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Chapter 1

Introduction to Techniques

A person performing a task such as searching a screen for a target
executes mental processes such as perceiving, recognizing, selecting a
response and so on. In the early days of experimental psychology Wundt
tried to directly find the duration of a single process, apperception, by
asking an observer to directly insert this process into a task or remove it.
For Wundt, perception denoted “the appearance of a content in
consciousness” after a stimulus is presented, and apperception denoted a
deeper process, “its reception into the state of attention” (Kiilpe, 1895, p.
426). Investigators in Wundt’s lab presented stimuli to observers trained
in introspection. In one condition the observer was instructed to respond
when the stimulus was perceived, and in another condition the observer
was instructed to respond when the stimulus was apperceived. By
subtracting the reaction time for the perception condition from the
reaction time for the apperception condition, the time for apperception
itself could be found. It would have been fortunate if this naive
procedure had worked, but even at the time it was unconvincing. Cattell
(1893) said that “the great variation ... of the measurements bears witness
to the lack of an objective criterion.”

The approach of Donders (1868) to inserting processes was more
objective. The assumption was that processes required for performing a
task are executed one after the other, in series, and the reaction time is
the sum of the times required for the individual processes. The aim was
to insert or remove processes by changing the task to be done. For
example, in one experiment, the stimulus was a vowel sound and the
observer’s response was to repeat the vowel. In the first condition (a),
the simple condition, the observer knew which vowel was to be
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presented and only had to repeat it. In a second condition (b) the
observer did not know which of five vowels was to be presented, and had
to repeat whichever was presented. Condition (b) requires two processes
in addition to those required in condition (a), namely, (1) the stimulus
vowel must be discriminated and (2) the response vowel must be chosen.
Thus, subtracting reaction time for (a) from reaction time for (b) gives
the time required for discrimination plus the time required for choice.

In a third condition (c) the observer did not know which of five
vowels was to be presented, but only had to respond to one, say, i, by
repeating it when it was presented. No choice was required for the
response, although discrimination of the stimulus vowel was required.
Thus, subtracting response time for (b) from response time for (c) gives
the time required for choice. Subtracting response time for (a) from
response time for (c) gives the time required for discrimination.

Donders reported that the mean reaction time for condition (a) was
201 msec, for (b) 284 msec, and for (c) 237 msec. Then the time for
discrimination is ¢ — a = 36 msec, and the time for choice is b — ¢ = 47
msec.

An important feature of this Subtractive Method of Donders is that
the experimenter can determine, based on the observer's responses,
whether the intended task was performed. Nonetheless, the experimenter
does not know how the task was performed. A criticism at the time,
based on introspection, was that changing from one condition to another
changes the nature of the processing, even of processing that precedes
the process allegedly inserted (Kiilpe, 1895, p. 414).

In principle, the results of Donders’ subtractive method can be
checked. To take a simple case, suppose the experimenter can insert and
remove two processes, with durations x and y. By producing three tasks
intended to have reaction times, respectively, of

X+y
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the experimenter can check whether the duration of the third task is
indeed the sum of the durations of the first two tasks. This example is an
over simplification, but with three or more processes, if the experimenter
inserts and deletes processes in the right combinations, the number of
observed response times can be made large enough so that values of
unknown process durations can be solved for in more than one way,
allowing a check. Curiously, this does not seem to have been done at the
time.

Stretching Processes Rather Than Inserting Them

In Sternberg’s (1969) elegant approach, instead of trying to insert a
process, the experimenter tries to change the task slightly, in order to
make an existing process take longer, without changing anything else.
Such a manipulation is called a factor, and is said to selectively influence
the process.

The two major assumptions of the theory are (1) processes are
executed in series, so the reaction time is the sum of the durations of the
individual processes, and (2) each of two experimental factors prolongs a
different process. There are also secondary assumptions about the
measurement of time and so on. These are numerous and so minor we
can safely assume they are met. Then the theory predicts the combined
effect of prolonging two processes will be the sum of the effects of
prolonging them individually.

This prediction can be tested with an Analysis of Variance
(ANOVA). Factors having additive effects on response time are called
additive factors. Two factors that are not additive are said to inferact. It
is common to call processes executed one after the other stages. An
experiment with additive factors supports the theory. If two factors
interact, at least one of the major assumptions is wrong. Sternberg
(1969) proposed that if two factors interact, it is likely that assumption
(2) is violated and the two factors influence the same stage.

The technique of selective influence for a series of stages is called the
Additive Factor Method. With it, the experimenter obtains an immediate
check on the assumptions through the test of interaction in the Analysis
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of Variance. Its applications have been numerous, see, e.g., Sanders
(1990) and Sternberg (1998).

As a well-known example, in experiments of Sternberg (1966, 1967),
the subject was given a set of digits to memorize, the positive set. On
cach trial a digit was presented, and the task was to respond whether the
presented digit is in the positive set or not. The task is now called the
Sternberg memory scanning task, or the memory search task. Two
factors discussed by Sternberg (1969) are (1) a change in stimulus
quality produced by superimposing a checkerboard pattern on the
stimulus digit and (2) a change in the size of the positive set from 1 to 2
to 4 digits. The two factors had additive effects on reaction time
(Sternberg, 1966, 1967). The interpretation is that the first factor
selectively influences one stage, stimulus encoding, and the second
factor selectively influences another stage, memory comparison; further,
the two stages are arranged in series. Other stages in the series were
selectively influenced by other factors, see Sternberg (1969).

When the combined effect of two factors is the sum of their separate
effects, we say the composition rule is addition. In that case, there is a
model of the situation in which two processes are in series, with each
factor selectively influencing a different process.

However, additivity of the factors does not imply that two processes
in series exist in reality, because other process arrangements could yield
an additive composition rule. Tension between what can be observed
and what can be inferred has been part of cognitive psychology since its
inception, because the subject matter, cognition, is only partly
observable. Consider the case of two factors, Factor 4 and Factor ¢,
having additive effects on reaction time. Suppose each factor has two
levels. Let t;; be the reaction time when both factors are at level 1, let 1,
be the reaction time when Factor 4 is at level 1 and Factor @ is at level
2, and so on. The two factors have additive effects if changing the level
of Factor 4 from 1 to 2 has the same effect at each level of Factor .
That is,

Ta1 — T11 = T22 — T12.
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To construct a model with two processes in series, let process A have
duration

a, = .57, when Factor 4 1s at level 1

d, = .51, + 15; — 71 when Factor 4 is at level 2.
Let process B have duration

b, = .57;; when Factor Bis at level 1

b, = .51 + 112 — 71; when Factor @ is at level 2.

Finally, suppose the response time for a level of Factor 4 combined with
a level of Factor 3 is the sum of the corresponding durations of process A
and process B.

It is easy to check that when both factors are at level 1, the reaction
time is 7;;, when Factor 4 is at level 1 and Factor 3 is at level 2, the
reaction time is 7),, and so on. Each factor changes the duration of only
one process. Hence, the data can be represented by two processes in
series, with durations as above, and with each factor selectively
influencing a different process. (See Dzhafarov and Schweickert, 1995,
for a representation in which the reaction times and process durations are
random variables, rather than fixed constants.)

Clearly, it is arbitrary to use .57, in the durations above, so this is not
the only way to represent the data with two processes in series. More
troubling is that a quite different process arrangement can also represent
the data. We have implicitly assumed that a process begins processing at
a starting point and stops processing at a finishing point, and if a second
process follows, its starting point is the finishing point of the first
process. McClelland (1979) and Townsend and Ashby (1983) showed
that factors can have additive effects on reaction time in a different kind
of model, where as soon as a process begins, it starts sending output to its
successor. McClelland’s model is called the cascade model, and Eriksen
and Schultz (1979) call such models continuous flow models. An
analysis of the cascade model by Roberts and Sternberg (1993) showed
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that it failed to account for aspects of their data. But it often happens that
two process arrangements account for the known data equally well. In
the end, the choice between them can only be based on nonempirical
considerations such as simplicity, plausibility and taste.

If two factors do not have additive effects on reaction time, it is
possible that each factor prolongs a different process, so assumption (2)
above is satisfied, but the processes are not in series, so assumption (1) is
violated. Sternberg (1969) pointed out that if processes are in parallel,
the effect of prolonging two of them would be the maximum of the
effects of prolonging them separately.

In some situations, the processes are not all in series and they are not
all in parallel. Evidence comes from dual tasks, in which two stimuli are
presented, and a response is made to each (Telford, 1931). Consider the
case of two stimuli presented at the same time. When results are
compared with the corresponding single tasks in which each reaction is
made separately, the following outcomes are typical (e.g., Schvaneveldt,
1969), although not always found. In the dual task, the subject is not
carrying out all the single task processing for the first response, followed
by all the single task processing for the second response, because the
time required to do the dual task is less than the sum of the times
required to respond to each stimulus separately. On the other hand, in
the dual task the subject is not carrying out all the single task processing
for the first response simultaneously with all the single task processing
for the second response, because the time to do the dual task is longer
than the maximum of the times required to respond to each stimulus
separately. Something more general than pure serial or pure parallel
processing is needed.



Chapter 2

Introduction to Process Schedules

The main reason for selectively influencing processes is to learn about
the arrangement of the processes in a structure containing them. It is
clear that there may not be a single structure used for all tasks. Meyer
and Kieras (1997a, 1997b) emphasize that a system with flexible
strategies will operate in a variety of ways. This chapter introduces two
structures, task networks and trees, which are plausible, tractable and
testable. The former are often used for modeling reaction times, the
latter for response probabilities. Other structures will be introduced in
later chapters.

Gantt Charts and Directed Acyclic Task Networks

Bar charts are a natural way to represent the mental processes required
for a task; they are especially useful when intuition about process
durations is important. Bar charts are also called Gantt charts. Figure
2.1 gives an example for processes in a dual task. Stimulus sl is
presented, followed after a stimulus onset asynchrony (SOA) by stimulus
s2. Responses rl and r2 are made to stimuli s1 and s2 respectively.
There are three sequential processes for each stimulus, a perceptual
process, A, a central process, B, and a motor preparation process, C. (A
motor movement follows motor preparation, but because reaction time is
ordinarily measured at response onset, the motor movement that follows
is ordinarily not illustrated.) In this model, the perceptual processes for
the two stimuli, A1 and A2, are executed concurrently. However, the
response to the second stimulus is delayed because, in accord with
Welford’s (1952, 1967) single channel theory, the central processing, B2,
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for the second stimulus cannot begin until the central processing, Bl, for
the first stimulus is finished. The central processes Bl and B2 are
exccuted sequentially. The first use of this model that we are aware of is
by Davis (1957); it was popularized by Pashler and Johnston (1989). For
more discussion, see Pashler (1994).

A1 B1 C1

SW
SOA A2 B2 C2

s1 s2 r1 r2

Fig. 2.1. Gantt chart for a dual task.

When intuition about relationships among processes is important, a
Gantt chart is often replaced with an equivalent directed acyclic task
network. Figure 2.2 shows a directed acyclic task network corresponding
to the Gantt chart in Figure 2.1. The network is directed because each
arc has a direction, and it is acyclic because no process precedes itself;
that is, one cannot go from the head of an arc to its tail by following a
sequence of arcs, each from tail to head. A wide variety of models are
explicitly or implicitly in the form of Gantt charts or directed acyclic task
networks. These include serial models (Donders, 1868; Sternberg,
1969), parallel models (Townsend, 1972), and the dual task model
already mentioned (Davis, 1957; Pashler & Johnston, 1989). They also
include models of de Jong (1993); Ehrenstein, Schweickert, Choi and
Proctor (1997); Fisher and Glaser (1996); Johnston, McCann and
Remington (1995); Osman and Moore (1993); Pashler (1984); Ruthruff,
Miller, and Lachman (1995); Van Selst and Jolicoeur (1994); and
Welford (1952). The various models make different predictions about
details, but because they all can be represented as Gantt charts (or,
equivalently, as directed acyclic task networks), there are certain general
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predictions they all make. If one of the general predictions fails for an
experiment, there is no possible directed acyclic task network in which
the experimental factors selectively influence different processes.

Cc1 r

r
L ]

B2 c2

Fig. 2.2. Directed acyclic network equivalent to Gantt chart for dual task.

If the processes in a task cannot be represented in an acyclic task
network, they can sometimes be represented in a more general structure,
an OP (Order-of-Processing) diagram. These were introduced by Fisher
and Goldstein (Fisher and Goldstein, 1983; Goldstein and Fisher, 1991,
1992). They were first used to derive moments of response time
distributions for task networks and other models. Later, the availability
of expressions for the moments lead Fisher (1985) to propose the use of
OP diagram representations for many different cognitive networks, such
as queuing networks and Petri nets. These will be discussed in later
chapters. For more background on the use of response times to analyze
mental processes, the reader is referred to the excellent surveys by Luce
(1986) and Townsend and Ashby (1983). For networks of queues, see
Liu (1996), Miller (1993), and Wu and Liu (2008).

Directed Acyclic Task Networks

The directed acyclic task network in Figure 2.2 is made of vertices joined
by arcs. Processing begins with the presentation of a stimulus at the
starting vertex of the network. A mental process is represented by an arc
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directed from one vertex to another. The starting vertex of an arc, at the
tail, represents the starting point of the process. The ending vertex of the
arc, at the head, represents the finishing point of the process. Responses
are made at the ending vertices of the network.

Sometimes an arc does not represent a mental process, but merely
indicates that one process precedes another. For example, a stimulus
onset asynchrony is represented by an arc directed from the onset of one
stimulus, a vertex, to the onset of another stimulus, another vertex. This
SOA arc does not represent a mental process. As another example,
suppose a process stops using a certain resource at some point,
represented by vertex, and at another point, represented by another
vertex, a second process starts to use the resource. An arc from the first
vertex to the second vertex can be used to represent the fact that the
resource must be released by the first process before it can be used by the
second. If the resource is available the instant it is released, the duration
of the arc is 0. For convenience, we will often refer to arcs as processes,
even when there is no processing going on. An arc with duration 0
representing precedence is called a dummy process.

By starting at a vertex and moving along arcs in the direction of their
arrows until another vertex is reached, one traces a path. More precisely,
a path from a vertex u to a vertex z consists of the vertex u, followed by
an arc directed from u to a vertex v, followed by an arc directed from v to
a vertex w, and so on, with the last arc having ending vertex z. A single
vertex is considered a path. To indicate that one process immediately
precedes another, the head of the arc representing the first process is
incident with the tail of the arc representing the second. If one process
precedes another (not necessarily immediately), there is a path from the
head of the arc representing the first process to the tail of the arc
representing the second; the path will go along arcs in the direction
indicated by the arrows.

We say a vertex precedes another vertex if there is a path having at
least one arc from the former vertex to the latter vertex. A process
preceding a process, a vertex preceding a process, and so on are defined
similarly. A path that goes from a vertex u to the same vertex u, and that
has at least one arc, is called a cycle. An acyclic network has no cycles,
so a vertex or process does not precede itself. We assume precedence is
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transitive, that is, if process x precedes process y, and process y precedes
process z, then x precedes z.

Two processes are sequential or ordered if one precedes the other;
otherwise they are concurrent or unordered. We use the term
“concurrent” as in the operations research literature to mean “potentially
concurrent.”” When we say two processes are concurrent, we mean there
is no requirement for one of them to finish before the other can start.
Typically, portions of their execution will overlap in time, but the
processes might not literally be executed simultaneously and it is
possible that one process would be completed before the other one starts.

Some processes begin execution as soon as the first stimulus is
presented. These have their starting vertex at the starting vertex of the
network. We assume every other vertex in the network represents an
AND gate or an OR gate. A process whose starting vertex is at an AND
gate begins execution as soon as all processes immediately preceding it
finish. A process whose starting vertex is an OR gate begins execution
as soon as any process immediately preceding it finishes. Some
processes have their ending vertex at a response. The response is made
as soon as all immediately preceding processes are finished if the
response is at an AND gate, and as soon as any is finished if the response
is at an OR gate.

In the networks considered here, except for the starting vertex, every
vertex is an AND gate or every vertex is an OR gate. In the former case
the network is called an AND network and the latter case an OR network.
AND networks are often called PERT (Program Evaluation and Review
Technique) networks or critical path networks (Kelley & Walker, 1959;
Malcom, Roseboom, Clark & Fazar, 1959; Elmaghraby, 1977). For
short, we will use the term task network to refer to an AND network or
an OR network. Networks having both AND and OR gates, or other
kinds of gates, are possible of course, but beyond the scope of this work.

Sometimes a task might appear to require both AND gates and OR
gates, but closer analysis shows it does not. Consider a visual search
task with a process working on each item on the screen, these processes
being concurrent. Suppose on a target absent trial the response is made
as soon as all of these processes finish, each with the answer “nontarget.”
Then the response “absent” is made at an AND gate. Suppose on a target
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present trial, several targets are present on the screen. Suppose the
response “present” is made as soon as any process finishes with the
answer “target.” The processes working on the nontarget items can be
ignored, because they will not trigger a response. Then the response
“present” is made at an OR gate. At first it might seem that a single
network with both an AND gate and an OR gate is required. However,
the trials can be separated into target present trials and target absent
trials, with a different network for each type. The network for the
“present” response has an OR gate, the network for the “absent” response
has an AND gate. The task is represented by one OR network and one
AND network. More information on representing tasks with networks is
given in a later chapter.

The duration of an arc x is a nonnegative random variable, D(x). On
a particular trial, each arc is assumed to take on a particular value from
its probability distribution. The duration of an arc representing a process
is the duration of the process. The duration of an arc representing an
instantaneous action, such as a resource becoming available, is zero on
every trial.

The duration of a path is the sum of the durations of all the arcs on it.
A path can consist of a single vertex; in that case, the path duration is 0.
Since arc durations are random variables, the duration of a path is a
random variable also. To be specific, suppose a vertex u precedes a
vertex v on a particular path. The durations of the arcs on this path will
vary from trial to trial, so the duration of the path will vary also.

If there is more than one path from u to v, and we are interested in the
longest path from u to v, the path with the longest duration may not be
the same path on each trial. Despite this complication, we can speak of
the duration of the longest path from u to v; it is a random variable whose
value on a particular trial is the sum of the arc duration values on that
path which happens to be the longest for that trial. (On a given trial,
there may be several paths tied as longest or shortest from one vertex to
another; this turns out to not affect our conclusions.)

The time eclapsing between the occurrence of vertex u and the
occurrence of vertex v is denoted D(u,v). If all vertices are AND gates,
D(u,v) is the duration of the longest path between vertices # and v. On a
particular trial, the longest path from the starting vertex of the network,
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0, to the ending vertex, r, is called the critical path; in an AND network,
the duration of the critical path is the response time for the trial. If all
vertices are OR gates, D(u,v) is the duration of the shortest path between
vertices # and v. The shortest path from vertex u to vertex v is called a
geodesic. In an OR network, the duration of the shortest path from the
stimulus to the response on a trial is the response time for the trial.

If more than one response is made, there will be a response time for
each. If one is interested in a particular response, arcs not preceding that
response can be ignored because they have no influence on the time at
which that response is made. If more than one stimulus is presented, the
response time for the subtask associated with a stimulus is the time
elapsing from the onset of the stimulus to the response for that stimulus.
When two stimuli are presented, they are typically presented in the same
order on every trial, separated by a stimulus onset asynchrony. It is
sometimes of interest to know the time at which a particular response is
made using the time at which the first stimulus was presented as the
reference point.

In the next chapter, we turn to Task Network Inference, the
construction of a directed acyclic task network from observed effects of
factors selectively influencing processes in it.

Acyclic Task Networks in Human Factors

A major use of task networks is in Human Factors. A network is often
drawn to represent operations of machines in a workplace and it is
natural to extend the network to include the cognitive operations of
workers interacting with the machines. Large portions of such cognitive
task networks can be constructed by observing workers and reasoning
about necessary information processing, a procedure called cognitive
task analysis. One of the best examples of a successtul application is
Project Ernestine (Gray, John, & Atwood, 1993). In a now well known
story, while new workstations were under development for telephone
operators, analysts observed videotapes of operators using the old
workstations for various tasks. A critical path network was drawn for
each task, using the cognitive task analysis method CPM-GOMS. (CPM
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stands for Cognition, Perception, Movement, and also for Critical Path
Method. GOMS stands for Goals, Operators, Methods and Selection
Rules.) Estimates of the durations of component processes such as
typing and speaking were obtained from the videotapes and from the
human factors literature. For each task, a network was drawn for use of
the old workstation and another network was drawn for use of the new
workstation. With the networks and estimated durations, the time to
complete each task could be predicted for the new workstations.

Specifications indicated that several processes would be faster with
the new workstations. Surprisingly, predicted times to complete tasks
were longer. In the networks, some of the faster processes were not on
the critical path, so their shorter durations did not shorten completion
time. However, several other processes were inserted into the critical
path, thus increasing completion time. When the new workstations were
tested, completion times were indeed longer.

GOMS was developed by Card, Moran and Newell (1993), and CPM-
GOMS by John (1990). Cognitive task analysis is discussed in
Schweickert, Fisher and Proctor, 2003.

Systems Not Easily Represented in Acyclic Task Networks

Systems that cannot be formulated as acyclic AND or OR task networks
usually have one of the following features, (1) the absence of discrete
events, (2) the presence of feedback, or (3) the wrong kind of gates. For
issue (1), if there are no discrete events, then the system can be
represented as a directed acyclic task network only in an unenlightening
way, as a single arc directed from the stimulus onset to the response.
Systems with no discrete events are plausible, but beyond the scope of
this work; a special issue of Acta Psychologica (1995) has relevant
papers. For issue (2) some forms of feedback cycles can casily be
reformulated as part of an acyclic task network. For example, if a
process is simply repeated a random number of times, and no output is
sent to other processes until the last repetition, this entire action can be
represented in a network as a single arc with a random duration.
Feedback causes a problem for our analysis when a process producing
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feedback activates processes following it at the same time as it
reactivates itself or earlier processes. The problem is that processes
cannot then be readily classified as sequential or concurrent.

For issue (3), production systems (e.g., Anderson & Bower, 1974;
Meyer & Kieras, 1997a, b) are important examples of systems which
often have the wrong kinds of gates for our decomposition. A particular
production system might easily be representable as an AND or OR task
network. But in most production systems an action starts when a
compound proposition becomes true. A problem arises when its truth
value depends on an event such as the presence of a goal instead of the
event that a process has finished. For gates not using standard Boolean
logical operations, decomposition with selective influence may be
difficult. An example of a nonBoolean gate is a gate releasing a process
when the total activation into it exceeds a threshold, the activation being
a continuous quantity. The difficulty does not arise in representing the
task as a network of some kind, perhaps as an OP diagram. The
difficulty is that there is little hope of finding factors which selectively
influence processes when a gate blends outputs of several processes. The
hard problem is finding a robust alternative to selective influence. One
of our major points is that data can ecasily lead to rejection of the
assumption that a directed acyclic network exists, in which experimental
factors selectively influence processes. The price for a class that can be
rejected is an inability to model everything.

Processing Trees

Responses can be classified in various ways, as, say, correct or incorrect,
and we turn now from the time required to respond to the type of
response that is made. One of the most widely used structures for
modeling accuracy is a processing tree; uses range from perception (e.g.,
Ashby, Prinzmetal, Ivry & Maddox, 1996; Prinzmetal, Ivry, Beck &
Shimizu, 2002) to social cognition (e.g., Klauer & Wegener, 1998).
Batchelder and Riefer (1999) provide an excellent review.

In a processing tree, when a process finished, it produces an outcome
with a certain probability, and the next process is selected depending on
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which outcome occurred. Some outcomes of processes are responses,
and these fall into various classes. A processing tree is used to predict
the probabilities of the response classes from the probabilities of the
various process outcomes. An important kind of processing tree is a
multinomial processing tree, in which the parameters satisfy a certain
constraint ensuring that parameter estimates have a simple form; for
details see Hu and Batchelder (1994).

A widely used processing tree model was proposed by Jacoby (1991)
in his process dissociation procedure, see Figure 2.3. Two groups of
subjects studied the same two lists of words. After study, they were
presented with test words which were from List 1 or List 2 or neither.
Subjects were asked to say for each word whether it was old or new. For
the inclusion group, a word was considered old if it was in either List 1
or in List 2. For the exclusion group, a word was considered old only if
it was in List 2.

old old new new old new

Inclusicn Exclusion

Fig. 2.3. Processing trees for inclusion and exclusion conditions. Arcs are directed from
top to bottom.

According to the model, when a subject sees a word at test, he
attempts to consciously recollect it. For a word studied on either list, this
recollection is successful with probability R, and yields the information
that the word was studied and which list it was in. For a studied word, if
the word is not recollected, with probability F it is judged familiar.
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Consider a word in List 1. A subject in the inclusion group will say
the word is old if it is recollected, or if it is not recollected, but judged
familiar. That is, for a word in List 1, the subject will say old (correctly)
with probability

Dinclusion = R+ (] - R)F

For a word in List 1, a subject in the exclusion group will not say the
word is old if it is recollected. However, a familiar word is more likely
to be from list 2 (presented recently), than from list 1 (presented earlier),
or new (not presented). So if a word is not recollected, but is judged
familiar, the subject will say the word is old. That is, for a word in List
1, the subject will say old (incorrectly) with probability

Pexclusion = (1 - R)F

The two equations above can be solved for the two unknowns, R and F.

To test the model, experimental factors expected to selectively
influence recollection or familiarity are manipulated. For example,
Jacoby (1991) proposed that a secondary task carried out during testing
would not change the familiarity of items, because familiarity was
established during study. However, the secondary task would harm
recollection, because recollection occurs during testing. Hence, the
secondary task is expected to decrease R leaving F invariant, as was
found. An example of a factor that does not selectively influence a
parameter is the presentation of words as anagrams instead of in the
usual way. This manipulation changes both R and F (Jacoby, 1991;
Jacoby, Toth & Yonelinas, 1993).

In a processing tree, at each vertex a process is executed. (In a task
network, processes were represented by arcs.) The first process to be
executed is represented by a special vertex, the root (at the top in our
illustrations). When a process is executed, it produces one of several
possible outcomes. These outcomes are represented by arcs leaving the
vertex representing the process. (Because the direction of all arcs is from
top to bottom, arrows can be omitted.) Such arcs are called the children
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of the vertex. An arc is directed from its starting vertex to its ending
vertex. Each child of a vertex has a probability associated with it; this is
the probability the corresponding output is produced, given that the
process represented by the vertex is executed. The sum of the
probabilities associated with the children of a vertex is 1. When an
output is produced by a process, the arc corresponding to it is said to be
traversed, the ending vertex of the arc is said to be reached, and the
process represented by this vertex begins execution. This procedure
continues until a vertex with no children is reached. Such a vertex is
called a terminal vertex, and it produces a response. The responses fall
into mutually exclusive classes. Responses made at a particular terminal
vertex fall into one such class.

As in a task network, a path from a vertex u to a vertex z consists of
the vertex u, followed by an arc directed from u to another vertex v,
followed by an arc directed from v to another vertex w, and so on, with
the last arc having ending vertex z. A single vertex is considered a path.
A simple path is a path in which no vertex is repeated. We say a network
is connected if for any two vertices u and z there is a path from u to z, or
a path from z fo u. A tree is network in which for every pair of vertices u
and z, there is exactly one simple path from u to z or exactly one simple
path from z to u, but not both. With our definition, a tree is connected.
Further, no vertex precedes itself on a path, so a tree is a directed acyclic
network. (With a task network, there may be more than one simple path
from one vertex to another, but this cannot happen in a tree.)

The probability of a path is the product of the probabilities associated
with the arcs on the path. The probability of a path consisting of a single
vertex is 1. Given that processing started at the root, the probability a
response is made at a particular terminal vertex is the product of the
probabilities on the path from the root to that terminal vertex (there is
exactly one such path). The probability a response in a particular class is
made is the sum of the probabilities that responses are made at terminal
vertices associated with that class. For short, we will sometimes say free
to refer to a processing tree.

Because multinomial processing trees are so widely used, their
statistical analysis is well developed. See, for example, Batchelder and
Knapp (2004), Batchelder and Riefer (1986, 1990), Chechile and Meyer
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(1976), Hu and Batchelder (1994), and Riefer and Batchelder (1988).
Software is well developed also. See, for example, Dodson, Prinzmetal
and Shimamura (1998); Hu (1999); Rothkegel (1999); and Stahl and
Klauer (2007).

Systems Not Easily Represented As Processing Trees

A tree is a special form of directed acyclic network, so difficulties that
arise for the former also arise for the latter. As with directed acyclic task
networks, the following are common impediments to forming a
processing tree model. (1) Continuous output, rather than discrete
output, is not easily represented in trees (Kinchla, 1994; Slotnick, Klein,
Dodson & Shimamura, 2000). (2) Many forms of feedback, such as
error correcting procedures, cannot readily be represented without cycles.
(3) In atree, the gate for releasing a process is special, because a process
has at most a single predecessor. Although this limitation can sometimes
be overcome by placing copies of a process at several places in a tree, a
factor selectively influencing this copied process may not be well
behaved.

Analyzing both reaction time and accuracy

It is natural to attempt to combine a processing tree with a task network,
to obtain a model for both reaction time and accuracy. A start has been
made for processes in series by Hu (2001) and Schweickert (1985). The
difficulty is not so much in finding a common structure, but in deriving
predictions for factors selectively influencing processes. A simple
example illustrates the problem. Suppose process A requires time D(A)
to produce a correct output, and does so with probability p(A). Over all
trials, the expected value of the contribution of process A to the reaction
time for a correct response is p(A)E[D(A)]. A factor selectively
influencing A, making it more difficult, has two effects. It will decrease
the probability A produces a correct output and it will increase the
duration of A. Such opposing effects are hard to work with.



Chapter 3

Selectively Influencing Processes
In Task Networks

Although Sternberg (1969) focused on serial processes, he noted that the
combined effect of two factors selectively influencing two parallel
processes would be the maximum of their individual effects. Effects of
factors prolonging processes that are not in series have been studied for a
long time (Karlin & Kestenbaum, 1968; Welford, 1952). We know about
these effects in more detail now. When factors selectively influence
processes in an AND or OR task network, systematic patterns occur in
the mean response times. This chapter gives an overview. At the end of
the chapter we discuss how a process can be part of a larger superprocess
or have constituent subprocesses. For analysis of response times in
general, see Van Zandt (2002).

Effects of Selectively Influencing Processes in Task Networ ks

Figure 3.1 illustrates a model for a dual task in which a subject produces
a time interval and, part way through the time interval, searches a screen
for a target (Schweickert, Fortin & Sung, 2007). Each trial had two
components. In the first component, a tone was presented. The subject
encoded its duration, to be used in the second component of the trial as
the duration goal of a time interval the subject would produce.  When
ready for the second component, the subject pressed a button (noted as
event o, in Figure 3.1). The button press blanked the screen and started
the time interval the subject was producing. After an interval (the
stimulus onset asynchrony, SOA), a display was presented (noted as
event 0, in Figure 3.1). The subject was to search through the display

20
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and decide whether a target (a circle) was present among the distractors
(circles with a vertical line stem). The subject was to respond only after
he or she believed both that a time interval had elapsed whose duration
was the goal duration and also that a decision was made as to whether the
target was present in the display or not. The subject made a single
response by pressing a button. One button was pressed to indicate that
the target was present, another button was pressed to indicate that the
target was absent. The model is a simple AND network.

produced interval

SOA visual search

o1 02 r
0 200 500 600

time

Fig. 3.1. Processes in a dual time production and visual search task. If the produced
interval is short, effects of prolonging SOA and visual search will be additive.

Three processes are illustrated, the produced time interval, the SOA,
and the visual search. (The visual search could be divided into
subprocesses, but the details are not relevant here.) The SOA and the
visual search are sequential. The time interval is concurrent with the
SOA and concurrent with the visual search.

For simplicity, consider trials on which the target is absent. On such
trials, the subject must search all the items in the display to correctly
decide the target is absent. Consider effects of manipulating three
factors. We can increase the time required for the search by increasing
the number of items in the display. We can increase the duration of the
SOA directly. Finally, we can increase the duration of the time interval
produced by the subject by giving the subject a longer duration goal.

In the initial condition illustrated in Figure 3.1, the goal duration has
elapsed (i.e., the produced time interval is over) before the search subtask
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is completed. The response is made at time 600. If the SOA is increased
by 100, the response time is increased by the same amount, 100. If the
SOA is returned to its original value and the search is increased by 200,
the response time is increased by 200. Finally, if the SOA is increased
by 100 and the search is increased by 200, the response time is increased
by 300. The combined effect of both factors is the sum of the effects of
each of them separately. The factors are additive and one can conclude
that there exists a task network in which there is a pair of sequential
processes, and each factor selectively influences a different process in
the pair.

produced interval | |

SOA visual search
o1 02
0 200 500 600 800 1000
time

Fig. 3.2. The combined effect of prolonging two concurrent processes will be less than
additive.

Figure 3.2 illustrates the effect of selectively influencing both the
search and the produced interval. The initial condition is the same as
before, with the response made at time 600. As before, when the search
is increased by 200, the time at which the response is made increases by
the same amount, 200. When the produced interval is increased by 500,
the time at which the response is made increases by 400. Finally, when
the search is increased by 200 and the produced interval is increased by
500, the time at which the response is made still increases by 400. The
combined effect of both factors is smaller than the sum of their separate
effects. The two factors interact, and we will see later that from the form
of the interaction one can conclude that the task can be represented with
an AND network in which there are two concurrent processes, and each
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of the two factors, produced-interval-goal and display size, selectively
influences a different one of the two concurrent processes.

It is straightforward to check that the factors of produced-interval-
goal and SOA also interact. The combined effect of both these factors is
smaller than the sum of their separate effects. As we will see, from the
form of the interaction one can conclude that the task can be represented
with an AND network in which the factors of produced-interval-goal and
SOA selectively influence two concurrent processes.

produced interval

SOA visual search

o1 02
0 200 600 700 800
time

Fig. 3.3. If search is prolonged by 200, reaction time increases by 100. If the produced
interval is long, effects of prolonging SOA and visual search will be greater than additive.

With the initial condition in Figure 3.1, SOA and display size have
additive effects on reaction time. But with a different initial condition,
illustrated in Figure 3.3, these factors could interact. In Figure 3.3 the
produced interval is 700, longer than the sum of the SOA and the search
duration. With this initial condition, if the SOA duration is increased by
200, the increase in the reaction time is only 100. Likewise, if the search
duration is increased by 200, the reaction time increases by 100. Finally,
if the SOA duration is increased by 200 and the search duration by 200,
the reaction time increases by 300. The combined effect, 300, of
prolonging the SOA and the search is greater than the sum of their
separate effects (100 + 100). The factors of SOA and display size
interact.

In the task network, each of the three factors selectively influences a
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different process. It is awkward to conclude in this situation that an
interaction between two factors indicates that the two factors influence
the same process, because the interaction comes and goes depending on
the duration of the time interval. However, the interactions are
systematic, as we will see when we examine the details of prolonging
processes.

Slack

The behavior of AND networks and OR networks is similar, so it will
suffice to focus on AND networks. If all the processes were in series,
and an amount u were added to the duration of a process A, then the
response time would increase by u. But suppose the processes are in an
AND network, and the process A is not on the longest path through the
network. The response time is determined by processes which bypass A,
so incrementing the duration of A by a small amount would have little or
no effect on the response time. For example, in the AND network in
Figure 3.1, the response time is the duration of the longest path, 200 +
400 = 600. The duration of the produced interval is only 500. If the
produced interval is increased by 50, the response time would not change
because the longest path did not change. (An analogous situation would
arise in an OR network, if a prolonged process is not on the shortest path
through the network.)

On a particular trial, if a process A is not on the longest path through
an AND network, we say there is slack for the process A on that trial.
Suppose we knew the durations of all the processes on that particular
trial.  And suppose we could rerun the trial with the same process
durations, except that the duration of A is prolonged. Then, the longest
time by which A could be prolonged without delaying the response r is
the slack from A to r, sometimes called the roral slack for A. Tt is
denoted s(A, r). In this notation, the first argument, A, is an arc and the
second argument, r, is a vertex, the vertex at which response onset
occurs. In Figure 3.1, the total slack for the produced interval is 100.

If all the process durations were known, s(A, r) could be determined,
that is, s(A, r) is a function of the process durations. The intuition is that
the slack from process A to r is the difference between (1) the duration of
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the longest path from the start of the network to r and (2) the duration of
the longest path that goes from the start of the network to r and that also
goes through arc A. Let o denote the starting vertex of the network, and
let A" and A" denote the starting and ending vertices of arc A. For two
vertices, say o and A', with the first preceding the second, let d(o, A")
denote the duration of the longest path between them. Let d(A) denote
the duration of process A. Then the total slack for A is

s(A, r)=d(o,r)—d(o,A") —d(A) — d(A", r).

For more detail, see Schweickert (1978). With the formula, one can
see that on a particular trial a process is on the longest path from o to r,
that is, on the critical path, if and only if its total slack is 0.

Two related quantities are also used in the analysis of sequential
processes. Consider an AND network in which process A precedes
process B. The largest amount of time by which A can be prolonged
without delaying the start of B is the slack from A to B. Its value can be
found in the following way. Remove from the network all processes that
do not precede B', the starting vertex of B. (This includes removing
process B itself, but leaving vertex B'.) In the remaining network, B’ can
be considered the terminal vertex. Then, by analogy with finding the
total slack for A, the slack from A to B is

$(A,B)=d(o,B")—d(0,A") —d(A) —d(A", B").
Now, restore the removed processes to the network, and suppose A is
prolonged by an amount just long enough to make B start late, that is, A

is prolonged by exactly s(A, B'). How much of the total slack for A
remains? This quantity is the coupled slack from A to B,

kA, B) =s(A,r)—s(A, B")
=d(o,r)—d(o,B") —d(A",r) +d(A", B"). (3.1

This quantity can be positive, zero, or perhaps contrary to intuition,
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negative. We will see that its value determines the form of the
interaction between factors selectively influencing processes A and B.
Here are examples of coupled slack values in later figures. In Figure 3.4,
s(A, r) = 225 and s(A, B) = 440, so k(A, B) = 225 — 440 = -215. In
Figure 3.7, the slack from B to C is 125, the same as the total slack for B.
Hence, k(B, C) = 0. However, if the duration of C were 100 (instead of
375 as in the figure), the total slack for B would be 175. The slack from
B to C would still be 125. Hence, the coupled slack for B and C would
be k(B, C) = s(B, r) —s(B, C) =175 - 125 = 50.

Typically in an experiment we do not know the durations of
individual processes on a trial, so we do not know the value of the slack
for any process. Values of this unobservable quantity are assumed to
have a probability distribution over all the possible trials. The random
variable taking on these values is denoted S(A, r); it is a function of the
random variables which are the process durations.

Selective influence

There are many ways that changing the level of an experimental factor
might selectively influence the duration of a process. For example, a
factor might make the duration of a process more variable, without
changing its mean. It is reasonable to assume that if changing the level
of a factor makes a process more difficult, it increases the mean duration
of the process. Unfortunately, this simple assumption does not lead to
many useful conclusions, so stronger assumptions are needed
(Townsend, 1990). Different assumptions about selective influence are
needed for different purposes. This chapter is concerned with expected
values of reaction times, so the assumptions need not be strong. For
many conclusions about expected values, dependencies between random
variables can be ignored; for example, the expected value of X + Y is the
sum of the expected values of X and ¥, whether X and ¥ are correlated or
not.

Consider a factor selectively influencing a process A. Let a level of
the factor be denoted i, for i = 1, 2, .... If the brightness of a stimulus is
the experimental factor, then the levels 1 and 2 might indicate bright and
dim, respectively. Higher level numbers indicate greater process
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difficulty (for both AND and OR networks).

When the factor selectively influencing process A is at level 1, in the
initial condition, the duration of A is a random variable A;. (Random
variables will usually be denoted by capital letters, values they take on
by corresponding small letters.) We assume that an increase to level 2 of
the factor adds something to the duration of A (for both AND and OR
networks). That is, there is a nonnegative random variable U such that at
level 2 of the factor the duration of A is A, = A; + U. (The next chapter
supplies more details.) Increasing the level of the factor from 1 to 2 is
said to increment the duration of A. One immediate consequence is that
the expected value of the duration of A at level 2 is greater than or equal
to the expected value at level 1.

Sternberg (1966, 1969) gives an example of how this assumption
would be met in practice. Suppose search through a memory set is serial
and exhaustive, that is, items are processed one by one, and every item is
processed. If the memory set is {a, b} in one condition, and {a, b, ¢} in
another, then increasing the size of the memory set increments the
duration of the memory search.

This assumption is equivalent to another one (see Miiller & Stoyan,
2002; Townsend & Schweickert, 1989). When the factor is at level 1, let
the cumulative distribution function of the duration of process A be F;(f)
= Prob[A, < f]. Likewise, let F,,(f) be the cumulative distribution
function of the duration of process A when the factor is at level 2. Then
increasing the level of the factor from [ to 2 increments the duration of A
if and only if F1(5) > Faa(1).

If at every ¢, the cumulative distribution function for one random
variable is greater than or equal to the cumulative distribution of another,
then the former is said to be stochastically smaller than the latter. (Note
that the larger cumulative distribution function produces the smaller
mean.) When we say a factor selectively influences a process A, one
assumption we make is that when the level of the factor is increased from
i to i', the duration of A at level i is stochastically smaller than the
duration of A at level i".

When we say each of two factors selectively influences a different
process, one assumption we make is that each factor increments the
duration of a different process; that is, the marginal cumulative
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distribution functions of the two process durations are each ordered by
the levels of the factors. What about the joint distribution of the process
durations? An easy assumption to make, but a strong one, is that the
durations of all the processes are mutually stochastically independent at
every combination of factor levels (see, e.g., Schweickert & Giorgini,
1999; Schweickert, Giorgini & Dzhafarov, 2000). Weaker assumptions
about selective influence sufficient for the results presented in this
chapter are given in the next chapter. It formulates in a more precise
way assumptions originally given in Schweickert (1982), Schweickert
and Townsend (1989), Townsend and Schweickert (1989), and
Schweickert and Wang (1993). Recently, general formulations of
selective influence have been developed by Dzhafarov (1996) and Kujala
and Dzhafarov (2008). These will be discussed in a later chapter.

The next chapter deals with the following difficulty. Suppose a
subject is presented with a block of trials with a factor at level 1, and
later is presented with a block of trials with the factor at level 2. It is no
problem to subtract the mean reaction time at level 1 from the mean
reaction time at level 2. But a problem arises if we consider subtracting
individual reaction times at level 1 from individual reaction times at level
2. For a given trial with factor level 2, which trial with factor level 1 do
we subtract from it? We do not have a sample of pairs of reaction times,
with the only difference between one element of a pair and the other
being a change in the duration of process A. In particular, it is
impossible in the experiment to obtain a sample <a;, a,> of an
observation a; of A, paired with an observation a, of A,. It turns out that
the assumption that each factor increments the duration of a different
process can be formulated in such a way as to imply the existence of a
common theoretical probability space for the random process durations
at all levels of the factors, whether or not we can make experimental
observations at all levels simultancously. Details are in the next chapter.

Monotonic Response Time Means

We are now in a position to explain what happens to the response times
when a factor selectively influences a process by incrementing its
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duration. Consider an AND network with response made at r, and
consider a particular trial with the factor selectively influencing process
A at level 2. When a trial occurs, a sample value is taken from the
population distribution of each random variable’s process duration. On
this particular trial, then, every process has a duration which is a
nonnegative number. In particular, the duration of A is d(A) + u, for
some value d(A) of the duration of A when the factor is at level 1 and
some value u of the duration of the increment. The durations of the
remaining processes Cl, ..., Cp are d(C1), ..., d(Cp). The duration values
can be used to calculate the values of quantities not only for the trial at
level 2 of the factor, but for what would have happened if the trial had
been at level 1 of the factor.

On a particular trial, the slack from A to r at level 1 of the factor has a
particular numerical value, s(A, r). If the increment u is less than the
slack from A to r, there is no increase in the response time produced by
changing the factor from level 1 to level 2. If u is greater than the slack
from A to r, a portion of u would be used to overcome the slack from A
to r, and what remains of u would increase the response time. That is,
the increase in the response time would be

0 ifu<s(A,r)
u—s(A,r) ifu>s(A,r).

It is convenient to use the notation

[xXI"=0ifx <0
[x]" =xif x> 0.

With this notation, the increase in response time when A is prolonged
by u, is [u — s(A, r)]*.

The process durations vary from trial to trial, so they are random
variables. In the initial condition, the slack from A to r is a function of
the random variable process durations, so it too is a random variable,
S(A, r). In the expression, we use the capital letter S to denote slack as a
random variable, and a small letter s to denote a numerical value the
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random variable takes on. When the factor selectively influencing A is at
level 2, over all the trials the amount by which A is prolonged beyond its
duration at level 1 is a nonnegative random variable, U. (We are
assuming the factor selectively influencing A increments its duration.)
Over all the trials, the expected value of the response time, E[T], is
increased by a nonnegative amount E([U — S(A, r)]"). The result is that
as the factor levels increase, the mean response times increase
monotonically.

To give more detail, if we let T, and T, be the response times when
the factor influencing A is at levels 1 and 2, respectively, then

E[T\] < E[T\] + E(LU — S(A, n]") = E[T>]. (3.2)

The result is that when the process A is prolonged, its mean response
time either increases or stays the same; i.e., it increases monotonically.
The reasoning is similar for other changes in the factor levels.

A note on SOA in dual tasks

When there are two responses, it is customary to use the time from the
onset of the second stimulus to the onset of its response as the reaction
time to the second stimulus. Then for the model in Figure 2.1 it is not
hard to show that the response time to the second stimulus decreases
monotonically as the SOA increases. This may seem at first to contradict
the statement that increasing a factor level increases the mean response
time. However, with this way of measuring the response time to the
second stimulus, the location of the event used to start the clock (the
onset of stimulus 2) changes as the SOA changes. If instead the clock is
started at the onset of stimulus 1, the mean time at which the response to
the second stimulus is made increases as the SOA increases.

A note on OR networks

In an OR network with response made at r the greatest amount of time by
which a process A may be shortened without decreasing the response
time is called the surplus from A to r, analogous to the slack from A to r.



Selectively Influencing Processes in Task Networks 31

In an OR network, the mean response times decrease monotonically as
process durations decrease (Schweickert & Wang, 1993). This is
equivalent to saying that mean response times increase monotonically as
process durations increase, i.e., as the factor levels increase, the same
result as for AND networks. Because results about shortening can be
rephrased as results about prolonging, we speak of factors prolonging
process durations, for both OR and AND networks.

Monotonic Interaction Contrasts

Consider a factor A selectively influencing a process A and another factor
@B selectively influencing a different process, B. Let the levels of the
factor selectively influencing process A be denoted i = 1, 2,..., and let the
levels of the factor selectively influencing process B be denoted j = 1,
2,.... In both cases, higher numbers indicate greater process durations
(for both AND and OR networks). When the first factor is at level i and
the second at level j, we denote the response time as Tj;, with expected
value E[T;]. For each combination of levels (i, j) we define an
interaction contrast

(AB); = E[T] — EIT\] — E[T:] + E[T1]. (3.3)

When the processes are in series, the factors have additive effects, so
the interaction contrasts are zero for every i and j.

The effects of selectively influencing two processes in a task network
depend on how the two processes are arranged. The major distinction is
between concurrent and sequential pairs of processes. (For a good
introduction, see Logan, 2002.) Sequential pairs are further
distinguished depending on whether they are in a structure called a
Wheatstone bridge. A Wheatstone bridge is illustrated in Figure 3.4.
Processes A and B are on opposite sides of the bridge. One place a
Wheatstone bridge arises is in a dual task, when subjects are instructed to
respond to the first stimulus before responding to the second stimulus.
This commonly given instruction, in effect, inserts a dummy process
between the two responses to establish their order. Figure 3.5 shows the



32  Discovering Cognitive Architecture by Selectively Influencing Mental Processes

task network for the dual task model in Figure 2.2 drawn with the
additional constraint that response 1 precedes response 2. Figure 3.5 can
casily be redrawn as an AND network. It has the form of a Wheatstone
bridge. For analyzing times to make response 2, processes Bl and B2 are
on opposite sides of a Wheatstone bridge (as are other pairs such as Al
and C2). Other examples of models with a Wheatstone bridge are the
double bottleneck models of de Jong (1993), Ehrenstein, Schweickert,
Choi and Proctor (1997) and the stimulus-response compatibility model
of Kornblum, Hasbroucq, & Osman, (1990).
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Fig. 3.4. Processes A and B are on opposite sides of an incomplete Wheatstone bridge.
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Fig. 3.5. Instructing the subject to make response rl before r2 creates a Wheatstone
bridge.
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Fig. 3.6. Processes A and B are on opposite sides of a complete Wheatstone bridge.

Pairs of sequential processes are subdivided into those not on
opposite sides of a Wheatstone bridge, those on opposite sides of an
incomplete Wheatstone bridge (Figure 3.4), and those on opposite sides
of a complete Wheatstone bridge (Figure 3.6).

We will first discuss interactions indicating concurrent processes and
then discuss those indicating sequential processes. Before discussing
interactions, we explain our simulations.

Calculations and simulations

A number of practical questions arise when one considers testing these
predictions in experiments. Are the effects big enough to be found?
Will a reasonable number of trials be sufficient for discerning the
patterns? To investigate the feasibility of finding these patterns in data,
we produced results for hypothetical experiments, by simulation and by
calculation. These examples refute objections that the interactions
predicted by the theory are small and easily mistaken for additivity
(Molenaar & van der Molen, 1986; Vorberg & Schwarz, 1988).

The predictions about means and interaction contrasts are distribution
free. But are the predicted patterns more conspicuous for some
distributions than others? To investigate this possibility, we used two
different distributions for process durations, the exponential and the
truncated normal. The first is highly skewed while the second is nearly
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symmetrical. Little is known about the actual distributions of individual
mental processes, but normal and exponential distributions are plausible
and often assumed. A normal distribution would be expected if the
duration of a mental process were the sum of many components. There
is evidence in some experiments for exponential distributions (or sums of
these), e.g., Ashby and Townsend (1980) and Kohfeld, Santee, and
Wallace (1981), although Sternberg (1964) found evidence against them.
For more discussion of distributions, see Luce (1986).

In examples using exponential process durations, the expected values
of the response times were calculated exactly with the OP diagrams
described in a later chapter (Fisher, 1985; Fisher & Goldstein, 1983;
Goldstein & Fisher, 1991, 1992). For examples using truncated normal
distributions, no algorithm giving exact values of expected values is
known, and the results are based on simulations using MICROSAINT
(Micro Analysis and Design, 1985).

For each type of distribution in our hypothetical experiments, the
process durations were assumed to be mutually independent, that is, the
joint distribution for every subset of processes was assumed to be the
product of the corresponding marginal distributions. Independence is not
a realistic assumption, and the predictions do not require it. Little is
known about the actual correlations between durations of mental
processes, so the choice of correlation values is somewhat arbitrarily.
We chose 0 (independence) because it is familiar and intuitively clear.
Later we will relax this assumption.

Interaction Contrasts: Concurrent Processes

When two factors selectively influence concurrent processes in an AND
network, the following results are predicted: (1) mean response times
will increase monotonically with increases in levels of the factors; (2)
interaction contrasts will all be less than or equal to zero; and (3)
interaction contrasts will decrease monotonically as the levels of either of
the factors is increased. Prediction (3) is a consequence of (2). All
interaction contrasts calculated for higher factor levels with respect to
lower factor levels are predicted to be nonpositive. These predictions are
derived in the next chapter.
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Example 1: Exponential distributions

If two factors prolong different concurrent processes A and B, the pattern
of interactions produced on response times can be casily seen. Consider
the acyclic task network in Figure 3.7. Each process duration was
assumed to have an exponential distribution and the durations were
assumed to be mutually independent. The processes prolonged, A and B,
are concurrent. Means for A and B are given in Table 3.1, means for the
other processes are as indicated in Figure 3.7. Expected values of
response times are in Table 3.1. They were computed from the
associated OP diagrams using the algorithm we describe in a later
chapter. Note that these numbers are not the means of simulated trials;
the algorithm calculates the exact expected values. The interaction
contrasts defined in Equation 3.3 are easily calculated; for example, for
the change from level 1 to level 2 of each factor, (A®),, = 733.340 —
642.778 — 710901 + 616.093 = — 4.246. These values are also in Table
3.1. (Note that T\, = 616.092, Ty =733.340, Ty, =642.778 and T,
=710.901).

The three patterns are immediately apparent. (1) Means are
monotonically increasing from left to right and from top to bottom, (2)
interaction contrasts are all negative, and (3) they too are monotonic.
(All interaction contrasts calculated for higher factor levels with respect
to lower factor levels are predicted to be nonpositive, not only those in
the table of interaction contrasts.)

300
o A
150
c
375
25
B

Fig. 3.7. AND network used in simulations. Mean durations of processes not prolonged
are on arcs; mean durations of processes prolonged are in table headings.
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Table 3.1
Expected Values of Reaction Times
When Factors Influence Concurrent Processes A and B in Figure 3.7
All Process Durations Exponentially Distributed

" M 25 100 150 200 250
300 616.1 642.8 671.1 704.5 741.3
450 710.9 733.3 757.8 787.1 820.0
500 746.5 767.8 791.1 819.2 850.9
550 783.6 803.8 826.1 853.1 883.0
650 861.4 879.8 900.3 925.2 953.6
700 901.8 919.4 939.0 963.1 990.5
750 943.0 959.9 978.8 1002.0 1028.5
Interaction Contrasts
s i 25 100 150 200 250
300 - - - - -
450 - -4.2 -8.1 -12.2 -16.1
500 - -5.4 -10.4 -15.6 -20.8
550 - -6.4 -12.5 -18.8 -25.1
650 - -8.3 -16.1 -24.5 -32.9
700 - 9.1 -17.7 -27.1 -36.4
750 - -9.8 -19.2 -29.4 -39.7

Example 2: Truncated normal distributions

The same patterns were found with each process duration sampled from
a truncated normal distribution, that is a distribution whose density
function is the normal distribution restricted to nonnegative values, and
renormalized so the area under it is one. The standard deviation of each
process duration was set to one fourth of its mean. The value of one-
fourth is representative of values typically found for response times
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themselves (see Luce, 1986, p. 64), so we used it for the individual
process durations. When the means for processes A and B were
increased, the standard deviations were also increased to one fourth of
the new mean to simulate the finding that response time variability
typically increases as the mean increases. The process durations were
mutually independent.

Simulated response times are given in Table 3.2 for the same network
(Figure 3.7) used in the preceding tables. Two thousand simulated trials
were run for each combination of means for A and B using the
MICROSAINT system for personal computers (Micro Analysis and
Design, 1985). The means and standard deviations (prior to truncation)
are the row and column labels in Table 3.2. The interaction contrasts are
in the body of the table.

The same three patterns occur as before, although not without
exception. The means increase monotonically from left to right and from
top to bottom (for the most part), the interaction contrasts are negative
(all), and they too are monotonic (for the most part). As noted, some
small exceptions occur for the response times and interactions in the first
few rows and columns. These arise from sampling the reaction times. It
is clear that increasing the mean for B from 25 to 100 had little effect on
the reaction times, because the increase is not enough to overcome the
total slack for B. These exceptions would not occur in the population
values, although, of course, the effects would still be small.

One of our assumptions in deriving the three patterns is that each
factor selectively influences a process by incrementing its duration. The
reader may wonder if this form of selective influence occurs here, where
a factor increasing the mean duration of a process also increased the
variance. Itiseasy to verify that if two normally distributed random
variables have respective means p; and p, and standard deviations o, and
Gy, their cumulative distribution functions cross at t = (#1602 — p201)/(0, —
01). Here, since each standard deviation equals the same fraction of the
corresponding mean (one-fourth, in this case), the value of ¢ is 0. The
distributions were truncated at 0 to avoid negative durations, and since
the cumulative distribution functions do not cross elsewhere, they are
always ordered in the same way; that is, selective influence takes place
by incrementing the process duration (Townsend & Schweickert, 1989).
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Table 3.2
Means of Simulated Reaction Times
When Factors Influence Concurrent Processes A and B in Figure 3.7
All Process Durations Have Truncated Normal Distributions

Ha 25 100 150 200 250

O3 6.25 25.0 37.5 50.0 62.5
Ly Oa
300 75.0 528 531 547 584 628
450 112.5 556 554 568 596 636
500 125.0 576 577 589 613 648
550 137.5 607 606 616 635 664
650 162.5 679 679 685 696 716
700 175.0 720 720 724 733 750
750 187.5 767 766 767 776 788

Interaction Contrasts

i 25 100 150 200 250

Tp 6.25 25.0 375 50.0 62.5
Ha OA
300 75.0 - - - - -
450 112.5 - -5 -7 -16 -20
500 125.0 - -1 -5 -19 -28
550 137.5 - -3 -10 -29 -43
650 162.5 - -3 -13 -40 -62
700 175.0 - -3 -15 -43 -70
750 187.5 - -4 -19 -47 -78

OR networks

The same patterns are predicted for prolonging concurrent processes in
an OR network, except that the interaction contrasts are nonnegative
(Schweickert & Wang, 1993).
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Statistical considerations

A table whose rows and columns are monotonically increasing is said to
satisty independence. This property is of interest in conjoint
measurement, so it has been studied in some detail. Although it may
seem at first to be a weak condition, independence is quite constraining.
Suppose the cells in a table with r rows and ¢ columns are rank ordered.
A formula for the number of such tables satisfying independence was
derived by Arbuckle and Larimer (1976); they note that the proportion of
tables satisfying independence is quite small, even for a small number of
rows and columns. Of course, one can always permute the rows and
columns until the cell means in the first row are monotonically
increasing, as well as those in the first column. McClelland (1977)
calculates that there are 3.33 x 10° tables with 3 rows and 4 columns in
which the first row and first column are monotonically increasing. Of
these, only 462 have the remaining rows and columns monotonically
increasing. Independence is unlikely to occur by chance.

To reject independence, it is sufficient to reject the hypothesis that
some particular pair of cells is in the proper order. If a given pair was of
interest for some reason before the experiment was done, the hypothesis
could be tested with a simple a priori test of a contrast. If an out of order
pair was located when examining the data, the hypothesis that the
population means for those cells are out of order could be tested with an
aposteriori test (Kirk, 1982); the appropriate type of aposteriori test
would depend on the circumstances.

Interaction contrasts: Sequential processes

When two factors selectively influence two sequential processes, the
interaction contrasts defined in Equation 3.3 display simple patterns
analogous to those for concurrent processes. Once again, the only
difference between AND networks and OR networks is in the signs of
the interaction contrasts, as explained below. Details depend on the way
the sequential processes are arranged in the network, and are best
explained by examples. There are three cases to consider, depending on
whether or not the processes A and B are arranged in a Wheatstone
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bridge. This structure is illustrated in Figures 3.4 and 3.6 in the
incomplete and complete form, respectively. More information about
sequential processes is in the next chapter.

Sequential processes case 1: Not in a Wheatstone bridge

We begin with the simplest case, sequential processes not on opposite
sides of a Wheatstone bridge. In Figure 3.7, processes B and C are an
example.

Example 3: Exponential distributions

Table 3.3 gives mean response times and interaction contrasts for an
AND network when processes B and C were prolonged. All process
durations were assumed to be exponentially distributed and mutually
independent. The mean for process A was 300, the means used for B and
C are in the table.

Three patterns for interaction contrasts are apparent in the table: (1)
mean response times are monotonically increasing across the rows and
down the columns, (2) interaction contrasts are all positive (or zero), and
(3) interaction contrasts are monotonically increasing across the rows
and down the columns. We do not show all possible interactions
contrasts, but all calculated for higher factor levels with respect to lower
factor levels are predicted to be positive or zero, and this implies result
(3). If all the gates were OR gates, corresponding patterns are predicted,
the difference being that the interaction contrasts would all be negative
or zero, so the interaction contrasts would be monotonically decreasing
across the rows and down the columns (Schweickert & Wang, 1993).

Example 4: Truncated normal distributions

The same patterns would be found for any other joint density for the
process durations and prolongations when the factors selectively
influence processes that are sequential, but not on opposite sides of a
Wheatstone bridge. For example, Table 3.4 gives the results of
simulations in which the same two processes as before are prolonged, but
the durations of all processes in the network have mutually independent
truncated normal distributions. The simulations were carried out in
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MICROSAINT (Micro Analysis and Design, 1985). The same three
patterns are evident in the tables. The small negative interaction
contrasts in Table 3.4 are based on sample means, and would not occur
with population means.

Table 3.3
Expected Values of Reaction Times
When Factors Influence Sequential Processes B and C in Figure 3.7
All Process Durations Have Exponential Distributions

e s 25 100 150 200 250
100 376.5 421.3 456.7 495.0 5355
150 397.7 445.0 481.7 521.0 562.3
200 424.7 474.3 512.1 552.3 594.3
250 455.9 507.5 546.3 587.3 629.9
300 527.3 582.2 622.5 664.7 708.4
375 546.5 602.1 642.7 685.2 729.1
400 566.1 622.3 663.3 706.1 750.1
Interaction Contrasts

e s 25 100 150 200 250
100 - - - - -
150 - 2.6 3.8 4.8 5.7
200 - 4.9 7.3 9.2 10.7
250 - 6.9 10.2 12.9 15.1
300 - 10.2 15.1 19.0 222
375 - 10.9 16.1 20.3 23.7

400 - 11.5 17.0 21.5 25.1
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Table 3.4
Means of Simulated Reaction Times
When Factors Influence Sequential Processes B and C in Figure 3.7
All Process Durations Have Truncated Normal Distributions

M 25 100 150 200 250 500 600
Gg 6.25 25.0 37.5 50.0 02.5 125.0 150.0
le Oc¢
100 25.0 314 316 322 339 371 602 702

150 375 337 336 347 372 410 651 752
200 50.0 367 370 383 414 458 702 798
250 625 410 411 427 459 503 747 851
300 75.0 454 456 472 509 552 803 901
375 9338 527 530 548 584 627 873 972
400 100.0 550 553 575 608 652 899 997

Interaction Contrasts

Iy 25 100 150 200 250 500 600
O 6.25 25.0 375 50.0 62.5 125.0 150.0
He  Oc

100 25.0 - - - - - - -
150 37.5 - -3 2 10 16 26 27
200 50.0 - 0 8 21 33 47 42
250 62.5 - -1 9 25 36 50 53
300 75.0 - 0 11 31 41 62 59
375 93.8 - 0 13 32 43 58 58
400 100.0 - 1 17 33 45 61 59

Monotonicity of the response times with the factor levels was
discussed above. Schweickert and Townsend (1989, Theorem 3) showed
that when factors 4 and @ selectively influence sequential processes A
and B not in a Wheatstone bridge, the expected interaction contrast (AB);
is typically positive and always nonnegative. If all the gates were OR
gates, (A®); is typically negative and always nonpositive (Schweickert &
Wang, 1993). It follows that the expected interaction contrasts will be
monotonic with the factor levels.

In the AND network examples just given, two factors prolonging



Selectively Influencing Processes in Task Networks 43

sequential processes produce positive interactions. (By a positive
interaction, we mean the combined effect of both factors is greater than
the sum of their individual effects.) Since factors prolonging concurrent
processes produce negative interactions, it might seem that the sign of
the interaction is diagnostic for concurrent and sequential processes.
However, the situation is more complicated, because factors prolonging
sequential processes in an AND network can also produce negative
interactions. This is possible only when the two sequential processes are
on opposite sides of a Wheatstone bridge (Schweickert 1978), which we
now turn to.

Sequential processes case 2: An incomplete Wheatstone bridge

The task network illustrated in Figure 3.4 has an unusual feature. There
are three paths through the network, and only one of them contains both
A and B. If the arc from A to B has a short duration, then the path
containing them both will hardly ever be the critical path, so it will
appear as if A and B are not on a path together. In other words, although
A and B are in fact sequential, they might appear to be concurrent.

When factors selectively influence sequential processes on opposite
sides of an incomplete Wheatstone bridge (e.g., A and B in Figure 3.4),
the resulting patterns of mean response times can be similar to (or
identical to) the patterns observed when concurrent processes are
influenced. Fortunately, the patterns will be different provided a wide
range of levels of the factors are used, when large increments in process
durations overcome the relevant slacks. Once again, the patterns to be
expected are best illustrated by examples, which we will turn to after
explaining more about Wheatstone bridges.

The only way two factors selectively influencing sequential processes
A and B in a directed acyclic task network can produce a negative
interaction is for the network to contain a subnetwork in the shape of a
Wheatstone bridge, with A and B on opposite sides of the bridge
(Schweickert, 1978). To be more precise about what it means for one
graph to have the same shape as another, we need to explain what is
meant by two graphs to be homeomorphic. Consider a graph consisting
of two arcs in series, one from a vertex u to a vertex v, and another from



