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Preface

Doing Mathematics focuses on the work of mathematics and mathematicians, and
the work of those who use mathematics in the physical sciences and the social
sciences. Still, I have been assured by some lay persons that the book is readable
with suitable skipping.

In this second edition, I have tried to deepen and clarify the text. I have come
to understand more of some of the mathematics and the examples, and so I have
been able to better discern my themes. In the last decade there have been
remarkable advances, and some of them are relevant to the discussion. The Prolog
epitomizes these themes.

In the case of the Ising model, there is a great deal of rigorous mathematical
reformulations that may well be useful for understanding its analogy with other
parts of mathematics."

I shall be describing some ways of doing mathematical work and the subject matter
that is being worked upon and created. I shall argue that the conventions
mathematicians adopt, the subject areas they delimit, what they can prove and
calculate about the (physical) world, the analogies that work for mathematicians,
and the known fools and techniques they borrow from a Library of Mathematics—
all depend on the mathematics, what will work out and what won’t. And the
mathematics, as it is done, is shaped and supported, or not, by convention, subject
matter, calculation, analogy, and tools. These features correspond to chapter 2 on
means and variances as conventional statistics, chapter 3 on the subject of topol-
ogy, chapter 4 on strategy, structure, and tactics in long apparently “messy” proofs,
chapter 5 on analogy in and between two programs for research, those of Robert
Langlands (1936— ), and go back to Richard Dedekind (1831-1916), in number
theory, and of Lars Onsager (1903-1976) in statistical mechanics, and chapter 6 on
some of the tools in that Library and how they are improved when they are loaned
out. The examples I shall use are drawn from applied mathematics (and
mathematical physics) as well as from pure mathematics.

Mathematics is done by mathematicians located in a particular culture (chapter
6), where mathematicians may choose to work on some problems and not others, in
some ways and not others. But what they can in the end prove depends on the
mathematics. And by “depends on” I mean that only some possible statements are
both true and provable given our current imaginations and resources, that only
some definitions are fruitful, and that only some models of the physical world are in
accord with how it behaves, given what we know now.
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In effect, the Library of Mathematics has a wide variety of volumes, but not all
we might wish for, and some of the time borrowed volumes are defaced in
inventive ways and become even more useful. We shall notice that some of the
time, what the mathematicians need is just what the physicist have been doing in
their everyday work (albeit in a not so rigorous or general fashion). Or, what the
physicists need has been developed on its own by the mathematicians and is
available in the Library. Mathematicians also borrow from the Library, and so
fields of mathematics deeply influence other fields. For example, curves
representing algebraic expressions are then understood using deep algebraic
methods (algebraic geometry).

Along the way, I am interested in saying something about what is really going
on in the mathematics I describe. (And in some places, I have been rather more
tentative and less successful, to be sure.) In saying what we might mean by “what is
really going on,” I shall argue that what is really going on is really going on only
when it works in a proof or derivation and, ideally, we can show in detail just how
and why it does the work. And “when it works” is itself a judgment; while,
“showing in detail just how” is an interpretation of what is going on. Usually, we
discover what is really going on from multiple perspectives on the same subject
matter, different roads to exposition and proof, so that what at first seems
miraculous and amazing (and it really is) is eventually shown to be manifest from
the right points of view, We have “an identity in a manifold presentation of
profiles,” to use the term of art from philosophy.

Moreover, in this sort of work there is an intimate interaction of ideas and
calculation, of insight and computation, of the conceptual and the algorithmic.
Perhaps “proofs should be driven not by calculation but solely by ideas,” as Hilbert
averred in what he called Riemann’s principle.2 But, in fact, mathematical work is
an interplay of both. So a combination of ingenuity, mathematical maturity, and a
willingness to calculate and invent along the way is seen in Charles Fefferman’s
work, in the paper by C. N. Yang we shall discuss, in a series of papers by T. T.
Wu and collaborators, and in Rodney Baxter’s various exact solutions of lattice
models in statistical mechanics. Moreover, mathematical rigor is in the end about
ideas and the world; it is philosophical in that rigor often reveals aspects and
counterexamples and cases we would not have otherwise been aware of. Rigor also
allows mathematicians to be sure of their work, since it is error displaying, as Frank
Quinn has argued.3 And in order to implement ideas, one must calculate, theorize,
and prove.

As for rigor and mathematical niceties, one often encounters comments such
as,
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The mathematical calculations that lead to exact results for quantities like
the spontaneous magnetization have a complexity to them that many
physicists writing on the subject feel obscures the essential physics.”

yet some of the essential physics is revealed by that complexity. But we also find,

“The two-dimensional Ising model is a Free Fermion.” Remarks to this
effect are commonplace in the physics literature, although for
mathematicians it sounds like a cross species identification.”

and

The two-dimensional Ising model is nothing but the theory of elliptic
6
curves.

There are in fact many such indentifications and “nothing but”s, and it is in their
variety that tells us more of what is going on.

The Topical of Table of Contents (next page) indicates where various particular
examples appear in the text. It also indicates the main theme of each chapter, and a
leitmotif or story or fairy tale that I use to motivate and organize my account. The
reader is welcome to skip the fairy tale. My purpose in each case is to express
poignantly the lesson of the chapter.

As for the leitmotifs or stories, some are perhaps part of the everyday
discourse of mathematicians when they describe the work they do, often under the
rubric of “the nature and purpose of mathematical proof.” Sometimes, the mathe-
matician is said to be climbing mountains, or exploring and discerning peaks in the
distance that might be worthy of ascent. Or, perhaps the mathematician is an
archaeologist. Having found some putative mathematical fact, the mathematician is
trying to connect it with mathematics that is known already in the hopes of greater
understanding.” Perhaps the mathematician tries to explore different aspects of
some mathematical object, finding out what is crucial about it, getting at the facts
that allow for its variety of aspects and appearances, in effect a phenomenological
endeavor. In any case, here I have tried to describe rather more concretely some of
mathematicians’ work, without claiming anything generic about the nature of
mathematics or mathematicians’ work itself.

Again, my goal is to provide a description of some of the work of mathematics, a

description that a mathematician would find recognizable, and which takes on some
reasonably substantial mathematics. Yet I hope it is a description that lay readers
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FIGURE P.2: TOPICAL TABLE OF CONTENTS
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Modular Functions, or the Central Limit Theorem.

might find familiar enough, as well, especially in terms of generic notions such as
convention, subject matter, strategy and structure, and analogy. As a consequence
of addressing these very different sorts of readers, the level of technical detail
provided and the assumptions I make about what the reader knows already vary
more than is usual. I hope that the simplifying images or the technical detail will
not put off readers at each end of the spectrum.

I have been generous in repeating some details of several of the examples, at
the various places where an example is employed. Each chapter may be read
independently; and, sometimes, sections of chapters, of differing degrees of
technical difficulty, may be read independently. It is noteworthy that some of the
work I describe is better known by reputation than by having been read and
assimilated, either because it is long and technical and hard to understand, or
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because it is deemed to be part of “what everybody knows,” so few now feel
compelled to take a close look at it.

Notionally, and somewhat technically, one recurrent and perhaps unifying
substantive object is the central limit theorem of statistics: a sum of “nice” random
variables ends up looking like a Gaussian or bell-shaped curve whose variance is
the sum of the components” variances. The central limit theorem provides a model
of scaling, the VN growth of the Gaussian distribution; it is the large-N or large time
(that is, asymptotic) story of the random walk on a grid or lattice; it turns out to be
the foundation for a description of an ideal gas (the Maxwell-Boltzmann law of
molecular velocities); and it provides a description of diffusion or heat flow, and so
is governed by the heat equation (the laplacian or, in imaginary time, the
Schrodinger equation), one of the partial differential equations of mathematical
physics.”

If the Gaussian and the central limit theorem is the archetypal account of
independent random variables, it would appear that matrices whose elements are
random numbers or variables, and probability distributions of their basic
symmetries (their eigenvalues), those distributions also determined by distant
relations of the trigonometric functions, the Painlevé transcendents, are the
archetype for measures of the connection between them (that is, correlation
functions) and the extreme statistics (such as the maximum) of strongly dependent
random variables.” These distributions appear as the natural asymptotic limit of
correlation functions of nuclear energy levels or of zeros of zeta- and L-functions
(in each case the separation between adjacent levels or zeros), in lengths of longest
increasing sequences in random permutations, and in correlations of spins within a
crystal lattice.

All of these themes will recurrently appear, as connected to each other, in our
discussions.

Another unifying theme is set by the question, “Can you hear the shape of a
drum?” That is, can you connect the sound spectrum of an object with its geometry,
namely, its zeros with its symmetries?'’ (More concretely, can you connect the
trace of a matrix with the determinant (a volume element) of another: the sum of
the eigenvalues of one matrix with the product of the eigenvalues of another.) How
is the local connected to the global, why is there regularity in both frequency and in
scale size? Again, the connections will be multifold and wide-ranging.

And recurrently, we shall see that phenomena of geometry or topology or the
calculus are mirrored in algebra, and so the alebraicization of much of
mathematics, along the way transforming algebra itself.

More generally, there are why and how questions: Why is there regularity (in
the combinatorial numbers, for example), seen as scaling and in fourier coefficients
of nice functions? Why group representations, those matrices? What are the
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symmetries that underlie the relationship of counting to scaling? Why do we have
asymptotics and these asymptotic forms?"'

How does the algebra do the combinatorics (the motivation of Kac and Ward’s
famous paper)? And how does the algebra of counting lead to scaling or
automorphy? More generally, how and why are objects that package combinatorial
information exhibit nice scaling behavior. (And to show how does not really
answer the why question.)

Descartes begins his Rules for the Direction of the Mind (1628),

Whenever people notice some similarity between two things, they are in
the habit of ascribing to the one what they find true of the other, even
when the two are not in that respect similar. Thus they wrongly compare
the sciences, which consist wholly in knowledge acquired by the mind,
with the arts, which require some bodily aptitude and practice.'”

Descartes is warning against what he takes to be incorrect analogy, and he is
advocating a “universal wisdom,” which allows the mind to form “true and sound
judgments about whatever comes before it.” I shall be arguing that whatever we
might understand about universal wisdom, in actual practice our work is particular
and concrete, that the temptation to analogy and to comparing the sciences and the
arts is just the way we do our work.

After the introduction, the chapters might be read out of order. 1 have tried to
make them self-contained for the most part. For those who prefer to start with the
index, notes, and bibliography, I have tried to make them lead to the main points of
the book.

As for studies of science, my analysis has been driven by the particular
examples I am using, rather than by the demands of theory, sociology, philosophy,
or historiography." I imagine the analyses may prove useful for social and philo-
sophical studies of science and mathematics. But other than my claims about
convention, subject, calculation, and analogy, I have not tried to do such studies.
Chapter 6, about the city, the body, and God, goes a bit further, but each of these
topics demands a separate monograph, at least, if the chapter’s suggestions were to
be thoroughly worked out.

Rather than employing mathematics or physics to instantiate conventional
philosophic (or sociological) problems, the cases we discuss suggest another set of
problems: How are mathematics and physics made useful for each other? What is
it about the physicist’s world that makes it amenable to mathematical
technologies, and how is that world so adjusted? What does it mean to have a
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precise mathematical description or definition of a physical phenomenon? How
and why do the details in a mathematical analysis reveal physics that is otherwise
not so appreciated? How is having many different solutions or proofs of the
same problem useful and revealing? How do ideas and calculation support each
other? How is mathematics’ dynamic character fed by both applications and
internal developments? How do ugly first proofs or derivations have an inner
beauty? Just how does analogy actually work in these areas?

My particular choice of mathematics reflects some ongoing interests:
elementary statistics (and what is not learned by students); statistical mechanics; the
proof of Fermat’s theorem by Ribet, Serre, Frey, and Wiles and Taylor in the
1990s, with the Langlands Program in the background; and, the recurrent
appearance of scaling (or automorphy and renormalization), elliptic functions, and
elliptic curves in many of these subjects. Some of this is mathematics in the service
of physics. Although I cannot be sure, I doubt whether these particular choices
affect my descriptions of how mathematicians do their work."*

As for technical knowledge of mathematics: Again, I have tried to write so that
the professional scientist will find what I say to be correct mathematically and of
practical interest. Yet the general reader or the philosopher should be able to follow
the argument, if not always in detail then in its general flow. To that end, I have
employed a number of signals:

Technically, 1 have sometimes flagged the more technical material by the
device I used to begin this sentence. (In other cases, I have used brackets or
parentheses to mark off technical material.)

***f three stars precede a paragraph, I have there provided a summary of
what has gone before or a preview of a larger segment of the argument.

As for notation, of course the notation is consistent within any single example.
But I have reused letters and symbols, with new meanings in different examples.
The index points to the definitions of the letters and symbols.
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Prolog

It will be useful to preview our recurrent themes and examples: just what is really
going on in the mathematics; how do ideas and calculation interact; how do the
subjects of mathematics change as we learn more; ugly proofs have an inner
beauty; analogy is a destiny we embrace; and, rigor and details are substantively
informative. Substantively: we can hear the shape of a drum since sound spectrum
and geometry are related; periodicity and self-similarity appear to accompany
counting-up; local facts and global characteristics are systematically connected;
and, you create mathematical objects so that those objects add up. In a bit greater
detail:

1.  When we ask what is really going on in the mathematics, or when we ask
what is behind the various proofs of a theorem (or the various solutions of
the Ising model), we are seeking what the phenomenological philosophers
call an identity in a manifold presentation of profiles. Just what is the
source of all the various seeming tricks and methods that make them work
in these contexts? Put differently, how can the objects we are studying
allow for such a variety of presentations. Most of the time, we have partial
answers, and so fail to discern that identity as fully as we might hope.'

2. Ideas and calculation play against each other, for ideas without
calculation are at best informed speculation, and calculation without ideas
may or may not get anywhere or make sense. Moreover, devices and
tricks employed along the way convey meaning and information, even if
they appear jury-rigged or convenient. Again, what is really going on?

Moreover, we might think of mathematicians as master machinists, using
esoteric devices to make machinery that is sometimes adopted by
engineers (physicists, for example) to fabricate what they want. The
machinists are to some extent autonomous, tinkering and inventing, to
some extent dependent on market demand.

3. Fields of mathematics are dynamic, changed by what we learn and can

prove, what notions we invent or discover that turn out to be fruitful, and
what happens in other fields of mathematics or physics (or computer

XX1



PROLOG

science,...). Ideas and visions may transform a field, if they work out.
And we may forget useful mathematics and examples along the way.
Notions from one field may find use and meaning in another area, and
most notions are present in more than one area or complex.

Ugly proofs have an inner beauty, revealed after subsequent proofs show
us more of what is going on (in those proofs, and more generally). And
often, initial proofs are ugly.”

Analogy is destiny, but that destiny and just what is analogized to what
depend on what we do with the analogy. Analogy may be to other
mathematics, to physics, or to everyday life.

Details and fine points matter. Rigor—just what demands those details
and fine points—allows us to learn more of what is going on, and also to
reveal stuff we had not noticed. The exceptional case we have to work
around may well be quite revealing. In effect, we are philosophical
analysts, seeking meaning through differential comparison of cases.

As for substantive themes:

A.

Often, we can hear the shape of a drum.?

So an object may be known by its audible sound (and so its
frequency components) and/or by its everyday appearance. Spectrum and
geometry, equation and curve, particle and field, the discrete and the
smooth, algebraic object and topological space,...are intimately
connected, albeit the connection may be of a different sort for each pair.
So, an algebraic construction can stand in place for a topological or other
sort of space; and we can often use a geometrical object or space to stand
in for what appear to be collections of numbers or equations or an
algebraic object

Periodic Regularity and Self-Similarity or Scaling Symmetry would seem
to accompany various efforts at counting and enumeration.

Brownian motion—a sum of random moves—Ilooks the same at a
very wide range of scales. Partition functions (or L-functions) that
package information (say, about the number of solutions to an equation,
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modulo a prime, p), or their close relatives, exhibit a scaling symmetry
(self-similarity, “automorphy”). Think of the central limit theorem and
Gaussians growing as VN. The periodicity reflects a regularity in the
packaged numbers, and we want to understand the source of that
regularity.

C. Often, there is a connection between local facts and global
characteristics.

There is a connection between locally-seen regularities (as in the
number of mod p solutions to equations) and harmonic analysis (that is, a
nice transform of something).

We may discover obstructions to those connections, and those
obstructions are deeply informative. What we often have is a hierarchy, at
each level fully adequate—as in the Standard Model of particle physics
and its effective field theories.

D. We are looking for individuals that add up, one way or the other.
Usually they add up as in arithmetic, or linearly, as in a vector space.
What are the right parts, the right variables, the right degrees of freedom?
Complex interactions should be the sum of two-body interactions,
invariant to the order of adding them up—again, as in arithmetic. And that
addition would seem to lead to canonical asymptotic forms, such as the
Gaussian.

A and B say that the sum of the spectrum is related to a volume (“Weyl
asymptotics”). B says that partition functions that package combinatorial
information have asymptotic forms that are self-similar. C says that partition
functions, as global objects, are something like Fourier transforms of properties of
local objects. And D is about the canonical form of those partition functions.*

I shall be describing how mathematics and mathematicians work, rather than
theorizing or philosophizing—although these descriptions may help in theoretical
and philosophical work.’ Again, much of this is the legacy of Riemann and
Maxwell. But I have no good answers to why group representations are so useful
here, or why there are the periodic regularities people notice in counting-up, or why
permutations are related to self-similarity. Kant would counsel that some things
are beyond scientific knowledge. Husserl would suggest that we are discovering
or uncovering various aspects of a phenomenon, that identity in a manifold

XXiii



PROLOG

presentation of profiles. I suspect that fifty years from now, or maybe just a few
years from now, we’ll have better answers and just as frustrating questions.
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Introduction

I want to provide a description of some of the work that mathematicians do,
employing modern and sophisticated examples. I describe just how a convention is
legitimated and established, just how a subject or a field of study comes to be
defined, just how organization and sfructure provide meaning in the manipulations
and calculations performed along the way in an extensive proof or derivation, and
just how a profound analogy is employed in mathematical work. These just-hows
are detailed and particular. So that, when we demand a particular feature in a
rigorous proof, such as uniform continuity, there is lots to be learned from that.

Ideally, a mathematician who reads this description would say: “That’s the
way it is. Just about right”” Thus, laypersons might learn something of how
mathematics is actually done through this analytic description of the work.
Students, too, may begin to appreciate more fully the technical moves made by
their teachers.

To say that mathematicians prove theorems does not tell you much about what
they actually do. It is more illuminating to say what it means in actual practice to do
the work that is part of proving theorems: say, that mathematicians devise
structures of argument that enable one to prove theorems, to check more readily
the correctness of those proofs, and to see why what is being shown is almost
surely the case.' Mathematicians might be said to construct notions and definitions
that are fruitful, and theories that then enable them to prove things. The
organization of those theories, or those structures of proof or demonstration or
those notions, may often be shown to correspond to facts about the world. The
sequencing and waypoints say something about physical or mathematical objects,
or so we may convince ourselves. Whether those proofs look logical or narrative is
a stylistic choice that varies among mathematicians and cultures.
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In Burnside’s classical style of writing [ca. 1897], Theorem x means
Theorem x together with the discussion around it. In other words,
although everything is proved, only some of the conclusions are called
theorems. This “classical” style is quite different from the so-called “[E.]
Landau Style” of Satz-Beweis-Bemerkung [Statement-Proof-Remark]. In
the classical style, you first discuss things and then suddenly say that you
have proved such and such; in other words, the proof precedes the
statement.”

One might provide a description of writing fiction or poetry similar to the one
I provide here for mathematics, emphasizing convention, genre, grammar and
prosody, and analogy. My claim is simple: In the doing of mathematics one uses
interpretive and rhetorical devices that are peculiar to mathematics, yet of the sort
seen elsewhere. And, these devices are an essential part of the mathematics, for
they are mathematics as such.’

Hence, one of my ancillary purposes is to better understand the mathematics as
mathematics, to better read and understand difficult and complex work, to get at
what is really going on in a proof or a derivation.

It is also true that mathematics is done by people, whose intuitions, examples,
and ideas stem from and resonate with their own culture. To illustrate this fact, in
chapter 6 I speculate on the resonances between nineteenth-century cities and some
of Riemann’s mathematical ideas, between the fact that we have bodies and the
techniques of algebraic topology, and between religious accounts of God’s
infinitude and transcendence and mathematicians’ notions of infinity. This specu-
lation is intended to be suggestive. I make no claim that mathematics is reducible in
any useful sense to something else, or the other way around. Rather, it is a reminder
that even our most abstract endeavors are embedded in history and society. That
truth should appear within history is no challenge to the facticity or truth of
mathematics. It is important to understand not only the history of the mathematics
and how what we now know came to be elucidated, but also to appreciate the actual
process of achieving insight through new proofs, reformulations, and contrastive
examples, and how we take mathematical objects as objects for us (that facticity).
This was of enormous interest to mathematicians such as Hermann Weyl (1885-
1955), influenced as he was by the philosopher and phenomenologist and
mathematician Edmund Husserl (1859-1941) in the early part of the twentieth
century.*

I am concerned with analyzing the particular features of particular fields of
mathematical activity, rather than discussing what is conventionally claimed to be
philosophy of mathematics. I focus on the concreteness of the examples, no matter
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how abstract the mathematics that is instantiated in those examples. Mathe-
maticians usually report they are making discoveries; that proofs are a means of
discovery and of checking the truth; that they are getting at the truth through
various new proofs and formulations; and that even when they invent new objects
there is a sense in which the objects are already-there in the material the
mathematicians possessed already. I take these comments as a fiducial report,
notwithstanding the fact that many philosophers of mathematics subject those
reports to criticism.

I shall not at all address claims about mathematics being the language of
science, or that having a language still does not provide a deeper explanation. In
such instances, mathematics may be one of the main languages employed. But
actual discourse is in a vernacular that mixes formal mathematics, physical and
spatial intuitions, and everyday metaphorical speech. It is perhaps no more
surprising that mathematics is suited to describing the physical realm than it is that
ordinary everyday metaphorical speech is so suited. And the connections between
mathematics and the physical sciences are as surprising as the connections between
the fields of mathematics.’

Finally, I have focused on mathematics as published in journals and books, or
codified in textbooks, and on the network of ideas in that mathematics. From our
retrospective viewpoint, we might understand what is going on in the mathematics
and what the mathematicians were doing. This is quite different from history of
mathematics, for historians are concerned with what the scientist and their
contemporaries understood, what they saw themselves as doing, and with the nature
of influences and developments, and so are obliged to look more widely at
additional documentary material.

We shall work out our ideas about mathematical practice through four examples of
mathematical work: (i) means and variances in statistics, (ii) the subject of
topology, (iii) classical analysis employed in the service of mathematical physics,
and (iv) number theory’s “learning to speak Riemannian.” I take my warrant for
these studies from Hermann Weyl, who writes about the practical need in
mathematics for an historical-philosophical understanding.

The problems of mathematics are not problems in a vacuum. There pulses
in them the life of ideas which realize themselves in concreto through our
human endeavors in our historical existence, but forming an indissoluble
whole transcending any particular science.’
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That “life of ideas” is, for my purposes, the legacies of Riemann and of Maxwell.
And what we discover is that the concrete, the particular, and the exceptional in
mathematics are made to carry along the abstract, the arbitrary, and the norm, and
vice versa.

I have chosen my case studies because of their power to illuminate actual practice.
But, notionally, they might be linked by the question: “Can one hear the shape of a
drum?” If you listen to a drum, and hear its resonant tones, can you infer something
about the size and shape of that drumskin? This is a beautiful and archetypal
problem that epitomizes much of our substantive mathematical discussion.” More
generically, can you connect the sound spectrum to the geometry? The answer is a
qualified Yes: For example, given our ordinary experience, we know that a bigger
drum has deeper tones. More technically, you can hear its area, its perimeter, and
whether its drumskin has punctures or holes. More generally, however, the answer
1s No, for there are inequivalent shapes with the same sound spectrum.

A drum’s loudness is proportional to the number of resonant tones, essentially
the story of the central limit theorem of statistics, the subject of chapter 2. That the
holes in the drumskin have consequences for the resonant tones is just the con-
nection between spatial facts and set-theoretic facts and the calculus that is the
foundation for topology, and which is also a source of topology’s internal tensions,
the theme of chapter 3. The connection between the shape and the sound of the
drum turns out to model the balance between the electrical forces among the
electrons and nuclei and the electrons’ angular momentum within ordinary matter, a
balance that ensures that such matter does not implode, the story of chapter 4. And
the connection between the shape, the sound, and an accounting or partition
function which encodes the resonant frequencies and their loudness, is just the
analogy explored in chapter 5.°

“Weyl’s asymptotics,” as all these facts are sometimes called, is a Christmas
tree on which the various themes of this book might be arrayed. And it is Weyl (in
1913) who reworks Riemann’s ideas and makes them the foundation for much of
modern mathematics. Hence, this is a book about the legacy of Riemann (and of
Maxwell), and of Weyl, too.

Another theme is the algebraicization of mathematics. Topology becomes
algebraic, both point-set and combinatorial. And more generally, a logic of
analogy, functorial relationships (a picture of A in B) that mirror both objects and
the relationships between them, model the systematics of analogy.

In chapter 6, I describe several themes common to both nineteenth-century urban
development and nineteenth-century mathematics. My thesis here is not about
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influence of one domain upon the other; rather, both domains appear to draw on the
same sorts of ideas. I begin with a description of what I call the Library of
Mathematics, and how mathematicians and physical scientists add volumes, borrow
volumes, and sometimes usefully deface volumes they have borrowed and then
return them in a transmogrified form. Then I describe how our actual bodies are
employed in mathematical work (without at all suggesting that proverbial Martians
would have different mathematics than ours). And, finally, I survey the theological
and philosophical tradition concerning the relationship of God’s infinitude to
notions of the mathematical infinite. Again, the lesson in this chapter is that we
need not be reductionist or relativist when we place mathematics within its larger
culture. And, that historical-philosophic analysis can be helpful for understanding
the mathematics as mathematics, and just how technical details matter.

II

The following survey of the next four chapters highlights their main themes,
indicates relationship of the studies to each other, and provides an account of the
argument absent of technical apparatus.

CONVENTION

Means and variances and Gaussians have come to be natural quantitative ways of
taking hold of the world.” Not only has statistical thinking become pervasive, but
these particular statistics and this distribution play a central role in thought and in
actual practice: in the distribution of the actual data; the assumed distribution of
that data; or, the distribution of the values of the measured statistic or estimator.
Such conventions are entrenched by statistical practice, by deep mathematical
theorems from probability, and by theorizing in the various natural and social
sciences. But, entrenchment can be rational without its being as well categorical,
that is, excluding all other alternatives—even if that entrenchment claims to
provide for categoricity.

I describe the culture of everyday statistical thought and practice, as performed
by lay users of statistics (say, most students and often their teachers in the natural
and applied social sciences) rather than by sophisticated professional statisticians.'”
Professional statisticians can show how in their own work they are fully aware of
the limitations I indicate, and that they are not unduly bound by means-variance
thinking about distributions and data (as they have assured me); and, that much of
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their work involves inference and randomization, which I barely discuss. Still,
many if not most ordinary users of statistics in the social sciences and the
professions, and even in the natural sciences, are usually not so aware of the
limitations in their practice.

A characteristic feature of this entrenchment of conventions by practice,
theorems, and theorizing, is its highly technical form, the canonizing work enabled
by apparently formal and esoteric mathematical means. So, it will prove necessary
to attend to formal and technical issues.

We might account for the naturalness of means and variances in a history that
shows how these conventions came to be dominant over others. Such a history
shows just how means and variances as least-squares statistics—namely, the mean
minimizes the sum of the squares of the deviations from the midpoint, more or less
independent of the actual distribution—were discovered to be good measures of
natural and social processes, as in errors in astronomical observation and as in
demographic distributions. There is now just such a literature on the history of
statistics and probability.!" Here, however, I shall take a different tack, and
examine the contemporary accepted ahistorical, abstract, technical justifications for
these conventions, justifications which may be taken to replace historically and
socially located accounts. More generally, these conventions come to be abstractly
justified, so that least-squares thinking becomes something less of an historical
artifact and rather more of an apparently necessary fact. Socially, such
justifications, along with schematized histories, are then used to make current
practice seem inevitable and necessary. Put differently: What might be taken as a
matter of Occam’s razor—for are not means and variances merely first and second
moments, averages of x and x°, and so are just good first and second order
approximations, so to speak?—requires in fact a substantial armamentarium of
justification so that it can then appear as straightforwardly obvious and necessary.

One might well have written a rather more revolutionary analysis, assuming a
replacement theory had more or less arrived and that means and variances and their
emblematic representative, the Gaussian, had seen their day. In a seminal 1972
paper by the mathematician Peter Huber, much of what I say here about the
artificiality of means and Gaussians is said rather more condensedly, and a by-then
well worked out alternative is reviewed.'* Huber refers to the “dogma of normality”
and discusses its historical origins. Means and Gaussians are just mutually
supporting assumptions. He argues that since about 1960 it was well known that
“one never had very accurate knowledge of the true underlying distribution.”
Moreover, the classical least-squares-based statistics such as means were sensitive
to alterations or uncertainties in the underlying distribution, since that distribution
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is perhaps not so Gaussian, and hence their significance is not so clear, while other
statistics (called “robust”) were much less sensitive.

Now if one were to take, say, Fredrick Mosteller and John Tukey’s 1977 text
on statistics as the current gospel, then the alternatives hinted at here and by Huber
are in fact fully in place. As they say, “Real distributions often straggle a lot
compared to a normal distribution.”"* Means and variances and Gaussians are seen
to be an idiosyncratic and parochial case. With modern computational and
graphical capacities, and the technical developments of robust statistics, we are in a
new era in which we can “play” with the data and become much more intimately
acquainted with its qualities, employing sophisticated mathematics to justify our
modes of play."* I should note that obituaries for John Tukey (2000) suggest much
wider practical influence for his ideas than I credit here.”” Moreover, probability
distributions much broader than the Gaussian do play an important role in the
natural and the economic sciences. And computation allows for empirical estimates
of variation (bootstrap, resampling).

THE FIELDS OF TOPOLOGY

The third chapter describes some of the fundamental notions in topology as it is
practiced by mathematicians, and the motivations for topological investigations.
Topology comes in several subfields, and their recurrent and episodic interaction
is the leitmotif of this chapter."® Such a philosophy of topology is about the
mathematics itself.'” What are the ideas in this field, and how do they do the
work? (So in a first book on topology, the Urysohn Lemma, the Tietze Extension
Theorem, and the Tychonoff Theorem are so described as embodying “ideas.”"®)

Topology might be seen as the modern conception of continuity, in its
infinitesimal and its global implications. The great discovery was that once we
have a notion of a neighborhood of a point, the proverbial epsilons and deltas are
no longer so needed."” A second discovery was that we might approximate a
space by a tessellation or a space-frame or a skeleton, and from noting what is
connected to what we can find out about the shape of that space. And the notion
of space is generalized, well beyond our everyday notions of space as what is
nearby to what, A third was that a space might be understood either in terms of
neighborhoods or tessellations or, to use an electromagnetic analogy, in terms of
localized charges or global field configurations, sources or fields. In general, we
use both formulations, one approach more suitable for a particular problem than
the other. And a fourth was that we might provide an algebraic account of
continuity.
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In the practice of topology, some recurrent themes are: (1) decomposing
something into its putative parts and then showing how it might be put together
again; and, how those parts and their relationships encode information about the
object; (2) employing diagrams to make mathematical insights and proofs
obvious and apparently necessary; and, (3), justifiably treating something in a
variety of apparently conflicting ways, say that Ax is zero and also nonzero (as in
computing the derivative), depending on the context or moment—themes more
generally present in mathematics.”” Another recurrent theme is the connection of
local properties to global ones, when you can or cannot go from the local to the
global, and the obstructions to doing so. A much larger theme is the
algebraicization of mathematics, so that mathematical problems from analysis or
geometry or topology come to be expressed in algebraic and formal terms. And
this theme has profound implications for the practice of topology and, eventually
and in return, for the practice of algebra.

FIGURE 1.1: Brouwer’s indecomposable plane, from “Zur Analysis Situs,”
Mathematische Annalen (1910).

FIGURE 1.2: Isles of Wada, from Yoneyama, “Theory of continuous sets of
points,” Téhoku Mathematics Journal (1917)
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FIGURE 1.3: Proof diagram, Figure 5, from Brouwer, “Continuous one-one
transformations of surfaces in themselves,” KNAW Proceedings (1909).

We might better appreciate the tension between set theory and algebra in
topology by reviewing some of the work of L.E.J. Brouwer (1881-1966). In
1909, Brouwer develops a beautiful and remarkable example, an “indecom-
posable continuum,” accompanied by an extraordinarily handsome two-color
diagram (as originally printed in the journal).”' Here, a curve splits the plane
into three parts, of which the curve is the common boundary; it is a continuum
that is not the union of two sub-continua. A way of presenting this example (the
“Isles of Wada™), begins:

Suppose that there is a land surrounded by sea, and that in this land
there is a fresh lake. Also, suppose that, from these lake and sea, canals
are built to introduce the waters of them into the land according to the
following scheme. . . . On the first day a canal is built such that it does
not meet the sea-water [top map of Figure 1.2]. . .. The end point of
this canal is denoted by L.

On the second day, a canal is built from the sea, never meeting the
fresh water of the lake and canal constructed the day before, and the
work is continued . . .
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On the third day, the work is begun from L;, never cutting the
canals already built, . . . z

Diagrams such as in Figure 1.3 appear in his 1910 and earlier “Cantor-
Schénflies” style work.”

Brouwer then developed a notion of the degree of a continuous map or
function, the n in 7" (a winding number, the number of times a map winds the
circle around itself, " doing it n times, or the curl or circulation, or the index or
charge). And, using “fantastically complicated constructions™ he proves all of the
then outstanding problems in topology, including “invariance of dimension,” that
dimension is preserved by continuous mappings (1911).> His notebook in which
he begins to develop the notion of what we now call the Brouwer degree is
entitled by him, “Potential Theory and Vector Analysis” (December 1909-
January 1910), in effect, going back to Gauss and to Riemann and Maxwell.”

Brouwer’s 1910 proof that a closed continuous non-selfintersecting line in
the plane divides the plane into two disjoint parts (the Jordan curve theorem)
employs set-theoretic topological devices (curves that are deformable into each
other, “homotopy™), and combinatorial devices (those tessellations, a “linear
simplicial approximation™).

However, Brouwer never employs the algebraic technology developed
earlier by Poincaré for revealing the invariant features of an object in various
dimensions and their relationship (namely, homology and chain complexes). It
took some time for these algebraic technologies to be incorporated
systematically into topological research, so that eventually combinatorial device
would be interpreted through algebraic machinery, Betti numbers becoming Betti
(or homology) groups. (The crucial figure is Emmy Noether (1882-1935) and
her (1920s) influence on P. Alexandroff and on H. Hopf, and independently in L.
Vietoris’s work.) For until 1930 or so “set theory lavished beautiful methods on
ugly results while combinatorial topology boasted beautiful results obtained by
ugly means.”°

Here, we shall be following the Riemannian path of Felix Klein (1849-1925) and
Hermann Weyl. Eventually, the various paths lead to a homological algebra—the
wondrous fact that the homology groups project topology into algebra. Just how
and why algebra and topology share similar apparatus, why there is a useful
image of topology in algebraic terms and vice versa—defines a tension of the
field, as well as one unifying theme: decomposition or resolution of objects into
simpler parts. Another theme is how an algebraic account of a topological space

10
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An analogous construction arose in invariant theory a century ago. . . .
we seek “relations on relations” (called syzygies). . . . Hilbert’s theorem
on syzygies says that if this is done n times . . . The sequence of . . . free
modules so obtained can be assembled into an exact [roughly, a nicely
decomposing] sequence . . .>’

As preparation for what is to come, at the end of the chapter there is an appendix
on the Ising model of ferromagnetism (a permanent magnet). I should note once
more, there is some deliberate repetition among the discussions of examples, in
order to make each discussion reasonably self-contained.

IDEAS AND CALCULATION

Some calculations and proofs appear magical at first. Technical details that are
apparently unavoidable in the first proofs seem to be pulled out of air, In part,
you do not see the piles of paper on which unproductive paths are worked out;
you only see what actually worked. You do not fully appreciate the personal
toolkit of techniques possessed by a mathematician, tools that have worked for
her in the past. Yet in retrospect those calculations turn out to build in the
deepest ideas and objects, in effect what you must do (your jury-rigged devices)
turns out to be done for a good reason, and the objects you uncover have a life of
their own. But again, you only understand that after further proofs and
calculations by others. Again, if some particular device is needed it is likely that
that device will point to objects and properties you only discover latterly.

On the other hand, ideas need to be made concrete through calculations and
the invention of technical devices. To make precise what you might mean by
unique factorization of numbers will lead to ideal numbers and algebraic
numbers. Again, we rarely hear about ideas that are not productive in proof,
theory, and calculation.

In effect, we have the phenomenologist’s “identity in a manifold
presentation of profiles.” An initial proof or calculation is then supplemented by
many others, and in time one has a sense of what is really going on. An idea,
realized in various contexts and calculations and examples becomes something
real for us.

12
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The paper was very difficult because it did not describe the strategy of
the solution. It just described the detailed steps, one by one. Reading it I
felt I was being led by the nose around and around until suddenly the
result dropped out. It was a frustrating and discouraging process.
However, in retrospect, the effort was not wasted. ™

It helps enormously to have someone (perhaps even the author) show you what is
really going on, or why the paper is organized just the way it is—say at the
blackboard or in a seminar presentation—at least the author’s best
understanding, even if they do not really understand why it works. Writing up a
paper for publication may make it all too neat, hiding the often still-inchoate
insights and entrees that inform the effort.

Still, T believe that any of these proofs when studied at the right level of
detail, usually reveals a strategy and a structure that makes very good sense, even
if at the most detailed levels one is clearing a path through an uncharted jungle,
and at the surface the various parts seem to hang together but they do not make
sense except that they do achieve the proof. It may not be apparent just what is
that right level of detail. Subsequent work by others often provides the
appropriate point-of-view and suggests that right level of detail.

At the end of the most tortuous of paths, there is often a comparatively
simple solution, although sometimes it is a mixed reward. Onsager ended up with
expressions in terms of elliptic functions and hyperbolic geometry. Dyson and
Lenard ended up with the simple inequality they were searching for, albeit with a
very large constant of proportionality. (Lieb and Thirring’s was about 10" times
smaller, of order 10.) Fefferman and Seco found simple numerical fractions for
the coefficients of an asymptotic series. Yang’s derivation of the spontaneous
magnetization provided in the end a simple algebraic expression. And Wu,
McCoy, Tracy, and Barouch found that the asymptotic correlation functions
were expressible in terms of Painlevé transcendents, distant relations of the
Bessel and elliptic and trigonometric functions. These are hard-earned saving
graces. They are temptations, as well, that would appear to say that if we really
understood what was going on we should be able to achieve these simple
solutions rather more straightforwardly.

We might still ask, Why do elliptic functions (or Painlevé transcendents, or
Fredholm determinants, or Toeplitz matrices, or Tracy-Widom asymptotic
distributions) appear in these derivations. Subsequent work may suggest a very
good reason, often about the symmetries of the problem that are embodied in
these mathematical objects. Or, what was once seen as an idiosyncratic but
effective technique, turns out to be generic for a class of problems of which this

14
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one is an exemplar (technically, here about nonlinear integrable systems and
their associated linear differential equations). Still, someone had to do the initial
solving or derivation, that four de force or miracle, to discover that nice
mathematical object X at the end, so that one might begin to ask the question,
“Why does X appear?”

The applications of classical analysis may still demand lengthy and intricate
calculations, endemic to the enterprise. But our assessment of those calculations,
and their estimates and inequalities, can be rather more generous than Dyson’s.
Dyson and Lenard’s work shows an enormous amount of physical understanding,
whatever the size of the proportionality constant. This is evident in the
organization of the proof. Moreover, the aesthetics are more complicated than
terms such as clean or messy might suggest. For we might see in the inequalities
some of the harmonies of nature:

Since a priori estimates [of partial differential equations] lie at the heart
of most of his [Jean Leray’s] arguments, many of Leray’s papers
contain symphonies of inequalities, sometimes the orchestration is
heavy, but the melody is always clearly audible.’'

ANALOGY AND SYZYGY
. .. members of any group of functions [U, V, W, . . .], more than two in
number, whose nullity is implied in the relation of double contact

[namely, aU+bV+cW=0, a, b, c integers] , . . . must be in syzygy. Thus
PQ, POR, and QR, must form a syzygy. (J.J. Sylvester, 1850°%)

P Q R

FIGURE 1.4: Three points in syzygy, as Sylvester might refer to them.

When three heavenly bodies, say P, Q, and R, are in line, they are said to be in
syzygy—in effect, yoked together. In mathematics, a syzygy has come to mean a
relation of relations. So, for example, the Hilbert Syzygy Theorem (1890),
referred to earlier in the quote about homology theory, says that one can
decompose a certain kind of object into a finite number of finite simply-
composed parts, so that there are no residual relations or syzygies among them.

15
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More generally, a syzygy is an analogy of analogies. Much modern work in
mathematics forms relations of relations through forming functors of functors
(functors being simultaneous transformations of spaces and mappings), structure-
preserving (“natural”) transformations among functors, and more generally
pursues a philosophy of functoriality and syzygy.

In chapter 5 I want to describe how one quite self-conscious analogy is
employed in mathematics, what is nowadays called the Langlands Program in
number theory and representation theory—and which in earlier forms has borne
the names of Riemann (1826-1866), Dedekind (1831-1916) and Weber (1843—
1912), Hilbert (1862-1943), Artin (1898-1962), and Weil (1906-1998), among
many others. I suggest how that analogy, which I shall call the Dedekind-
Langlands Program, is analogous to another analogy, which I shall call the
Onsager Program in mathematical physics, with an equally long list of names. In
one sense this analogy of analogies is not too surprising, given that in each case
one has a partition function that packages some combinatorial information about
an object such as the integers or a crystal. One then studies analytical properties
of that function to discover general properties of the associated object. In order
to do so, one studies an analogous mathematical object that also yields that
function. However, the details of the syzygy are rather more precise and
informative than we might at first suspect.

The role of analogy in mathematical discovery and proof is a recurrent theme in
writing about mathematics.” Analogy may be intuitive or formal, at the level of
a single fact or between substantial theoretical structures. I came to write about
analogies, and analogies of analogies, from recurrently bumping into them in
quite specific contexts. Earlier, in Doing Physics (1992, 2012), I called them
tools in a toolkit, models as analogies, which then appear ubiquitously. In my
subsequent work on how mathematics is employed in mathematical physics
(Constitutions of Matter, 1996), 1 had come to see in rough outline further
connections between the various kinds of mathematics and the varieties of
physical models of matter.”* What was then striking to me was my subsequent
reading of André Weil’s (1940) description, drawn from Richard Dedekind’s
work of the 1880s, of a triple of parallels or analogies among different fields of
mathematics: geometry, function theory, and arithmetic—respectively: Riemann
surfaces and analytic functions, algebraic functions, and algebraic numbers. Weil
called these parallels “un texte trilingue,” or a Rosetta stone (he called two of the
languages Riemannian and Italian). Weil’s triple deliberately echoed Riemannian
themes, linking curves to the complex spaces in which they reside, and algebraic
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themes linking curves to algebraic function theory modeled on the abstract
theory of algebraic numbers (due to Dedekind and Heinrich Weber, 1882).%

More to my point, Weil’s triple paralleled the triple that was discernible in
the mathematical physics describing a gridwork of interacting atoms, what is
called lattice statistical mechanics, exemplified by the variety of solutions to
Ising model.*® Before me was a relation of relations, an analogy of analogies, a
SyZygy.

Roughly at the same time I was reading about elliptic curves—in part to try
to understand a bit of the then recent proof of Fermat’s Theorem by Andrew
Wiles. By way of some bibliographic guidance provided by Anthony Knapp, in
his book Elliptic Curves (1992), I then came upon the Langlands Program and
saw how it was the contemporary version of Dedekind’s analogy.37 I cannot
claim to understand much of the technical features of the Langlands Program.
But T believe that the Dedekind-Langlands and the Langlands programs do
provide for an analogy with the Onsager Program in mathematical statistical
mechanics (and others have so indicated in the scientific lits—‘:rature).38

What the mathematicians find generically, the physicists would, for their
particular cases, seem to have taken for granted. And what the physicists find,
the mathematicians have come to expect. The syzygy illuminates its various
elements, leading to a deeper understanding of what is going on in the
mathematics and what is going on in the physics. Such relations and syzygies
reflect both formal mathematical similarities and substantive ones. For a very
long time, scientists (whom we now classify mostly as physicists) and
mathematicians have borrowed models and techniques from each other. And, of
course, many potential syzygies do not in fact work out,

We do not know the meaning of an analogy, just how something is
analogous to something else, until we see how it is worked out in concrete cases.
Still, there is excitement to be found in the prospect of discovery, in drawing
these diagrams of relationship. Often, one is figuring them out on one’s own, or
hears about them orally. Rarely are these written down and published in the
mainline scientific literature, for they appear so tenuous yet tempting, so
unprovable for the moment even if it would seem that they must be true. A
diagram I drew for myself about the Ising model, the Onsager program, and the
Langlands program—before reading Weil—made it possible for me to be struck
by the syzygy. (See note 34.) As Weil points out, this is only the beginning of the
mathematics, It is that beginning I am describing here.

17
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In 1960, the distinguished theoretical physicist Eugene Wigner published an
article, “The Unreasonable Effectiveness of Mathematics in the Natural
Sciences,” which concludes, “The miracle of the appropriateness of the language
of mathematics for the formulation of the laws of physics is a wonderful gift
which we neither understand nor deserve. We should be grateful for it and hope
that it will remain valid in future research and that it will extend, for better or for
worse, to our pleasure, even though perhaps also to our bafflement, to wide
branches of learning.”*’

There is a substantial literature discussing and explaining Wigner’s claim.
His article is subtle and wide-ranging, pointing out the value of new concepts
from mathematics, and concerned with the uniqueness of physical theories. But it
is the title that has crystallized responses to it.

Now, there is another effectiveness that strikes me as at least as
“unreasonable,” namely, the unreasonable effectiveness of physics in
mathematics, the appropriateness of the language of physics for the formulation
and foundation of mathematical concepts and theories, and for suggesting new
directions for the development of those theories. (I will use “physics” here
implicitly referring to natural and social science as well.) Physicists invent
mathematical devices to do their work, or discover them in the Library of
Mathematics (as Wigner suggests) to do new work: whether they be Newton’s
calculus; Maxwell’s coupled set of partial differential equations (which
eventually become matters of differential geometry and topology); Heaviside
(1850-1925) and Dirac’s (1902—1984) delta function (and eventually Schwartz’s
distributions); Heisenberg’s matrix mechanics for quantum theory (leading to
developments in operator theory); Schroedinger’s partial differential equation, or
more recently, Witten and others’ topological field theories.

What is remarkable is that the mathematicians can then take these practical
devices and new uses of their concepts, and not only make them rigorous but
some of the time make them the foundation for a rich field of mathematics. In
part, as I indicate above, the physicists are actually borrowing some mathematics
that is already extant. But their use of the mathematics extends it in unexpected
directions, and those directions are then articulated by mathematicians into rich
theories. Also, presumably, the physicists are in part driven by physical
phenomena or analogies to known phenomena, so that it is the actual world as
physicists understand it that then leads to these articulations.

Feynman’s path integral approach to quantum mechanics (originally
suggested by a remark by Dirac), the various groups (including nonabelian or
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noncommutative groups) used by Wigner and others to understand the realm of
particles and symmetries, the scaling symmetry methods developed by Kenneth
Wilson, the discovery that the otherwise unemployed Painlevé transcendents
(descendants of the sines and cosines) play a natural role in some physical
problems (by Wu, McCoy, Tracy, and Barouch),...—all demanded and fruitfully
received further mathematical development and rigorization. The Standard
Model of the elementary particles, and more generally, quantum field theories,
have not only borrowed from the Library of Mathematics. They have, as well,
presented problems to mathematicians that are proving fruitful and interesting
within mathematics itself.

Two further examples, we discuss in later chapters: Charles Fefferman and
collaborators’ (pure mathematicians, all) derivation of the ground state energy of
atoms in terms fractional powers of their number of electrons (Z"), not only
makes rigorous earlier derivations by physicists and extends those derivations to
higher powers of Z, it develops as well innovative methods of classical analysis.
Here a distinguished mathematician takes on the terrific rough-and-ready work
of physicists, makes it rigorous, extends that work, and advances the
mathematics itself. Second, in derivations of the properties of the Ising model of
a phase transition, and related models, Rodney Baxter and collaborators (all
physicists) have developed many ingenious methods of solution that demand
deeper work by mathematicians (concerning analyticity and integrability) to
make sense of their meaning and why they work.

Some mathematics is developed without any influence from the physicists,
perhaps most of it. But the demands of the geneticists, physiologists, engineers,
computer scientists, and others in the natural sciences, also provide impetus. The
usual line derived from G. H. Hardy is that some of pure mathematics will never
have connection to any application in the natural sciences is often denied by
actual applications. But I am quite willing to believe that lots of mathematics,
even if it 1is eventually applied, is autonomously developed by the
mathematicians.

Also, T like to think that the physicists and other natural scientists, and social
scientists as well, provide the mathematicians with rough-and-ready methods and
theories, begging for rigorization and generalization. With luck, that effort
launches interesting mathematics that is above and much beyond the original
impetus. That may well eventually serve the physicist’s or other scientists’ needs,
or not.

None of this is surprising when we think of other human activities. Some
material or method is discovered by prospectors or inventors. Eventually, that
material or method is used for practical manufacture of things we find useful and
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convenient. In effect that material or method becomes what economists call a
resource. And scarcity and invention may then suggest the need for other
materials or methods that until then did not seem of value.

I remain agnostic about the miracles referred to by Wigner. Rather,
historical study will suggest how varied are the influences between mathematics
and physics: how often mathematics is not of use to scientists, how often
scientists search for mathematics and make do with what there is, and how often
physicists’ rough-and-ready inventions do not lead to any rich mathematical
theories, where “how often” should be read as “how often or not.”

I am also struck by the effectiveness of mathematics in the mathematical
realm, developments in algebra proving useful in topology, for example. Again,
some mathematics does not prove useful to other subfields.

v
Wigner begins his article with the following:

There is a story about two friends, who were classmates in high school,
talking about their jobs. One of them became a statistician and was
working on population trends. He showed a reprint to his former
classmate. The reprint started, as usual, with the Gaussian distribution
and the statistician explained to his former classmate the meaning of the
symbols for the actual population, for the average population, and so on.
His classmate was a bit incredulous and was not quite sure whether the
statistician was pulling his leg. "How can you know that?" was his query.
"And what is this symbol here?" "Oh," said the statistician, "this is pi."
"What is that?" "The ratio of the circumference of the circle to its
diameter." "Well, now you are pushing your joke too far," said the
classmate, "surely the population has nothing to do with the
circumference of the circle."

Now the population has nothing to do with the circumference of the circle.
Rather, it is a statistical measure of the population that leads to the use of pi. As
we shall see, again and again, when we try to characterize objects in terms of

abstractions, we find pi-like and other mathematical objects.

Now let us move forward fifty years.
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Two friends from college meet after being out of touch for twenty years. Bernie
Dedelands has become a mathematician doing number theory and representation
theory. Larry Yangster has become a physicist doing statistical mechanics. When
Bernie asks Larry to tell him about his current work, Larry mentions that he is
working on a statistical counting problem that has three main methods of
calculating its partition function, the physicists' way of packaging counting
information about a system. The natural logarithm of the partition function is
proportional to the thermodynamic free energy that the chemists so value. Bernie
remarks that it is amazing that the packaging function could be so related to
something a chemist would be interested in. Then, Larry tells Bernie how in
order to solve the problem one might create a matrix that does the counting
work, or one might look at the symmetries of the system, or one might focus on
the analyticity of the solution of a functional equation and a Riemann surface
that goes with an elliptic curve. In fact, although the proofs are not always there,
Larry mentions that he has an intuition for when one might get away with the
assumption of analyticity, and his work using functional equations to solve the
problem are well-known among the physicists. It's how he got tenure.

Larry also mentions it would appear that the matrices might be seen as
group representations, their trace or group character being the partition function
and the group itself is often parametrized by the argument u of elliptic functions,
sn(u,k), that group members commute if they have the same modulus, &, even if
they have different arguments, and that there are connections between modulus k
and modulus 1/k groups members’ matrices (in effect low and high
temperatures). And there is an equation that gives an account of the
commutativity of the matrices, and it is intimately related to those elliptic
functions.

(The elliptic functions are special in that f(k) and say f(1/k) are more
generally related. Elliptic functions are said to be “modular,” in the sense that,
S((az+b)/(cz+d)) = (cz + d)"[(2), if ad-be=1, so that f(-1/z) = 2" f(2), and f(z+1) =
f(z) or perhaps = g x f(2).)

Larry goes on to mention that he is able to compute the partition function
through counting or through modularity, whether it be through the relevant
counting matrices or the group representations of the symmetries of the matrices
or the functional equation.

Larry then mentions that there is something called universality, so that if two
systems have similar symmetries, the crucial features of the partition functions
turn out to be the same, even if the exact details of the systems differ
substantially.
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See also the list of sections that head each chapter. Names are indexed when they
refer to papers (Dyson-Lenard), or styles of work (Baxter), or they are iconic

(Onsager). Mentions are not indexed.

Action-angle variables, 430n5

Adding-up, xxiii

Algebra and topology, 60, 102-103, 398n1

Algebra and/vs. topology, 55, 56, 77, 78-
79, 80

Algebraic manipulation, 187-188

Algebraic topology, 71-72; diagrams in,
97-98

Algebraicizing mathematics, xviii, 4

All-or-nothing bet, 36

Analogies, formal, 209, looking for, 238

Analogy, xxii, 16-171; metaphysics of,
248; in mathematics, 211; as practical,
223

Analysis: classical, 15, 145-146; hard and
soft in, 83; limits to, 292

Anthropology, as a model, 28

Asymptotic limits, 129

Asymptotic statistics, 39-40

Atoms, matter made up of, Fefferman,
167-170

Automorphic forms, 400n12

Automorphic functions and
representations, 232-233

Balls into boxes, as a model, 295

Banach-Stone theorem, 58

Baxter, R.J., 86, 117, 379n12; functional
equations for Ising, 373n110; style,
184-185

Bernie and Larry, 21-24

Binding-energy of an atom: Fefferman,
172-174; Fefferman-Seco-Cérdoba,

174-177; Fefferman-Seco, details of,
178-182

Brouwer, L.E.J., 8-10, 77, 347-348n21;
diagrams, 69-70, 96

Calculation and ideas, 238-239

Categoricity of models, 29

Central limit theorem, xvii, chapter 2

Character, in group representation,
370n95, 371n99

Chemical engineering, 65, 97

City, in mathematical analogy, 270-272;
as a Riemann surface, 269, 273-274

Color, as synthetic, 279

Commutative algebra, 397-398n1

Computation, in WMTB, 191-192

Concrete examples, 2-3; exemplify
abstractions, 261

Connections, among notions, 350n34

Cons, the, 91

Conservation of stuff, potentials for, 275

Conservation, in flows, as exactness, 99

Continuity, 58; in topology, 7. 74

Continuum hypothesis, 291

Convention, 5-6, 47-48, chapter 2;
justification for, 32-34

Data analysis, 37

Decomposition sequences, 81-82, 101

Decomposition: algebraic, 94-95; in
analysis, 70-72

Dedekind-Langlands program, 16, 212,
215-217; Dedekind-Weber, 410n55,
413n65; history of, 241-242
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Dedekind-Weber, on algebraic functions,
215-217

Delta-prime of omega, in Onsager, 377-
378nn6-7, 395nn152-153

Descartes, xviii

Describing mathematical work, 1

Detail, technical, in my descriptions, 157-
158, 179-182

Diagrams: for continuity, 58-59; as
machinery, 95-96, 98; as natural, 103-
105; in point-set topology, 68-70

Diffusion, Einstein on, 267

Dimension, in topology, 77-78

Dirac delta function, 265

Dirac equation, 266

Dreams, 276-277

Drum, hearing the shape of a, xvii, xxii, 4,
412n61; in Lieb-Thirring, 162

Dyson-Lenard, stability of matter, 13, 87-
88, 140, 150-155

Eilenberg-MacLane, 98

Electricity and magnetism, 65

Electromagnetism, Maxwellian fluidic,
276; obstruction to exactness, 423-
424n65

Elementary particles, 236-237

Elliptic curve, 401-402n15; Ising as,

339n6, 227-228, 230; in number theory,

231-232

Elliptic functions: automorphy of, 406-
407n32; in Ising, 110; as threefold
analogy, 219

Energetics, as a philosophy, 276

Epsilon-delta, 80-81, 92

Equations, theory of, 65

Exact, derivation that is, 124

Exactness, 98, 423n5

Extensions, of number systems, 287, 288

Fat tails, 37
Federbush, P., stability of matter, 156-157

Fefferman, C.: on atomic nature of matter,
167-170; on doing his work, 284; style,
170; on matter, proofs of, 165-166;
stability of matter with good constant
(actually, binding-energy of an atom),
172-176

Fefferman-Seco-Cérdoba, 89; 139-145;
349n29, 35-366n57

Fermat’s theorem, 239

Fermion field theory, Schultz-Mattis-Lieb,
201

Fermions: electrons as, 90; in Lieb-
Thirring, 161-162, 162-163

Financial fluctuations, 50-51

Fisher, R.A., 31, 33, 35, 52-53, 359n60

Fisher-Ruelle, stability of matter, 149

Fissure, in topology, 92, 93

Fluctuation, as measured by variance, 48-
50

Fluctuation-dissipation relations, 48-49,
52

Four-Color Theorem, 97, 414n2

Fourier analysis, parts in, 71

Fredholm operator and determinant, 196-
199, 203, 207

Frenkel, E., his threefold analogy 402n18

Functional equations, in Ising, 227-228; in
number theory, 231-232

Functions, residing on a space, 94-95

Functor, 411n58; as naturality, 102

Functoriality, 99, 250

Gas, matter as a, Fefferman on, 170-172

General relativity, Einstein, 267

Generating functions, threefold analogy
in, 214-215

God: models of, 427-429n97

God: Augustine on, 293; models of, 427-
429n97; as transcendent, 285-292

Gordan, P., on Hilbert, 415-416n10

Group representations, 218; in Ising, 228-
229, 404n25; in number theory, 232
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Hansel and Gretel, 238

Hard and soft, in topology, 80-83

Harmonic analysis, 296. See also
Langlands program

Heat equation, 241; and theta functions,
405-406n32

Homology, in topology, 78-79; and
homological algebra, 10-12

Husserl, E., 342-343n4

Ideal elements. See Extensions, of number
systems

Ideas and calculation, xiv, xxi, 12, 184-
185, 187

Identity ..., 277

Identity in a manifold presentation of

profiles, xxi, 12, 235, 253, 277, 354

Inaccessible, The, 287

Independence, 29-30

Ising model correlations: analogy with
quantum field theory, 375-378n6;
scaling in, 188-190, 197-198. See also
WMTB

Ising model 84-86, 223-230 solutions,
108-119; 349n29; early work, 125-126,
127; numbering configurations, 403n24

Ising model, solutions: algebra and
automorphy (Onsager), 112-114;
algebra and fermions (Schultz, Mattis,
Lieb), 114-115; algebra and particle
scattering (Yang-Baxter), 115-116;
algebra and modularity
(renormalization, scaling), 116-117);
analyticity (Baxter), 117-118;
combinatorics and Pfaffians, 117-118;
three kinds of solutions, 111, chapter 3;
Toeplitz and Painlevé, 118-119

Iterated logarithm, law of the, 40, 43-44

1t6 calculus, 40, 41

James-Stein method, 36
k, variable in Ising and elliptic functions,
226, 228
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Kaufman, 132. See also Kaufman-Onsager

Kaufman-Onsager, 125-127, 135

Kirchoff’s laws, 97

Klein, F.: presentation of threefold
analogy, 243, 408-409n43; on
Riemann, 81, 97

Langlands program, 248, 252-253,
399nn3-6: automorphic representations
in, 407n35

Langlands, R.P., on mathematics and
physics, 25

Languages, of the threefold analogy, 242,
244

Large cardinals, hierarchy of, 290

Layering, in cities, in mathematics, 280,
418-419n35. See also Sheaf theory,
Surface and palimpsest, Riemann
surface

Least absolute deviations, 32, 36

Lebesgue integral, 92

Lebesgue, H.. on analysis, 292

Lebowitz-Lieb, 87

Leitmotifs, xv, xvi

Lenard, A., stability of matter, 155-156

Leray, J., on topology, 361n19

Lévy stable distributions, 40, 41-43

L-functions, 230-231, 232, 400n12

Library of mathematics, xiv. See also
Mathematics: Library

Lieb and Lieb-Thirring, stability of matter
149-150

Lieb-Thirring, 88, 141, 158-164;
Fefferman on, 167

Limits, kinds of, 128

Linearization, as in Fourier analysis, 71,

Local and global, xxiii; in proofs, 145; in
topology, 57, 79,93

Local-global correspondence, 272

Local-global, in proofs, 145

Low-probability events, 356n40, 41

L, statistics, 36-38
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Mapping. of a function, 57

Mathematicians explain what physicists
have, 234-235, 253

Mathematicians, what they do, 1-2

Mathematics and physics, 203-204, 264-
268

Mathematics, as cultural/historical, 294-
295; as the language of science, 3, 18-
20,21-24

Mathematics: Library of, 265-268;
philosophy of, 262-264, 416n19

Matrices, in Ising, 228-229, 229-230

Matrix mechanics, 71; Heisenberg’s, 266

Maxwell, J.C., as a model, 256

Maxwell’s equations, 256-257; as a
model, 420n47

Means and variances, 31-38; alternatives
to, 35-45

Means, variance, and gaussians, as
conventional, 6, chapter 2

Metaphysics: as analogy, 244; of a
mathematical notion, 260; of equations,
258

Modular forms, 400n12

Modular symmetry, in elliptic functions,
in Ising, 111

N times N to N, in Lieb-Thirring, 163-164
Naturality, 101-104

Nilpotence, 59-60

Noise, 50-53

Numerical values, importance of, 126-127

Off-diagonal long-range order, 380n16

Onsager Program, 213, 216-217; in
Dedekind-Langlands program terms,
223-225,226-232

Onsager, L.: on Ising model, 112-114;
stability of matter, 149-149; on Wiener-
Hopf, 200; &' (o), 201-202

Open set, 93; in continuity, 74-75

Painlevé complex, 194-195, 204-205, 206

Painlevé transcendents, 185-186, 193

Painlevé, P., 374n113, 114

Paris, 278

Partial differential equations, Fefferman
on, 168-170

Particles, in the Ising model, 371n101

Partition function, in Ising, 226-227; in
number theory, 230

Parts, finding the right, 71, 72; for
mathematicians, 100

Path dependence, 60, 90

Path-independence, 100

Pfaffian, in Ising, 86, 117-118, 127, 208,
401n14

Photographic film, color, layers in, 279-
280

Physicists have what mathematicians seek,
234-235

Physics and mathematics, xviii, 17. See
also Mathematics and physics

Plenitude, 29-30

Prime factorization, 236-237

Program of mathematical research, 62

Proof, analogies for process of doing, 183-
184, 205: lengthy, 146-147,
sequencing, 88-89; ugly, xix, xxi-xxii

Quantum field theory, and Ising model,
375-378n6

Questions, big, 340n11

Random matrices, xvii

Reality of statistics, 357n44

Reciprocity, 215, 233

Riemann surface, 270, 273, 422n57

Riemann, B. as a model, 256

Riemann, B.: on algebraic functions, 215:
dissertation, 62-63; as a model, 256;
Weyl on, 260

Rigor, derivation that is, 124-125

Rigor, xiv-xv, xxii; derivation that has,
124-125



