawStringl "~ +i.framer.x+framer.width*i/100+1.framer.y+framar.height+ 12); } g.setColoriColor.darkGray); // g.drawlLine(margx,0.margx,r.height); // g.drawLine(0,r.height-margy,r.width,r.height-
gpagelint val) { if (val>100) val = 100; if (val<0} val = 0; pgcol = 100-val; clearbits(); } public void gpen(int val] { pencol = 100-val;;/100-val; } public void refreshbitsi) { int i j; forli=0;i<bw;i++) for(j
public void circptsiint x, int y, int x0, int y0, int v) { setbit(x+x0,y+y0,v); setbitix+x0,-y+y0,v); setbit(-x+x0,y+y0.v); sethit(-x+x0,-y+y0,v); setbitiy+x0,x+y0,v); setbit(y+x0,-x+y0,v); setbit(-y+x0,x+y{
r; int de = 3; int dse = -2°r+5; circpts(x,y,x0,y0,pencol); while{y>x) { if (d<0) { d+= de; de+=2; dse+=2;} else { d+= dse; de+=2; dse+=4; y—; | x++; circptsix,y,x0,y0,pencol); } } public void grec
BresLine(x0,y0,x1,y1.pencol); if (true) return; if (dx == 0 && dy == 0] { setbit(x0,y0,pencol); } else if (dx == 0) { if (dy<0) { int dum = y0; y0 = y1; y1 = dum; } for(i=y0; i<y1;i++) setbit(x0,i,pencol); ,
bresen2(x0,y0,x1,y1,pencol); } else (if (dx>=-dy] bresen1(x0,y0,x1,y1,p I); else { /System.out.printin(“yell”); bresen2(x0,y0,x1,y1,pencol); } }*/} } public void bresen1fint x0, int y0, int x1, in
{ d+=incrNE; x++; y+=sny;) setbitix,y.val; }) public void clearbits() { int i.j; forli=0;icbw;i++) for{j=0;j<bh;j++) { bits[illj] = pgcol; dbits[il[j] = 1: } bimg.setColoribitscollpgcol]); bimg.fillRect(0,0,
int g = n; if ig<0) g = 0; if (9>100) g = 100; // System.out.printin{“g is “+g+" n is “+n); bimg.setColor(bitscol{g]); bimg.drawLine(i,j-1,i,j-1); /* myg = this.getGraphics(); myg.setColor(bitscollgl); m
tx, ty; if (refreshp) { drawframe(g); refreshp = false; } // System.out.printin{ “predrawbits "); // if (!bdirtyp) return; g.translate(framer.x,framer.y):/ftx={margx+1),ty=(cb.height-margy-sc*bh)); orgx = |
def command(String s, Block b) { int i; Vector v = b.args; System.out.printin{“def * + s); emdenv.put(s,b); } public void def ioiString s, Block b) { int i; Vector v = b.args; ioenv.put(s,b); } public B
System.out.printin{“set “+s+" to “+nl; if (s.startsWith(“[")) { StringTokenizer2 st = new StringTokenizer2({trim2(s)); int x = evalarg(st.nextToken{)); int y = evalarg(st.nextToken()); setbitix,y, 100-n,
String str = new String(st.nextToken() + “ “ + n); sendtoServeristr); } else { })} else curFramei).putis,new Integerin)); } Vector vframes = new Vectorl(): public void PushFrame(] { // System.out.prii
return (Hashtablelvframes.elementAt(vframes.size(l-1); } public int getvar(String s) throws lerr { { // need to search through all frames int i; Integer m = null; forli=vframes.size()-1;i>=0;i—) { Has}
char word(] = s.toCharArray(); for (int i = 0; i < s.lengthi); i++) { if iword[i] == c) { sp(“CONTAINS: “+s.length()+" “+il; return i; } } return -1; } public String comesafter(String s, int n) { return s.si
stacki] = new int[100]; int outc = 0; public int outputpop() throws lerr { if (outec == 0) throw new lerr{ “out stack overflow”); outc—; return ou kloutc]: } public void outputpushiint v} { }f Syst
/iSystem.out.printin{“new client”); client = new ClientConnection{hoster); netinitp = true; } public void settoServer(int place, int value) { /System.out.printin{“set * + place + ~ “ + value); client.
W System.out.printin(“gotfromserver “ + line + “ “ + numgets + “times”); return Integer.parselntiline); } catch (IOException e) { System.out.printin(e.toString()); } return -1; } public int evalarg(St
%" s=s.trim(); [/ System.out.printin({“EVAL ARG: >>"+s+"<<"); if (s.startsWith("{")) { // find the matching paren return evalarg(trim2(s)); } // does not work, needs to seek paren at this level and di
v= 100-bits{xlyl; return v; } */else if (contains(s,’()>0) { // got a paren up to bat // find out operator that occurs before int i; forli=0;ics. lengthi);is+) { if (s.charAt{i)=="(") break; } i—; switch(s.char
evalargis.substring(i+1,s.lengthi}}); case /: return evalargis.substring(0,ill/evalarg(s.substring(i+1,s.length())); default: System.out.printin{“math: unknown operator”); return 0; } } else if (cont
StringTokenizer(s, “-°); return evalarg(st.nextToken())-evalargicomesafter(s, contains(s, -')+1)); } else if {contains(s, **’) > 0] { StringTokenizer st = new StringTokenizer(s, “*”); return evalargist.n
(s.startsWith([")) { int v; StringTokenizer2 st = new StringTokenizerZ(trim2(s)); int x = evalarg(st.nextToken()), y = evalarg(st.nextToken({)); v= 100-bits(x)ly]; #/ p(x+~/"+y+": “+bits(xNy]); return v:
num = evalarg(st.nextToken()); switchinum){ case 1: return mx; case 2: return my; case 3: return mb; default: throw new lerr{"Unknown <loc>: “s+num); }) else if (intype.equals(“key”)) { i
Date d = new Date{); switchinum) { case 1: return d.getHours(); case 2: return d.getMinutes(); case 3: return d.getSeconds(); case 4: return (int){System.currentTimeMillis()l/10; i/ break; det
ligb = get iofintypel] == null] throw new lerr(“"Unknown input type: "“+s+"""); else { Vector v = gb.args; if (v == nulll { /¥ no args doBlockig.gb); return outputpopi): } else { // this should be .
Integer.parselnt(s); } else { return getvar(s); | } i/ setvar A,2 jf drawline A, A, 10,20 final int mxstk = 10; Vector blockstk[] = new Vectorimxstk]; // public void pushblock(Vector Vector vect = null; p

msghbox{ “[“+mx+"/" “1”); msgalive(); servicekeys(); /f emd = emd.toLowerCase(); try { // System.out.printin(“doline: “+b.linenum); /¥ while(!stepp); if (emd.equals
“line "+(20)+" "+(20+il+" "+60+" "+(20+i)); } System.out.printin{“pen 25); {
WA I else if {
T femd.equals| “pause ™)) { wi= A in 100ths of seconds t= 5
} else if (ecmd.equals(“set”)) { setvar(st2.nextToken(), evalarg|st.
is: + Block bb = get_commandicmd); if (bb == null) throw new cmd: “+cmd+" at line "+(b.linenum+1)); } else { // System.out.printin(“Using n:

PopFrame(); }}} catch (lerr &) { if (e.lnum == -1) { e.lnum = b.linenum; throw e; } | stepp = false; drawbits(g); return false; } public void doStep(Graphics g, String a, int n, int t, int inc, Block b
doBlock(Graphics g, Block b) throws lerr { int i, j; /f System.out.printin{ “Doing block: “+b.getstr()); i b.pp(); msgalive{); j/** SHOULD CHECK NARGS!!! if (b.type == Block.STR) { return doLine(g,
System.out.printin{“Doing a stepone: “); String line = a.s; StringTokenizerZ st = new StringTokenizer2(line); st.nextToken(); String arg = st.nextToken(); /A int inc = 1; Block nextb = (Blockv.
(Block)v.elemantAtfi+1); i++; Graphics g2 = bufim.getGraphics(); drawframel(gZ); for(;;) { / in a forever, should do automatic double buffering // but i think this would not work if we had nest
(doBlockigZ,nextb)) { // this dont work right because doblock has to be rewriten System.out.printin{“ESCAPED"); break;) g.drawlmage(bufim,0,0,this); } } else if (a.isa(“same?”)) { String lir
evalarglarg2)) doBlock(g.nextb); | eise if (a.isa(“notsame?”)) { String line = a.s; StringTokenizer2 st = new StringTokenizer2(line); st.nextToken(); String arg1 = st.nextToken(); String arg2 = s
st.nextToken(): String arg1 = st.nextToken{); String arg2 = st.nextToken{); String arg3 = st.nextToken(); Block nextb = (Block)v.elementAt(i+1); i++; if (Math.abs{evalargiarg1)-evalargiarg2])<es
nextb = (Block)v.elementAt(i+1); i++; if (evalarglarg1) < evalarglarg2)) doBlock(g.nextb); } else if (a.isa("notsmaller?”)) { String line = a.s; StringTokenizerZ st = new StringTokenizer2(line); st.i
= a.s; int nargs = cntargs(line); StringTokenizer2 st = new StringTokenizer2(line); st.nextToken(); String arg = st.nextToken(); Block nextb = (Block)v.elementAt{i+1); i++; if (nargs>2){ Vector
cntargs(line); StringTokenizerZ st = new StringTokenizer2(line); st.nextToken(); String arg = st.nextToken(); Block nextb = (Block)v.elementAt(i+1); i++; if (nargs>2) { Vector nv = new Vector():
cntargs(String s) { int i, len = s.lengthi); int cnt = 0; boolean Ist = true, st; for(i=0; i<len;i++) { st = s.charAtfi)l=""; if (Ist!=st && st) cnt++; Ist = st; } return cnt+1; } Thread runner=null; public voit

imousex-orgxl/sc; my = (orgy-mousey)/sc; mb = mouseb?100:0; fpimx+~/~+my); } int mousex, ¥; boolean b; public bool Ei {Event av, int x, int y) { mousex = x; mousey =
y) { mousex = x; mousey = y;mouseb = true; if (zoomr.inside(x,y)) {sc++; if (sc == 4) sc = 1; refreshp = true; if (r ==null) repainti);} calcmousel); if (runtimep&&|{ev.modifiers)&{Event. SHIFT M
false; calcmouse(); return true; |} public boolean mouseDrag(Event ev, int x, int y) { = x; ¥ = yir b = true; calcrnouse(); return true;) public boolean mouseMove(Event ev, int x,

msg.pulse(); } public void msgboxilerr e} { System.out.printin|“***MSG: “+e.getMessage(l+~ line: “+e.lnum); if imsg == null) return; msg.setmsgie.getMessage()); if (e.Inum>=0) { String s = ta.get
} }}if (jend == -1) end = len; System.out.printin{ “st/fend: “+st+~/"+end); ta.select(st,end); /ta.replaceText(“"AAAAAH",st,end); // ta.selectAll(); ta.invalidate(); } } public boolean donep = true, errp
runner.stop(); runner = null; } } public void stop() { if (runner !=null) { runner.stopl); runner = null; donep = true; if (netinitp == true) { client.out.flush(); netinitp = false; try {if (client.s != null) eli
workaround: store when key comes down, allow valid for /f certain amount of time, if exceed then flush. autokey // events come in as keydown so should refresh naturally public void serviceki
System.currentTimeMillis(); keys(ind] = true; } else if (n>="A'&&n<="2") { int ind = n-"A"; keytlind] = System.currentTimeMillis(); keyslind] = true; } return true; } public synchronized boolean keyUy
stop(); i/ runp = true; progstr = s; start(); } public int executeprogram(String s) throws lerr { StringTokenizer st = new StringTokenizer(s, \\n"); Graphics g = getGraphics(); Rectangle bds = bounds
(Exception e { e.printStackTrace(); return 1; } gpage(0); gpen(100); clearbits(); forlint i = 0; ickeys.length;i++) { keys(i]l = false; keyt(i] = -1; } vect = new Vector(): vframes = new Vector(): PushFrar
public void paintiGraphics g) { Rectangle r = bounds(); cb = bounds(); if (bw == 0) { createpage(100,100); bufim = createlmage(r.width, r.height); } zoomr.reshape(0,0,24,16); drawframe(g); myg = ¢
PrintStream out; public ClientConnection(String host) { try { s = new Socket(host, PORT); in = new DatalnputStream(s.getinputStreami)); out = new PrintStream(s.getOutputStreamy)); System.ou
constraints = new GridBagConstraints(); String initcod, = “f\n paper 50\n line 0 0 100 100\n)~; TextArea code; Button go = new Button(“run”); Button frame = new Button|“read files”); Buttc
Button|(“step”); String infilename = null; Button saveb = new Button(“save”); Button loadb = new Button(“load”); public void setupforrun() { System.out.printin{ “setup for run”); setLayout(new

BorderLayouti)); p.setLayoutinew BorderLayout()):/new GridLayout{1,2)); Panel p3 = new Panel(); p3.setLayoutinew BorderLayout()); code = new TextArea(initcodestr); p3.add(”Center”,code); ca
FlowLayout{FlowLayout.LEFT)); p2.add{new Label(“Design by Numbers, Copyright 1998 John Maeda. All Rights Reserved.”)); /*cbg = new CheckboxGroupi); { Checkbox c; cb1=c = new Checkba
"l & p2.addisaveb); // p2.add{loadb); step.disablei); add(“Center”,p); // add(“North”,p2); / add(“North”,new accessorypanelithis.accessorypanel tCMD)); p.add(”Center”,p3); p.add|“West"~,canvas
true; | if (s!=null) { // run through and remove semicolons StringTokenizer f = new StringTokenizer(s, ”;”); initcodestr = “~; while(f.hasMoreTokens()) { initcodestr = initcodestr+f.nextToken()+ “\n
name!=null] { try { initcodestr = readFile{infilename); } catch (Exception e) { initcodestr = “~; } if (runp) setupforrun(); else setupforedit(); } } public void autosemiprepl) { String s = code.getTex:
spc; int cnt = 0; StringTokenizer st = new StringTokenizer(s, "\n"); while(st.hasMoreTokens(]] { String t = st.nextToken(); t = t.trim(); spc = nsp*lev; if (t.length(}>0) { if (t.charAt(0) == ') { lev++;

s = code.getText(); canvas.runprogramis); } public void deload() { Frame f = new Frame(); FileDialog fd = new FileDialogi(f, " load”, FileDialog.LOAD); fd.showl(); String fl = fd.getFile(); if (f'=null) {

msg.setmsgl “done.”); code.setTextinew String(b,avail)); fp.close();) catch (Exception e) { msg.setmsg(“Can’t load file “+fl); } } } public void dosave{) { Frame f = new Frame|); FileDialog fd = r
msg.setmsgl “Writing file: “+fl); ds.writeBytes(code.getText()); msg.setmsg(“done.”); fp.close(); } catch (Exception e) { msg.setmsg(“Can't save file “+fl); }} } public boolean action(Event evt,
else if (evt.target == loadb) { return true; } else if (evt.target == step) { canvas.step(); return true; } else if (evt.target == auto) { return true; } else if (evt.target == stop) { canvas.stop(); return true
return true; |} else return false; } public String picked() { String s = files.getSelecteditem|); String url = new String(); url = “http:facg.media.mit.edu/dbn/” +s+~.html”; return url; } public String re
InputStreamReader reader = new InputStreamReaderiinput); StreamTokenizer stream = new StreamTokenizer(input); int c; boolean first = false; stream.eollsSignificant(true); stream.wordChar
lint)stream.nval; String str2 = Integer.toStringinumber); yippee = yippee + str2 + ~ “; break; case StreamTokenizer.TT EOL: yippee = yippee + “\n”; break; case StreamTokenizer.TT EOF: br
{ e.printStackTrace(); } return yippee; } public void paint{Graphics gl { } } import java.awt.*; import java.applet.®; import java.util.*; import java.net *; import java.io.*; import java.lang.*; class ler
return b<len; } public StringTokenizerNoSkip(String ss) { s = ss;f.trim(); len = s.length(); } public String nextToken|) { // looking for parens first, then brace, then space int i; boolean capturingp =
W each block c] tor of either Strings or a bonafide Block public class Block { Vector v; String s; int linenum; Vector args=null; // ugly hack to hide args for a define static int STR = 0, §
aa.charAtfi); if (e == (") { lev++; res+=(c+""+lev); } else if (¢ == V') { res+=(c+""+lev); lev—; } else res+=c; } if (lev !=0) throw new lerr(“braces not balanced”); return res;) static int findstr(Vect
int i; Block b = new Block(); i = stind; b.setline(stind); // System.out.println{“sten: “+stind+ "/" +andind); whilelicendind) { String s = (String)v.elementAtiil; int len = s.length(); if (s!=null) { if (s.chs
else { Block bs = new Block(s); bs.setline(i); b.addibs); i++; }} [/ } else i++; } return b; } static Block parse(String aa) throws lerr { Block b = new Block(); Vector pre = new Vactori); // System.out.
StringTokenizerNoSkip(aa); while(st.hasMoreTokens()) { String s = st.nextToken(); s = s.trimi); if (!s.equals(” ")) { pre.addElement(s); / System.out.printini “add pre: “+s); } else pre.addElement(” *
s.startsWith(ss); } else return false; |} public String getstr{] { if (type==0] { return (" [S: "+8+7]"); } else { String a = " [B: " int i; for(i=0;icv.size();i++) { Block b = (Block)v.elementAt(i); a+=b.getst:

; import java.util.; import java.net.”; import java.io.”; import java.lang.”; import Block; import lerr; class accessorypane
= false; public

I extends Panel { // does double duty as top panel and bottom panel
ap. int type, bufpanel b) { lpp:ap,bp = b; ty = type; ims = app.get] {i getD tBase(),dir+ "stop.GIF”); imp =
= if (myg==null) myg = myg.setColori(t)>250Color.gray:Color. dlrkﬁur.l myg.drawlLine(23,18,23+pw, 18);) String msg="Hello.”; public void
) else { bp stop(); = } if imyg==null) = myg.drawlmage(playp?ims:imp,4,4,this); } else if (loadr.insideix,y)) { // System.out.printin{ “loadr.......)
null; donep: “+bp.donep); if (ty==tMSG) { loadr.reshape(r.width-48+4,0,24,r.height); saver.reshape(r.width-
b=0; len;

g.setColor(Color.gray); g.fillRectiloadr.x+4,loadr.y+4, loadr. width-8, loadr.height-8);
{ 8 = ss.trim(); len = s.length(); } public String getuntil(int start, char c) { int i; for(i=start;i<len;i++| { if (s.charAt(i)==c) break; } if (c=="") { b=i,
level—; (level == 0) break; } b=i+1; return s.substring(start,i+1); } public String nextToken() { // looking for parens first, then
return getuntili,” °); } } return null; } } class bufpanel extends Panel implements Runnable { String hostname =

, then sp int i; bool capturingp = false;
tschichold.media.mit.edu”; ClientConnection client; boolean
int s¢ = 1; Hashtable cmdenv = null, ioenv = null; Graphics myg; boolean runtimep= false; TextArea ta = null; boolean bdirtyp = false; Color Itgr = new Color(239,239,239);

bimg = bim.getGraphics(): pl“buf size ls: *+bws+* by *+bh);) boolean [lkeys = new boolean!28]: long [keyt = new longl26]: publié vaid .mmuu [ﬂH I! Ifibitseolsnull) { bitseol
store lines in dynamically allocated linebuf public bufpanel{TextArea 1, m) { doinits({); ta = t; msg = public
gl { int i,j; Rectangle r = bounds(); cbw = bw*sc; cbh = sc*bh;
forli=0;i<16;i++) for(j=0:j<168:§++) [pg.setColoriili+j)
g.drawRect{framer.x-1,framer.y-1, framer.width+

if (runtimep) {
} forli=0cicr.width/16+ 1:i++) for(j=0;j<r.height/16+ 1;j++)
1.cbh+1); g.setColoriColor.white). g.setFontif); int
x=framer.x+framer. width y= v g.setColor(Color.white);
 drawbits(g); { g.setColor(Color.black); g.drawString(sc+“x",z00mr.x+3,z00mr.y+12); } } public void
= 1;) bdirtyp = true; } public void setmodefint m) { if (m== 0) sc = 1; else sc = 3; stop(); System.out.printin{“sc is

refreshbits(); repainti); // refreshlines(); // drawslate(getGraphics()/; }
} public void gfield(int x0, int y0, int x1, int y1, int v) { int ij; forli=x0;ic=x1;i++) for(j=y0;jc=y 1;j++) setbit(i j, 100-v); } public void gcircle(int x0, int y0, intr) {int x = O; int y = r; intd = 1-
x1, int y1) { gline(x0,y0.x1,y0); gline{x1,y0.x1,y1); gline(x1,y1,x0,y1); gline(x0,y1,x0,y0); } public void gline{int x0, int y0, int x1, int y1) { int dx = x1-x0; int dy = y1-y0; int i;
{dx<0} { int dum = x0; x0 = x1; x1 = dum; } forfi=x0; i<=x1;i++) setbit{i,y0,pencol); } else { BresLine(x0,y0,x1,y1,pencol); /* if (dy>0) { if (dx>dy) bresen1(x0,y0.x1,y1,pencoll; else
= x1-x0; int sny = (y1>y0)?1:-1; int dy = (y1-y0)*sny; int d = 2*dy-dx; int incrE = 2*dy; int incrNE = 2*(dy-dx); int x = x0; int y = ro uﬂmu y.vall; while{x<x1) { if (d<=0) { d+=incrE; x++;} else
} public vaid setbitlint i, int j, int n) { if (i>=bw-1) return; if (j>bh-1) return; if (j<0) return; if (i<0) return; § pl“set: “+is "/ sjs 70 7 : “+bw+ "/ +bh); bits{illj] = n; dbits[il[jl = 1; j = bh-j;
i = true; } Color bitscoll] = null; boolean refreshp = false; Rectangle roomr = new .ﬂ'm.lnﬂhﬂ, public synchronized void drawbits(Graphics g) { int ij; // int
g.setColor{Color.black); g.drawlmage(bim,0,0,bw*sc,bh*sc, this); g.translate(-framer.x,-framer.y); bdirtyp = false;) public void
return ffllock.lcmdmv.wrlﬂ; } public Block get_io{String s) { return ((Block)ioenv.getis)); } public void setvar{String s, int n) throws lerr { Jf
if { st = new StringTokenizer2(trim2(s)); String intype = st.nextToken(); if {intype.equals(“net”)) { if (netinitp == false) { connecttoServerfhostname); |
Hashtable{)); } public void PopFrame() { // System.out.printin(“-new frame popped”); vframes.removeElement|vframes.lastElement());) Hashtable curFramef{) {
if [im={Integer)ht.get(s))!=null) break; } if (m == null) { throw new lerr{ “Unknown variable:

+8);) else return m.intValue(); } } public int contains(String s, char ¢) {
void sp(String s { // System.out.printin(s); } // this is the io stack, it is a temporary kludge until // we build a universal stack. String instackpl] = new Stringl100]; int inc = O; int out-
+vl; outstack[outc] = v; outc++; |} public String trim2(String s) { // remove start and end return s.substring(1,s.length()-1); } public void connecttoServer{String hoster) {
place + © ~ ' 3 i
i/ this is hard stuff /s = "A" /s =

+ value); } public void sendtoServer(String nums) { client.out.printin(nums); client.out.flush(); } public int getfromServer() { try { String line; line = client.in.readLine(); numgets++;
(s.startsWith{“[")) { int v; String ss = trim2(s); System.out.printin(“ss is:

A+1" N8 = "(A+2)*B" [are M‘My operators? [if not, is it 8 number or symbol? [/ if yes, then stringtokenizer ftv.hrﬂ{rpkanll I.I.Otvlllrnf!akerﬂll o ost "4
evalargis.substring|(0,i))+evalargis.substring(i+ 1',; lengthil)); y

+85); StringTokenizer2 st = new StringTokenizer2(trim2(s)); int x = evalargist.nextToken()), y = evalargist.nextTokeni));
e,
st = new StringTokenizer(s, ~

return evalarg(s.substring(0,ill *evalarg(s.substringli+ 1,s.length{))); case *-: return evalarg(s.substring(0,i)}-

+”); return evalargist.nextToken())+evalargicomesafter(s, contains(s, “+')+1)); | else if (contains(s, -] > 0) { StringTokenizer st = new

containsis, "*’)+1)); } else if (contains{s, /') > 0) { StringTokenizer st = new StringTokenizer(s, “/"); return evalarg(st.nextTokeni)//evalargicomesafter(s. contains(s, 1+ 1)); } else if
{ StringTokenizer2 st = new StringTokenizer2(trim2is)); String intype = st.nextToken(); / System.out.printin{“THIS IS THE <>"); if (intype.equals(“loc “)lintype.equals{ “mouse “)) { int

if (num>=1 && num<=26) { return keyslnum-1]7100:0; } else { throw new lerr(“Unknown <key>: “+num); } } else if ([intype.equals(“time ")) { int num = evalargist.nextToken()),
if (intype.equals(“net”)) { if (netinitp == false) { connecttoServerihostname);) sendtoServer(st.nextToken()); return getfromServer|(); | else { Block gbh; Graphics g = this.getGraphicsi(); if

forfint i=0icv.size();i++) { setvar((Stringlv.elementAt|il,evalargst.nextToken())); } doBlockig.gb); PopFrame(); return outputpopi); })})} else if fCl;-rmquDlyilft charA(0))) { return
Block b) throws lerr { String line = b.s; StringTokenizer2 st2 = new StringTokenizer2(line); String emd = st2.nextToken(); int i; curt = System.currentTimeMillis(); //
“+(60+i)+"

} else if (cmd.equals(“cube ™)) { gpen(50); System.out.printin{“pen 507); for(i=0;i<d0;i++) {
75%); for{i=0;i<d0;i++) [gline(60,20+i,80,40+i); System.out.printin{ “line “+(60)+"~ “+(20+i)+" “+(80)+" “+(40+i));]] else if
{ & for circle, should get absolute value r, also rectangle // and field should be not order dependent.
wit*=10; while (System.currentTimeMillis()-t<wtl; } else if (cmd.equals(“escape”]] { return true; } else if (cmd.equals| “field~)) {

if (emd.equals(“paper”)) { gpagelevalarg(st2.nextToken())); } else if (cmd.equals{“msg~)) { System.out.printin{ """.fﬁmi; } else if (emd.equalsi“pen”)) { gpenievalargist2. nextToken(ll); | else |
Vector v = bb.args; if (v == null) { [/ no args doBlock(g.bb); } else { PushFrame|) i

forli=0;1<v.size);i++) { setvar({String/v.elementAt{il,evalargist2.nextToken())); | doBlockig.bb);
<0) { for fint i=n; i>=t; i+=inc) { setvaria, i); doBlockig. b); } } else { for (int i=n; i<t+1; i+=inc) { setvar(a, il: doBlock(g, b); } } } # return 0 if normal /f return 1 if get an ‘escape’ public boolean
== Block.BLK) { Vector v = b.v; for(i=0;i<v.size();i++) { Block a = (Blocklv.elementAt(i); //System.out.printin({”"DOING BLOCK: “+a.getstr(l); if (a.isal“repeat”)) { //stepone A, 1,5 [/
int start = evalargist.nextToken()); int end = avalargist.nextToken()); if (start>end) { inc = -1; } doStepig, arg, start, end,inc,nexth),

A [, ; } else if (a.isa{"forever”)) { Block ;u;rtb =
nead robust image buffering? stack? /[yes, this happpened. have to disable this cool / feature unfortunately // but i need it because it looks great so try to fix it tom [doBlockig2,nextb); if

st = new StringTokenizerZ(fline); st.nextToken(); String arg1 = st.nextToken{); String arg2 = st.nextToken(); Block nexth = (Block)v.elementAt(i+1); i++; if (evalargiarg1) == '
nexth = (Block)v.elementAtii+1); i++; if levalargiarg1) != evalarg(arg2)) doBlockig.nextb); } else if (a.isa("within?")) { String line = a.s; StringTokenizer2 st = new StringTokenizer2(line),

} else if (a.isal “smaller?”)) { String line = a.s; StringTokenizer2 st = new StringTokenizer2(line); st.nextToken(); String lrgl: = st.nextToken(); String arg2 = st.nextTokeni); l‘;ock
arg1 = st.nextToken|(); String arg2 = st.nextToken(); Block nexth = (Block)v.elementAt(i+1); i++; if (evalarglarg1) >= evalarglarg2)) doBlockig,nextb); } else if (a.isa(“command”)) { String line
for(j=2Z;j<nargs;j++) { String s3 = st.nextToken(); nv. H

nv.addElement(s3); } nextb.args = nv; } def commandiarg.nextb); /return false; } else if (a.isa({“number”]} { élﬂng line = a.s; int nargs =
{ String 53 = st.nextToken(); nv.addElementis3); } nextb.args = nv; } def iolarg,nextb); } else { doBlockig, a); }}} return false; } public String preprocess|(String s) { return s; } public int

==null) { runner = new Thread(this); runner.start(); } } String progstr = null; int mx, my, mb; int orgx, orgy: public void piString s) { System.out.printin(s);} public void calcmousel(] { mx =
calcmouse(); return true; | public boolean mouseExitiEvent av, int x, int y) (

X = X

= W b = false; calemouse(); return true;) public boolean mouseDown(Event av, int x, int

start/stop”); if frunner==null) start(); else stop().frunprogramiprogsitr); } ntum truwe; |} public boolean mouseUp{Event ev, int x, int y) { mousex = x; mousey = y;mouseb =

mousey = y;mouseb = false; calcmouse(); return true; } public void stepl) { stepp = true; } public void msgbox(String s) { if (msg!=null) msg.setmsgis);) public void msgalive() { if (msg!=null)
int Inum = e.lnum; int st=-1, end=- I. int le = 0; if (lnum ==0) st = 0; forlint i=0:i<len;i++) { if (s.charAtil) == ') { le++; if (lc == Inum) st = i+1; alse if (lc == Inum+1) { end = i;

runf) { errp = donep = false; try { msgbox("R i %

(IOE. ion eZH); }

break;
.;rogﬂrl donep = true; mlgboxn‘ “Done."); runner.stop(]; renner = null; } catch (lerr e) { errp = true; msgboxie);
(“Stopped.”); funp = false; } } i/ rluu u a bug in how kaey is trapped by win java (expect)/ worse in mac java). doas not match keydowns wilh keyups //
Hf (keys{il) { it (eurt- ttrﬂﬂ:!ﬂﬂﬂ} { keytfi] = -1;
(n>="a"'&8&n<="7

keysli] = false; } } } } public synchronized boolean keyDown(Event av, int n) { if (n>="a'&&n<="2") { int ind = n-
through and remove

o s = prepr

‘a’; keytlind] =
‘) { int ind = n-"a’; keytlind] = -1; keys[ind] = false; } else if (n>="A'&&n<="Z") { int ind = n-"A"; keytlind] = -1; keyslind] = false; } return true; } public void runprogramiString s) {
(s); #f currently absorbed by block.parse incorrectly // 2. do syntax check into blocks try { bb = Block.parse(s); } catch (lerr) [throw e;) catch
Hashtable(); ioenv = new Hashtable(); // bb.pp(); // 4. do runblock try { doBlock(g,.bb); } catch (lerr &) { throw e;) catch (Exception &) { e.printStackTrace(); return 1; } return -1;) Image bufim;
} public Dimension preferredSize({ return new Dimension{szw,szh);)) class ClientConnection extends Object { public static final int PORT = 6800; Socket s; DatalnputStream in;
to on “+PORT); } catch (IOException e) { System.out.printin{e.toString()); } } } public class env extends Applet { /f GridBagLayout layout = new GridBagLayout(); // GridBagConstraints
Choice files = new Choicel); bufpanel canvas; int[] numb = new int{4]; CheckboxGroup chg: Checkbox cb1,cbh2; Button stop = new Button{“stop”); Button step = new
= new bufpanelfinitcodestr, 1); add({“Center”,canvas); [/ bufpanel.set | accessorypanel msg; public void setupforedit() { Panel p = new Panel(); Panel p2 = new Panel(); setLayoutinew
mag = rew .lﬂll SOy

I.tMSG.canvas); canvas_ msg = msg; p3 addi“South” . msg); code_setFontinew Font|{“Courier
chZ=c = new Clncldlnxf zoom ”,chg,false); p2.add(c);)
8;

“.Font.PLAIN,12)); pZ.setLayoutinew
} */ i p2.add(go); /¥ p2.add(step); // p2.addistop); // pZ.addinew Label(“special: “}); # p2.add{aute); // pZ.add{new Label(” i/o.
runp = false; Date d = new Date{); Date d2 = new Date(98,6,15); infilename = getParameter(“url”); s = getParameter(“initcode”); if (getParameter| “run”)!=null} { runp =
initted:”); System.out.printin{initcodestr); System.out.printin{“done.”); if (runp) { System.out.printin{“setting up for run~); setupforrun(); } else setupforedit(); } else if (infile-
if (s.startsWith(“&")) s = s.substring(3,s.lengthi)-1); ns = s.replace(’;",\n’); code.setText(ns);) public void autotabbify() { String s = code.getText(); String ns = “~; int nsp = 2; int i; int lev = 0; int
= P spe-=nsp; } } forli=0;i<spc;is+) t=a™ “+1; if [ent == 0) ns = t; else ns = ns+"\n"+1; cnt++; } code.setTextins); } public void goaheadandrun() { autosemiprep{); autotabbify(); String
fp = new DatalnputStream ds = new DatalnputStream(fp); msg.setmsg(“Reading file: “+fl); int avail = ds.available(); byte b{] = new bytelavaill; ds.readFully(b);
- fd.showi); String fl = fd.getFile(); if (fi'=null) { try { FileOutputStream fp = new FileOutputStream(fl); DataOutputStream ds = new DataOutputStreamifp),
+code.getSelectionStart()); if (evt.target == go) { [/ here i do some insanely bad things // like autotab, each runcycle

... r@turn true; } else if (evt.target == saveb) { return true; |
{ & lines canvas.setmode(0); return true; } else if (evt.target == cb2) { / dots canvas.setmodea(1); return true; } else if (evi.target == files) { readFile(picked|)); freadFileimainfr.picked());
= new String(""); try { URL u = new URL(s); URLConnection conn = u.openConnection(); InputStream input = u.openStream|); fDatalnputStream data = new DatalnputStream(input);
{ switch (c = stream.nextToken()) { case StreamTokenizer.TT WORD: yippee = yippee + stream.sval + “ “; break; case StreamTokenizer.TT NUMBER: int number; number =
Heode.replaceText(yippee, 0, 10000); } catch (IOException e) { e.printStackTrace(); } } catch f"lffdmdUﬂLE.lupﬂdﬂ &) { System.out.printin{ “bad url”); } catch (IOException e)
{int lnum = pubilic lerr(String s) { super(s); } public lerr(String s, int a) (superis); Inum = a;] } class StringTokenizerNoSkip { String s; int b = 0; int len; public boolean hasMoreTokens() {
= if (b == len) return null; i = b; while({i<len) { char ¢ = s.charAt{i); // System.out.printinfis “/“+c); if (c == ') { i++; break;} else { 82+=c; i++; } } b = i; return 82;) } }f program is a bunch of blocks
type; // 0 is string, 1 is block. void setline(int I} { linenum = I; } static String labelled(String aa) throws lerr { int i, len = aa.length(); int lev = 0; String res =

g . ; H I “=: forlis0ziclen:i++) { char ¢ =
int i; for(i=f;i<v.size();i++) { String s = (String/v.elementAt(i); if (s.charAt{1)==c) return i; } return v.size(); } static Block doparse(Vector v, int stind, int endind] throws lerr { /f start with 1st line
c = s.charAt(1); i++; int targ = findstriv,i,c); b.add(doparse(v,i,targ)); i = targ+1;) else if (s.charAt(0) == /") { Jf comment if (s.charAt({1) == 'F') j// do nothing i++;) else if (s.length()<2) { i++;}
at\n{“+aa+")"); aa = aa.toLowerCasel); // label blocks try { aa = labelled(aa); } catch(lerr I} { throw I; } /System.out.println(”after labelled\n " +aa); StringTokenizerNoSkip st = new

} return doparseipre,0.pre.size()); } public BlockiString ss) { s=ss; type = STR: } public void sp{String s) { System.out.printin{s); } boolean isalString ss) { if (type == STR| { return
a; } } public void ppi} { System.out.printinigetstr()); } public Block() { v = new Vector(); type = BLK;) public void add{Block b) { v.addElementib); }) // End. Let’s hope this all wnrlu out somehow.

1 BEGIN Our forefathers at the Bauhaus, Ulm, and many other key centers
for design education around the world labored to create a sense of order
and method to their teaching. Thanks to their trailblazing work, teaching
design at the university level gradually became accepted as a meaningful
and constructive activity. A drawing board, small or large, became the
stage for paper, pen, ink, and blade to interact in the disciplined activity that
characterized the profession of visual design. Beginning in the early 1980s,
however, affordable graphical computing systems emerged as the new
drawing boards, forever disrupting the refined systems that had been care-
fully established over the previous decades. The page-description language
PostScript was born, and the race for advanced software-based tools to

aid a generation of computer-empowered youth began.

As could be expected by any sudden change in a field, the process of inte-
grating computers into traditional design education has been akin to the
proverbial mixing of oil and water. Understandably, the point-and-click ease
of computers poses a threat to the painstakingly acquired skills of the pre-
computer design educator. The fact that each new generation of students
clearly recognizes its technical advantage over their instructors only widens
the gap that separates past and present. Digitally adept faculty members are
hired at an alarming rate to try to tame the young gurus, but even those
instructors who profess a lead over students quickly lose their nominal
superiority with each new software release. Unfortunately, most of the par-
ties involved do not realize that computers, as they are used today, have
nothing to do with design skill, or design education for that matter, but the
computer industry strives to convince us otherwise,

19

Copyrighted material

Loyighoed image

Copyrighted material

2 COMMANDS Writing programs reguires you to assume a forceful per-
sonality. The computer will do anything within its abilities, but it will do
absolutely nothing unless commanded to do so. A command must be issued
clearly, in the strict format of a one-word action, followed by a set of
descriptors which qualify the action. There is no need to add the formality
of a "please” or even a “thank you.” A command should not be confused
with a request; you can fully expect that it will be obeyed. Of course, if you
were to address a co-worker with similar bluntness there would be ensuing
personal problems. The computer, however, is quite comfortable with this
direct manner of communication. The only time that the computer will
complain is when it cannot perform the command you requested because
either (1) the command is unknown to the computer, or (2) the way in which
the command’s descriptors are presented is not in an acceptable form.

Whenever the computer fails to cooperate, the novice usually accuses the

computer of stupidity. But the computer cannot think beyond anything

you tell it. In contrast, a fellow human can cope with situations of incom-

plete information and usually recover. For example, “Go ahead and do it.”
“"Do what?” “You know.” And usually that person knows. The computer does

not yet have this level of intuitive comprehension; therefore, we must

address it in a specific manner.

Tell the computer exactly what you want and the computer will comply

without error. But you must state specifically and completely the action that
you wish to execute.

23

Copyrighted material

Specify a Paper The first step is to see the soft-
ware system we will use in this book. Go to the
DBN Web site and connect to the main system.
You should see a display similar to what appears
here. On the right is the program editing area. On
the left is the main display area where the visual
output of the program will always be shown.

In the middie of the display area there is a small
square called the paper. where all of your drawing
will take place. When you enter a program

and press the run button, any subsequent pro-
cessing will be shown within the paper area.

Before you can draw in the display area, you must
first specify the shade of paper using the Paper
command, There is only one kind of paper in the
DBN system. This paper can be any shade of gray
you desire, specified by a number of 0 to 100,
where 100 is 100 percent black (solid black) and 0
is 0 percent black (white). Into the editing area,
type “Paper 100" and run the following program:

Paper 100

A new 100 percent black sheet of paper should
appear in the display. Depending upon the type
of computer monitor you are using, the sheet is
about 100 points square, which translates to
about a 1.5-inch or 35-mm square. You may be
concerned about these cramped dimensions, but
you will find that mastering this small swatch
of space is not trivial. Note that there is a space
character between the Paper command and the
numerical descriptor 100. You must always
separate the command and descriptors with at
least one space. A few examples of this simple
program are displayed on the facing page.

24

Unlike real paper, the Paper command can be run
as many times as you wish because there is
never a shortage of virtual paper. The choices are
either black, white, or the 99 shades of gray in
between, which adds up to 101 possibilities.

Newver type anything like “10 Paper” or “Paper10.”
In either of these cases, the computer tries to
reconcile “10" or “Paper10” as a command and

is unsuccessful because such words are not in
the basic DBN vocabulary and will signal an error.
The computer always requires that the first word
on a program line be a command, followed by

a set of descriptors. In the case of Paper, there is
only one descriptor.

You must be careful to obey the specified format
or the computer will not respond.

Copyrighted material

paper 100 Paper O Paper 20 Paper &0 Paper 60 Paper 80 Paper 25 Paper 50 Paper 75

Paper 57 Paper 11 Paper 97 Paper T& Paper 49 Paper 5 Paper 54 Paper 32 Paper 18

Paper 43 Paper 62 Paper 8 Paper 81 Paper 23 Paper 36 Paper 77 Paper 14 Paper 88

Selecting a Pen After choosing a paper to draw
upon, you might guess that the second task to
master is to select a pen. It might help to know it
will be impossible to hold the pen.

When drawing, we tend to take for granted

the natural reflex to extend our arm, grab a pen,
and draw. This does not apply in the computa-
tional medium because the computer is both
intermediary and medium. You instruct the com-
puter to grab a pen, and then you instruct the
computer what to draw upon itself.

The pen is selected with the Pen command and
can draw in any shade of gray from 0 to 100,
where 0 is white and 100 is solid black, for a total
of 101 pens. Thus "Pen 100" selects a black pen.

Pen 100

When the program is run, there is no visible
change to the paper because the Pen command
only changes the internal state of the com-
puter’'s readiness to draw. In contrast, the Paper
command actually yielded a visible result, a new
piece of paper in the requested shade.

26

You can specify a new sheet of paper and
subsequently set the pen by issuing the two com-
mands in sequence as the program:

Paper 100
Pen O

As expected, there is no visible difference in the
result, even though the pen is set. Notice that
the commands are issued on separate lines of
text. As a general rule, you should always enter
commands on separate lines, not merely for legi-
bility’s sake, but because the syntax of the
language requires you to do so.

Now that the paper is specified and pen is ready,
all that is left is to draw something. But what?
And how? For what purpose? The answers to the
former two questions are revealed as this book
progresses; the latter question is of utmost
importance and can only be answered by you.

Copyrighted material

3 LINE Drawing a perfectly straight line usually requires a tool, such as

a ruler. Although | have introduced analogues to physical implements such
as paper and pen, there is no ruler, Instead there is the Line command for
drawing a straight line that connects two points on the paper. Line will differ
from Paper and Pen with respect to the quantity and type of descriptors
needed. Paper and Pen require a single numerical value that specifies the
percentage of black; Line requires a total of four numerical values that
describe the locations of the two points to connect. Using numbers to spe-
cify tone or position should be familiar to professional visual creatives

as part of their daily activity; however, even for those who are unfamiliar,
the practice can be easily mastered.

By starting with a line instead of a freestyle stroke. you might guess that
the drawings you create will be primarily of a geometric nature. Whenewver
you fail to see any beauty in these exercises and start to feel constrained,
remember that the ideas presented are primarily of a structural nature

and are mere building blocks to be formed into larger aspirations. All of the
exercises have been designed to illustrate basic properties and skills related
to computational media design which, given a great deal of determination,
can be applied to realize any expressive intentions.

If you do not like what is being drawn, try to draw something else.
Never let the computer suppress your will to freely express.

29

Copyrighted material

30

Describe a Line With Paper ready and Pen
poised, the next step is to use the Line command.
Specifying a line's starting and ending points is
trivial if you point directly at the computer screen
with your finger or indirectly using the mouse;
however, these options are not available in this
system. A line must be described as a corre-
sponding line of text in the program editing area.
Thus the format of that text needs to be clarified.
Before revealing exactly how the Line command
must be used, let us step back for a moment and
think of how a line can be described.

Given the line within the frame to the left, how
would you describe it verbally? There are a vari-
ety of possible answers ranging from the
extremely vague to the proper and precise.

1 Line from the bottom left to the upper right.

2 Line from a little from the left and less than a half
from the bottom, to less than a half from the top and
on the right edge.

3 Line from a third from the bottom and close to the
left, to a third from the top on the right edge.

4 Line from a third from the bottom and close to the
left, to two-thirds from the bottom exactly on the

right edge.

5 Line from about 7 inch from the left and about "
inch from the bottom, to about i« inch from the top
on the right edge.

6 Line from about 3 millimeters from the left and about
10 millimeters from the bottom, to about 11 millime-
ters from the top on the right edge.

7 Line from 3 millimeters from the left and 30 points
from the bottom, to about "/« inch from the top on
the right edge.

8 Line from 10 points from the left and 30 points from
the bottom, to about 11 millimeters from the top on

the right edge.

9 Line from 10 points from the left and 30 points from
the bottom, to about V.« inch from the top on the

right edge.

10 Line from 30 points from the right and 30 points
from the bottomn, to 30 points from the top and 0
paoints from the right edge.

11 Line from 70 paints from the top and 10 points from
the left, to 70 points from the bottorn and 100 points
from the left edge.

12 Line from 10 points from the left and 30 points from
the bottom, to 30 points from the top and 100 points
from the left edge.

In general, the computer is terrible at compre-
hending such a wide variety of descriptive
formats, but excellent at understanding a single
consistent format. Humans can be similar in this
respect, so there should be some sympathy to
the computer's needs for a standardized method
of description.

Numerical specifications are clear when they are
exact and in like units. The roman typographic
convention of the point system is convenient for
the purposes of this discussion. Narrowing the set
of possibilities to descriptions in points reduces
the list to a smaller subset.

1 Line from 90 points from the right and 30 points
from the bottomn, to 30 points from the top and O
points from the right edge.

2 Line from 70 points from the top and 10 points from
the left, to 70 points from the bottorm and 100 points
from the left edge.

3 Line from 10 points from the left and 30 points from
the bottomn, to 30 points from the top and 100 points
from the left edge.

Copyrighted material

When making measurements, choosing a refer-
ence of a closest edge versus the opposite edge is
a natural habit of efficiency. For example, “10
points from the left” is quicker to physically

measure than “90 points from the right.” This
convention reguires that the reference be stated
explicitly. Imposing a standard reference of

the left and bottom edges for any horizontal and
vertical position, respectively, removes the need
to specify a distinction of reference, at the
slight expense of initially being counterintuitive.

1 Line frarn 10 points horizontal and 30 points vertical, to
70 points vertical and 100 points horzontal,

2 Line from 30 points vertical and 10 poinits honizontal, to
70 points vertical and 100 points horizontal.

3 Line from 10 points horizontal and 30 points vertical, to
70 points vertical and 100 points horizontal.

The next convention to remove is the need to
distinguish between horizontal and vertical dimen-
sions by enforcing that the horizontal always be
written before vertical, and that the two points

be listed one after the other, The referénce to

the unit system of points becomes unnecessary

and the result is narrowed to only one possibility.
1 Line from 10 30 to 100 70.

Finally, the prepositions and punctuation are
removed, and the true form of the Line command
is at last revealed.

Line 10 30 100 70

This format will seem cryptic at first, but with
practice you can adapt to this concise description
of a line. To build familiarity, get into the habit
of reading the statement out loud as, for example,

“Line from 10 over and 30 up, to 100 over and 70

up.” Note that this particular line, and for that

matter any other line, can be redescribed as an
alternative where the order of the two pairs of

number is reversed.

Line 100 70 10 30

A line is described by two pairs of numbers that
represent two positions on the paper. The order of
the pairs has no significance, but the order within
a pair does. Each pair of numbers represents a

set of dimensions that are always referenced from
the left and bottom edges of the paper, where the
horizontal measure always precedes the vertical.

31

Copyrighted material

Draw a Line You can now write a three-line pro-
gram, which is your first major graphics program,
if only a single black line on white paper. (Note:
all drawings are rendered at half their original
scale for enhanced page balance.)

Paper 0O
Fen 100
Line 40 20 80 60

The line is 40 over and 20 up, to 80 over and 60
up—not a particularly exciting line, aside from the
similar lack of smoothness in the opening exam-
ple. The reasons for this jaggy characteristic

will be discussed in Chapter B, but for now under-
stand that the paper we draw upon (not to be
confused with the actual paper used in this book)
is coarse in a virtual sense. Therefore, any mark
left on the paper will have a rough, textural

flavor, the classic signature of digital artwork. In
some cases, the texture will not be apparent,
such as in a perfectly horizontal or vertical line.

In these cases, the lines are smooth because they
essentially fit into the perfect horizontal and verti-
cal grooves in the texture of the page. But in
general, the lines will be coarse.

You can now draw a variety of lines on different
papers. The concept is best illustrated through
practice. A good introductory exercise is to
inspect the adjacent compositions by looking at
the picture and imagining the corresponding
program, or even better, looking at the program
and imagining the corresponding picture.

32

Paper 100
Pen 1
Line 0 83 56 27

Paper 20
Pen 100
Line 100 0 10 11

Paper 50
Pen O
Line 0 5 100 4

Paper O
Pen 20
Line 40 40 90 90

Paper 15
Pen 100
Line 48 23 75 80

Paper BO
Pen 60
Line 58 0 50 B4

Paper O
Pen 100
Line 24 99 24 8

Copyrighted material

Where ls the Lina? There are some cases where

you draw a line and do not see the intended
result. For instance, imagine what happens when
you draw outside the paper?

Paper O
Pen 100
Line 20 30 200 300

The line starts from 20 left and 30 up to 200 left
and 300 up, but you never see the line as it
leaves the 101-paoint square. Any portion of a line
drawn outside the space will be ignored and
clipped to the edges in this fashion.

Also, what happens when you draw in the same
shade as the paper?

Paper 66
Pen 66
Line 0 O 100 100

Since the digital medium is exact, drawing a
diagonal line in the same shade as the underlying
paper appears to produce nothing, even though
you might expect to see some faint impression of
the line as is commaon in a double hit of ink.

Another surprise occurs when you draw a line
and then request a new sheet of paper.

Line 0 50 100 50
Paper 50
Pen 0

In this case, the intent is to draw a white horizon-

tal line across the center of a gray sheet of paper,
but the new sheet of paper is placed on top of
the line. Thus the line is not visible.

Finally, there is the case where the Pen is not
explicitly set and a Line is drawn.

Paper 100
Line 3 33 97 66

When the Pen is not set, the default setting is
100 percent black. As an additional convention,
when the Paper is not set explicitly, the default
setting is O percent black, meaning white.

With the exception of the first example, nothing
appears to happen in the visual output. But be
aware that something has indeed happened from
the viewpoint of the computer. The computer has
labored to create a line, just as if the line were
visible. The computer does not know when it has
done something completely useless, such as
drawing a black line on black paper. Only you do.

Summary The process of drawing requires a
means to establish where the pen is to be placed
on the paper. Otherwise, the computer cannot
know where to draw. Your hands usually serve as
the means to locate points in space; however, in
the computational model of drawing, the only
purpase your hands serve is to type commands.
The constraint of measuring horizontal and verti-
cal dimensions from the lower-left corner was
introduced as a way to make dimensions consis-
tent. Dimensions are always in units of points.

The Line command is followed by two points,

where each point is a pair of numbers, always
horizontal then vertical, and separated by spaces.

33

Copyrighted material

Draw More Than One Line Drawing two lines
is as simple as drawing a single line, only it's
twice the work.

Paper 0O
Pen 100
Line 50 O 50 100
Line 0 50 100 50

You can change the shade of the second Line by
changing the pen value with another invocation
of the Pen command.

Paper 0

Pen 30

Line 0 50 100 50
Pen 100

Line 50 0 50 100

Lines are drawn in the order that the Line com-
mands are issued, which you can verify when
lines intersect. The difference is realized by
simply rearranging the order in which Pen and
Line commands are used.

Paper O
Pen 100
Line 50 0 50 100
Pen 30
Line 0 50 100 50

The gray line overlaps the black line at the center,
whereas a change in the drawing order will cause
the reverse to occur, shown here magnified:

| 3x mag

36

Due to the effect of overlap, you can easily create
the illusion of three lines from just two lines.

Paper 100

Pen 0

Line 30 30 100 30
Pen 50

Line 60 30 80 30

But it is also easy to mistakenly create one line
from two lines.

Paper O

Pen 50

Line 40 50 60 S0
Pen 100

Line 30 50 70 50

Copyrighted material

Draw More Than Two Lines Three lines Four lines compose a square, five a star, six a

render the familiar shape of a triangle. hexagon, and seven a floating pyramid.
Paper 80 Paper 20
Pen 20 Pen 50
Line 33 33 33 66 Line 30 30 70 30
Line 33 66 é6 66 Line 70 30 70 70
Line 66 66 33 33 Line 70 70 30 70

Line 30 70 30 30

Paper 0 Paper 33
Pen BO Pen 78
/1 Line 35 30 65 30 Line 20 54 BO 54
Line 45 30 65 70 Line 80 54 32 20
éi—J Line 65 70 35 30 Line 32 20 50 77

Line 50 77 68 20
Line 68 20 20 54

Paper 100 Paper 20

Pen O Pen 70

Line 50 77 22 27 Line 32 61 32 39

Line 22 27 78 27 Line 68 61 68 39

Line 78 27 S50 77 Line 68 61 S0 71
Line 32 &1 50 71
Line 32 39 50 29
Line &8 39 50 29

{2

Paper 33 Paper 0O
Pen 66 Pen 100
Line 77 0 88 7 \ Line 40 50 70 35
Line 88 7 10 96 % Line 20 30 50 15
Line 10 96 77 0 Line 70 35 50 15

Line &40 50 20 30
Line 40 50 50 70
Line 70 35 50 70
Line 20 30 50 70

37

—~ o

An increased number of lines results in a transi-

tion from abstract to the representational

Paper 0 Paper 0

Pen 100 Fen 100

Line 53 72 50 78 Line O 30 23 30
Line 50 78 54 82 Line 23 30 23 40
Line 54 82 57 B1 ne Line 23 40 17 39
Line 57 81 59 77 Line 17 39 12 46
Line 59 77 56 73 Line 12 46 16 52
Line 56 73 53 72 Line 16 52 15 57
Line 49 70 50 &6 Line 15 57 27 58
Line 58 69 60 45 Line 27 58 34 52
Line 49 70 60 69 Line 34 52 33 44
Line 49 70 42 63 Line 33 44 26 &40
Line 42 63 33 74 Line 26 40 27 30
Line 60 69 64 57 Line 27 30 40 30
Line 64 57 64 46 Line 40 30 38 44
Line 50 46 60 45 Line 36 43 55 58
Line 50 45 &6 31 Line 55 58 76 43
Line 46 31 49 13 Line 73 45 72 30
Line &0 45 61 29 Line 72 30 100 30
Line 51 29 63 11 Line 46 30 47 30

Line 47 3D 46 40
Line &6 40 53 40
Line 53 40 53 30
Line 53 30 55 30
Line 59 40 67 40
Line 67 40 66 35
Line 66 35 59 35
Line 59 35 59 40

Paper 20

Pen 100

Line 100 8 25 22
Line 20 25 50 36
Line 56 38 68 42
Line 20 25 20 18
Line 20 18 90 5
Line 4& 14 44 0
Line 50 8 50 O
Line 54 11 54 0
Line 51 34 56 35
Line 50 35 35 60
Line 50 40 41 55
Line 54 40 41 60
Line 34 61 64 80
Line 41 &0 61 75
Line 68 86 73 B0
Line 68 B& 65 84
Line 73 80 70 78
Line &3 83 67 75
Line &7 75 66 65
Line 66 65 82 75

38

Paper 0
Pen 50

Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Line 20
Pen 25

Line 20
Line 21
Line 22
Line 23
Line 24
Line 25
Line 26
Line 27
Line 28
Line 29
Line 30
Line 31
Line 32
Line 33
Line 34
Line 35
Line 36
Line 37
Line 38

Line

39

Pen 75

Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line

60
60
60

Because of the effort required to draw on the
computer in this laborious way, where each line
corresponds to four numbers that must be
input, returning to conventional pen and paper
would appear to be the more attractive option.
Indeed, manually inputting a stream of num-
bers is insane when the same job could be done
much better with regular pen and paper.

But there are superior methods of drawing on the
computer that will demonstrate less emphasis
on manual input and more emphasis on a style
of automatic input.

39

Copyrighted material

Comments Before more advanced programs
can be examined, the issue of program legibility
must be addressed. When a program sequence
is long, ensuring that the commands are
executed in an order that matches your inten-
tions is not a trivial task. While writing a
program, you can usually remember which pro-
gram line corresponds to which visual result;
however, if you don’t use the program for a

few days, you might get lost trying to decipher
your own code. It can also be difficult for
another person to follow your programming
intentions when facing many lines of opaquely
defined code. Do the first 100 lines of code
generate a tree or a house? Does the pen
command mark the beginning of a new object?
Although comments do nothing to affect

the program, you can significantly increase

the legibility of a program by interspersing // Set the paper type

Paper 20
textual comments. il dgt ARE Bin
Pen 80
Comments are added using the // command // Draw a Line from the lower Lleft

// corner to the upper right corner

followed by an informative message. The mes- Line 0 O 100 100

sage can be the title of your program, part of a
step-by-step narrative of events in the program,
or simply messages to yourself for the pur-
pose of maintaining sanity during development
of a long program. A comment is only valid

on a line of its own, and cannot be combined
with other programming statements.

// My First Clear Program /! What follows is ten lines ...
/! Version 1 a Paper 0

// This program makes a new, Fen 100

// gorgeous sheet of black paper Line 10 BO 20 BO

Paper 100 Line 10 81 20 81

Line 10 B2 20 82

Line 10 83 20 83

Line 10 B4 20 B4

Line 10 85 20 B85

Line 10 B6 20 Bé6

Line 10 87 20 87

Line 10 B8 20 88

Line 10 89 20 89

Line 10 90 20 90

// 1 wish there were an easier way to
// draw a sqguare, or other filled
/! rectangular areas ...

40

Copyrighted material

// Pause a bit to contemplate how
// nice an empty room looks, and

!/ consider how putting things into
// it might mess things up. But

// remember that you don't want

// you parents to worry, so you

// have to put something in there.

[/ =xwxxrxxxx buy some furniture
[/ #%ksksx%* paint it in white
Pen 0O

// =*x*=xx*xx*x a place to sit
Line 45 52 63 50

Line 45 52 38 42

Line 56 40 63 50

Line 3B 42 56 40

[/ x**xx%xxx* needs some legs
Line 42 41 42 32

Line 53 39 53 3

Line 46 40 46 37

Line 58 42 58 36

/] wkkkikkkxx something to lean against

Line 46 61 62 59
Line 46 61 46 69
Line 62 &7 46 69
Line 62 67 62 59
// wxsx=xxx®x have to support it
Line 54 51 54 59

/! A tiny door in the wall (well,
// not really a door but a 'hole')
// is just big enough for a

/! friend to come and go as he/she
f/ pleases.

// wkkxswxxx*x a hole in the wall
Pen 20

Line 10 32 10 36

Line 10 36 12 40

Line 12 40 14 40

Line 14 40 14 38

f/ Comments aren't usually seen
/{ by other people, and thus you
// ecan ramble like this all you
f/ Llike. The fact that this will
f/ be published verbatim perhaps
// defeats the private nature of
// a good session of comments,

// but for the sake of education
// we must do all that we can.

Summary Because creating everyday drawings
can involve hundreds of line commands, it may
appear that writing programs to draw pictures is
more suitable for simple subject matter. For five
to ten lines, the advantage of numeric input is
that the results are precise and are easy to edit
to a high degree of satisfaction. Anything over ten
lines can be difficult to manage. You would be
better off drawing on regular paper with a regular
pen instead of wrestling with a computerized
Paper, Pen, and Line.

Then why write programs? First of all, programs
make it possible to pinpoint position and tone to
an exact specification. Second and most impor-
tant, more advanced programs allow you to
explore spaces of ten, one hundred, or one million
lines with ease, which may seem unfathomable
at this stage. Working toward an advanced goal
usually implies greater complexity; however, in
the case of programming, advancement is para-
doxically in the direction of simplification.

Paper, Pen, and Line are the three commands that
have been introduced thus far. You can use Line
to effortlessly draw one, two, or many lines with
unerring precision. Each line can be indepen-
dently shaded to a specific percentage of black
using the Pen command. You can also specify

the background color with the Paper command.
When there are many lines of code, interspersing
comments for the reader or yourself is a useful
technique in developing a clear program.

Comments are a means for the designer to leave.

a literal trail of thought as part of the process of
creation on the computer.

43

Copyrighted material

The MIT Press
Massachusetts Institute of Technology

Cambridge, Massachusetts 02142
http://mitpress.mit.edu

0-262-63244-6

Design By Numbers
John Maeda
foreword by Paola Antonelli

Most art and technology projects pair artists with engineers or
scientists: the artist has the conception, and the technical person

provides the know-how. John Maeda is an artist and a computer
scientist, and he views the computer not as a substitute for brush
and paint but as an artistic medium in its own right. Design By
Numbers is a reader-friendly tutorial on both the philosophy and
nuts-and-bolts techniques of programming for designers and artists.

Practicing what he preaches, Maeda composed Design By Numbers
using a computational process he developed specifically for the book.
He introduces a programming language and development environment,
available on the Web, which can be freely downloaded or run directly
with any JAVA-enabled Web browser. Appropriately, the new language
is called DBN (for “design by numbers”). Designed for “visual”
people—artists, designers, anyone who likes to pick up a pencil and
doodle—DEN has very few commands and consists of elements
resembling those of many other languages, such as LISP, LOGO,
C/JAVA, and BASIC.

John Maeda is the Associate Director, Sony Career Development
Professor of Media Arts and Sciences/Associate Professor of Design
and Computation, and Director of the Aesthetics and Computation
Group at the MIT Media Lab. With his wife, Kris Maeda, he runs a
design studio in Lexington, Massachusetts.

“This may well be the first software manual that you'd actually
volunteer to have lying around on your coffee table.”

—Liz Bailey, Daily Telegraph

90000

| LN

b

