DON'T

TEACH
CODING

Trim Size: 6in x Gin G} Handley602620 fiirs.tex V1 -0312/2020 12:06pm Page iv

This edition first published 2020
© 2020 by John Wiley & Sons, Inc. All rights reserved.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this
title is available at http://www.wiley.com/go/permissions.

The right of Lindsey Handley and Stephen Foster to be identified as the authors of this work has been
asserted in accordance with law.

Registered Office(s)
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
John Wiley & Sons, Inc., River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley
products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content
that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation any implied warranties of
merchantability or fitness For a particular purpose. No warranty may be created or extended by sales
representatives, written sales materials or promotional statements For this work. The Fact that an
organization, website, or product is referred to in this work as a citation and/or potential source of
further information does not mean that the publisher and authors endorse the information or services
the organization, website, or product may provide or recommendations it may make. This work is sold
with the understanding that the publisher is not engaged in rendering professional services. The
advice and strategies contained herein may not be suitable for your situation. You should consult with
a specialist where appropriate. Further, readers should be aware that websites listed in this work may
have changed or disappeared between when this work was written and when it is read. Neither the
publisher nor authors shall be liable For any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Handley, Lindsey, author. | Foster, Stephen, 1985- author.

Title: Don't teach coding : until you read this book /Lindsey D. Handley,
Stephen R. Foster.

Description: First edition. | Hoboken, NJ : Jossey-Bass/John Wiley & Sons,
2020. | Includes bibliographical references and index.

Identifiers: LCCN 2019055396 (print) | LCCN 2019055397 (ebook) | ISBN
9781119602620 (paperback) | ISBN 9781119602644 (adobe pdf) | ISBN
9781119602637 (epub)

Subjects: LCSH: Computer programming—Study and teaching.

Classification: LCC QAT76.27 .H364 2020 (print) | LCC QAT76.27 (ebook) |
DDC 005.13—dc23

LC record available at https://lccn.loc.gov/2019055396

LC ebook record available at https://lccn.loc.gov/2019055397

Cover Design: Wiley
Setin 9/13pt, Ubuntu by SPi Global, Chennai, India.

10987654321

Trim Size: 6in x Gin G} Handley602620 floctex V1 - 03/06/2020 8:13am Page vii

Contents

xi Languages Within 40
Acknowledgments xiii Signedlanguages 42
. Silent Battles 43
Introduction 1
. > 3 Our Strange Citizens of
Who Is This Book For? ,
Broca's Area 49
Let's Do It! 3
Chapter 2: Beginnings 51
Chapter 1: Prologues 5 P g 9
. , 5 A Wizard's Tale 51
A Wizard's Tale .
. . p
The Sorting of Wizards 5 I:e II;ea of Faith 21
The Call to Action 10 1€ rorge 3
A Lanquage Without 10 They Slept . 6
Our Strange Protagonists 10 A Language Without 56
(cons 'Apple 'Soft) 13 Syntax — Building Materials 59
Tower of Babel 15 A Meta-Linguistic Meander 60
Confessions 16 Back to Syntax 62
Penances 17 Semantics: “When your
A Language Within 17 eyes see this, do this
Installing Languages 17 W't_h your mind - 63
Writing in Tongues 19 Checking Assumptions 65
. . . We Have a “Language.”
Kiss, Gift, Poison 20
, E Now What? 66
Hello, Hello, Hello 23 A Language Within 66
Languages Without 25 Cats 66
tori | K Stori
Tongueless Languages 27 n
Babbage's Calculus Club 29 Ab(stract) 4
Diffs 31 Shortest Path: Dijkstrato You 75
Finite Descriptions of the A Brave New Syntax 79
Infinite 31 Languages Without 81
Bottling the Human Will 33 The Unwritten, Unwritable
Machines Anchor Language 35 Backstory 83
System 39 quage, Math, Algorithms 84

vii

Trim Size: 6in x Gin G} Handley602620 ftoc.tex V1 - 03/06/2020 8:13am Page viii

Algorithms of Antiquity 88 Science and Schools 154
A Brief Story of Stories 90 Mindset 156
Languages Within 91 Metacognition 158
Foreign Language: A Deliberate Practice 160
Friend, Perhaps a Second Language
Mentor 96 Acquisition 160
Zapping Broca's Area 97 Krash Course 162
More Monkey Business 98 Fluency and Expertise 164
Chapter 3: Middles 101 WhatitFeelsLike to
Upgrade Your Own
A Wizard's Tale 101 Wetware 166
Purgatory 101 Meta-teaching 168
Descent 103 A Universal Educational
Ascent 105 Language 169
A Language Without 106 The Loop of Being Human 173
(Stories (Within Stories)) 106
Order Word 111 Chapter 4: Ends 175
Easing the Transition 113 A Wizard's Tale 176
Magic Tricks 114 Learn to Teach; Teach
A Language Within 122 to Learn 176
Implicit Learning 122 Montage 178
Animation 122 Loop Back 183
Napoleon’s Risky Maneuver 126 The Beginning 184
Noughts and Crosses 131 ALanguage Without 184
Round Stories; Square Frames 132 QOur Road Thus Far 184
Languages Without 133 Definitions 185
Illusions of Mind 133 Becoming the Machine 187
Dactylonomy: Digits to Loops 188
Digital 134 Mad Libs 190
Externalization 137 Turing Completeness 191
The Spark of the Pascaline 139 Ifs 196
The Best of all Possible Extending Language 199
Languages 141 A Language Within 200
Automatons 144 So lernt man lernen: Der
King Ludd 147 Weg zum Erfolg 200
The Song for the Luddites 149 Designing Your Deck 207
Languages Within 152 The System 210
The Machine Within 152 Unburdening Yourself 213
Potions for the Mind 152 Parting Exercises 214

viii Contents

Trim Size: 6in x 9in

&

Handley602620 ftoc.tex W1 - 03/06/2020 B:13am Page ix

Languages Without 215 Conclusion 241
The Flood and the Tower 215 Next Steps: Learning Sciences 241
Soft Is the New Hard, and Next Steps: Languages to Learn 242
the Old Hard 216 Next Steps: Coding 242
Abstraction’s Arrow 218 Next Steps: Software
Languages Within 224 N E:géneen'—r;g ker Cult ;1;
. ext Steps: Hacker Culture
The EdlfcaFlon Bot.tleneck 224 Next Steps: History 243
History's First Coding Naming Things: Computer
___ Students 225 Seiafice 244
(environment (mind Naming Things: Philosophy
{fluency))) 228 of Mind 245
Co-Authoring the EdTech Naming Things: Learning
Story 233 Science 245
Babbages and Lovelaces Thank You 246
f Educati 2 oy g
or Education 38 Bibliography 247
This Final Section Has
No Name 240 Index 259
Pary yan
N W
Contents ix

Trim Size: 6in x Gin @ Handley602620 floc.tex V1 - 03/06/2020 8:13am Page x

Trim Size: 6in x Gin G} Handley&02620 flasttex V1 -03/07/2020 7:51am Page xi

About the
AuUthors

Dr. Stephen R. Foster is a researcher, author, and co-founder of multiple social
enterprises with a mission to teach teachers how to teach coding. A fierce
advocate for the power of coding to bring about worldwide change, he has
himselfF coded to generate peer-reviewed scientific results, coded to build edu-
cational technology solutions for teachers and students, and coded to bootstrap
educational startups and non-profit organizations out of thin air. All in all, these
countless lines of code have all been in service of a single vision: to establish
coding education as a basic human right across the globe. In short, he codes to
teach coding.

Dr. Lindsey D. Handley is a researcher, entrepreneur, teacher, and author. For the
last 10 years, the National Science Foundation has funded the research, design
work, and the social enterprises that she operates. As a skilled coder, data sci-
entist, and biochemist, she envisions a world in which we no longer suffer from
a worldwide shortage of scientific fluency. To this end, she fights for the uni-
fication of science and education on two fronts: the use of science to improve
education; and the improved teaching of science worldwide. In short, she applies
science to design better ways of teaching science.

Together, they are the co-founders and leaders of ThoughtSTEM and Meta-
Coders.org - two social enterprises that have touched the lives of hundreds of
thousands of beginning coders worldwide.

xi

Trim Size: 6in x Gin @ Handley602620 flasttex W1 -03/07/2020 7:51am Page xii

Trim Size: 6in x 8in G} Handley602620 cintro.tex V1 - 03/06/2020 7:37am Page 1

Introduction

If there's one thing this book seeks to address, it is: What are programming
languages?

It sounds simple, but answering this question deeply will require us to ask
other questions: Why do we call them “languages”? Why are there so many? Why
do people fluent in them get paid so much? How are they related to those other
things we call “languages” (like English, Spanish, or American Sign Language)?
Where do they come from? Where are they going? How do we learn them? What
happens in your brain when you do?

And, above all:

How do we teach them?

Japan, Italy, England, and Finland are just a few of the countries that
have begun to mandate coding education throughout K-12 public education.
Computer science educational standards now exist in 22 U.S. states — two of
which have passed legislation that requires coding education statewide from
elementary to high school.

As the world embarks on a global change to its collective education systems,
it is worth asking some basic questions.

Technically, this book is about what you should know before you start
teaching (or learning) a programming language. But the book will also teach
you a few simple languages in order to make headway on some of the deeper
questions.

There is a structure that frames the four chapters in this book, each of which
have five parts — five arcs that recur from chapter to chapter.

The Wizard's Tale is the only fictional arc of the book. At the beginning of
each chapter, this narrative introduces the main ideas in a lighthearted way.
Sometimes the truest things can only be said in fiction.

The pair of arcs called A Language Without and A Language Within are where
you'll learn about coding — one language at a time. In A Language Without, we'll
examine how the design of a language gives its users certain cognitive powers,
and cognitive pitfalls. In A Language Within, you'll be given exercises to help
you actually learn those languages (if you wish) — meditating on the gaining of
those powers for yourself, while learning to avoid the pitfalls. The languages
will increase in power and complexity as the book progresses — ending with the

Trim Size: 6in x 9in

&

Handleys02620 cintro.tex V1 - 03/06/2020 7:37am Page 2

Chapter 1 Chapter 2 Chapter 3 Chapter 4
A A A A
Wizard's Wizard’s Wizard's Wizard's
Tale Tale Tale Tale
¥ ¥ ¥ i
A A A A
Language Language Language Language
Without Without Without Without
¥ i ¥ i
A A A A
Language Language Language Language
Within Within Within Within
¥ ¥ ¥ i
Languages| |Languages| [Languages| |Languages
Without Without Without Without
v v v v
Languages| |Languages| |Languages| |Languages
Within Within Within Within

most powerful kind of programming languages: what computer scientists call
“the Turing-complete languages.”

The arcs called Languages Without and Languages Within will "zoom
out” - beyond you, beyond us, beyond this book, beyond the present day. In
Languages Without, we'll piece together the epic story of language - literally,
the story of stories themselves. It began before this book, indeed before the
invention of writing and is still unfolding today. In Languages Within, we’'ll
examine recent neuroscience about how the human brain processes language,
how it acquires Fluencies — and ultimately, how it earns the right to participate in
that epic story of language that is unfolding all around us.

Human beings are linguistic creatures; and programming languages are one
of the weirdest linguistic things we've done in the last few thousand years. The
bigger our historical lens, the easier it is to see just how weirdly magical they are.

Introduction

Trim Size: 6in x 8in G} Handley602620 cintro.tex V1 - 03/06/2020 7:37am Page 3

WHO IS THIS BOOK FOR?

Mainly, this book is for K-12 teachers of coding, or any educated adult with an
interest in the teaching and learning of programming languages. We assume no
prior coding knowledge on the part of the reader, however.

This is because, increasingly often in the coming years, teachers who once
taught a different subject will find themselves suddenly teaching coding. So we
wanted this book to be of use to teachers in those situations. As a rhetorical
strategy, we'll often seem to be speaking to the reader as if they were a cod-
ing student. If you are a teacher who isalso a student, feel free to assume we are
speaking to you.

If you are a teacher who is not also a student - ask yourself, why aren’t you a
student? In this field, the learning never stops. There's always another language,
another library, another framework, another tool-chain, another repository,
another engine, another platform, another service, another environment,
another paradigm, another sub-field, another beautiful idea.

The teaching and learning don’t stop. The job titles just change.

Finally, because our goal is to teach coding teachers what all too many do not
know before they begin teaching — even expert coders may find insights here
that they were never taught (because their teachers did not know). Thus, your
expertise in coding will not prevent you from enjoying this book. We expect the
book to be readable by: industry veterans while their unit tests run, computer
science grad students in between meetings with their advisors, and battle-tested
hackers amidst contributions to open-source projects.

Many of us appreciate the power of K-12 education. The students of today will
be our colleagues tomorrow.

LET'S DO IT!

We hope this book will empower teachers and students to write the future of
education - one line of code at a time.
At any time, For any reason, join us.

dont-teach.com/coding

Introduction 3

Trim Size: 6in x Gin @ Handleyg02620 cintro.tex V1 - 03/06/2020 7:37am Page 4

Trim Size: 6in x Gin G} Handley802620 c01.tex V1 -03/06/2020 7:37am Page5

Chapter 1
Prologues

“The programmers of tomorrow are the wizards of the future. You're going
to look like you have magic powers compared to everyone else.”
Gabe Newell, founder, Valve

“Any sufficiently advanced technology is indistinguishable from magic.”
Arthur C. Clarke

“The programs we use to conjure processes are like a sorcerer’s spells.

They are carefully composed from symbolic expressions in arcane and
esoteric programming languages.”

Harold Abelson and Gerald Jay Sussman,

Structure and Interpretation of Computer Programs

A WIZARD’S TALE
The Sorting of Wizards

“A sorting shall now commence!” an ancient wizard announced. “We must assign
all of you into your various Houses. Each House at this prestigious school cham-
pions a slightly different way of learning how to become a coding wizard. I will
now explain precisely how that works...”

Henry, who could not pay attention to lectures for very long, leaned over and
asked his new friends, "How does it work? How many Houses are there?”

Trim Size: 6in x Gin G} Handley802620 c01.tex V1 -03/06/2020 7:37am Page 8

"My mom and dad say you shouldn’t worry about getting a job,” said Rob. "You
should just learn to love magic.”

Henry said, “I just want to be in a House with you two. But even you two can’t
agree.”

Rob and Harmony exchanged a look. “Give us a moment,” said Rob, pulling
Harmony aside. They conferred in hushed tones.

Henry couldn’t hear them over the constant drone of the sorting hat: “Prolog.
Scratch. Algol. Perl. XML. Scratch. Haskell. CSS. Racket. Bash. Ruby. Python.
TypeScript. Scratch.” And so on.

When they came back, Rob said:

"Okay, we've decided. You'll go First, and whatever you get sorted into, we’ll
pick that too.”

Harmony didn't seem happy about it, but she nodded. “Wizards work in
teams,"” she said. “At the end of the day, what matters is that we stay together.”

Henry was dumbfounded. He didn't deserve friends like these. They helped
him to his feet, where he did his best to hide that his knees were shaky and weak.
Arm in arm, they joined the end of the queue - the last of the young wizards to
be sorted.

By the time Henry stepped up on the stage, the Great Hall was empty, save his
two friends behind him, and the ancient wizard in front of him. Henry sat upon
the stool and closed his eyes as the hat settled upon his head.

He could hear it talking through a speaker near his ear. “Well, well, well...
what have we here?” it said. “Henry doesn’t know what House he wants to be
in...Hmmm... Isuppose we could put you in HTML, and -" Henry stiffened. “No?
What about Scratch?” Henry didn’t know what to say. “Why am | asking you, any-
way? | could put you anywhere, and you wouldn’t know the difference.” Henry
shifted uncomfortably. “Still, | sense a great power within you — greater even
than any of the cool kids who came onto the stage before you..." Henry wasn't
sure whether he should feel complimented about his mysterious “great power”
or worried that he was uncool. “Yes, the more information | gather, the more I'm
certain of it. You're a very special young wizard. Much too special for the lesser
Houses. Perhaps | could sort you into a venerable old House, such as C. Or perhaps
an ancient House, such as Lisp. Or perhaps you'd excel in a hip, newer House, like
Rust, or an obscure but powerful House like Prolog or Haskell. Or perhaps a solid,
popularHouse, like Python or Java. Interesting. .. I've never had so much trouble
sorting someone before,” Henry's heart was beating so hard that he could barely
hear the hat anymore. Was he really destined for greatness? The suspense was
so painful that he wanted to just shout the name of a House at random in hopes

8 Don't Teach Coding

Trim Size: 6in x Gin G} Handley802620 c01.tex V1 -03/06/2020 7:37am Page 9

that the hat would put an end to it all. Somehow, he didn’t. “Hmmm, well, if | can’'t
tempt you by dropping the names of these Houses, | suppose | have no choice,”
said the hat, “but to place you into a House that I've only assigned a handful of

young wizards before..." Henry tensed.
To his surprise, the ancient wizard took the hat off of him. The look on his face
was grave.

“Henry,” said the ancient wizard, "do you know what this means?”

Henry tensed. "I didn't hear it say anything.”

“You're right,” said the ancient wizard. "It has been many, many years since |'ve
heard the hat say nothing at all. In Fact, the last time this happened, | was the one
sitting on that very stool.” He scratched his beard. “Perhaps the three of you,” he
said, “have been chosen by fate.”

Voice trembling, Henry asked, “What House did you get sorted into?”

The ancient wizard said, “This House has no name.”

“The House of No Name!” gasped Rob. "My parents said it was just a myth.”

The ancient wizard turned his attention to Rob and Harmony, still standing in
the queue line, waiting to be sorted.

“No,"” said the ancient wizard. “If we called it the House of No Name, that
would be a name, and therefore contradictory. When we refer to it, we must
resort to ‘This House has no name.’ It's a sacrifice we must make to avoid the
contradiction.”

“I've never heard of a House with no name,” said Harmony, skeptically. “There's
no wizard language without a name."

“This House," said the ancient wizard, “is the only House that isn't named after
a wizard language. That's because we don’t subscribe to any particular wizard
language.”

Harmony scoffed. "One can't do magic unless one has a wizard language,” she
said, as if she were the authority on the matter.

“You're right,” said the ancient wizard. “Focusing on a single language is not
our main approach to learning magic. Rather, we study language itself.”

Asif tounderscore that the ancient wizard had made his main point, the phrase
“language itself” echoed throughout the now empty Great Hall.

“It definitely sounds way cooler..."” said Rob. He and Henry both looked at
Harmony.

“No way,” she said. “I'm joining Python. | want to actually get a job.”

The ancient wizard shrugged. “The sorting hat will ultimately respect your
wishes. However, if | may impart just a small moment of wisdom..." The ancient
wizard cleared his throat. “If a job is what you seek, many roads will take you

Prologues 9

Trim Size: 6in x Gin G} Handley602620 cO1.tex V1 -03/06/2020 7:37am Page 10

there. At the end of the day, though, when you're looking back on your life, don’t
you want to take comfort in the fact that you took the road that was way cooler?”

The words “way cooler” seemed to echo throughout the Great Hall.

Harmony waivered.

"Come on, Harmony,"” said Henry. "Wasn't it you who said that wizards always
work in teams?”

With a sigh, she said, “Fine. I'll do it. I'll join the House of No Name - or this
House which has no name, or whatever it is. But for the record, | think it sounds
weird, and | don't like it.”

The Call to Action

The ancient wizard motioned for them to Follow him. “Come,” he said, “I will
personally teach you three the ways of this House which has no name.”

He reached into his robe and pulled out three copies of a book, giving one to
each of them. The title: Don’t Teach Coding.

Henry glanced nervously at Harmony. She did not look pleased.

To be continued. . .

A LANGUAGE WITHOUT

Our Strange Protagonists

This book is about those languages that make computers do things.

Most people today call them “programming languages” - though they weren’t
always. These languages, oddly enough, are the protagonists of this book - and
a mysterious set of heroes they are indeed. On the one hand, they are the tools
with which programmers weave the software of the world. On the other hand,
the act of learning these languages is what makes us into programmers. They are
both tools and rites of passage.

As if that wasn’t strange enough, once becoming programmers, we use
programming languages to make other software - including, oddly enough,
more programming languages. If this sounds like a loop, it is — one that affects
everyone who has ever learned programming, and anyone who ever will.

Many of us can outline our personal histories as programmers by listing the
languages we learned in different chapters of our lives. One of the authors Ffirst
learned to program in a language called Applesoft BASIC, which came with his

10 Don't Teach Coding

Trim Size: 6in x Gin G} Handley602620 c01.tex V1 -03/06/2020 7:37am Page 11

parents’ first PC. Back then, people were still calling Apple computers PCs, up
until IBM-compatible PCs re-wrote that definition. These new “real” PCs also
shipped with a version of BASIC called QuickBASIC - itself an evolution over
earlier versions of BASIC. He learned Java, Logo, Visual BASIC, Perl, and Pascalin
high school. In college, it was more Java and Haskell, with an additional helping
of C, C++, Ruby, Python, and Lisp. When he went into industry, it was Ruby,
PHP, SQL, Bash, XML, HTML, CSS, and JavaScript. For his master's degree, it was
C#, more Java, more Haskell, and Racket. For his Ph.D. and beyond, it was more
Racket, and-

You get the point.

And that’'s just his story. Ask any programmer what languages they've
mastered in their lifetime, and you'll get a different story. Sometimes it will be
a long story, sometimes short. The details will change depending on when and
where they were born, which languages were in vogue when they were going
through grade school, which ones were taught in college, which ones were
used by the companies that offered them jobs, which ones they selected for
personal projects.

Asworking programmers, we have many cognitive tools, yet our languages are
truly special. They are what we use to magically convert the vague linguistic utter-
ances of non-coders - that s, “Solve problem X for client Y” or "Make an app that
makes money” or “Get us more users” or "Make this data comprehensible” - into
precise programs that, when run, actually do those things that non-coders could
only talk about. Our languages are what make us look like wizards to others.

The story of how a programmer’s mind develops feels like a personal expe-
rience — yet every programmer’s origin story is woven into that larger story
of programming languages. There are common threads. There are patterns.
The larger story knits us together as a community. Linguistic history is our
history; linguistic future is our Future. Languages are the tools that shape us; we
are shaped by the programmers who shaped those languages.

Ironically, Few of us know the larger stories before beginning to wield a lan-
guage. It is a rare student indeed who picks up one of these sacred tools for the
first time with Full knowledge of its true history, orits true power. Rather, most of
us made our first steps as programmers by pulling one of the many magic swords
from its stone and proceeding to chop vegetables with it — unable to see the tool
for what it truly was. Languages, after all, are strange things: tools of the mind.
As such, they cannot be correctly seen until after they have been learned.

These cognitive tools also deeply affect the teaching arts. Their sheer num-
ber poses an Eternal Conundrum: Teachers and students must reckon with their

Prologues 1

Trim Size: 6in x Gin G} Handley602620 cO1.tex V1 -03/06/2020 7:37am Page 12

multitude year after year. The twin questions of the conundrum are: “Which one
should I learn?” and “Which one should | teach?”

The Eternal Conundrum serves as the backdrop while our society embarks on
a historic First: to install the first large-scale public infrastructures For teaching
coding in a world that has finally seen that the light of the software dawn is
only growing brighter. It took time, but the direction has become quite clear.
K-12 computer science educational standards have been drawn up in 22 states
(Lambert 2018). lowa and Wyoming have passed legislation mandating coding in
all elementary, middle, and high schools statewide (lowa 2019) (Goldstein 2019).
Non-profit advocacy groups like Code.org and CS For All continue to success-
fully drive the teaching of computing classes from Pre-K to 12th grade (Code.org
2019) (CSForALL 2019). The National Science Foundation has invested several
million in the CS 10K initiative (Brown and Briggs 2015) — its mission: to pro-
duce 10,000 new high school computer science teachers across America. Even
big tech companies like Google and Microsoft are spending money and labor on
the effort — developing free or low-cost out-of-the-box curriculum and software
to facilitate coding education.

England has already mandated computer science classes for all children
between 5 and 16 years of age (United Kingdom 2013). Italy has launched
an endeavor to introduce computing logic to over 40% of its primary schools
(Passey 2017). Japan will mandate computing education starting in primary
school by the year 2020 (Japan 2016). Finland introduces coding and computa-
tional thinking starting in 1st grade (Kwon and Schroderus 2017). One by one,
the countries of the world join in this unified initiative.

When a society changes its public school systems, it is changing its very defini-
tion of “basic literacy” and therefore of “educated person.” Let's take the current
trend to its extreme and imagine, for a moment, a world in which coding flu-
ency is acquired by all students throughout all grade levels and beyond. In other
words, the average person walking down the street will have had 12 years of
computer science education. It's safe to say, that if school systems do an even
moderately good job, the average citizen will be fluent in one or more program-
ming languages. For many, this fluency will start so early in life that they will have
no recollection of not knowing how to code.

Because of the growing importance of these enigmatic things called program-
ming languages, which we are eagerly welcoming into the minds of our children,
this book examines a loop of linguistic ideas — each so interconnected with the
others that they are best pondered together, in a single book.

Programmers design new programming languages. Teachers teach program-
ming languages to non-programmers. Learning programming languages makes

12 Don't Teach Coding

Trim Size: 6in x Gin G} Handley602620 cO1.tex V1 -03/06/2020 7:37am Page 15

languages in hopes of correcting damage caused by previous ones. Let it be
stated for the record: This treatment appears to have been successful for the
author in question.

For better or worse, the evolution of BASIC was once a strategic part of the
early skirmishes between what would become two of the biggest software mega-
giants on the planet, Microsoft and Apple. Its existence sparked the origin stories
of all programmers who completed their rite of passage on those machines. Yet
today, the remnants of those original versions of BASIC remain alive only in the
form of online JavaScript-based emulators that allow certain programmers to
engage in nostalgic reconstructions of the programs we wrote as children. They
are preserved: Software enshrined in software. As tools of the mind, though, they
are not wielded as they once were.

Today, Microsoft champions many languages. Microsoft's TypeScript, a super-
set of JavaScript, is listed as the 41st most popular language in the world on
the TIOBE index. Microsoft's C#, partially inspired by Java, is the 6th most popu-
lar language. Apple meanwhile champions languages like Objective-C and Swift,
the 10th and 13th most popular languages. The linguistic ecosystem changes so
quickly that these numbers will probably be out of date by the time you read
them, which underscores the point. Languages are ever changing; what seem like
mountains turn out to be tall waves in a shifting sea.

Whether brain damaging or enlightening, we learn these languages, and they
make us who we are. Then we learn more, and continue to change.

For some, our first language may have been BASIC. For others, perhaps it
was Logo. For others, Scratch. Regardless of our first language, the younger we
are when we learn, the less likely it is that we are making an informed, rational
decision about which language to learn.

It is not uncommon for everyone in a classroom (perhaps even the teacher)
to be using a language without knowing where it came from and why. In that
ahistorical context, students sit down to write their traditional first line, bidding
their computer to say hello to a multilingual world they do not yet understand.

Tower of Babel

Our digital Tower of Babel is on the one hand quite beautiful, and on the other
hand not. It's beautiful because unlike the biblical story of Babel, the legion of
languages was not a curse cast upon humanity; it is an act of creation to which we
have been willing participants. These languages didn’'t just happen. We created
them - not by accident.

Prologues 15

Trim Size: 6in x Gin G} Handley602620 cO1.tex V1 -03/06/2020 7:37am Page 16

Programs written in these languages run our world - our planes, our cars, our
governments, our militaries, our businesses, our charities, everything. An opti-
mist might see it as the opposite of the Tower of Babel story: We gave ourselves
the gift of tongues to write our edifices into existence.

On the other hand, there are less beautiful aspects of the polyglottic
world - not the least of which is that newcomers face a bewildering array of
choices the instant they enter the gate. Some of those choices are popular
languages like Python and Java. Some are languages designed to make pro-
gramming easier to learn - like Scratch, Hopscotch, and Snap. The Wikipedia
page on “Educational Programming Languages” lists more than 50 languages
that were either created for educational use or are used as such. Even the
language BASIC (created in 1964) stands for Beginner All-purpose Symbolic
Instruction Code — marking it as a language tailored fFor beginners, which is why it
shipped in the 70s on “microcomputers,” and then again in the 80s on “personal
computers.”

Being a beginner coder is a bit like being a hero embarking upon a quest, but
then immediately being faced with a Fork in the road that goes in more than
50 different directions (or 850 directions, if we look beyond specialized educa-
tional languages). It's like the quest to become a coder begins with a meta-quest:
which quest to go on; which language to learn.

Confessions

This section is a disclaimer.

The authors of this book are not innocent when it comes to increasing the
number of beginner languages in the world. As the architects of a coding
education start-up (ThoughtSTEM), they've created a variety of languages with
the purpose of making programming more accessible for beginners: LearnToMod
is an environment and language for creating Minecraft mods; CodeSpells is a
game where you program your own magic spells using an in-game version of
JavaScript; #1ang vr-lang is a Lisp-like language for constructing virtual reality
scenes; #lang game-engine is for creating 2D RPG-style games. And that's not
even all of them.

Once you've designed one new language, it becomes easier to design more.

While we designers mean well in creating these languages, it's a bit awkward
to explain: “Hi, welcome to the land of programming. Sorry there are so many
roads here at the entrance. But don’t worry! We're making this part more user-
friendly by paving these additional roads for you.”

16 Don't Teach Coding

Trim Size: 6in x Gin G} Handley602620 cO1.tex V1 -03/06/2020 7:37am Page 17

Um... Wait...
Alan Kay, the creator of object-oriented programming and the language
Smalltalk, is often quoted:

Every problem in computer science can be solved by another layer of
indirection — except the problem of too many layers of indirection.

Similarly, problems in coding education can be solved with another
language - except the problem of too many languages.
This book uses a different method.

Penances

Rather than paving yet another road, we decided to write a book about the
roads — a book to be read before embarking on any of them.

One of the motivations was to show that the “problem of too many lan-
guages” is not a problem at all. It's what makes computer science the powerful
and elegant field that it is.

Throughout this book, we'll examine a sequence of increasingly interesting
languages, starting from basic ones and ending with ones as powerful as those in
professional use today — as powerful as the ones that top the charts, as powerful
as those mountains of our day.

There will be plenty of coding exercises — but never in any one language. We'll
take the way cooler road.

To be continued. . .

A LANGUAGE WITHIN

Installing Languages

Because of the polyglottic nature of this book, we'll be using a special tool called
Racket - a language for creating languages. If you want to run the programs
in this book, all you have to do is 1) download Racket, and 2) download our
languages. You only need to do these steps once.

If you're ready to do that now, here are the directions. If you're just reading
the book cover-to-cover, you don’t have to download Racket yet.

Even if you don't download, though, don't skip this section! That goes for any
part of the book too: Don’t skip. You won't get lost. Above all, we've written this

Prologues 17

Trim Size: 6in x Gin G} Handley602620 cO1.tex V1 -03/06/2020 7:37am Page 18

book to be read. Following along on the computer is for bonus points. Whenever
the output of a program isn’t obvious, we'll print it. This is so you can follow the
main ideas whether or not you're following along on a computer.

Exercise

Step 0: Don't be scared to ask For help. If you get stuck installing, please
feel free to ask for help at dont-teach.com/coding/Forum

Step 1: Download and Install Racket. Go to download.racket-lang.org.
Download the appropriate installer. Launch it and follow directions.

Step 2: Install the “Don’t Teach Coding” Package. With Racket installed,
you can now launch a program called DrRacket. Do so.

Next, click
File » Install Package...

In the prompt, type dtc and press enter. Installing this package will take
a few minutes.

Lastly, in the lower left-hand corner, DrRacket may say No Language
Selected. Click that, and select Determine language from source. Racket is in
polyglottic mode now, which we’ll explain in a moment.

Step 3: Write some "Hello, World" programs. The point of such pro-
grams is less about printing "Hello, World" than it is about checking
to see if everything got set up correctly. So feel free to print whatever
you want.

Your DrRacket may look slightly different from the following Ffigure.
For example, the version number may be different (in ours it is 7.3). Do not
be alarmed; the programs in this book will still work. To write your "Hel lo,
World" program, you simply need to write it your Editor Window (the
one that doesn’t have the version number). In the following figure, we've
labeled the two windows after running the program. Can you guess which
window has the program and which has the output?

18 Don't Teach Coding

Trim Size: 6in x Gin G} Handley602620 cO1.tex V1 -03/06/2020 7:37am Page 19

#lang dtc/hello/normal k [Vgeli::ome to DrRacket, version 7.3 2
m].
" " " Language: dic/hello/normal, with 2
(print "HELO") debugging.
"HELO"
>
Edilor Window | | Interactions Window

When you've written your program, you need to run it - which we think
you will be able to figure out on your own (Hint: Look for the “Run”
button). If something meaningful prints out, everything is set up correctly.
IF something went wrong, feel free to post on the Forums.

dont-teach.com/coding/Forum

Writing in Tongues

From now on, when there's a code example, we're not going to insert the entire
screenshot as in the figure above. Instead, we'll show code examples like this:

#lang dtc/hello/normal
(print "HELO")

Notice the first line. This will always be there - the so-called “#1ang line.”
It tells human readers and the computer the language under which to interpret
what follows.

Prologues 19

Trim Size: 6in x 8in G} Handley602620 cO1tex V1-03/06/2020 7:37am Page 22

The key thing to notice about the last three examples is that we didn't change
the code, only the language. The first time we said "HELO" to the world, we
used slang dtc/hello/normal. The second time, we used the language, #1ang
dte/hello/colors. The third time, we used #lang dtc/hello/animation.
What's interesting though, is that if you look at just the code (ignoring the
language), you wouldn't be able to tell what language each is written in.

Here are all three programs together:

#lang dtc/hello/normal

(print "HELO")

#lang dtc/hello/colors

(print "HELO")

#lang dtc/hello/animation

(print "HELO")

They do different things because the word print means something different
depending on the language.

This concept arises in human languages, not just programming languages.
The English word “gift,” in German, means "poison.” The English word “kiss,”
in Swedish, means “pee.” And flashing the peace sign on one's forehead, in
American Sign Language, means “stupid.”

The same words or signs, under different interpretations, are not the same
words or signs.

Nova: Va o no va?

A famous (but surprisingly false) example of misinterpretation is the caution-
ary tale about the Chevy Nova. As the story is told in hundreds of marketing
books and business seminars (Aisner 2000), (Colapinto 2011), this car sold poorly
in Spanish-speaking countries because the word “Nova” is similar to the Spanish
phrase “no va,” which translates to “doesn’t go.” Supposedly, Spanish speakers
were concerned that if they bought a Nova, it wouldn't go.

But language isn't always so simple. The Chevy Nova actually sold well
in Spanish-speaking countries, meeting or exceeding expected sales numbers in

22 Don't Teach Coding

Trim Size: 6in x Gin G} Handley602620 cO1.tex V1 -03/06/2020 7:37am Page 23

both of Chevrolet's primary Spanish-speaking markets: Mexico and Venezuela
(Hammond 1993).

When you think about it, it makes sense. Just as in English, we don’t say that
a car "doesn’t go,” in Spanish, it would be more common to say something like
“no funciona” (“it’s not working”) or “no camina” (literally “it's not walking,”
but a better English translation would be "“it's not running”). Furthermore, until
2016, the word "Nova” was used for a kind of leaded gasoline provided by
PEMEX - Mexico's state-owned petroleum company (Onursal and Gautam 1997).
In terms of word associations, Nova gasoline is more connected to cars than
the phrase “no va,” which doesn’t even apply to cars and isn’t even pronounced
like “Nova.”

This story /s a cautionary tale — but less about how to market cars than about
how language works. It's a reminder not to make assumptions about how words,
phrases, or pieces of syntax will be interpreted in a language you do not know.
Languages are not simple.

The fact that the Chevy Nova story is so often repeated suggests that we
English speakers don't need much convincing when it comes to how others are
misinterpreting our words. The reality, of course, is that we are often the ones
poorly interpreting the words of others: “No va" being unrelated to cars; and
“Nova" being a leaded gasoline.

Hello, Hello, Hello

Programming students confuse syntax and semantics too. One of our favorite
trick questions is, “In what language is the following code written?”

print("Hello world")

Students will raise hands and say things like Python, Ruby, or Lua - all of which
could be correct. You could write this line in those languages. Something would
happen.

However, the only truly correct answer is to note that it's backwards to ask,
“In what language is this written?” - just as it would be backwards to ask in what
language strings of symbols “gift,” “kiss,” or “Nova” are written. There isn't just
one language in which a string of symbols like “gift” has meaning - just as there
isn’t just one in whichprint.("Hello World") has meaning.

The reverse is also true: The string of symbols “gift” has no meaning in
some languages (e.g., Chinese or Arabic, whose syntaxes use different symbols

Prologues 23

Trim Size: 6in x Gin G} Handley602620 cO1.tex V1 -03/06/2020 7:37am Page 24

entirely). Likewise, there are languages in which print("Hello World") has
no meaning - in Node.js (a non-browser-based implementation of JavaScript),
for example. Running it will trigger an error that basically translates to: “I don’t
know what print means.” In browser-based versions of JavaScript (yes, there
are many JavaScripts), print does have meaning. It will ignore everything
inside the parentheses and open a print window. Running print("HELO") and
print("Goodbye") do the same thing for this JavaScript.

In other words: The same string of characters that causes one language to say
"hello" will cause others to tell you that you've made a mistake, and still others
will do something else entirely.

Furthermore (as if it weren't confusing enough), any JavaScript programmer
can make their JavaScript understand that print should display words, rather
than triggering an error or opening the print window. Whereas the following
doesn’'t normally Function in JavaScript the same way it does in Python, Ruby,
and Lua —one could makeit do so:

print("Hello world")

It's not difficult at all — and we’ll cover this very basic form of language
extension (“defining a function”) later in this book. Many languages allow you to
change the basic functionality of certain words, like print. Every programming
language in modern use allows you to add vocabulary that wasn't there before.

Summing up:

=« Onthe one hand, a program can act differently in different languages.

* Onthe other hand, two programs that act the same may look different in
different languages.

* To make matters more confusing, some programs that don't work at allin
alanguage can be made to work in that language by extending it with new
vocabulary.

Syntax even changes between versions. This works in Python 2.7
print "Hello, World!"

...butin Python 3 it must be...

print("Hello, World!")

Yes, it's true. There are many Pythons. We say this because it often comes as
a surprise to our students - even the ones who love Python, even the ones to

24 Don't Teach Coding

Trim Size: 6in x Gin G} Handley602620 cO1.tex V1 -03/06/2020 7:37am Page 25

whom we have already explained that there are many JavaScripts. Python was
created in the 90s, and there have been many implementations since: Python,
Jython, PyPy, and so on. And of course, there have been many versions within
each of these Pythons (2.7 and 3.0, for example).

Don't despair, though! The process of becoming a coderis, in part, the process
of becoming better at learning new languages — and becoming better at keep-
ing them separate in your mind. It might seem impossible at first. It might seem
like programming requires the world's longest cheatsheet. But we humans have
an incredible capacity for learning languages and switching among them based
on context.

If you're truly bilingual in English and Spanish you will have little trouble
switching between them. Likewise, as you become a skilled coder, you'll have no
more trouble keeping track of which programming language you're using than
you would keeping track of the difference between poker and solitaire. Our
brains have tremendous capacity for absorbing new sets of rules — whether they
are game rules (like how the knight moves in chess), or grammatical rules (like
"Put a comma between salutations, like ‘Hello,” and recipients, like ‘World™),
or syntactical rules (like “Put a parenthesis after symbols like print”), or even
meta-linguistic rules (like “Speak Spanish with your mom and English with your
dad,” or “Use Python for the company’s web app but use Bash for your personal
shell scripts”).

In any event, with our newfound ability to write in tongues, we are ready to
begin our journey through a fascinating land - fraught with syntactic perils and
semantic adventures.

To be continued. . .

LANGUAGES WITHOUT

As C-3PO putit:
I'm fluent in over 6,000,000 forms of communication.

The authors have taught many students and teachers throughout the years.
We overhear things.

When we had First launched our company, one 12-year-old student boasted
on his first day of a coding summer camp that he was “fluent in six different lan-
guages.” When asked which ones, he said: "English, Scratch, Java, JavaScript, and
a little bit of Python.”

Prologues 25

Trim Size: 6in x 8in G} Handley602620 cO1tex V1-03/06/2020 7:37am Page 26

“That's only five,” one of the camp counselors pointed out.

“Oh, | forgot,” he said. "My mom also taught me sign language.” He started
signing the alphabet with the kind of total confidence that “fluent” 12-year-olds
sometimes have.

One of the other kids in the camp inadvertently asked a deep philosophical
question, “What does ‘fluent’ mean?”

“It means you know it,” the first kid said, rolling his eyes, as if the question was
offensively trivial.

As the coding camp went on, it became clear that his only fluency was in
English. His "fluency” in Scratch came from having done an “Hour of Code”
at his elementary school. His Java/JavaScript “fluency” came from his father
(a full stack web developer) having explained the difference between “Java” and
“JavaScript” while showing him some of the JavaScript code he had written for
work. His Python “fluency” came from a few hours of online Python lessons with
his dad, who had decided that Python was a better first language than JavaScript.
His American Sign Language “fluency” boiled down to knowing the words for
“hungry” and “milk,” and about 15 of the signs for letters of the alphabet.

Still, we learned a lot From this kid. This was the Ffirst time we'd heard some-
one claim to be “fluent” in a programming language - and to so deeply conflate
this “fluency” with fluency in natural languages like English and American Sign
Language.

As it turned out, this kid had his finger on the pulse of the times. A few years
later, from 2015 through 2016, Senate Bill 468 (Florida Senate 2016) was perco-
lating through the Florida state government. The bill was to require the Florida
College System to allow high school coding classes to count as foreign language
credits. That is, high school students could take a Java class instead of a Spanish
class — and the two would be equivalent for the purposes of college admission
and college credit.

The League of United Latin American Citizens (LULAC) and the Spanish
American League Against Discrimination (SALAD) objected (Clark 2016):

Our children need skills in both technology and in foreign languages to compete
in today's global economy. However, to define coding and computer science as a
fForeign language is a misleading and mischievous misnomer that deceives our
students, jeopardizes their eligibility to admission to universities, and will result
in many losing out on the foreign language skills they desperately need even for
entry-level jobs in South Florida.

Although the bill was stopped in the House after passing the Senate 35 to 5,
the whole attempt suggests how easy it is for 12-year-olds and/or lawmakers to

26 Don't Teach Coding

Image
not
avallable

Trim Size: 6in x 8in G} Handley602620 cO1tex V1-03/06/2020 7:37am Page 29

something like "gorblesnop” if, indeed, he wanted a senseless word. However,
to do so for all operations, across all the symbolic languages one might design,
leaves the mind juggling many words that have no sense in any language.
Programming language designers over the decades have imported other
words from English rather than inventing new words: “if,” “class,” “object,”
“graph,” “i
do not retain their ambiguous English meanings when used by programmers.
They take on a much more technical meaning in “programmer English.”

Babbage’s Calculus Club

Even before this, as early as 1813, when Charles Babbage was merely a college
student at Cambridge - long before working on his Difference Engine or his
Analytical Engine — he wrote of what he called “symbolic language,” describing
such mathematical notations as tools For unburdening the mind:

It is the spirit of this symbolic language (so much in unison with all our faculties,)
which carries the eye. . .to condense pages into lines, and volumes into pages;
shortening the road to discovery, and preserving the mind unfatigued by continued
efforts of attention to the minor parts, that may exert its whole vigor on those
which are more important.

Thiswaswrittenin the preface to a manifesto authored by a small group of rev-
olutionary Cambridge students called the Analytical Society — of which Babbage
was a founding member. The group’s goal was to bring about a linguistic change
in their education system: getting Cambridge to abandon the use of Newton's
calculus notation in textbooks and exams, and rather to use the more popular
notation in continental Europe - Leibniz's notation.

This might sound trivial or geeky, but it was actually a surprisingly Forward-
thinking idea. Recall that the debate about who invented calculus (Newton or
Leibniz) still smolders to this day. Newton was the Englishman, so one can imag-
ine which side the schools of England were on. Babbage's group was championing
Leibniz — the non-Englishman who had invented a notation that many consid-
ered superior to Newton'’s. In spite of their controversial position, however, they
were ultimately successful, with the momentum continuing even after the group
had been disbanded. Cambridge began to include Leibniz's notation on exams;
textbooks were translated; and by 1830, Leibniz's notation was commonplace in
England, alongside Newton's. Today, pick up any calculus textbook, and you will
find Leibniz's notation for derivatives and integrals, not Newton'’s.

Prologues 29

Trim Size: 6in x 8in G} Handley602620 cO1tex V1-03/06/2020 7:37am Page 30

It is perhaps the first example of an education system’'s wholesale adoption
of one symbolic language only to replace it with another, more popular one.
In computing, this is commonplace with the symbolic languages of our day:
Before universities taught Java they taught C++ and Pascal (Guzdial 2011);
today, more and more are shifting to Python, which is now the most common
language taught (Guo 2014). Tomorrow? Who knows?

Babbage's Analytical Society was less about calculus and more about a
psychological idea:

that one language of symbols can be a better tool For the mind than another.

Later, he would go on to do what he is most Famous for: inventing the
Analytical Engine — a machine that could manipulate symbols. This machine
would be programmable in a Notation of his invention — a symbolic language.
In other words, the career of the father of computing was, from his university
years onward, intertwined with symbolic languages, what mathematicians today
would call “formal languages.” This is a broad linguistic category that includes
mathematical notations like the ones of De Morgan and Babbage, as well
as modern programming languages like Java and Python.

Between 1837 and 1845, Babbage and Lovelace would pen (using the
Notation) the First things that historians consider to be “computer pro-
grams” — a full century before the first thing that historians consider to be
“computer hardware” would actually be built (Konrad Zuse's electronic Z3
computer, in 1941).

In the 1950s, the designers of early programming languages (many of them
mathematicians) would begin to gravitate toward the already-accepted L-word
for describing the notations of mathematics. It had been that way since before
they were born. Though this fact is probably lost on the average elementary
school student learning the Scratch language, the L-word gravitation was less
about connecting programming languages to English or Spanish, and more
about connecting it to the mathematical languages of people like Newton,
Leibniz, De Morgan, Babbage, Russel, and Whitehead.

Today, the programming languages we teach and learn in schools are instan-
tiations of a long and ongoing tradition of language design - one that predates
the earliest of the electrical machines on which they run. The machines are
by no means the origin of these languages; and to think so would be unfair
to them.

Indeed, there isn't even a chicken/fegg ambiguity here: Programming
languages were built a full century before programmable machines.

30 Don't Teach Coding

Trim Size: 6in x Gin G} Handley8602620 c01.tex V1 -03/06/2020 7:37am Page 31

Babbage never built the Analytical Engine, in fact. Yes, that machine he is
most famous For - the thing that launched the digital age — was never fully
constructed. The notation he and Lovelace wielded came from a long tradition
of notational design that predated even his drawings of that machine —inherited
from predecessors like Newton and Leibniz. Babbage's and Lovelace's early
programs were comprehensible to others in spite of the Analytical Engine being
the stuff of dreams.

Diffs

It's easy to find differences between Java and English, or Scratch and ASL. Let's
get most of that out of our system here, so that the rest of the book can deal
with what is actually much more interesting: what these very different kinds of
languages have in common.

In the next chapter, we'll see that, different though they are, programming
languages and natural languages actually do have one surprising thing in com-
mon: In an FMRI machine, a medical device used in brain imaging, the parts of a
coder’s brain that light up when they are reading code are the same ones that
light up For all human beings when we comprehend natural language.

This was a groundbreaking scientific discovery in 2014 that will be all the more
exciting and delightfully puzzling after we have spent the rest of this chapter
examining how different computer languages and people languages are.

Finite Descriptions of the Infinite

The 3rd edition of the American Heritage Dictionary of the English Language has
more than 350,000 words (Soukhanov 1992). The Academic Dictionary of Lithua-
nian has about half a million (Academic Dictionary of Lithuanian 2005). The online
dictionary of the Turkish Language Institute contains more than 600,000 words
(Turkish Language Institute 2019). And the online dictionary for the northern and
southern dialects of Korean tops out at more than 1.1 million words (National
Institute of Korean Language 2019).

Natural languages are big things.

That said, one might argue that the number of words in a dictionary doesn’t
really denote the size of a language. That's true. The average American high
school graduate knows about 45,000 words (Pinker 1994). And although they
may know and recognize 45,000 words, the active vocabulary of the average
American adult is closer to 20,000 words (Jackson 2011). That's far short of the

Prologues 31

