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Preface

Mathematical objects of a certain sophistication are frequently accompanied
by higher homotopical structures: Maps between them might be connected by
homotopies that witness the weak commutativity of diagrams, which might then
be connected by higher homotopies expressing coherence conditions among
these witnesses, which might then be connected by even higher homotopies ad
infinitum. The natural habitat for such mathematical objects is not an ordinary
I-category but instead an co-category or, more precisely, an (oo, 1)-category,
with the index “1” referring to the fact that the morphisms above the lowest
dimension — the homotopies just discussed — are weakly invertible.

Here the homotopies defining the higher morphisms of an co-category are
to be regarded as data rather than as mere witnesses to an equivalence relation
borne by the 1-dimensional morphisms. This shift in perspective is illustrated
by the relationship between two algebraic invariants of a topological space:
the fundamental groupoid, an ordinary 1-category, and the fundamental co-
groupoid, an co-category in which all of the morphisms are weakly invertible.
The objects in both cases are the points of the ambient topological space, but in
the former, the 1-morphisms are homotopy classes of paths, while in the latter,
the 1-morphisms are the paths themselves and the 2-morphisms are explicit
endpoint-preserving homotopies. To encompass examples such as these, all of
the categorical structures in an co-category are weak. Even at the base level of
1-morphisms, composition is not necessarily uniquely defined but is instead
witnessed by a 2-morphism and associative up to a 3-morphism whose boundary
data involves specified 2-morphism witnesses. Thus, diagrams valued in an
oo-category cannot be said to commute on the nose but are instead interpreted
as homotopy coherent, with explicitly specified higher data.

A fundamental challenge in defining co-categories has to do with giving a pre-
cise mathematical meaning of this notion of a weak composition law, not just for
the 1-morphisms but also for the morphisms in higher dimensions. Indeed, there

Xi



Xii Preface

is a sense in which our traditional set-based foundations for mathematics are not
really suitable for reasoning about co-categories: Sets do not feature prominently
in co-categorical data, especially when oco-categories are considered in a morally
correct fashion as objects that are only well-defined up to equivalence. When
considered up to equivalence, co-categories, like ordinary categories, do not
have a well-defined set of objects. In addition, the morphisms between a fixed
pair of objects in an co-category assemble into an oo-groupoid, which describes
a well-defined homotopy type, though not a well-defined space.!

Precision is achieved through a variety of models of (oo, 1)-categories, which
are Bourbaki-style mathematical structures that represent infinite-dimensional
categories with a weak composition law in which all morphisms above dimen-
sion 1 are weakly invertible. In order of appearance, these include simplicial
categories, quasi-categories (née weak Kan complexes), relative categories,
Segal categories, complete Segal spaces, and 1-complicial sets (née saturated
I-trivial weak complicial sets), each of which comes with an associated array of
naturally occurring examples. The proliferation of models of (o0, 1)-categories
begs the question of how they might be compared. In the first decades of the
twenty-first century, Julia Bergner, André Joyal and Myles Tierney, Dominic
Verity, Jacob Lurie, and Clark Barwick and Daniel Kan built various bridges that
prove that each of the models listed above “has the same homotopy theory” in
the sense of defining the fibrant objects in Quillen equivalent model categories.?

In parallel with the development of models of (oo, 1)-categories and the
construction of comparisons between them, Joyal pioneered and Lurie and many
others expanded a wildly successful project to extend basic category theory
from ordinary 1-categories to (oo, 1)-categories modeled as quasi-categories
in such a way that the new quasi-categorical notions restrict along the standard
embedding Cat < QCat to the classical 1-categorical concepts. A natural
question is then, does this work extend to other models of (oo, 1)-categories? And
to what extent are basic co-categorical notions invariant under change of model?
For instance, (oo, 1)-categories of manifolds are most naturally constructed as
complete Segal spaces, so Kazhdan—Varshavsky [65], Boavida de Brito [34],
and Rasekh [95, 96, 98] have recently endeavored to redevelop some of the
category theory of quasi-categories using complete Segal spaces instead in
order to have direct access to constructions and definitions that had previously
been introduced only in the quasi-categorical model.

For practical, aesthetic, and moral reasons, the ultimate desire of practitioners
1 Grothendieck’s homotopy hypothesis posits that co-groupoids up to equivalence correspond to

homotopy types.

2 A recent book by Bergner surveys all but the last of these models and their interrelationships
[15]. For a more whirlwind tour, see [3].
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essential for the development of co-category theory. Similar proofs carry through
to a weaker setting, at the cost of more time spent considering coherence of
higher cells.

In Part I, we define and develop the notions of equivalence and adjunction
between co-categories, limits and colimits in co-categories, and cartesian and
cocartesian fibrations and their discrete variants, for which we prove a version
of the Yoneda lemma. The majority of these results are developed from the
comfort of the homotopy 2-category. In an interlude, we digress into abstract co-
cosmology to give a more careful account of the full class of limit constructions
present in any oo-cosmos. This analysis is used to develop further examples of
oo-cosmoi, whose objects are pointed co-categories, or stable co-categories, or
cartesian or cocartesian fibrations in a given co-cosmos.®

What is missing from this basic account of the category theory of co-catego-
ries is a satisfactory treatment of the “hom” bifunctor associated to an co-cate-
gory, which is the prototypical example of what we call a module. An instructive
exercise for a neophyte is the challenge of defining the co-groupoid-valued hom
bifunctor in a preferred model. What is edifying is to learn that this construction,
so fundamental to ordinary category theory, is prohibitively difficult.® In our
axiomatization, any oo-category in an co-cosmos has an associated co-category
of arrows, equipped with domain and codomain projection functors that respec-
tively define cartesian and cocartesian fibrations in a compatible manner. Such
modules, which themselves assemble into an co-cosmos, provide a convenient
vehicle for encoding universal properties as fibered equivalences. In Part II,
we develop the calculus of modules between co-categories and apply this to
define and study pointwise Kan extensions. This will give us an opportunity to
repackage universal properties proven in Part I as part of the “formal category
theory” of co-categories.

This work is all “model-agnostic” in the sense of being blind to details about
the specifications of any particular co-cosmos. In Part III we prove that the
category theory of co-categories is also “model independent” in a precise sense:
all categorical notions are preserved, reflected, and created by any “change-of-
model” functor that defines what we call a cosmological biequivalence. This
model independence theorem is stronger than our axiomatic framework might
initially suggest in that it also allows us to transfer theorems proven using
analytic techniques to all biequivalent co-cosmoi. For instance, the four co-
& The impatient reader could skip this interlude and take on faith that any co-cosmos begets

various other co without compromising their understanding of what follows — though they

would miss out on some fun.
9 Experts in quasi-category theory know to use Lurie’s straightening—unstraightening construction

[78, 2.2.1.2] or Cisinski’s universal left fibration [28, 5.2.8] and the twisted arrow
quasi-category.
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cosmoi whose objects model (oo, 1)-categories are all biequivalent.'® It follows
that the analytically-proven theorems about quasi-categories from [78] hold for
complete Segal spaces, and vice versa. We conclude with several applications of
this transfer principle. For instance, in the co-cosmoi whose objects are (oo, 1)-
categories, we demonstrate that various universal properties are “pointwise-de-
termined” by first proving these results for quasi-categories using analytical
techniques and then appealing to model independence to extend these results to
biequivalent co-cosmoi.

The question of the model invariance of statements about co-categories is
more subtle than one might expect. When passing an co-category from one
model to another and then back, the resulting object is typically equivalent but
not identical to the original, and certain “evil” properties of co-categories fail
to be invariant under equivalence: the assertion that an co-category has a single
object is a famous example. A key advantage to our systematic approach to
understanding the model independence of co-category theory is that it allows
us to introduce a formal language and prove that statement about co-categories
expressible in that language are model independent. This builds on work of
Makkai that resolves a similar question about the invariance of properties of a
2-category under biequivalence [82].

Regrettably, space considerations have prevented us from exploring the ho-
motopy coherent structures present in an co-cosmos. For instance, a companion
paper [109] proves that any adjunction between co-categories in an co-cosmos
extends homotopically uniquely to a homotopy coherent adjunction and presents
a monadicity theorem for homotopy coherent monads as a mechanism for co-
categorical universal algebra. The formal theory of homotopy coherent monads
is extended further by Sulyma [124] who develops the corresponding theory of
monadic and comonadic descent and Zaganidis [133] who defines and studies
homotopy coherent monad maps. Another casualty of space limitations is an
exploration of a “macrocosm principle” for cartesian fibrations, which proves
that the codomain projection functor from the co-cosmos of cartesian fibrations
to the base co-cosmos defines a “cartesian fibration of co-cosmoi” in a suitable
sense [111]. We hope to return to these topics in a sequel.

The ideal reader might already have some acquaintance with enriched category
theory, 2-category theory, and abstract homotopy theory so that the constructions
and proofs with antecedents in these traditions will be familiar. Because co-
categories are of interest to mathematicians with a wide variety of backgrounds,
10 A closely related observation is that the Quillen equivalences between quasi-categories,

complete Segal spaces, and Segal categories constructed by Joyal and Tierney in [64] can be

understood as equivalences of (00, 2)-categories not just of (0o, 1)-categories by making
judicious choices of simplicial enrichments (see §E.2).



Preface Xvii

we review all of the material we need on each of these topics in Appendices A,
B, and C, respectively. Some basic facts about quasi-categories first proven by
Joyal are needed to establish the corresponding features of general co-cosmoi
in Chapter 1. We state these results in §1.1 but defer the proofs that require
lengthy combinatorial digressions to Appendix D, where we also introduce n-
complicial sets, a model of (o0, n)-categories for any 0 < n < co. The examples
of oo-cosmoi that appear *“in the wild” can be found in Appendix E, where we
also present general techniques that the reader might use to find co-cosmoi of
their own. The final appendix addresses a crucial bit of unfinished business.
Importantly, the synthetic theory developed in the co-cosmos of quasi-categories
is fully compatible with the analytic theory developed by Joyal, Lurie, and many
others. This is the subject of Appendix F.

We close with the obligatory disclaimer on sizes. To apply the theory devel-
oped here to the oo-categories of greatest interest, one should consider three
infinite inaccessible cardinals & < § < 7, as is the common convention [5, 2].
Colloquially, a-small categories might be called “small,” while $-small cate-
gories are the default size for co-categories. For example, the co-categories of
(small) spaces, chain complexes of (small) abelian groups, or (small) homotopy
coherent diagrams are all S-small. These normal-sized oco-categories are then
the objects of an co-cosmos that is y-small — “large” in colloquial terms. Of
course, if one is only interested in small simplicial sets, then the co-cosmos of
small quasi-categories is S-small, rather than y-small, and the theory developed
here equally applies. For this reason, we set aside the Grothendieck universes
and do not refer to these inaccessible cardinals elsewhere.
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3

It is difficult and time-consuming to learn a new language. The standard
advice to “fake it til you make it” is disconcerting in mathematical contexts,
where the validity of a proof hinges upon the correctness of the statements it
cites. The aim in Part I of this text is to develop a substantial portion of the theory
of oo-categories from first principles, as rapidly and painlessly as possible — at
least assuming that the reader finds classical abstract nonsense to be relatively
innocuous.!!

The axiomatic framework that justifies this is introduced in Chapter 1, but the
impatient or particularly time-constrained reader might consider starting directly
in Chapter 2 with the study of adjunctions, limits, and colimits. In adopting
this approach, one must take for granted that there is a well-defined 2-category
of co-categories, oo-functors between them, and oco-natural transformations
between these. This 2-category is constructed in Chapter 1, where we see that
any co-cosmos has a homotopy 2-category and that the familiar models of
(00, 1)-categories define biequivalent co-cosmoi, with biequivalent homotopy
2-categories. To follow the proofs in Chapter 2, it is necessary to understand
the general composition of natural transformations by pasting diagrams. This
and other concepts from 2-category theory are reviewed in Appendix B, which
should be consulted as needed.

The payoff for acquainting oneself with some standard 2-category theory is
that numerous fundamental results concerning equivalences and adjunctions
and limits and colimits can be proven quite expeditiously. We prove one such
theorem, that right adjoint functors between oo-categories preserve any limits
found in those co-categories, via a formal argument that is arguably even simpler
than the classical one.

The definitions of adjunctions, limits, and colimits given in Chapter 2 are
optimized for ease of use in the homotopy 2-category of co-categories, co-func-
tors, and co-natural transformations in an co-cosmos, but especially in the latter
cases, these notions are not expressed in their most familiar forms. To encode a
limit of a diagram valued in an co-category as a terminal cone, we introduce
the powerful and versatile construction of the comma oo-category built from
a cospan of functors in Chapter 3. We then prove various “representability
theorems™ that characterize those comma oco-categories that are equivalent to
ones defined by a single functor. These general results specialize in Chapter
4 to the expected equivalent definitions of adjunctions, limits, and colimits.
This theory is then applied to study limits and colimits of particular diagram
11 Dan Freed defines the category number of a mathematician to be the largest integer 7 so that

they may ponder n-categories for half an hour without developing a migraine. Here we require a
category number of 2, which we note is much smaller than oco!
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shapes, which in turn is deployed to establish an equivalence between various
presentations of the important notion of a stable co-category.

The basic theory of co-categories is extended in Chapter 5 to encompass co-
cartesian and cartesian fibrations, which can be understood as indexed families
of oo-categories acted upon covariantly or contravariantly by arrows in the base
co-category. After developing the theory of the various classes of categorical
fibrations, we conclude by proving a fibrational form of the Yoneda lemma that
will be used to further develop the formal category theory of co-categories in
Part II.



o0o-Cosmoi and Their Homotopy 2-Categories

In this chapter, we introduce a framework to develop the formal category theory
of oo-categories, which goes by the name of an co-cosmos. Informally, an co-
cosmos is an (oo, 2)-category — a category enriched over (oo, 1)-categories —
that is equipped with (oo, 2)-categorical limits. In the motivating examples of
oo-cosmoi, the objects are oo-categories in some model. To focus this abstract
theory on its intended interpretation, we recast “co-category” as a technical
term, reserved to mean an object of some co-cosmos.

Unexpectedly, the motivating examples permit us to use a quite strict inter-
pretation of “( o0, 2)-category with (oo, 2)-categorical limits’: an co-cosmos is
a particular type of simplicially enriched category and the (oo, 2)-categorical
limits are modeled by simplicially enriched limits. More precisely, an co-cos-
mos is a category enriched over quasi-categories, these being one of the models
of (o0, 1)-categories defined as certain simplicial sets. The (oo, 2)-categorical
limits are defined as limits of diagrams involving specified maps called isofibra-
tions, which have no intrinsic homotopical meaning — since any functor between
co-categories is equivalent to an isofibration — but allow us to consider strictly
commuting diagrams.

In §1.1, we introduce quasi-categories, reviewing the classical results that are
needed to show that quasi-categories themselves assemble into an co-cosmos —
the prototypical example. General co-cosmoi are defined in §1.2, where several
examples are given and their basic properties are established. In §1.3, we turn
our attention to cosmological functors between co-cosmoi, which preserve all
of the defining structure. Cosmological functors serve dual purposes, on the
one hand providing technical simplifications in many proofs, and then later on
serving as the “change of model” functors that establish the model independence
of oo-category theory.

Finally, in §1.4, we introduce a strict 2-category whose objects are co-catego-
ries, whose 1-cells are the co-functors between them, and whose 2-cells define
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co-natural transformations between these. Any co-cosmos has a 2-category of
this sort, which we refer to as the homotopy 2-category of the co-cosmos. In
fact, the reader who is eager to get on to the development of the category theory
of co-categories can skip this chapter on first reading, taking the existence of
the homotopy 2-category for granted, and start with Chapter 2.

1.1 Quasi-Categories

Before introducing an axiomatic framework that allows us to develop co-cat-
egory theory in general, we first consider one model in particular: quasi-cat-
egories, which were introduced in 1973 by Boardman and Vogt [21] in their
study of homotopy coherent diagrams. Ordinary 1-categories give examples of
quasi-categories via the construction of Definition 1.1.4. Joyal first undertook
the task of extending 1-category theory to quasi-category theory in [61] and
[63] and in several unpublished draft book manuscripts. The majority of the
results in this section are due to him.

Nortation 1.1.1 (the simplex category). Let A denote the simplex category of
finite nonempty ordinals [n] = {0 < 1 < --- < n} and order-preserving maps.
These include in particular the

elementary face operators [n—1] T [n] 0<i<n

elementary degeneracy operators [n+1] LN [n] 0<i<n

whose images, respectively, omit and double up on the element i € [n]. Every
morphism in A factors uniquely as an epimorphism followed by a monomorph-
ism; these epimorphisms, the degeneracy operators, decompose as composites
of elementary degeneracy operators, while the monomorphisms, the face oper-
ators, decompose as composites of elementary face operators.

The category of simplicial sets is the category sSet := Set™™ of presheaves
on the simplex category. We write A[n] for the standard n-simplex the sim-
plicial set represented by [n] € A, and A¥[n] c dA[n] c A[n] for its k-horn
and boundary sphere, respectively. The sphere dA[n] is the simplicial subset
generated by the codimension-one faces of the n-simplex, while the horn A¥ [n]
is the further simplicial subset that omits the face opposite the vertex k.

Given a simplicial set X, it is conventional to write X, for the set of n-sim-
plices, defined by evaluating at [n] € A. By the Yoneda lemma, each n-simplex
x € X,, corresponds to a map of simplicial sets x : A[n] = X. Accordingly, we
write x - 8¢ for the ith face of the n-simplex, an (n — 1)-simplex classified by
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to a 2-simplex exists precisely because any composable pair of arrows admits a
(unique) composite.

An inner horn Al[3] — C specifies the data of three composable arrows in C,
as displayed in the following diagram, together with the composites g f, hg, and
(hg)f.

€

y’ %
(hg)f
_—

\ g /

ef h

)

Co C3

Because composition is associative, the arrow (hg)f is also the composite of
gf followed by h, which proves that the 2-simplex opposite the vertex c; is
present in C; by 2-coskeletality, the 3-simplex filling this boundary sphere is
also present in C. The filler for a horn A%[3] — C is constructed similarly. [J

DerintTION 1.1.7 (homotopy relation on 1-simplices). A parallel pair of 1-sim-
plices f, g in a simplicial set X are homotopic if there exists a 2-simplex whose
boundary takes either of the following forms?

F a7 N
7N\ 7 N (1.1.8)
X T) X T)

or if f and g are in the same equivalence class generated by this relation.
In a quasi-category, the relation witnessed by either of the types of 2-simplex

on display in (1.1.8) is an equivalence relation and these equivalence relations
coincide.

LemmMa 1.1.9 (homotopic 1-simplices in a quasi-category). Parallel 1-simplices
f and g in a quasi-category are homotopic if and only if there exists a 2-simplex
of any or equivalently all of the forms displayed in (1.1.8).

Proof Exercise 1.1.ii. O

DerintTION 1.1.10 (the homotopy category [44, §2.4]). By l-truncating, any
simplicial set X has an underlying reflexive directed graph with the O-simplices
of X defining the objects and the 1-simplices defining the arrows:
.51
—_—
X'1 «.g0 — XO:
—
.50

2 The symbol “ == " is used in diagrams to denote a degenerate simplex or an identity arrow.
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By convention, the source of an arrow f € X is its Oth face f - 8! (the face
opposite 1) while the target is its 1st face f - 8° (the face opposite 0). The free
category on this reflexive directed graph has X, as its object set, degenerate 1-
simplices serving as identity morphisms, and nonidentity morphisms defined to
be finite directed paths of nondegenerate 1-simplices. The homotopy category
hX of X is the quotient of the free category on its underlying reflexive directed
graph by the congruence® generated by imposing a composition relation h = go f
witnessed by 2-simplices

S i g
AN
xO T) x2

This relation implies in particular that homotopic |-simplices represent the same
arrow in the homotopy category.

The homotopy category of the nerve of a 1-category is isomorphic to the
original category, as the 2-simplices in the nerve witness all of the composition
relations satisfied by the arrows in the underlying reflexive directed graph. Indeed,
the natural isomorphism hC = C forms the counit of an adjunction, embedding
Cat as a reflective subcategory of sSet.

ProrosiTioN 1.1.11. The nerve embedding admits a left adjoint, namely the
Junctor which sends a simplicial set to its homotopy category:

h

/“"-\
Cat Set
“ c\‘i/ so¢
The adjunction of Proposition 1.1.11 exists for formal reasons (see Exercise
1.1.i), but nevertheless, a direct proof can be enlightening.

Proof For any simplicial set X, there is a natural map from X to the nerve of
its homotopy category hX; since nerves are 2-coskeletal, it suffices to define
the map sk, X — hX, and this is given immediately by the construction of
Definition 1.1.10. Note that the quotient map X — hX becomes an isomorphism
upon applying the homotopy category functor and is already an isomorphism
whenever X is the nerve of a category. Thus the adjointness follows from Lemma
B.4.2 or by direct verification of the triangle equalities. O

The homotopy category of a quasi-category admits a simplified description.

Lemma 1.1.12 (the homotopy category of a quasi-category). If A is a quasi-cat-
egory then its homotopy category hA has

3 A binary relation ~ on parallel arrows of a l-category is a congruence if it is an equivalence
relation that is closed under pre- and post-composition: if f ~ g then hfk ~ hgk.
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« the set of O-simplices Ay as its objects

» the set of homotopy classes of I-simplices Ay as its arrows

« the identity arrow at a € Ay represented by the degenerate I-simplex
a-o° €A,

» a composition relation h = g o f in hA between the homotopy classes of
arrows represented by any given I-simplices f,g,h € A, if and only if there
exists a 2-simplex with boundary

a;
f g
/ \
dg —)h a,

Proof Exercise 1.1.iii. O

DerFiniTION 1.1.13 (isomorphism in a quasi-category). A 1-simplex in a quasi-
category is an isomorphism* just when it represents an isomorphism in the
homotopy category. By Lemma 1.1.12 this means that f: a — b is an iso-
morphism if and only if there exists a 1-simplex f~!: b — a together with a
pair of 2-simplices

The properties of the isomorphisms in a quasi-category are most easily proved
by arguing in a closely related category where simplicial sets have the additional
structure of a “marking” on a specified subset of the 1-simplices; maps of
these so-called marked simplicial sets must then preserve the markings (see
Definition D.1.1). For instance, each quasi-category has a natural marking,
where the marked 1-simplices are exactly the isomorphisms (see Definition
D.4.5). Since the property of being an isomorphism in a quasi-category is
witnessed by the presence of 2-simplices with a particular boundary, every
map between quasi-categories preserves isomorphisms, inducing a map of the
corresponding naturally marked quasi-categories. Because marked simplicial
sets seldom appear outside of the proofs of certain combinatorial lemmas about
the isomorphisms in quasi-categories, we save the details for Appendix D.

Let us now motivate the first of several results proven using marked techniques.
A quasi-category A is defined to have extensions along all inner horns. But
when the initial or final edges, respectively, of an outer horn A°[2] — A or
4 Joyal refers to these maps as “isomorphisms” while Lurie refers to them as “equivalences.” We

prefer, wherever possible, to use the same term for co-categorical concepts as for the analogous
1-categorical ones.
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A?[2] = A map to isomorphisms in A, then a filler

a — _ a;
f « hf? gth g
/ T o \
Qo —— " | Qo ——F—— &

should intuitively exist. The higher-dimensional “special outer horns™ behave
similarly:

ProposiTion 1.1.14 (special outer horn filling). Any quasi-category A admits
fillers for those outer horns

A[n] -2 A A'[n] —— A
1 T
[ [ 7 ez
Aln] Aln]

in which the edges g|(o.1y and h|(,_y n) are isomorphisms.”

The proof of Proposition 1.1.14 requires clever combinatorics, due to Joyal,
and is deferred to Proposition D.4.6. Here, we enjoy its myriad consequences.
Immediately:

CoroLLARY 1.1.15. A quasi-category is a Kan complex if and only if its homo-
topy category is a groupoid.

Proof 1f the homotopy category of a quasi-category is a groupoid, then all of
its 1-simplices are isomorphisms, and Proposition 1.1.14 then implies that all
inner and outer horns have fillers. Thus, the quasi-category is a Kan complex.
Conversely, in a Kan complex, all outer horns can be filled and in particular
fillers for the horns displayed in Definition 1.1.13 can be used to construct left
and right inverses for any 1-simplex, which can be rectified to a single two-sided
inverse by Lemma 1.1.12. O

A quasi-category contains A a canonical maximal sub Kan complex A~,
the simplicial subset spanned by those 1-simplices that are isomorphisms. Just
as the arrows in a quasi-category A are represented by simplicial maps 2 — A
whose domain is the nerve of the free-living arrow, the isomorphisms in a
quasi-category can be represented by diagrams | — A whose domain, called the
homotopy coherent isomorphism, is the nerve of the free-living isomorphism:

5 Tn the case n = 1, no condition is needed on the horns: degenerate 1-simplices define the
required lifts.



1.1 Quasi-Categories 13

CoroLLARY 1.1.16. An arrow f in a quasi-category A is an isomorphism if and
only if it extends to a homotopy coherent isomorphism

f

22— A

A
-
.
.
/
-
b
.

.
Proof If f is an isomorphism, the map f : 2 — A lands in the maximal sub
Kan complex contained in A:

o aca

2
LT
[ ”’
»"’
-
[

By Exercise 1.1.v, the inclusion 2 < [ can be expressed as a sequential compos-
ite of pushouts of outer horn inclusions. Since A~ is a Kan complex, this shows
that the required extension exists and in fact lands in A C A. |

The category of simplicial sets, like any category of presheaves, is cartesian
closed. By the Yoneda lemma and the defining adjunction, an n-simplex in the
exponential Y¥ corresponds to a simplicial map X x A[n] — Y, and its faces
and degeneracies are computed by precomposing in the simplex variable. Our
next aim is to show that the quasi-categories define an exponential ideal in the
simplicially enriched category of simplicial sets: if X is a simplicial set and A is
a quasi-category, then AX is a quasi-category. We deduce this as a corollary of
the “relative” version of this result involving certain maps called isofibrations
that we now introduce.

DerintTION 1.1.17 (isofibration). A simplicial map f : A — B between quasi-
categories is an isofibration if it lifts against the inner horn inclusions, as
displayed below-left, and also against the inclusion of either vertex into the

free-living isomorphism [.

Af[n] — A

1
’,)' ,,"’
&

Aln] —— B B

— 5 A

To notationally distinguish the isofibrations, we depict them as arrows “-" with
two heads.

Proposition 1.1.14 is subsumed by its relative analogue, proven as Theorem
D.5.1:
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encoded by the composite® functors

hB

hA —% h(A!) —— (hA)’ hB h(B") (hB)"

DeriNiTION 1.1.25. A map f: X — Y between simplicial sets is a trivial
fibration if it admits lifts against the boundary inclusions for all simplices

dAn] — X
l‘ zlf for n>0 (1.1.26)

Aln] —— Y
We write “=»” to decorate trivial fibrations.

REMARK 1.1.27. The simplex boundary inclusions dA[n] & A[r] “cellularly
generate” the monomorphisms of simplicial sets (see Definition C.2.4 and Lem-
ma C.5.9). Hence the dual of Lemma C.2.3 implies that trivial fibrations lift
against any monomorphism between simplicial sets. In particular, it follows that
any trivial fibration X =» Y'is a split epimorphism.

The notation “=»" is suggestive: the trivial fibrations between quasi-categories
are exactly those maps that are both isofibrations and equivalences. This can be
proven by a relatively standard although rather technical argument in simplicial
homotopy theory, appearing as Proposition D.5.6.

ProrosiTion 1.1.28. Fora map f . A — B between quasi-categories the fol-
lowing are equivalent:

(i) f is a trivial fibration
(ii) f is both an isofibration and an equivalence
(iii) f is a split fiber homotopy equivalence: an isofibration admitting a
section s that is also an equivalence inverse via a homotopy o from id
to sf that composes with f to the constant homotopy from f to f.

A+ A (idg.sf) A

I “ zlf

- f

As a class characterized by a right lifting property, the trivial fibrations are
also closed under composition, product, pullback, limits of towers, and contain
8 Note that h(A") 2 (hA)" in general. Objects in the latter are homotopy classes of isomorphisms

in A, while objects in the former are homotopy coherent isomorphisms, given by a specified

1-simplex in A, a specified inverse 1-simplex, together with an infinite tower of coherence data
indexed by the nondegenerate simplices in [.
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the isomorphisms. The stability of these maps under Leibniz exponentiation is
proven along with Proposition 1.1.20 in Proposition D.5.2.

ProrosiTion 1.1.29. Ifi: X — Y is a monomorphism and f: A — Bis an
isofibration, then if either f is a trivial fibration or if i is in the class cellularly
generated by the inner horn inclusions and the map 1 < | then the induced
Leibniz exponential map
ifh
AY L BY s AX

a trivial fibration.

To illustrate the utility of these Leibniz stability results, we give an “internal”
or “synthetic” characterization of the Kan complexes.

Lemma 1.1.30. A guasi-category A is a Kan complex if and only if the map
Al » A% induced by the inclusion 2 < | is a trivial fibration.

Note that Proposition 1.1.20 implies that A' - A? is an isofibration.

Proof The lifting property that characterizes trivial fibrations transposes to
another lifting property, displayed below-right

aA[n] ; AI] dA[n] X uaA[L;‘{]xg A[n] X 2 7 A
[ 1 = [
Aln] —— A2 Aln] X1

that asserts that A admits extensions along maps formed by taking the Leibniz
product — also known as the pushout product — of a simplex boundary inclusion
8A[n] < A[n] with the inclusion 2 < [. By Exercise 1.1.v(ii) the inclusion
2 < | is a sequential composite of pushouts of left outer horn inclusions. By
Corollary D.3.11, a key step along the way to the proofs of Propositions 1.1.20
and 1.1.29, it follows that the Leibniz product is also a sequential composite
of pushouts of left and inner horn inclusions. If A is a Kan complex, then the
extensions displayed above right exist, and, by transposing, the map A' - A? is
a trivial fibration.

Conversely, if A' =» A? is a trivial fibration then in particular it is surjective
on vertices. Thus every arrow in A is an isomorphism, and Corollary 1.1.15
tells us that A must be a Kan complex. O

DiGression 1.1.31 (the Joyal model structure). The category of simplicial sets
bears a Quillen model structure, in the sense of Definition C.3.1, whose fibrant
objects are exactly the quasi-categories and in which all objects are cofibrant.
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Between fibrant objects, the fibrations, weak equivalences, and trivial fibrations
are precisely the isofibrations, equivalences, and trivial fibrations just introduced.
Proposition 1.1.28 proves that the trivial fibrations are the intersection of the
fibrations and the weak equivalences. Propositions 1.1.20 and 1.1.29 reflect
the fact that the Joyal model structure is a cartesian closed model category,
satisfying the additional axioms of Definition C.3.10.

We decline to elaborate further on the Joyal model structure for quasi-cate-
gories since we have highlighted all of the features that we need. The results
enumerated here suffice to show that the category of quasi-categories defines an
©o-cosmos, a concept to which we now turn.

Exercises

Exercrse 1.1.i ([103, §1.5]). Given any cosimplicial object C: A — & valued
in any category &, there is an associated nerve functor N defined by:

N,
& —C  sSet a
C i
_ /an;C‘\
E —— hom(C™,E) <
£ \__~‘i__/ sSet
N¢

By construction n-simplices in NoE correspond to maps C" — Ein €. Show that
if € is cocomplete, then N has a left adjoint defined as the left Kan extension of
the functor C along the Yoneda embedding X : A < sS8et. This gives a second
proof of Proposition 1.1.11.

Exgercisk 1.1.ii (Boardman—Vogt [21]). Consider the set of 1-simplices in a
quasi-category with initial vertex a and final vertex b.

(i) Prove that the relation defined by f ~ g if and only if there exists a

b
_ai . f' . . .
2-simplex with boundary a \ is an equivalence relation.

aTb

(ii) Prove that the relation defined by f ~ g if and only if there exists a

a
2-simplex with boundary / \{ is an equivalence relation.
a—F b
(iii) Prove that the equivalence relations defined by (i) and (ii) are the same.

This proves Lemma 1.1.9.
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Exercisk 1.1.iii. Consider the free category on the reflexive directed graph

81
—
Al «.g0 - Ao,
—
.80

underlying a quasi-category A.

(i)

(ii)

(iii)

(iv)

Consider the binary relation that identifies sequences of composable
1-simplices with common source and common target whenever there
exists a simplex of A in which the sequences of 1-simplices define two
paths from its initial vertex to its final vertex. Prove that this relation is
stable under pre- and post-composition with 1-simplices and conclude
that its transitive closure is a congruence: an equivalence relation that
is closed under pre- and post-composition.’

Consider the congruence relation generated by imposing a composition
relation h = g o f witnessed by 2-simplices

Fa M e
RN
ag T a,

and prove that this coincides with the relation considered in (i).

In the congruence relations of (i) and (ii), prove that every sequence
of composable 1-simplices in A is equivalent to a single I-simplex.
Conclude that every morphism in the quotient of the free category by
this congruence relation is represented by a 1-simplex in A.

Prove that for any triple of 1-simplices f,g,hin A, h = go f in the
homotopy category hA of Definition 1.1.10 if and only if there exists a
2-simplex with boundary

a;
f g
N
ao —)h az

This proves Lemma 1.1.12.

ExErcise 1.1.iv. Show that any quasi-category in which inner horns admit
unique fillers is isomorphic to the nerve of its homotopy category.

ExEercisk 1.1.v. Let [ be the nerve of the free-living isomorphism.

9 Given a congruence relation on the hom-sets of a 1-category, the quotient category can be
formed by quotienting each hom-set (see [81, §I1.8]).
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(i) Prove that [ contains exactly two nondegenerate simplices in each di-
mension.

(ii) Inductively build | from 2 by expressing the inclusion 2 < [ as a sequen-
tial composite of pushouts of left outer horn inclusions'® A°[n] = A[n],
one in each dimension starting with n = 2,11

ExErcisk 1.1.vi. Prove the relative version of Corollary 1.1.16: for any isofi-
bration p : A » B between quasi-categories and any f : 2 — A that defines an
isomorphism in A any homotopy coherent isomorphism in B extending pf lifts
to a homotopy coherent isomorphism in A extending f.

I

2 — A

A
.
e )
.
.

Il — B
Exercise 1.1.vii. Specialize Proposition 1.1.20 to prove the following:

(i) If A is a quasi-category and X is a simplicial set then AX is a quasi-cate-
gory.
(ii) If A is a quasi-category and X < Y is a monomorphism then AY - AX
is an isofibration.
(iii) If A - B is an isofibration and X is a simplicial set then AX - BX is an
isofibration.

Exercise 1.1.viii. Anticipating Lemma 1.2.17:

(i) Prove that the equivalences defined in Definition 1.1.23 are closed under
retracts.
(i) Prove that the equivalences defined in Definition 1.1.23 satisfy the 2-of-3
property.
Exercisk 1.1.ix. Prove thatif f : X =» Yis a trivial fibration between quasi-cat-
egories then the functor hf : hX =» hY is a surjective equivalence of categories.

1.2 co-Cosmoi

In §1.1, we presented “analytic” proofs of a few of the basic facts about quasi-
categories. The category theory of quasi-categories can be developed in a similar

10 By the duality described in Definition 1.2.25, the right outer horn inclusions A*[n] < A[n]
can be used instead.

11 This decomposition of the inclusion 2 & [ reveals which data extends homotopically uniquely
to a homotopy coherent isomorphism. For instance, the 1- and 2-simplices of Definition 1.1.13
together with a single 3-simplex that has these as its outer faces with its inner faces degenerate.
Homotopy type theorists refer to this data as a half adjoint equivalence [125, §4.2].
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The data of a simplicial category can equivalently be encoded by a simp-
licially enriched category with a set of objects and a simplicial set A(x, y)
of morphisms between each ordered pair of objects: an n-arrow in A, from x
to y corresponds to an n-simplex in A(x, y) (see Exercise 1.2.i). Each endo-
hom space contains a distinguished identity 0-arrow (the degenerate images of
which define the corresponding identity n-arrows) and composition is required
to define a simplicial map

Ay, z) X A(x,y) —— A(x,z)

the single map encoding the compositions in each of the categories A,, and
also the functoriality of the diagram (1.2.5). The composition is required to be
associative and unital, in a sense expressed by the commutative diagrams of
simplicial sets

oXid

Ay, z) X A(x,y) x A(w, x) = A(x,z) x A(w, x)

iM{ b

A(y,z) xﬂ(w,y) I — A(w,z)

Alx,y) —2 5 Ay, y) x A(x,y)

| |

Alx,y) X A(x, x) — Ax,y)

On account of the equivalence between these two presentations, the terms
“simplicial category” and “simplicially enriched category” are generally taken
to be synonyms.

In particular, the underlying category K of an co-cosmos X is the category
whose objects are the co-categories in X and whose morphisms are the 0-arrows,
i.e., the vertices in the functor spaces. In all of the examples to appear in what
follows, this recovers the expected category of co-categories in a particular
model and functors between them.

Dicression 1.2.6 (simplicially enriched limits, §A.4-A.5). Let.A be a simplicial
category. The cotensor of an object A € A by a simplicial set U is characterized
by a natural isomorphism of simplicial sets

AX,AY) = A(X,A)Y (1.2.7)

15 The phrase “simplicial object in Cat” is reserved for the more general yet less common notion
of a diagram A° — Cat that is not necessarily comprised of identity-on-objects functors.
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Assuming such objects exist, the simplicial cotensor defines a bifunctor
sSetP x A —— A
(U,A) — AV

in a unique way making the isomorphism (1.2.7) natural in U and A as well.

The other simplicial limit notions postulated by axiom 1.2.1(i) are coni-
cal, which is the term used for ordinary 1-categorical limit shapes that sat-
isfy an enriched analog of the usual universal property (see Definition A.5.2).
Such limits also define limits in the underlying category, but the usual univer-
sal property is strengthened. By applying the covariant representable functor
A(X, =) Ay — sSet to a limit cone (lim;¢; Aj — Aj)jey in A, we obtain a
natural comparison map

AX,limA;) — im A(X, A)). (1.2.8)
= JjeJ

We say that lim ; ; A; defines a simplicially enriched limit if and only if (1.2.8)
is an isomorphism of simplicial sets for all X € A.

The general theory of enriched categories is reviewed in Appendix A.

Preview 1.2.9 (flexible weighted limits in co-cosmoi). The axiom 1.2.1(i)
implies that any co-cosmos K admits all flexible limits, a much larger class of
simplicially enriched “weighted” limits (see Definition 6.2.1 and Proposition
6.2.8).

We quickly introduce the three examples of co-cosmoi that are most easily
absorbed, deferring more sophisticated examples to the end of this section. The
first of these is the prototypical co-cosmos.

ProrosiTion 1.2.10 (the oco-cosmos of quasi-categories). The full subcategory
QCat C sSet of quasi-categories defines an oco-cosmos in which the isofibra-
tions, equivalences, and trivial fibrations coincide with the classes already
bearing these names.

Proof The subcategory QCat C sSet inherits its simplicial enrichment from
the cartesian closed category of simplicial sets: by Proposition 1.1.20, whenever
A and B are quasi-categories, Fun(A, B) := B is again a quasi-category.

The cosmological limits postulated in 1.2.1(i) exist in the ambient category of
simplicial sets.'® For instance, the defining universal property of the simplicial
cotensor (1.2.7) is satisfied by the exponentials of simplicial sets. Moreover,

16 Any category of presheaves is cartesian closed, complete, and cocomplete — a “cosmos” in the
sense of Bénabou.
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since the category of simplicial sets is cartesian closed, each of the conical limits
is simplicially enriched in the sense discussed in Digression 1.2.6 (see Exercise
1.2.ii and Proposition A.5.4).

We now argue that the full subcategory of quasi-categories inherits all these
limit notions and at the same time establish the stability of the isofibrations
under the formation of these limits. In fact, this latter property helps to prove
the former. To see this, note that a simplicial set is a quasi-category if and only
if the map from it to the point is an isofibration. More generally, if the codomain
of any isofibration is a quasi-category then its domain must be as well. So if any
of the maps in a limit cone over a diagram of quasi-categories are isofibrations,
then it follows that the limit is itself a quasi-category.

Since the isofibrations are characterized by a right lifting property, Lemma
C.2.3 implies that the isofibrations contains all isomorphism and are closed
under composition, product, pullback, and forming inverse limits of towers. In
particular, the full subcategory of quasi-categories possesses these limits. This
verifies all of the axioms of 1.2.1(i) and 1.2.1(ii) except for the last two: Leibniz
closure and closure under exponentiation (—)X. These last closure properties
are established in Proposition 1.1.20, and in fact by Exercise 1.1.vii, the former
subsumes the latter . This completes the verification of the co-cosmos axioms.

It remains to check that the equivalences and trivial fibrations coincide with
those maps defined by 1.1.23 and 1.1.25. By Proposition 1.1.28 the latter co-
incidence follows from the former, so it remains only to show that the equiva-
lences of 1.1.23 coincide with the representably defined equivalences: those
maps of quasi-categories f: A — B for which AX — BX is an equivalence
of quasi-categories in the sense of Definition 1.1.23. Taking X = A[0], we
see immediately that representably defined equivalences are equivalences, and
the converse holds since the exponential (—)* preserves the data defining a
simplicial homotopy. O

Two further examples fit into a common paradigm: both arise as full sub-
categories of the co-cosmos of quasi-categories and inherit their co-cosmos
structures from this inclusion (see Lemma 6.1.4). But it is also instructive,
and ultimately takes less work, to describe the resulting co-cosmos structures
directly.

ProrosiTion 1.2.11 (the oco-cosmos of categories). The category Cat of 1-cate-
gories defines an co-cosmos whose isofibrations are the isofibrations: functors
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satisfying the displayed right lifting property:

1— A
1— B
The equivalences are the equivalences of categories and the trivial fibrations

are surjective equivalences: equivalences of categories that are also surjective
on objects.

Proof It is well-known that the 2-category of categories is complete (and in
fact also cocomplete) as a Cat-enriched category (see Definition A.6.17 or [67]).
The categorically enriched category of categories becomes a quasi-categori-
cally enriched category by applying the nerve functor to the hom-categories
(see §A.7). Since the nerve functor is a right adjoint, it follows formally that
these 2-categorical limits become simplicially enriched limits. In particular, as
proscribed in Proposition A.7.8, the cotensor of a category A by a simplicial set
U is defined to be the functor category A"Y. This completes the verification of
axiom (i).

Since the class of isofibrations is characterized by a right lifting property,
Lemma C.2.3 implies that the isofibrations are closed under all of the limit
constructions of 1.2.1(ii) except for the last two, and by Exercise 1.1.vii, the
Leibniz closure subsumes the closure under exponentiation.

To verify that isofibrations of categories f : A - B are stable under forming
Leibniz cotensors with monomorphisms of simplicial sets i : U < V, we must
solve the lifting problem below-left

1 —S A hU X 1 Upy hY 22, 4
T e

J'Jj ’}:.—"— 1hiﬁ\f v hz)q[ /"']; lf

HTBhVXhuAhU thuTB

which transposes to the lifting problem above-right, which we can solve by hand.
Here the map £ defines a natural isomorphism between fs: hV — Band a
second functor. Our task is to lift this to a natural isomorphism y from s to
another functor that extends the natural isomorphism « along hi: hU — hV.
Note this functor hi need not be an inclusion, but it is injective on objects, which
is enough.

We define the components of y by cases. If an object v € hVis equal to i(u) for
some u € hU define ¥, = a,,; otherwise, use the fact that f is an isofibration
to define ¥, to be any lift of the isomorphism f3,, to an isomorphism in A with
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domain s(v). The data of the map y : hV X 1 — A also entails the specification
of the functor hV' — A that is the codomain of the natural isomorphism y.
On objects, this functor is given by v — cod(y,). On morphisms, this functor
defined in the unique way that makes y into a natural transformation:

(k:v—=v)o pposk)oy .

This completes the proof that Cat defines an co-cosmos. Since the nerve
of a functor category, such as A', is isomorphic to the exponential between
their nerves, the equivalences of categories coincide with the equivalences of
Definition 1.1.23. It follows that the equivalences in the co-cosmos of categories
coincide with equivalences of categories, and since the surjective equivalences
are the intersection of the equivalences and the isofibrations, this completes the
proof. O

ProrosiTiON 1.2.12 (the co-cosmos of Kan complexes). The category Kan of
Kan complexes defines an co-cosmos whose isofibrations are the Kan fibrations:
maps that lift against all horn inclusions A¥[n] & Aln]forn > 1and 0 < k <
n.

The proof proceeds along the lines of Lemma 6.1.4. We show that the subcat-
egory of Kan complexes inherits an co-cosmos structure by restricting structure
from the co-cosmos of quasi-categories.

Proof By Proposition 1.1.18, an isofibration between Kan complexes is a
Kan fibration. Conversely, since the homotopy coherent isomorphism [ can
be built from the point 1 by attaching fillers to a sequence of outer horns, all
Kan fibrations define isofibrations. This shows that between Kan complexes,
isofibrations and Kan fibrations coincide. So to show that the category of Kan
complexes inherits an co-cosmos structure by restriction from the co-cosmos of
quasi-categories, we need only verify that the full subcategory KXan < QCat
is closed under all of the limit constructions of axiom 1.2.1(i). For the conical
limits, the argument mirrors the one given in the proof of Proposition 1.2.10,
while the closure under cotensors is a consequence of Corollary D.3.11, which
implies that the Kan complexes also define an exponential ideal in the category
of simplicial sets. The remaining axiom 1.2.1(ii) is inherited from the analogous
properties established for quasi-categories in Proposition 1.2.10. O

‘We mention a common source of co-cosmoi found in nature to build intuition
for readers familiar with Quillen’s model categories, a popular framework for
abstract homotopy theory, but reassure newcomers that model categories are
not needed outside of Appendix E where these results are proven.
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quasi-categories (see Exercise 1.1.viii). But for sake of completeness, we prove
the general cosmological result without relying on this base case, subsuming
Exercise 1.1.viii.

Proof Let f: A = B be an equivalence equipped with the data of (1.2.16)
and consider a retract diagram

C—A—>C
T T
D—5B—L5D

By Lemma 1.2.15, to prove that #: C — D is an equivalence, it suffices to
construct the data of an inverse homotopy equivalence. To that end define
k: D — C to be the composite vgs and then observe from the commutative
diagrams

C
k / X
A——C AT>B—f>D
/ I” | Iwo Tg T” | T“
c—4, a4 2,0 v, 00 p_s,p F, op_t p
| oAk Nl
D B A c B——>D

that vlau: C — C'and '8s: D — D' define the required homotopy coherent
isomorphisms.

Via Lemma 1.2.15, the 2-of-3 property for equivalences follows from the fact
that the set of isomorphisms in a quasi-category is closed under composition.
Homotopy coherent isomorphisms in a quasi-category represent isomorphisms
in the homotopy category, whose composite in the homotopy category is then
an isomorphism, which can be lifted to a representing homotopy coherent
isomorphism by Corollary 1.1.16.17 We now apply this to the homotopy coherent
isomorphisms in the functor spaces of an co-cosmos that form part of the data
of an equivalence of co-categories.

17 In fact, by Example D.5.5, homotopy coherent isomorphisms can be composed directly, but we
do not need this here.
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To prove that equivalences are closed under composition, consider a compos-
able pair of equivalences with their inverse equivalences
A" B_Z'C
&k Th
The equivalence data of Lemma 1.2.15 defines isomorphisms o : id4y = kf €
Fun(A,A)and y : idg = hg € Fun(B, B), the latter of which whiskers to define
kyf: kf = khgf € Fun(B, B). Composing these, we obtain an isomorphism
idy = khgf € Fun(A, A), witnessing that kh defines a left equivalence inverse
of gf. The other isomorphism is constructed similarly.
To prove that the equivalences are closed under right cancelation, consider a
diagram
¢
TN
I g

A——B —— C

—c
k

with k an inverse equivalence to f and ¢ and inverse equivalence to gf. We
claim that f¢ defines an inverse equivalence to g. One of the required isomor-
phisms id = gf#€ is given already. The other is obtained by composing three
isomorphisms in Fun(B, B)

5 1

idg £— fk L2 fegfic L222,

ftg.
The proof of stability of equivalence under left cancelation is dual. U

The trivial fibrations admit a similar characterization as split fiber homotopy
equivalences.

LemMMA 1.2.18 (trivial fibrations split). Every trivial fibration admits a section

A
5 ip
t"

B——8B8
that defines a split fiber homotopy equivalence
(idg.sp)
E /—>/’E—"\—\3 EXE

n (evosevy)
| "l

I
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and conversely any isofibration that defines a split fiber homotopy equivalence
is a trivial fibration.

Proof 1If p: E =» Bis a trivial fibration, then by the final stability property of
Lemma 1.2.14, so is p, : Fun(X, E) = Fun(X, B) for any co-category X. By
Definition 1.1.25, we may solve the lifting problem below-left

@ = 3A[0] —— Fun(B,E) 141 —5P) | Eun(E, E)
£ ‘f_-"'ﬁ zlp* [ o't’_,,—"'-’_y alp*
1= A[0] —;— Fun(B,B) 1= 1 —— Fun(E, B)

to find a map 5s: B — E so that ps = idg, and then solve the lifting problem
above-right to construct the desired fibered homotopy. The converse is immediate
from Lemma 1.2.15. O

A classical construction in abstract homotopy theory proves the following:

Lemma 1.2.19 (Brown factorization lemma). Any functor f: A — Bin an
oo-cosmos may be factored as an equivalence followed by an isofibration, where
this equivalence is constructed as a section of a trivial fibration.

f Pf
g p (1.2.20)
A /f\ &

Moreover, f is an equivalence if and only if the isofibration p is a trivial fibration.

Proof The displayed factorization is constructed by the pullback of an isofi-
bration formed by the simplicial cotensor of the inclusion 1+ 1 < [ into the
co-category B.
Al
A I

Al-z-sPf — S B

4
(AN’MJ? l(cvo‘f\’l)

AXB —— BXB
fxB
Note the map q is a pullback of the trivial fibration ev, : B' =» Band is hence a
trivial fibration. Its section s, constructed by applying the universal property of
the pullback to the displayed cone with summit A, is thus an equivalence by the
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2-of-3 property. Again by 2-of-3, it follows that f is an equivalence if and only
if pis. O

Remark 1.2.21 (equivalences satisfy the 2-of-6 property). In fact the equiva-
lences in any co-cosmos satisfy the stronger 2-of-6 property: for any composable
triple of functors

B

7’ hg
h
A gf

—— D

« g/‘
gf h

c

if gf and hg are equivalences then f, g, h, and hgf are too. An argument of
Blumberg and Mandell [20, 6.4] reproduced in Proposition C.1.8 uses Lemmas
1.2.17, 1.2.18, and 1.2.19 to prove that the equivalences have the 2-of-6 property
(see Corollary C.1.9).

One of the key advantages of the co-cosmological approach to abstract cate-
gory theory is that there are a myriad varieties of “fibered” co-cosmoi that can
be built from a given co-cosmos, which means that any theorem proven in this
axiomatic framework specializes and generalizes to those contexts. The most
basic of these derived co-cosmoi is the co-cosmos of isofibrations over a fixed
base, which we introduce now. Other examples of co-cosmoi are developed in
Chapter 6, once we have a deeper understanding of the cosmological limits of
axiom 1.2.1(0).

ProposiTioN 1.2.22 (sliced co-cosmoi). For any co-cosmos K and any oo-cat-
egory B € X there is an co-cosmos K g of isofibrations over B whose

(i) objects are isofibrations p : E - B with codomain B
(ii) functor spaces, say from p: E - Bto q: F - B, are defined by
pullback
Fung(p: E - B,q: F » B) — Fun(E,F)
L Jo
p

1 ————— Fun(E, B)

and abbreviated to Fung(E, F) when the specified isofibrations are clear
from context
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(iii) isofibrations are commutative triangles of isofibrations over B

E—I »F

N

(iv) terminal object is id : B - B and products are defined by the pullback
along the diagonal

xPE — TI,E

[

B—>—II,B

(v) pullbacks and limits of towers of isofibrations are created by the forgetful
Sunctor Xp — K

(vi) simplicial cotensor of p: E » Bwith U € s8et is constructed by the
pullback

Utg p — EV

I
B—2 . BY

(vii) and in which a map over B

f

E——F

AN

is an equivalence in the co-cosmos Xyg if and only if f is an equivalence

in X.

Proof The functor spaces are quasi-categories since axiom 1.2.1(ii) asserts
that for any isofibration q : F - B in X the map q,. : Fun(E, F) -» Fun(E, B)
is an isofibration of quasi-categories. Other parts of this axiom imply that each
of the limit constructions — such as the products and cotensors constructed in (iv)
and (vi) — define isofibrations over B. The closure properties of the isofibrations
in X,g follow from the corresponding ones in K. The most complicated of
these is the Leibniz cotensor stability of the isofibrations in &;, which follows
from the corresponding property in X, since for a monomorphism of simplicial
sets i - X & Y and an isofibration r over B as in (iii) above, the map i rﬁ} ris
constructed by pulling back i mr along A: B — BY.

The fact that the above constructions define simplicially enriched limits in a
simplicially enriched slice category are standard from enriched category theory.
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For any co-cosmos X, there is a dual co-cosmos K“° with the same objects
but with functor spaces defined by:

Funge(A, B) = Funge(A, B)°.

The isofibrations, equivalences, and trivial fibrations in & coincide with those
of K.

Conical limits in Z° coincide with those in X, while the cotensor of A € X
with U € sSet is defined to be AV™.

A 2-categorical justification for this notation is given in Exercise 1.4.ii.

DeriniTION 1.2.26 (discrete oo-categories). An co-category E in an co-cosmos
X is discrete just when for all X € X the functor space Fun(X, E) is a Kan
complex.

In the co-cosmos of quasi-categories, the discrete co-categories are exactly
the Kan complexes. Similarly, in the co-cosmoi of Example 1.2.24 whose oo-
categories are (oo, 1)-categories in some model, the discrete co-categories are
the co-groupoids. Importantly for what follows, the discrete co-categories can
be characterized “internally” to the co-cosmos as follows:

Lemma 1.2.27. An co-category E is discrete if and only if E' = E? is a trivial
fibration.

Proof By Definition 1.2.2, the isofibration E' - E? is a trivial fibration if and
only if for all co-categories X the induced map on functor spaces

Fun(X,E"Y) — Fun(X,E?)
al AUl
Fun(X,E)) — Fun(X,E)*

is a trivial fibration of quasi-categories. Via the universal property of the sim-
plicial cotensor, Lemma 1.1.30 tells us that this map is a trivial fibration if and
only if Fun(X, E) is a Kan complex. O

The reader may check that the discrete co-categories in any co-cosmos assem-
ble into an co-cosmos K=. A proof appears in Proposition 6.1.6 where general
techniques for producing new co-cosmoi from given ones are developed.

Exercises

Exercisk 1.2.i. Define an equivalence between the categories of:

(i) simplicial categories, as in (1.2.5), and
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(ii) categories enriched over simplicial sets.

Exercisk 1.2.ii. Elaborate on the proof of Proposition 1.2.10 by proving that
the simplicially enriched category QCat admits conical products satisfying the
universal property of Digression 1.2.6. That is:

(i) Define the cartesian product A x B and the projection maps 74 : AXB —
A and g : A X B — B for a pair of quasi-categories A and B and prove
that this data satisfies the usual (unenriched) universal property.

(ii) Given another quasi-category X, use (i) and the Yoneda lemma to show
that the projection maps induce an isomorphism of quasi-categories

(A x BYX —=— AX x BX.

(iii) Explain how this relates to the universal property of Digression 1.2.6.
(iv) Express the usual 1-categorical universal property of (i) as the “0-di-
mensional aspect” of the universal property of (ii).

Exercisk 1.2.ii. Prove that any object in an co-cosmos has a path object

s

B—»BXB

constructed by cotensoring with the free-living isomorphism.

Exercisk 1.2.iv. Show that if & is a cartesian closed co-cosmos then K*° is as
well.

Exerciski 1.2.v (6.1.6). Use Proposition 1.2.12 to show that the discrete co-cat-
egories in any oo-cosmos define an oco-cosmos whose functor spaces are all Kan
complexes.

1.3 Cosmological Functors

Certain “right adjoint type” constructions define maps between co-cosmoi that
preserve all of the structures axiomatized in Definition 1.2.1. The simple obser-
vation that such constructions define casmological functors between co-cosmoi
streamlines many proofs.

DeriniTION 1.3.1 (cosmological functor). A cosmological functor is a sim-
plicial functor (see Definition A.2.6) between co-cosmoi that preserves the
specified isofibrations and all of the cosmological limits.
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In general, cosmological functors preserve any co-categorical notion that can
be characterized internally to the co-cosmos — for instance, as a map equipped
with additional structure — as opposed to externally — for instance, by a statement
that involves a universal or existential quantifier. For example, the equivalences
in an co-cosmos are characterized externally in Definition 1.2.2, which might
lead one to suspect that a nonsurjective cosmological functor could fail to
preserve them. However, Lemma 1.2.15 characterizes equivalences in terms of
the presence of structures defined internally to an co-cosmos, so as a result:

LemMa 1.3.2. Any cosmological functor also preserves equivalences and trivial
fibrations.

Proof By Lemma 1.2.15 the equivalences in an co-cosmos coincide with the
“homotopy equivalences” defined by cotensoring with the free-living isomorph-
ism. Since a cosmological functor preserves simplicial cotensors, it preserves
the data displayed in (1.2.16) and hence carries equivalences to equivalences.
The preservation of trivial fibrations follows. O

Remark 1.3.3. Similarly, arguing from Definition 1.2.26 it would not be clear
whether cosmological functors preserve discrete co-categories, but using the
internal characterization of Lemma 1.2.27 — an oco-category A is discrete if and
only if A' 2» A% is a trivial fibration — this follows from the fact that cosmological
functors preserve simplicial cotensors and trivial fibrations.

We now demonstrate that cosmological functors are abundant:

ProrositioN 1.3.4. The following constructions define cosmological functors
Jor any oo-cosmos K:

(i) The functor space Fun(X, =) : K — QCat, for any co-category X.
(ii) The underlying quasi-category functor

(=)o =Fun(1,-): X — QCat,

specializing (i) to the terminal co-category 1.

(iii) The simplicial cotensor (=)V 1 K — XK, for any simplicial set U.

(iv) The exponential (=)* : K — X, for any oo-category A in a cartesian
closed oo-cosmos XK.

(v) Pullback of isofibrations f* : K;g — K, along any functor f : A — B
in an co-cosmos K.

(vi) Moreover, for any cosmological functor F: X — £ and any co-cat-
egory A € X, the induced map on slices F: KXy — Lp, defines a
cosmological functor.
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Proof The first four of these statements are nearly immediate, the preservation
of isofibrations being asserted explicitly as a hypothesis in each case and the
preservation of limits following from familiar arguments.

For (v), pullback in an co-cosmos X is a simplicially enriched limit con-
struction; one consequence of this is that f*: X, — K4 defines a simplicial
functor. The action of the functor f* on a 0-arrow g in X/ is also defined by a
pullback square: since the front and back squares in the displayed diagram are
pullbacks the top square is as well

Since isofibrations are stable under pullback, it follows that f* : K;p — K/
preserves isofibrations. It remains to prove that this functor preserves the sim-
plicial limits constructed in Proposition 1.2.22, which is fundamentally a conse-
quence of the commutativity of limit constructions. In each case, this can be
verified explicitly. We illustrate this computation for simplicial cotensors by
constructing the commutative cube:

Uy f*p —— (f'E)Y
e

Uhgp ————— EY r*mv
| pU
A U
A — A
/ /U
B f _ BU f

Since the front, back, and right faces are pullbacks, the left is as well.
The final statement (vi) is left as Exercise 1.3.i. O

ExampLE 1.3.5. By Propositions 1.2.11 and 1.2.12, the full subcategory inclu-
sions Cat < QCat and Kan < QCat both define cosmological functors (see
also Lemma 6.1.4). These cosmological embeddings explicate the intuition that
the formal category theory of |-categories or of co-groupoids can be recovered
as a special case of the formal category theory of (oo, 1)-categories.

Non-examples of cosmological functors are also instructive:
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Non-ExampLE 1.3.6. The forgetful functor KX;g — X is simplicial and pre-
serves isofibrations but does not define a cosmological functor, failing to pre-
serve cotensors and products. However, by Proposition 1.3.4(v), its right adjoint
— X B: X — X, does define a cosmological functor.

Non-ExampLE 1.3.7. The cosmological embedding Kan & QCat has a right
adjoint (=)~ : QCat — Kan that carries each quasi-category to its “co-group-
oid core” or maximal sub Kan complex, the simplicial subset containing those
n-simplices whose edges are all isomorphisms. This core functor preserves
isofibrations and 1-categorical limits but is not cosmological since it is not
simplicially enriched: any functor K — Q whose domain is a Kan complex and
whose codomain is a quasi-category factors through the inclusion Q= < Q via
a unique map K — Q= but in general Fun(K, Q) % Fun(K, Q%), since a natural
transformation K X A[1] — Q only factors through Q% < Q in the case where
its components are invertible (see Lemma 12.1.12 however).

Certain cosmological functors are especially well-behaved:

DeriniTION 1.3.8 (cosmological biequivalence). A cosmological functor defines
a cosmological biequivalence F: X = £ if it additionally

(i) is essentially surjective on objects up to equivalence: forall C € £
there exists A € X so that FA ~ C and

(ii) defines a local equivalence: for all A, B € XX, the action of F on functor
spaces defines an equivalence of quasi-categories

Fun(A, B) —— Fun(FA, FB).

Cosmological biequivalences are studied more systematically in Chapter
10, where we think of them as “change-of-model” functors. Crucially for our
proof of the “model independence” of (o0, 1)-category theory in Chapter 11,
there are a variety of cosmological biequivalences between the co-cosmoi of
(o0, 1)-categories:

ExampLE 1.3.9 (§E.2).
(i) The underlying quasi-category functors defined on the co-cosmoi of
complete Segal spaces, Segal categories, and 1-complicial sets
ess 2% gcar Segal 2% Qear 1-Comp 2% Qcat

are all biequivalences. In the first two cases these are defined by “evalu-
ating at the Oth row” and in the last case this is defined by “forgetting
the markings.”
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2-category of an co-cosmos. The reader is then invited to revisit the creation of
equivalences in Exercise 1.4.vi.

Exercises

Exerciske 1.3.i. Prove that for any cosmological functor F: KX — £ and any
A € X, the induced map F: K, — L£/g, defines a cosmological functor.

Exercisk 1.3.ii. Sketch a proof that cosmological biequivalences create equiva-
lences between oco-categor ies without passing to homotopy categories, by lifting
and composing the homotopy coherent isomorphisms given as part of the data
of the hypothesized equivalences.

Exercise 1.3.iii. Suppose F: X — £,G: L - M,and H: M — N are
cosmological functors, and assume that GF and HG are cosmological biequiva-
lences. Show that F, G, H, and HGF are cosmological biequivalences.

1.4 The Homotopy 2-Category

Small 1-categories define the objects of a strict 2-category?? Cat of categories,
functors, and natural transformations. Many basic categorical notions — those
defined in terms of categories, functors, and natural transformations — can be
defined internally to the 2-category Cat. This suggests a natural avenue for
generalization: reinterpreting these same definitions in a generic 2-category
using its objects in place of small categories, its 1-cells in place of functors, and
its 2-cells in place of natural transformations.

In Chapter 2, we develop a significant portion of the theory of co-categories
in any fixed co-cosmos following exactly this outline, working internally to a
2-category that we refer to as the homotopy 2-category that we associate to
any oo-cosmos. The homotopy 2-category of an co-cosmos is a quotient of the
full co-cosmos, replacing each quasi-categorical functor space by its homotopy
category. Surprisingly, this rather destructive quotienting operation preserves
quite a lot of information. Indeed, essentially all of the development of the
22 Appendix B introduces 2-categories and 2-functors, reviewing the 2-category theory needed

here. Succinctly, in parallel with Digression 1.2.4, 2-categories (see Definition B.1.1) can be
understood equally as:

+ “two-dimensional” categories, with objects; 1-cells, whose boundary are given by a pair of
objects; and 2-cells, whose boundary are given by a parallel pair of 1-cells between a pair of
objects — together with partially defined composition operations governed by this boundary data

« or as categories enriched over Cat.
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theory of co-categories in Part I takes place in the homotopy 2-category of an
oo-cosmos. This said, we caution the reader against becoming overly seduced by
homotopy 2-categories, which are more of a technical convenience for reducing
the complexity of our arguments than a fundamental notion of co-category
theory.

The homotopy 2-category for the co-cosmos of quasi-categories was first
introduced by Joyal in his work on the foundations of quasi-category theory
[63].

DeriniTION 1.4.1 (homotopy 2-category). Let K be an co-cosmos. Its homotopy
2-category is the 2-category X whose

« objects are the the objects A, B of X, i.e., the co-categories;
» l-cells f: A — B are the O-arrows in the functor space Fun(A, B), i.e., the
co-functors; and
f
« 2-cells A ZUa B are homotopy classes of 1-simplices in Fun(A, B),
g
which we call co-natural transformations.

Put another way hX is the 2-category with the same objects as K and with
hom-categories defined by

hFun(A, B) := h(Fun(A, B)),
that is, hFun(A, B) is the homotopy category of the quasi-category Fun(A, B).

The underlying category of a 2-category is defined by simply forgetting its
2-cells. Note that an co-cosmos X and its homotopy 2-category hX share the
same underlying category X, of co-categories and co-functors in X,

DiGgression 1.4.2 (change of base, §A.7). The homotopy category functor
preserves finite products, as of course does its right adjoint. It follows that the
adjunction of Proposition 1.1.11 induces a change-of-base adjunction

hy

2-Cat /J__\ sSet-Cat

~__

whose left and right adjoints change the enrichment by applying the homotopy
category functor or the nerve functor to the hom objects of the enriched category.
Here 2-Cat and sSet-Cat can each be understood as 2-categories — of enriched
categories, enriched functors, and enriched natural transformations — and both
change of base constructions define 2-functors (see Propositions A.7.3 and
A.7.5). Since the nerve embedding is fully faithful, 2-categories can be identified
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as a full subcategory comprised of those simplicial categories whose hom spaces
are nerves of categories.

The proof of Lemma 1.3.12 uses an observation worth highlighting:

Lemma 1.4.3.
f
(i) Every 2-cell A @ B in the homotopy 2-category of an co-cosmos
4

is represented by a map of quasi-categories as below-left or equivalently
by a functor as below-right

1+1 o A—* .
8
\ © (g,f)\' “‘/(p],po)

2 ——— Fun(4, B) BxB

and two such maps represent the same 2-cell if and only if they are
homotopic as 1-simplices in Fun(A, B).
f

(ii) Every invertible 2-cell A @ B in the homotopy 2-category of

g
an oo-cosmos is represented by a map of quasi-categories as below-left

or equivalently by a functor as below-right

A gl

+1
f.g)
\ i (g,f)\‘ ‘L/(

| S——Fun(4, B) BxB

and two such maps represent the same invertible 2-cell if and only if
their common restrictions along 2 < | are homotopic as I-simplices in
Fun(A, B).

The notion of homotopic 1-simplices referenced here is defined in Lemma
1.1.9. Since the 2-cells in the homotopy 2-category are referred to as co-natural
transformations, we refer to the invertible 2-cells in the homotopy 2-category as
co-natural isomorphisms.

Proof The statement (i) records the definition of the 2-cells in the homotopy
2-category and the universal property (1.2.7) of the simplicial cotensor. For (ii),
a 2-cell in the homotopy 2-category is invertible if and only if it defines an
isomorphism in the appropriate hom-category hFun(A4, B). By Corollary 1.1.16
it follows that each invertible 2-cell « is represented by a homotopy coherent
isomorphism & : | — Fun(A, B), which similarly internalizes to define a functor
ra: A— B O
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An upshot of Digression 1.4.2 is that change of base is an operation that
applies to enriched functors as well as enriched categories, as can be directly
verified in the case of greatest interest.

LemMA 1.4.4. Any simplicial functor F . K — L between co-cosmoi induces a
2-functor F : YK — HL between their homotopy 2-categories.

Proof The action of the induced 2-functor F: hKX — HL on objects and 1-
cells is given by the corresponding action of F: K — £; recall an co-cosmos
and its homotopy 2-category have the same underlying 1-category. Each 2-cell
in hX is represented by a 1-simplex in Fun(A, B) which is mapped via

Fun(4,B) —X— Fun(FA, FB)

f Ff
Ao SN
A\&/B|—>FA\£$FB
g Fg

to a 1-simplex representing a 2-cell in H£. Since the action F: Fun(A, B) —
Fun(FA, FB) on functor spaces defines a morphism of simplicial sets, it pre-
serves faces and degeneracies. In particular, homotopic 1-simplices in Fun(A, B)
are carried to homotopic 1-simplices in Fun(FA, FB) so the action on 2-cells
just described is well-defined. The 2-functoriality of these mappings follows
from the simplicial functoriality of the original mapping. |

We now begin to relate the simplicially enriched structures of an co-cosmos to
the 2-categorical structures in its homotopy 2-category by proving that homotopy
2-categories inherit products from their co-cosmoi that satisfy a 2-categori-
cal universal property. To illustrate, recall that the terminal co-category 1 €
X has the universal property Fun(X,1) = 1 for all X € X. Applying the
homotopy category functor we see that 1 € hJC has the universal property
hFun(X,1) 2 1 for all X € HX, which is expressed by saying that the co-
category 1 defines a 2-terminal object in the homotopy 2-category. This 2-
categorical universal property has both a 1-dimensional and a 2-dimensional
aspect. Since hFun(X,1) = 1 is a category with a single object, there exists
a unique morphism X — 1 in X, and since hFun(X, 1) = 1 has only a single
morphism, the only 2-cells in hX with codomain 1 are identities.

ProrosiTiON 1.4.5 (cartesian (closure)).

(i) The homotopy 2-category of any co-cosmos has 2-categorical products.
(ii) The homotopy 2-category of a cartesian closed co-cosmos is cartesian
closed as a 2-category.
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Proof While the functor h : sSet — Cat only preserves finite products, the
restricted functor h : QCat — Cat preserves all products on account of the
simplified description of the homotopy category of a quasi-category given in
Lemma 1.1.12. Thus for any set I and family of co-categories (A;);cr in X, the
homotopy category functor carries the isomorphism of functor spaces to an
isomorphism of hom-categories

Fun(X, HieIAj) —= HieI Fun(X, A;)

h

hFun(X, J._,4;)) —— ]]._, hFun(X,A;).

iel iel

This proves that the homotopy 2-category hKX has products whose universal
properties have both a 1- and 2-dimensional component, as described in the
empty case for terminal objects above.

If K is a cartesian closed co-cosmos, then for any triple of co-categories
A,B,C € X there exist exponential objects CcA,CB € X characterized by
natural isomorphisms

Fun(A X B, C) = Fun(4, CB) = Fun(B, C4).
Passing to homotopy categories we have natural isomorphisms
hFun(A x B, C) = hFun(A, CB) = hFun(B, C4),

which demonstrates that §K is cartesian closed as a 2-category: functors A X
B — C transpose to define functors A — CB and B = CA4, and natural
transformations transpose similarly. ([l

There is a standard definition of isomorphism between two objects in any
1-category, preserved by any functor. Similarly, there is a standard definition of
equivalence between two objects in any 2-category, preserved by any 2-functor:

DeFiniTION 1.4.6 (equivalence). An equivalence in a 2-category is given by

« a pair of objects A and B;
+ apairof 1-cells f: A— Bandg: B — A;and
+ a pair of invertible 2-cells

f__\‘\ /_‘\

A\:_M/A and B\\\z‘_u{i_%B
gf

When A and B are equivalent, we write A ~ B and refer to the 1-cells f and g
as equivalences, denoted by “=.”
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is an isofibration of categories in the sense defined in Proposition 1.2.11. By
axiom 1.2.1(ii), since p: E - B is an isofibration in X, the induced map
P : Fun(X, E) - Fun(X, B) is an isofibration of quasi-categories. So it suffices
to show that the functor h : QCat — Cat carries isofibrations of quasi-categor-
ies to isofibrations of categories.

So let us now consider an isofibration p : E - B between quasi-categories.
By Corollary 1.1.16, every isomorphism 3 in the homotopy category hB of the
quasi-category B is represented by a simplicial map §: | — B. By Definition
1.1.17, the lifting problem

e
¢ . E
.

1
[ Yo e
.

—— B
B

can be solved, and the map y: | — E so produced represents a lift of the
isomorphism from hB to an isomorphism in hE with domain e. O

ConvenTioN 1.4.10 (on isofibrations in homotopy 2-categories). Since the
converse to Proposition 1.4.9 does not hold, there is a potential ambiguity when
using the term “isofibration” to refer to a map in the homotopy 2-category of an
oo-cosmos. We adopt the convention that when we declare a map in §X to be an
isofibration we always mean this is the stronger sense of defining an isofibration
in . This stronger condition gives us access to the 2-categorical lifting property
of Proposition 1.4.9 and also to homotopical properties axiomatized in Definition
1.2.1, which ensure that the strictly defined limits of 1.2.1(i) are automatically
equivalence invariant constructions (see §C.1 and Proposition 6.2.8).

‘We conclude this chapter with a final definition that can be extracted from the
homotopy 2-category of an co-cosmos. The 1- and 2-cells in the homotopy 2-
category from the terminal co-category 1 € X to a generic co-category A € K
define the objects and morphisms in the homotopy category of the co-category
A.

DeriniTION 1.4.11 (homotopy category of an oo-category). The homotopy
category of an co-category A in an co-cosmos X is defined to be the homotopy
category of its underlying quasi-category, that is:

hA := hFun(1,A) := h(Fun(1, A)).
As we shall discover, homotopy categories generally inherit “derived” ana-

logues of structures present at the level of co-categories. An early example of
this appears in Proposition 2.1.7(ii).
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Exercises

ExEerciske 1.4.i.

(i) What is the homotopy 2-category of the co-cosmos Cat of 1-categories?
(ii) Prove that the nerve defines a 2-functor Cat < hQCat that is locally
fully faithful.

Exercisk 1.4.ii. Demonstrate that the homotopy 2-category of the dual cosmos
XK of an co-cosmos X is the co-dual of the homotopy 2-category hX — in
symbols h(K) = (hK)® — with the domains and codomains of 2-cells but not
1-cells reversed (see Definition B.1.6).

i

Exercise 1.4.iii. Consider a natural isomorphism A T =4« 3 B between a

g
parallel pair of functors in an co-cosmos. Give two proofs that if either f or g is

an equivalence then both functors are, either by arguing entirely in the homotopy
2-category or by appealing to Lemma 1.4.3.

Exercisi 1.4.iv. Extend Lemma 1.2.27 to show that the following four con-
ditions are equivalent, characterizing the discrete objects E in an co-cosmos
x:

(i) Eis a discrete object in the homotopy 2-category hK, that is, every 2-cell
with codomain E is invertible.
(ii) For each X € X, the hom-category hFun(X, E) is a groupoid.
(iii) For each X € X, the mapping quasi-category Fun(X, E) is a Kan com-
plex.
(iv) The isofibration E!' - EZ, induced by the inclusion of simplicial sets
2 & |, is a trivial fibration.

Exercise 1.4.v (10.3.1). Extend Lemma 1.4.4 to show thatif F: X — Lisa
cosmological biequivalence then F : hX — BL is a 2-categorical biequivalence,
a 2-functor that is essentially surjective on objects up to equivalence that locally
defines an equivalence of hom-categories.

ExEercise 1.4.vi. Let F: KX = £ be a cosmological biequivalence and let
A, B € XK. Re-prove part of the statement of Lemma 1.3.12: that if FA ~ FB in
L then A ~ Bin X.

Exercise 1.4.vii (3.6.2). Let B be an co-category in the co-cosmos K and let
HX g denote the 2-category whose

« objects are isofibrations E - B in X with codomain B;
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« 1-cells are 1-cells in hX over B; and
E——F
N
B
» 2-cells are 2-cells a in hK

f
—_—
g
N/
B
that lie over B in the sense that qor = id,,.

Argue that the homotopy 2-category (K g) of the sliced co-cosmos has the
same underlying 1-category but different 2-cells. How do these compare with
the 2-cells of H&;5?
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Adjunctions, Limits, and Colimits I

Heuristically, co-categories generalize ordinary 1-categories by adding in higher
dimensional morphisms and weakening the composition law. One could imagine
“co-tizing” other types of categorical structure similarly, by adding in higher
dimension and weakening properties. The naive hope is that proofs establishing
the theory of 1-categories might similarly generalize to give proofs for co-
categories, just by adding a prefix “co-" everywhere. In this chapter, we make
this dream a reality — at least for a library of basic propositions concerning
equivalences, adjunctions, limits, and colimits and the interrelationships between
these notions.

Recall that categories, functors, and natural transformations assemble into a
2-category Cat. Similarly, the co-categories, co-functors, and co-natural trans-
formations in any co-cosmos assemble into a 2-category, namely the homotopy
2-category of the co-cosmos, introduced in §1.4. In fact, Cat can be regarded as
a special case of a homotopy 2-category (by Exercise 1.4.i). In this chapter, we
use 2-categorical techniques to define adjunctions between co-categories and
limits and colimits of diagrams valued in an co-category and prove that these
notions interact in the expected ways. In the homotopy 2-category of categories,
this recovers classical results from 1-category theory, and in some cases even
specializes to the standard proofs. As these arguments are equally valid in any
homotopy 2-category, our proofs also establish the desired generalizations by
simply appending the prefix “co-.”

In §2.1, we define an adjunction between co-categories to be an adjunction in
the homotopy 2-category of co-categories, co-functors, and co-natural transfor-
mations. While it takes some work to justify the moral correctness of this simple
definition, it has the great advantage that proofs of a number of results concern-
ing the calculus of adjunctions and equivalences can be taken “off the shelf”
in the sense that anyone who is sufficiently well-acquainted with 2-categories
might know them already. In §2.2, we specialize the theory of adjunctions be-

54
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tween oo-categories to define and study initial and terminal elements inside an
oo-category. This section also serves as a warmup for the more subtle general
theory of limits and colimits of diagrams valued in an co-category, which is the
subject of §2.3. Finally, in §2.4, we study the interactions between these notions,
proving that right adjoints preserve limits and left adjoints preserve colimits.

Missing from this discussion is an account of the universal properties associ-
ated to the unit of an adjunction or to a limit cone. These will be incorporated
when we return to these topics in Chapter 4 after introducing an appropriate
“hom oco-category” with which to state them.

2.1 Adjunctions and Equivalences

In §1.4, we encounter the definition of an equivalence between a pair of objects
in a 2-category. In the case where the ambient 2-category is the homotopy
2-category of an co-cosmos, Theorem 1.4.7 observes that the 2-categorical
notion of equivalence precisely recaptures the notion of equivalence between oco-
categories in the full co-cosmos. In each of the examples of co-cosmoi we have
considered, the representably defined equivalences in the co-cosmos coincide
with the standard notion of equivalences between co-categories as presented
in that particular model.! Thus, the 2-categorical notion of equivalence is the
“correct” notion of equivalence between co-categories.

Similarly, there is a standard definition of an adjunction between a pair of
objects in a 2-category, which, when interpreted in the homotopy 2-category
of co-categories, functors, and natural transformations in an co-cosmos, will
define the correct notion of adjunction between co-categories.

DermntTION 2.1.1 (adjunction). An adjunction between oo-categories is com-
prised of:

« a pair of co-categories A and B;
« a pair of co-functorsu: A - Band f: B — A; and
» a pair of co-natural transformations 77 : idg = uf and e€: fu = id4, called
the unit and counit respectively,
1 For instance, as outlined in Digression 1.2.13, the equivalences in the co-cosmoi of Example

1.2.24 recapture the weak equivalences between fibrant-cofibrant objects in the usual model
structure.
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(i) for any co-category X,

fs
hFun(X,A) <1 hFun(X,B)
Uy
defines an adjunction between categories;
(iii) for any simplicial set U,
fU
U« | — gu
AW 1L OB
U
defines an adjunction between co-categories; and
(iv) if the ambient co-cosmos is cartesian closed, then for any co-category
C:
fC
A1 B

~——

u€

defines an adjunction between co-categories.

For instance, taking X = 1 in (ii) yields a “derived” adjunction between the

homotopy categories of the co-categories A and B (see Definition 1.4.11):
S
— ,
hA \_1%__4 hB

Proof Any adjunction f - u in the homotopy 2-category hK is preserved by
each of the 2-functors Fun(X, —) : hX — hQCat, hFun(X,-): hX — Cat,
(=)Y: hK = h&, and (=)€ : hK = HK. O

RemaRrk 2.1.8. There are contravariant versions of each of the adjunction preser-
vation results of Proposition 2.1.7, the first of which we explain in detail (see
Exercise 2.1.i for further discussion). Fixing the codomain variable of the functor
space at any oco-category C' € X defines a 2-functor

Fun(—,C): hKP — hQCat

that is contravariant on 1-cells and covariant on 2-cells.* Such 2-functors pre-
serve adjunctions, but exchange left and right adjoints: for instance, given f - u

4 On a 2-category, the superscript “op” is used to signal that the 1-cells should be reversed but not
the 2-cells, the superscript “co” is used to signal that the 2-cells should be reversed but not the
1-cells, and the superscript “coop” is used to signal that both the 1- and 2-cells should be
reversed (see Definition B.1.6).
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in X, we obtain an adjunction

*

u
Fun(4,C) <L Fun(B,C)
f*
between the functor spaces.

The next five results have standard proofs that can be taken “off the shelf” by
querying any 2-category theorist who may happen to be standing nearby. The
only novelty is the observation that these standard arguments can be applied to
the theory of adjunctions between co-categories.

ProrositioN 2.1.9. Adjunctions compose: given adjoint functors

f! f ff'
—_— —_— —_—
C&_J'/fo\_i_/A g C&_J:_/A
u' u u'u

the composite functors are adjoint.

Proof Writingn: idg= uf.e: fu=ids,n': ide=>u'f',ande": f'u' =
idp for the respective units and counits, the pasting diagrams
C —_— C

C
Now S /N

u
B B and B B
A/ 7w N

Eae———— W\

In
A A

define the unit and counit of ff’ - w'u so that the triangle equalities hold:

c—— C
S
A e 2N Ayl
B B B = B
N N
A= 4 A
O
L= C
St w fe WG
B B B = B

S mf e
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An adjoint to a given functor is unique up to natural isomorphism:

ProposiTion 2.1.10 (uniqueness of adjoints).

(i) If f Huand f" A u, then f = f'.
(it) Conversely, if f Huand f = f', then f' - u.

Proof Writingn: idg= uf,e: fu=idy.n' : idg=>uf',ande' : f'u=
id for the respective units and counits, the pasting diagrams

B ————8B B———8B ’
A‘”"/”Fue\f f\ b /”}MN:
A— A=———24a

define 2-cells f = f’ and f' = f. The composites f = f' = fand f' =
f = [’ are computed by pasting these diagrams together horizontally on one
side or on the other. Applying the triangle equalities for the adjunctions f 4 u
and f’ - u both composites are easily seen to be identities. Hence f = f’ as
functors from B to A.

Part (ii) is left as Exercise 2.1.ii. O

A

The following result weakens the hypotheses of Definition 2.1.1.

Lemma 2.1.11 (minimal adjunction data). A pair of functors f . B = A and
u: A — B form an adjoint pair f - u if and only if there exist natural
transformations idg = uf and fu = id so that the triangle equality composites
f= fuf = fand u= ufu= u are both invertible.

Proof The unit and counit of an adjunction certainly satisfy these hypotheses.
For the converse, consider natural transformations 7 : idg = uf ande¢’: fu=
id4 so that the triangle equality composites

e'f

/7 fuf f ¢:=ué>ufu"=€'>u

b=

are isomorphisms. We construct an adjunction f = u with unit » by modifying ¢’
to form the counit ¢.> To explain the idea of the construction, note that for a fixed
pair of generalized elements b: X — Band a: X — A, pasting with # and

5 By the co-dual of this construction, we could alternatively take €’ to be the counit at the cost of
modifying 1 to form the unit (see Exercise 2.1.iii).
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with ¢’ defines functions between the displayed sets of natural transformations:

B
N
X— A
¢f(=) a —¢
x—b . . ;
a\tu/z:t u(=)n ———— /U\
A X——— A
P ) /E’-'f(—)
X—> B
a~ b
A

From the hypothesis that the triangle equality composites are isomorphisms,
two of these functions are invertible, and then by the 2-of-6 property for isomor-
phisms all six maps are bijections.

Define the “corrected” counit to be the composite:

/L‘e’ —Mb

A#A

so that one of the triangle equality composites reduces to the identity:

NN =N e

A 4 A A
Now from the pasting equality
AN /'\ 7 W/ N
b I 0 W z}w \Un W= e I

we see that (ue - nu) - P = 1. Since P is invertible, we may cancel to conclude
that ue - nu = id,,. O

A standard 2-categorical result is that any equivalence in a 2-category can be
promoted to an equivalence that also defines an adjunction:
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ProrosiTion 2.1.12 (adjoint equivalences). Any equivalence can be promoted
to an adjoint equivalence by modifying one of the 2-cells. That is, the invertible
2-cells in an equivalence can be chosen so as to satisfy the triangle equalities.
Hence, if f and g are inverse equivalences then f 4 g and g - f.

Proof Consider an equivalence comprised of functors f : A - Bandg: B —
A and invertible 2-cells

g
= , T
Azl A and B-—-_‘“f_i_ﬁ;//B
gf

Since o and 3 are both invertible, the triangle equality composites are as well,
and the construction of Lemma 2.1.11 applies. O

One use of Proposition 2.1.12 is to show that adjunctions are equivalence
invariant:

ProrositioN 2.1.13. A functor u: A — B between oco-categories admits a
left adjoint if and only if, for any pair of equivalent co-categories A' ~ A and
B' =~ B, the equivalent functor u' . A' — B’ admits a left adjoint.

As we shall discover, all of co-category theory is equivalence invariant in this
way.

Proof Ifu: A — Badmits a left adjoint then by composing f — u with the
adjoint equivalences A" ~ A and B ~ B’ we obtain an equivalent adjunction:
ATLSATIS BB

u

. ) . u .
Conversely, if the equivalent functor ' : A’ > A — B = B’ admits a left
adjoint f' then again we obtain a composite adjunction:

fl
~ /—\ o
A 1 A A L1 B B < 1 B

u

whose right adjoint is naturally isomorphic to the original functor u. By Propo-
sition 2.1.10 the displayed left adjoint is then a left adjoint to u. O

For later use, we close with an example of an abstractly defined adjunction
that can be constructed for any co-category in any co-cosmos via the results
proven in this section.
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live inside co-categories A, which are the objects of co-cosmoi KX — which
themselves define “infinite-dimensional categories,” albeit of a different sort.

DEerintTION 2.2.1 (initial/terminal element). An initial element in an co-cate-
gory A is a left adjoint to the unique functor ! : A — 1, as displayed below-left,
while a terminal element in an co-category A is a right adjoint, as displayed
below-right.

Let us unpack the definition of an initial element; dual remarks apply to
terminal elements.

LEmMMA 2.2.2 (minimal data). To define an initial element in an co-category A,
it suffices to specify

« anelementi: 1 — Aand

1
. | ; .
* a natural transformation e N from the constant functor at i to
A ] A
the identity functor

so that the component €i . i = i, an arrow from i to i in hA, is invertible.

Proof Proposition 1.4.5, whose proof starts in the paragraph before its state-
ment, demonstrates that the co-category 1 € X is 2-terminal in the homotopy
2-category K. The 1-dimensional aspect of this universal property implies
that any element i : 1 — A defines a section of the unique map !: A — 1,
while the 2-dimensional aspect asserts that there exist no nonidentity 2-cells
with codomain 1. In particular, the unit of the adjunction i ! is necessarily
an identity and one of the triangle equalities comes for free. What remains of
Definition 2.1.1 in this setting is the data of a counit natural transformation
€ i! = id, together with the condition that its component €i = id;. But in
fact we can prove that this natural transformation must be the identity from the
weaker and more natural assumption that €i ; i = i is invertible.
To see this consider, the horizontal composite

e €l s
1 il == ili

. 1 .
A!/’UE\EA/J;E\E > i!siﬂ ﬂei

1
1= A ili == i
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By naturality of whiskering,” we can evaluate this composite as a vertical
composite in two ways. Since 1 is 2-terminal, the whiskered cell le = id,,
so the composition relation reduces to €i - €i = €i. Thus €¢i is an idempotent
isomorphism, and hence, by cancelation, an identity. ([l

Put more concisely, an initial element defines a left adjoint right inverse to
the functor ! : A - 1, while a terminal element defines a right adjoint right
inverse (see §B.4).

Lemma 2.2.3 (uniqueness). Any two initial elements in an co-category A are
isomorphic in hA and any element of hA that is isomorphic to an initial element
is initial.

Proof By Proposition 2.1.10, any two left adjoints i and i’ to the functor
! A — 1 are naturally isomorphic, and any a: 1 — A that is isomorphic to a
left adjointto ! : A — 1 is itself a left adjoint. A natural isomorphism between
a pair of functors i,i" : 1 — A gives exactly the data of an isomorphism i 22 |’
between the corresponding elements of the homotopy category hA. ([

Remark 2.2.4. Applying the 2-functor Fun(X, —) : X — hQCat to an initial
elementi: 1 — A of an co-category A € X yields an adjunction
iy
1= Fun(X,1) Z_ L Fun(X,A)
!
Via the isomorphism Fun(X, 1) = 1 that expresses the universal property of the

terminal oo-category 1, the constant functor at an initial element
. .
X —3 1 — 5 A

defines an initial element of the functor space Fun(X, A). This observation can
be summarized by saying that initial elements are representably initial at the
level of the co-cosmos.

Conversely, if i : 1 — A is representability initial, then i defines an initial ele-
ment of A. This is most easily seen by passing to the homotopy 2-category, where
we can show that an initial element i : 1 — A is initial among all generalized
elements f 1 X — A in the following precise sense.

7 “Naturality of whiskering” refers to the observation of Lemma B.1.3 that any
horizontal-composite of 2-cells in a 2-category can be expressed as a vertical composite of

whiskerings of those cells in two different ways, in this case giving rise to the commutative
diagram in hA := hFun(1, A) displayed above-right.
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LemMA 2.2.5. Anelementi: 1 — Ais initial if and only if forall f: X — A
there exists a unique 2-cell with boundary

1
| .
/ “!\

X—
f

Proof 1Ifi: 1 — Aisinitial, then the adjunction of Definition 2.2.1 is preserved
by the 2-functor hFun(X, —) : hX — Cat, defining an adjunction

L

1= hFun(X,1) Z__ L > hFun(X,A)

!
Via the isomorphism hFun(X, 1) = 1, this adjunction proves that the constant
functor i! : X — A is initial in the category hFun(X, A) and thus has the univer-
sal property of the statement.

Conversely, if i: 1 — A satisfies the universal property of the statement,

applying this to the generic element of A (the identity map idg : A — A)
produces the data of Lemma 2.2.2. O

Lemma 2.2.5 says that initial elements are representably initial in the homo-
topy 2-category. Specializing the generalized elements to ordinary elements,
we see that initial and terminal elements in A respectively define initial and
terminal elements in its homotopy category:

[

§ L > (2.2.6)
\‘__/

=~

In general the property of being “homotopy initial,” i.e., initial in the homotopy
category, is weaker than being initial in the co-category. However Nguyen,
Raptis, and Schrade observe that a homotopy initial element in a complete
(o0, 1)-category necessarily defines an initial element [88, 2.2.2].

Continuing the theme of the equivalence invariance of co-categorical notions:

Lemma 2.2.7. If A has an initial element and A ~ A’ then A" has an initial
element and these elements are preserved up to isomorphism by the equivalences.

Proof By Proposition 2.1.12, the equivalence A ~ A’ can be promoted to an
adjoint equivalence, which can immediately be composed with the adjunction
characterizing an initial element i of A:

i s

/—-—-\ /———-\ ,

1L =a L 2
1

~
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The composite adjunction provided by Proposition 2.1.9 proves that the image
of i defines an initial element of A’, which by construction is preserved by the
equivalence A = A’. By the uniqueness of initial elements established in Lemma
2.2.3, this argument also shows that the equivalence A" = A preserves initial
elements. L

We now turn to the general theory of limits and colimits of diagrams valued
in an oco-category. The theory of initial elements previews this material well
since in fact an initial element can be understood as an example of both notions:
an initial element is the colimit of the empty diagram and also the limit of the
diagram encoded by the identity functor, as we explain in Example 2.3.11.

Exercises

Exercise 2.2.i. Use Lemma 2.2.5 to show that a representably initial element,
as described in Remark 2.2.4, necessarily defines an initial element in A.

Exercisk 2.2.ii. Prove that initial elements are preserved by left adjoints and
terminal elements are preserved by right adjoints.

2.3 Limits and Colimits

We now introduce limits and colimits of diagram valued inside an co-category
A in some co-cosmos. We consider two varieties of diagrams:

» diagrams indexed by a simplicial set J and valued in an co-category A in a
generic co-cosmos and
+ diagrams indexed by an oo-category J and valued in an oco-category A in a

cartesian closed co-cosmos.?

DermniTiON 2.3.1 (diagram co-category). For an oo-category A and a simplicial
set J — or possibly, in the case of a cartesian closed co-cosmos, an co-category .J
— we refer to A’ as the co-category of J-shaped diagrams in A. A diagram of
shape Jin A is an elementd : 1 — A’°

8 For the co-cosmoi of (oo, 1)-categories of Example 1.2.24, there is no essential difference
between these notions: in Q€at they are tautologically the same, and in all biequivalent
oo-cosmoi the co-category of diagrams indexed by an co-category J is equivalent to the
oo-category of diagrams indexed by its underlying quasi-category, regarded as a simplicial set
(see Proposition 10.3.5).

9 When A7 is the exponential of a cartesian closed co-cosmos, diagrams stand in bijection with
functorsd : J = A.
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Both constructions of the co-category of diagrams in an co-cosmos X define
simplicial bifunctors

s8et® x K —— K KP XK — K
(J,A) —— A7 (J,A) —— A’

In either indexing context, there is a terminal object 1 with the property that
Al = A for any co-category A. Restriction along the unique map !: J — 1
induces the constant diagram functor A: A — A’.

We deliberately conflate the notation for co-categories of diagrams indexed
by a simplicial set or by another co-category because all of the results we prove
in Part I about the former case also apply to the latter. For economy of language,
we refer only to simplicial set indexed diagrams for the remainder of this section.

DerinrTION 2.3.2 (limit and colimit functor). An co-category A admits all
colimits of shape J if the constant diagram functor A : A — A’ admits a left
adjoint, while A admits all limits of shape J if the constant diagram functor
admits a right adjoint:

In the co-cosmos of categories, Definition 2.3.2 reduces to the classically
defined limit and colimit functors, but in a general co-category limits and colimits
should be thought of as analogous to the classical notions of “homotopy limits”
and “homotopy colimits.” In certain cases, this correspondence can be made
precise. Every quasi-category is equivalent to the homotopy coherent nerve of a
Kan complex enriched category [111, 7.2.2], and homotopy limit or homotopy
colimit cones in the Kan complex enriched category correspond exactly to limit
or colimit cones in the homotopy coherent nerve (see Lurie’s [78, 4.2.4.1] or
[113, 6.1.4, 6.2.7]). In the co-categorical context, no stricter notion of limit or
colimit is available, so the “homotopy” qualifier is typically dropped.

Limits or colimits of set-indexed diagrams — the case where the indexing
shape is a coproduct of the terminal object 1 indexed by a set J — are called
products or coproducts, respectively.

Lemma 2.3.3. Products or coproducts in an co-category A also define products
or coproducts in its homotopy category hA.

Proof When J is a set, the co-category of diagrams itself decomposes as a
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Proof The universal property of the absolute right lifting diagram

x—2.8B x—2.8B
g A

a| e [ro= o] TR s

A——A A—A

asserts that every natural transformation a: fb = a has a unique transpose
B : b= ua across the adjunction between the hom-categories of the homotopy
2-category:

f*

hFun(X, B) @ hFun(X, A)

U
Thus if f - u with counit €, Proposition 2.1.7(ii) supplies this induced adjunc-
tion and (u, €) defines an absolute right lifting of id, through f.

Conversely, the unit and triangle equalities of an adjunction can extracted

from the universal property of the absolute right lifting diagram. The details are
left as Exercise 2.3.iii. ([

In particular, the unit and counit of the adjunctions colim 4 A - lim of
Definition 2.3.2 define absolute left and right lifting diagrams:

A A
COV lA lim lA
1 le
Al Al Al Al

By Lemma 2.3.6, these universal properties are retained upon restricting to
any subobject of the co-category of diagrams. This motivates the following
definition:

DeriniTiON 2.3.8 (limit and colimit). A colimit of a family of diagramsd : D —
A’ of shape J in an co-category A is given by an absolute left lifting diagram

A

colimd lA
m

J

comprised of a generalized element colimd: D — A and a colimit cone
n: d= Acolimd.
Dually, a limit of a family of diagrams d: D — A’ of shape .J in an co-
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category A is given by an absolute right lifting diagram

A

Ii1V lA
Je

DT»AJ'

comprised of a generalized element limd: D — A and a limit cone ¢:
Alimd = d.

Remark 2.3.9. If A has all limits of shape J, then Lemma 2.3.6 implies that
any family of diagrams d: D — A’ has a limit, defined by composing the
limit functor lim : A” — A with d. In an co-cosmos of (oo, 1)-categories, if
every diagram d : 1 — A’ has a limit, then A admits all limits of shape J (see
Corollary 12.2.10), but in general families of diagrams cannot be reduced to
single diagrams.

ExampLE 2.3.10. An initial elementi: 1 — A can be regarded as a colimit
of the empty diagram. The oco-category A9 ~ 1 of empty diagrams in A is
terminal, so the constant diagram functor reducesto ! : A — 1. To show that
initial elements are colimits in the sense of Definition 2.3.8, we must verify that
an initial element defines an absolute left lifting diagram whose 2-cell is the
identity:

f
—)

A x L A
e 7
1 1 1
Since the co-category 1 is 2-terminal, there is a unique 2-cell y inhabiting the
central square above, namely the identity. Thus, the universal property of the

absolute left lifting diagram asserts the existence of a unique 2-cell {: i! = f
forany f: X — A, exactly as provided by Lemma 2.2.5.

N

AN

1

ExampLE 2.3.11. In a cartesian closed co-cosmos, an initial elementi: 1 — A
can also be regarded as a limit of the identity functor idy : A — A.!! The
counit € : i! = id4 of the adjunction i -! transposes across the 2-adjunction
A x — - (=)* of Proposition 1.4.5 to define the limit cone displayed below-left:

f f

A X— A X—A
. Ell
/ lA [1 by lA _ l U /' lA
e Ve "oe
1 — A4 1 — A4 1 —— A4
dA IdA IdA

11 This result is extended to co-cosmoi that are not cartesian closed in Proposition 9.4.10.
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The universal property displayed above-right is easiest to verify by transposing
across the 2-adjunction A x — - (=)* again, where we must establish the

f

pasting equality

XXA Ux [f=XxA R LI (2.3.12)

S o, S

Observe that when we restrict the right-hand side of (2.3.12) along the functor
idyxi: X 2 X X1 — X X A we recover the 2-cell ¢, since €i = id;. This
tells us that given y, we must necessarily define the 2-cell { : f = i! to be the
restriction of ¥ along the functoridy Xi: X — X X A.

From this definition of { and the 2-functoriality of the cartesian product —
which tells us that ey = w4 (X X €) — we have

XxA 15 A = XXA=————XXA Iz

”A\‘Azy "A\‘A

By “naturality of whiskering” (see Lemma B.1.3), the right-hand pasted com-

[5'e X ,_f\‘ idy %! Xx1 idyxi 7Tx X
f

posite can be computed as the vertical composite of 7x(X X €) followed by 7,
but 5 (X X €) is the identity 2-cell, so this composite is just . This verifies the
desired pasting equality (2.3.12).

Certain limits and colimits in co-categories exist for formal reasons. For exam-
ple, an abstract 2-categorical lemma enables a formal proof of a classical result
from homotopy theory that computes the colimits, typically called geometric
realizations, of “split” simplicial objects. Before proving this, we introduce the
indexing shapes involved.

DerintTION 2.3.13 (split augmented (co)simplicial object). The simplex cat-
egory A of finite nonempty ordinals and order-preserving maps introduced
in 1.1.1 defines a full subcategory of the category A_ of finite ordinals and
order-preserving maps, which freely appends the empty ordinal “[—1]" as an
initial object. The category A, in turn defines a wide subcategory of a category
A, which adds an “extra” degeneracy o~ : [n + 1] > [n] between each pair
of consecutive ordinals, including c=' : [0] - [—1]. The category A, also
defines a wide subcategory of a category A, which adds an “extra” degeneracy
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¢™*1: [n+ 1] - [n] on the other side between each pair of consecutive ordi-
nals, including ¢® : [0] - [—1]. The categories A and At can be described
in another way: there are faithful embeddings of these categories into A that act
on objects by [n] = [r + 1] and identify A, and A1 with the subcategories of
finite nonempty ordinals and order-preserving maps that preserve the bottom
and top elements respectively.

Covariant diagrams indexed by A C A, C A, Ay are, respectively, called
cosimplicial objects, coaugmented cosimplicial objects, and split coaugment-
ed cosimplicial objects (in the case of either A | or A1), while contravariant
diagrams are respectively called simplicial objects, augmented simplicial ob-
jects, and split augmented simplicial objects. When it is useful to disambiguate
between A; and At we refer to the former category as a “bottom splitting” and
the latter category as a “top splitting,” but this terminology is not standard.

A cosimplicial object d : 1 — A® in an co-category A admits a coaugmen-
tation or admits a splitting if it lifts along the restriction functors

L= a8
where in the case of a top splitting, A is replaced by At. The family of cosim-
plicial objects admitting a coaugmentation and splitting is represented by the
generalized element res : A2L - A®. In any augmented cosimplicial object,
there is a cone over the underlying cosimplicial object whose summit is obtained
by evaluating at [—-1] € A, This cone is defined by cotensoring with the unique
natural transformation

A LA,

!\’HTV /[_1] (2.3.14)

that exists because [—1] : 1 — A, is initial (see Lemma 2.2.5).

ProrosiTION 2.3.15 (totalization/geometric realization). Let A be any co-cat-
egory. Every cosimplicial object in A that admits a coaugmentation and a
splitting has a limit, whose limit cone is defined by the coaugmentation. Dually,
every simplicial object in A that admits an augmentation and a splitting has a
colimit, whose colimit cone is defined by the augmentation. That is, there exist
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absolute right and left lifting diagrams

A A
evp V l evV l
A A
JAY . ) 1 Av“P
A A A Al A AP
A L res A + res A A L res A * res A
A A
evy_ evi_q
[y 14. V la
U Av . . 'ﬂ‘ Avn}"
A 5 AD 5 AA A 5 AAS AP
A T res A + res A A T res A * res

in which the 2-cells are obtained as restrictions of the cotensor of the 2-cell
(2.3.14) into A. Moreover, such limits and colimits are absolute, preserved by
any functor f . A — B of co-categories.

Proof By Example B.5.2, the inclusion A < A admits a right adjoint, which
can automatically be regarded as an adjunction “over 17 since 1 is 2-terminal in
Cat. The initial element [-1] € A, C A defines a left adjoint to the constant
functor:

and the counit of this adjunction restricts along the inclusions A C A, C A to
the 2-cell (2.3.14). For any co-category A in an oo-cosmos K, these adjunctions
are preserved by the 2-functor A eat™® — bK, yielding a diagram

b A
V-] lA
A ) A b A
A + v res A * res A
- T

By Lemma B.5.1 these adjunctions witness the fact that evaluation at [—1]
and the 2-cell from (2.3.14) define an absolute right lifting of the canonical
restriction functor A%+ - A through the constant diagram functor, as claimed.
The colimit case is proven similarly by applying the composite 2-functor

ca® 27, eqrer A2, pi

A similar argument, starting from Example B.5.3, constructs the absolute lifting
diagrams from the top splitting.
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case where the co-categories in question admit a!l limits of a given shape: under
these hypotheses, the limit functor is right adjoint to the constant diagram functor,
which commutes with all functors between the base co-categories. Since the
left adjoints commute, the uniqueness of adjoints (Proposition 2.1.10) implies
that the right adjoints commute up to isomorphism. This outline gives a hint for
Exercise 2.4.i.

A more delicate argument is needed in the general case, involving, say, the
preservation of a single limit diagram without a priori assuming that any other
limits exist. We appeal to a general lemma about composition and cancelation
of absolute lifting diagrams:

LeEmMMA 2.4.1 (composition and cancelation of absolute lifting diagrams). Sup-
pose (v, p) defines an absolute right lifting of h through f:

/ru/p ls

D—A
h

Then (s, o) defines an absolute right lifting of v through g if and only if (s, p - fo)
defines an absolute right lifting of h through fg.

Proof Exercise 2.4.ii. O

THEOREM 2.4.2. Right adjoints preserve limits and left adjoints preserve colim-
its.

The usual argument that right adjoints preserve limits is this: a cone over a J-
shaped diagram in the image of a right adjoint u transposes across the adjunction
f7 4 u’ to a cone over the original diagram, which factors uniquely through the
designated limit cone. This factorization transposes across the adjunction f - u
to define the sought-for unique factorization through the image of the limit cone.
An oo-categorical proof along these lines can be given as well (see Exercise
2.4.iii), but instead we present a slicker packaging of the standard argument. We
use absolute lifting diagrams to express the universal properties of limits and
colimits (Definition 2.3.8) and adjoint transposition (Lemma 2.3.7), allowing us
to suppress consideration of a generic test cone that must be shown to uniquely
factor through the limit cone.

Proof We prove that right adjoints preserve limits. By taking co-duals the
same argument demonstrates that left adjoints preserve colimits.
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Suppose a functor u: A — B in an co-cosmos K admits a left adjoint
f: B — A with counite: fu = id,. Our aim is to show that any absolute
right lifting diagram as displayed below-left is carried to an absolute right lifting
diagram as displayed below-right:

A A% B
“ffy |a ”ny |a | (24.3)
Ip Up
D—— A D——A — B/
d d ul

By Proposition 2.1.7, the cotensor (=)”: §KX — HK carries the adjunction
f - u to an adjunction f < «/ with counit ¢’. In particular, by Lemma 2.3.7,
(u’, €”) defines an absolute right lifting of the identity through f7, which is then
preserved by restriction along the functor d. Thus, by Lemma 2.4.1, the diagram
on the right of (2.4.3) is an absolute right lifting diagram if and only if the pasted
composite displayed below-left defines an absolute right lifting diagram:

A—2%>B

mt s s

D—— A g = A
Xe! l i liV lA
Ue
AJ D T) A‘I —_—

As noted in the proof of Lemma 2.3.7, pasting the 2-cell on the right of (2.4.3)
with the counit in this way amounts to transposing the cone u’p across the
adjunction f7 < u’.

We now argue that this transposed cone above-left factors through the limit
cone (limd, p) in a canonical way. From the 2-functoriality of the simplicial
cotensor in its exponent variable, f/A = Af and /A = Ae. Hence, the pasting
diagram displayed above-left equals the one displayed above-center, which
equals the diagram above-right. This latter diagram is a pasted composite of
two absolute right lifting diagrams, and is then an absolute right lifting diagram
in its own right by Lemma 2.4.1; this universal property says that any cone
over d whose summit factors through f factors uniquely through the limit cone
(limd, p) through a map that then transposes along the adjunction f — u. Hence
the diagram on the right-hand side of (2.4.3) is an absolute right lifting diagram
as claimed. O

ProprosiTionN 2.4.4. An equivalence . A = B preserves, reflects, and creates
limits and colimits.
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Proof By Proposition 2.1.12, equivalences define adjoint functors, so Theorem
2.4.2 implies that equivalences preserve limits. To see that limits are reflected,
consider a J-shaped cone p in A whose image f’p is a limit cone in B. The
inverse equivalence g : B = A carries this to a limit cone g’ f’p in A, which
is naturally isomorphic to the original cone p. By Exercise 2.3.vi, p must also
define a limit cone. Finally to see that limits are created, consider a diagram
d: D — A’ sothat fd has a limit cone v in B. Then g’v defines a limit cone for
the diagram g fd in A, and by Exercise 2.3.vi, a limit cone for d may be defined
by composing with the isomorphism gfd = d. O

‘We turn now to a limit-preservation result of another sort, which can be used to
simplify the calculation of limits or colimits of diagrams with particular shapes.
This simplification comes about by reindexing the diagrams, by restricting
along a functor k : I — J. For certain functors, called “initial” or “final,” this
reindexing preserves and reflects limits or colimits, respectively.

At present, we give a teleological, rather than an intrinsic, description of
these functors. The following definition makes sense for an arbitrary functor in
a cartesian closed co-cosmos or for a map between simplicial sets serving as
indexing shapes in an arbitrary co-cosmos. In Definition 9.4.11 we extend the
adjectives “initial” and “final” to functors between co-categories in an arbitrary
oo-cosmos and prove that the functors characterized there satisfy the property
described here.

DEerFiNntTION 2.4.5 (initial and final functor). A functor k: I — J is final if a
J-shaped cone defines a colimit cone if and only if the restricted I-shaped cone
is a colimit cone and initial if any J-shaped cone defines a limit cone if and only
if the restricted I-shaped cone is a limit cone. That is, k : I — Jis final if and
only if for any co-category A, the square

A
«|
A

—

p— A
B
Ak A
preserves and reflects all absolute left lifting diagrams, and initial if and only if
this squares preserves and reflects all absolute right lifting diagrams.

Historically, final functors were called “cofinal” with no obvious name for
the dual notion. Our preferred terminology hinges on the following mnemonic:
the inclusion of an initial element defines an initial functor, while the inclusion
of a terminal (aka final) element defines a final functor. These facts are special
cases of a more general result we now establish, using exactly the same tactics
as deployed to prove Theorem 2.4.2.
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ProrosiTioN 2.4.6. Left adjoints define initial functors and right adjoints define
final functors.

Proof If k - r with counit € : kr = idy, then cotensoring into A yields an
adjunction
Ar
Al L 5 Al with counit A° : ATA* = id,s.
Ak
To prove that k is initial we must show that for any cone p : A€ = d as displayed
below-left,

¢ lA ¢ la lA
4o ip
D —— A D——s A — 5 A
d d Ak

the left-hand diagram is an absolute right lifting diagram if and only if the
right-hand diagram is an absolute right lifting diagram.

By Lemmas 2.3.7 and 2.4.1, the right-hand diagram is an absolute right
lifting diagram if and only if the pasted composite displayed below-left is also
an absolute right lifting diagram.

¢ A A ¢ A
Ll b e
D— A A4l = D— A
ws lAr
AJ
Since A"A = A and A°A = id,, the left-hand side reduces to the right-hand
side, which proves the claim. ([

Exercise 2.3.v defines a functor f : A — Bbetween oo-categories to be fully
faithful just when

A

i

A B

]

defines absolute right lifting diagram or equivalently an absolute left lifting
diagram. Modulo a result we borrow from Chapter 3, we show:
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ProrosiTION 2.4.7. A fully faithful functor f: A — B reflects any limits or
colimits that exist in B.

Proof The statement for limits asserts that for any family of diagrams d : D —
A’ of shape Jin A, any functor £: D — A, and any cone p : A¢ = d so that
the whiskered composite with 7 : A’ — B’ is an absolute right lifting diagram

f

A —— B

A
Ip
D—— AT —— B’

d Vid
then (¢, p) defines an absolute right lifting of d : D — A’ through A: A — A’.
By Exercise 2.3.v, to say that f is fully faithful is to say thatid4 : A — A defines
an absolute right lifting of f through itself. So by Lemma 2.4.1, the composite
diagram below-left is an absolute right lifting diagram, and by 2-functoriality
of the simplicial cotensor with J, the diagram below-left coincides with the
diagram below-right:

A A
/ I lA
—— B = \ AJ

Now if we knew that id4s : A" — A’ defines an absolute right lifting of f7
through itself — that is, if we know that f/: A’ — B’ is also fully faithful — then
we could apply Lemma 2.4.1 again to conclude that (€, p) is an absolute right
lifting of d through A as required. And indeed this is the case: by Corollary 3.5.7,
any cosmological functor, such as (—)’, preserves absolute lifting diagrams. [

It is worth asking why we have not already proven that cosmological functors
preserve absolute lifting diagrams, since after all, by Lemma 1.4.4, cosmologi-
cal functors induce 2-functors between homotopy 2-categories, which is where
absolute lifting diagrams are defined. But unlike adjunctions, which are defined
by pasting equations in a 2-category, absolute lifting diagrams are defined using
universal quantifiers and hence are not preserved by all 2-functors. However,
the 2-functors that underlie cosmological functors do preserve absolute lifting
diagrams, even when the cosmological functor is “forgetful” or fails to be es-
sentially surjective. This is because the universal property of absolute lifting
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Our aim in this chapter is to develop the general theory of comma constructions
from the point of view of the homotopy 2-category of an co-cosmos. Our
first payoff for this work appears in Chapter 4 where we study the universal
properties of adjunctions, limits, and colimits along these lines. The comma
construction also provides the essential vehicle in Part 111 for establishing the
model independence of the categorical notions we introduce throughout this
text.

There is a standard definition of a “comma object” that can be stated in
any 2-category, defined as a particular weighted limit (see Example A.6.14).
Comma oo-categories do not satisfy this universal property in the homotopy
2-category, however. Instead, they satisfy a somewhat peculiar “weak™ variant
of the usual 2-categorical universal property that to our knowledge has not
appeared elsewhere in the literature. The weak universal property is encoded
by something we call a smothering functor, which relates homotopy coherent
and homotopy commutative diagrams of suitable shapes. To introduce these
universal properties in a concrete rather than abstract framework, we start in
§3.1 by considering smothering functors involving homotopy categories of
quasi-categories.

In §3.2, we use a smothering functor to encode the weak universal property
of the co-category of arrows A” associated to an co-category A, considered as
an object in the homotopy 2-category. In §3.3, we briefly study the analogous
weak universal properties associated to the pullback of an isofibration, which
we exploit to prove that the pullback of an equivalence along an isofibration is
an equivalence.

Comma oo-categories are introduced in §3.4 where we describe both their
strict universal properties as simplicially enriched limits as well as their weak
universal properties in the homotopy 2-category. Each have their uses, for in-
stance in describing the induced actions on comma co-categories of various
types of morphisms between their generating cospans. The weak 2-categorical
universal property is deployed in §3.5 to prove a general representability theorem
that characterizes those comma co-categories that are right or left represented
by a functor. In Chapter 4, we reap the payoff for this work, achieving the desired
representable characterizations of adjunctions, limits, and colimits as special
cases of these general results.

In §3.6, we tighten the main theorem of §3.5 to say that a comma co-category
is right represented by a functor if and only if its codomain-projection functor
admits a terminal element, when considered as an object in the sliced co-cosmos.
This result requires a careful analysis of the subtle difference between the homo-
topy 2-category of a sliced co-cosmos and the sliced 2-category of the homotopy
2-category of an co-cosmos. Those readers who would rather stay out of the
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weeds are invited to take note of Definition 3.6.5 and Corollary 3.6.10 but
otherwise skip this section.

3.1 Smothering Functors

Let Q be a quasi-category. Recall from Lemma 1.1.12 that its homotopy category
hQ has

» clements of Q as its objects;

» homotopy classes of 1-simplices of Q as its arrows, where parallel 1-simpli-
ces are homotopic just when they bound a 2-simplex whose remaining outer
edge is degenerate; and

= a composition relation if and only if any chosen |-simplices representing
the three arrows bound a 2-simplex.

For a l-category J, it is well-known in classical homotopy theory that the
homotopy category of diagrams h(Q”) is not equivalent to the category (hQ)” of
diagrams in the homotopy category — except in very special cases, such as when J
is a set (see Lemma 2.3.3). The objects of h(Q”) are homotopy coherent diagrams
of shape J in Q, while the objects of (hQ)’ are mere homotopy commutative
diagrams. There is, however, a canonical comparison functor

h(Q’) — (hQ)’

defined by applying h: QCat — Cat to the evaluation functor Q7 x J — Q
and then transposing; a homotopy coherent diagram is in particular homotopy
commutative.

Our first aim in this section is to better understand the relationship between
the arrows in the homotopy category hQ and the arrows of Q, meaning the
I-simplices in the quasi-category. To study this, we consider the quasi-category
Q? in which the arrows of Q live as elements, where 2 = A[1] is the nerve of
the walking arrow. Our notation deliberately imitates the notation commonly
used for the category of arrows: if C is a 1-category, then C? is the category
whose objects are arrows in C and whose morphisms are commutative squares,
regarded as a morphism from the arrow displayed vertically on the left-hand
side to the arrow displayed vertically on the right-hand side. This notational
conflation suggests our first question: how does the homotopy category of Q?
relate to the category of arrows in the homotopy category hQ?

Lemma 3.1.1. The canonical functor h(Q*) = (hQ)?* is

(i) surjective on objects,
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(it) full, and
(iii) comservative, i.e., reflects invertibility of morphisms,

but not necessarily injective on objects nor faithful.

Proof Surjectivity on objects asserts that every arrow in the homotopy category
hQ is represented by a 1-simplex in Q. This is the conclusion of Exercise
To prove fullness, consider a pair of arrows f and g in Q that form the source
and target of a commutative square in hQ. By (i), we may choose arbitrary
1-simplices representing each morphism in hQ and their common composite:

By Lemma 1.1.12, every composition relation in hQ is witnessed by a 2-simplex
in Q; choosing a pair of such 2-simplices defines a diagram 2 X 2 — Q, which
represents a morphism from f to g in h(Q?), proving fullness.

Surjectivity on objects and fullness of the functor h(Q*) — (hQ)* are special
properties having to do with the diagram shape 2, while conservativity holds
for generic diagram shapes by Corollary 1.1.22. The construction of counterex-
amples illustrating the general failure of injectivity on objects and faithfulness
is left to Exercise 3.1.i, with a hint. O

The properties of the canonical functor h(Q?) — (hQ)? frequently reappear,
so we bestow them with a suggestive name:

DeriNiTION 3.1.2 (smothering functor). A functor f: A — B between 1-cate-
gories is smothering if it is surjective on objects, full, and conservative. That
is, a functor is smothering if and only if it has the right lifting property with
respect to the set of functors:

@ 1+1 2
[0
T2 0

Various elementary properties of smothering functors are established in Exer-
cise 3.1.ii; here we highlight one worthy of particular attention:

Lemma 3.1.3 (smothering fibers). Each fiber of a smothering functor is a non-
empty connected groupoid.
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Proof Suppose f: A — B is smothering and consider the fiber

Ab—>A

L2l
1—2 5B

over an object b of B. By surjectivity on objects, the fiber is nonempty. Its
morphisms are defined to be arrows between objects in the fiber of b that map
to the identity on b. By fullness, any two objects in the fiber are connected by a
morphism, indeed, by morphisms pointing in both directions. By conservativity,
all the morphisms in the fiber are necessarily invertible. |

The argument used to prove Lemma 3.1.1 generalizes to:

Lemma 3.1.4. If Jis a I-category that is free on a reflexive directed graph and
Q is a quasi-category, then the canonical functor h(Q7) — (hQY is smothering.

Proof Exercise 3.1.iii. O

Cotensors are one of the cosmological limits axiomatized in Definition 1.2.1.
Other limit constructions listed there also give rise to smothering functors.
LemmMma 3.1.5. For any pullback diagram of quasi-categories in which p is an
isofibration

AXE ——E

Jd

p

B o«— wmX

——> B

f

the canonical functor (A X E) = hA X hE is smothering.
B hB

Proof Ash: QCat — Cat does not preserve pullbacks, the canonical com-
parison functor of the statement is not an isomorphism. It is however bijective
on objects since the composite functor

o
QCat —— Cat — Set

passes to the underlying set of vertices of each quasi-category, and this functor
does preserve pullbacks.

For fullness, note that a morphism in hAX, ghE is represented by a pair of
I-simplices ¢ : a —» a’inAande: e — ¢’ in E whose images are homotopic
in B, a condition that implies in particular that f(a) = p(e) and f(a") = p(e’).
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By Lemma 1.1.9, we can configure this homotopy however we like, and thus we
choose a 2-simplex witness § so as to define a lifting problem

A[2] —— E 5 e / o~ e
Al2] T» B =) - p(e) NG
fl@) —— fla) = p(e)

Since p is an isofibration, a solution exists, defining an arrow €: e — ¢’ in E in
the same homotopy class as € so that p(€) = f(a). The pair (¢, €) now defines
the lifted arrow in h(E Xg A).

Finally, consider an arrow 2 — A xE whose image in hA >1<3 hE is an isomorph-

ism, which is the case just when the prOJectlons to E and A define isomorphisms.
By Corollary 1.1.16, we may choose a homotopy coherent isomorphism | — A
extending the given isomorphism 2 — A. This data presents us with a lifting
problem

—— AXE —— E
A 4

X
B .-
i P

B

'=(ﬁﬂ*9

which Exercise 1.1.vi tells us we can solve. This proves that h(A EE) — hA >}<3hE
h

is conservative and hence also smothering.
A similar argument proves:

LemmMma 3.1.6. For any tower of isofibrations between quasi-categories

Ey En E, Ey Eoy
the canonical functor h(lim,, E,,) — lim, hE,, is smothering.
Proof Exercise 3.1.iv. |

Lemma 3.1.7. For any cospan between quasi-categories C £ A i B consider
the quasi-category defined by the pullback

Homu(f,g) —— A?

l - l(cod,dcm)

CXB— AXA
gxf
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the representing object. Here the identity functor id : A> — A? is mapped to
an element of Fun(A4*, A)?, a 1-simplex in Fun(A?, A), which by Lemma 1.4.3
represents a 2-cell x in the homotopy 2-category.

To see that the source and target of ¥ must be the domain evaluation and co-
domain evaluation functors, defined by cotensoring with the endpoint inclusion
T+ 1 < 2, we use the naturality of the isomorphism (3.2.4) in the cotensor
variable:

Fun(X, A?) Fun(X,A)?
(Pl‘Po)*l l(cnd,dnm)
Fun(X,A x A) = Fun(X,A) X Fun(X,A)

1

The identity functor maps around the top-right composite to the pair of functors
(cod x, dom k) and around the left-bottom composite to the pair (p;, pp). O

There is a 2-categorical limit notion that is analogous to Definition 3.2.1,
which constructs, for any object A, the universal 2-cell with codomain A: namely
the (categorical) cotensor with the 1-category 2. Its universal property is anal-
ogous to (3.2.4) but with the hom-categories of the 2-category in place of
the functor spaces (see Definition A.4.1). In the 2-category of categories, the
2-cotensor defines the arrow category.

In the homotopy 2-category, by the Yoneda lemma again, the data (3.2.3)
encodes a natural transformation

hFun(X,A*) — hFun(X,A)*

of categories but this is not a natural isomorphism, nor even a natural equivalence
of categories. However, it does furnish the co-category of arrows with a “weak”
universal property of the following form:

ProposiTiON 3.2.5 (the weak universal property of the arrow oco-category). The
generic arrow (3.2.3) with codomain A has a weak universal property in the
homotopy 2-category given by three operations:

(i) I-cell induction: Given a natural transformation over A as below-left

X X

Trg
T

+

t A’ s
PlLé)PU
A
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there exists a functor "a™ . X = A% so that s = py"a’, t = p;"a”, and
a=x"al

(ii) 2-cell induction: Given functors a,a’ © X — A? and natural transfor-
mations T| and Ty so that

/rl\ /m\
N (/pﬂ Q e

there exists a natural transformation T a = a’ so that piT = 1 and

PoT = Tp.
(iii) 2-cell conservativity: For any natural transformation X
if both pyt and potT are isomorphisms then T is an isomorphism.

Proof Let Q = Fun(X, A) and apply Lemma 3.1.1 to observe that the natural
map of hom-categories

hFun(X, A%) hFun(X, A)?

((P])m(ﬁ’(]h) %ﬁm)

hFun(X,A) x hFun(X, A)

over hFun(X, A X A) = hFun(X, A) x hFun(X, A) is a smothering functor. Sur-
jectivity on objects is expressed by 1-cell induction, fullness by 2-cell induction,
and conservativity by 2-cell conservativity. ([l

Note that the functors "a7: X — A? that represent a given natural transfor-
mation o with domain X and codomain A are not unique. However, they are
unique up to “fibered” isomorphisms that whisker with (p;, pg) : A> » A X A
to identities:

ProposiTiON 3.2.6. Whiskering with (3.2.3) induces a bijection between natural
transformations with domain X and codomain A as displayed below-left

A ra? A
1

/=
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and fibered isomorphism classes of functors X — A? as displayed above-right,
where the fibered isomorphisms are given by invertible 2-cells

X
t s
A /x<£>a\A
Wpl\ /p:

A2
so that pyy = id; and pyy = id,.

Proof Lemma 3.1.3 proves that the fibers of the smothering functor of Propo-
sition 3.2.5 are connected groupoids. The objects of the fiber over a are functors
X — A? that whisker with the generic arrow ¥ to @, and the morphisms are
invertible 2-cells that whisker with (p;, py) : A* = A X A to the identity 2-cell
(id;, idg). The action of the smothering functor defines a bijection between the
objects of its codomain and their corresponding fibers. |

Our final task is to observe that the universal property of Proposition 3.2.5
is also enjoyed by any object (e;,e,) : E - A X A that is equivalent to the co-
category of arrows (py, po) : A? » AXA in the slice co-cosmos over A X A. We
have special terminology to allow us to concisely express the type of equivalence
we have in mind.

DeriniTioN 3.2.7 (fibered equivalence). A fibered equivalence over an co-cat-
egory B in an co-cosmos X is an equivalence

F —= L F

N (3.2.8)
B

in the sliced co-cosmos K,g. We write E ~p F to indicate that the specified
isofibrations with these domains are equivalent over B.

By Proposition 1.2.22(vii), a fibered equivalence is just a map between a
pair of isofibrations over a common base that defines an equivalence in the
underlying oo-cosmos: the forgettul functor K, — X preserves and reflects
equivalences. Note, however, that it does not create them: It is possible for two
co-categories E and F to be equivalent without there existing any equivalence
compatible with a pair of specified isofibrations E - B and F - B.

WARNING 3.2.9. At this point, there is some ambiguity about the 2-categorical
data that presents a fibered equivalence in an co-cosmos X, related to the ques-
tion posed in Exercise 1.4.vii about the relationship between the 2-categories
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h(K ) and (hX),5. But since Proposition 1.2.22(vii) tells us that a mere equiv-
alence in X involving a functor of the form (3.2.8) is sufficient to guarantee
that this as-yet-unspecified 2-categorical data exists, we defer a careful analysis
of this issue to Proposition 3.6.4.

ProposiTion 3.2.10 (uniqueness of arrow oo-categories). For any isofibration
(e;,ep) 1 E - A X A that is fibered equivalent to (py, py) : A> » A X A the
2-cell

encoded by the equivalence e . E = A® satisfies the weak universal property of
Proposition 3.2.5. Conversely, if the isofibrations (dy,dy): D - A X A and
(e1,eq) : E - A X A are equipped with 2-cells

do €o
— —
DA wd B A
dl €]

satisfying the weak universal property of Proposition 3.2.5, then D ~ 4 E.

Proof We prove the first statement. By the defining equation of 1-cell induction
€ = xe, where x is the generic arrow (3.2.3). Hence, the functor induced by
pasting with € factors as a composite

hFun(X, E) —=— hFun(X,A?) —— hFun(X,A)*

((P])*,(Pom« A;

hFun(X, A) X hFun(X, A)

and our task is to prove that this composite functor is smothering. The first
functor, defined by postcomposing with the equivalence e: E = A%, is an
equivalence of categories, and the second functor is smothering. Thus, the
composite is clearly full and conservative. To see that it is also surjective on
objects, note first that by 1-cell induction any 2-cell

s

t

is represented by a functor "Ta7: X — A? over A X A. Composing with any



