:and

the Real World

Computational Foundations of Mathematics,

The

Science, Technology, and Philosophy

Klaus Mainzer

[
\\:.‘.‘- World Scientific

The L3¢t and
the Real World

Computational Foundations of Mathematics,
Science, Technology, and Philosophy

Klaus Mainzer

Technical University of Munich, Germany

\\:e World Scientific

NEW JERSEY - LONDON - SINGAPORE - BEIJING - SHANGHAI « HONG KONG - TAIPEI - CHENNAI « TOKYO

Prof. em. Dr. Klaus Mainzer
Emeritus of Excellence

Graduate School of Computer Science
Technical University of Munich
Germany

e-mail: mainzer@tum.de

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data

Names: Mainzer, Klaus, author.

Title: The digital and the real world : computational foundations of mathematics, science,
technology, and philosophy / by Klaus Mainzer (Technical University of Munich, Germany).

Description: New Jersey : World Scientific, 2017. | Includes bibliographical references.

Identifiers: LCCN 2017023302 | ISBN 9789813225480 (hc : alk. paper)

Subjects: LCSH: Logic, Symbolic and mathematical. | Mathematics--Philosophy.

Classification: LCC QAS8.4 .M35 2017 | DDC 510.1--dc23

LC record available at https://lcen.loc.gov/2017023302

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2018 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

For any available supplementary material, please visit
http://www.worldscientific.com/worldscibooks/10.1142/10583#t=suppl

Desk Editors: V. Vishnu Mohan/Tan Rok Ting

Typeset by Stallion Press
Email: enquiries(@stallionpress.com

Printed in Singapore

Preface

Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:

Chapter 5:

Chapter 6:
Chapter T:

Chapter 8:

Chapter 9:

Chapter 10:

Chapter 11:

Contents

Introduction

Basics of Computability
Hierarchies of Computability
Constructive Proof Theory

Computational Mathematics and Digital
Information Systems

Intuitionistic Mathematics and Human Creativity

Proof Mining Bridging Logic,
Mathematics, and Computer Science

Reverse Mathematics Bridging Logic,
Mathematics, and Computer Science

From Intuitionistic to Homotopy Type
Theory — Bridging Logic, Mathematics,
and Computer Science

Real Computability and Real Analysis

Complexity Theory of Real Computing

15
33

55

79
87

101

163

179

201

229

x Contents

Chapter 12:
Chapter 13:
Chapter 14:
Chapter 15:
Chapter 16:

Chapter 17:

References

Real Computing and Neural Networks
Complexity of Algorithmic Information
Complexity of Information Dynamics
Digital and Real Physics

Digital and Real Computing in the
Social World

Philosophical Outlook

Author Index

Subject Index

241
283
295

321

361
417
423
445
449

Chapter 1

Introduction

Historically, the theory of algorithms and computability started in
the beginning of the last century with foundational debates on logics,
mathematics, and philosophy. Therefore, the digital world has its
origins in logical, mathematical and philosophical theories.

Alan Turing anticipated the development of the digital general
purpose computer by his famous Turing machine (Turing, 1936).
Here, we have a finite state control device with a read/write head
and a two-way unlimited tape consisting of an unlimited number of
cells. The control device is regulated by a program which is a finite
set of instructions with states of the machine, operations for printing
0, 1 and * (blank) into the cells, moving left or right one cell, and
stopping the tape.

A number-theoretic function is defined to be computable if it is
the input—output function of a Turing machine. Further on, a set
of natural numbers is decidable if there is an effective procedure
(characteristic function) that given any element of the set will decide
in a finite number of steps whether or not the element is in the set.
In short, for decidability of a set, its characteristic function must be
Turing computable.

All number-theoretic propositions can be coded with the digits
0 and 1. Thus, Turing’s theory of computability in computer science
is reduced to the digital paradigm. The Turing machine is mathe-
matically equivalent to many other effective procedures (e.g., reg-
ister machines, recursive number-theoretic functions). Therefore,

2 The Digital and the Real World

Church’s thesis demands that Turing-computability means (digital)
computability in general.

But, there seems to be a deep gap between digital computer
science and mathematics. Many mathematical disciplines like the
calculus heavily depend on the continuous nature of real numbers. In
(classical) physics, the dynamics of nature is modeled by continuous
curves and differential equations. Their solutions correspond to
physical events which can be predicted or explained as causal effects
under certain constraints. At least in classical physics, nature is
assumed to be continuous, and even quantum physics uses real
and complex-valued quantities of fundamental laws of continuous
differential equations (e.g., Schrédinger equation).

Our perceptions of the world seem to be continuous: Our bodily
sensors receive analog signals of, e.g., electromagnetic and acoustic
waves. Behind all that, there is an old and deep conflict in philosophy
between the continuous and discrete characteristics of nature since
the Antiqutity. Is matter continuous (Aristotle) or atomic (Dem-
ocritus)? Nowadays, in technology, we distinguish bewteen digital
(discrete) and analog (continuous) signal processing.

Before the digital paradigm of computer science started with
the Turing machine, there was already an old tradition of real algo-
rithms in mathematics. Since antiquity, undecidability problems of
geometrical constructions (e.g., trisection of an angle) were discussed
(Mainzer, 1980). The final answer was found in the beginning of the
19th century by Galois’s result on the non-solvability by radicals of
polynomial equations of degree 5 or more. These algorithms manip-
ulate real numbers. There is a long standing tradition of decidability
results in algebra and analysis leading to modern numerical analysis.
We remind the reader of Newton’s method for finding (approximate)
zeros of polynomials in one variable. Newton’s method was one of the
first search algorithms in numerical analysis and scientific computing,.

Nowadays, practical algorithms to solve equations of physics,
models of climate, weather prediction, or financial mathematics
mainly refer to numerical analysis. Therefore, we not only need log-
ical-mathematical foundations of digital computing (Turing, 1936)

Introduction 3

but also foundational studies of real algorithms. They have a long
tradition in mathematics from Newton, Gauss, Euler, etc., to modern
numerical analysis and scientific computing.

What do real computability and decidability mean? It is amazing
that, from a logical point of view, the digital world of natural numbers
seems to be much more complicated than the continuous world of real
analysis, although counting digits is easily done by children and the
naturals numbers are a subset of the real numbers: But, according
to Godel’s famous proof, arithmetic is incomplete, and a closed real
field is decidable.

How far can we transfer the results of computability and
decidability from digital to real mathematics? These results have
consequences for the discrete (digital) and the analog (continuous
and real) and with that to the modern analog world of sensor
technology and human experience by analog sensors.

Computability of algorithms in computer science is also deeply
linked with the provability of theorems in mathematics. Since
antiquity, truth of mathematical theorems was verified by logical
proofs in axiomatic systems. Logical-axiomatic proofs became the
paradigm in science and philosophy (Hilbert, 1918). In the 20th
century, the question arose whether the true propositions of a theory
can be described completely, correctly, and consistently in formal
systems. Famous logicians, mathematicians, and philosophers of the
20th century (e.g., Hilbert, Godel, and Turing) demonstrated the
possibilities and limitations of formalization.

It is well known that mathematical proofs sometimes only
guarantee the existence of a solution without providing an effective
algorithm and constructive problem-solving procedure. The reason is
that mathematics as it is normally practised is based on the law of
excluded middle: Either a statement is true or its negation is true.
According to this law, it is sufficient to show indirectly that the
assumption of non-existence of a solution is false (Mainzer, 1970).
But, for practical applications, it is, of course, a great disadvantage
that indirect proofs do not tell us how to find a constructive solution
step by step (Bishop, 1967).

4 The Digital and the Real World

From a digital point of view, constructive proofs should be real-
ized by digital systems. If mathematics is restricted to computable
functions of natural numbers, Turing machines will do the job. But, in
higher mathematics and physics (e.g., functional analysis), we have to
consider functionals and spaces of higher types. Therefore, a general
concept of a digital information system is necessary to compute
finite approximations of functionals of higher types. Contrary to
the machine orientation of computational mathematics, intuitionistic
mathematics (INT) is rooted in the philosophy of human creativity.
Mathematics is understood as a human activity of constructing
and proving step by step. In the rigorous sense of Brouwer’s
intuitionism, we even get a concept of real continuum and infinity
which differs from ordinary understanding of classical mathematics.
In the foundational research programs of proof mining and reverse
mathematics, we offer degrees of constructivity and provability to
classify problem solving and proving for different mathematical
applications.

Proof mining has the aim to obtain the missing information in an
incomplete theorem and to extract effective procedures by a purely
logical analysis of mathematical proofs and principles (Kohlenbach,
2008). Sometimes, it is even sufficient to find bounds for search
processes of problem solving. At least, proof mining tells us how
far away a proof is from being constructive. The research program of
proof mining goes back to Georg Kreisel’s proof-theoretic research.
He illustrates the extraction of effective procedures from proofs as
“unwinding proofs” (Feferman, 1996).

From a theoretical point of view, proof mining is an impor-
tant link between logic, mathematics, and computer science. Logic
is no longer only a formal activity besides and separated from
mathematics. Actually, metatheorems of proof mining deliver logical
tools to solve mathematical problems more effectively and to obtain
new mathematical information: Proofs are more than verification of
theorems!

From a practical point of view, proof theory also has practical
consequences in applied computer science. In this case, instead of
formal theories and proofs, we consider formal models and computer

Introduction 5

programs of processes, e.g., in industry. Formal derivations of formula
correspond to, e.g., steps of industrial production. In order to avoid
additional costs of mistakes and biases, we should test and prove
that the computer programs are correct and sound before applying
them. Automated theorem proving is applied to integrated designs
and verification. Software and hardware designs must be verified to
prevent costly and life-threatening errors. Dangerous examples in
the past were flaws in the microchips of space rockets and medical
equipments. Network security of the Internet is a challenge for banks,
governments, and commercial organizations. In the age of Big Data
and increasing complexity of our living conditions, rigorous proofs
and tests are urgently demanded to avoid a dangerous future with
overwhelming computational power running out of control.

But, in real mathematics, proofs cannot all be reduced to
effective procedures. Actually, there are degrees of constructivity,
computability, and provability. How strong must a theory be in
order to prove a certain theorem? Therefore, we try to determine
which axioms are required to prove a theorem. How constructive and
computational are these assumptions?

Instead of going forward from axioms to theorems in usual proofs,
we prove in the reverse way (backward) from a given theorem to the
assumed axioms. Therefore, this research program is called reverse
mathematics (Friedman, 1975). If an axiom system S proves a theo-
rem 7" and theorem T together with an axiom system S’ (the reversal)
prove axiom system S, then S is called equivalent to theorem T
over S’. In order to determine the degrees of constructivity and
computability, one tries to characterize mathematical theorems by
equivalent subsystems of arithmetic. The formulas of these arithmetic
subsystems can be distinguished by different degrees of complexity.

In (second-order) arithmetic, all objects are represented as
natural numbers or sets of natural numbers. Therefore, proofs about
real numbers must use Cauchy sequences of rational numbers which
can be represented as sets of natural numbers. In reverse mathemat-
ics, theorems and principles of real mathematics are characterized
by equivalent subsystems of arithmetic with different degrees of
constructivity and computability (Ishihara, 2005). Some of them

6 The Digital and the Real World

are computable in Turing’s sense, but others are definitely not
and need stronger tools beyond Turing computability. Therefore,
it is proved that only parts of real mathematics can be reduced
to the digital paradigm. Obviously, reverse mathematics and proof
mining are important research programs to clarify and deepen the
connections between mathematics, computer science, and logic in a
rigorous way.

Another important bridge between logic, mathematics, and
computer science is type theory. Types of data (resp., terms) are
distinguished in computer programs of computer science as well as in
formal systems of mathematics, in order to avoid software bugs (resp.,
logical paradoxes). Martin-Lof’s intuitionistic type theory offers both
a philosophical foundation of constructive mathematics as well as a
proof assistant in computer science (e.g., Coq). Recently, homotopy
type theory extends formalization from set-theoretical objects up
to categories related to more and more large cardinals. Homotopy
type theory (HoTT) tried to develop a wuniversal (“‘univalent’)
foundation of mathematics as well as computer languages with
respect to proof assistants for advanced mathematical proofs. The
question arises how far univalent foundations of mathematics can be
constructive.

Philosophically, constructive foundations of mathematics are
deeply rooted in the epistemic tradition of efficient reasoning with
the principle of parsimony in explanations, proofs, and theories.
It was the medieval logician and philosopher William of Ockham
(1285-1347) who first demanded that one should prefer explanations
and proofs with the fewest number of assumed abstract concepts
and principles. The reason is that, according to Ockham, universals
(e.g., mathematical sets) are only abstractions from individuals
(the elements of a set) without real existence. Ockham’s principle
of parsimony later became popular as “Ockham’s razor’” reducing
abstract principles as far as possible.

The question arises how far reduction is possible without loss of
essential information. In order to analyze real computation in math-
ematics, we need an extension of digital computability beyond Turing
computability. Real computing machines can be considered idealized

Introduction 7

analog computers accepting real numbers as given infinite entities
(Blum et al, 1989). They are not only theoretically interesting
but also practically inspiring with respect to their applications in
scientific computing and technology (e.g., sensor technology).

These aspects are also exciting for computational neuroscience
and cognitive science. Appropriate neural networks or cellar
automata are computationally equivalent to Turing machines. Fur-
ther on, we can distinguish a hierarchy of automata and machines
which can realize formal languages with increasing complexity.
Examples are finite automata accepting regular languages or Turing
machines accepting Chomsky grammars of natural languages. Actu-
ally, (recurrent) neural networks with rational numbers as synaptic
weights are computationally equivalent to Turing machines accepting
recursive languages like Chomsky grammars. It can be proven that
(recurrent) neural networks with non-computable real weights can
even operate on non-recursive languages (Siegelmann, 1994). Human
brains also operate on non-recursive natural languages. If analog
neural networks are considered as models of human brains, they seem
to be more powerful than digital Turing machines.

The foundational debate on the digital and analog, discrete
and continuous also has deep consequences for physics. In classical
physics, the real numbers are assumed to correspond to continuous
states of physical reality. For example, electromagnetic or gravita-
tional fields are mathematically modeled by continuous manifolds.
Thus, ‘“real computing” (i.e., computing with real numbers) seems
to model effective procedures in a continuous reality. Fluid dynamics
illustrates this paradigm with continuous differential equations.

But, in modern quantum physics, a ‘‘coarse grained’ reality
seems to be more appropriate. Quantum systems are characterized
by discrete quantum states which can be defined as quantum bits.
Instead of classical information systems, following the digital concept
of a Turing machine, quantum information systems with quantum
algorithms and quantum bits open new avenues to digital physics.
Information and information systems are no longer fundamental
categories only of information theory, computer science, and logic
but also of physics (Mainzer, 2016b).

8 The Digital and the Real World

But, is it possible to reduce the real world to a quantum computer
as an extended concept of a universal quantum Turing machine? “It
from bit”” proclaimed physicist John A. Wheeler (1990). On the other
side, fundamental symmetries of physics (e.g., Lorentz symmetry
and electroweak symmetry) are continuous (Audretsch and Mainzer,
1996; Mainzer, 2005). Einstein’s space-time is also continuous. Are
they only abstractions (in the sense of Ockham) and approximations
to a discrete reality?

Some authors proclaim a discrete cosmic beginning with an
initial quantum system (e.g., quantum vacuum) evolving in an
expanding macroscopic universe with increasing complexity which
can be approximately modeled by continuous mathematics. In this
case, physical reality is discrete and continuous mathematics with
real numbers only a (ingenious) human invention. But physical laws
including quantum theory (e.g., Hilbert space) are infused with
real numbers and the mathematics of the continuum. Thus, from
an extreme Platonic point of view, we could also assume a layer
much deeper than the discrete quantum world — the universe of
mathematical structures themselves as primary reality with infinity
and continuity.

Anyway, besides all ontological speculations, mathematics is
fundamental for science and cannot be reduced to the digits and the
discrete nature of computer science. We should distinguish degrees
of constructivity, computability, and provability in the rigorous
sense of real computing, proof mining, and reverse and univalent
mathematics.

In this case, Stephen Wolfram’s vague concept of computational
equivalence can be made precise and corrected (Wolfram, 2002).
He demanded that the natural processes of atomic, molecular, and
cellular systems should be considered as ‘“‘computationally equiva-
lent”” procedures of Turing machines, cellular automata, and neural
networks (in the sense of a physically extended Church’s thesis).
This idea already came up with John von Neumann’s and Konrad
Zuse’s cellular automata (Zuse, 1969). At least, the mathematical
models and theories of these natural systems can be distinguished by
different degrees of complexity. Therefore, we need the corresponding

Introduction 9

mathematical theories and models with their equations and laws in
order to derive reliable predictions, classifications, and explanations.
Quasi-empirical computer experiments in the sense of Wolfram, even
with powerful computers and algorithms, are not sufficient.

The exponentially increasing power of supercomputers and global
networks is overwhelming. Success and efficiency in science and
economy seem to only depend on fast algorithms and huge databases.
In economy, they rapidly predict future trends and profiles of
products and customers. In science, they recognize correlations and
patterns in huge collections of data (e.g., elementary particle colliders
in high energy physics, machine learning algorithms in molecular
biology). Science (like economy) seems to be more and more driven
by fast algorithms and a huge amount of data: Big Data —The end
of theory? asked Chris Anderson, an influential publisher of digital
media.

Wolfram even proclaimed a “new kind of science’”, in which
computer experiments would replace mathematical proofs and theo-
ries. Wolfram had simulated extensive pattern formations of cellular
automata on high performance computers, discovered some remark-
able correlations, and classified the patterns based on his observa-
tions. But one can prove that only the fundamental mathematical
laws of cellular automata allow accurate forecasting and classification
of patterns (Mainzer and Chua, 2011).

This argument can be extended to the emergence of patterns
in nature, taking in physics, chemistry, biology, and brain research
(Mainzer and Chua, 2013). Here too, we found that it was only
when the basic equations were known that accurate declarations and
forecasts could be made on the emergence of structure and patterns.
What we can generally say about science is that theory is often the
best way to solve a problem. How will a mountain of data help me if
I don’t know what I am looking for?

Correlation cannot replace causation. Causation is explained by
causal laws which are mathematically represented by equations of
dynamical systems. Quasi-empirical computer experiments with Big
Data may be helpful for a rough orientation. But, we need a deep
analysis of the computational foundations in mathematics, science,

10 The Digital and the Real World

technology and philosophy for reliable tools of problem solving in
a digital world. In the end, we need well-founded mathematical
theories with different degrees of constructivity, computability, and
provability.

This book starts with “Basics of Computability” (Chapter 2)
from Turing’s theory of computability to decidable and undecidable
problems, followed by ‘‘Hierarchies of Computability”” (Chapter 3)
with computational degrees and complexity of problem solving.
Chapter 4 explains “Constructive Proof Theory” with different
degrees of constructive proofs. Chapters 2-4 consider computability
and provability on the basis of elementary number theory. In order
to prepare proof mining in higher mathematics, Turing-computable
functions are no longer sufficient. What do computable functionals
of higher type (e.g., functions or sets of number-theoretic func-
tions) mean? Chapter 5 “Computational Mathematics and Digital
Information Systems’ introduces a general concept of information
system beyond Turing computability. The question arises how far
the corresponding functionals can be approximated by constructive
procedures.

Chapter 6 considers the foundations of ‘‘Intuitionistic Mathemat-
ics and Human Creativity”. INT is not only interesting because of its
rigorous ban of the law of excluded middle. Brouwer’s philosophical
understanding of mathematical constructing and proving leads to
a different concept of real continuum and infinity. His fan theorem
and bar theorem are consequences of the intuitionistic philosophy.
In the past, intuitionism and classical mathematics often fought
against one another as different ideological schools. But, independent
of ideological points of view, these principles can be considered as
additional axioms which may be accepted or not like all axioms or
hypotheses in science. Anyway, independent of their philosophical
meaning, we can prove mathematical implications and equivalent
theorems of these principles in order to classify mathematical the-
orems and theories according to their degrees of constructivity and
provability.

A main motivation of this book is to overcome the gaps between
logic, mathematics, and computer science. Nowadays, logic is often

Introduction 11

considered as a discipline of only theoretical and philosophical
interest with no practical relevance for ordinary mathematics and
its applications. In Chapters 7 and 8, we study two foundational
research programs bridging the gap between theory and application,
philosophy and problem solving.

Chapter 7 is dedicated to ‘“Proof Mining bridging Logic, Mathe-
matics, and Computer Science’. Starting with extractions of effective
information from proofs in elementary number theory, proof mining
is extended to, e.g., numerical analysis and functional analysis
which are important for practical applications. The main idea is
that proofs can be characterized by more or less constructive and
computable functionals. Actually, these functionals can be considered
as elements of information systems with different degrees of com-
plexity below or beyond Turing computability. Historically, Godel
started with the class of primitive recursive functionals which was
extended in his Dialectica interpretation. Later on, a variety of
similar interpretations were studied to analyze proofs in different
mathematical theories. Sometimes, functional interpretations make
the extraction of effective computer programs possible to realize
proofs automatically. There are interactive proof assistants such as
Coq (Bertot and Castéran, 2004), HOL, Isabelle (Nipkow et al.,
2002), or MINLOG (Schwichtenberg, 2006). We will consider some
applications of MINLOG because of its natural understanding of
constructive logic. In general, automated theorem proving has deep
technical and societal impact in order to prevent errors and flaws in
software and hardware design, in the Internet and global communi-
cation (cf. Chapter 16). This is an important breakthrough to link
proof theory with computer science and mathematics.

The link between mathematics, proof theory, and computer
science is also supported by the research program of ‘“Reverse
Mathematics bridging Logic, Mathematics, and Computer Science”,
which is considered in Chapter 8. Reverse mathematics allows one to
determine the proof-theoretic strength, degree of computability and
complexity of theorems by classifying them with respect to equivalent
theories and proofs. Many theorems of classical mathematics can be
classified by subsystems of second-order arithmetic Zy with variables

12 The Digital and the Real World

of natural numbers and variables of sets and functions of natural
numbers.

Chapter 9 considers the development “From Intuitionistic to
Homotypy Type Theory — Bridging Logic, Mathematics, and Com-
puter Science”. Actually, types of data resp. terms are used in
programming languages as well as in formal systems of mathematics
in order to avoid software failures resp. logical paradoxes. An
important evolution taking place in current mathematics is the
transition into a new era of automated tools for proof construction
and verification which are known as proof assistants. Martin-Lof
intuitionistic type theory was an important step to the most powerful
proof assistants (such as Coq). An exciting development is the recent
univalent foundations project of the Institute for Advanced Study
(Princeton) which provides new semantics for type theories using
notions from geometry and topology up to abstract mathematical
categories. The key question is how far constructive proof procedures
have the effect of extending the validity of mathematical reasoning
to the widest possible context.

Chapter 10, “Real Computability and Real Analysis”, trans-
fers the digital concepts of computability and decidability to the
continuous world of real numbers. Decision machines and search
procedures are introduced over real and complex numbers. A univer-
sal machine (generalizing Turing’s universal machine in the digital
world) can be defined over a mathematical ring (and with that
over real and complex numbers). On this basis, decidability and
undecidability of several theoretical and practical mathematical
problems (e.g., Mandelbrot set, Newton’s method) can rigorously be
proved.

Like in the digital world, we can introduce a ‘‘Complexity Theory
of Real Computing” (Chapter 11). Polynomial time reductions
as well as the class of NP problems are studied over a general
mathematical ring (and with that on real and complex numbers).
Real computability can be extended in a polynomial hierarchy for
unrestricted machines over a mathematical field.

Chapter 12 discusses the consequences of “Real Computing and
Neural Networks”. Neural networks are models of natural brains

Introduction 13

in evolution with different degrees of complexity. Mathematically,
they are equivalent to computing machines with different degrees
of complexity from finite automata to Turing machines. Otherwise,
the simulation of neural networks on digital computers would not
be possible. Computing machines can understand formal languages
according to their degree of computability from simple regular
languages (finite automata) to Chomsky grammars of natural lan-
guages (Turing machines). Analog neural networks with real synaptic
weights are beyond digital Turing computability. They correspond
to real computing. Actually, they can operate on non-computable
languages like human brains.

Brains and computers are examples of information processing
machines. What does information mean? Chapter 13 distinguishes
the “Complexity of Algorithmic Information”. Chaitin’s concept of
algorithmic information is closely connected with Godel’s incom-
pleteness and Turing’s halting problem of Turing machines (Chaitin,
2007). Laws and theories can be understood as algorithmic informa-
tion compression. But Chaitin’s algorithmic information is reduced
to the digital world.

If we consider dynamical systems in the “‘real” world of physics,
chemistry or biology, we need concepts of continuous information
flow which are explained in Chapter 14, “Complexity of Information
Dynamics”. Basic information measures from Shannon’s information
entropy to Kolmogorov-Sinai entropy are distinguished. How can
continuous dynamics be related to discrete symbolic dynamics?

Chapter 15 “‘Digital and Real Physics,”’ considers the foundations
of digital physics. In this case, the universe itself is assumed to
be a gigantic information system with quantum bits as elementary
states. Deutsch (1985) discussed the quantum versions of Turing
computability and Church’s thesis. They are interesting for quantum
computers, but still reduced to the digital paradigm. Obviously, mod-
eling the “real” universe also needs real computing. Are continuous
models only useful approximations of an actually discrete reality?

With Chapter 16, the book ends with “Digital and Real Comput-
ing in the Social World”. The chapter starts with the question why
it is so difficult to model the social world. Economics and financial

14 The Digital and the Real World

mathematics are highly mathematized, but they miss the success of
explanation and predictions of mathematical natural sciences. We
consider the degrees of constructivity, provability, and computability
of fundamental economic and financial theorems in the sense of
reverse mathematics. Ockham’s principle of parsimony is actually
a rule of economic efficiency in theory building: The degree of
theoretical abstractions corresponds to the “price’” we are willing
to pay for a reliable tool of problem solving.

Scientific modeling of complex social systems is extended to
global information and computer networks of Internet of Things
(IoT) with Big Data. These complex networks are digital with
their apps and supercomputers and also analog with trillions of
sensors. Their mathematical modeling is a great challenge of scientific
computing. It is also deeply connected with real computing, proof
mining and reverse mathematics. Chapter 17 is with a philosophical
outlook and a plea for more foundational research in an age of
exponentially growing technologies.

Chapter 2

Basics of Computability

The early historical roots of computer science can be found in age of
classical mechanics. The mechanization of thoughts begins with the
invention of mechanical devices for performing elementary arithmetic
operations automatically. A mechanical calculation machine executes
serial instructions step by step. In general, the traditional design of
a mechanical calculation machine contains the following devices.
First, there is an input mechanism by which a number is entered
into the machine. A selector mechanism selects and provides the
mechanical motion to cause the addition or subtraction of values
on the register mechanism. The register mechanism is necessary to
indicate the value of a number stored within the machine, technically
realized by a series of wheels or disks. If a carry is generated because
one of the digits in the result register advances from 9 to 0, then that
carry must be propagated by a carry mechanism to the next digit or
even across the entire result register. A control mechanism ensures
that all gears are properly positioned at the end of each addition cycle
to avoid false results or jamming the machine. An erasing mechanism
has to reset the register mechanism to store a value of zero.
Wilhelm Schickard (1592-1635), Professor of Hebrew, oriental
languages, mathematics, astronomy, and geography, is presumed to
be the first inventor of a mechanical calculating machine for the
first four rules of arithmetic. The adding and subtracting part of
his machine is realized by a gear drive with an automatic carry

15

16 The Digital and the Real World

mechanism. The multiplication and division mechanism is based
on Napier’'s multiplication tables. Blaise Pascal (1623-1662), the
brilliant French mathematician and philosopher, invented an adding
and subtracting machine with a sophisticated carry mechanism which
in principle is still realized in our hodometers of today (Williams,
1985).

But it was Leibniz’s mechanical calculating machine for the first
four rules of arithmetic which contained each of the mechanical
devices from the input, selector, and register mechanism to the carry,
control, and erasing mechanism. The Leibniz’'s machine became
the prototype of a hand calculating machine. If we abstract from
the technical details and particular mechanical constructions of
Leibniz’s machine, then we get a model of an ideal calculating
machine.

Definition of Leibniz’s mechanical calculating machine.
Figure 1 is a scheme of this ideal machine with a crank C and
three number stores SM, TM, RM. Natural numbers can be entered
in the set-up (input) mechanism SM by the set-up handles SH. If
crank C is turned to the right, then the contents of SM are added to
the contents of the result mechanism RM (Register Machine), and
the contents of the turning mechanism TM (Turing Machine) are
raised by 1. A turn to the left with crank C subtracts the contents
of SM from the contents of RM and diminishes the contents of
TM by 1.

T A

™ RM

Fig. 1. Hand calculating machine.

Basics of Computability 17

Addition means the following. At the beginning of the calcula-
tion, the erasing procedure is implemented by setting TM and RM
to zero. Then the first number is set up in SM by SH. A turn to the
right of crank C transports this number into RM. In other words,
the number is added to the zero in RM. Now, the second number
is set up in the SM and added to the contents of RM by a turn to
the right. The sum of both numbers can be read in the RM. After
turning the crank twice to the right, the TM shows 2. Multiplication
only means a repeated addition of the same number. The product
b - a results from adding the number a to itself b times.

Leibniz even designed a mechanical calculating machine for the
binary number system with only two digits 0 and 1, which he
discovered some years earlier (von Mackensen, 1974). He described a
mechanism for translating a decimal number into the corresponding
binary number and vice versa. As modern electronic computers only
have two states 1 (electronic impulse) and 0 (no electronic impulse),
Leibniz truly became one of the pioneers of computer science.

Leibniz’s historical machines suffered from many technical prob-
lems because the materials and technical skills then available were
not up to the demands. Nevertheless, his design is part of a general
research program (Leibniz, 1998).

Leibniz’s mathesis universalis

Leibniz’s mathesis universalis (Scholz, 1961) intended to simulate
human thinking by calculation procedures (‘‘algorithms’) and to
implement them on mechanical calculating machines. Leibniz pro-
claimed two basic subdisciplines:

e An ars iudicandi should allow every scientific problem to be
decided by an appropriate arithmetic algorithm after its codifi-
cation into numeric symbols.

o An ars inveniendi should allow scientists to seek and enumerate
possible solutions of scientific problems.

Leibniz’s mathesis universalis already seems to foreshadow the
famous Hilbert program in our century with its demands for

18 The Digital and the Real World

formalization and axiomatization of mathematical knowledge. Actu-
ally, Leibniz developed some procedures to formalize and codify
languages. He was deeply convinced that there are universal algo-
rithms to decide all problems in the world by mechanical devices.

In the 19th century, it was the English mathematician
and economist Charles Babbage who not only constructed
the first program-controlled calculation machine (the ‘‘analytical
engine’”’) but also studied its economic and social consequences
(Bromley, 1982). A forerunner of his famous book On the Econ-
omy of Machinery and Manufactures (1841) was Adam Smith’s
idea of economic laws, which paralleled Newton’s mechanical laws.
In his book The Wealth of Nations, Smith described the indus-
trial production of pins as an algorithmic procedure and antici-
pated Henry Ford’s idea of program-controlled mass production in
industry.

The modern formal logic of Frege and Russell and the math-
ematical proof theory of Hilbert and Goédel have been mainly
influenced by Leibniz’s program of mathesis universalis. The hand
calculating machine which was abstracted from the Leibniz’s machine
can easily be generalized to Marvin Minsky’s so-called register
machine (Minsky, 1961; Sheperdson and Sturgis, 1963). It allows the
general concept of computability to be defined in modern computer
science.

Definition of a register machine. A hand calculating machine
had only two registers TM and RM, and only rather small natural
numbers can be input. An ideal register machine has finite number
of registers which can store any finite number of a desired quantity.
The registers are denoted by natural numbers ¢ = 1,2,3,.... The
contents of register 7 are denoted by (7). As an example, the device
(4) := 1 means that the content of the register with number 4 is 1.
The register is empty if it has the content 0.

In the hand calculating machine, an addition or subtraction was
realized only for the two registers (SM) and (RM), with (SM)+ (RM)
or (RM)—(SM) going into the register RM. In a register machine, the
result of subtraction (i) —(j) should be 0 if (j) is greater than (i). This

Basics of Computability 19

modified subtraction is denoted by (i) — (j). In general, the program
of an ideal register machine is defined using the following elementary
procedures as building blocks:

(1) Add 1 to (i) and put the result into register 4, in short (i) :=
(i) + 1.
(2) Subtract 1 from (i) and put the result into register i, in short:

(i) == (i) — 1.

These two elementary procedures can be composed using the
following concepts:

(3) If P and @ are well-defined programs, then the chain P — @
is a well-defined program. P — () means that a machine has to
execute program () after program P.

(4) The iteration of a program, which is necessary for multiplication,
for instance, as iterated addition is controlled by the question of
whether a certain register is empty.

A diagram illustrates this feedback:

no

yes

If P is a well-defined program, then execute P until the content
of the register with number ¢ is zero.

Example of a register machine. Each elementary operation (1)
and (2) of a program is counted as a step of computation. A simple

20 The Digital and the Real World

example is the following addition program:

G) =) =1
)

no (i) = (i) +1

yes

Each state of the machine is illustrated by the following matrix,
which incrementally adds the content y of register (j) to the content
x of register (z) and simultaneously decrements the content of (j) to
zero. The result = 4 y of the addition is shown in register (j):

(@) ()

Ty
z+1 y—1
r+y y—y

Definition of register machine computability. A register
machine (RM) with program F is defined to compute a function
f with n arguments if for arbitrary z1,...,x, in the register 1,...,n
(and zero in all other ones), the program F is executed and stops
after a finite number of steps with the arguments of the function in
the register 1,...,n and the function value f(xz1,...,x,) in register
n+ 1.
The program

Basics of Computabilily 21

works according to a corresponding matrix. A function f is called
computable by an RM (RM-computable) if there is a program F'
computing f.

The number of steps which a certain program F' needs to compute
a function f is determined by the program and depends on the
arguments of the function. The complexity of program F' is measured
by a function sg(xi,...,x,) computing the steps of computation
according to program F. Sometimes, sp(x1,...,xy,) is also said to
measure the computational time of program F'. For example, the
matrix of the addition program for x + y shows that y elementary
steps of adding 1 and y elementary steps of subtracting 1 are
necessary. Thus sp(z,y) = 2y.

Definition of RM complexity. As an RM-computable function
[may be computed by several programs, a function g is called the
step counting function of f if there is a program F' to compute f
with g(z1,...,2,) = sp(x1,...,x,) for all arguments x4, ..., x,. The
complexity of a function is defined as the complexity of the best
program computing the function with the least number of steps.

Obviously, Minsky’s register machine is an intuitive generaliza-
tion of a hand calculating machine a la Leibniz. But, historically,
some other equivalent formulations of machines were at first intro-
duced independently by Alan Turing (1936) and Emil Post (1936) in
1936.

Definition of a Turing machine. A Turing machine (Fig. 2)
can carry out any effective procedure provided it is correctly pro-
grammed. It consists of

(a) a control box in which a finite program is placed,

(b) a potentially infinite tape, divided lengthwise into squares,

(c) a device for scanning, or printing on one square of the tape at a
time, and for moving along the tape or stopping, all under the
command of the control box.

If the symbols used by a Turing machine are restricted to a
stroke / and a blank * then an RM-computable function can be

22 The Digital and the Real World

Control box
~ contains
finite program

Tapc scanner-
printer- mover

L]
ol e] Talale] [2w

Fig. 2. Turing machine.

7 |

proved to be computable by a Turing machine and vice versa. We
must remember that every natural number x can be represented by a
sequence of x strokes (for instance 3 by ///), each stroke on a square
of the Turing tape. The blank * is used to denote that the square is
empty (of the corresponding number is zero). In particular, a blank
is necessary to separate sequences of strokes representing numbers.
Thus, a Turing machine computing a function f with arguments
x1,....xT, starts with tape -+ % @1 * o % -+ x 1, % --- and stops
with « - %z *xo % - xxy * f(2z1,...,2,) %+ on the tape.

From a logical point of view, a general purpose computer —
as constructed by associates of John von Neumann in America
and independently by Konrad Zuse in Germany — is a technical
realization of a universal Turing machine which can simulate any
kind of Turing program (Herken, 1995). Analogously, we can define
a universal register machine which can execute any kind of register
program. Actually, the general design of a von Neumann computer
consists of a central processor (program controller), a memory, an
arithmetic unit, and input—-output devices. It operates step by step
in a largely serial fashion. A present-day computer d la von Neumann
is really a generalized Turing machine.

The efficiency of a Turing machine can be increased by the intro-
duction of several tapes, which are not necessarily one-dimensional,
each acted on by one or more heads, but reporting back to a
single control box which coordinates all the activities of the machine
(Fig. 3) (Arbib, 1987, p. 131). Thus, every computation of such a

Basics of Computability 23

Control box

_
T Head 1 Head 2
1

° EPEC -

Head 3

T _~ Head 5 ¢

Fig. 3. Turing machine with several tapes.

more effective machine can be done by an ordinary Turing machine.
Concerning the complex system approach, even a Turing machine
with several multidimensional tapes remains a sequential program-
controlled computer, differing essentially from self-organizing sys-
tems like neural networks.

Besides Turing and register machines, there are many other
mathematically equivalent procedures for defining computable func-
tions. Recursive functions are defined by unbounded search, pro-
cedures of functional substitution and iteration, beginning with

24 The Digital and the Real World

some elementary functions, for instance, substitution and iteration,
beginning with some elementary functions, for instance, the successor
function n(z) = = + 1, which are obviously computable. All these
definitions of computability by Turing machines, register machines,
recursive functions, etc., can be proved to be mathematically equiv-
alent. Obviously, each of these precise concepts defines a procedure
which is intuitively effective. Thus, Alonzo Church postulated his
thesis that the informal intuitive notion of an effective procedure is
identical with one of these equivalent precise concepts, such as that
of a Turing machine.

Church’s thesis. Every computational procedure (algorithm) can be
calculated by a Turing machine.

Church’s thesis cannot be proved, of course, because mathe-
matically precise concepts are compared with an informal intuitive
notion. Nevertheless, the mathematical equivalence of several precise
concepts of computability which are intuitively effective confirms
Church’s thesis. Consequently, we can speak about computability,
effectiveness, and computable functions without referring to par-
ticular effective procedures (‘‘algorithms’) like Turing machines,
register machines, recursive functions, etc. According to Church’s
thesis, we may in particular say that every computational procedure
(algorithm) can be calculated by a Turing machine. So every recursive
function, as a kind of machine program, can be calculated by a
general purpose computer (Feferman, 2006).

To be more precise, let us consider a class of functions which was
accepted as intuitively computable from the very beginning (Kleene,
1974; Shoenfield, 1967).

Definition of primitive recursive functions. The class F,, of
primitive recursive functions is defined by the following conditions:

(1) Z, S, p} belong to F,:

Z is the zero function with Z(z) = 0,
S is the successor function with S(z) =z + 1,
pl* is a projection function with p*(zg,...,z,) = z; (0 <i <n).

Basics of Computability 25
(2) Fpy is closed under composition:

If the functions f, g; belong to F,, with f : N* — N and g, :
N* — N (1 < j < k), then there is a function h from Fp,
satisfying

h(z) = f(g1(Z), ..., 00(F)) (with T =21,...,2n).

(3) Fpr is closed under recursion:

For functions f : N — N and g : N**2 — N, there is a function
h from F,, such that

h’(Ur E) - f(E)
h(S(y),z) =g(h(y, x),y,).

(4) F, is the least class satisfying conditions (1)—(3).

The class of primitive recursive functions can be extended by
an intuitively computable search procedure for minimal numbers
satisfying certain computable conditions.

Definition of recursive functions. The class F,. of total recur-
sive functions is the least class of functions satisfying the con-
ditions (1)—(3) of F,. (with F, replacing F,.) and the following
condition:

(5) F, is closed under the application of the p-operator:

f(y) = px(g(z,y) = 0), i.e., the least z satisfying g(z,y) = 0
with g from F, if such an z exists, or formally Yy3z(z, y) = 0.

Sometimes it is not clear that functions are totally defined. f(x) =~
g(z) means that function f(z) is defined iff function g(z) is defined,
and if they are defined, then their values are equal. Now, we can
extend the class of total recursive functions to the class of partial
recursive functions.

26 The Digital and the Real World

Definition of partial recursive functions. The class F. of partial
recursive functions is defined by the following conditions:

(1) F. is a subset of F.
(2) F is closed under composition:
If the functions h, g; belong to F. with h : N¥ — N and g; :

N" — N(1 < j < k), then there is a function f of F| satisfying
f(@) = h(gi(z), ..., gu(2)).

(3) F, is closed under the application of the p-operator:
f(y) ~ px(g(z,y) = 0), ie., the least z satisfying g(z,y) = 0
with ¢ from F, if such an z exists, or formally Vy3z(z,y) = 0.

It turns out that all partial recursive functions are computable in the
sense of Church’s thesis. Now, we are able to define effective proce-
dures of decision and enumerability, which were already demanded
by Leibniz’s program of a mathesis universalis (Davis, 1958). The
characteristic function yj; of a subset M of natural numbers is
defined by yar(x) = 1 if is an element of M, and as xa(z) = 0
otherwise.

Definition. A set M is defined as effectively decidable if its
characteristic function saying whether or not a number belongs to
M is effectively computable.

Programs and computations consist of lists of symbols which
can be coded by natural numbers. Then, we can define a decidable
predicate T'(z,y,z) (Kleene's T-predicate) with the meaning that
“z codes a (terminating) computation according to program z for
arguments y”’. The total computable result-extracting function U
extracts the result from the code for a terminating computation. It
can be proven that each computable function f with code x of its
computer program can be represented by the following form.

Kleene’s normal form.

fy) =U(pzxr(z,y,2z) =1)
~U(pzT(z,y,2)).

Basics of Computability 27

The partially defined expression [z](y) denotes the result of applying
program x to the arguments of function f. Actually, x is the code
number of a machine program which is also called ‘“machine number”
of the computable function f. Obviously, [z]|(y) is defined if there
is a (terminating) computation z according to program z for input

—

arguments y:
[%](y) is defined < 3zT(z, 7y, 2).

A set M is defined as effectively enumerable if there exists an
effective (computable) procedure f for generating its elements, one
after another (formally f(1) = z1, f(2) = w2,... for all elements
x1,x2,... from M). The definition of recursive enumerability can be
generalized from sets to predicates.

Definition of recursive enumerability. A predicate P is recur-
sively enumerable, if P is empty or there is a recursive function f
with P(z) <> 3yf(y) = z for all .

Recursive enumerability can be interpreted as a formal definition
of Leibniz’s ars inveniendi. It can be proven (Hermes, 1961, p. 189)
that for all recursively enumerable predicates P there is a recursively
decidable predicate Q.

Theorem. P(z) <> JyQ(x,y) for all z.

Proof. (“—"") Let P be recursively enumerable. If P is empty, then
P is also recursively decidable. We define Q(x,y): ¢ P(z) Ay = y.
It follows by definition

P(z) < 3y(P(z) Ay =y)
< JyQ(z,y) for all x.

If P is not empty, then there is by definition a recursive function f
with

P(z) < yfly) ==
< JyQ(z,y) with a recursive predicate Q(x,y) : < f(y) = .

28 The Digital and the Real World
(“4="") We assume that P can be represented as
P(z) +» Jy Q(z,y) with a recursively decidable predicate Q.

We can assume that P is not empty, otherwise the statement is
trivial. Now, we assume a number = with P(z) and define a recursive
function:

T otherwise

fly) = {02 1) i Qloza(y), o22(y)),

with primitive recursive encoding function
oa(,y) = 27(2y + 1)1
and inverse functions

02,1(2) = exp(0, z + 1),

z+1 .
9exp(0,z+1) o 1

0'272(2) = 9

Obviously, we get

o2.1(02(z,y))
022(02(x, y))
2.2(2

)

In the next step, we prove that f enumerates the elements of P

—

oa(o21(2), 0

according to the definition of recursive enumerability, i.e., P(z) <

Juf(y) =z

(“—="") In case of P(x), there is a z with Q(x, z) according to the
assumed representation of P. In this case, we define y = os(x, 2).
It follows Q(o2,1(y),o22(y)). By definition of f, we get f(y)
o2,1(y) = =.

(‘=) Now, we assume that there is a y with f(y) = z. We must
prove P(x). According to the definition of f, we have to distinguish

Basics of Computability 29

the following two cases:

(1) Q(o2,1(y),02,2(y)) is true: In this case, f(y) = 02,1(y). It follows
Q(f(y)v‘g?,?(y))ﬂ i'e'a

Q(x,022(y)). Therefore, there is a z with Q(z, z).

(2) Q(o21(y),022(y)) is not true: According to our definition of f,
it is f(y) = z. According to the assumption of “<", it is ¢ = Z.
It follows P(x) because of P(Zx). a

The last theorem and Kleene’s normal form can now be used to
characterize recursive enumerable predicates (Rogers, 1967).

Kleene’s enumeration of recursively enumerable predicates.
Let P be a recursively enumerable predicate

P(y) < 32Q(y, 2)

with @ recursive for all y. Define a recursive partial function f(y) ~
1zQ(y, z) with machine number z. Then

P(y) < [2](y) is defined « JzT(x,vy, 2).

The number z is called the recursive enumerable (RE) index of
the recursive enumerable predicate P. Intuitively spoken, Kleene’s
T-predicate enumerates all recursive enumerable predicates by their

RE indices (Soare, 1987).

Post’s theorem of decidability and enumerability

Decidability can be characterized by enumerability: A set or predi-
cate is recursively decidable if the set or predicate and its complemen-
tary set or predicate are recursively enumerable (Post’s theorem).
The complementary set M of M contains all elements which do
not belong to M. If M and M are recursively enumerable, then
we can enumerate their elements step by step in order to decide
if a given number does belong to M or not. Thus, M is recursively
decidable. By definition, it follows that every recursively decidable
set is recursively enumerable. But there are recursively enumerable

30 The Digital and the Real World

sets which are not decidable. These are the first hints that there are
limits to Leibniz’s original program of a mathesis universalis, based
on the belief in universal decision procedures.

At this point, Turing’s famous halting problem comes in: Is there
a universal decision procedure to determine whether an arbitrary
computer program stops after finite steps for an arbitrary input?
Turing proved that the halting problem is in principle unsolvable.
Then Godel’s incompleteness (Godel, 1931) is only a corollary of
Turing’s proof (Chaitin, 1998).

Turing started his proof with the question whether real numbers
are computable. A real number like 7 = 3.1415926. . . has an infinite
number of digits that seem to be randomly distributed behind the
decimal point. Nevertheless, there are simple finite programs for
calculating the digits step by step with increasing precision of .
In this sense, 7 is called a computable real number. In a first step,
Turing constructed an uncomputable real number.

Definition of an uncomputable number. According to Kleene’s
normal form, a machine program can be coded by a machine number.
Imagine a list of all possible computer programs that are ordered
according to their increasing machine numbers pi,p2,ps,.... If a
program computes a real number with an infinite number of digits
behind the decimal point (e.g., 7), then they should be written down
behind the corresponding program number. (The number before
the decimal point is neglected.) Otherwise, there is a blank line in

the list (Chaitin, 1998, p. 10):

p1 — -diidiadizdisdisdigdyy . . .
p2 — .da1dgadazdaadasdasdar . . .
p3 — .d31dz2d3zzdzadssdssdsy . . .
pPa

ps — -ds1ds2ds3dsadssdsedsy -

Basics of Computabilily 31

Following Cantor’s diagonal procedure, Turing changed the under-
lined digits on the diagonal of the list and put these changed digits
(marked with #) together into a new number with a decimal point
in front:

—. Fdy F#dig #diz F# dyy #dis # dig Fdire -

This new number cannot be in the list because it differs from the
first digit of the first number behind p;, the second digit of the
second number behind ps, etc. Therefore, it is an uncomputable
real number. With this number, Turing got the unsolvability of the
halting problem.

Unsovability of the halting problem

If we could solve the halting problem, then we could decide if the nth
computer program ever puts out an nth digit behind the decimal
point. In this case, we could actually carry out Cantor’s diagonal
procedure and compute a real number, which, by its definition, has
to differ from any computable real number.

The unsolvability of the halting problem refutes Hilbert’s
Entscheidungsproblem. If there is a complete formal axiomatic
system from which all mathematical truth follows, then it would give
us a procedure to decide if a computer program will ever halt. We
just run through all the possible proofs until we either find a proof
that the program halts, or we find a proof that it never halts. So if
Hilbert’s finite set of axioms from which all the mathematical truth
should follow were possible, then by running through all possible
proofs while checking which ones are correct, we would be able to
decide if a computer program halts. That is impossible using Turing’s
proof.

The unsolvability of Turing’s halting problem is not only funda-
mental for computability theory, but it also has deep consequences
for mathematical foundations. An example is Hilbert’s 10th problem
which is also proved to be in principle unsolvable due to Turing’s
halting problem. In 1900, David Hilbert asked for an algorithm
which will decide whether a so-called diophantine equation has a

32 The Digital and the Real World

solution (Hilbert, 1900). This was the 10th problem of his famous
list of 23 mathematical problems which were still unsolved at the
beginning of the 20th century. Algebraic equations, which involve
only multiplication, addition, and exponentiation of whole numbers,
were named after the third-century Greek mathematician Diophantos
of Alexandria.

Unsovability of Hilbert’s 10th problem

In 1970, J. V. Matiyasevich from the Steklov Institute of Mathemat-
ics in former Leningrad (St. Petersburg) proved that Hilbert’s 10th
problem is equivalent to Turing’s halting problem and, consequently,
not decidable (Matiyasevich, 1970, 1993).

Matiyasevich used results of Davis et al. (1961). According
to Lagrange’s representation of natural numbers as sum of four
quadratic whole numbers, Hilbert’s 10th problem can be reduced
to the existence of solutions in natural numbers.

A predicate D is called diophantine if it is definable by predicates
r+y=z x-y=2z x¥ =z and logical operations V (or), A (and),
and 3 (existence quantifier):

D(wls"'awn)
< 3y, yr Plxa,.oo,xn, y1,...,4) with P recursive

<_>3yl|a"'3y7‘ Xp(a’.l:"'s'rna ylr"'syT):l

with computable characteristic function x, as polynom.

According to our theorem of recursive enumerability, it follows
that every diophantine predicate is recursively enumerable. Vice
versa, it can be proven that every enumerable predicate is dio-
phantine. Matiyasevich used the Fibonacci sequence to define an
appropriate diophantine predicate. The halting problem can be rep-
resented by an enumerable, but not decidable predicate. Therefore,
the corresponding diophantine predicate is also not decidable.

Chapter 3

Hierarchies of Computability

According to Church’s thesis, Turing computability is a represen-
tative definition of computability in general. In the following, we
want to consider problems with degrees of complexity below and
beyond this limit. Below this limit, there are many practical problems
concerning certain limitations on how much the speed of an algorithm
can be increased. Especially among mathematical problems, there are
some classes of problems that are intrinsically more difficult to solve
algorithmically than others. Thus, there are degrees of computability
for Turing machines which are made precise in complexity theory in
computer science.

Complexity classes of problems (or corresponding functions) can
be characterized by complexity degrees, which give the order of
functions describing the computational time (or number of elemen-
tary computational steps) of algorithms (or computational programs)
depending on the length of their inputs. The lengths of inputs may be
measured by the number of decimal digits. According to the machine
language of a computer, it is convenient to represent decimal numbers
in their binary codes with only binary numbers 0 and 1 and to define
their length by the number of binary digits. For instance, 3 has the
binary code 11 = 12! 4+ 1. 2° with the length 2.

Definition of linear computational time. A function f has

linear computational time if the computational time of f is not
greater than ¢ - n for all inputs with length n and a constant c.

33

34 The Digital and the Real World

Example of linear computational time. The addition of two
(binary) numbers has obviously only linear computational time. For
instance, the task 3 + 7 = 10 corresponds to the binary calculation

011
111
1010

which needs five elementary computational steps of adding two
binary digits (including carrying). We remind the reader that the
elementary steps of adding binary digits are 0+0=0,0+1 =1,
1+40=1, 141 =0 carry 1. It is convenient to assume that the
two numbers which should be added have equal length. Otherwise,
we simply start the shorter one with a series of zeros, for instance
111 and 011 instead of 11. In general, if the length of the particular
pair of numbers which should be added is n, the length of a number
is &, and thus, we need no more than § + § = n elementary steps of
computation including carrying.

Definition of quadratic computational time. A function f has
quadratic computational time if the computational time of f is not
greater than ¢ - n? for all inputs with length n and a constant c.

Example of quadratic computational time. A simple example
of quadratic computational time is the multiplication of two (binary)
numbers. For instance, the task 7 -3 = 21 corresponds to the binary
calculation:

111 -011
000
111

111

10101

According to former conventions, we have n = 6. The number of

elementary binary multiplications is § - 5 = . Including carrying,
n

the number of elementary binary additions is § - § — § = % — 5. In

n® _n_n?

2 2
n _ _n : : n
all, we get " + - — 5 = %5 5, which is smaller than *-.

Hierarchies of Computability 35

Definition of polynomial and exponential computational
time.

e A function f has polynomial computational time if the computa-
tional time of f is not greater than ¢ - n*, which is assumed to be
the leading term of a polynomial p(n).

e A function f has exponential computational time if the computa-
tional time of f is not greater than c - op(n)

e Many practical and theoretical problems belong to the complexity
class P of all functions which can be computed by a deterministic
Turing machine in polynomial time.

In the history of mathematics, there have been some nice prob-
lems of graph theory to illustrate the basic concepts of complexity
theory (Grotschel et al., 1988).

Complexity of Euler’s Konigsberg river problem

In 1736, the famous mathematician Leonard Euler (1707-1783)
solved one of the first problems of graph theory. In the city of
Konigsberg, the capital of former Eastern Prussia, the so-called old
and new river Pregel are joined in the river Pregel. In the 18th
century, there were seven bridges connecting the southern s, northern
n, and eastern e regions with the island i (Fig. 4a). Is there a route
which crosses each bridge only once and returns to the starting point?
Euler reduced the problem to graph theory. The regions n, s, [, e
are replaced by vertices of a graph, and the bridges between two
regions by edges between the corresponding vertices (Fig. 4b).

North n n
P
l'cg
isle i
Eastem e i ¢
wc%e\

é‘e/

South s 5

(b)

Fig. 4. Euler’s Konigsberg river problem.

36 The Digital and the Real World

In the language of graph theory, Euler’s problem is whether for
every vertex there is a route (an “Euler circuit’”) passing each edge
exactly once, returning finally to the starting point. For arbitrary
graphs, Euler proved that an Euler circuit exists if and only if each
vertex has an even number of edges (the ‘“Euler condition”). As the
graph of Fig. 4b does not satisfy this condition, there cannot be
a solution of Euler’s problem in this case. In general, there is an
algorithm testing an arbitrary graph by Euler’s condition if it is an
Euler circuit. The input of the algorithm consists of the set V of all
vertices 1, ..., n and the set E of all edges, which is a subset of the set
with all pairs of vertices. The computational time of this algorithm
depends linearly on the size of the graph, which is defined by the
sum of the numbers of vertices and edges.

Complexity of Hamilton’s problem

In 1859, the mathematician William Hamilton (1805-1865) intro-
duced a rather similar problem that is much more complicated than
Euler’s problem (Mainzer, 2007a, pp. 189-190). Hamilton considered
an arbitrary graph, which means nothing else than a finite collection
of vertices, a certain number of pairs of which are connected together
by edges. Hamilton’s problem is whether there is a closed circuit (a
“Hamilton’s circuit”) passing each vertex (not each edge as in Euler’s
problem) exactly once. Figure 5 shows a graph with a Hamilton
circuit passing the vertices in the order of numbering.

However, unlike the case of Euler’s problem, we do not know
any condition which exactly characterizes whether a graph contains
a Hamilton circuit or not. We only can define an algorithm testing
whether an arbitrary graph contains a Hamilton circuit or not. The
algorithm tests all permutations of vertices to see if they form a
Hamiltonian circuit. As there are n! different permutations of n
vertices, the algorithm does not need more than ¢ - n! steps with a
constant ¢ to find a solution. It can easily be proved that an order of
n! corresponds to an order of n”. Consequently, an algorithm for the
Hamilton problem needs exponential computational time, while the
Euler problem can be solved algorithmically in linear computational

Hierarchies of Computability 37

19 16

11

18 17

Fig. 5. Hamilton’s problem.

time. Thus, Hamilton’s problem cannot practically be solved by a
computer even for small numbers n.

The main reason for a high computational time may be a large
number of single subcases which must be tested by a deterministic
computer which is allowed to choose a computational procedure
at random among a finite number of possible ones instead of
performing them step by step in a serial way. Let us consider
Hamilton’s problem again. An input graph may have n vertices
©1,...,V,. A non-deterministic algorithm chooses a certain order
Uiy, ..., 0;, of vertices in a non-deterministic, random way. Then the
algorithm tests whether this order forms a Hamiltonian circuit. The
question is whether for all number j(j = 1,...,n — 1) the successive
vertices v;; and v, and the beginning and starting vertices v;,
and v;, are connected by an edge. The computational time of this
non-deterministic algorithm depends linearly on the size of the
graph.

In general, NP means the complexity class of functions which can
be computed by a non-deterministic Turing machine in polynomial
time. Hamilton’s problem is an example of an NP-problem. Another
NP-problem is the ‘“travelling salesman problem”, which is rather
like Hamilton’s problem except that the various edges have numbers
attached to them. One seeks that Hamilton circuit for which the

38 The Digital and the Real World

sum of the numbers or more intuitively the distance travelled by the
salesman is a minimum.

Can NP-problems be reduced to P-problems?

By definition every P-problem is an NP-problem. But it is a crucial
question of complexity theory whether P = NP or, in other words,
whether problems which are solved by non-deterministic computers
in polynomial time can also be solved by a deterministic computer
in polynomial time.

Hamilton’s problem and the travelling salesman problem are
examples of so-called NP-complete problems.

Complexity of NP-complete problems

A problem is called an NP-complete problem if any other NP-
complete problem can be converted into it in polynomial time.

Consequently, if an NP-complete problem is actually proved to
be a P-problem (if for instance a deterministic algorithm can be
constructed to solve Hamilton’s problem in polynomial time), then
it would follow that all NP-problems are actually in P. Otherwise
if P # NP then no NP-complete problem can be solved with a
deterministic algorithm in polynomial time.

Obviously, complexity theory delivers degrees for the algorithmic
power of Turing machines or Turing-type computers. The theory has
practical consequences for scientific and industrial applications. But
does it imply limitations for mathematics and the human mind? The
fundamental questions of complexity theory (for example N = NP
or N # NP) refer to the measurement of the speed, computational
time, storage capacity, and so on, of algorithms. What about the
complexity of mathematical problems beyond Turing computability?

Enumerability is only the first step on a ladder with increas-
ing computational complexity. By adding unrestricted quanti-
fiers to recursive predicates, degrees of computability can be
extended beyond Turing computability (Hinman, 1978; Kleene,
1955a; Shoenfield, 1967):

Hierarchies of Computability 39

Definition of arithmetical hierarchy. A predicate P is arithmeti-
cal iff it has an explicit definition

() P(x)e Q...QnR(z,21,...,1y)

for all numbers x with R recursive and each number quantifier @;
for either dz; or Vz; with number variables x;.

Two quantifiers are of the same kind if they are both existential
or both universal. Two adjacent quantifiers of the same kind can be
replaced by a single quantifier (contraction of quantifiers).

A predicate is ¥0(I1%) for n > 1 iff it has an explicit definition
() with no two adjacent quantifiers of the same kind and the first
quantifier existential (universal), e.g., for all x,

¥9: P(z) & 32 \Vaa R(x, 2122),
119 : P(z) ¢ Vo, 3xgR(z, z12).

Every arithmetical predicate is ¥ or TI% for some n > 1. This
classification of arithmetical predicates is called the arithmetical
hierarchy.

A predicate is AY iff it is both £ and IIV.

Every recursively enumerable predicate P can be represented
by P(x) < JyQ(z,y) for all z with a recursive predicate Q.
Therefore, E? is the class of recursively enumerable predicates.
Recursive predicates are closed with respect to logical connectives,
e.g., = (negation), V (disjunction: “‘or’’), and A (conjunction: “and”).
In classical logic, Jy Q(x, y) is equivalent with =Vy—Q(x, y). It follows
that P is A(f iff both P and =P are enumerable because of double
negation. Thus, because of Post’s theorem, A(l) is the class of the
recursive (Turing-computable) predicates.

There are general properties of the arithmetical hierarchy:

(1) A recursive predicate is ¥2 and IIY for all n.

(2) ¥0 < 20, M2, € 9 (1Y) for all n > m: If predicate P is
$0 or I1Y | then P is X0 and T19.

(3) If P and Q are X0 (I1Y), then PV Q and P A Q are X0 (I19).

(4) If Pis X9 (I19), then =P is 110 (X2).

40 The Digital and the Real World

Therefore, the arithmetical hierarchy can be illustrated in the
following way:

0 0 0
Z“n+1 An—H 1-In+1
0 0

ATL]'-'[TL

X5 Ay I
A I

Kleene’s normal form of recursive functions allows to enumerate all
recursive functions and recursively enumerable predicates (Chap-
ter 2). It can be generalized for the arithmetical hierarchy:

Kleene’s arithmetical enumeration theorem. For each n > 1,
there is a £2 (I1Y) predicate which enumerates the class of all ¥9
(T1%) predicates.

Further on, it can be proven that the inclusions between the X9
and 19 predicates, i.e., £0, C 30 (I12), 1%, C ¥9 (I19) for all n > m,
are the only ones of their type:

Kleene’s arithmetical hierarchy theorem. For each n > 1,
there is a X9 predicate which is not 11 and hence not X, or 112,
for any m > n. Then —P is I1IY but not X9 and hence not ¥°, or 119,
for any m > n.

Relative computability and oracle machines

Computations can depend on external agencies supplying answers to
questions about a set (or property) M by an unknown procedure.
According to Turing, the external agency of an unknown procedure
is called an oracle (Turing, 1939). In Fig. 6, the computation of a
function value f(x) depends on an oracle deciding if certain values
satisfy a property M (Rogers, 1967). Most of our calculations in

Hierarchies of Computabilily 41

yes

terminate
yes x,e M?
f(x) xeM? —
begin ys
x,e M?
no
no

Fig. 6. Relative computability with an oracle.

everyday life depend on assumptions we rely on without knowing a
final confirmation. Thus, oracles lead to an important extension of
relativized computation.

A function f is computable relative to M iff the program of
f is extended with an oracle M. An oracle can also be a machine
operation (total function) ¢ supplying values ¢(x) by an unknown
procedure. Random oracles depend on random procedures.

Definition of relative computability.

e A function f is recursive in ¢ iff f is computable relative to .

e A predicate P is recursive (decidable) in ¢ iff its characteristic
function yp is computable relative to ¢.

e Pis X0 (I19, AY) in ¢ iff P is defined by ¥ (II%, A%) quantifiers
and a predicate R recursive in .

Relative computability with respect to a function ¢ can be
generalized to a set ® of functions g, ¢1,... We say that set ® is
recursive in set W with functions g, 1, ... if every member of @
is recursive in W. If ¥ is empty, then the functions recursive in W
are just the recursive functions. Therefore, relativized Turing com-
putability includes Turing computability as a special case. Obviously,
relativized computability satisfies the property of transitivity: If ® is

