o
Agile Delivery

A Practitioner’s Guide to Agile Software Delivery in the Enterprise

Scott W. Ambler « Mark Lines

Foreword by Dave West

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

© Copyright 2012 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication. or disclosure
is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

IBM Press Program Managers: Steven Stansel, Ellice Uffer
Cover design: IBM Corporation
Publisher: Paul Boger

Marketing Manager: Stephane Nakib
Publicist: Heather Fox

Acquisitions Editor: Bernard Goodwin
Managing Editor: Kristy Hart
Designer: Alan Clements

Project Editor: Betsy Harris

Copy Editor: Geneil Breeze

Indexer: Erika Millen

Compositor: Nonie Ratcliff
Proofreader: Debbie Williams

Manufacturing Buyer: Dan Uhrig

Published by Pearson plc
Publishing as IBM Press
IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales

1-800-382-3419

corpsales @ pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international @ pearsoned.com

Contents

Part 1: Introduction to Disciplined Agile Delivery (DAD)

Chapter 1 Disciplined Agile Delivery in a Nutshell 1
Context Counts—The Agile Scaling Model 3
What Is the Disciplined Agile Delivery (DAD) Process Framework? 5
People Firsto e 5
Learning Oriented 7
Agile e 8
A Hybrid Process Framework 9
IT Solutions over Software 10
Goal-Driven Delivery Lifecycle 11
Enterprise Aware 17
Risk and Value Driven 19
Scalable 22
Concluding Thoughts 23
Additional ReSOUICeS 23
Chapter 2 Introduction to Agile and Lean 25
Toward a Disciplined Agile Manifesto 27
Disciplined Agile Values 27
Disciplined Agile Principles 29
Lean Principles 33
Reality over Rhetoric 36
Concluding Thoughts 38
Additional ReSOUrces 39
Chapter 3 Foundations of Disciplined Agile Delivery 41
The Terminology Tar Pit 43
SCIUIML © oo 44
Extreme Programming (XP) 48
Agile Modeling (AM) 50
Agile Data 53

xil

Contents

Lean Software Development 53
IBM Practices 54
Open Unified Process (OpenUP) 56
And Others 58
Those Who Ignore Agile Practices Put Their BusinessatRisk 58
Concluding Thoughts ... 58
Additional RESOUICESo 59

Part 2: People First

Chapter 4 Roles, Rights, and Responsibilities 61
The Rights of Everyone 63
The Responsibilities of Everyone 64
The DAD Roles 65
Concluding Thoughts 81
Additional RESOUTCES oo 81
Chapter 5 Forming Disciplined Agile Delivery Teams 83
Strategies for Effective Teams 85
The Whole Team 88
Team Organization Strategies 89
Building Your Team 101
Interacting with Other Teams 104
Concluding Thoughts 108
Additional Resources 108

Part 3: Initiating a Disciplined Agile Delivery Project

Chapter 6 The Inception Phase 111
How the Inception Phase Works 113
Aligning with the Rest of the Enterprise 117
Securing Funding 126
Other Inception ACtVItIES 129
When Do You Need an Inception Phase? 130
Inception Phase Patterns 131
Inception Phase Anti-Patterns 132
Concluding Thoughts 133
Additional ReSOUrces 134

Chapter 7 Identifying a Project Vision 135
What's ina Vision? 136
How Do You Create a VISION? o 137

Capturing Your Project Vision 138

Contents xiii

Bringing Stakeholders to Agreement Around the Vision 142
Concluding Thoughts 145
Additional Resources 145
Chapter 8 Identifying the Initial Scope 147
Choosing the Appropriate Level of Initial Detail 149
Choosing the Right Types of Models 153
Choosing a Modeling Strategy 162
Choosing a Work Item Management Strategy 166
Choosing a Strategy for Nonfunctional Requirements 170
Concluding Thoughts i 173
Additional Resources 173

Chapter 9 Identifying an Initial Technical Strategy 175

Choosing the Right Level of Detail 178
Choosing the Right Typesof Models 182
Choosing a Modeling Strategy 187
Architecture Throughout the Lifecycle o 190
Concluding Thoughts 190
Additional Resources 191
Chapter 10 Initial Release Planning 193
Who Does the Planning? 194
Choosing the Right Scope forthe Plan 196
Choosing a General Planning Strategy 197
Choosing Cadences 202
Formulating an Initial Schedule 208
Estimating the Costand Value 218
Identifying Risks 225
Concluding Thoughts 226
Additional Resources 228
Chapter 11 Forming the Work Environment 229
Forming the Team 230
Choosing Your ToOISelo 231
Organizing Physical Work Environments 238
Organizing Virtual Work Environments 244
Visual Management 246
Adopting Development Guidelines 247
Concluding Thoughts 248
Additional Resources 249

Chapter 12 Case Study: Inception Phase 251

Introducing the AgileGrocers POS Case Study 251
Developing a Shared Vision 254

Xiv

Contents

Requirements EnvVIiSIONingo 262
Creating the Ranked Work Item List of User Stories to Implement the Solution 264
Architecture Envisioning 265
Release Planning e 266
Other Inception Phase Activities 268
Alternative Approach to Running Your Inception Phase 269
Concluding the Inception Phase 270
Concluding Thoughts 272

Part 4: Building a Consumable Solution Incrementally

Chapter 13 The Construction Phase 273
How the Construction Phase Works 274
The Typical Rhythm of Construction Iterations 281
The Risk-Value Lifecycle 282
When Are You Ready to Deploy? 283
Construction Patterns 284
Construction Anti-Patterns 285
Concluding Thoughts 287

Chapter 14 Initiating a Construction Iteration 289

Why Agile Planning Is Different 290
Tteration Planningo 291
Visualizing Your Plan 304
Look-Ahead Planning and Modeling o 306
Concluding Thoughts 307
Additional Resources 308
Chapter 15 A Typical Day of Construction 309
Planning Your Team’s Work forthe Day 311
Collaboratively Building a Consumable Solution 319
Ongoing Activities Throughoutthe Day 339
A Closer Look at Critical Agile Practices 348
Stabilizing the Day’s Work 359
Concluding Thoughts 360
Additional Resources 360

Chapter 16 Concluding a Construction Iteration 363

Demonstrate the Solution to Key Stakeholders 365
Learn from Your Experiences 368
Assess Progress and Adjust Release Planif Necessary 373
Assess Remaining Risks 0 375

Deploy Your Current Build 375

Contents XV

Determine Strategy for Moving Forward 376
Concluding Thoughts 380
Additional Resources 382

Chapter 17 Case Study: Construction Phase 383

Continuing Our Scenario with the AgileGrocers POS Case Study 383
Planning the Iteration’s Work 387
Subsequent Construction Iterations 407
Other Construction Phase Activities 414
Concluding the Construction Phase Iterations 414
Concluding Thoughts i 415

Part 5: Releasing the Solution

Chapter 18 The Transition Phase 417
How the Transition Phase Works o o 418
Planning the Transition Phase 419
Ensuring Your Production Readiness i 421
Preparing Your Stakeholders for the Release 423
Deploying the Solution 424
Are Your Stakeholders Delighted? 426
Transition Phase Patterns 427
Transition Phase Anti-Patterns 429
Concluding Thoughts 430
Additional Resources 431

Chapter 19 Case Study: Transition Phase 433
Planning the Phase 434
Collaborating to Deploy the Solution 438
AgileGrocers” Delight 439
Concluding Thoughts 440

Part 6: Disciplined Agile Delivery in the Enterprise

Chapter 20 Governing Disciplined Agile Teams441

What Should Governance Address? 443
Why Is Governance Important? 447
Why Traditional Governance Strategies Won’t Work 448
Agile GOVEIrNANCE 451
Agile Practices That Enable Governance 455
Fitting in with the Rest of Your IT Organization 460
Measuring Agile Teams 465

Risk Mitigation 479

xvi Contents

Concluding Thoughts 480
Additional ReSOUICES 480
Chapter 21 Got Discipline? 483
Agile Practices Require Discipline 484
Reducing the Feedback Cycle Requires Discipline 485
Continuous Learning Requires Discipline 487
Incremental Delivery of Consumable Solutions Requires Discipline 490
Being Goal-Driven Requires Discipline 490
Enterprise Awareness Requires Discipline 491
Adopting a Full Lifecycle Requires Discipline 492
Streamlining Inception Requires Discipline 492
Streamlining Transition Requires Discipline 493
Adopting Agile Governance Requires Discipline 493
Moving to Lean Requires Discipline, 493
Concluding Thoughts 494
Additional Resources 495

Index 497

Foreword

The process wars are over, and agile has won. While working at Forrester, we observed that agile
methods had gone mainstream, with the majority of organizations saying that they were using
agile on at least 38% of their projects. But the reality of agile usage, as Scott and Mark point out,
is far from the original ideas described by the 17 thought leaders in 2001. Instead, agile is under-
mined by organizational inertia, politics, people’s skills, management practices, vendors, and
outsourced development. I observed that the reality of agile was something more akin to water-
scrum-fall—water-scrum describing the inability of an organization to start any project without a
lengthy phase up front that defined all the requirements, planning the project in detail, and even
doing some of the design. Scrum-fall defines the release practices operated by most organizations
in which software is released infrequently, with costly and complex release practices that include
manual deployments and testing. Water-scrum-fall is not all bad, with some benefits to the devel-
opment team working in an iterative, scrum-based way, but water-scrum-fall does not release the
power of agile. Enterprise agile not only creates the most efficient software development process
but more importantly delivers software of greater business value. It is my assertion that scaled,
enterprise-level agile is therefore not just important for your software-delivery organization but
crucial for business success. Fixing water-scrum-fall will increase business value and enable
organizations to compete. And this book provides a framework to make that happen.

In this book, Scott and Mark, two very experienced software-delivery change agents,
describe a detailed framework for how to scale agile to the enterprise. They show how change
leaders can amplify agile, making it not just about teams but about the whole value stream of soft-
ware delivery. In many books about agile adoption, the really tricky problems associated with
governance and organizational control are often side-stepped, focusing on why it is stupid to do
something rather than how to change that something. Scott and Mark have not done this. They
have focused clearly on the gnarly problems of scale, describing practical ways of fixing gover-
nance models, staffing issues, and management approaches. Their use of lean positions their

XVii

xviii Foreword

framework in a broader context, allowing change leaders to not only improve their delivery capa-
bility but also connect it directly to business value. But be warned: These problems are not easily
solved, and adopting these ideas does not just require agile skills but also draws on other process
models, change techniques, and good engineering practices.

Scott and Mark not only made me think, but they also reminded me of lots of things that I
had forgotten—things that the agile fashion police have made uncool to talk about. This book is
not about fashionable agile; it is about serious change, and it should be required reading for any
change leader.

Dave West @davidjwest
Chief Product Officer, Tasktop, and former VP and Research Director, Forrester Research

Preface

The information technology (IT) industry has an embarrassing reputation from the perspective of
our customers. For decades we have squandered scarce budgets and resources, reneged on our
promises, and delivered functionality that is not actually needed by the client. An outsider look-
ing at our profession must be truly baffled. We have so many process frameworks and various
bodies of knowledge such that we ourselves have difficulty keeping up with just the acronyms, let
alone the wealth of material behind them. Consider: PMBOK, SWEBOK, BABOK, ITIL®,
COBIT, RUP, CMMI, TOGAF, DODAF, EUP, UML, and BPMN, to name a few. Even within the
narrow confines of the agile community, we have Scrum, XP, CI, CD, FDD, AMDD, TDD, and
BDD, and many others. There is considerable overlap between these strategies but also consider-
able differences. We really need to get our act together.

Why Agile?

On traditional/classical projects, and sadly even on “heavy RUP” projects, basic business and
system requirements often end up written in multiple documents in different fashions to suit the
standards of the various standards bodies. Although in some regulatory environments this proves
to be good practice, in many situations it proves to be a huge waste of time and effort that often
provides little ultimate value—you must tailor your approach to meet the needs of your situation.

Fortunately, agile methods have surfaced over the past decade so that we can save ourselves
from this madness. The beauty of agile methods is that they focus us on delivering working soft-
ware of high business value to our customers early and often. We are free to adjust the project
objectives at any time as the business needs change. We are encouraged to minimize documenta-
tion, to minimize if not eliminate the bureaucracy in general. Who doesn’t like that?

Xix

More importantly, agile strategies seem to be working in practice. Scott has run surveys'
within the IT industry for several years now, and he has consistently found that the agile and
iterative strategies to software development have consistently outperformed both traditional and
ad-hoc strategies. There’s still room for improvement, and this book makes many suggestions for
such improvements, but it seems clear that agile is a step in the right direction. For example, the
2011 IT Project Success Survey revealed that respondents felt that 67% of agile projects were
considered successful (they met all of their success criteria), 27% were considered challenged
(they delivered but didn’t meet all success criteria), and only 6% were considered failures. The
same survey showed that 50% of traditional projects were considered successful, 36% chal-
lenged, and 14% failures. The 2008 IT Project Success survey found that agile project teams were
much more adept at delivering quality solutions, good return on investment (ROI), and solutions
that stakeholders wanted to work with and did so faster than traditional teams. Granted, these are
averages and your success at agile may vary, but they are compelling results. We’'re sharing these
numbers with you now to motivate you to take agile seriously but, more importantly, to illustrate
a common theme throughout this book: We do our best to shy away from the overly zealous “reli-
gious” discussions found in many software process books and instead strive to have fact-based
discussions backed up by both experiential and research-based evidence. There are still some
holes in the evidence because research is ongoing, but we’re far past the “my process can beat up
your process” arguments we see elsewhere.

Alistair Cockburn, one of the original drafters of the Agile Manifesto, has argued that there
are three primary aspects of agile methodologies:

* Self-discipline, with Extreme Programming (XP) being the exemplar methodology
* Self-organization, with Scrum being the exemplar methodology

* Self-awareness, with Crystal being the exemplar methodology

As you’ll see in this book, Disciplined Agile Delivery (DAD) addresses Cockburn’s three
aspects.

Why Disciplined Agile Delivery?

Although agile strategies appear to work better than traditional strategies, it has become clear to
us that the pendulum has swung too far the other way. We have gone from overly bureaucratic and
document-centric processes to almost nothing but code. To be fair, agile teams do invest in plan-
ning, although they are unlikely to create detailed plans; they do invest in modeling, although are
unlikely to create detailed models; they do create deliverable documentation (such as operations
manuals and system overview documents), although are unlikely to create detailed specifications.
However, agile teams have barely improved upon the results of iterative approaches. The 2011 IT

1. The original questions, source data (without identifying information due to privacy concerns), and summary slide
decks for all surveys can be downloaded free of charge from www.ambysoft.com/surveys/.

Preface xxi

Project Success survey found that 69% of iterative projects were considered successful, 25%
challenged, and 6% failures, statistically identical results as agile projects. Similarly, the 2008 IT
Project Success survey found that agile and iterative teams were doing statistically the same
when it came to quality, ability to deliver desired functionality, and timeliness of delivery and that
agile was only slightly better than iterative when it came to ROI. The reality of agile hasn’t lived
up to the rhetoric, at least when we compare agile strategies with iterative strategies. The good
news is that it is possible to do better.

Our experience is that “core” agile methods such as Scrum work wonderfully for small
project teams addressing straightforward problems in which there is little risk or consequence of
failure. However, “out of the box,” these methods do not give adequate consideration to the risks
associated with delivering solutions on larger enterprise projects, and as a result we’re seeing
organizations investing a lot of effort creating hybrid methodologies combining techniques from
many sources. The Disciplined Agile Delivery (DAD) process framework, as described in this
book, is a hybrid approach which extends Scrum with proven strategies from Agile Modeling
(AM), Extreme Programming (XP), and Unified Process (UP), amongst other methods. DAD
extends the construction-focused lifecycle of Scrum to address the full, end-to-end delivery life-
cycle? from project initiation all the way to delivering the solution to its end users. The DAD
process framework includes advice about the technical practices purposely missing from Scrum
as well as the modeling, documentation, and governance strategies missing from both Scrum and
XP. More importantly, in many cases DAD provides advice regarding viable alternatives and their
trade-offs, enabling you to tailor DAD to effectively address the situation in which you find your-
self. By describing what works, what doesn’t work, and more importantly why, DAD helps you to
increase your chance of adopting strategies that will work for you.

Indeed there are an increasing number of high-profile project failures associated with agile
strategies that are coming to light. If we don’t start supplementing core agile practices with a
more disciplined approach to agile projects at scale, we risk losing the hard-earned momentum
that the agile pioneers have generated.

This book does not attempt to rehash existing agile ideas that are described in many other
books, examples of which can be found in the references sections. Rather, this book is intended to
be a practical guide to getting started today with agile practices that are structured within a disci-
plined approach consistent with the needs of enterprise-scale, mission-critical projects.

What Is the History?

The Disciplined Agile Delivery (DAD) process framework began as a concept in 2007 that Scott
worked on in his role as chief methodologist for agile and lean at IBM® Rational®. He was work-
ing with customers around the world to understand and apply agile techniques at scale, and he

2. A full system/product lifecycle goes from the initial idea for the product, through delivery, to operations and support
and often has many iterations of the delivery lifecycle. Our focus in DAD is on delivery, although we discuss how the
other aspects of the system lifecycle affect the delivery lifecycle.

noticed time and again that organizations were struggling to adopt mainstream agile methods
such as Extreme Programming (XP) and Scrum. At the same time Mark, also working with
organizations to adopt and apply agile techniques in practice, observed the same problems. In
many cases, the organization’s existing command-and-control culture hampered its adoption of
these more chaordic techniques. Furthermore, although many organizations were successful at
agile pilot projects, they struggled to roll out agile strategies beyond these pilot teams. A common
root cause was that the methods did not address the broader range of issues faced by IT depart-
ments, let alone the broader organization. Something wasn’t quite right.

Separately we began work on addressing these problems, with Scott taking a broad
approach by observing and working with dozens of organizations and Mark taking a deep
approach through long-term mentoring of agile teams at several organizations. In 2009 Scott led
the development of the DAD process framework within IBM Rational, an effort that continues to
this day. This work included the development of DAD courseware, whitepapers, and many blog
postings on IBM developerWorks®.3

What About Lean?

There are several reasons why lean strategies are crucial for DAD:

* Lean provides insights for streamlining the way that DAD teams work.

* Lean provides a solid foundation for scaling DAD to address complex situations, a topic
we touch on throughout the book but intend to address in greater detail in a future book.

* Lean principles explain why agile practices work, a common theme throughout this
book.

 Lean strategies, particularly those encapsulated by Kanban, provide an advanced adop-
tion strategy for DAD.

So why aren’t we writing about Disciplined Lean Development (DLD) instead? Our expe-
rience is that lean strategies, as attractive and effective as they are, are likely beyond all but a
small percentage of teams at this time. Perhaps this “small” percentage is 10% to 15%—it’s cer-
tainly under 20%—but only time will tell. We’ve found that most development teams are better
served with a lightweight, end-to-end process framework that provides coherent and integrated
high-level advice for how to get the job done without getting bogged down in procedural details.
Having said that, many of the options that we describe for addressing the goals of the DAD
process framework are very clearly lean in nature, and we expect that many teams will evolve
their process from a mostly agile one to a mostly lean one over time.

DAD is the happy medium between the extremes of Scrum, a lightweight process frame-
work that focuses on only a small part of the delivery process, and RUP, a comprehensive process
framework that covers the full delivery spectrum. DAD addresses the fundamentals of agile

3. https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/

Preface xxiii

delivery while remaining flexible enough for you to tailor it to your own environment. In many
ways, Scrum taught agilists how to crawl, DAD hopes to teach agilists how to walk, and
agility @scale and lean approaches such as Kanban will teach us how to run.

How Does This Book Help?

We believe that there are several ways that you’ll benefit from reading this book:

* [t describes an end-to-end agile delivery lifecycle.

e It describes common agile practices, how they fit into the lifecycle, and how they work
together.

* It describes how agile teams work effectively within your overall organization in an
“enterprise aware” manner, without assuming everyone else is going to be agile, too.

* [t uses consistent, sensible terminology but also provides a map to terminology used by
other methods.

It explains the trade-offs being made and in many cases gives you options for alternative
strategies.

* It provides a foundation from which to scale your agile strategy to meet the real-world
situations faced by your delivery teams.

* It goes beyond anecdotes to give fact-based reasons for why these techniques work.

» Itreally does answer the question “how do all these agile techniques fit together?”

Where Are We Coming From?

Both of us have seen organizations adopt Scrum and extend it with practices from XP, Agile
Modeling, and other sources into something very similar to DAD or to tailor down the Unified
Process into something similar to DAD. With either strategy, the organizations invested a lot of
effort that could have been easily avoided. With DAD, we hope to help teams and organizations
avoid the expense of a lengthy trial-and-error while still enabling teams to tailor the approach to
meet their unique situation.

Scott led the development of DAD within IBM Rational and still leads its evolution, lever-
aging his experiences helping organizations understand and adopt agile strategies. This book also
reflects lessons learned from within IBM Software Group, a diverse organization of 27,000
developers worldwide, and IBM’s Agile with Discipline (AwD) methodology followed by pro-
fessionals in IBM Global Service’s Accelerated Solution Delivery (ASD) practice. In the autumn
of 2009 DAD was captured in IBM Rational’s three-day “Introduction to Disciplined Agile
Delivery” workshop. This workshop was rolled out in the first quarter of 2010 to IBM business
partners, including UPMentors, and Mark became one of the first non-IBMers to be qualified to
deliver the workshop. Since then, Mark has made significant contributions to DAD, bringing his
insights and experiences to bear.

What'’s The Best Way to Read this Book?

Most people will want to read this cover to cover. However, there are three exceptions:

* Experienced agile practitioners can start with Chapter 1, “Disciplined Agile Delivery in
a Nutshell,” which overviews DAD. Next, read Chapter 4, “Roles, Rights, and Respon-
sibilities,” to understand the team roles. Then, read Chapters 6 through 19 to understand
in detail how DAD works.

* Senior IT managers should read Chapter | to understand how DAD works at a high level
and then skip to Chapter 20, “Governing Disciplined Agile Teams,” which focuses on
governing® agile teams.

* People who prefer to work through an example of DAD in practice should read the case
study chapters first. These are: Chapter 12, “Initiating a Disciplined Agile Delivery
Project—Case Study”; Chapter 17, “Case Study: Construction Phase”; and Chapter 19,
“Case Study: Transition Phase.”

We hope that you embrace the core agile practices popularized by leading agile methods
but choose to supplement them with some necessary rigor and tooling appropriate for your orga-
nization and project realities.

Incidentally, a portion of the proceeds from the sale of this book are going to the Cystic
Fibrosis Foundation and Toronto Sick Kid’s Hospital, so thank you for supporting these worthy
causes.

The Disciplined Agile Delivery Web Site

www.DisciplinedAgileDelivery.com is the community Web site for anything related to DAD.
Mark and Scott are the moderators. You will also find other resources such as information
on DAD-related education, service providers, and supporting collateral that can be downloaded.
We invite anyone who would like to contribute to DAD to participate as a blogger. Join the
discussion!

4. Warning: Throughout the book we’ll be using “agile swear words™ such as governance, management, modeling, and
yes, even the D-word—documentation. We'd like to apologize now for our use of foul language such as this.

Preface

Abbreviations Used in This Book

AD
AM
AMDD
ASM
ATDD
AUP
AwD
BABOK
BDD
BI
BPMN
CASE
CD

CI

CM
CMMI
COBIT
DAD
DDIJ
DevOps
DI
DODAF
DSDM
EUP
EVM
FDD
GQM
HR

IT
ITIL
T

Agile Data

Agile Modeling

Agile Model Driven Development

Agile Scaling Model

Acceptance test driven development

Agile Unified Process

Agile with Discipline

Business Analysis Book of Knowledge
Behavior driven development

Business intelligence

Business Process Modeling Notation
Computer aided software engineering
Continuous deployment

Continuous integration

Configuration management

Capability Maturity Model Integrated

Control Objectives for Information and Related Technology
Disciplined Agile Delivery

Dr. Dobb’s Journal

Development operations

Development intelligence

Department of Defense Architecture Framework
Dynamic System Development Method
Enterprise Unified Process

Earned value management

Feature Driven Development

Goal question metric

Human resources

Information technology

Information Technology Infrastructure Library

Just in time

xxvi

MDD
MMR
NFR
NPV
0SS
PMBOK
PMO
ROI
RRC
RSA
RTC
RUP
SCM
SDLC
SLA
SWEBOK
TCO
TDD
TFD
TOGAF
T&M
TVO
UAT
UML
Ul

uUp

UX
WIP

XP

Model driven development

Minimally marketable release
Non-functional requirement

Net present value

Open source software

Project Management Book of Knowledge
Project management office

Return on investment

Rational Requirements Composer
Rational Software Architect

Rational Team Concert™

Rational Unified Process

Software configuration management
System development lifecycle

Service level agreement

Software Engineering Book of Knowledge
Total cost of ownership

Test-driven development

Test first development

The Open Group Architecture Framework
Time and materials

Total value of ownership

User acceptance testing

Unified Modeling Language

User interface

Unified Process

User experience

Work in progress

Extreme Programming

Preface

Acknowledgments

We’d like to thank the following people for their feedback regarding this book: Kevin Aguanno,
Brad Appleton, Ned Bader, Joshua Barnes, Peter Bauwens, Robert Boyle, Alan L. Brown, David
L. Brown, Murray Cantor, Nick Clare, Steven Crago, Diana Dehm, Jim Densmore, Paul Gorans,
Leslie R. Gornig, Tony Grout, Carson Holmes, Julian Holmes, Mark Kennaley, Richard Knaster,
Per Kroll, Cherifa Liamani, Christophe Lucas, Bruce Maclsaac, Trevor O. McCarthy, M.K.
McHugh, Jean-Louise Marechaux, Evangelos Mavrogiannakis, Brian Merzbach, Berne C.
Miller, Mike Perrow, Andy Pittaway, Emily J. Ratliff, Oliver Rochrsheim, Walker Royce, Chris
Sibbald, Lauren Schaefer, Paul Sims, Paula Stack, Alban Tsui, Karthikeswari Vijayapandian,
Lewis J. White, Elizabeth Woodward, and Ming Zhi Xie.

We’d also like to thank the following people for their ideas shared with us in online forums,
which were incorporated into this book: Eric Jan Malotaux, Bob Marshall, Valentin Tudor
Mocanu, Allan Shalloway, Steven Shaw, Horia Slusanschi, and Marvin Toll.

xxvii

About the Authors

Scott W. Ambler is Chief Methodologist for IT with IBM Rational, work-
ing with IBM customers around the world to help them to improve their
software processes. In addition to Disciplined Agile Delivery (DAD), he is
the founder of the Agile Modeling (AM), Agile Data (AD), Agile Unified
Process (AUP), and Enterprise Unified Process (EUP) methodologies and
creator of the Agile Scaling Model (ASM). Scott is the (co-)author of 20
books, including Refactoring Databases, Agile Modeling, Agile Database
Techniques, The Object Primer, 3rd Edition, and The Enterprise Unified

Process. Scott is a senior contributing editor with Dr. Dobb’s Journal. His personal home page is

www.ambysoft.com.

»

Mark Lines co-founded UPMentors in 2007. He is a disciplined agile
coach and mentors organizations on all aspects of software development. He
is passionate about reducing the huge waste in most IT organizations and
demonstrates hands-on approaches to speeding execution and improving
quality with agile and lean techniques. Mark provides IT assessments and
executes course corrections to turn around troubled projects. He writes for
many publications and is a frequent speaker at industry conferences. Mark is
also an instructor of IBM Rational and UPMentors courses on all aspects of

software development. His Web site is www.UPMentors.com. Mark can be reached at
Mark @UPMentors.com.

CHAPTER 1

Disciplined Agile
Delivery in a Nutshell

For every complex problem there is a solution that is simple, neat, and wrong. —H L Mencken

The agile software development paradigm burst onto the scene in the spring of 2001 with the pub-
lication of the Agile Manifesto (www.agilemanifesto.org). The 17 authors of the manifesto cap-
tured strategies, in the form of four value statements and twelve supporting principles, which they
had seen work in practice. These strategies promote close collaboration between developers and
their stakeholders; evolutionary and regular creation of software that adds value to the organiza-
tion; remaining steadfastly focused on quality; adopting practices that provide high value and
avoiding those which provide little value (e.g., work smarter, not harder); and striving to improve
your approach to development throughout the lifecycle. For anyone with experience on success-
ful software development teams, these strategies likely sound familiar.

Make no mistake, agile is not a fad. When mainstream agile methods such as Scrum and
Extreme Programming (XP) were introduced, the ideas contained in them were not new, nor were
they even revolutionary at the time. In fact, many of them have been described in-depth in other
methods such as Rapid Application Development (RAD), Evo, and various instantiations of the
Unified Process, not to mention classic books such as Frederick Brooks™ The Mythical Man
Month. 1t should not be surprising that working together closely in collocated teams and collabo-
rating in a unified manner toward a goal of producing working software produces results superior
to those working in specialized silos concerned with individual rather than team performance. It
should also come as no surprise that reducing documentation and administrative bureaucracy
saves money and speeds up delivery.

While agile was once considered viable only for small, collocated teams, improvements in
product quality, team efficiency, and on-time delivery have motivated larger teams to take a closer
look at adopting agile principles in their environments. In fact, IBM has teams of several hundred

2 Chapter 1 Disciplined Agile Delivery in a Nutshell

people, often distributed around the globe, that are working on complex products who are apply-
ing agile techniques—and have been doing so successfully for years. A recent study conducted
by the Agile Journal determined that 88% of companies, many with more than 10,000 employ-
ees, are using or evaluating agile practices on their projects. Agile is becoming the dominant soft-
ware development paradigm. This trend is also echoed in other industry studies, including one
conducted by Dr. Dobb’s Journal (DDJ), which found a 76% adoption rate of agile techniques,
and within those organizations doing agile, 44% of the project teams on average are applying
agile techniques in some way.

Unfortunately, we need to take adoption rate survey results with a grain of salt: A subse-
quent Ambysoft survey found that only 53% of people claiming to be on “agile teams” actually
were. It is clear that agile methods have been overly hyped by various media over the years, lead-
ing to abuse and misuse; in fact, the received message regarding agile appears to have justified
using little or no process at all. For too many project teams this resulted in anarchy and chaos,
leading to project failures and a backlash from the information technology (IT) and systems engi-
neering communities that prefer more traditional approaches.

Properly executed, agile is not an excuse to be undisciplined. The execution of mainstream
agile methods such as XP for example have always demanded a disciplined approach, certainly
more than traditional approaches such as waterfall methods. Don’t mistake the high ceremony of
many traditional methods to be a sign of discipline, rather it’s a sign of rampant and often out-of-
control bureaucracy. However, mainstream agile methods don’t provide enough guidance for typ-
ical enterprises. Mature implementations of agile recognize a basic need in enterprises for a level
of rigor that core agile methods dismiss as not required such as governance, architectural plan-
ning, and modeling. Most mainstream agile methods admit that their strategies require significant
additions and adjustments to scale beyond teams of about eight people who are working together
in close proximity. Furthermore, most Fortune 1000 enterprises and government agencies have
larger solution delivery teams that are often distributed, so the required tailoring efforts can prove
both expensive and risky. The time is now for a new generation of agile process framework.

Figure 1.1 shows a mind map of the structure of this chapter. We describe each of the topics
in the map in clockwise order, beginning at the top right.

THE BiG IDEAS IN THIS CHAPTER

* People are the primary determinant of success for IT delivery projects.

* Moving to a disciplined agile delivery process is the first step in scaling agile
strategies.

* Disciplined Agile Delivery (DAD) is an enterprise-aware hybrid software process
framework.

* Agile strategies should be applied throughout the entire delivery lifecycle.

* Agile teams are easier to govern than traditional teams.

Context Counts—The Agile Scaling Model 3

| Context counts - the agile scaling model

e 1

What is the Disciplined Agile Delivery
(DAD) framework?

Scalable
Risk and value driven
Enterprise aware

Disciplined Agile Delivery
in a Nutshell

Peaople first
Learning oriented

I Goal-driven delivery lifecycle I

l IT solutions over software } ! A hybrid process framework

Figure 1.1 Outline of this chapter

Context Counts—The Agile Scaling Model

To understand the need for the Disciplined Agile Delivery (DAD) process framework you must
start by recognizing the realities of the situation you face. The Agile Scaling Model (ASM) is a
contextual framework that defines a roadmap to effectively adopt and tailor agile strategies to
meet the unique challenges faced by an agile software development team. The first step to scaling
agile strategies is to adopt a disciplined agile delivery lifecycle that scales mainstream agile con-
struction strategies to address the full delivery process from project initiation to deployment into
production. The second step is to recognize which scaling factors, if any, are applicable to your
project team and then tailor your adopted strategies to address the range of complexities the team
faces.
The ASM, depicted in Figure 1.2, defines three process categories:

1. Core agile development. Core agile methods—such as Scrum, XP, and Agile Modeling
(AM)—focus on construction-oriented activities. They are characterized by value-
driven lifecycles where high-quality potentially shippable software is produced on a
regular basis by a highly collaborative, self-organizing team. The focus is on small (<15
member) teams that are collocated and are developing straightforward software.

4 Chapter 1 Disciplined Agile Delivery in a Nutshell

2. Agile delivery. These methods—including the DAD process framework (described in
this book) and Harmony/ESW—address the full delivery lifecycle from project initia-
tion to production. They add appropriate, lean governance to balance self-organization
and add a risk-driven viewpoint to the value-driven approach to increase the chance of
project success. They focus on small-to-medium sized (up to 30 people) near-located
teams (within driving distance) developing straightforward solutions. ldeally DAD
teams are small and collocated.

3. Agility @scale. This is disciplined agile development where one or more scaling factors
apply. The scaling factors that an agile team may face include team size, geographical
distribution, organizational distribution (people working for different groups or compa-
nies), regulatory compliance, cultural or organizational complexity, technical complex-
ity, and enterprise disciplines (such as enterprise architecture, strategic reuse, and
portfolio management).

* Disciplined agile delivery when one or
more scaling factors apply:
- Team size
- Geographic distribution
- Regulatory compliance
- Domain complexity
- Organization distribution
- Technical complexity
- Organizational complexity
- Enterprise discipline

Agility@Scale

* Risk+value driven lifecycle
* Self-organizing within appropriate governance framework
* Focus on delivery of consumable solutions

Agile Delivery

Agile * Value-driven lifecycle

Development * Self-organizing teams
* Focus on construction of working software

Figure 1.2 The Agile Scaling Model (ASM)

This book describes the DAD process framework. In most cases we assume that your team
is small (<15 people) and is either collocated or near-located (within driving distance). Having

People First 5

said that, we also discuss strategies for scaling agile practices throughout the book. The DAD
process framework defines the foundation to scale agile strategies to more complex situations.

What Is the Disciplined Agile Delivery (DAD) Process
Framework?

Let’s begin with a definition:

The Disciplined Agile Delivery (DAD) process framework is a people-first,
learning-oriented hybrid agile approach to IT solution delivery. It has a risk-value
lifecycle, is goal-driven, is scalable, and is enterprise aware.

From this definition, you can see that the DAD process framework has several important
characteristics:

* People first

* Learning oriented

* Agile

* Hybrid

* IT solution focused

* Goal-driven

* Delivery focused

* Enterprise aware

* Risk and value driven

* Scalable

To gain a better understanding of DAD, let’s explore each of these characteristics in greater
detail.

People First

Alistair Cockburn refers to people as “non-linear, first-order components” in the software devel-
opment process. His observation, based on years of ethnographic work, is that people and the
way that they collaborate are the primary determinants of success in IT solution delivery efforts.
This philosophy, reflected in the first value statement of the Agile Manifesto, permeates DAD.
DAD team members should be self-disciplined, self-organizing, and self-aware. The DAD
process framework provides guidance that DAD teams leverage to improve their effectiveness,
but it does not prescribe mandatory procedures.

The traditional approach of having formal handoffs of work products (primarily docu-
ments) between different disciplines such as requirements, analysis, design, test, and develop-
ment is a very poor way to transfer knowledge that creates bottlenecks and proves in practice to

6 Chapter1 Disciplined Agile Delivery in a Nutshell

be a huge source of waste of both time and money. The waste results from the loss of effort to
create interim documentation, the cost to review the documentation, and the costs associated with
updating the documentation. Yes, some documentation will be required, but rarely as much as is
promoted by traditional techniques. Handoffs between people provide opportunities for misun-
derstandings and injection of defects and are described in lean software development as one of
seven sources of waste. When we create a document we do not document our complete under-
standing of what we are describing, and inevitably some knowledge is “left behind” as tacit
knowledge that is not passed on. It is easy to see that after many handoffs the eventual deliverable
may bear little resemblance to the original intent. In an agile environment, the boundaries
between disciplines should be torn down and handoffs minimized in the interest of working as a
team rather than specialized individuals.

In DAD we foster the strategy of cross-functional teams made up of cross-functional
people. There should be no hierarchy within the team, and team members are encouraged to be
cross-functional in their skillset and indeed perform work related to disciplines other than their
specialty. The increased understanding that the team members gain beyond their primary disci-
pline results in more effective use of resources and reduced reliance on formal documentation
and handoftfs.

As such, agile methods deemphasize specific roles. In Scrum for instance, there are only
three Scrum team roles: ScrumMaster, product owner, and team member. Nonteam roles can be
extended to stakeholder and manager. The primary roles described by DAD are stakeholder, team
lead, team member, product owner, and architecture owner. These roles are described in detail in
Chapter 4, “Roles, Rights, and Responsibilities.”

Notice that tester and business analyst are not primary roles in the DAD process frame-
work. Rather, a generic team member should be capable of doing multiple things. A team mem-
ber who specializes in testing might be expected to volunteer to help with requirements, or even
take a turn at being the ScrumMaster (team lead). This doesn’t imply that everyone needs to be an
expert at everything, but it does imply that the team as a whole should cover the skills required of
them and should be willing to pick up any missing skills as needed. However, as you learn in
Chapter 4, DAD also defines several secondary roles often required in scaling situations.

Team members are often “generalizing specialists” in that they may be a specialist in one or
more disciplines but should have general knowledge of other disciplines as well. More impor-
tantly, generalizing specialists are willing to collaborate closely with others, to share their skills
and experiences with others, and to pick up new skills from the people they work with. A team
made up of generalizing specialists requires few handoffs between people, enjoys improved col-
laboration because the individuals have a greater appreciation of the background skills and prior-
ities of the various IT disciplines, and can focus on what needs to be done as opposed to focusing
on whatever their specialties are.

However, there is still room for specialists. For example, your team may find that it needs to
set up and configure a database server. Although you could figure it out yourselves, it’s probably
easier, faster, and less expensive if you could have someone with deep experience help your team

Learning Oriented 7

for a few days to work with you to do so. This person could be a specialist in database adminis-

tration. In scaling situations you may find that your build becomes so complex that you need

someone(s) specifically focused on doing just that. Or you may bring one or more business ana-

lyst specialists onto the team to help you explore the problem space in which you’re working.
DAD teams and team members should be

* Self-disciplined in that they commit only to the work they can accomplish and then per-
form that work as effectively as possible

* Self-organizing, in that they estimate and plan their own work and then proceed to col-
laborate iteratively to do so

* Self-aware, in that they strive to identify what works well for them, what doesn’t, and
then learn and adjust accordingly

Although people are the primary determinant of success for IT solution delivery projects,
in most situations it isn’t effective to simply put together a good team of people and let them loose
on the problem at hand. If you do this then the teams run several risks, including investing signif-
icant time in developing their own processes and practices, ramping up on processes or practices
that more experienced agile teams have discovered are generally less effective or efficient, and
not adapting their own processes and practices effectively. We can be smarter than that and recog-
nize that although people are the primary determinant of success they aren’t the only determinant.
The DAD process framework provides coherent, proven advice that agile teams can leverage and
thereby avoid or at least minimize the risks described previously.

Learning Oriented

In the years since the Agile Manifesto was written we’ve discovered that the most effective
organizations are the ones that promote a learning environment for their staff. There are three key
aspects that a learning environment must address. The first aspect is domain learning—how are
you exploring and identifying what your stakeholders need, and perhaps more importantly how
are you helping the team to do so? The second aspect is process learning, which focuses on learn-
ing to improve your process at the individual, team, and enterprise levels. The third aspect is tech-
nical learning, which focuses on understanding how to effectively work with the tools and
technologies being used to craft the solution for your stakeholders.

The DAD process framework suggests several strategies to support domain learning,
including initial requirements envisioning, incremental delivery of a potentially consumable
solution, and active stakeholder participation through the lifecycle. To support process-focused
learning DAD promotes the adoption of retrospectives where the team explicitly identifies poten-
tial process improvements, a common agile strategy, as well as continued tracking of those
improvements. Within the IBM software group, a business unit with more than 35,000 develop-
ment professionals responsible for delivering products, we’ve found that agile teams that held
retrospectives improved their productivity more than teams that didn’t, and teams that tracked

8 Chapter 1 Disciplined Agile Delivery in a Nutshell

their implementation of the identified improvement strategies were even more successful. Tech-
nical learning often comes naturally to IT professionals, many of whom are often eager to work
with and explore new tools, techniques, and technologies. This can be a double-edged sword—
although they’re learning new technical concepts they may not invest sufficient time to master a
strategy before moving on to the next one or they may abandon a perfectly fine technology
simply because they want to do something new.

There are many general strategies to improve your learning capability. Improved collabora-
tion between people correspondingly increases the opportunities for people to learn from one
another. Luckily high collaboration is a hallmark of agility. Investing in training, coaching, and
mentoring are obvious learning strategies as well. What may not be so obvious is the move away
from promoting specialization among your staff and instead fostering a move toward people with
more robust skills, something called being a generalizing specialist (discussed in greater detail in
Chapter 4). Progressive organizations aggressively promote learning opportunities for their
people outside their specific areas of specialty as well as opportunities to actually apply these
new skills.

If you're experienced with, or at least have read about, agile software development, the pre-
vious strategies should sound familiar. Where the DAD process framework takes learning further
is through enterprise awareness. Core agile methods such as Scrum and XP are typically project
focused, whereas DAD explicitly strives to both leverage and enhance the organizational ecosys-
tem in which a team operates. So DAD teams should both leverage existing lessons learned from
other agile teams and also take the time to share their own experiences. The implication is that
your IT department needs to invest in a technology for socializing the learning experience across
teams. In 2005 IBM Software Group implemented internal discussion forums, wikis, and a center
of competency (some organizations call them centers of excellence) to support their agile learn-
ing efforts. A few years later they adopted a Web 2.0 strategy based on IBM Connections to sup-
port enterprise learning. When the people and teams within an organization choose a
learning-oriented approach, providing them with the right tools and support can increase their

success.

Agile

The DAD process framework adheres to, and as you learn in Chapter 2, “Introduction to Agile
and Lean,” enhances, the values and principles of the Agile Manifesto. Teams following either
iterative or agile processes have been shown to produce higher quality solutions, provide greater
return on investment (ROI), provide greater stakeholder satisfaction, and deliver these solutions
quicker as compared to either a traditional/waterfall approach or an ad-hoc (no defined process)
approach. High quality is achieved through techniques such as continuous integration (CI),
developer regression testing, test-first development, and refactoring—these techniques, and
more, are described later in the book. Improved ROI comes from a greater focus on high-value
activities, working in priority order, automation of as much of the IT drudgery as possible, self-

A Hybrid Process Framework 9

organization, close collaboration, and in general working smarter not harder. Greater stakeholder
satisfaction is increased through enabling active stakeholder participation, by incrementally
delivering a potentially consumable solution each iteration, and by enabling stakeholders to
evolve their requirements throughout the project.

A Hybrid Process Framework

DAD is the formulation of many strategies and practices from both mainstream agile methods as
well as other sources. The DAD process framework extends the Scrum construction lifecycle to
address the full delivery lifecycle while adopting strategies from several agile and lean methods.
Many of the practices suggested by DAD are the ones commonly discussed in the agile commu-
nity—such as continuous integration (CI), daily coordination meetings, and refactoring—and
some are the “advanced” practices commonly applied but for some reason not commonly dis-
cussed. These advanced practices include initial requirements envisioning, initial architecture
envisioning, and end-of-lifecycle testing to name a few.

The DAD process framework is a hybrid, meaning that it adopts and tailors strategies from
a variety of sources. A common pattern that we’ve seen time and again within organizations is
that they adopt the Scrum process framework and then do significant work to tailor ideas from
other sources to flesh it out. This sounds like a great strategy. However, given that we repeatedly
see new organizations tailoring Scrum in the same sort of way, why not start with a robust process
framework that provides this common tailoring in the first place? The DAD process framework
adopts strategies from the following methods:

* Scrum. Scrum provides an agile project management framework for complex projects.
DAD adopts and tailors many ideas from Scrum, such as working from a stack of work
items in priority order, having a product owner responsible for representing stakehold-
ers, and producing a potentially consumable solution every iteration.

* Extreme Programming (XP). XP is an important source of development practices for
DAD, including but not limited to continuous integration (CI), refactoring, test-driven
development (TDD), collective ownership, and many more.

* Agile Modeling (AM). As the name implies, AM is the source for DAD’s modeling and
documentation practices. This includes requirements envisioning, architecture envi-
sioning, iteration modeling, continuous documentation, and just-in-time (JIT) model
storming.

* Unified Process (UP). DAD adopts many of its governance strategies from agile instan-
tiations of the UP, including OpenUP and Agile Unified Process (AUP). In particular
these strategies include having lightweight milestones and explicit phases. We also draw
from the Unified Process focus on the importance of proving that the architecture works
in the early iterations and reducing much of the business risk early in the lifecycle.

10 Chapter 1 Disciplined Agile Delivery in a Nutshell

* Agile Data (AD). As the name implies AD is a source of agile database practices, such
as database refactoring, database testing, and agile data modeling. It is also an important
source of agile enterprise strategies, such as how agile teams can work effectively with
enterprise architects and enterprise data administrators.

* Kanban. DAD adopts two critical concepts—Ilimiting work in progress and visualizing
work—from Kanban, which is a lean framework. These concepts are in addition to the
seven principles of lean software development, as discussed in Chapter 2.

The concept of DAD being a hybrid of several existing agile methodologies is covered in
greater detail in Chapter 3, “Foundations of Disciplined Agile Delivery.”

OuR APOLOGIES

Throughout this book we’ll be applying agile swear words such as phase, serial, and yes,
even the “G word™—governance. Many mainstream agilists don't like these words and have
gone to great lengths to find euphemisms for them. For example, in Scrum they talk about
how a project begins with Sprint 0 (DAD’s Inception phase), then the construction sprints fol-
low, and finally you do one or more hardening/release sprints (DAD's Transition phase).
Even though these sprint categories follow one another this clearly isn't serial, and the
Scrum project team clearly isn’t proceeding in phases. Or so goes the rhetoric. Sigh. We
prefer plain, explicit language.

IT Solutions over Software

One aspect of adopting a DAD approach is to mature your focus from producing software to
instead providing solutions that provide real business value to your stakeholders within the
appropriate economic, cultural, and technical constraints. A fundamental observation is thatas IT
professionals we do far more than just develop software. Yes, software is clearly important, but in
addressing the needs of our stakeholders we often provide new or upgraded hardware, change the
business/operational processes that stakeholders follow, and even help change the organizational
structure in which our stakeholders work.

This shift in focus requires your organization to address some of the biases that crept into
the Agile Manifesto. The people who wrote the manifesto (which we fully endorse) were for the
most part software developers, consultants, and in many cases both. It was natural that they
focused on their software development strengths, but as the ten-year agile anniversary workshop
(which Scott participated in) identified, the agile community needs to look beyond software
development.

It’s also important to note that the focus of this book is on IT application development. The
focus is not on product development, even though a tailored form of DAD is being applied for

Goal-Driven Delivery Lifecycle 1

that within IBM, nor is it on systems engineering. For agile approaches to embedded soft-
ware development or systems engineering we suggest you consider the IBM Harmony process
framework.

Goal-Driven Delivery Lifecycle

DAD addresses the project lifecycle from the point of initiating the project to construction to
releasing the solution into production. We explicitly observe that each iteration is not the same.
Projects do evolve and the work emphasis changes as we move through the lifecycle. To make
this clear, we carve the project into phases with lightweight milestones to ensure that we are
focused on the right things at the right time. Such areas of focus include initial visioning, archi-
tectural modeling, risk management, and deployment planning. This differs from mainstream
agile methods, which typically focus on the construction aspects of the lifecycle. Details about
how to perform initiation and release activities, or even how they fit into the overall lifecycle, are
typically vague and left up to you.

Time and again, whenever either one of us worked with a team that had adopted Scrum we
found that they had tailored the Scrum lifecycle into something similar to Figure 1.3, which
shows the lifecycle of a DAD project.! This lifecycle has several critical features:

* It’s a delivery lifecycle. The DAD lifecycle extends the Scrum construction lifecycle to
explicitly show the full delivery lifecycle from the beginning of a project to the release
of the solution into production (or the marketplace).

* There are explicit phases. The DAD lifecycle is organized into three distinct, named
phases, reflecting the agile coordinate-collaborate-conclude (3C) rhythm.

* The delivery lifecycle is shown in context. The DAD lifecycle recognizes that activi-
ties occur to identify and select projects long before their official start. It also recognizes
that the solution produced by a DAD project team must be operated and supported once
it is delivered into production (in some organizations called operations) or in some cases
the marketplace, and that important feedback comes from people using previously
released versions of the solution.

* There are explicit milestones. The milestones are an important governance and risk
reduction strategy inherent in DAD.

The lifecycle of Figure 1.3, which we focus on throughout this book, is what we refer to as
the basic agile version. This is what we believe should be the starting point for teams that are new
to DAD or even new to agile. However, DAD is meant to be tailored to meet the needs of your sit-
uation. As your team gains more experience with DAD you may choose to adopt more and more
lean strategies, and may eventually evolve your lifecycle into something closer to what you see in

1. Granted, in this version we're using the term “iteration” instead of “sprint,” and “work item list” instead of “product
backlog.”

12 Chapter1 Disciplined Agile Delivery in a Nutshell

Figure 1.4. A primary difference of this lean version of the DAD lifecycle is that the phase and
iteration cadence disappears in favor of a “do it when you need to do it” approach, a strategy that
works well only for highly disciplined teams.

Daily
Work Dally Coordination

4--="""" Meeting

Initial
Architectural
Vision

Heration

Iteration review &
retrospective: Demo to

Highest-Priority Viorking determine Release Working _ QOperate and
Identity, prioritize, = T System strategy for next > solution into Sowtion Support solution
and select = lieration iteration, and leam production in production
projects i Initial = Backlog from your experiences
| ‘:;"'Ia‘ Requirements == feration planning session to
- - modeling, —1 lect work ifel nd identify Funding
Initial Vision planning, ang 20 Release == select work lems and ident
and Funding organization Plan S5 work tasks for current teration Feedback Enhancement Requests
=
— and Defect Reports
Work
lems
P e
One or more shor teraions A" Many short terations producing a potentialy consumable solution each iteraion A Onormes A A
1 A A short iterations I
Stakeholder consensus—4 I I Project viability : Sufficient functionality —4 Production ready —4 |
Proven architecture ——4 TTT (severa) TTT Delighted stakeholders —— 4
Figure 1.3 The Disciplined Agile Delivery (DAD) lifecycle
Initial
Architectural
Vision
New
Features
Retrospective
Replenishment
Identify, prioritize, Modeling Session
and select Learnings
PIOIECIS | ial Vision il
and Fundin nitial Initial
9 5 modeling, > > Daily work . Release Ouer:le ?r:;l
planning, and Aequirements A solution into support solution
organization Work items are production in production
pulled when
capacity is available Feedback Strategy
to address them
Dema Coordination
Meeting
New
Features Enhancement Requests
and Defect Reports
[G

'I‘ Continuous stream of development ’? 'I*
| I |
4 Sufficient functionality —4 Production ready — 4

Delighted stakeholders — —

A
I
1
Stakeholder consensus— :
1

Figure 1.4 A lean version of the DAD lifecycle

One of the challenges with describing a process framework is that you need to provide suf-
ficient guidance to help people understand the framework, but if you provide too much guidance

Goal-Driven Delivery Lifecycle 13

you become overly prescriptive. As we’ve helped various organizations improve their software
processes over the years, we’ve come to the belief that the various process protagonists are com-
ing from one extreme or the other. Either there are very detailed processes descriptions (the IBM
Rational Unified Process [RUP] is one such example), or there are very lightweight process
descriptions, with Scrum being a perfect example. The challenge with RUP is that many teams do
not have the skill to tailor it down appropriately, often resulting in extra work being performed.
On the other hand many Scrum teams had the opposite problem with not knowing how to tailor it
up appropriately, resulting in significant effort reinventing or relearning techniques to address the
myriad issues that Scrum doesn’t cover (this becomes apparent in Chapter 3). Either way, a lot of
waste could have been avoided if only there was an option between these two extremes.

To address this challenge the DAD process framework is goals driven, as summarized in
Figure 1.5. There are of course many ways that these goals can be addressed, so simply indicating
the goals is of little value. In Chapters 6 through 19 when we describe each of the phases in turn,
we suggest strategies for addressing the goals and many times discuss several common strategies
for doing so and the trade-offs between them. Our experience is that this goals-driven, suggestive
approach provides just enough guidance for solution delivery teams while being sufficiently flex-
ible so that teams can tailor the process to address the context of the situation in which they find
themselves. The challenge is that it requires significant discipline by agile teams to consider the
issues around each goal and then choose the strategy most appropriate for them. This may not be
the snazzy new strategy that everyone is talking about online, and it may require the team to per-
form some work that they would prefer to avoid given the choice.

Goals for the Inception Phase |Goals for Construction Phase Iterations |Goals for the Transition Phase

- Form initial team - Produce a potentially consumable solution |- Ensure the solution is

- |dentify the vision for the - Address changing stakeholder needs production ready
project - Move closer to deployable release - Ensure the stakeholders are

- Bring stakeholders to - Maintain or improve upon existing levels prepared to receive the solution
agreement around the vision of quality - Deploy the solution into

- Align with enterprise direction |- Prove architecture early production

- Identify initial technical
strategy, initial requirements,
and initial release plan

- Set up the work environment

- Secure funding

- Identify risks

Ongoing Goals

- Fulfill the project mission - Improve team process and environment
- Grow team members’ skills - Leverage existing infrastructure
- Enhance existing infrastructure - Address risk

Figure 1.5 Goals addressed throughout a DAD project

14 Chapter 1 Disciplined Agile Delivery in a Nutshell

Figure 1.5 doesn’t provide a full listing of the goals your team will address. There are sev-
eral personal goals of individuals, such as specific learning goals and the desire for interesting
work, compensation, and public recognition of their work. There are also specific stakeholder
goals, which will be unique to your project.

THE AciLE 3C RHYTHM

Over the years we've noticed a distinct rhythm, or cadence, at different levels of the agile
process. We call this the agile 3C rhythm, for coordinate, collaborate, and conclude. This is
similar conceptually to Deming'’s Plan, Do, Check, Act (PDCA) cycle where coordinate maps
to plan, collaborate maps to do, and conclude maps to check and act. The agile 3C rhythm
occurs at three levels in the DAD process framework:

1. Release. The three phases of the delivery lifecycle—Inception, Construction,
Transition—map directly to coordinate, collaborate, and conclude, respectively.

2. Iteration. DAD construction iterations begin with an iteration planning workshop
(coordinate), doing the implementation work (collaborate), and then wrapping
up the iteration with a demo and retrospective (conclude).

3. Day. A typical day begins with a short coordination meeting, is followed by the
team collaborating to do their work, and concludes with a working build (hope-
fully) at the end of the day.

Let’s overview the DAD phases to better understand the contents of the DAD process
framework.

The Inception Phase

Before jumping into building or buying a solution, it is worthwhile to spend some time identify-
ing the objectives for the project. Traditional methods invest a large amount of effort and time
planning their projects up front. Agile approaches suggest that too much detail up front is not
worthwhile since little is known about what is truly required as well as achievable within the time
and budget constraints. Mainstream agile methods suggest that very little effort be invested in up-
front planning. Their mantra can be loosely interpreted as “let’s just get started and we will deter-
mine where we are going as we go.” To be fair, some agile teams have a short planning iteration
or do some planning before initiating the project. “Sprint 0” is a common misnomer used by
some Scrum teams. Extreme Programming (XP) has the “Planning Game.” In fact, a 2009
Ambysoft survey found that teams take on average 3.9 weeks to initiate their projects. In DAD,
we recognize the need to point the ship in the right direction before going full-speed ahead—typ-
ically between a few days and a few weeks—to initiate the project. Figure 1.6 overviews the
potential activities that occur during Inception, described in greater detail in Chapters 6 through
12. This phase ends when the team has developed a vision for the release that the stakeholders
agree to and has obtained support for the rest of the project (or at least the next stage of it).

Goal-Driven Delivery Lifecycle 15

:- Initiate team : Build team I+ Light-weight ;
* Schedule stakeholders | * Requirements envisioning | milestone
I for envisioning sessions I Architecture envisioning I review |
| I+ Consider feasibility I+ Communicate |
I le Align with enterprise strategy | vision to !
' I+ Release planning (initial) | stakeholders
I I+ Develop shared vision I ‘
: : * Set up environment | :
|

| Coordinate | Collaborate ' Conclude |

-f_l

Up to a few hours Ideally: Up to a few weeks Up to a few hours
Average: Four weeks
Project Worst case: Several months Stakeholder
selected consensus

Figure 1.6 Inception phase overview

The Construction Phase

The Construction phase in DAD is the period of time during which the required functionality is
built. The timeline is split up into a number of time-boxed iterations. These iterations, the poten-
tial activities of which are overviewed in Figure 1.7, should be the same duration for a particular
project and typically do not overlap. Durations of an iteration for a certain project typically vary
from one week to four weeks, with two and four weeks being the most common options. At the
end of each iteration a demonstrable increment of a potentially consumable solution has been
produced and regression tested. At this time we consider the strategy of how to move forward in
the project. We could consider executing an additional iteration of construction, and whether to
deploy the solution to the customer at this time. If we determine that there is sufficient functional-
ity to justify the cost of transition, sometimes referred to as minimally marketable release
(MMR), then our Construction phase ends and we move into the Transition phase. The Construc-
tion phase is covered in greater detail in Chapters 13 through 17.

The Transition Phase

The Transition phase focuses on delivering the system into production (or into the marketplace in
the case of a consumer product). As you can see in Figure 1.8 there is more to transition than
merely copying some files onto a server. The time and effort spent transitioning varies from
project to project. Shrink-wrapped software entails the manufacturing and distribution of soft-
ware and documentation. Internal systems are generally simpler to deploy than external systems.
High visibility systems may require extensive beta testing by small groups before release to the
larger population. The release of a brand new system may entail hardware purchase and setup
while updating an existing system may entail data conversions and extensive coordination with
the user community. Every project is different. From an agile point of view, the Transition phase
ends when the stakeholders are ready and the system is fully deployed, although from a lean point

16 Chapter1 Disciplined Agile Delivery in a Nutshell

of view, the phase ends when your stakeholders have worked with the solution in production and
are delighted by it. The Transition phase is covered in greater detail in Chapters 18 and 19.

| « " icon: “ " leag: |
|, lteration planning | “Visvaize work oetarven dovelopment (Tfop) | * lteration demo |
* Iteration modeling * Dail dinati ti . e * Retrospective
1 | * Daily coordination meeting Acceptance TDD (ATDD) [P |
| | . Refactoring) . * Gontinuous deployment (CD) | " Release |
| |- Developer regression testing * Look-ahead modeling | planning :
Model storming * Parallel independent testing , (update)
| | * Continuous integration (CI) * Continuous documentation | * Determine “go |
| | ° Sustainable pace * Non-solo development | forward” I
| I * Prioritized requirements * Look-ahead planning | strategy |
* Architecture spike
| | * Collective ownership | I
I | * Burndown chart | |
" * Automated metrics
Coordinate | Collaborate I Conclude
» Typical: One to four weeks .
_ Average: Two weeks < ;
Two hours for each week of Worst case: Six weeks One hour per week
the iteration length of iteration length
Iteration Potentially
start consumable
solution
Figure 1.7 Construction iteration overview
| _ [" . I ‘ I !
’ Phase planning I * Transition planning I Production I Actual |
| I * End-of-lifecycle testing and fixing | readiness | usage |
| I * Data and user migration review |
| | * Pilobeta the solution I Deploy I |
I | * Finalize documentation I solution | ‘
| | + Communicate deployment I | |
I | * Prepare support environment I | ‘
I | * Train/educate stakeholders I I |
[
+ Coordinate Collaborate Conclude
- > <€
| Ideally: Nothing Ideally: Nothing Ideally: Less
Typical: One hour per week Average: Four weeks than an hour
Sufficient of collaborate time Worst case: Several months Worst case: Production Delighted
functionality Several months ready stakeholders

Figure 1.8 Transition phase overview

Some agilists will look at the potential activities listed in Figure 1.8 and ask why you
couldn’t do these activities during construction iterations. The quick answer is yes, you should
strive to do as much testing as possible throughout the lifecycle and you should strive to write and
maintain required documentation throughout the lifecycle, and so on. You may even do some
stakeholder training in later construction iterations and are more likely to do so once your solu-
tion has been released into production. The more of these things that you do during the Construc-
tion phase, the shorter the Transition phase will be, but the reality is that many organizations

Enterprise Aware 17

require end-of-lifecycle testing (even if it’s only one last run of your regression test suite), and
there is often a need to tidy up supporting documentation. The November 2010 Ambysoft Agile
State of the Art survey found that the average transition/release phase took 4.6 weeks.

Enterprise Aware

DAD teams work within your organization’s enterprise ecosystem, as do other teams, and explic-
itly try to take advantage of the opportunities presented to them—to coin an environmental cliché
“disciplined agilists act locally and think globally.” This includes working closely with the fol-
lowing: enterprise technical architects and reuse engineers to leverage and enhance” the existing
and “to be” technical infrastructure; enterprise business architects and portfolio managers to fit
into the overall business ecosystem; senior managers who should be governing the various teams
appropriately; operations staff to support your organization’s overall development and operations
(DevOps) efforts; data administrators to access and improve existing data sources; IT develop-
ment support people to understand and follow enterprise IT guidance (such as coding, user inter-
face, security, and data conventions to name a few); and business experts who share their market
insights, sales forecasts, service forecasts, and other important concerns. In other words, DAD
teams should adopt what Mark refers to as a “whole enterprise” mindset.

WHAT Is APPROPRIATE GOVERNANCE?

Effective governance strategies should enhance that which is being governed. An appropri-
ate approach to governing agile delivery projects, and we suspect other types of efforts, is
based on motivating and then enabling people to do what is right for your organization. What
is right of course varies, but this typically includes motivating teams to take advantage of,
and to evolve, existing corporate assets following common guidelines to increase consis-
tency, and working toward a shared vision for your organization. Appropriate governance is
based on trust and collaboration. Appropriate governance strategies should enhance the
ability of DAD teams to deliver business value to their stakeholders in a cost effective and
timely manner.

Unfortunately many existing IT governance strategies are based on a command-and-con-
trol, bureaucratic approach that often proves ineffective in practice. Chapter 20, “Governing
Disciplined Agile Teams,” explores appropriate governance, the impact of traditional gover-
nance strategies, and how to adopt an appropriate governance strategy in greater detail.

With the exception of startup companies, agile delivery teams do not work in a vacuum.
Often existing systems are currently in production, and minimally your solution shouldn’t impact
them. Granted, hopefully your solution will leverage existing functionality and data available in

2. Disciplined agile teams strive to reduce the level of technical debt in your enterprise by adopting the philosophy of
mature campers and hikers around the world: Leave it better than how you found it.

18 Chapter 1 Disciplined Agile Delivery in a Nutshell

production so there will always be at least a minor performance impact without intervention of
some kind. You will often have other teams working in parallel to your team, and you may want to
take advantage of a portion of what they’re doing and vice versa. Your organizations may be work-
ing toward a vision to which your team should contribute. A governance strategy might be in
place, although it may not be obvious to you, which hopefully enhances what your team is doing.

Enterprise awareness is an important aspect of self-discipline because as a professional you
should strive to do what’s right for your organization and not just what’s interesting for you.
Teams developing in isolation may choose to build something from scratch, or use different
development tools, or create different data sources, when perfectly good ones that have been suc-
cessfully installed, tested, configured, and fine-tuned already exist within the organization. We
can and should do better by doing the following:

* Leveraging enterprise assets. There may be many enterprise assets, or at least there
should be, that you can use and evolve. These include common development guidelines,
such as coding standards, data conventions, security guidelines, and user interface stan-
dards. DAD teams strive to work to a common infrastructure; for example, they use the
enterprise-approved technologies and data sources whenever possible, and better yet
they work to the “to be” vision for your infrastructure. But enterprise assets are far more
than standards. If your organization uses a disciplined architecture-centric approach to
building enterprise software, there will be a growing library of service-based compo-
nents to reuse and improve upon for the benefit of all current and future solutions. To do
this DAD teams collaborate with enterprise professionals—including enterprise archi-
tects, enterprise business modelers, data administrators, operations staff, and reuse engi-
neers—throughout the lifecycle and particularly during Inception during envisioning
efforts. Leveraging enterprise assets increases consistency and thereby ease of mainte-
nance, decreases development costs and time, and decreases operational costs.

* Enhancing your organizational ecosystem. The solution being delivered by a DAD
team should minimally fit into the existing organizational ecosystem—the business
processes and systems supporting them—it should better yet enhance that ecosystem.
To do this, the first step is to leverage existing enterprise assets wherever possible as
described earlier. DAD teams work with operations and support staff closely throughout
the lifecycle, particularly the closer you get to releasing into production, to ensure that
they understand the current state and direction of the organizational ecosystem. DAD
teams often are supported by an additional independent test team—see Chapter 15, “A
Typical Day of Construction”—that performs production integration testing (among
other things) to ensure that your solution works within the target production environ-
ment it will face at deployment time.

Risk and Value Driven 19

* Sharing learnings. DAD teams are learning oriented, and one way to learn is to hear
about the experiences of others. The implication is that DAD teams must also be
prepared to share their own learnings with other teams. Within IBM we support agile
discussion forums, informal presentations, training sessions delivered by senior team
members, and internal conferences to name a few strategies.

* Open and honest monitoring. Although agile approaches are based on trust, smart
governance strategies are based on a “trust but verify and then guide” mindset. An
important aspect of appropriate governance is the monitoring of project teams through
various means. One strategy is for anyone interested in the current status of a DAD
project team to attend their daily coordination meeting and listen in, a strategy promoted
by the Scrum community. Although it’s a great strategy we highly recommend, it unfor-
tunately doesn’t scale very well because the senior managers responsible for governance
are often busy people with many efforts to govern, not just your team. In fact Scott
found exactly this in the 2010 How Agile Are You? survey. Another approach, one that
we’ve seen to be incredibly effective, is for DAD teams to use instrumented and inte-
grated tooling, such as Rational Team Concert (RTC), which generates metrics in real
time that can be displayed on project dashboards. You can see an example of such a
dashboard for the Jazz™ team itself at www.jazz.net, a team following an open commer-
cial strategy. Such dashboards are incredibly useful for team members to know what is
going on, let alone senior managers. A third strategy is to follow a risk-driven lifecycle,
discussed in the next section, with explicit milestones that provide consistent and coher-
ent feedback as to the project status to interested parties.

Risk and Value Driven

The DAD process framework adopts what is called a risk/value lifecycle, effectively a light-
weight version of the strategy promoted by the Unified Process (UP). DAD teams strive to
address common project risks, such as coming to stakeholder consensus around the vision and
proving the architecture early in the lifecycle. DAD also includes explicit checks for continued
project viability, whether sufficient functionality has been produced, and whether the solution is
production ready. It is also value driven, a strategy that reduces delivery risk, in that DAD teams
produce potentially consumable solutions on a regular basis.

It has been said “attack the risks before they attack you.” This is a philosophy consistent
with the DAD approach. DAD adopts what is called a risk-value driven lifecycle, an extension of
the value-driven lifecycle common to methods such as Scrum and XP. With a value-driven lifecy-
cle you produce potentially shippable software every iteration or, more accurately from a DAD
perspective, a potentially consumable solution every iteration. The features delivered represent
those in the requirements backlog that are of highest value from the perspective of the stakehold-
ers. With a risk-value driven lifecycle you also consider features related to risk as high priority

20 Chapter 1 Disciplined Agile Delivery in a Nutshell

items, not just high-value features. With this in mind we explicitly address risks common to IT
delivery projects as soon as we possibly can. Value-driven lifecycles address three important
risks—the risk of not delivering at all, the risk of delivering the wrong functionality, and political
risks resulting from lack of visibility into what the team is producing. Addressing these risks is a
great start, but it’s not the full risk mitigation picture.

First and foremost, DAD includes and extends standard strategies of agile development
methods to reduce common IT delivery risks:

* Potentially consumable solutions. DAD teams produce potentially consumable solu-
tions every construction iteration, extending Scrum’s strategy of potentially shippable
software to address usability concerns (the consumability aspect) and the wider issue of
producing solutions and not just software. This reduces delivery risk because the stake-
holders are given the option to have the solution delivered into production when it
makes sense to do so.

* Iteration demos. At the end of each construction iteration the team should demo what
they have built to their key stakeholders. The primary goal is to obtain feedback from the
stakeholders and thereby improve the solution they’re producing, decreasing functional-
ity risk. A secondary goal is to indicate the health of the project by showing their com-
pleted work, thereby decreasing political risk (assuming the team is working
successfully).

* Active stakeholder participation. The basic idea is that not only should stakeholders,
or their representatives (i.e., product owners), provide information and make decisions
in a timely manner, they can also be actively involved in the development effort itself.
For example, stakeholders can often be actively involved in modeling when inclusive
tools such as paper and whiteboards are used. Active stakeholder involvement through
the entire iteration, and not just at demos, helps to reduce both delivery and functionality
risk due to the greater opportunities to provide feedback to the team.

DAD extends current agile strategies for addressing risk on IT delivery projects, but also
adopts explicit, lightweight milestones to further reduce risk. At each of these milestones an
explicit assessment as to the viability of the project is made by key stakeholders and a decision as
to whether the project should proceed is made. These milestones, indicated on the DAD lifecycle
depicted previously in Figure 1.3, are

* Stakeholder consensus. Held at the end of the Inception phase, the goal of this mile-
stone is to ensure that the project stakeholders have come to a reasonable consensus as
to the vision of the release. By coming to this agreement we reduce both functionality
and delivery risk substantially even though little investment has been made to date in the
development of a working solution. Note that the right outcome for the business may in
fact be that stakeholder consensus cannot be reached for a given project vision. Our

Risk and Value Driven 21

experience is that you should actually expect to cancel upwards to10% of your projects
at this milestone, and potentially 25% of projects that find themselves in scaling situa-
tions (and are therefore higher risk).

* Proven architecture. In the early Construction phase iterations we are concerned with
reducing most of the risk and uncertainty related to the project. Risk can be related to
many things, such as requirements uncertainty, team productivity, business risk, and
schedule risk. However, at this point in time much of the risk on an IT delivery project is
typically related to technology, specifically at the architecture level. Although the high-
level architecture models created during the Inception phase are helpful for thinking
through the architecture, the only way to be truly sure that the architecture can support
the requirements is by proving it with working code. This is a vertical slice through the
software and hardware tiers that touches all points of the architecture from end to end. In
the UP this is referred to as “architectural coverage” and in XP as a “steel thread” or
“tracer bullet.” By writing software to prove out the architecture DAD teams greatly
reduce a large source of technical risk and uncertainty by discovering and then address-
ing any deficiencies in their architecture early in the project.

* Continued viability. In Scrum the idea is that at the end of each sprint (iteration) your
stakeholders consider the viability of your project. In theory this is a great idea, but in
practice it rarely seems to happen. The cause of this problem is varied—perhaps the
stakeholders being asked to make this decision have too much political stake in the
project to back out of it unless things get really bad, and perhaps psychologically people
don’t notice that a project gets into trouble in the small periods of time typical of agile
iterations. The implication is that you need to have purposeful milestone reviews where
the viability of the project is explicitly considered. We suggest that for a given release
you want to do this at least twice, so for a six month project you would do it every sec-
ond month, and for longer projects minimally once a quarter.

* Sufficient functionality. The Construction phase milestone is reached when enough
functionality has been completed to justify the expense of transitioning the solution into
production. The solution must meet the acceptance criteria agreed to earlier in the
project, or be close enough that it is likely any critical quality issues will be addressed
during the Transition phase.

* Production ready. At the end of the Transition phase your key stakeholders need to
determine whether the solution should be released into production. At this milestone,
the business stakeholders are satisfied with and accept the solution and the operations
and support staff are satisfied with the relevant procedures and documentation.

* Delighted stakeholders. The solution is running in production and stakeholders have
indicated they are delighted with it.

22

Chapter 1 Disciplined Agile Delivery in a Nutshell

Scalable

The DAD process framework provides a scalable foundation for agile IT and is an important part
of the IBM agility @scale® strategy. This strategy makes it explicit that there is more to scaling
than team size and that there are multiple scaling factors a team may need to address. These scal-
ing factors are

Geographical distribution. A team may be located in a single room, on the same floor
but in different offices or cubes, in the same building, in the same city, or even in differ-
ent cities around the globe.

Team size. Agile teams may range from as small as two people to hundreds and poten-
tially thousands of people.

Regulatory compliance. Some agile teams must conform to industry regulations such
as the Dodd-Frank act, Sarbanes-Oxley, or Food and Drug Administration (FDA)
regulations.

Domain complexity. Some teams apply agile techniques in straightforward situations,
such as building an informational Web site, to more complex situations such as building
an internal business application, and even in life-critical health-care systems.

Technical complexity. Some agile teams build brand-new, “greenfield systems” from
scratch running on a single technology platform with no need to integrate with other
systems. At the other end of the spectrum some agile teams are working with multiple
technologies, evolving and integrating with legacy systems, and evolving and accessing
legacy data sources.

Organizational distribution. Some agile teams are comprised of people who work for
the same group in the same company. Other teams have people from different groups of
the same company. Some teams are made up of people from similar organizations work-
ing together as a consortium. Some team members may be consultants or contractors.
Sometimes some of the work is outsourced to one or more external service provider(s).

Organizational complexity. In some organizations people work to the same vision and
collaborate effectively. Other organizations suffer from politics. Some organizations
have competing visions for how people should work and worse yet have various sub-
groups following and promoting those visions.

Enterprise discipline. Many organizations want their teams to work toward a common

enterprise architecture, take advantage of strategic reuse opportunities, and reflect their
overall portfolio strategy.

3. The term “agility @scale” was first coined by Scott in his IBM developerWorks blog by the same name. The full term

is now IBM agility @scale™.

™

Additional Resources 23

Each team will find itself in a unique situation and will need to tailor its strategy accord-
ingly. For example a team of 7 collocated people in a regulatory environment works differently
than a team of 40 people spread out across several locations in a non-regulatory environment.
Each of the eight scaling factors just presented will potentially motivate tailoring to DAD prac-
tices. For example, although all DAD teams do some sort of initial requirements envisioning dur-
ing the Inception phase, a small team does so differently than a large team, a collocated team uses
different tools (such as whiteboards and paper) than a distributed team (who might use IBM
Rational Requirements Composer in addition), and a team in a life-critical regulatory environ-
ment would invest significantly more effort capturing requirements than a team in a nonregula-
tory environment. Although it’s the same fundamental practice, identifying initial requirements,
the way in which you do so will be tailored to reflect the situation you face.

Concluding Thoughts

The good news is that evidence clearly shows that agile methods deliver superior results
compared to traditional approaches and that the majority of organizations are either using agile
techniques or plan to in the near future. The bad news is that the mainstream agile methods—
including Scrum, Extreme Programming (XP), and Agile Modeling (AM)—each provide only a
part of the overall picture for IT solution delivery. Disciplined Agile Delivery (DAD) is a hybrid
process framework that pulls together common practices and strategies from these methods and
supplements these with others, such as Agile Data and Kanban, to address the full delivery lifecy-
cle. DAD puts people first, recognizing that individuals and the way that they work together are
the primary determinants of success on IT projects. DAD is enterprise aware, motivating teams to
leverage and enhance their existing organizational ecosystem, to follow enterprise development
guidelines, and to work with enterprise administration teams. The DAD lifecycle includes
explicit milestones to reduce project risk and increase external visibility of key issues to support
appropriate governance activities by senior management.

Additional Resources

For more detailed discussions about several of the topics covered in this chapter:

* The Agile Manifesto. The four values of the Agile Manifesto are posted at http://www.
agilemanifesto.org/ and the twelve principles behind it at http://www.agilemanifesto.
org/principles.html. Chapter 2 explores both in greater detail.

* Agile surveys. Throughout the chapter we referenced several surveys. The Agile Jour-
nal Survey is posted at http://www.agilejournal.com/. The results from the Dr. Dobb’s
Journal (DDJ) and Ambysoft surveys are posted at http://www.ambysoft.com/surveys/,
including the original source data, questions as they were asked, as well as slide decks
summarizing Scott Ambler’s analysis.

Chapter 1 Disciplined Agile Delivery in a Nutshell

* People first. The Alistair Cockburn paper, “Characterizing people as non-linear,
first-order components in software development” at http:/falistair.cockburn.us/
Characterizing+people+as+non-linear%2c+first-order+components+in+software+
development argues that people are the primary determinant of success on IT projects.
In “Generalizing Specialists: Improving Your IT Skills™ at http://www.agilemodeling.
com/essays/generalizingSpecialists.htm Scott argues for the need to move away from
building teams of overly specialized people.

* The Agile Scaling Model (ASM). The ASM is described in detail in the IBM white-
paper “The Agile Scaling Model (ASM): Adapting Agile Methods for Complex
Environments” at ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/raw 14204usen/
RAW14204USEN.PDF.

* Lean. For more information about lean software development, Mary and Tom
Poppendieck’s Implementing Lean Software Development: From Concept to Cash
(Addison Wesley, 2007) is the best place to start.

* Hybrid processes. In SDLC 3.0: Beyond a Tacit Understanding of Agile (Fourth
Medium Press, 2010), Mark Kennaley summarizes the history of the software process
movement and argues for the need for hybrid processes that combine the best ideas from
the various process movements over the past few decades.

CHAPTER 2

Introduction to Agile
and Lean

Important agile philosophy: If something is hard, do it more often so that you get good at it and
thereby make it easy.

The first generation of software development methodologies has been described as “waterfall” or
“traditional.” They are plan-driven, serial processes that assume that software development is
comprised of a series of tasks that are easily identified, predictable, and repeatable. History has
shown that this is clearly not the case. Unlike other engineering disciplines, software is a creative
science that requires some degree of invention and carries a material level of risk and uncertainty
on almost every nontrivial project.

The second generation of software development methodologies has been described as
“iterative.” These methods acknowledge that breaking large projects into a series of time-boxed
iterations allows opportunities to demonstrate progress to stakeholders, learn and adapt
processes, and get an early insight into quality, among other benefits. Statistics show that iterative
methods produce marked improvements in success over traditional approaches. However, project
success level on iterative projects is still far from satisfactory.! We continue to miss deadlines,
exceed budgets, and deliver solutions that do not meet the needs of our business stakeholders.
Our productivity levels are poor and our processes and bureaucracies generate a phenomenal
amount of waste in terms of unneeded documentation, meetings, signoffs, delayed feedback
cycles, and handoffs. Additionally, we continue to have quality problems related to undetected
defects and hard to maintain software.

In 2001, 17 thought leaders (self-described “organizational anarchists™) got together in
Snowbird, Utah, to brainstorm about a better way to work. What emerged was the Manifesto for

1. On aroughly annual basis Scott runs industry surveys that explore success rates by paradigm. The survey results are
posted at www.ambysoft.com/surveys/.

25

26 Chapter 2 Introduction to Agile and Lean

Agile Software Development, published at www.agilemanifesto.org, often referred to simply as
the Agile Manifesto. The Agile Manifesto defined four values that in turn are supported by
twelve principles, and this concise publication has had a significant impact on the way IT profes-
sionals think about software development. This collection of ideas formed a rebellion of sorts
against document-driven, heavyweight software development processes.

Some unfortunate consequences have resulted from the popularity of the Agile Manifesto.
First, for a subset of the agile community the Agile Manifesto has become the equivalent of a reli-
gious document, from which one should not deviate. Second, biases captured in the manifesto
toward software projects have narrowed the scope of the discussion within the agile community,
hampering agile adoption in enterprise situations. (More on this bias later.) Third, although there
have been many excellent suggestions over the years for improving the Agile Manifesto, the reli-
gious fervor surrounding it makes it all but impossible to change. Yet, as we argue below, changes
to the Agile Manifesto are needed if we’re to be truly effective at applying agile strategies in
enterprise situations.

Figure 2.1 shows a mind map of the structure of this chapter. We describe each of the topics
in the map in clockwise order, beginning at the top right.

| Reality over rhetoric I { Toward a disciplined Agile Manifesto

Lean principles Introduction to Agile and Lean

Disciplined agile values I

{ Disciplined agile principles]

Figure 2.1 Outline of this chapter

THE Bl IDEAS IN THIS CHAPTER

* The values of, and principles behind, the Agile Manifesto provide an important philo-
sophical foundation for agile.

* We have enhanced the Agile Manifesto to address the experiences of successful
teams over the past 10 years taking a disciplined approach to agile delivery.

+ The principles of lean software development are also an important part of the philo-
sophical foundation for DAD.

* The rhetoric surrounding agile doesn’t always reflect the realities of what people do
on actual projects.

Disciplined Agile Values 27

Toward a Disciplined Agile Manifesto

First of all, we are big fans of the ideas captured in the Agile Manifesto. Over the past decade
we’ve applied the principles with great benefit for our customers and have learned from our expe-
riences and from the experiences of other successful organizations doing so. However, what
we’ve learned has motivated us to suggest enhancements to the manifesto to reflect the enterprise
situations in which we have applied agile and lean strategies. These enhancements reflect the
realities faced by most Disciplined Agile Delivery (DAD) teams.

We believe that the changes we’re suggesting to the Agile Manifesto are straightforward:

I. Where the original manifesto focused on software development, a term that too many
people have understood to mean only software development, we suggest that it should
instead focus on solution delivery.

2. Where the original manifesto focused on customers, a word that for too many people
appears to imply only the business stakeholders, we suggest that it focus on the full
range of stakeholders instead.

3. Where the original manifesto focused on development teams, we suggest that the over-
all organizational ecosystem and its improvement be taken into consideration.

Furthermore, some interesting work has been done within the lean community since the
Agile Manifesto was written, and we believe that it can benefit from these ideas. So let’s explore
what an updated Agile Manifesto might look like.

Disciplined Agile Values

Each of the four value statements of the Agile Manifesto is presented in the format X over Y. The
important thing to understand about the statements is that while you should value the concepts on
the right-hand side you should value the things on the left-hand side even more. A good way to
think about the manifesto is that it defines preferences, not alternatives, encouraging a focus on
certain areas but not eliminating others.

The four updated values—changes are indicated in italics—of the Agile Manifesto are as
follows:

1. Individuals and interactions over processes and tools. Teams of people build soft-
ware systems, and to do that they need to work together effectively. Who do you think
would develop a better system: five skilled software developers with their own tools
working together in a single room or ten low-skilled programmers with a well-defined
process, the most sophisticated tools available, and each with their own best office
money could buy? Our money would be on the smaller team of collocated software
developers. Tools and processes are important; they’re just not as important as working
together effectively.

Chapter 2 Introduction to Agile and Lean

DAD differences: None. DAD whole-heartedly embraces individuals and interactions
over processes and tools.

Working solutions over comprehensive documentation. When you ask someone
whether they would want a 50-page document describing what you intend to build or
the actual solution itself, what do you think they’1l pick? Our guess is that 99 times out
of 100 they’ll choose the working solution. Doesn’t working in such a manner that you
produce a potentially consumable solution quickly and often make more sense? Fur-
thermore, stakeholders will have a significantly easier time understanding any working
solution that you produce rather than complex technical diagrams describing its inter-
nal workings or describing an abstraction of its usage, don’t you think? Documenta-
tion has its place; deliverable documentation such as user manuals and operations
manuals are in fact part of the overall solution, but it is only a small part. Never forget
that the primary goal of IT delivery teams is to create solutions, not documents; other-
wise it would be called documentation development wouldn’t it? Note that the original
Agile Manifesto used the term “software,” not “solutions,” for this value statement.

DAD differences: It’s not enough to just have working software, but instead a con-
sumable (usable) solution that includes software as well as potential changes to the
hardware it runs on, the business process it supports, the documentation that should be
produced with it, and even the organization of the people working with it.

Stakeholder collaboration over contract negotiation. Only your stakeholders can
tell you what they want. Yes, they likely do not have the skills to exactly specify the
solution. Yes, they likely won’t get it right the first time. Yes, they’ll likely change their
minds once they see what your team produces. Yes, there is a wide range of stake-
holders, including end users, their managers, senior IT managers, enterprise architects,
operations staff, support staff, regulatory auditors, and many more (Chapter 4, “Roles,
Rights, and Responsibilities,” goes into greater detail). Working together with your
stakeholders is hard, but that’s the reality of the job. Having a contract with your stake-
holders is important, but a contract isn’t a substitute for effective communication. Suc-
cessful teams work closely with their stakeholders, they invest the effort to discover
what their stakeholders need, and they educate their stakeholders as to the implications
of their decisions along the way. Mainstream methods suggest that the team should be
able to create the solution in isolation, needing only to collaborate with each other and
the “one voice of the customer” known as the product owner. This is seldom the case
on nontrivial projects. The team will need to collaborate with many types of stake-
holders such as those listed previously, not just the customer (representative). Note
that the original Agile Manifesto used the term “customer” instead of “stakeholder”
for this value statement.

Disciplined Agile Principles 29

DAD differences: Explicit recognition that there is a wide range of potential stake-
holders for a solution, not just the business customer, and that you will need to interact
with more than just a stakeholder representative to understand their true needs.

4. Responding to change over following a plan. People change their priorities for a
variety of reasons. As work progresses, stakeholders’ understanding of the problem
domain and of your solution changes, as does the business environment and even the
underlying technology. Change is a reality of software development, a reality that your
delivery process must reflect. There is nothing wrong with having a project plan; in
fact, we would be worried about any project that didn’t have one. However, a project
plan must be malleable and should only be detailed for the near term (a few weeks or
less).

DAD differences: None.

The interesting thing about these value statements is they are something that almost every-
one instantly agrees to, yet rarely adheres to in practice. Senior management always claims that
its employees are the most important aspect of an organization, yet we still see instances in indus-
try where they treat their staff as replaceable assets. An even more damaging situation arises
when management refuses to provide sufficient resources to comply with the processes that they
insist project teams follow. Everyone will readily agree that the creation of a consumable solution
is the fundamental goal of delivery, yet insist on spending months producing documentation
describing what the solution is and how it is going to be built instead of simply rolling up their
sleeves and building it. You get the idea—people say one thing and do another. This has to stop
now. Disciplined agile developers do what they say and say what they do.

Disciplined Agile Principles

To help people to gain a better understanding of what agile software development is all about, the
members of the Agile Alliance refined the philosophies captured in their manifesto into a collec-
tion of twelve principles. We have modified several of these principles—changes to the wording
are shown in italics—and have added three new ones. The fifteen disciplined agile principles are
the following:

1. Our highest priority is to satisfy the stakeholder through early and continuous
delivery of valuable solutions. We must remember that the goal of solution delivery
should be the delivery of an actual consumable solution—not only are we developing
software, but we’re often improving the hardware it runs on, evolving the business
processes around the usage of the software, evolving the operations and support
processes required to run the solution (an aspect of a “DevOps” approach to delivery),
and even changing the organization structure of the people working with the solution.
We need to move away from a strategy where we try to think through all the details up

30

wn

Chapter 2 Introduction to Agile and Lean

front, thereby increasing both project risk and cost, and instead invest a bit of time
thinking through the critical issues but allowing the details to evolve over time as we
learn through incremental creation of the solution.

Welcome changing requirements, even late in the solution delivery lifecycle. Agile
processes harness change for the stakeholders’ competitive advantage. Like it or not,
requirements will change throughout a project. Traditional software teams often adopt
change management processes designed to prevent/reduce scope creep, but when you
think about it these are really change prevention processes, not change management
processes. Disciplined agilists follow an agile change management approach where
functionality is worked on in priority order and requirements evolve to reflect stake-
holders’ improved understanding of what they actually need. Taking into considera-
tion all of the aspects of delivering a solution, we recognize that we have to engage
representatives from all stakeholder groups who are impacted—end users, end user
managers, senior managers, operations, support, enterprise architects, IT governance
personnel, finance, marketing, and more.

Deliver working solutions frequently, from a couple of weeks to a couple of
months, with a preference to the shorter time scale. Frequent delivery of a consum-
able solution provides stakeholders with the opportunity to provide timely feedback,
making the current status of your project transparent while at the same time providing
an opportunity for stakeholders to provide improved direction for the development
team.

Stakeholders and developers must work together daily throughout the project.
Your project is in serious trouble if you don’t have regular access to your project stake-
holders, or at least their representatives. Disciplined agile teams adopt practices such
as on-site customer and active stakeholder participation, and adopt inclusive tools and
techniques that enable stakeholders to be actively involved with solution delivery.

Build projects around motivated individuals. Give them the environment and sup-
port they need, and trust them to get the job done. Too many organizations have a
vision that they can hire hordes of relatively unskilled people, provide them with a
CMMUI/ISO/...-compliant process description, and they will successfully develop
solutions. This doesn’t seem to work all that well in practice. Disciplined agile teams,
on the other hand, realize that you need to build teams from people who are willing to
work together collaboratively and learn from each other. They have the humility to
respect one another and realize that people are a primary success factor in solution
delivery. We should allow them to create an environment in which they will thrive as a
team. This includes allowing them to set up a work environment that fosters collabora-
tion, use of tooling that they find most effective, and the freedom to customize and
optimize their team’s development process.

Disciplined Agile Principles 31

10.

The most efficient and effective method of conveying information to and within a
delivery team is face-to-face conversation. For a delivery team to succeed its mem-
bers must communicate and collaborate effectively. There are many ways that people
can communicate together, and face-to-face communication at a shared drawing envi-
ronment (such as paper or a whiteboard) is often the most effective way to do so. Send-
ing endless emails and creating exhaustive documents are far less effective than the
immediate feedback of conversation. Distributed teams are not an excuse for reverting
back to extensive documentation practices since video chat can be used for face-to-
face conversations.

Quantified business value is the primary measure of progress. The primary measure
of a solution delivery project should be the delivery of a consumable solution that pro-
vides actual value to your stakeholders. This solution should meet the changing needs
of its stakeholders, not some form of “earned value® measure based on the delivery of
documentation or the holding of meetings. Note we have replaced the phrase “Work-
ing software” with “Quantified Business Value.” Demonstrable working solutions are
indeed a key measure of progress but give a false measure of success if they do not pro-
vide the expected business value.

Agile processes promote sustainable delivery. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely. Just like you can’t sprint for an
entire marathon, you can’t successfully produce a consumable solution by forcing
people to work overtime for months at a time. Our experience is that you can only do
high-quality, intellectual work for 5 to 6 hours a day before burning yourself out. The
rest of the day can be filled up with email, meetings, water cooler discussions, and so
on, but people’s ability to do “real work” is limited. Yes, you might be able to do high-
quality work for 12 hours a day, and do so for a few days straight, but after a while you
become exhausted, and all you accomplish is 12 hours of mediocre work a day.

Continuous attention to technical excellence and good design enhances agility. It’s
much easier to understand, maintain, and evolve high-quality source code and data
sources than it is to work with low-quality ones. Therefore, agilists know that they
need to start with high-quality work products, to keep the quality high via refactoring,
and to have a full regression test suite so that they know at all times that their solutions
work. Disciplined agilists also adopt and follow organizational guidelines, such as pro-
gramming standards, data guidelines, security guidelines, and user interface conven-
tions (to name a few).

Simplicity—the art of maximizing the amount of work not done—is essential.
Agile developers focus on high value activities, strive to maximize our stakeholders’
return on investment and either cut out or automate the drudge work. From a lean point
of view, simplicity is essential, so only the most important things are worked on and
delays to them (e.g., by starting on less important work in parallel) are minimized.

32

13.

Chapter 2 Introduction to Agile and Lean

. The best architectures, requirements, and designs emerge from self-organizing

teams. This is one of the most radical principles of the agile movement, one that we
would love to see researched thoroughly by the academic community. The agile model
driven development (AMDD) and test-driven design (TDD) methods are the primary
approaches within the agile community to ensure the emergence of effective architec-
tures, requirements, and designs.

. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly. Software process improvement (SPI) is a
continual effort, and techniques such as retrospectives should be adopted to enable you
to improve your approach to software development.

NEW: Leverage and evolve the assets within your organizational ecosystem, and
collaborate with the people responsible for those assets to do so. Disciplined agile
teams recognize that they are not working in a vacuum. Existing systems, data sources,
frameworks, services, and other assets can and should be used and better yet improved
as part of the delivery process of their new solution. These existing assets will con-
strain your solution architecture; much of the technical plumbing for your solution
may have already been chosen for you. However, your productivity will potentially
improve if you can focus on delivering new functionality and not on reinventing exist-
ing infrastructure.

. NEW: Visualize workflow to help achieve a smooth flow of delivery while keeping

work in progress to a minimum. DAD teams use status or dashboards to monitor
their work in progress and to coordinate their activities, adjusting their approach to
address bottlenecks or underutilization of people. This helps the team to maintain a
consistent and sustainable delivery flow.

. NEW: The organizational ecosystem must evolve to reflect and enhance the

efforts of agile teams, yet be sufficiently flexible to still support non-agile or
hybrid teams. Like it or not, organizations have a range of approaches when it comes
to IT delivery. The overall IT strategy, including your governance strategy, must reflect
this fact for the individual teams to work together effectively. Too many organizations
run into trouble when they try to apply a repeatable, one-size-fits-all strategy to IT
projects.

Stop for a moment and think about these principles. Is this the way that your IT delivery

projects actually work? If not, is this the way that you think they should work? Read the
principles once again. Are they radical and impossible goals as some people would claim, are
they meaningless abstract principles, or are they simply common sense? Our belief is that these
principles form a foundation of common sense upon which you can base successful DAD
projects.

Lean Principles 33

Lean Principles

In Implementing Lean Software Development, Mary and Tom Poppendieck show how the seven
principles of lean manufacturing can be applied to optimize the whole IT value stream. We
believe that these principles help to provide a foundation for effective agile development and also
provide an explanation for why many of the agile techniques work in practice. The lean software
development principles are the following:

* Eliminate waste. Lean thinking advocates regard any activity that does not directly add
value to the finished product as waste. The three biggest sources of waste in software
development are the addition of features that are not required, project churn, and cross-
ing organizational boundaries (particularly between stakeholders and development
teams). It is interesting to note that Walker Royce, chief software economist at IBM
Rational, argues that the primary benefit of modern iterative/agile techniques is the
reduction of scrap and rework late in the lifecycle. To reduce waste it is critical that
DAD teams be allowed to self-organize and operate in a manner that reflects the work
they’re trying to accomplish.

* Build in quality. Your process should incorporate practices that minimize the number
of defects that occur in the first place, but when this isn’t possible you should work in
such a way that you do a bit of work, validate it, fix any issues that you find, and then
iterate. Inspecting after the fact, and queuning up defects to be fixed at some time in the
future, isn’t as effective. Agile practices that build quality into your process include
refactoring, test-driven development (TDD), and non-solo development practices such
as pair programming and modeling with others.

* Create knowledge. Planning is useful, but learning is essential. You want to promote
strategies, such as iterative development, that help teams discover what stakeholders
really want and act on that knowledge. It’s also important for a team to regularly reflect
on what they’re doing and then act to improve their approach.

¢ Defer commitment. It’s not necessary to start software development by defining a com-
plete specification, and in fact we know it to be a questionable strategy at best. You can
support the business effectively through flexible architectures that are change tolerant
and by scheduling irreversible decisions to the last possible moment. Frequently, defer-
ring commitment requires the ability to closely couple end-to-end business scenarios to
capabilities developed in multiple applications by multiple projects. The DAD process
framework adopts strategies from Agile Modeling that enable teams to think through
issues and make commitments at appropriate points in time throughout the delivery
lifecycle.

34 Chapter 2 Introduction to Agile and Lean

* Deliver quickly. Delivering high-quality solutions quickly is an achievable goal. By
limiting the work of a team to its capacity, which is reflected by the team’s velocity (this
is the number of “points” of functionality a team delivers each iteration), you can estab-
lish a reliable and repeatable flow of work. An effective organization doesn’t demand
teams do more than they are capable of, but instead asks them to self-organize and deter-
mine what they can accomplish. Constraining these teams to delivering potentially con-
sumable solutions on a regular basis motivates them to stay focused on continuously
adding value. This strategy is reflected in the Disciplined Agile principle #14 described
earlier.

* Respect people. The Poppendiecks also observe that sustainable advantage is gained
from engaged, thinking people. The DAD “people first” tenet reflects this principle, the
implication being that how you form and then support your delivery teams is critical to
your success. Another implication is that you need a governance strategy that focuses on
motivating and enabling IT teams, not on controlling them.

* Optimize the whole. If you want to be effective at a solution you must look at the bigger
picture. You need to understand the high-level business processes that individual
projects support—processes that often cross multiple systems. You need to manage pro-
grams of interrelated systems so you can deliver a complete solution to your stake-
holders. This is a major difference from mainstream agile approaches, which tend to
have a project focus and as a result will suboptimize around it. DAD avoids this problem
by being enterprise aware and suggesting lean techniques such as value stream map-
ping, a stylized form of process modeling, to identify potential bottlenecks in the overall
process so that they may be addressed. Measurements should address how well you're
delivering business value, a motivation for the rewording of agile principle #7, because
that is the sole reason for your IT department. A lean measurement system is one aspect
of appropriate governance explicitly built into the DAD process framework.

The Kanban method, a lean methodology, describes several principles and techniques for
improving your approach to software development. We want to share two Kanban principles that
we believe are critical to your success. These principles are the following:

* Visualize workflow. Teams use a Kanban board, often a physical whiteboard or cork-
board although electronic boards can also be used, that displays indications, called kan-
bans, of where in the process a piece of work is. The board is typically organized into
columns, each of which represents a stage in the process or a work buffer or queue, and
optionally rows indicating the allocation of capacity to classes of service. Each Kanban
should have sufficient information, such as the name and ID of the work item and due
date (if any), to enable decisions by the team without the direction of a manager. The
goal is to visually communicate enough information to make the process self-organizing

Lean Principles 35

and self-expediting at the team level. The board is directly updated by team members
throughout the day as the work proceeds, and blocking issues are identified during daily
coordination meetings.

* Limit work in progress (WIP). Limiting work in progress reduces average lead time,
which improves the quality of the work produced and thereby increases the overall pro-
ductivity of your team. Reducing lead time also increases your ability to deliver valu-
able functionality frequently, which helps to build trust with your stakeholders. To limit
work in progress you need to understand where your blocking issues are, address them
quickly, and reduce queue and buffer sizes wherever you can. There are some interesting
trade-offs: Although buffers and queues add WIP, and therefore increase lead time, they
also smooth over the workflow and increase the predictability of lead time. The implica-
tion is that because every team is different, you will have different WIP limits that you’ll
need to set and then evolve yourself based on empirical results from experimentation.

Lean thinking is important for DAD teams, and particularly when you find yourself in a
scaling situation, in several ways:

* Lean provides an explanation for why many of the agile practices work. For
example, Agile Modeling’s practices of lightweight, initial requirements envisioning
followed by iteration modeling and just-in-time (JIT) model storming work because
they reflect deferment of commitment regarding what needs to be built until it’s actually
needed, and the practices help eliminate waste because you’re only modeling what
needs to be built.

* Lean offers insight into strategies for improving your software process. For
example, by understanding the source of waste in IT you can begin to identify it and
then eliminate it.

* Lean principles provide a philosophical foundation for scaling agile approaches.
Instead of optimizing software development, lean promotes optimizing the whole. That
means that it’s important to look at delivery of the overall solution to the customer,
rather than suboptimizing by looking only at delivering software.

* Lean provides techniques for identifying waste. Value stream mapping, a technique
common within the lean community, whereby you model a process and then identify
how much time is spent on value-added work versus wait time, helps calculate overall
time efficiency of what you’re doing. Value stream maps are a straightforward way to
illuminate your IT processes, providing insight into where significant problems exist.
Scott has created value stream maps with several customers around the world where
they analyzed their existing processes that some of their more traditional staff believed
worked well only to discover they had efficiency ratings of 20% to 30%. You can’t fix
problems to which you are blind.

36 Chapter 2 Introduction to Agile and Lean

The implications of lean thinking are profound, and many organizations take some time to
fully appreciate them. Think of everything that you do prior to delivering functionality to your
customers as work in progress (WIP). This includes work products such as project plans, require-
ments, tests, defects, and designs. Lean properly adopted means that we vigorously reduce
queues of any sort as they are sources of waste. Rather than push requirements to our developers,
we pull requirements from a small queue of highest priorities and then deliver them quickly to the
customer. Batching up a large inventory of requirements for delivery is not consistent with this
lean approach. Most organizations currently consider it to be a normal practice to take months to
gather a batch of requirements for the next release and then proceed with an elaborate plan to
deliver these fixed requirements. Organizations that continue to use this approach risk becoming
outdated by companies that release multiple versions of their solution in the time that they them-
selves release their first version.

While both agile and lean approaches consider writing detailed requirements up front to be
unacceptable, lean is even more stringent than agile. Agile replaces detailed requirements with a
requirement placeholder such as a user story in the work item list. The work item list represents a
complete list of the backlog of all high level requirements currently known by the product owner
(see Chapter 4 for a detailed discussion of this role). Lean advocates pruning this backlog to a few
items only, and only adding new requirements to the list as items are delivered to the customer.
An analogy might be a queue of pies on display at a bakery. The baker won’t bake a week’s worth
of pies. Rather, as pies are removed from the displayed queue, he bakes more and replenishes the
queue as needed. This is like pulling features from a queue and only then considering what might
be a good replacement for the delivered feature.

You might consider the idea to have only a dozen or so features known at a time in advance
(with no supporting details) a radical approach, and you would be right. Most organizations do
not yet seem ready to adopt this just-in-time approach to eliciting and delivering functionality,
which is adapted from just-in-time supply chains in manufacturing and retailing environments.

Perhaps in a few years, progressive organizations will feel more comfortable with supple-
menting their agile practices with ideas like these from lean thinking.

Reality over Rhetoric

There is a fair bit of rhetoric surrounding agile methods, some of which we subscribe to and some
of which we don’t. This section briefly examines the rhetoric we’ve found to be the most mis-
leading for people trying to be effective at adopting agile techniques. The following list is in the
format X although Y, where X is the rhetoric and ¥ is the strategy promoted by the DAD process
framework. This includes

* Requirements evolve throughout the lifecycle although the initial scope should still
be agreed to at the beginning of the project. You achieve this by formulating an initial
vision for your project, a vision that your stakeholders should help define and then agree

Reality over Rhetoric 37

to. To come to that vision you need to perform some initial requirements envisioning—a
list of high level features is part of this initial vision. Yes, the details are very likely to
evolve over time, but the fundamental goals of your project and scope of your effort
need to be defined early in your project. In a small minority of situations you may not be
able to get the right people together, either physically or virtually, to define the initial
vision—this should be seen as a significant project risk.

* Simple designs are best although the architecture should be thought out early in
the lifecycle. Too many developers interpret the advice to focus on simple designs to
mean that they should build everything from scratch. Yet more often than not the sim-
plest design is to take advantage of what is already there, and the best way to do that is to
work closely with people who understand your existing technical infrastructure. Invest-
ing in a little bit of architectural envisioning early in the lifecycle enables your team to
identify existing enterprise assets that you can leverage, to identify your architectural
options, and to select what appears to be the best option available to you. The details
will still emerge over time, and some decisions will be deferred until a later date when
it’s more appropriate to make them, but the bottom line is that disciplined agilists think
before they act.

* Teams should be self-organizing although they are still constrained (and enhanced)
by your organizational ecosystem. Intellectual workers, including development pro-
fessionals, are most effective when they have a say in what work they do and how they
do it. Development professionals can improve their productivity by following common
conventions, leveraging and building out a common “DevOps” infrastructure, and by
working to common business and technical visions.

* Delivery teams don’t need prescriptive process definitions although they do need
some high-level guidance to help organize their work. Individual development pro-
fessionals are typically highly skilled and highly educated people often with years of
experience, and teams of such people clearly have a wide range of knowledge. As a
result of this knowledge it is incredibly rare for such people to read detailed procedures
for how to do their work. However, they often still require some high-level advice to
help them organize their work effectively. Teams can often benefit from techniques and
patterns used by other teams, and this knowledge sharing should be encouraged.

* Development professionals know what to do although they’re still not process
experts. A decade ago the strategy was to provide detailed process advice to teams, but
recently the pendulum has swung the other way to provide little or no defined process at
all. Over the last few years there’s been a trend within the agile community to advise
teams to define their own process so that it’s tailored to their own unique situation.
While this clearly strokes people’s egos, it’s relatively poor advice for several reasons.
First, although every team is in a unique situation there is significant commonality, so

38 Chapter 2 Introduction to Agile and Lean

having at least a high-level process framework from which to start makes sense. Having
a baseline means that teams have a starting point that has delivered successful results for
many other agile teams and can evolve beyond that baseline to optimize the value they
are able to deliver. Second, although these teams have a wide range of knowledge it
might not be complete, nor consistent, nor is it clear what the trade-offs are of combin-
ing all the really good techniques that people know about. There is significant benefit in
having a flexible process framework such as DAD that shows how everything fits
together.

* Development professionals should validate their own work to the best of their abil-
ity although they likely aren’t testing experts so therefore need help picking up the
appropriate skills. The mantra in the agile community is to test often and test early, and
better yet to test first. As a result agile teams have adopted a “whole team” approach
where the development team does its own testing. This works when there are people on
the team with sufficient testing skills and more importantly can transfer those skills to
others. Minimally you need to embed testers into your delivery teams, but you should
also consider explicit training and mentoring of everyone on the team in testing and
quality skills.

* Disciplined agile teams work in an iterative manner although still follow a lifecycle
that is serial® over time. On any given day people on a DAD project team may be per-
forming analysis, testing, design, programming, deployment, or a myriad of other activ-
ities and iterating back and forth between them. But, as you saw in Chapter 1,
“Disciplined Agile Delivery in a Nutshell,” the DAD lifecycle includes three distinct
phases, which are performed in order. So, DAD is both iterative in the small but serial in
the large.

Concluding Thoughts

Properly executed agile methods definitely deliver business value quicker, more frequently, and
with higher quality and provide greater stakeholder satisfaction than traditional methods. Disci-
plined agile delivery teams produce solutions with features that are needed (not just wanted) with
the highest return on investment in a timely just-in-time fashion. The solution is easy to maintain
due to the greater focus on quality and has fewer defects than solutions produced with traditional
methods. Most importantly, the solution delivered meets the expectations of the stakeholders
since they participated actively in the development process, and what is delivered meets their
conditions of satisfaction defined merely weeks ago.

As we show in subsequent chapters it is unusual to find defects for a feature in iterations
subsequent to the feature being implemented when proper regression testing and better yet

2. We appreciate that “serial” is one of those agile swear words that cause some people a bit of heartburn.

42 Chapter 3 Foundations of Disciplined Agile Delivery

Table 3.1 Sources of Agile Practices Adopted by Disciplined Agile Delivery (continued)
Agile Source Strengths

Extreme Programming (XP) Technical aspects of software development with specific practices
defined for fine-scale feedback, continuous integration, shared
understanding, and programmer welfare

Agile Modeling Lightweight requirements, architecture, and design modeling and
documentation

Agile Data Database architecture, design, and development

Lean software development A collection of principles and strategies that help streamline soft-
ware development and provide advice for scaling agile approaches

IBM Practices Library A collection of practices, ranging from very traditional to very agile,
documented by IBM
OpenUP Full delivery lifecycle planning, modeling, development, testing,

deployment, and governance

Fortunately, many aspects of mainstream agile are consistent across all methods. However,
in many cases they have different terms for these common practices. In many cases DAD uses an
existing term if it makes sense, and in some cases DAD uses a more generic term. The chapter
begins by addressing the terminology issue and then overviews each method and its key practices
in greater detail. The goal is to provide you with an overview of the wealth of agile practices
available to you. Your team may not adopt all of these practices; some are mutually exclusive,
and some would be adopted only in specific situations, but you will want to adopt many of them.
Future chapters refer to the practices described in this chapter and provide advice for when you
may want to apply them.

Figure 3.1 shows a mind map of the structure of this chapter. We describe each of the topics
in the map in clockwise order, beginning at the top right.

THEe Big IpeEas IN THIS CHAPTER

* Mainstream agile methods focus on different portions of the agile delivery lifecycle.
Most have some overlap and some gaps.

* The practices of each agile methodology are complementary and easily combined,
although sometimes the terminology varies.

* Your project team will want to adopt and tailor a subset of the practices described in
this chapter depending on the context you find yourself in.

* DAD combines common agile practices from various sources into a single, end-to-
end delivery process.

