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Chapter 1

Introduction

What’s in a name? That which we call a rose
By any other name would smell as sweet.

W. Shakespeare

1.1 Wherefore EFT?

This book is about effective field theories (EFTs). What makes a field
theory effective? Is it better or worse than a “regular” field theory? We
shall argue in this book that the way calculations are set up in EFTs makes
them the most natural and convenient tools to address multi scale problems.
Problems with separated scales often appear in Nature, and we intuitively
know that it is most convenient to only work with degrees of freedom that
are relevant for a particular scale — otherwise the problem quickly becomes
intractable! You never worry about physics of the atoms when designing
bridges, nor try to track each and every molecule of a gas through phase
space; you instead define some “macroscopic” variables, and once you know
how to relate those variables to the more “fundamental” laws, you can
stop thinking about these laws and focus only on the relevant large-scale
physics. EFT techniques codify this principle when working with problems
in quantum field theory.

It is interesting to note that scale separation is very natural in physics.
In quantum mechanics, we are not concerned with the value of the top
quark mass when we calculate the energy levels of a hydrogen atom. Of
course, given certain precision of an experimental measurement, we might
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want to be concerned about that.! Having this in mind, however, we would
still insist that only degrees of freedom relevant to the problem in hand are
needed to perform the calculation. In the language of quantum field theory
this implies that operators that are responsible for experimental observ-
ables only include fields describing light degrees of freedom. By doing so
we effectively eliminate all heavy particles with masses well above the scale
associated with the problem at hand (say, a hydrogen atom).? They have
not disappeared completely: quantum theory allows the possibility of these
particles to be created and destroyed on very short time scales, and this
leads to coupling constants and other parameters of our theory changing
with scale — and this change could be affected by the removed degrees of
freedom. Also, we might improve the accuracy of our predictions by intro-
ducing more operators in our theory. This certainly happens when it is not
forbidden, for example, by the symmetries of the system we are studying.
In a sense, symmetry becomes the guiding principle for our construction
of effective description of physical systems: we do not even need to know
what heavy particles we integrated out! We can keep adding more oper-
ators, provided we know the way to assess the importance of those new
contributions — or, colloquially speaking, power count them. The structure
and coefficients in front of those operators, when fit to experimental data,
might tell us something about the heavy particles that we integrated out.
Thus, EFTs become a very convenient way of studying new, undiscovered
physies.

As we shall see in this book, this is one way of using techniques of
effective field theories. There are many others. In the previous paragraph
we discussed removing some (heavy) degrees of freedom completely. Instead
of doing that, we can remove only “parts” of the fields. That is, we can
remove the known solution, say, for a static or fast-moving particle, only
concentrating on the corrections to the known result. This might reveal
new symmetries of the theory, simplifying the overall description. The
EFT method will allow us to do this as well.

1One of the most precise measurements known so far is the measurement of anomalous
magnetic moment of the muon. That measurement is sensitive to the effects of heavy
quarks, but not the top quark.

2Thinking in terms of a path integral formulation of a field-theoretic problem, we inte-
grate out all heavy degrees of freedom.
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1.2 EFT vs MFT

In condensed matter physics, scientists have often employed the technique
of “Mean Field Theory” (MFT), and for those that are familiar with it,
yvou might think that we are simply re-casting an old idea in new clothes.
It is certainly true that MFT and EFT have a common heritage, and they
borrow a lot from each other; but there are a few philosophical differences
between the two approaches that should be understood from the outset.

In MFT, the program is to try and calculate a background state of
the dynamical degrees of freedom, which is an average, or “mean” field.
This quantity is usually called the order parameter. You can set up your
action (or in condensed matter systems, free energy) as a function of this
order parameter, and use the result to make predictions. Like EFT, there
are several ways to set up this free energy functional. One approach is to
attempt to compute the order parameter directly and then re-express the
free energy as a function of this mean field; this is the so-called Bragg-
Williams MFT. Another thing you can try to do is identify the order-
parameter and symmetries using physical arguments, and then write down
the most general free energy as a function of this order parameter that
is consistent with all the symmetries you identified; this is the so-called
Landau MFT. There are other approaches to MFT that have been tried
and tested over the last century as well. A nice review of these approaches
to MFT is given in [Chaikin and Lubensky (1995)].

MEFT has its advantages and disadvantages. It is simple and intuitive,
and it often does a great job making qualitative predictions, such as the
general structure of the phase diagram for a system. It also tends to do a
good job making quantitative predictions far away from any phase transi-
tion or other breakdown of the assumptions that go into constructing it.
However, MFT explicitly ignores fluctuations away from the mean field.
For a system in equilibrium, this is not generally a problem, although there
is a certain limit of accuracy; but when describing a phase transition, for
example, it leads to nonsense! Phase transitions are precisely the point at
which fluctuations can dominate the system, and as a result, MFT calcula-
tions of things like critical exponents are often far from the mark. At this
point, physicists need to look elsewhere. There are many clever approaches
that have been developed to correct for MFT’s missing information. For a
wonderful review of these methods, see [Zinn-Justin (2002); Parisi (1988)],
for example.

EFT does not share the problems of MF'T, at least not on the surface.
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One can think of MFT as a “leading-order” EFT result. Many of the
methods we alluded to in the above paragraph are actually built into EFT’s
general make-up. Furthermore, EFT takes many of the ideas from quantum
field theory, such as Feynman diagrams, path integrals and renormalization,
and builds it in directly to the theory, rather than as an add-on to correct
for MFT’s deficiencies. In short, EFT is a more general approach to a
problem than MFT.

Of course, since both methods are applied to similar problems, they
often borrow from each other, and so becoming an expert in EFT will
help you to have a better understanding and appreciation for the MFT
approach to condensed matter systems. As both of the authors of this
book are trained as particle physicists, most of our examples are focussed
in that direction. Nevertheless, we hope that seeing how the techniques are
generally applied will help readers from many different fields have a better
understanding of how to perform effective calculations, and the power you
gain by casting your theory in this language.

1.3 An example from Newton

As a simple example that nevertheless shows many features of a real ap-
plication of effective Lagrangians, let us consider Galileo Galilei’s Leaning
Tower of Pisa experiment. According to Galileo’s student, Vincenzo Vi-
viani, Galileo dropped balls of different mass m from the Leaning Tower of
Pisa. We can write a Lagrangian for one of the balls,

mv2 mv2

where ¢ is the free-fall acceleration, h is the ball’s height, say, above the
ground, and v = / is the velocity of the ball,.

We argue that Eq. (1.1) represents an effective Lagrangian to the full
mechanical description of this problem. We are all taught that the zero level
of potential energy V' (h) can be chosen arbitrarily, it is only the potential
difference that is physical. Since constant terms can be dropped in the
definition of a Lagrangian in Eq. (1.1), this fact is represented by a manifest
shift symmetry, h — h + a, where a is constant distance. Another way of
saying this is that the force acting on the ball, F' = myg, is independent of
the height of the tower.

Now this is not, strictly speaking, correct! If the Leaning Tower of Pisa is
moved to the top of Mount Everest, the force and the potential energy would



Introduction 5

change, simply because free-fall acceleration, g(R) = GM/R?, depends on
how high the object is located above the Earth.? In fact, one can show that
g(R) satisfies the following differential equation,

R%Q(R) = 749(R), (1.2)
with 74 = —2. This equation looks very much like a renormalization group
equation.?

We already know that Eq. (1.1) is not an exact expression, in fact, it
is an approximation. One can try to make it better by observing that the
radius of the Earth is much bigger than the height of the Leaning Tower of
Pisa, i.e. h/R — 0. A better approximation to a true potential can take a

form of a power expansion,

V(h) = C1(R) m (%) +Cy(R) m (%)2 T (1.3)

Here C;(R) are unknown coefficients, which can be found if precise experi-
mental data is available. In principle, an exact potential can be guessed if
a sufficient number of terms in the expansion of Eq. (1.3) is determined.
In the case at hand, however, we can do better. Indeed, as Sir Isaac
Newton tells us, the full theory is described by a Newtonian interaction
potential between the Earth of mass M and a ball, separated by distance
r

’ M M
vin =c22 g2 (1.4)
T R+h
which, however, does not have a manifest symmetry o — h + a that the

effective Lagrangian of Eq. (1.1) possesses. Expanding V(R) in h/R and
matching Eqs. (1.3) and (1.4) we can determine the unknown coefficients,

GM

Ci(R) = —C2(R) = ... = R (L.5)
which results in the expansion of the potential,
oM R\ GM h\?
V(h) = — == -
m=n(g)-F ()
myg o

=mgh— —h"+--- 1.6
mgh — —=h" - (1.6)

where we dropped the constant term. We indeed found that the lead-
ing term in Eq. (1.6) is the potential term of the original Lagrangian of
Eq. (1.1). It is interesting that even in such a simple example we performed
all the steps needed in a derivation of a classical effective Largangian! It
simply shows that using effective Lagrangian techniques is very natural.

3Indeed, g is not the same at the top and at the bottom of the Leaning Tower of Pisa.
In making this argument we neglected the variation of g along the height h.
4This curious observation was pointed out to us by T. Huber.
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1.4 A theorem of Weinberg

Much more useful for practical calculations is the notion of quantum effec-
tive Lagrangians. A theoretical basis of any quantum effective field theory
can be formulated in terms of a theorem, first given by S. Weinberg [Wein-
berg (1979h)]

Theorem 1.1. To any given order in perturbation theory, and for a given
set of asymptotic states, the most general possible Lagrangian containing
all terms allowed by the assumed symmetries will yield the most general S-
matriz elements consistent with analyticity, perturbative unitarity, cluster

decomposition and assumed symmetry principles.

Initially, this theorem was written to conjecture the equivalence of current
algebra results and methods of effective Lagrangians in pion physics, where
it was shown to work in all cases. Nothing in this theorem says that it is only
applicable to pion physics, so it is expected that this theorem should work
in any EFT. So far, there are no known counterexamples of this theorem.

Theorem 1.1 is very plausible, but not as trivial as it seems. As we
know from our quantum field theory courses, an important part of quantum
theory is renormalization, i.e. a correct treatment of the unknown behavior
of that theory at ultra-small scales. According to the theorem, we need
to write the most general set of operators in a Lagrangian consistent with
given symmetries in order to get the most general S-matrix elements. That
set would surely contain a very large number of operators; moreover, in
general the number of such operators is infinite! How can one make any
predictions when there are an infinite number of contributions to take into
account?

We will see that the situation is not hopeless: for a given precision of
measurements, effective field theories will provide consistent and testable
predictions even if they are not renormalizable in a “classical” sense. We
shall show that computing quantum loops in effective theories is exactly
the same as it is in (conventionally) renormalizable field theories: we would
still integrate over all values of momentum, even if our EFT is only valid
to some momentum scale p.” Also, even in quantum loops, we would only
deal with the degrees of freedom given in the effective Lagrangian, i.e the
ones with which we started our calculations. While this might appear
strange, as the integration over momenta greater that p certainly misses

5Since we are using a “natural” system of units where we set i = ¢ = 1, we shall use
the notions of energy and momentum interchangeably.
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some physics, it is actually quite natural — and not different from what is
done in conventional QFTs. After all, if structures of the terms generated
by loop effects are the same as the structures already present in the original
local Lagrangian, those “incorrect” loop contributions would be corrected
by shifting the parameters of the Lagrangian, i.e. by renormalization! Thus,
in order to execute the EFT program, we will need to find a way to assess
the importance of loop-induced contributions in our calculations, and, if
needed, introduce proper counterterms to render the result finite. That is,
we would have to find a proper power counting scheme.

1.5 Organization of the book

As mentioned above, there are many ways to construct an effective field
theory, depending on what it is you are trying to describe. We find it
convenient to group different EFTs into one of three categories, based on
what degrees of freedom they include.®

The first kind of EFT we discuss, which we call “Type-1,” refers to the
famous classic example of an effective field theory, where the list of degrees
of freedom only includes those fields that can contribute at the energy and
momentum scale of the interaction. For example, beta decay is described
by a theory that never makes any mention of the W-boson; atomic and
molecular physics does not make use of quarks; standard-model particle
physics processes make no mention of any super-heavy particle such as
GUT remnants; etc. These EFTs are the most straightforward examples,
and we will use them to start the discussion.

The second kind of EFT, which we call “I'ype-I1,” refers to problems
where some fields no longer participate in dynamics, but they are still a
part of the Fock space. These ohjects are taken as (nearly) infinitely heavy,
and simply sit there while other lighter degrees of freedom are bouncing off
of it in totally elastic collisions. One example of a Type-II theory is the
Newtonian example we considered earlier. In that problem, the Earth was
taken as infinitely massive, and therefore does not recoil when objects hit
it, but it would be wrong to say that we have “integrated out the Earth!”
The function of the Earth was to provide the gravitational field (if you wish,
it is a massive, static reservoir of gravitons!) that was represented by the
potential in the Lagrangian. Other examples of Type-II EFT are when you

SSimilar suggestions for the breakdown into EF T-types were made in a talk by Michael
Luke at SCET2007 conference at MIT.
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have a bound state between a heavy particle and a light particle, like the
Hydrogen atom. In that case, the proton is a source of photons (generating
an electrostatic field), but we ignore its recoil as it interacts with the lighter
electron. We can then reincorporate that recoil as subleading terms in our
effective Lagrangian (just like we included higher-order terms in h/R with
the Earth example.

The third kind of EFT, called “Type-II1,” is the newest and also the
most controversial construction. This is an attempt to describe objects that
have large energy-momentum transfers, but only in a given, fized direction.
This implies that we need to attempt a Type-IT construction, but only
on the components of the field that can create the large momentum. This
means that, roughly speaking, we should integrate out the part of the field
with momentum in the z-direction, but leave the parts of the field that
create particles moving in the x,y-directions in the dynamics. This is a
strange theory, to say the least, and it is still not clear whether such a
construction is even self-consistent. From the point of view of studying EFT
for its own sake, Type-III is definitely “where the action is!” But whatever
its philosophical and technical problems might be, its prime example of
Soft-Collinear Effective Theory (SCET) has proven to be incredibly useful
in helping us understand heavy-to-light particle decays; parton showering;
event-shape distributions; IR factorization theorems; the list goes on!

While it is important to have a basic knowledge of quantum field the-
ory techniques, we made an attempt to make this book self-consistent by
providing all of the needed background and introductory material. Group
theory techniques are reviewed in Appendix A; QED and QCD are briefly
discussed in Appendix B; and the ideas and some more advanced uses of
Dimensional Regularization, one of the most popular regulators in EFT,
are reviewed in Appendix C; so if the readers feel like some brush-up is
needed, those resources are there for their convenience.

In the following chapters we shall provide needed background, discuss
the “mechanics” of EFT building and then consider several classes of EFTs.
We suggest the readers try and solve problems at the end of the chapters.
After each chapter we also provided references for further studies of the
topics discussed in the chapter.

We employ the Minkowski metric with the mostly-minus sign convention
guvr = diag(l, —1,—1,—1) throughout this book.



Chapter 2

Symmetries

2.1 Introduction

The most vital part of effective field theory is knowing what symmetries
apply to your system. This knowledge can get you very far in describing
the nature of the problem, constructing model-independent equations to
describe dynamics, and put constraints on matrix elements. This chapter
will be a review of some of the more important results that follow from
symmetries. We will discuss Noether’s and Goldstone’s theorem, and the
consequences that arise from them. We will discuss various examples, but
for simplicity we will stick mostly with scalar fields wherever we can, avoid-
ing fermions until we need them for anomalies.

2.2 Noether’s Theorem

The chief reason why symmetries are important is due to a theorem in
Lagrangian mechanics known as Noether’s Theorem:

Theorem 2.1 (Noether). Every continuous symmetry of the action (and
path integral measure) implies a conservation law.

The caveat about the measure being invariant is important to handle the

possibility of quantum anomalies, as we will see at the end of this chapter.

Proof. Consider a Quantum Field Theory (QFT) with fields ¢” and ac-
tion S[¢] that is presumed to be invariant under a global transformation of
the form:

@t — P 4 eAo" (2.1)
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where € is an infinitesimal parameter. Although the action is only supposed
to be invariant under these transformations for constant e, let us consider
the behavior of the action under the above field transformation when ¢ is
allowed to vary with space-time:

S+ e(x)Ad] :f A L(p + e(x)A¢, 8,0 + e(x) NS, b)

or aL
- [ @i .00+ [ {€A¢a8_@+ Ol B e }
oL

00,02

" oL “ oL
+‘/dw€{a¢a‘A¢ % qjﬂAa#q) }
(2.2)

The last term is there regardless of whether € is constant or a function of

=l + [ dha@u080°

space-time, so if S[¢] is to be invariant under the global transformation
in Eq. (2.1) this term must take the form [ d%zed,J". The quantity J*
will generally be nonzero if A¢ explicitly involves changes in space-time
coordinates, such as translations and rotations.

Integrating the second term by parts and dropping a surface term, we
have:

Slo+elond] = stol - [ate ee) 0, [a0' i -7t @

If we insert this into the path integral and use the invariance of the measure
we get:

7 = / Do 50 = f D(p + eAp) eSloteadl

_ fqu ciS[tf)] G—ifddxeapj” (24)

where in the first line we shifted the dummy functional integration variable
¢(z) and in the second step we have defined
oL
H = A —J". 2.5
J e Do J (2.5)
Since ¢ is a dummy field variable, Z must be independent of € and so we
can write:

i 67 Do ( )ets _
0= L2 D0 Oy iy (2.6)
Z e |._, f Do et
This is just the correspondence principle at work: j* is the classically
conserved Noether current, and it is conserved quantum mechanically in all

correlation functions. O
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Eq. (2.5) is the Noether current corresponding to the symmetry trans-
formation in Eq. (2.1). Throughout most of this book we will be concerned
with internal symmetries, where you can set 7" = 0. In that case, the
Noether current only involves kinetic (gradient) terms in the Lagrangian.
This tells us that Noether currents are wuniversal in the sense that they
are independent of the potential (non derivative) interactions in the ac-
tion. Thus, even if a symmetry is violated by potential terms, one can still
construct a Noether current: the symmetry structure of any quantum field
theory is dictated by the kinetic terms alone! Although contact interactions
can (and often do) break symmetries, we can still identify a Noether current
and treat the symmetry breaking effects as corrections to the theory.

Noether currents are not uniquely defined: we could construct a new
current from the old one:

Jy = J1 + O K (2.7)

where j} is the current in Eq. (2.5) and K = —K"" is an arbitrary anti-
symmetric two-indexed tensor. Both currents are locally conserved, as can
be easily checked. What is the meaning of j57 To answer that, consider
the charge that is conserved:

Q) = f dE (2.8)
Q2 = jdd’l:ﬁ‘ g = /d‘i’lf (1 + 0, K™) = Q, +fd‘“a? 9 K"
=Q1+f s - K (2.9)

So the extra term represents a surface charge at infinity. So long as we
are considering the case that all charges are confined to the interior of our
space-time, this extra term has no physical effects. However, in cosmology
or condensed matter systems, where boundary effects might be important,
you must remember to take this term into account.

2.3 Examples of Noether currents

Let us consider one of the most important starting actions for an effective
field theory of any kind: that of a (complex) scalar field with arbitrary
potential that only depends on the modulus of the field:

Sle] = ] di {(0,6")(0"6) — V(9]) (2.10)
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This action is invariant under a constant rephasing of the scalar field, which
in infinitesimal form is

b — @+ i€p (2.11)
In the notation of the previous section, A¢ = i¢ and so the Noether current
is
oL
A
J "5 Do
= (ig)(9"¢") + (—ig™)(0" )
= —i(¢*"p — 9O"0") (2.12)

Notice that we have to consider the transformation of every field — in this
case, that means both ¢ and ¢*. Also note that this result is independent
of the choice of V(¢) as we previously advertised.

The above calculation generalizes to the case of N scalar fields' that
can transform into each other and still leave the action invariant:

Sle*] = /ddm %gab(é‘m“)(a“aﬁ") (2.13)

where gqp is a real, nonsingular N x N matrix, and we’re considering real
fields for concreteness, although vou can generalize to complex fields if you
like. This action will be invariant under the transformation

¢" — " + i [T eeb (2.14)

where €4 is a vector of infinitesimal parameters, and iT# are a set of real,

N x N matrices that satisfy the rule:
gacgdb[TA]g = 7[TA]ba (2.15)

Here we use the usual Einstein convention that ¢%° is the inverse matrix of
GJab, and repeated upper-lower indices are summed. We will never lower the
capital letter indices, however.

Since there is one symmetry transformation for each A, there is a corre-
sponding current. We can group them together from the arguments above
to find

P = ga[T 30" 0" (2.16)

IWe will index the fields by lowercase letters from the front of the alphabet. Upper
case letters will be used to label the matrices; note that a set of N X N matrices are
spanned by N2 matrices, although depending on the details of the action, the precise
form of g,p, and any additional terms, not all of these matrices need lead to symmetries.
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where ¢, = gap¢”. Usually we will suppress the lowercase indices as under-
stood, but we include them above so you can see how they contract. In an
index-free notation:

GHA =T g (2.17)
Let us consider one more example: the real (free) scalar field
1
50) = f d%z 5(0u0)(9"0) (2.18)
This action is invariant under the shift symmetry:

8(x) — 6(x) + ev (2.19)
where v is a constant with the same units as 8. Then Af = v and the
Noether current is

J* =wvo"e (2.20)

The conserved current is just the gradient of the scalar field! We will see
how this current appears in applications shortly, as well as the meaning of

the number v introduced in the transformation rule.

2.4 Gauged symmetries and Noether’s procedure

When a transformation like Eq. (2.1) remains a symmetry of the action
even when the parameter € is a function of space-time, then the symmetry
is said to be a local or gauged symmetry. There are a few general points
about gauging a symmetry that should be pointed out:

(1) Gauge symmetries imply global symmetries, since we can always take
e(x) to be a constant. Thus everything mentioned previously about
Noether’s theorem still holds.

(2) The “gauge” part of the symmetry is strictly speaking not a symmetry
but a redundancy coming from the fact that (in d = 4) a massless spin-1
field has two degrees of freedom, but is described by a four-vector po-
tential that allows you to maintain Lorentz covariance. “Gauge invari-
ance” is simply the statement that the unphysical degrees of freedom
do not contribute to any physical amplitude.

(3) For a global symmetry, Noether’s theorem is only valid on-shell — the
quantum version of the theorem we proved ahove only had the cur-
rent being conserved within correlation functions, not as an operator
equation. However, when the symmetries are gauged, Noether currents
are conserved as operators! Thus people sometimes say that gauged
symmetries are more “fundamental” than global symmetries.
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Recall that when we promoted a global transformation to a local one
we generated an extra term that was proportional to the Noether current:

ol + 2)30] = S + [ e @1 (2.21)

For the action to remain invariant under this local symmetry we must
include a term that cancels this; we accomplish this by introducing a four-

vector potential A, that transforms as
Ay — Ay +0,¢ (2.22)

and couple it to the Noether current:
1
Silp, Ay] = — /ddx [A#j‘“ + ZFWF“" (2.23)

The first term cancels the shift in Sy upon transforming ¢, while the second
term is the usual kinetic energy operator for A,. In this simple case, Fj,,
and j# are already invariant under the combined transformation of Eqs.
(2.1) and (2.22) and so the total action Sy + S; is the minimum exten-
sion of the globally invariant action that is also invariant under the gauge
symmetry.

This procedure of correcting the global action step by step by adding
terms designed to cancel changes from the modified transformation law is
known as the Noether’s procedure and is a very powerful way of building
gauge invariant actions from knowledge of globally invariant ones. This case
we have considered is an example of an Abelian gauge theory like Maxwell’s
electromagnetism. Let us see how to extend this idea to more complicated

gauge symmetries.

Consider a collection of vector fields AZ a=1,....N which transform
in the adjoint representation of some Lie algebra?:
be b b b
Al — AL + g™ AL = AYAL = g™ A (2.24)

where ¢™¢ are the structure constants from Eq. (A.7) and g is a small
constant (the gauge coupling). The kinetic term for a collection of spin-1

vector bosons,
1
— / dlz 1 i‘jyf“"“, fl’jy =d,A] — 8,,Az (2.25)

is invariant under the global transformation in Eq. (2.24) and generates a
Noether current:

s jLa aoc C aﬁ abc 1% (&4
1 = (e A s = g A (2.26)
vy

2See Appendix A.2 for details on algebra theory.
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Notice that this current is not invariant under the transformation!
Noether’s procedure then says that to make this theory invariant under
a local transformation, we must add a new term to the action

Sy = — / dajt AL (2.27)
and also modify the transformation law to
Al — AL+ g™ AT + D (2.28)

Sp + 81 is now invariant under the transformation of Eq. (2.28) up to first
order in g, but not at order g:

§So + 88 = — f A"z g*capechac Al AL AV OMe! (2.29)
To cancel this term, one must add another term to the action
3 gz
Sy =+ / A - caporpae A AL AV AR (2.30)

Now Sp + S; + Sy is invariant under Eq. (2.28) to order g2, and in fact to
all orders in g, so we may stop here. Our final result is in fact the usual
gauge invariant action of Yang-Mills:

1 :
§=— f d%x TP, B =Ffi- gc™Pc AL AL (2.31)
Al — A% 4 De (2.32)

as it should be.

In this case, Noether’s procedure terminated at (g?), but that does
not have to be the case. The process can go much further, often never
terminating at all, and you must modify both the action and the field
transformation rules at each order in the coupling. In practice, this is a
very powerful way to derive the action of a theory based on knowing the
symmetries of the problem. We will see how this works in some exercises.

2.5 Broken symmetries and Goldstone’s Theorem

Consider a complex scalar field with a potential of the form
V() = m?|o]* + Aot (2.33)
This potential has a symmetry

¢ — e (2.34)
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regardless of the value of (m?, \). However, the spectrum of the theory is
very sensitive to these parameters. In particular, the ground state of the
theory where V is minimized occurs when

o) m?

— =" (m? +2)M0|?) = 0= |go|* =0, — (2.35)

D 2\
We will assume that A > 0 so that ) is bounded from below. Then if
m? > 0, the only minimum is at ¢y = 0 which is clearly still invariant

under Eq. (2.34). On the other hand, if m? < 0 the minimum actually
occurs at the nonzero value, and so the ground state is not invariant under
the symmetry. The field forms a background condensate in the ground
state, and we can no longer treat the other fields in the theory as living in a
vacuum. When the action of a QFT has a symmetry while the ground state
forms a condensate that breaks that symmetry, we say that the symmetry
is spontaneously broken.

A word of warning: the name is unfortunate, as the symmetry is not
really broken! The action is still symmetric, and therefore there is still a
conserved Noether current (remember that the current was independent of
the potential).

We will define the nonzero value of ¢q in the vacuum state as

2
s m
= —— 2.36
=D (236)
and write the field as®
1
p(x) = 7 (v+p(x)) (2.37)

If we plug this back into our potential we find

1 1 1
V(p) = [imQO + Z)\’U‘l} + 3 (m2 + )\@2) ['U(Lp + %) + <,0|2]

A N *
#3007+ lolo+ o) + 101 (2.39)

The first term in brackets (V(¢ = 0)) is a constant and corresponds to
the value of the potential in the ground state. It gives us information about
the condensate, and represents a cosmological constant, but has no other
meaning. This term is called the Mean Field Theory result in condensed
matter systems, and v is the order parameter. The second term vanishes for

3The factor of 1/4/2 is conventional, so |dg| = v/v/2, but not every author uses this
convention — make sure you know what convention is being used to avoid frustrating
mistakes!
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the value of v in Eq. (2.36), leaving just the third term. We can understand
its meaning by decomposing our field even further into real and imaginary
components:

e() = ¢1(x) +id2(x) (2.39)
Then our potential is
V(b1, ¢2) = Vo(v) + Ao?éf + Moo (6 + 03) + T(6] +¢3)*  (2.40)

So upon spontancous symmetry breaking our theory has three points of

A
4

interest:

(1) A condensate described by a number v.
(2) A (real) massive scalar field (¢1) with mass-squared equal to 2\v2.
(3) A (real) massless scalar field (¢2).

The presence of a massless mode is not a coincidence of the problem, nor is
it only true classically or at leading order in perturbation theory. It turns
out that whenever a symmetry is spontaneously broken, we expect to see
a massless particle appear. This is a consequence of Goldstone’s Theorem
which we turn to now.

Theorem 2.2 (Goldstone). For every spontaneously broken symmetry,
there corresponds a massless particle whose quantum numbers are the same
as that symmetry’s Noether charge.

The massless modes of the theorem are called (Nambu-)Goldstone
(NG) Fields.
Proof. Consider a QFT with N fields whose action (and path integral

measure) are invariant under a field transformation:
o' — ¢ +iel]¢’ (2.41)
where T is a finite, imaginary matrix. Rather than study the usual ac-

tion, we will consider the effective action that generates the 1PI correlation
functions:

I'[¢] = —log Z[J] — f de J(x)p(x) (2.42)

This will allow us to include quantum effects without any more work. In
terms of the effective action, invariance under the transformation in Eq.

(2.41) implies
or n m
(ﬁ) Tr g™ =0 (2.43)
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Let us take the functional derivative of this equation and evaluate it at
¢(2) = o, the minimum of the full effective potential

§°T ) ( or )
T Tro™ + — "=0 (2.44)
(6¢l6¢ $=d0o 09 =0

But since ¢ is the vacuum solution, defined as the minimum of the effective
action, the first derivative vanishes, and the second derivative is precisely
the two-point 1PT correlation function evaluated with all external momenta
equal to zero. This is the definition of the mass matrix M? of the theory,
and so we have
[M?], Trog =0 (2.45)
Thus the vectors T ot are eigenvectors of the mass matrix with eigen-
value zero. If ¢y = 0, then there is nothing to be said; but if ¢y # 0, there
must be a zero-eigenvalue of M2 — that is, a massless mode. Furthermore, if
1 < k < N is the number of nonzero ¢(*, there are k such zero-eigenvectors,
and this is also the precise number of broken generators. Thus there is one
massless mode for each broken generator, as we wished to show.
We will only sketch the proof of the statement that the quantum num-
bers of these massless modes must be the same as those of the broken

charges. One can use the Kéillen-Lehmann spectral techniques to show
that

(B|j°(2)[0) # 0 (2.46)
where B is one of the NG modes; see [Weinberg (1996)] for a nice explana-
tion of this calculation. But this matrix element will certainly vanish if the
B state has different parity, helicity or internal quantum numbers as the
current. Therefore the NG fields must have the same quantum numbers as
the broken generators. O

In most cases of interest, the space-time properties of the generators
of symmetry groups are simple — they are space-time scalars. Therefore,
the NG fields themselves must be spin-0. The famous exception to this is
supersymmetry, where the current is a vector-spinor (so the SUSY charges
are spinors) and the corresponding NG field is a spinor, affectionately known
as a goldstino.

2.5.1 Nonrelativistic NG-bosons

Although Goldstone’s theorem does not require Lorentz invariance to hold,
the form of the theorem and the proof we sketched out is most appropriate
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for relativistic systems. It turns out that when the system is nonrelativistic,
it is still true that each broken generator gives you a “flat direction” in the
potential, but the corresponding gapless execitation,* which we can interpret
as a massless (quasi-)particle, can be a bit more tricky to identify. In
particular, it is no longer true that each broken generator corresponds to
its own NG-boson.

The flaw in our proof comes from how we interpreted Eq. (2.45). We
pointed out that if ¢f* # 0, then 17! of* is an eigenvector of the mass matrix
with zero-eigenvalue. But it is also possible that a linear combination of
the charges annihilates ¢g, which would mean that some of the purported
massless modes are actually null-vectors! This happens if the symmetry-
breaking field ¢ corresponds to one of the charges. This cannot occur in
a Lorentz-invariant theory, but it is quite possible in condensed matter
systems.

Perhaps the most famous example of this is the Heisenberg Ferromagnet.

The model is a collection of spins on a lattice with Hamiltonian:

H=-7% 85;; (2.47)
(#4)

The notation (ij) refers to sums over neighboring spins. The model has a
global O(3) symmetry that rotates all the spins in the same way. .J is a con-
stant, taken to be positive for the ferromagnet. The ground state (at zero
temperature) is the state where all the spins are aligned in one direction
(the z direction, say). This state spontaneously breaks the O(3) to an O(2)
symmetry, leaving only rotations about the z axis. The other two rotation
generators represent broken symmetries, and therefore you might have ex-
pected to find two NG-bosons: gapless states that come from the broken
generators acting on the spontaneous magnetization. This state is often
called the magnon in the condensed matter literature. But there is some-
thing very strange: there is only one magnon state, while the Goldstone
theorem seems to suggest that there should be two, since two symmetry
generators are broken. The resolution to this apparent paradox is that the
spontaneous magnetization (¢g) is directly related to the symmetry gener-
ators, and so there is a null-vector. That leaves only one eigenvector left as

a Goldstone boson.
This point was clarified further in a powerful theorem by [Nielsen and
Chadha (1976)]. Their result states that as long as certain conditions are

4By this we mean a quantum excited state that can have infinitely long wavelength (or
low momentum); that is, it obeys a dispersion relation such that F(p — 0) = 0.
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satisfied by the theory, such as translational invariance and proper asymp-
totic behavior of the correlation functions, spontaneous symmetry breaking
of N generators will always be accompanied by a collection of gapless modes
that come in two types:

Type — 1 modes : E(p) o< |p 2+

Type — 2 modes : E(p) o< |p]*.

Say that there are n Type-1 modes, and m Type-2 modes; then the Nielsen-
Chadha theorem says that n 4+ 2m = N. In other words, if the dispersion
relation of the NG mode is even in (quasi-)momentum, then it counts twice!
Indeed, if you work out the dispersion relation for a Heisenberg Ferromag-
net, you will find that E — [p]?/2M, where M is a nonuniversal constant
that depends on the details of the model. As the magnon has a quadratic
dispersion relation, we see that there is only one magnon in the spectrum,
since it counts both of the broken generators.

On the other hand, the Heisenberg antiferromagnet (same as Eq. (2.47),
but with J < 0) undergoes spontaneous symmetry breaking, where ¢q is
the staggered magnetization. This is not directly related to the generators
and therefore we expect both generators to represent two independent NG
modes. Sure enough, there are two gapless modes in the low-energy spec-
trum with a linear dispersion: E — +=C'|p]|, and so there are two NG bosons,
according to the Nielsen-Chadha theorem.

There are never any Type-2 modes in a relativistic theory; indeed the
Ferromagnetic magnon dispersion relation violates our understanding of
a relativistic dispersion relation, since it seems to represent a particle of
effective mass M that is also gapless, violating Einstein’s formula, £ =
Mc2! Clearly, we can only have this sort of thing happen when dealing
with nonrelativistic effective field theory.

We will see another example of nontrivial NG counting in the problems.

2.6 The BEHGHK Mechanism of Anderson

In 1964, a series of papers were published in the Physical Review in which
an exception to Goldstone’s theorem was noted.” These papers realized
that if a continuous symmetry was gauged, then there need not be massless
modes in the spectrum. To be more precise, the NG fields that you get are
purely gauge artifacts and can be removed by a suitable choice of gauge.

5“BEHGHK?” (pronounced “Beck”) comes from a talk by Ben Kilminster.
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2.6.1 A little history

This seems like a very good place to insert a bit of background on where
the “Higgs Mechanism” came from. For those less interested in the history,
feel free to skip this section.

After Yang and Mills published their theory of non-Abelian gauge in-
variance, it was hoped (and that hope was ultimately realized) that one
can use this idea to explain the forces of nuclear and particle physics. The
problem was that these theories required the existence of massless spin-1
particles, and there were no candidates (remember that gluons were not
discovered until much later). When Nambu and Goldstone published their
results on spontaneous symmetry breaking, it was found that in addition
to the vector bosons, you also have a collection of spin-0 bosons that must
be massless. The situation has gone from bad to worse!

It was Philip Anderson (motivated by a result from Julian Schwinger)
who first seemed to realize that the situation was not as bad as it seemed.
Schwinger had suggested that the requirement of massless gauge bosons was
only a requirement in the weak coupling limit. When you have strongly in-
teracting forces, he showed that you need not necessarily have massless
gauge fields! Anderson was an expert in condensed matter physics, and he
presented a physical example of Schwinger’s ideas by studying the behavior
of a non-relativistic free-electron gas, where it was known that transverse
EM waves do not propagate below the plasma frequency, while above this
frequency there are three propagating modes (one longitudinal, two trans-
verse). He showed how this result followed from Schwinger’s ideas, and by
making the connection to superconductivity, he realized that there need be
no massless modes in the system. He then made a very interesting point at
the conclusion of his paper:

It is noteworthy that in most of these cases, upon closer examination,
the Goldstone bosons do indeed become tangled up with the Yang-Mills
gauge bosons and, thus, do not in any true sense really have zero mass....
‘We conclude, then, that the Goldstone zero-mass difficulty is not a se-
rious one, because we can probably cancel it off against an equal Yang-
Mills zero-mass problem. [Anderson (1963)]

As an amusing afterthought, Anderson points out that when one takes
gravity into account, that the breakdown of translational and rotational
invariance leads to the presence of three phonons, which, when combined
with the two graviton helicities, precisely gives you the right number of
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degrees of freedom for a massive, spin-2 field. Anderson was way ahead of

his time!

The following vear, three papers came out, all of which were published

in Physical Review, Volume 13. All of these papers show, to various degrees,
that Goldstone’s theorem need not apply to gauge theories, and that when
a gauge theory is spontaneously broken, there are no massless particles in
the spectrum.

(1)

The first paper was by Robert Brout and Francois Englert [Englert and
Brout (1964)]. They showed that when a gauge theory is spontaneously
broken, the vector boson acquires a mass in perturbation theory. They
compute this mass, but admit: “We have not yvet constructed a proof
in arbitrary order...” although they point out that there should be no
problems generalizing the result.

The second paper was by Peter Higgs [Higgs (1964)]. He pointed out
that, as Brout and Engert discovered, Goldstone’s theorem need not
hold when the symmetry is gauged, and furthermore, that when you
send the gauge coupling to zero, the longitudinal modes of the gauge
field manifest as the required NG fields. So it was Higgs who first makes
the connection of “gauge fields eating the NG bosons”. In addition, he
proposes a model for how this might work; we will use this model in
our example below. Higgs’s approach is to treat the theory classically —
he derives the field equations from a gauge invariant action, and shows
that the result is a Proca Lagrangian with an extra (massive) scalar
boson, forever known as the “Higgs boson”.

The third paper was by Gerald Guralnik, Carl Hagen and Tom Kib-
ble [Guralnik ef al. (1964)];. Their paper took a somewhat different
approach. They pointed out that when a gauged symmetry is spon-
taneously broken, the corresponding (global) charge is no longer con-
served despite the existence of a local conservation law. The problem
comes from the gauge-fixing conditions: for example, in the radiation
gauge, the theory is not manifestly covariant and you can get non-
trivial surface terms at infinity. In a Lorentz-covariant gauge (such as
Lorenz gauge), the authors point out that you do have massless modes
as Goldstone’s theorem requires, but that these are “gauge [artifacts]
rather than physical particles.” Indeed, this can be seen explicitly in
terms of the later discovered R¢ gauge with £ = 0 where ghosts and NG
bosons are realized as massless particles [Peskin and Schroeder (1995)].
In a physical gauge, however, these extra modes do not appear in the
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spectrum, since Goldstone’s theorem requires a global conservation law
that is explicitly broken by gauge fixing terms!

We now know that the BEHGHK mechanism does seem to play a major
role in the standard model of particle physics, with the residual boson mass
at around 125 GeV. After this discovery was confirmed at the Large Hadron
Collider, Englert and Higgs shared the 2013 Nobel Prize in Physics.

2.6.2 An example

We will start by studying the model of a complex, electrically charged scalar
field. This is known as the Landau-Ginzburg model by condensed matter
physicists; the Coleman- Weinberg model by particle physicists; and scalar
QED among students:

, 1
Sto. A, = [ da{ID,of? — m¥lof? — Aol — FuF™}

= [ ate{10u0f - m2iof ~ No"

1
+ eA, it + e p|2 A, AP — ZFWFW}
(2.48)

where D, ¢ = 8,¢ + ieA,¢, and j* is the current defined in Eq. (2.12).
2 < 0 the phase symmetry is
spontaneously broken and the field picks up a vacuum expectation value
T)/\/§ = \/Tm We should therefore expect to see a massless field
appear upon going to a physical basis for the fields. In this section we will
decompose ¢ in terms of real fields with a different parametrization:

As we have seen in Section 2.5, when m

(v + p(z)) e®@)/v (2.49)

1
px) = 7

rather than splitting the field into real and imaginary parts. It is a straight-
forward exercise to relate our fields (¢,#) to the previously chosen basis
(¢1, @2), and we leave it to you.

There is a good reason why we chose to decompose ¢ in this way: since
the potential only depends on the modulus of ¢, the dependence on @ is
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restricted to very few terms:
1 1
Slp.0. 4] = [ {0 + 30,07 Vi + )
~ g2 1
+ed Gt + ?(U + )2 A, A — ZJzawfwy}

1
. [ddm{a(aﬂe) + 5070 AL A" + g AT R

where
J" = 00" (2.51)

is the current in terms of our physical fields, and the ellipses in Eq. (2.50)
refer to #-independent terms. Notice right away that ¢ does not appear in
the current — this represents a neutral particle. Also notice that the phase
field A(x) is the massless NG field that we expect, but in this choice of
parametrization it makes no appearance in the potential. This is why this
choice of parametrization of real fields is so useful. You should also recognize
this current as our Noether current that follows from a shift symmetry in the
field from Eq. (2.20). This is precisely correct, since under the symmetry:

p— €% = 0—0+av (2.52)

while ¢ does not transform at all, and therefore does not appear in the
current. However, the situation is much more interesting now that our
symmetry is gauged, since now «x can be a function of space-time. Therefore,
why not choose a(x) = —f(x)/v everywhere? In that case, the field is
completely cancelled by the gauge transformation and should not appear
in the action at all!

If we look at Eq. (2.50) and use Eq. (2.51) we find

S = fdda:%{(aﬂﬂ)z + 2gvA,0"0 + 92U2AuA“} N

0 \12
d _

/dm v {A#—i-au(gv)] +

/dd:c g ’UZA AH (2.53)

where A;J is precisely the gauge field suitably transformed after the trans-
formation in Eq. (2.52). So 6 really has completely vanished from our
action after a gauge transformation, and there is no NG field! The final
result is a massive vector-boson, and a massive, neutral (real) scalar field.
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It might bother you that a field has suddenly vanished from our theory
— what about unitarity? How can we start with a theory with two degree
of freedom (6, ¢) and lose one? The answer comes from keeping track of
the degrees of freedom in the vector boson. In d space-time dimensions, a
massless vector boson has d — 2 degrees of freedom, while a massive vector
boson has d — 1 degrees of freedom. So where did that extra longitudinal
degree of freedom come from? It is nothing more than 6! This has led to
the idea that, “The massless vector boson ate the NG boson and became

massive!”

2.6.3 An interlude: superconductivity

One of the amazing things about local spontaneous symmetry breaking
is that it describes most of the phenomena of superconductivity, without
the need to resort to a model! This was first noted in a paper by Steven
Weinberg dedicated to Nambu [Weinberg (1986)], and is explained with
even more detail in [Weinberg (1996)]. Although it is a bit of an aside from
the main thrust of the book, we feel remiss if we do not give an explanation
to how superconductivity follows from an EFT of a spontaneously broken
U(1) gauge symmetry, since it is such a prime example of how far you can
get without knowing “the man behind the curtain!”

The only assumptions we will make are that a U(1) gauge symmetry
(E&M) is spontaneously broken by a charge-2 field. It could be a funda-
mental field (like a Higgs boson) or a composite object (like a Cooper pair
of electrons) — those kinds of details are irrelevant for our purposes. We

will parametrize this field as
1 .
¢@)=;§(v+hﬁmw (2.54)

where ¢ is the (dimensionless) NG boson, and h is a massive excitation.
Now the broken gauge invariance acts on 6 through a shift symmetry as in
Eq. (2.52), so a gauge transformation «(a) shifts & — 6 + «. But since this
is a charge-2 object, there is a residual Zs symmetry, so that the fields

pp4 (2.55)
C

must represent the same physics.

Specifying the action S[#, A, h] would require us to pick a model for
our theory, but whatever we choose, we know that it must be a function of
A, — 0,0 in order for the dynamics to remain gauge invariant: remember,
only the ground state breaks gauge symmetry, not the action. Therefore,
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any charge densities and currents in our superconducting material are given
by
05 oS

JU:_W:_E’ (2.56)
J = %. (2.57)

This is enough to describe several phenomena relating to superconductivity.
It is particularly nice that we have this kind of universality, since there is
still a lot of debate as to the nature of high-temperature superconductors.

(1) Meissner effect: In the broken phase, the vector potential that de-
scribes the photon is described by a Proca Lagrangian:

1 , o1
L= —Fu " + §m2A,1AP, (2.58)

with m4 = 2ev. The resulting field equation for the photon implies
that there will be a penetration depth A ~ m ™!, and the magnetic field
—AT as you penetrate into the superconductor.

(2) Flux quantization: The absence of magnetic fields deep inside the

inside | B| ~ e
superconductor does not imply that the vector potential vanishes, but

it does imply that A, = 0,0, whose spacial components are A = ve.
Doing a line integral of this expression around a closed loop inside the

fﬁ-df:fﬁe-df

/(6><A’)-d§=ae.

superconductor gives:

The left-hand side of this equation is just the magnetic flux through
the area bound by the integration loop, while the right-hand side is the
change in the Goldstone field going all the way around the loop. This
change can be any integer times 7 /e, since changes in 6 by this amount
do not affect any physical observable, according to Eq. (2.55). We have

therefore proved the famous flux-quantization result:
T

(3) Infinite conductivity: The fact that magnetic flux is quantized is
enough to show that the conductivity is infinite deep inside the super-
conductor since the flux (and therefore the current, by Ampere’s Law)
cannot decay continuously, but only drop in discrete jumps, which is
impossible without large changes in energy.
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Another way to see how infinite conductivity arises is by using Eq.
(2.56), which tells us that the charge density and —# are canonically
conjugate variables, so the Hamiltonian of the superconductor is a nat-
ural function of J and . We therefore have

. oM

0= “370 = -V,
where V' is the energy per unit charge, which is simply the voltage. This
tells us that a superconductor carrying a steady current with time-
independent fields must have a vanishing potential difference. This
is equivalent to the statement that the conductivity is infinite (zero
voltage drop for a fixed current).
AC Josephson Junction: Consider a gap between two superconduct-
ing slabs (labeled 1 and 2). The NG field is nonvanishing in either slab,
but 0; # 05 in general. We can conclude that the dynamics in the gap
will be determined by the difference between 6, and 62: Sgap = AF[Af],
where A is the area of the gap. Now thanks to Eq. (2.55), we know
that both 6, o can change by nw/e independently with no consequence
to any observable, so it must be that F is periodic with period 7 /e.
Now imagine there is a nonzero vector potential in the gap. By gauge
invariance, we must replace Af — f(e’ﬁ— A') -dz, integrated across the

(2.60)

gap. Then from Eq. (2.57), we have

Jgap = O5gp _ Oe 008 —aF'[Ad], (2.61)
0A OAB A
where 7 is a unit vector pointing across the gap. So we find that a
current flows across the gap. Furthermore, if we additionally impose a
fixed potential difference (AV') between the two superconducting slabs,
Eq. (2.60) gives us A0 = —tAV. Since Sgap, and therefore fgap, is
periodic, we have a an alternating current oscillating with frequency
. (2.62)
T
This is the same expression Josephson derived using a specific model,
but it is clear that the frequency is model independent.

2.7 CCWZ construction of EFT

In 1969, Callan, Coleman, Wess and Zumino (CCWZ) showed that physics
truly is invariant to how you choose to parametrize your fields [Coleman
et al. (1969); Callan et al. (1969)]. In particular, this means that we can
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