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PREFACE TO THE
SECOND EDITION

In the years since the publication of the first edition, there were many
aspects of the book that we wished to improve, to rearrange, or to expand,
but the constraints of reprinting would not allow us to make those changes
between printings. In the new edition, we now get a chance to make some
of these changes, to add problems, and to discuss some topics that we had
omitted from the first edition.

The key changes include a reorganization of the chapters to make
the book easier to teach, and the addition of more than two hundred
new problems. We have added material on universal portfolios, universal
source coding, Gaussian feedback capacity, network information theory,
and developed the duality of data compression and channel capacity. A
new chapter has been added and many proofs have been simplified. We
have also updated the references and historical notes.

The material in this book can be taught in a two-quarter sequence. The
first quarter might cover Chapters 1 to 9, which includes the asymptotic
equipartition property, data compression, and channel capacity, culminat-
ing in the capacity of the Gaussian channel. The second quarter could
cover the remaining chapters, including rate distortion, the method of
types, Kolmogorov complexity, network information theory, universal
source coding, and portfolio theory. If only one semester is available, we
would add rate distortion and a single lecture each on Kolmogorov com-
plexity and network information theory to the first semester. A web site,
http://www .elementsofinformationtheory.com, provides links to additional
material and solutions to selected problems.

In the years since the first edition of the book, information theory
celebrated its 50th birthday (the 50th anniversary of Shannon’s original
paper that started the field), and ideas from information theory have been
applied to many problems of science and technology, including bioin-
formatics, web search, wireless communication, video compression, and

XV



Xvi PREFACE TO THE SECOND EDITION

others. The list of applications is endless, but it is the elegance of the
fundamental mathematics that is still the key attraction of this area. We
hope that this book will give some insight into why we believe that this
is one of the most interesting areas at the intersection of mathematics,
physics, statistics, and engineering.

Tom COVER
Joy THOMAS

Palo Alto, California
January 2006



PREFACE TO THE
FIRST EDITION

This is intended to be a simple and accessible book on information theory.
As Einstein said, “Everything should be made as simple as possible, but no
simpler.” Although we have not verified the quote (first found in a fortune
cookie), this point of view drives our development throughout the book.
There are a few key ideas and techniques that, when mastered, make the
subject appear simple and provide great intuition on new questions.

This book has arisen from over ten years of lectures in a two-quarter
sequence of a senior and first-year graduate-level course in information
theory, and is intended as an introduction to information theory for stu-
dents of communication theory, computer science, and statistics.

There are two points to be made about the simplicities inherent in infor-
mation theory. First, certain quantities like entropy and mutual information
arise as the answers to fundamental questions. For example, entropy is
the minimum descriptive complexity of a random variable, and mutual
information is the communication rate in the presence of noise. Also,
as we shall point out, mutual information corresponds to the increase in
the doubling rate of wealth given side information. Second, the answers
to information theoretic questions have a natural algebraic structure. For
example, there is a chain rule for entropies, and entropy and mutual infor-
mation are related. Thus the answers to problems in data compression
and communication admit extensive interpretation. We all know the feel-
ing that follows when one investigates a problem, goes through a large
amount of algebra, and finally investigates the answer to find that the
entire problem is illuminated not by the analysis but by the inspection of
the answer. Perhaps the outstanding examples of this in physics are New-
ton’s laws and Schrodinger’s wave equation. Who could have foreseen the
awesome philosophical interpretations of Schrddinger’s wave equation?

In the text we often investigate properties of the answer before we look
at the question. For example, in Chapter 2, we define entropy, relative
entropy, and mutual information and study the relationships and a few

xvii
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interpretations of them, showing how the answers fit together in various
ways. Along the way we speculate on the meaning of the second law of
thermodynamics. Does entropy always increase? The answer is yes and
no. This is the sort of result that should please experts in the area but
might be overlooked as standard by the novice.

In fact, that brings up a point that often occurs in teaching. It is fun
to find new proofs or slightly new results that no one else knows. When
one presents these ideas along with the established material in class, the
response is “sure, sure, sure.” But the excitement of teaching the material
is greatly enhanced. Thus we have derived great pleasure from investigat-
ing a number of new ideas in this textbook.

Examples of some of the new material in this text include the chapter
on the relationship of information theory to gambling, the work on the uni-
versality of the second law of thermodynamics in the context of Markov
chains, the joint typicality proofs of the channel capacity theorem, the
competitive optimality of Huffman codes, and the proof of Burg’s theorem
on maximum entropy spectral density estimation. Also, the chapter on
Kolmogorov complexity has no counterpart in other information theory
texts. We have also taken delight in relating Fisher information, mutual
information, the central limit theorem, and the Brunn—Minkowski and
entropy power inequalities. To our surprise, many of the classical results
on determinant inequalities are most easily proved using information the-
oretic inequalities.

Even though the field of information theory has grown considerably
since Shannon’s original paper, we have strived to emphasize its coher-
ence. While it is clear that Shannon was motivated by problems in commu-
nication theory when he developed information theory, we treat informa-
tion theory as a field of its own with applications to communication theory
and statistics. We were drawn to the field of information theory from
backgrounds in communication theory, probability theory, and statistics,
because of the apparent impossibility of capturing the intangible concept
of information.

Since most of the results in the book are given as theorems and proofs,
we expect the elegance of the results to speak for themselves. In many
cases we actually describe the properties of the solutions before the prob-
lems. Again, the properties are interesting in themselves and provide a
natural rhythm for the proofs that follow.

One innovation in the presentation is our use of long chains of inequal-
ities with no intervening text followed immediately by the explanations.
By the time the reader comes to many of these proofs, we expect that he
or she will be able to follow most of these steps without any explanation
and will be able to pick out the needed explanations. These chains of
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inequalities serve as pop quizzes in which the reader can be reassured
of having the knowledge needed to prove some important theorems. The
natural flow of these proofs is so compelling that it prompted us to flout
one of the cardinal rules of technical writing; and the absence of verbiage
makes the logical necessity of the ideas evident and the key ideas per-
spicuous. We hope that by the end of the book the reader will share our
appreciation of the elegance, simplicity, and naturalness of information
theory.

Throughout the book we use the method of weakly typical sequences,
which has its origins in Shannon’s original 1948 work but was formally
developed in the early 1970s. The key idea here is the asymptotic equipar-
tition property, which can be roughly paraphrased as “Almost everything
is almost equally probable.”

Chapter 2 includes the basic algebraic relationships of entropy, relative
entropy, and mutual information. The asymptotic equipartition property
(AEP) is given central prominence in Chapter 3. This leads us to dis-
cuss the entropy rates of stochastic processes and data compression in
Chapters 4 and 5. A gambling sojourn is taken in Chapter 6, where the
duality of data compression and the growth rate of wealth is developed.

The sensational success of Kolmogorov complexity as an intellectual
foundation for information theory is explored in Chapter 14. Here we
replace the goal of finding a description that is good on the average with
the goal of finding the universally shortest description. There is indeed
a universal notion of the descriptive complexity of an object. Here also
the wonderful number €2 is investigated. This number, which is the binary
expansion of the probability that a Turing machine will halt, reveals many
of the secrets of mathematics.

Channel capacity is established in Chapter 7. The necessary material
on differential entropy is developed in Chapter 8, laying the groundwork
for the extension of previous capacity theorems to continuous noise chan-
nels. The capacity of the fundamental Gaussian channel is investigated in
Chapter 9.

The relationship between information theory and statistics, first studied
by Kullback in the early 1950s and relatively neglected since, is developed
in Chapter 11. Rate distortion theory requires a little more background
than its noiseless data compression counterpart, which accounts for its
placement as late as Chapter 10 in the text.

The huge subject of network information theory, which is the study
of the simultaneously achievable flows of information in the presence of
noise and interference, is developed in Chapter 15. Many new ideas come
into play in network information theory. The primary new ingredients are
interference and feedback. Chapter 16 considers the stock market, which is
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the generalization of the gambling processes considered in Chapter 6, and
shows again the close correspondence of information theory and gambling.

Chapter 17, on inequalities in information theory, gives us a chance to
recapitulate the interesting inequalities strewn throughout the book, put
them in a new framework, and then add some interesting new inequalities
on the entropy rates of randomly drawn subsets. The beautiful relationship
of the Brunn—Minkowski inequality for volumes of set sums, the entropy
power inequality for the effective variance of the sum of independent
random variables, and the Fisher information inequalities are made explicit
here.

We have made an attempt to keep the theory at a consistent level.
The mathematical level is a reasonably high one, probably the senior or
first-year graduate level, with a background of at least one good semester
course in probability and a solid background in mathematics. We have,
however, been able to avoid the use of measure theory. Measure theory
comes up only briefly in the proof of the AEP for ergodic processes in
Chapter 16. This fits in with our belief that the fundamentals of infor-
mation theory are orthogonal to the techniques required to bring them to
their full generalization.

The essential vitamins are contained in Chapters 2, 3, 4, 5, 7, §, 9,
11, 10, and 15. This subset of chapters can be read without essential
reference to the others and makes a good core of understanding. In our
opinion, Chapter 14 on Kolmogorov complexity is also essential for a deep
understanding of information theory. The rest, ranging from gambling to
inequalities, is part of the terrain illuminated by this coherent and beautiful
subject.

Every course has its first lecture, in which a sneak preview and overview
of ideas is presented. Chapter 1 plays this role.

Tom COVER
Joy THOMAS

Palo Alto, California
June 1990
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I CHAPTER 1

INTRODUCTION AND PREVIEW

Information theory answers two fundamental questions in communication
theory: What is the ultimate data compression (answer: the entropy H),
and what is the ultimate transmission rate of communication (answer: the
channel capacity C). For this reason some consider information theory
to be a subset of communication theory. We argue that it is much more.
Indeed, it has fundamental contributions to make in statistical physics
(thermodynamics), computer science (Kolmogorov complexity or algo-
rithmic complexity), statistical inference (Occam’s Razor: “The simplest
explanation is best”), and to probability and statistics (error exponents for
optimal hypothesis testing and estimation).

This “first lecture” chapter goes backward and forward through infor-
mation theory and its naturally related ideas. The full definitions and study
of the subject begin in Chapter 2. Figure 1.1 illustrates the relationship
of information theory to other fields. As the figure suggests, information
theory intersects physics (statistical mechanics), mathematics (probability
theory), electrical engineering (communication theory), and computer sci-
ence (algorithmic complexity). We now describe the areas of intersection
in greater detail.

Electrical Engineering (Communication Theory). In the early 1940s
it was thought to be impossible to send information at a positive rate
with negligible probability of error. Shannon surprised the communica-
tion theory community by proving that the probability of error could be
made nearly zero for all communication rates below channel capacity.
The capacity can be computed simply from the noise characteristics of
the channel. Shannon further argued that random processes such as music
and speech have an irreducible complexity below which the signal cannot
be compressed. This he named the entropy, in deference to the parallel
use of this word in thermodynamics, and argued that if the entropy of the

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright © 2006 John Wiley & Sons, Inc.



2 INTRODUCTION AND PREVIEW

Information
Theory

Portfolio Theory
Kelly Gambling

FIGURE 1.1. Relationship of information theory to other fields.

Data transmission
limit

Data compression
limit

min /(X; )n() max I(X; Y)

FIGURE 1.2. Information theory as the extreme points of communication theory.

source is less than the capacity of the channel, asymptotically error-free
communication can be achieved.

Information theory today represents the extreme points of the set of
all possible communication schemes, as shown in the fanciful Figure 1.2.
The data compression minimum / (X X) lies at one extreme of the set of
communication ideas. All data compression schemes require description
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rates at least equal to this minimum. At the other extreme is the data
transmission maximum [/ (X; Y), known as the channel capacity. Thus,
all modulation schemes and data compression schemes lie between these
limits.

Information theory also suggests means of achieving these ultimate
limits of communication. However, these theoretically optimal communi-
cation schemes, beautiful as they are, may turn out to be computationally
impractical. It is only because of the computational feasibility of sim-
ple modulation and demodulation schemes that we use them rather than
the random coding and nearest-neighbor decoding rule suggested by Shan-
non’s proof of the channel capacity theorem. Progress in integrated circuits
and code design has enabled us to reap some of the gains suggested by
Shannon’s theory. Computational practicality was finally achieved by the
advent of turbo codes. A good example of an application of the ideas of
information theory is the use of error-correcting codes on compact discs
and DVDs.

Recent work on the communication aspects of information theory has
concentrated on network information theory: the theory of the simultane-
ous rates of communication from many senders to many receivers in the
presence of interference and noise. Some of the trade-offs of rates between
senders and receivers are unexpected, and all have a certain mathematical
simplicity. A unifying theory, however, remains to be found.

Computer Science (Kolmogorov Complexity). Kolmogorov,
Chaitin, and Solomonoff put forth the idea that the complexity of a string
of data can be defined by the length of the shortest binary computer
program for computing the string. Thus, the complexity is the minimal
description length. This definition of complexity turns out to be universal,
that is, computer independent, and is of fundamental importance. Thus,
Kolmogorov complexity lays the foundation for the theory of descriptive
complexity. Gratifyingly, the Kolmogorov complexity K is approximately
equal to the Shannon entropy H if the sequence is drawn at random from
a distribution that has entropy H. So the tie-in between information theory
and Kolmogorov complexity is perfect. Indeed, we consider Kolmogorov
complexity to be more fundamental than Shannon entropy. It is the ulti-
mate data compression and leads to a logically consistent procedure for
inference.

There is a pleasing complementary relationship between algorithmic
complexity and computational complexity. One can think about computa-
tional complexity (time complexity) and Kolmogorov complexity (pro-
gram length or descriptive complexity) as two axes corresponding to
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program running time and program length. Kolmogorov complexity fo-
cuses on minimizing along the second axis, and computational complexity
focuses on minimizing along the first axis. Little work has been done on
the simultaneous minimization of the two.

Physics (Thermodynamics). Statistical mechanics is the birthplace of
entropy and the second law of thermodynamics. Entropy always increases.
Among other things, the second law allows one to dismiss any claims to
perpetual motion machines. We discuss the second law briefly in Chapter 4.

Mathematics (Probability Theory and Statistics). The fundamental
quantities of information theory—entropy, relative entropy, and mutual
information—are defined as functionals of probability distributions. In
turn, they characterize the behavior of long sequences of random variables
and allow us to estimate the probabilities of rare events (large deviation
theory) and to find the best error exponent in hypothesis tests.

Philosophy of Science (Occam’s Razor). William of Occam said
“Causes shall not be multiplied beyond necessity,” or to paraphrase it,
“The simplest explanation is best.” Solomonoff and Chaitin argued per-
suasively that one gets a universally good prediction procedure if one takes
a weighted combination of all programs that explain the data and observes
what they print next. Moreover, this inference will work in many problems
not handled by statistics. For example, this procedure will eventually pre-
dict the subsequent digits of 7r. When this procedure is applied to coin flips
that come up heads with probability 0.7, this too will be inferred. When
applied to the stock market, the procedure should essentially find all the
“laws” of the stock market and extrapolate them optimally. In principle,
such a procedure would have found Newton’s laws of physics. Of course,
such inference is highly impractical, because weeding out all computer
programs that fail to generate existing data will take impossibly long. We
would predict what happens tomorrow a hundred years from now.

Economics (Investment). Repeated investment in a stationary stock
market results in an exponential growth of wealth. The growth rate of
the wealth is a dual of the entropy rate of the stock market. The paral-
lels between the theory of optimal investment in the stock market and
information theory are striking. We develop the theory of investment to
explore this duality.

Computation vs. Communication. As we build larger computers
out of smaller components, we encounter both a computation limit and
a communication limit. Computation is communication limited and com-
munication is computation limited. These become intertwined, and thus
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all of the developments in communication theory via information theory
should have a direct impact on the theory of computation.

1.1 PREVIEW OF THE BOOK

The initial questions treated by information theory lay in the areas of
data compression and transmission. The answers are quantities such as
entropy and mutual information, which are functions of the probability
distributions that underlie the process of communication. A few definitions
will aid the initial discussion. We repeat these definitions in Chapter 2.

The entropy of a random variable X with a probability mass function
p(x) is defined by

H(X)=—-Y_ p(x)log, p(x). (1.1)

We use logarithms to base 2. The entropy will then be measured in bits.
The entropy is a measure of the average uncertainty in the random vari-
able. It is the number of bits on average required to describe the random
variable.

Example 1.1.1 Consider a random variable that has a uniform distribu-
tion over 32 outcomes. To identify an outcome, we need a label that takes
on 32 different values. Thus, 5-bit strings suffice as labels.

The entropy of this random variable is

32 32

1 1
H(X)=-=Y p()logp(i)=—Y_ 35 108 75 =log32 = 5 bits,

i=1 i=1
(1.2)
which agrees with the number of bits needed to describe X. In this case,
all the outcomes have representations of the same length.

Now consider an example with nonuniform distribution.

Example 1.1.2 Suppose that we have a horse race with eight horses

taking part. Assume that the probabilities of winning for the eight horses
are (% %, % %, 61—4, 6—14, é, é). We can calculate the entropy of the horse
race as

1 1 I 1 | | | 1 1
H(X):—Elogi—zlogz—Elogg—ﬁlogﬁ—46—410g6—4

= 2 bits. (1.3)
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Suppose that we wish to send a message indicating which horse won
the race. One alternative is to send the index of the winning horse. This
description requires 3 bits for any of the horses. But the win probabilities
are not uniform. It therefore makes sense to use shorter descriptions for the
more probable horses and longer descriptions for the less probable ones,
so that we achieve a lower average description length. For example, we
could use the following set of bit strings to represent the eight horses: 0,
10, 110, 1110, 111100, 111101, 111110, 111111. The average description
length in this case is 2 bits, as opposed to 3 bits for the uniform code.
Notice that the average description length in this case is equal to the
entropy. In Chapter 5 we show that the entropy of a random variable is
a lower bound on the average number of bits required to represent the
random variable and also on the average number of questions needed to
identify the variable in a game of “20 questions.” We also show how to
construct representations that have an average length within 1 bit of the
entropy.

The concept of entropy in information theory is related to the concept of
entropy in statistical mechanics. If we draw a sequence of n independent
and identically distributed (i.i.d.) random variables, we will show that the
probability of a “typical” sequence is about 2~"#X) and that there are
about 2"X) such typical sequences. This property [known as the asymp-
totic equipartition property (AEP)] is the basis of many of the proofs in
information theory. We later present other problems for which entropy
arises as a natural answer (e.g., the number of fair coin flips needed to
generate a random variable).

The notion of descriptive complexity of a random variable can be
extended to define the descriptive complexity of a single string. The Kol-
mogorov complexity of a binary string is defined as the length of the
shortest computer program that prints out the string. It will turn out that
if the string is indeed random, the Kolmogorov complexity is close to
the entropy. Kolmogorov complexity is a natural framework in which
to consider problems of statistical inference and modeling and leads to
a clearer understanding of Occam’s Razor: “The simplest explanation is
best.” We describe some simple properties of Kolmogorov complexity in
Chapter 1.

Entropy is the uncertainty of a single random variable. We can define
conditional entropy H(X|Y), which is the entropy of a random variable
conditional on the knowledge of another random variable. The reduction
in uncertainty due to another random variable is called the mutual infor-
mation. For two random variables X and Y this reduction is the mutual
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information

plx,y)
I(X:Y)=H(X)— H(X|Y 2: 1.4
( ) (X) (X|Y) = p(xy)g(x)(y) (1.4)

The mutual information /(X; Y) is a measure of the dependence between
the two random variables. It is symmetric in X and ¥ and always non-
negative and is equal to zero if and only if X and Y are independent.

A communication channel is a system in which the output depends
probabilistically on its input. It is characterized by a probability transition
matrix p(y|x) that determines the conditional distribution of the output
given the input. For a communication channel with input X and output
Y, we can define the capacity C by

C=maxI(X;Y). (1.5)

plx)

Later we show that the capacity is the maximum rate at which we can send
information over the channel and recover the information at the output
with a vanishingly low probability of error. We illustrate this with a few
examples.

Example 1.1.3 (Noiseless binary channel) For this channel, the binary
input is reproduced exactly at the output. This channel is illustrated in
Figure 1.3. Here, any transmitted bit is received without error. Hence,
in each transmission, we can send 1 bit reliably to the receiver, and the
capacity is 1 bit. We can also calculate the information capacity C =
max I (X;Y) =1 bit.

Example 1.1.4 (Noisy four-symbol channel) Consider the channel
shown in Figure 1.4. In this channel, each input letter is received either as
the same letter with probability % or as the next letter with probability %
If we use all four input symbols, inspection of the output would not reveal
with certainty which input symbol was sent. If, on the other hand, we use

0 >0

1 > 1

FIGURE 1.3. Noiseless binary channel. C = 1 bit.
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ZXZ
4 4

FIGURE 1.4. Noisy channel.

only two of the inputs (1 and 3, say), we can tell immediately from the
output which input symbol was sent. This channel then acts like the noise-
less channel of Example 1.1.3, and we can send 1 bit per transmission
over this channel with no errors. We can calculate the channel capacity
C =max [(X;Y) in this case, and it is equal to 1 bit per transmission,
in agreement with the analysis above.

In general, communication channels do not have the simple structure of
this example, so we cannot always identify a subset of the inputs to send
information without error. But if we consider a sequence of transmissions,
all channels look like this example and we can then identify a subset of the
input sequences (the codewords) that can be used to transmit information
over the channel in such a way that the sets of possible output sequences
associated with each of the codewords are approximately disjoint. We can
then look at the output sequence and identify the input sequence with a
vanishingly low probability of error.

Example 1.1.5 (Binary symmetric channel) This is the basic example
of a noisy communication system. The channel is illustrated in Figure 1.5.

1-p

1-p

FIGURE 1.5. Binary symmetric channel.
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The channel has a binary input, and its output is equal to the input with
probability 1 — p. With probability p, on the other hand, a 0 is received
as a 1, and vice versa. In this case, the capacity of the channel can be cal-
culatedtobe C =1+ plog p + (1 — p)log(1 — p) bits per transmission.
However, it is no longer obvious how one can achieve this capacity. If we
use the channel many times, however, the channel begins to look like the
noisy four-symbol channel of Example 1.1.4, and we can send informa-
tion at a rate C bits per transmission with an arbitrarily low probability
of error.

The ultimate limit on the rate of communication of information over
a channel is given by the channel capacity. The channel coding theorem
shows that this limit can be achieved by using codes with a long block
length. In practical communication systems, there are limitations on the
complexity of the codes that we can use, and therefore we may not be
able to achieve capacity.

Mutual information turns out to be a special case of a more general
quantity called relative entropy D(p||g), which is a measure of the “dis-
tance” between two probability mass functions p and ¢g. It is defined
as

p(x)
g(x)

D(pllg) =Y p(x)log (1.6)

Although relative entropy is not a true metric, it has some of the properties
of a metric. In particular, it is always nonnegative and is zero if and only
if p = ¢. Relative entropy arises as the exponent in the probability of
error in a hypothesis test between distributions p and g. Relative entropy
can be used to define a geometry for probability distributions that allows
us to interpret many of the results of large deviation theory.

There are a number of parallels between information theory and the
theory of investment in a stock market. A stock market is defined by a
random vector X whose elements are nonnegative numbers equal to the
ratio of the price of a stock at the end of a day to the price at the beginning
of the day. For a stock market with distribution F(x), we can define the
doubling rate W as

W= max flogb’x dF(x). (1.7)
b:b;=0,>" bi=1

The doubling rate is the maximum asymptotic exponent in the growth
of wealth. The doubling rate has a number of properties that parallel the
properties of entropy. We explore some of these properties in Chapter 16.
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The quantities H, I, C, D, K, W arise naturally in the following areas:

o Data compression. The entropy H of a random variable is a lower

bound on the average length of the shortest description of the random
variable. We can construct descriptions with average length within 1
bit of the entropy. If we relax the constraint of recovering the source
perfectly, we can then ask what communication rates are required to
describe the source up to distortion D? And what channel capacities
are sufficient to enable the transmission of this source over the chan-
nel and its reconstruction with distortion less than or equal to D?
This is the subject of rate distortion theory.

When we try to formalize the notion of the shortest description

for nonrandom objects, we are led to the definition of Kolmogorov
complexity K. Later, we show that Kolmogorov complexity is uni-
versal and satisfies many of the intuitive requirements for the theory
of shortest descriptions.
Data transmission. We consider the problem of transmitting infor-
mation so that the receiver can decode the message with a small prob-
ability of error. Essentially, we wish to find codewords (sequences
of input symbols to a channel) that are mutually far apart in the
sense that their noisy versions (available at the output of the channel)
are distinguishable. This is equivalent to sphere packing in high-
dimensional space. For any set of codewords it is possible to calculate
the probability that the receiver will make an error (i.e., make an
incorrect decision as to which codeword was sent). However, in most
cases, this calculation is tedious.

Using a randomly generated code, Shannon showed that one can
send information at any rate below the capacity C of the channel
with an arbitrarily low probability of error. The idea of a randomly
generated code is very unusual. It provides the basis for a simple
analysis of a very difficult problem. One of the key ideas in the proof
is the concept of typical sequences. The capacity C is the logarithm
of the number of distinguishable input signals.

» Network information theory. Each of the topics mentioned previously

involves a single source or a single channel. What if one wishes to com-
press each of many sources and then put the compressed descriptions
together into a joint reconstruction of the sources? This problem is
solved by the Slepian—Wolf theorem. Or what if one has many senders
sending information independently to a common receiver? What is the
channel capacity of this channel? This is the multiple-access channel
solved by Liao and Ahlswede. Or what if one has one sender and many
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receivers and wishes to communicate (perhaps different) information
simultaneously to each of the receivers? This is the broadcast channel.
Finally, what if one has an arbitrary number of senders and receivers in
an environment of interference and noise. What is the capacity region
of achievable rates from the various senders to the receivers? This is
the general network information theory problem. All of the preceding
problems fall into the general area of multiple-user or network informa-
tion theory. Although hopes for a comprehensive theory for networks
may be beyond current research techniques, there is still some hope that
all the answers involve only elaborate forms of mutual information and
relative entropy.

Ergodic theory. The asymptotic equipartition theorem states that most
sample n-sequences of an ergodic process have probability about 2"
and that there are about 2" such typical sequences.

Hypothesis testing. The relative entropy D arises as the exponent in
the probability of error in a hypothesis test between two distributions.
It is a natural measure of distance between distributions.

Statistical mechanics. The entropy H arises in statistical mechanics
as a measure of uncertainty or disorganization in a physical system.
Roughly speaking, the entropy is the logarithm of the number of
ways in which the physical system can be configured. The second law
of thermodynamics says that the entropy of a closed system cannot
decrease. Later we provide some interpretations of the second law.
Quantum mechanics. Here, von Neumann entropy § = tr(plnp) =
> Ailog A; plays the role of classical Shannon—Boltzmann entropy
H = — ). pilog p;. Quantum mechanical versions of data compres-
sion and channel capacity can then be found.

Inference. We can use the notion of Kolmogorov complexity K to
find the shortest description of the data and use that as a model to
predict what comes next. A model that maximizes the uncertainty or
entropy yields the maximum entropy approach to inference.

Gambling and investment. The optimal exponent in the growth rate
of wealth is given by the doubling rate W. For a horse race with
uniform odds, the sum of the doubling rate W and the entropy H is
constant. The increase in the doubling rate due to side information is
equal to the mutual information / between a horse race and the side
information. Similar results hold for investment in the stock market.
Probability theory. The asymptotic equipartition property (AEP)
shows that most sequences are typical in that they have a sam-
ple entropy close to H. So attention can be restricted to these
approximately 2" typical sequences. In large deviation theory, the
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probability of a set is approximately 2~"”, where D is the relative
entropy distance between the closest element in the set and the true
distribution.

* Complexity theory. The Kolmogorov complexity K is a measure of
the descriptive complexity of an object. It is related to, but different
from, computational complexity, which measures the time or space
required for a computation.

Information-theoretic quantities such as entropy and relative entropy
arise again and again as the answers to the fundamental questions in
communication and statistics. Before studying these questions, we shall
study some of the properties of the answers. We begin in Chapter 2 with
the definitions and basic properties of entropy, relative entropy, and mutual
information.



I CHAPTER 2

ENTROPY, RELATIVE ENTROPY,
AND MUTUAL INFORMATION

In this chapter we introduce most of the basic definitions required for
subsequent development of the theory. It is irresistible to play with their
relationships and interpretations, taking faith in their later utility. After
defining entropy and mutual information, we establish chain rules, the
nonnegativity of mutual information, the data-processing inequality, and
illustrate these definitions by examining sufficient statistics and Fano’s
inequality.

The concept of information is too broad to be captured completely by
a single definition. However, for any probability distribution, we define a
quantity called the entropy, which has many properties that agree with the
intuitive notion of what a measure of information should be. This notion is
extended to define mutual information, which is a measure of the amount
of information one random variable contains about another. Entropy then
becomes the self-information of a random variable. Mutual information is
a special case of a more general quantity called relative entropy, which is
a measure of the distance between two probability distributions. All these
quantities are closely related and share a number of simple properties,
some of which we derive in this chapter.

In later chapters we show how these quantities arise as natural answers
to a number of questions in communication, statistics, complexity, and
gambling. That will be the ultimate test of the value of these definitions.

2.1 ENTROPY

We first introduce the concept of entropy, which is a measure of the
uncertainty of a random variable. Let X be a discrete random variable
with alphabet A and probability mass function p(x) = Pr{X = x}, x € &.

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright © 2006 John Wiley & Sons, Inc.
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We denote the probability mass function by p(x) rather than py(x), for
convenience. Thus, p(x) and p(y) refer to two different random variables
and are in fact different probability mass functions, px(x) and py(y),
respectively.

Definition The entropy H(X) of a discrete random variable X is
defined by

H(X)=—) p(x)log p(x). @.1)
xeX

We also write H(p) for the above quantity. The log is to the base 2
and entropy is expressed in bits. For example, the entropy of a fair coin
toss is 1 bit. We will use the convention that 0log 0 = 0, which is easily
justified by continuity since x logx — 0 as x — 0. Adding terms of zero
probability does not change the entropy.

If the base of the logarithm is b, we denote the entropy as Hp(X). If
the base of the logarithm is e, the entropy is measured in nats. Unless
otherwise specified, we will take all logarithms to base 2, and hence all
the entropies will be measured in bits. Note that entropy is a functional
of the distribution of X. It does not depend on the actual values taken by
the random variable X, but only on the probabilities.

We denote expectation by E. Thus, if X ~ p(x), the expected value of
the random variable g(X) is written

Epg(X) =Y gx)p(x), 2.2)

xeX

or more simply as Eg(X) when the probability mass function is under-
stood from the context. We shall take a peculiar interest in the eerily

self-referential expectation of g(X) under p(x) when g(X) = log ﬁ.

Remark The entropy of X can also be interpreted as the expected value
of the random variable log ﬁ where X is drawn according to probability
mass function p(x). Thus,

1
H(X)=E,log —-—. 2.3
(X) = E,log o (X) (2.3)
This definition of entropy is related to the definition of entropy in ther-
modynamics; some of the connections are explored later. It is possible
to derive the definition of entropy axiomatically by defining certain prop-
erties that the entropy of a random variable must satisfy. This approach
is illustrated in Problem 2.46. We do not use the axiomatic approach to
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justify the definition of entropy; instead, we show that it arises as the
answer to a number of natural questions, such as “What is the average
length of the shortest description of the random variable?” First, we derive
some immediate consequences of the definition.

Lemma2.1.1 H(X) = 0.

Proof: 0 < p(x) < 1 implies that log P{'x) > 0. O
Lemma2.1.2  H,(X) = (log, a) H,(X).
Proof: log, p =log,alog, p. O

The second property of entropy enables us to change the base of the
logarithm in the definition. Entropy can be changed from one base to
another by multiplying by the appropriate factor.

Example 2.1.1 Let

1 with probability p,

X=10 with probability 1 — p.

(2.4)

Then def
H(X)=—plogp—(1—p)log(l — p) = H(p).  (2.5)

In particular, H(X) = 1 bit when p = % The graph of the function H(p)
is shown in Figure 2.1. The figure illustrates some of the basic properties
of entropy: It is a concave function of the distribution and equals 0 when
p =0 or 1. This makes sense, because when p =0 or 1, the variable
is not random and there is no uncertainty. Similarly, the uncertainty is
maximum when p = %, which also corresponds to the maximum value of
the entropy.

Example 2.1.2 Let

a  with probability3,
b with probabilityL,
O 26
¢ with probabilityg,
d  with probability .

The entropy of X is

| I 1 I 1 1 1 7.
H(X)=—510g5—Zlogz—glogg—gloggzZb1ts. 2.7)
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0 01 02 03 04 05 06 07 08 09 1
p

FIGURE 2.1. H(p) vs. p.

Suppose that we wish to determine the value of X with the minimum
number of binary questions. An efficient first question is “Is X = a?”
This splits the probability in half. If the answer to the first question is
no, the second question can be “Is X = b?7" The third question can be
“Is X = ¢?7” The resulting expected number of binary questions required
is 1.75. This turns out to be the minimum expected number of binary
questions required to determine the value of X. In Chapter 5 we show that
the minimum expected number of binary questions required to determine
X lies between H(X) and H(X) + 1.

2.2 JOINT ENTROPY AND CONDITIONAL ENTROPY

We defined the entropy of a single random variable in Section 2.1. We
now extend the definition to a pair of random variables. There is nothing
really new in this definition because (X, Y) can be considered to be a
single vector-valued random variable.

Definition The joint entropy H(X,Y) of a pair of discrete random
variables (X, Y) with a joint distribution p(x, y) is defined as

H(X,Y) ==Y plx,ylogp(x,y), (2.8)

xeX yey
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which can also be expressed as

H(X.Y)=—Elog p(X,Y). (2.9)

We also define the conditional entropy of a random variable given
another as the expected value of the entropies of the conditional distribu-
tions, averaged over the conditioning random variable.

Definition 1If (X,Y) ~ p(x,y), the conditional entropy H(Y|X) is
defined as

H(Y|X)= Z p(HY|X = x) (2.10)
xeX
== p@) Y plynlog p(ylx) 2.11)
xeX yey
==Y ") px.y)log p(ylx) (2.12)
xedX yey
=—Flog p(Y|X). (2.13)

The naturalness of the definition of joint entropy and conditional entropy
is exhibited by the fact that the entropy of a pair of random variables is
the entropy of one plus the conditional entropy of the other. This is proved
in the following theorem.

Theorem 2.2.1 (Chain rule)

H(X,Y)=HX)+ H(Y|X). (2.14)
Proof
HX,Y)==) % px. ylogpx,y) (2.15)
xeX yey
== D ptx.nlog px)p(ylx) (2.16)
xeX yey
=Y "3 pa.ylogp) = DY plx, y)log p(ylx)
xeX yey xeX yey 2.17)
==Y _ p®logpx) =Y Y plx,»logpylx) (2.18)
xeX xeX yey

=H(X)+ H(Y|X). (2.19)
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Equivalently, we can write

log p(X,Y) =log p(X) + log p(Y|X) (2.20)
and take the expectation of both sides of the equation to obtain the
theorem. g
Corollary

H(X,Y|Z)=HX|Z)+ HY|X, Z). (2.21)
Proof: The proof follows along the same lines as the theorem. O

Example 2.2.1 Let (X, Y) have the following joint distribution:

X
Y I 2 3 4
1 1 1 1
8 16 32 32
1 1 1 |
2| 1% 5 5] £
1 1 1 1
3 % 16 16 16
41 3 0 0 0

The marginal distribution of X is (%, %, %, %) and the marginal distribution
of Y is (}. 7. 1, 7). and hence H(X) = 7 bits and H(Y) = 2 bits. Also,

4
H(XlY)zZp(Yzi)H(Xlei) (2.22)

i=l

1 I 111 1 1111
:_H A’ A0 o +_H ' Ao’ o
4 2488 4 42 88

1 111 |
+ H( )+ZH(1,0,0,0) (2.23)

s \a a4y
17 1 7 1 1
Xt —X-d-x2+-x0 2.24
A gty et 2:24)
11
= 3 bits. (2.25)

Similarly, H(Y|X) = 4 bits and H(X,Y) = & bits.

Remark Note that H(Y|X) # H(X|Y). However, H(X) — H(X|Y) =
H(Y)— H(Y|X), a property that we exploit later.
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2.3 RELATIVE ENTROPY AND MUTUAL INFORMATION

The entropy of a random variable is a measure of the uncertainty of the
random variable; it is a measure of the amount of information required on
the average to describe the random variable. In this section we introduce
two related concepts: relative entropy and mutual information.

The relative entropy is a measure of the distance between two distribu-
tions. In statistics, it arises as an expected logarithm of the likelihood ratio.
The relative entropy D(p||g) is a measure of the inefficiency of assuming
that the distribution is ¢ when the true distribution is p. For example, if
we knew the true distribution p of the random variable, we could con-
struct a code with average description length H (p). If, instead, we used
the code for a distribution ¢, we would need H(p) + D(p||g) bits on the
average to describe the random variable.

Definition The relative entropy or Kullback—Leibler distance between
two probability mass functions p(x) and g(x) is defined as

_ p(x)

D(pllg) = Z;K p(x)log (2.26)
_ p(X)
= E,log _q(X) . 2.27)

In the above definition, we use the convention that Ologg =0 and the
convention (based on continuity arguments) that 0 log g = 0and plog 5’ =
00. Thus, if there is any symbol x € & such that p(x) > 0 and g(x) = 0,
then D(p|lg) = co.

We will soon show that relative entropy is always nonnegative and is
zero if and only if p = ¢g. However, it is not a true distance between
distributions since it is not symmetric and does not satisfy the triangle
inequality. Nonetheless, it is often useful to think of relative entropy as a
“distance” between distributions.

We now introduce mutual information, which is a measure of the
amount of information that one random variable contains about another
random variable. It is the reduction in the uncertainty of one random
variable due to the knowledge of the other.

Definition Consider two random variables X and Y with a joint proba-
bility mass function p(x, y) and marginal probability mass functions p(x)
and p(y). The mutual information 1(X; Y) is the relative entropy between
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the joint distribution and the product distribution p(x)p(y):

p(x,y)
I(X;Y) =" plx,y)log ———=— (2.28)
xeX yey (x)p(v)
= D(px, y)|lpx)p(y)) (2.29)
p(X.Y)
= E(x.y log ———. 2.30
e 8 L p(Y) 230

In Chapter 8 we generalize this definition to continuous random vari-
ables, and in (8.54) to general random variables that could be a mixture
of discrete and continuous random variables.

Example 2.3.1 Let X' = {0, 1} and consider two distributions p and ¢
on X. Let p(O)=1—r, p(1)=r,and let g(0) =1 — s, g(1) = 5. Then

1 —
D(p||q)_(1—r)10g +r10g— (2.31)

and

1—
D(ql||p) = (1 — s) log - + s log - (2.32)

If r =5, then D(p|lg) = D(q||p) =0.1f r = % § = ﬁ we can calculate

1

1+ 1 4 1
D(pllg) = Elog% +5log T =1->log3=02075 bit, ~ (2.33)
1 E
whereas
33 1. 13
Digllp) = 5 log + + Z1og% = 7log3 —1=0.1887 bit.  (2.34)
3 3

Note that D(p|lq) # D(q||p) in general.

2.4 RELATIONSHIP BETWEEN ENTROPY AND MUTUAL
INFORMATION

We can rewrite the definition of mutual information 7(X; Y) as

p(x,y)

(2.35)
px)p(y)

I(X:Y)=)_ p(x.y)log
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p(x|y)
p(x)

=) plx,y)log (2.36)

==Y plx.ylogp)+ Y plx.y)logpxly) (2.37)

=Y p(x)log p(x) ( > plx.y)log p(x|y))(2‘38)
X X,y
= H(X)— H(X|Y). (2.39)
Thus, the mutual information 7 (X; ¥) is the reduction in the uncertainty

of X due to the knowledge of Y.
By symmetry, it also follows that

I(X;Y)=H(Y)—- H(Y|X). (2.40)

Thus, X says as much about ¥ as Y says about X.
Since H(X,Y) = H(X) + H(Y|X), as shown in Section 2.2, we have

I(X;Y)=HX)+H(Y)—-H(X,Y). (2.41)
Finally, we note that
1(X; X)= H(X)— HX|X) = H(X). (2.42)

Thus, the mutual information of a random variable with itself is the
entropy of the random variable. This is the reason that entropy is some-
times referred to as self-information.

Collecting these results, we have the following theorem.

Theorem 2.4.1 (Mutual information and entropy)

I(X:Y)=H(X)— H(X|Y) (2.43)
I(X:Y)=H(Y)— H(Y|X) (2.44)
I(X;Y)=H(X)+ HY)—- H(X,Y) (2.45)
I(X:Y)=1(Y;:X) (2.46)

I(X; X)=H(X). (2.47)
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H(X,Y)

L

H(X) H(Y)

FIGURE 2.2. Relationship between entropy and mutual information.

The relationship between H(X), H(Y), H(X,Y), H(X|Y), H(Y|X),
and /(X;Y) is expressed in a Venn diagram (Figure 2.2). Notice that
the mutual information /(X; Y) corresponds to the intersection of the
information in X with the information in Y.

Example 2.4.1 For the joint distribution of Example 2.2.1, it is easy to
calculate the mutual information /(X;Y) = H(X) — H(X|Y) = H(Y) —
H(Y|X) = 0.375 bit.

2.5 CHAIN RULES FOR ENTROPY, RELATIVE ENTROPY,
AND MUTUAL INFORMATION

We now show that the entropy of a collection of random variables is the
sum of the conditional entropies.

Theorem 2.5.1 (Chain rule for entropy) Let X\, Xa, ..., X, be drawn
according to p(xy, xa, ..., x,). Then

H(X\. Xp.....X,) =Y H(Xi|Xi_1.....X)). (2.48)

i=l1

Proof: By repeated application of the two-variable expansion rule for
entropies, we have

H (X1, X2) = H(X)) + H(X2|X1), (2.49)
H(X1, X2, X3) = H(Xy) + H(X2, X3|X1) (2.50)
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= H(X1) + H(X2| X)) + H(X3]| X2, X)), (2.51)

H(XlsX21"-1XJ’I) = H(X1)+H(X2|Xl)+"+H(XH|X}’!—15--aXI)

(2.52)
=Y HXilXiop, .o, Xp. O (2.53)
i=1
Alternative Proof: We write p(xy,...,x,) =[['_, p(xilxi—1, ..., x1)
and evaluate
H(X1, X2,..., Xy)
=— Z p(xy, X2, ..., xp) log p(x1, x2, ..., xn) (2.54)

=— > plnx,ox)log[ | pGilxicr,.x)  (255)

X15X2,.000 X i=1

e Y Y ) g pl ) (256

XXXy (=1

=—Z Z p(xl,xz,---,xn)logp(xiln—l,---,xl) (2.57)

=1 x1,X2,..

=—Z Z pxr,x2, ..., x) log p(xi|xi—y, ..., x1)  (2.58)
i=1 X1,X2,.... %

:ZH(X,—|XI-_|,...,X1). O (2.59)

We now define the conditional mutual information as the reduction in
the uncertainty of X due to knowledge of ¥ when Z is given.

Definition The conditional mutual information of random variables X
and Y given Z is defined by

I(X;Y|Z)y=H(X|Z)— H(X|Y, Z) (2.60)
p(X,Y|Z)

=E,yolog —————.
PeyD RS L (X1 2) p(Y2)

2.61)

Mutual information also satisfies a chain rule.
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Theorem 2.5.2 (Chain rule for information)
n
I(X1, X3, ..., X ¥) =Y I(Xi1Y[Xiop, Xica, ..., XD, (2.62)
i=1
Proof

I(XI’XZ-:---aXn; Y)

:H(X|3X29---1Xn)_H(X19X29--'vXn|Y) (2'63)
n n

=) HXilXio1,.... X)) = ) HXilXio1, ... X1, Y)
i=1 i=1
n

=Y I(XsY|X1, Xp, .. Xy, O (2.64)

i=1
We define a conditional version of the relative entropy.

Definition For joint probability mass functions p(x, y) and g(x, y), the
conditional relative entropy D(p(y|x)||g(y|x)) is the average of the rela-
tive entropies between the conditional probability mass functions p(y|x)
and g(y|x) averaged over the probability mass function p(x). More pre-
cisely,

DpOIIg) =3 p0) Y pyiv) log f; 8 l'g (2.65)
x y
- p(YIX)
= Ep(x,y) 10g m (266)

The notation for conditional relative entropy is not explicit since it omits
mention of the distribution p(x) of the conditioning random variable.
However, it is normally understood from the context.

The relative entropy between two joint distributions on a pair of ran-
dom variables can be expanded as the sum of a relative entropy and a
conditional relative entropy. The chain rule for relative entropy is used in
Section 4.4 to prove a version of the second law of thermodynamics.

Theorem 2.5.3 (Chain rule for relative entropy)

D(p(x, Y)llg(x, y)) = D(p(x)llg(x)) + D(p(y|x)llg(ylx)).  (2.67)
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Proof

D(p(x, »)llq(x, y))

= L pw e {1 ) 2.68)
( y)
=YY bty log 2020 269
5 q(x)q(ylx)
px) p(ylx)
— )1 1 2.70
gj;pu ylog +;ij(x Nlog T 270)

= D(px)llg(x)) + D(p(y|x)|lq(ylx)). O (2.71)

2.6 JENSEN’S INEQUALITY AND ITS CONSEQUENCES

In this section we prove some simple properties of the quantities defined
earlier. We begin with the properties of convex functions.

Definition A function f(x) is said to be convex over an interval (a, b)
if for every x1,x2 € (a,b) and 0 < X < 1,

FOx+ (I =Mx2) < Af(x) + (1 = 2) f(x2). (2.72)

A function f is said to be strictly convex if equality holds only if A =0
or A =1.

Definition A function f is concave if —f is convex. A function is
convex if it always lies below any chord. A function is concave if it
always lies above any chord.

Examples of convex functions include x2, |x|, e*, xlogx (for x >
0), and so on. Examples of concave functlons include log x and /x for
x = 0. Figure 2.3 shows some examples of convex and concave functions.
Note that linear functions ax + b are both convex and concave. Convexity
underlies many of the basic properties of information-theoretic quantities
such as entropy and mutual information. Before we prove some of these
properties, we derive some simple results for convex functions.

X

Theorem 2.6.1  If the function f has a second derivative that is non-
negative (positive) over an interval, the function is convex (strictly convex)
over that interval.
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A A

Y
Y

(b)

FIGURE 2.3. Examples of (a) convex and (b) concave functions.

Proof: We use the Taylor series expansion of the function around xo:

fx) = fxo) + f'(xo)(x — x0) + (x — x0)%, (2.73)

[
2

where x* lies between xp and x. By hypothesis, f”(x*) > 0, and thus
the last term is nonnegative for all x.
We let xo = Ax; + (1 — A)x; and take x = x, to obtain

fx1) = f(xo) + f(xo)((1 — 1) (x) — x2)). (2.74)

Similarly, taking x = x,, we obtain

fx2) = fxo) + f'(x0) (M(x2 — x1)). (2.75)

Multiplying (2.74) by A and (2.75) by 1 — A and adding, we obtain (2.72).
The proof for strict convexity proceeds along the same lines. (|

Theorem 2.6.1 allows us immediately to verify the strict convexity of
x2, ¢*, and x log x for x > 0, and the strict concavity of log x and /x for
x =>0.

Let E denote expectation. Thus, EX = er v p(x)x in the discrete

case and EX = f xf(x)dx in the continuous case.
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The next inequality is one of the most widely used in mathematics and
one that underlies many of the basic results in information theory.

Theorem 2.6.2 (Jensen’s inequality)  If f is a convex function and
X is a random variable,

Ef(X) > f(EX). (2.76)

Moreover, if f is strictly convex, the equality in (2.76) implies that
X = EX with probability 1 (i.e., X is a constant).

Proof: We prove this for discrete distributions by induction on the num-
ber of mass points. The proof of conditions for equality when f is strictly
convex is left to the reader.

For a two-mass-point distribution, the inequality becomes

prf(x1) + p2f(x2) = f(pix1 + paxa), (2.77)

which follows directly from the definition of convex functions. Suppose
that the theorem is true for distributions with kK — 1 mass points. Then
writing p! = p; /(1 — pi) fori =1,2,...,k — 1, we have

k—1

k
S pif (i) = pef ) + (L= p) Y plf(x) (2.78)
i=1 i=1

k—1
> pef )+ (1= pi) f (Z pfxl-) (2.79)

i=1

k—1
> f (pkxk +A-p) Y. p;x,-) (2.80)

i=1

k
=f (Z Pixi) , (2.81)
i=1

where the first inequality follows from the induction hypothesis and the
second follows from the definition of convexity.

The proof can be extended to continuous distributions by continuity
arguments. (|

We now use these results to prove some of the properties of entropy and
relative entropy. The following theorem is of fundamental importance.
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Theorem 2.6.3 (Information inequality) Let p(x),q(x),x € &, be
two probability mass functions. Then

D(pllg) =0 (2.82)
with equality if and only if p(x) = q(x) for all x.

Proof: Let A = {x: p(x) > 0} be the support set of p(x). Then

~D(pllg) =—Y_ p(x) log M (2.83)
xeA
— Z p(x) log (2.84)
xXeA )
q(x)
1 2.85
< Ogg P (2.85)
=log Y " q(x) (2.86)
XeA
<log ) q(x) (287)
xeX
=log | (2.88)
=0, (2.89)

where (2.85) follows from Jensen’s inequality. Since logt is a strictly
concave function of ¢, we have equality in (2.85) if and only if g (x)/p(x)
is constant everywhere [i.e., g(x) = cp(x) for all x]. Thus, >~ ., q¢(x) =
€Y ea P(x) = c. We have equality in (2.87) only if 3 _,q(x) =)
g(x) = 1, which implies that ¢ = 1. Hence, we have D(p||q) = 0 if and
only if p(x) = g(x) for all x. O

Corollary (Nonnegativity of mutual information)  For any two random
variables, X, Y,

1(X;Y) =0, (2.90)
with equality if and only if X and Y are independent.

Proof: I(X;Y)= D(p(x,y)||p(x)p(y)) = 0, with equality if and only
if p(x,y) = px)p(y) (i.e.,, X and Y are independent). O
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Corollary
D(p(yl0)llg(ylx)) = 0, (2.91)

with equality if and only if p(y|x) = g(y|x) for all y and x such that
p(x) > 0.

Corollary
I(X:Y|Z) =0, (2.92)

with equality if and only if X and Y are conditionally independent given Z.

We now show that the uniform distribution over the range X is the
maximum entropy distribution over this range. It follows that any random
variable with this range has an entropy no greater than log |X].

Theorem 2.6.4 H(X) < log|X|, where |X| denotes the number of ele-
ments in the range of X, with equality if and only X has a uniform distri-
bution over X.

Proof: Letu(x) = ﬁ be the uniform probability mass function over X,

and let p(x) be the probability mass function for X. Then

p(x)
u(x)

D(pllu)y =) p(x)log = log |X] — H(X). (2.93)

Hence by the nonnegativity of relative entropy,
0<D(pllu)=log|X] — H(X). O (2.94)
Theorem 2.6.5 (Conditioning reduces entropy)(Information can’t hurt)
H(X|Y) < H(X) (2.95)
with equality if and only if X and Y are independent.
Proof: 0<I(X;Y)=H(X)— H(X|Y). |

Intuitively, the theorem says that knowing another random variable Y
can only reduce the uncertainty in X. Note that this is true only on the
average. Specifically, H(X|Y = y) may be greater than or less than or
equal to H(X), but on the average H(X|Y) = Zy pOVH(X|Y =y) <
H(X). For example, in a court case, specific new evidence might increase
uncertainty, but on the average evidence decreases uncertainty.
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Example 2.6.1 Let (X, Y) have the following joint distribution:

X

o
ool— &lw [ B

ool —

Then H(X) = H(3.4) =0.544 bit, H(X|Y =1)=0 bits, and
H(X|Y =2)=1 bit. We calculate H(X|Y)=32H(X|Y =1)+]
H(X|Y = 2) = 0.25 bit. Thus, the uncertainty in X is increased if ¥ = 2
is observed and decreased if ¥ = 1 is observed, but uncertainty decreases
on the average.

Theorem 2.6.6 (Independence  bound on  entropy) Let
X1, X2, ..., X, be drawn according to p(x1, xa2, ..., X,). Then
H(X1. X2, ..., Xp) < ) H(X)) (2.96)
i=1
with equality if and only if the X; are independent.

Proof: By the chain rule for entropies,

H(X\, Xa,....Xp) =Y H(Xi|Xi—1..... X)) (2.97)

i=1
<Y H(Xp), (2.98)

i=1
where the inequality follows directly from Theorem 2.6.5. We have equal-
ity if and only if X; is independent of X;_;,..., Xy for all 7 (i.e., if and
only if the X;’s are independent). (|

2.7 LOG SUM INEQUALITY AND ITS APPLICATIONS

We now prove a simple consequence of the concavity of the logarithm,
which will be used to prove some concavity results for the entropy.
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Theorem 2.7.1 (Log sum inequality)  For nonnegative numbers,
ay,az, ..., dy andbl,bg, ...,bn,

Za, log— > (Za,) log iz ‘bf (2.99)

with equality if and only if %’- = const.

We again use the convention that 0log0 =0, alog§ = oo if @ > 0 and
Olog% = 0. These follow easily from continuity.

Proof: Assume without loss of generality that ¢; > 0 and b; > 0. The
function f(t) = tlogt is strictly convex, since f”(t) = }loge > 0 for all
positive 7. Hence by Jensen’s inequality, we have

Yaif) = £ (D ain) (2.100)

fora; >0, Y, o; = 1. Setting o; = and f; = <, we obtain

bj
7’:] bf b

Z logb > ZZb logZZb (2.101)

which is the log sum inequality. (]

We now use the log sum inequality to prove various convexity results.
We begin by reproving Theorem 2.6.3, which states that D(p||g) > 0 with
equality if and only if p(x) = g(x). By the log sum inequality,

_ p)

D(pllq) = ), p(x)log (2.102)
> (Y p)logdp) /> a0 (2103)
- 110g% —0 (2.104)

with equality if and only if % = c¢. Since both p and g are probability
mass functions, ¢ = 1, and hence we have D(pl|lg) = 0 if and only if
p(x) = g(x) for all x.
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Theorem 2.7.2 (Convexity of relative entropy)  D(p||q) is convex in
the pair (p, q); that is, if (p1, q1) and (pa2, q2) are two pairs of probability
mass functions, then

D(Apy + (1 = X)) p2lligr + (1 — R)q2) < AD(p1llg1) + (1 — 2) D(p2llg2)
(2.105)
Jorall 0 < i < 1.

Proof: We apply the log sum inequality to a term on the left-hand side
of (2.105):

Ap1(x) + (1 — 2) pa(x)
Agi(x) + (I = A)ga(x)

(Ap1(x) + (1 — 1) p2(x)) log

Ap1(x) (I —=Mp2x)

= Api(x)lo + (1 =) pa(x) log——————.  (2.106)
ey F U= g0

Summing this over all x, we obtain the desired property. (I

Theorem 2.7.3 (Concavity of entropy)  H(p) is a concave function
of p.

Proof
H(p) = log|X| — D(p|lu), (2.107)

where u is the uniform distribution on |X| outcomes. The concavity of H
then follows directly from the convexity of D. (|

Alternative Proof: Let X; be a random variable with distribution pi,
taking on values in a set A. Let X, be another random variable with
distribution p; on the same set. Let

1 with probability A,

=12 with probability 1 — .

(2.108)

Let Z = Xy. Then the distribution of Z is Ap; + (1 — A) pa. Now since
conditioning reduces entropy, we have

H(Z) > H(Z|9), (2.109)
or equivalently,
HGpr + (1 =2)p2) = AH(p1) + (1 = M) H(p2), (2.110)

which proves the concavity of the entropy as a function of the distribution.
O
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One of the consequences of the concavity of entropy is that mixing two
gases of equal entropy results in a gas with higher entropy.

Theorem 2.7.4 Let (X,Y) ~ p(x,y) = p(x)p(y|x). The mutual infor-
mation 1 (X; Y) is a concave function of p(x) for fixed p(y|x) and a convex
Junction of p(y|x) for fixed p(x).

Proof: To prove the first part, we expand the mutual information

[(X:Y)=H(®Y)— HY|X)=HY) =Y p)HY|X =x). (2.111)

If p(y|x) is fixed, then p(y) is a linear function of p(x). Hence H(Y),
which is a concave function of p(y), is a concave function of p(x). The
second term is a linear function of p(x). Hence, the difference is a concave
function of p(x).

To prove the second part, we fix p(x) and consider two different con-
ditional distributions p;(y|x) and p,(y|x). The corresponding joint dis-
tributions are py(x,y) = p(x)pi(ylx) and pa(x,y) = p(x)p2(y|x), and
their respective marginals are p(x), p;(y) and p(x), p2(y). Consider a
conditional distribution

Pr(ylx) = Ap1(ylx) + (I = ) pa(y|x), (2.112)

which is a mixture of p;(y|x) and p>(y|x) where 0 < A < 1. The cor-
responding joint distribution is also a mixture of the corresponding joint
distributions,

pi(x,y) = Api(x,y) + (1 — ) palx, y), (2.113)
and the distribution of Y is also a mixture,
P (y) =Ap1(y) + (1 —2) pa(y)- (2.114)

Hence if we let g;(x, y) = p(x)ps(y) be the product of the marginal
distributions, we have

¢.(x, y) = Agqi(x, y) + (1 = M)ga(x, y). (2.115)

Since the mutual information is the relative entropy between the joint
distribution and the product of the marginals,

H(X;Y) = D(pa(x, Ylga(x, y)), (2.116)

and relative entropy D(p||g) is a convex function of (p, ¢), it follows that
the mutual information i1s a convex function of the conditional distribution.
O
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2.8 DATA-PROCESSING INEQUALITY

The data-processing inequality can be used to show that no clever manip-
ulation of the data can improve the inferences that can be made from
the data.

Definition Random variables X, Y, Z are said to form a Markov chain
in that order (denoted by X — Y — Z) if the conditional distribution of
Z depends only on Y and is conditionally independent of X. Specifically,
X, Y, and Z form a Markov chain X — Y — Z if the joint probability
mass function can be written as

px,y,2) = p(x)p(ylx)pzly). (2.117)

Some simple consequences are as follows:

*» X > Y — Z if and only if X and Z are conditionally independent
given Y. Markovity implies conditional independence because

px,y,2) _ p(x,y)p(zly)
Py py)

plx, zly) = = p(x|y)p(zly). (2.118)

This is the characterization of Markov chains that can be extended
to define Markov fields, which are n-dimensional random processes
in which the interior and exterior are independent given the values
on the boundary.

e X - Y — Zimpliesthat Z — Y — X. Thus, the condition is some-

times written X < Y < Z.
e If Z=f(Y), then X - Y — Z.

We can now prove an important and useful theorem demonstrating that
no processing of Y, deterministic or random, can increase the information
that ¥ contains about X.

Theorem 2.8.1 (Data-processing inequality) IfX - Y — Z, then
I(X:Y)=1(X; Z).

Proof: By the chain rule, we can expand mutual information in two
different ways:

I(X:Y,Z)=1(X; Z)+ [ (X;Y|Z) (2.119)
=I1(X:Y)+ [(X; Z|Y). (2.120)
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Since X and Z are conditionally independent given Y, we have
I1(X; Z|Y)=0. Since I(X;Y|Z) > 0, we have

[(X:Y) > 1(X:Z). (2.121)

We have equality if and only if 7/(X;Y|Z) =0 (ie., X — Z — Y forms
a Markov chain). Similarly, one can prove that /(Y; Z2) > I(X:Z). O

Corollary  In particular, if Z = g(Y), we have 1(X;Y) = I(X; g(Y)).
Proof: X — Y — g(Y) forms a Markov chain. O

Thus functions of the data ¥ cannot increase the information about X.
Corollary IfX — Y — Z, then (X;Y|Z) < [(X;Y).

Proof: We note in (2.119) and (2.120) that I(X;Z|Y) =0, by
Markovity, and /(X; Z) > 0. Thus,

I(X;Y|Z) <I(X;Y) O (2.122)

Thus, the dependence of X and Y is decreased (or remains unchanged)
by the observation of a “downstream” random variable Z. Note that it is
also possible that 1(X; Y|Z) > I(X;Y) when X, Y, and Z do not form a
Markov chain. For example, let X and Y be independent fair binary ran-
dom variables, and let Z =X + Y. Then I(X;Y)=0,but I(X:Y|Z2) =
H(X|Z)-HX|Y,Z)=HX|Z)=P(Z=1DHX|Z=1) = % bit.

2.9 SUFFICIENT STATISTICS

This section is a sidelight showing the power of the data-processing
inequality in clarifying an important idea in statistics. Suppose that we
have a family of probability mass functions { fy(x)} indexed by @, and let
X be a sample from a distribution in this family. Let T(X) be any statistic
(function of the sample) like the sample mean or sample variance. Then
0 — X — T(X), and by the data-processing inequality, we have

1O; T(X)) = 1(0; X) (2.123)

for any distribution on 6. However, if equality holds, no information
is lost.

A statistic T(X) is called sufficient for @ if it contains all the infor-
mation in X about 6.
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Definition A function 7'(X) is said to be a sufficient statistic relative to
the family { fy(x)} if X is independent of & given T (X) for any distribution
on fli.e., & — T(X) — X forms a Markov chain].

This is the same as the condition for equality in the data-processing
inequality,

1(6;: X)=10;T(X)) (2.124)

for all distributions on #. Hence sufficient statistics preserve mutual infor-
mation and conversely.
Here are some examples of sufficient statistics:

I. Let Xy, X2, ..., X, X; € {0, 1}, be an independent and identically
distributed (i.i.d.) sequence of coin tosses of a coin with unknown
parameter 8 = Pr(X; = 1). Given n, the number of 1’s is a sufficient
statistic for €. Here T(X{, X2, ..., X,) = Z?:I X;. In fact, we can
show that given T, all sequences having that many 1’s are equally
likely and independent of the parameter #. Specifically,

oo

L B
== o TXx=k (2.125)

PrI(Xl,Xz,.--,Xn)= (X1, X2, ..., Xp)

0 otherwise.

Thus, 6 — > X; — (X, X2, ..., X,,) forms a Markov chain, and
T is a sufficient statistic for 6.

The next two examples involve probability densities instead of
probability mass functions, but the theory still applies. We define
entropy and mutual information for continuous random variables in
Chapter 8.

2. If X is normally distributed with mean @ and variance 1; that is, if

folx) = J%E(XH)Z/ P=NE. D, (2.126)

T

and Xy, Xo, ..., X, are drawn independently according to this distri-
bution, a sufficient statistic for 6 is the sample mean X,, = % X
It can be verified that the conditional distribution of Xy, X», ..., X,,,
conditioned on X, and n does not depend on 6.
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3. If fy = Uniform(6, 6 + 1), a sufficient statistic for  is

T(Xla X2v ¢ ey Xn)
= (max{X|, X2, ..., X,}, min{X1, X2, ..., X,}).  (2.127)

The proof of this is slightly more complicated, but again one can
show that the distribution of the data is independent of the parameter
given the statistic 7.

The minimal sufficient statistic is a sufficient statistic that is a function
of all other sufficient statistics.

Definition A statistic 7(X) is a minimal sufficient statistic relative to
{ fa(x)} if it is a function of every other sufficient statistic U. Interpreting
this in terms of the data-processing inequality, this implies that

8- T(X)— UX)— X. (2.128)

Hence, a minimal sufficient statistic maximally compresses the infor-
mation about € in the sample. Other sufficient statistics may contain
additional irrelevant information. For example, for a normal distribution
with mean 6, the pair of functions giving the mean of all odd samples and
the mean of all even samples is a sufficient statistic, but not a minimal
sufficient statistic. In the preceding examples, the sufficient statistics are
also minimal.

2.10 FANO'S INEQUALITY

Suppose that we know a random variable ¥ and we wish to guess the value
of a correlated random variable X. Fano’s inequality relates the probabil-
ity of error in guessing the random variable X to its conditional entropy
H(X|Y). It will be crucial in proving the converse to Shannon’s channel
capacity theorem in Chapter 7. From Problem 2.5 we know that the con-
ditional entropy of a random variable X given another random variable
Y is zero if and only if X is a function of ¥. Hence we can estimate X
from Y with zero probability of error if and only if H(X|Y) =0.
Extending this argument, we expect to be able to estimate X with a
low probability of error only if the conditional entropy H (X |Y) is small.
Fano’s inequality quantifies this idea. Suppose that we wish to estimate a
random variable X with a distribution p(x). We observe a random variable
Y that is related to X by the conditional distribution p(y|x). From Y, we
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calculate a function g(Y) = X, where X is an estimate of X and takes on
values in X. We will not restrict the alphabet X to be equal to X, and we
will also allow the function g(Y) to be random. We wish to bound the
probability that X # X. We observe that X — ¥ — X forms a Markoy
chain. Define the probability of error

P, =Pr{X # X}. (2.129)

Theorem 2.10.1 (Fano's Inequality) ~ For any estimator X such that
X =Y — X, with P, = Pr(X # X), we have

H(P,) + P, log|X| > H(X|X) > H(X|Y). (2.130)

This inequality can be weakened to

1+ Plog |X] = H(X|Y) (2.131)

or H(X|Y) — 1
> 27 2.132
log | ( )

Remark Note from (2.130) that P, = 0 implies that H(X|Y) =0, as
intuition suggests.

Proof: We first ignore the role of Y and prove the first inequality in
(2.130). We will then use the data-processing inequality to prove the more
traditional form of Fano’s inequality, given by the second inequality in
(2.130). Define an error random variable,

1 ifX#£X,
E‘{o if & =X. (2.133)

Then, using the chain rule for entropies to expand H(E, X|X) in two
different ways, we have

H(E,X|X)=H(X|X)+ H(E|X, X) (2.134)
—_—
=0
=H(E|X)+ HX|E, X). (2.135)
R e
<H(P,) =Pelog|X|

Since conditioning reduces entropy, H(E|X) < H(E) = H(P,). Now
since E is a function of X and X, the conditional entropy H(E|X, X) is



2.10 FANO'’S INEQUALITY 39

equal to 0. Also, since E is a binary-valued random variable, H(E) =
H(P,). The remaining term, H(X|E, X), can be bounded as follows:

HX|E,X)=Pr(E=0HX|X,E=0+Pr(E=1DHX|X,E=1)
< (1 —P)0O+ P.log|X], (2.136)

since given E =0, X = X, and given E = 1, we can upper bound the
conditional entropy by the log of the number of possible outcomes. Com-
bining these results, we obtain

H(P,) + P.log|X] > H(X|X). (2.137)

By the data-processing inequality, we have /(X X) < I(X;Y) since
X — Y — X is a Markov chain, and therefore H(X|X) > H(X|Y). Thus,
we have

H(P.)+ P.log| X = H(X|X) > H(X|Y). O (2.138)
Corollary  For any two random variables X and Y, let p = Pr(X #Y).
H(p)+ plog|X| = H(X[Y). (2.139)

Proof: Let X =Y in Fano’s inequality. O

For any two random variables X and Y, if the estimator g(¥) takes
values in the set X, we can strengthen the inequality slightly by replacing

log | X] with log(]X] — 1).
Corollary Let P, =Pr(X # X), and let X : Y — X; then

H(P,) + P.log(|X] — 1) > H(X|Y). (2.140)

Proof: The proof of the theorem goes through without change, except
that

H(X|E,X)=P(E=0HX|X.E=0)+Pr(E=1DHX|X,E=1)
(2.141)
< (1—P.)0+ P.log(|X] — 1), (2.142)

since given £ =0, X = X, and given E = 1, the range of possible X
outcomes is |X] — 1, we can upper bound the conditional entropy by the
log(]X] — 1), the logarithm of the number of possible outcomes. Substi-
tuting this provides us with the stronger inequality. d
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Remark Suppose that there is no knowledge of Y. Thus, X must be
guessed without any information. Let X € {1,2,...,m} and p; > py >

- > pm. Then the best guess of X is X = 1 and the resulting probability
of error is P, = 1 — p;. Fano’s inequality becomes

H(P;) + P, log(m — 1) = H(X). (2.143)

The probability mass function

P, P,
(PlaPZa---st): 1_P€7 3 one ey (2'144)
m—1 m—1

achieves this bound with equality. Thus, Fano’s inequality is sharp.

While we are at it, let us introduce a new inequality relating probability
of error and entropy. Let X and X’ by two independent identically dis-
tributed random variables with entropy H(X). The probability at X = X’
is given by

Pr(X =X) =) p). (2.145)

We have the following inequality:

Lemma 2.10.1 If X and X' are i.i.d. with entropy H(X),
Pr(X = X) = 277X, (2.146)
with equality if and only if X has a uniform distribution.
Proof: Suppose that X ~ p(x). By Jensen’s inequality, we have
2Eloer(X) < prlogr(0), (2.147)
which implies that
2—HX) — pY p)logp(x) < Zp(x)Z'Og”(x) — sz(x)_ O (2.148)

Corollary Let X, X' be independent with X ~ p(x), X' ~ r(x), x,x" €
X. Then

Pr(X = X') > 2~ HW»)=Dplin (2.149)
Pr(X = X') = 2~ HO=Dlip), (2.150)
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Proof: We have

r(x)

2—H(p)=D(pllr) — »Xp)log p(x)+3 p(x) log 75 (2.151)
— 22 px)logr(x) (2.152)
< Z px)2leer® (2.153)
=Y pr) (2.154)
=Pr(X = X)), (2.155)

where the inequality follows from Jensen’s inequality and the convexity
of the function f(v) = 2". [l

The following telegraphic summary omits qualifying conditions.

SUMMARY
Definition The entropy H(X) of a discrete random variable X is
defined by
H(X) = —Zp(x) log p(x). (2.156)
xeX

Properties of H

1. H(X) = 0.

2. Hy(X) = (logy, a)H,(X).

3. (Conditioning reduces entropy) For any two random variables, X
and Y, we have

HX|Y) < H(X) (2.157)

with equality if and only if X and Y are independent.

4. H(X1, X2, ..., Xy) = Y7, H(X;), with equality if and only if the
X; are independent.

5. H(X) < log | X|, with equality if and only if X is distributed uni-
formly over AX.

6. H(p) is concave in p.
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Definition The relative entropy D(p || q) of the probability mass
function p with respect to the probability mass function ¢ is defined by

_ Px)
D(pllg) =) px)log et (2.158)

Definition The mutual information between two random variables X
and Y is defined as

px,y)
I(X:Y) =) ) plx.y)log =~ (2.159)
xeX yey PP

Alternative expressions

H(X)=E,log ﬁ, (2.160)
H(X,Y)=E, logm, (2.161)
H(X|Y) = E, log ﬁ, (2.162)
I(X;Y)=E,log %, (2.163)
D(pllg) = E, log ZEX)) (2.164)

Properties of D and 7

1. I(X;Y)=HX)-HX|Y)=H(Y)—-HY|X)=H(X)+
H(Y)—- H(X,Y).

2. D(p || g) = 0 with equality if and only if p(x) = g(x), for all x €
X.

3. I(X; Y) = D(p(x, y)||p(x)p(y)) = 0, with equality if and only if
p(x,y) = p(x)p(y) (i.e., X and Y are independent).

4. If | X |=m, and u is the uniform distribution over A, then D(p ||
u) =logm — H(p).

5. D(p|lg) is convex in the pair (p.q).

Chain rules
Entropy: H(Xl, XQ, coog X,,) = Z?:l H(X,'lX,'_l, 05ag X]).
Mutual information:
(X, Xo,...,X;Y) = Z'?_ (X Y|X, Xo, .., X20).

i=I
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Relative entropy:
D(p(x, wlg(x, y)) = D(p(x)|lg(x)) + D(p(y|x)|lg(y|x)).

Jensen’s inequality. If f is a convex function, then Ef(X) > f(EX).

Log sum inequality. For n positive numbers, aj,as,...,a, and
bl!bZ! ---!bns

ol —’> -] ' 1 4 2.165
Za og (Za) oY = = b ( )

with equality if and only if Z—; = constant.

Data-processing inequality. If X — Y — Z forms a Markov chain,
1(X;Y) > I(X; Z).

Sufficient statistic. 7(X) is sufficient relative to {fy(x)} if and only
if 1(0; X)=1(6;T (X)) for all distributions on 6.

Fano’s inequality. Let P, = Pr{X(Y) % X}. Then
H(P,) + P, log|X] > H(X|Y). (2.166)

Inequality. If X and X’ are independent and identically distributed,
then

Pr(X = X') > 27H&), (2.167)

PROBLEMS

2.1 Coin flips. A fair coin is flipped until the first head occurs. Let
X denote the number of flips required.

(a) Find the entropy H(X) in bits. The following expressions may
be useful:

o0 l o0
2= L= (l—r)-

(b) A random variable X is drawn according to this distribution.
Find an “efficient” sequence of yes—no questions of the form,
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2.6

2.7
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“Is X contained in the set S?7” Compare H (X) to the expected
number of questions required to determine X.

Entropy of functions. Let X be a random variable taking on a
finite number of values. What is the (general) inequality relation-
ship of H(X) and H(Y) if

(a) Y =2%7

(b) ¥ =cos X?

Minimum  entropy. What is the minimum value of
H(py,..., px) = H(p) as p ranges over the set of n-dimensional
probability vectors?  Find all p’s that achieve this minimum.

Entropy of functions of a random variable. Let X be a discrete
random variable. Show that the entropy of a function of X is less
than or equal to the entropy of X by justifying the following steps:

H(X, g(X) £ H(X) + H(g(X) | X) (2.168)
® Hx). (2.169)
H(X.g(X)) € H(g(X)) + H(X | g(X))  (2.170)
S Hx). (2171)

Thus, H(g(X)) < H(X).

Zero conditional entropy. Show that if H(Y|X) =0, then Y is
a function of X [i.e., for all x with p(x) > 0, there is only one
possible value of y with p(x, v) > 0].

Conditional mutual information vs. unconditional mutual informa-
tion. Give examples of joint random variables X, ¥, and Z
such that

(@ I(X;Y|Z)<I(X;Y).
(b) I(X;Y |2)>I1(X;Y).

Coin weighing. Suppose that one has n coins, among which there

may or may not be one counterfeit coin. If there is a counterfeit

coin, it may be either heavier or lighter than the other coins. The

coins are to be weighed by a balance.

(a) Find an upper bound on the number of coins n so that k
weighings will find the counterfeit coin (if any) and correctly
declare it to be heavier or lighter.
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px1, x2, x3) = p(xy) p(xafxy) p(xsz|xz), for all x; € {1,2,...,n},

x2efl,2,...,k},x3e{l1,2,...,m}.

(a) Show that the dependence of X; and X3 is limited by the
bottleneck by proving that 7(X; X3) < logk.

(b) Evaluate 7(X;; X3) for k =1, and conclude that no depen-
dence can survive such a bottleneck.

Pure randomness and bent coins. Let X1, X», ..., X,, denote the
outcomes of independent flips of a bent coin. Thus, Pr {X; =
I}=p, Pr {X;=0}=1- p, where p is unknown. We wish
to obtain a sequence Zy, Zy,...,Zg of fair coin flips from
X1, Xo,...,X,. Toward this end, let f: A" — {0, 1}* (where
{0, 1} = {A,0,1,00,01, ...} is the set of all finite-length binary
sequences) be a mapping (X, X2, ..., X,) = (Z1, Z>, ..., Zk),
where Z; ~ Bernoulli (%), and K may depend on (X, ..., X,).
In order that the sequence Z;, Z», ... appear to be fair coin flips,
the map f from bent coin flips to fair flips must have the prop-
erty that all 2k sequences (Z1, Z2, ..., Zy) of a given length k
have equal probability (possibly 0), for £k =1, 2, .. .. For example,
for n =2, the map f(01)=0, f(10) =1, f(00) = f(11)=A
(the null string) has the property that Pr{Z; = 1|K =1} =Pr{Z, =
0K =1} = % Give reasons for the following inequalities:

(a)
nH(p) = H(X).....X,)

(b)
= H(Z,Z5,.... Zk, K)

©QHK) +H(Z,, ..., Zx|K)

QD H(K) + E(K)

(e)
> EK.

Thus, no more than nH(p) fair coin tosses can be derived from
(X1,...,X,), on the average. Exhibit a good map f on sequences
of length 4.

World Series. 'The World Series is a seven-game series that termi-
nates as soon as either team wins four games. Let X be the random
variable that represents the outcome of a World Series between
teams A and B; possible values of X are AAAA, BABABAB, and
BBBAAAA. Let Y be the number of games played, which ranges
from 4 to 7. Assuming that A and B are equally matched and that
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the games are independent, calculate H(X), H(Y), H(Y|X), and
H(X|Y).

Infinite entropy. This problem shows that the entropy of a discrete
random variable can be infinite. Let A =Y 77 ,(n log2 n)~ L (It is
easy to show that A is finite by bounding the infinite sum by the
integral of (x log” x)~'.] Show that the integer-valued random vari-
able X defined by Pr(X =n) = (An logznc)_1 forn=2,3, ..,
has H(X) = +o0.

Run-length coding. Let X|, X»,..., X, be (possibly dependent)
binary random variables. Suppose that one calculates the run
lengths R = (R, Ry,...) of this sequence (in order as they
occur). For example, the sequence X = 0001100100 yields run
lengths R = (3,2,2,1,2). Compare H(X;, X2,...,X,), HR),
and H(X,, R). Show all equalities and inequalities, and bound all
the differences.

Markov’s inequality for probabilities. Let p(x) be a probability
mass function. Prove, for all d > 0, that

Pr{p(X) <d} logé < H(X). (2.175)

Logical order of ideas. ldeas have been developed in order of

need and then generalized if necessary. Reorder the following ideas,

strongest first, implications following:

(a) Chain rule for 7(Xy, ..., X,;Y), chain rule for D(p(xy,...,
Xo)|lg(x1, X2, ..., X,)), and chain rule for H(X, Xo, ..., X,).

(b) D(f|lg) = 0, Jensen’s inequality, /(X;Y) = 0.

Conditional mutual information. Consider a sequence of n binary
random variables X, X», ..., X,,. Each sequence with an even
number of 1’s has probability 2~"~D and each sequence with an
odd number of 1°s has probability 0. Find the mutual informations

I(X1;X2), T(X2: X31Xp), ..o, 1(Xp—13 Xul Xy, ooy X))

Average entropy. Let H(p) = —plog, p — (1 — p)log,(1 — p)

be the binary entropy function.

(a) Evaluate H (%) using the fact that log, 3 ~ 1.584. (Hint: You
may wish to consider an experiment with four equally likely
outcomes, one of which is more interesting than the others.)
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(b) Calculate the average entropy H(p) when the probability p is
chosen uniformly in the range 0 < p < 1.

(¢) (Optional) Calculate the average entropy H(p1, p2, p3), where
(p1, p2, p3) is a uniformly distributed probability vector. Gen-
eralize to dimension n.

Venn diagrams. There isn’t really a notion of mutual information
common to three random variables. Here is one attempt at a defini-
tion: Using Venn diagrams, we can see that the mutual information
common to three random variables X, Y, and Z can be defined by

I(X;)Y;2)=1(X;Y)-1(X;Y|Z).

This quantity is symmetric in X, Y, and Z, despite the preceding
asymmetric definition. Unfortunately, /(X; Y; Z) is not necessar-
ily nonnegative. Find X, Y, and Z such that I (X;Y; Z) < 0, and
prove the following two identities:
(@ I(X;Y:Z)=H(X,Y,Z) - HX) - H(Y)—-H(Z) +
I(X:Y)+1(Y: Z)+ 1(Z: X).
(b) I(X:Y;Z)y=H(X,Y,Z)—-H(X,Y)—H(Y,Z)—
HZ, X)+HX)+HY)+ H(Z).
The first identity can be understood using the Venn diagram analogy
for entropy and mutual information. The second identity follows
easily from the first.

Another proof of nonnegativity of relative entropy. In view of the
fundamental nature of the result D(p||g) > 0, we will give another
proof.

(a) Show that Inx <x — 1 for 0 < x < o0.

(b) Justify the following steps:

q(x)
-D = In—— 2.176
(pllg) a p(x) np(x) ( )
q(x) )
E : 1 2.177
< 4 p(x)(p(x) ( )
<0. (2.178)

(c) What are the conditions for equality?

Grouping rule for entropy. Let p = (p1, p2, ..., pm) be a prob-
ability distribution on m elements (i.e., p; = 0 and » ", p; = 1).
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Define a new distribution q on m — 1 elements as g, = p, g2 = p2,

ey Gm—2 = Pm—2, and ¢,y—1 = pm—1 + pm [1.e., the distribution q
is the same as p on {1,2,...,m — 2}, and the probability of the
last element in q is the sum of the last two probabilities of p].
Show that

m—1 m
H(p)=H(q)+(pm_1+pm)H( Pl P )
Pm—1+ Pm Pm—1+ Pm
(2.179)
Mixing increases entropy. Show that the entropy of the proba-
bility distribution, (py, ..., pis.... Pjs---, Pm), is less than the

entropy of the distribution  (py,..., 22, POL

vy 2 ’
... Pm). Show that in general any transfer of probability that
makes the distribution more uniform increases the entropy.

Inequalities. Let X, Y, and Z be joint random variables. Prove
the following inequalities and find conditions for equality.

(a) H(X,Y|Z) > H(X|Z).

(b) I(X,Y; Z) = I(X; Z).

(¢) H(X,Y,Z)— H(X,Y) < H(X,Z) — H(X).

d) I(X;Z)Y) = H(Z; Y|X) = I(Z;Y) + [(X; Z).

Maximum entropy. Find the probability mass function p(x) that

maximizes the entropy H(X) of a nonnegative integer-valued ran-
dom variable X subject to the constraint

o0
EX =Y npn)=A
n=0

for a fixed value A > 0. Evaluate this maximum H(X).

Conditional entropy. Under what conditions does H(X|g(Y)) =
H(X|Y)?

Fano. We are given the following joint distribution on (X, Y):

Y
X N| a b ¢
1 11
5 = n
| I R |
2l 5 0B
| S [ |
3l 7 m 8




2.33

2.34

2.35

2.36

2.37

PROBLEMS 51

Let A}A( (Y) be an estimator for X (based on Y) and let P, =

Pr{X(Y) # X}.

(a) Find the minimum probability of error estimator X (¥) and the
associated P,.

(b) Evaluate Fano’s inequality for this problem and compare.

Fano’s inequality. Let Pr(X =i)=p;, i =1,2,...,m, and let
pP1 = p2 > p3=--- > py. The minimal probability of error pre-
dictor of X is X = 1, with resulting probability of error P, =
1 — p;. Maximize H(p) subject to the constraint 1 — p; = P, to
find a bound on P, in terms of H. This is Fano’s inequality in the
absence of conditioning.

Entropy of initial conditions. Prove that H (X|X,) is nondecreas-
ing with n for any Markov chain.

Relative entropy is not symmetric.
Let the random variable X have three possible outcomes {a, b, c}.
Consider two distributions on this random variable:

Symbol p(x) q(x)
1 1
2 3
1 1
4 3
1 1
¢ 1 3

Calculate H(p), H(gq), D(p|lq), and D(q||p). Verify that in this
case, D(pllq) # D{qlIp).

Symmetric relative entropy. Although, as Problem 2.35 shows,
D(p|lg) # D(g||p) in general, there could be distributions for
which equality holds. Give an example of two distributions p and
g on a binary alphabet such that D(p||g) = D(gq||p) (other than
the trivial case p = q).

Relative entropy. Let X, Y, Z be three random variables with a
joint probability mass function p(x,y,z). The relative entropy
between the joint distribution and the product of the marginals is

p(x,y,2)

—] (2.180)
p(x)p(y)p(z)

D(p(x,y,Dllp(x)p(y)p(2)) = E[log

Expand this in terms of entropies. When is this quantity zero?
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There are various other axiomatic formulations which result in the
same definition of entropy. See, for example, the book by Csiszdr
and Korner [149].

247 Entropy of a missorted file. A deck of n cards inorder 1,2,...,n
is provided. One card is removed at random, then replaced at ran-
dom. What is the entropy of the resulting deck?

248 Sequence length. How much information does the length of a
sequence give about the content of a sequence? Suppose that we
consider a Bernoulli (%) process {X;}. Stop the process when the
first 1 appears. Let N designate this stopping time. Thus, X" is an
element of the set of all finite-length binary sequences {0, 1}* =
{0, 1,00, 01, 10, 11, 000, ...}.

(a) Find I(N; XM).

(b) Find H(XV|N).

(¢) Find H(XM).

Let’s now consider a different stopping time. For this part, again
assume that X; ~ Bemou]li(%) but stop at time N = 6, with prob-
ability ; and stop at time N = 12 with probability 2. Let this
stopping time be independent of the sequence X ;X - - X13.

(d) Find I(N; X"V).

(e) Find H(XV|N).

(f) Find H(X").

HISTORICAL NOTES

The concept of entropy was introduced in thermodynamics, where it
was used to provide a statement of the second law of thermodynam-
ics. Later, statistical mechanics provided a connection between thermo-
dynamic entropy and the logarithm of the number of microstates in a
macrostate of the system. This work was the crowning achievement of
Boltzmann, who had the equation § = kIn W inscribed as the epitaph on
his gravestone [361].

In the 1930s, Hartley introduced a logarithmic measure of informa-
tion for communication. His measure was essentially the logarithm of the
alphabet size. Shannon [472] was the first to define entropy and mutual
information as defined in this chapter. Relative entropy was first defined
by Kullback and Leibler [339]. It is known under a variety of names,
including the Kullback—Leibler distance, cross entropy, information diver-
gence, and information for discrimination, and has been studied in detail
by Csiszdr [138] and Amari [22].
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Many of the simple properties of these quantities were developed by
Shannon. Fano’s inequality was proved in Fano [201]. The notion of
sufficient statistic was defined by Fisher [209], and the notion of the
minimal sufficient statistic was introduced by LLehmann and Scheffé [350].
The relationship of mutual information and sufficiency is due to Kullback
[335]. The relationship between information theory and thermodynamics
has been discussed extensively by Brillouin [77] and Jaynes [294].

The physics of information is a vast new subject of inquiry spawned
from statistical mechanics, quantum mechanics, and information theory.
The key question is how information is represented physically. Quan-
tum channel capacity (the logarithm of the number of distinguishable
preparations of a physical system) and quantum data compression [299]
are well-defined problems with nice answers involving the von Neumann
entropy. A new element of quantum information arises from the exis-
tence of quantum entanglement and the consequences (exhibited in Bell’s
inequality) that the observed marginal distribution of physical events are
not consistent with any joint distribution (no local realism). The funda-
mental text by Nielsen and Chuang [395] develops the theory of quantum
information and the quantum counterparts to many of the results in this
book. There have also been attempts to determine whether there are
any fundamental physical limits to computation, including work by Ben-
nett [47] and Bennett and Landauer [48].
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I CHAPTER 3

ASYMPTOTIC EQUIPARTITION
PROPERTY

In information theory, the analog of the law of large numbers is the
asymptotic equipartition property (AEP). It is a direct consequence
of the weak law of large numbers. The law of large numbers states
that for independent, identically distributed (i.i.d.) random variables,
LS | X; is close to its expected value EX for large values of n.
The AEP states that %log is close to the entropy H, where
Xy, Xa, ..., X, are i.i.d. random variables and p(X;, X», ..., X)) is the
probability of observing the sequence X, X5, ..., X,,. Thus, the proba-
bility p(Xy, X», ..., X,;) assigned to an observed sequence will be close
to 27",

This enables us to divide the set of all sequences into two sets, the
typical set, where the sample entropy is close to the true entropy, and the
nontypical set, which contains the other sequences. Most of our attention
will be on the typical sequences. Any property that is proved for the typical
sequences will then be true with high probability and will determine the
average behavior of a large sample.

First, an example. Let the random variable X € {0, 1} have a probability
mass function defined by p(1) = p and p(0) =¢q. If X1, X5,..., X, are
i.i.d. according to p(x), the probability of a sequence xi, x2, ..., x, is
[Ti_; p(x;). For example, the probability of the sequence (1,0, 1,1,0, 1)
is pXign=2Xi = pig2 Clearly, it is not true that all 2" sequences of
length n have the same probability.

However, we might be able to predict the probability of the sequence
that we actually observe. We ask for the probability p(X,, X2, ..., X,;) of
the outcomes Xy, X», ..., X,,, where X, X», ... are i.i.d. ~ p(x). This is
insidiously self-referential, but well defined nonetheless. Apparently, we
are asking for the probability of an event drawn according to the same

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
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probability distribution. Here it turns out that p(X,, Xo, ..., X,;) is close
to 27" with high probability.
We summarize this by saying, “Almost all events are almost equally
surprising.” This is a way of saying that
Pri{(Xi, X2,.... X)) : p(X1. Xo, oo, X)) = 277059 = 1 @Bl

if X1, Xo, ..., X, are i.i.d. ~ p(x).

In the example just given, where p(X, X2, ..., X,) = pZ Xf'q”_zx',
we are simply saying that the number of 1’s in the sequence is close
to np (with high probability), and all such sequences have (roughly) the
same probability 27"(") 'We use the idea of convergence in probability,
defined as follows:

Definition (Convergence of random variables). Given a sequence of
random variables, X, X5, ..., we say that the sequence X, X», ... con-
verges to a random variable X:

L. In probability if for every € > 0, Pr{|X,, — X| > €} - 0
2. In mean square if E(X, — X)*> — 0

3. With probability 1 (also called almost surely) if Pr{lim, .. X, =
X}=1

3.1 ASYMPTOTIC EQUIPARTITION PROPERTY THEOREM

The asymptotic equipartition property is formalized in the following
theorem.

Theorem 3.1.1 (AEP) If X, X5, ... areiid. ~ p(x), then
1
——log p(X1, Xo, ..., X)) = H(X) in probability. (3.2)
n
Proof: Functions of independent random variables are also independent

random variables. Thus, since the X; are 1.1.d., so are log p(X;). Hence,
by the weak law of large numbers,

1 1
—=log p(X1, X2, X,) = == ) " log p(Xi) (3.3)
n n ;

— —FElog p(X) in probability (3.4)
= H(X), (3.5)

which proves the theorem. (]
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Non-typical set
Description: n log |#°| + 2 bits

Typical set
Description: n(H + €) + 2 bits

NI FEE 2

FIGURE 3.2. Source code using the typical set.

We order all elements in each set according to some order (e.g., lexi-
cographic order). Then we can represent each sequence of A" by giving
the index of the sequence in the set. Since there are < 2"#+€) sequences
in A", the indexing requires no more than n(H + €) + 1 bits. [The extra
bit may be necessary because n(H + €) may not be an integer.] We pre-
fix all these sequences by a 0, giving a total length of < n(H +¢€)+2
bits to represent each sequence in A" (see Figure 3.2). Similarly, we can
index each sequence not in A" by using not more than n log |X] + 1 bits.
Prefixing these indices by 1, we have a code for all the sequences in A™.

Note the following features of the above coding scheme:

e The code is one-to-one and easily decodable. The initial bit acts as
a flag bit to indicate the length of the codeword that follows.

 We have used a brute-force enumeration of the atypical set Aé’”r
without taking into account the fact that the number of elements in
Ag’”‘: is less than the number of elements in ™. Surprisingly, this is
good enough to yield an efficient description.

« The typical sequences have short descriptions of length ~ nH.

We use the notation x" to denote a sequence xi, X2, ..., X,. Let [(x")
be the length of the codeword corresponding to x". If n is sufficiently
large so that Pr{A"} > 1 — ¢, the expected length of the codeword is

E1(X") = Z px™MI(x") (3.17)

x.’l
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= > pMI+ Y paMHIE" (3.18)

C
xneal™ xeAl

> p")(n(H +€) +2)

x”EAi")

+ ) pG"M(nlog|A] +2) (3.19)

P
xn GAL")

[A

= Pr{AL} (n(H + ) +2) + Pr{A®} (nlog |41 +2)

(3.20)
<n(H +¢€) +en(log |A]) + 2 (3.21)
=n(H +€), (3.22)

where €' = € + € log |X] + % can be made arbitrarily small by an appro-
priate choice of € followed by an appropriate choice of n. Hence we have
proved the following theorem.

Theorem 3.2.1 Let X" be i.i.d. ~ p(x). Let € > 0. Then there exists a
code that maps sequences x" of length n into binary strings such that the
mapping is one-to-one (and therefore invertible) and

E[%I(X"):I < H(X)+e (3.23)

for n sufficiently large.

Thus, we can represent sequences X" using n H (X) bits on the average.

3.3 HIGH-PROBABILITY SETS AND THE TYPICAL SET

From the definition of A", it is clear that A" is a fairly small set that
contains most of the probability. But from the definition, it is not clear
whether it is the smallest such set. We will prove that the typical set has
essentially the same number of elements as the smallest set, to first order
in the exponent.

Definition For each n =1,2. ..., let Bé") C X" be the smallest set
with

Pr{B{"} > 1 — 6. (3.24)
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We argue that B{"’ must have significant intersection with A" and there-
fore must have about as many elements. In Problem 3.3.11, we outline
the proof of the following theorem.

Theorem3.3.1  Let Xi, Xa,..., X, be iid ~ p(x). For § < % and
any §' > 0, if Pr{B"} > 1 — 8, then

1
—log|B"| > H -8 forn sufficiently large. (3.25)
n

Thus, B;n) must have at least 27 elements, to first order in the expo-

nent. But Ag”) has 2"1£€) elements. Therefore, Aé") is about the same
size as the smallest high-probability set.

We will now define some new notation to express equality to first order
in the exponent.

Definition The notation g, = b, means

.1 a,
lim —log — = 0. (3.26)

n—>o0 f "

Thus, a, =b, implies that a, and b, are equal to the first order in the
exponent.
We can now restate the above results: If 6, — 0 and ¢, — 0, then

|Bs) 1=1AL =21 (3.27)

To illustrate the difference between A" and Bé"), let us con-
sider a Bernoulli sequence X, X», ..., X,, with parameter p = 0.9. [A
Bernoulli(f) random variable is a binary random variable that takes on
the value 1 with probability 6.] The typical sequences in this case are the
sequences in which the proportion of 1’s is close to 0.9. However, this
does not include the most likely single sequence, which is the sequence of
all 1’s. The set Ba(”) includes all the most probable sequences and there-
fore includes the sequence of all 1’s. Theorem 3.3.1 implies that A" and
Bg;) must both contain the sequences that have about 90% 1’s, and the
two sets are almost equal in size.



64 ASYMPTOTIC EQUIPARTITION PROPERTY

SUMMARY

AEP. “Almost all events are almost equally surprising.” Specifically,
if X1, Xo,... are i.i.d. ~ p(x), then

1
——log p(Xy, X2, ..., X;;) = H(X) in probability. (3.28)

n
Definition. The fypical set A" is the set of sequences x1, xa, ..., X,

satisfying
2 MHEYD) < p(xy, x, ..., %) < 27"HEIO=E) (3.29)

Properties of the typical set

L If (x1,x2, ..., X,) € A" then p(xy, x2,...,x,) = 27"H=E),
2. Pr{A"} > 1 — e for n sufficiently large.

3. |AW| < 27HXO+E) where |A| denotes the number of elements in
set A.

Definition. a,=b, means that %log ;}l — 0 as n — oc.

Smallest probable set. Let X, X5, ..., X, be 1.i.d. ~ p(x), and for

8 < %, let B{" C A" be the smallest set such that Pr{B{"} > 1 — 5.
Then

1BV =21, (3.30)

PROBLEMS

3.1 Markov’s inequality and Chebyshev’s inequality
(a) (Markov’s inequality) For any nonnegative random variable X
and any ¢ > 0, show that
EX

PriX >1) < —. (3.31)

Exhibit a random variable that achieves this inequality with
equality.

(b) (Chebyshev’s inequality) Let ¥ be a random variable with
mean p and variance o2, By letting X = (Y — u)?, show that
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for any € > 0,

0,2

Pr{lY — pu| =€} < —- (3.32)

€
(¢) (Weak law of large numbers) Let Z1, Z», ..., Z, be a sequence
of i.i.d. random variables with mean p and variance o2. Let

— n
y— % Z Z; be the sample mean. Show that
i=1

o2

Pr{|Z, —u| > €} < (3.33)

ne?’

Thus, Pr{|7n - p,| > e} — 0 as n — o0. This is known as the
weak law of large numbers.

3.2 AEP and mutual information. Let (X;, Y;) be i.i.d. ~ p(x, y). We
form the log likelihood ratio of the hypothesis that X and ¥ are
independent vs. the hypothesis that X and Y are dependent. What
is the limit of

L, PP,
n p(Xn, Ym

3.3  Piece of cake.
A cake is sliced roughly in half, the largest piece being chosen each
time, the other pieces discarded. We will assume that a random cut
creates pieces of proportions

(2,1) with probability

| & 2) with probability

FNSNT

Thus, for example, the first cut (and choice of largest piece) may
result in a piece of size % Cutting and choosing from this piece
3

might reduce it to size (3) (%) at time 2, and so on. How large, to

first order in the exponent, is the piece of cake after n cuts?

34 AEP. Let X;beiid ~ p(x), x € {1,2,...,m}. Let u = EX and
H=-Y p(x)logp(x). Let A" ={x" € X" :|— Llogp(x") —
H| <€) Let B"={x" € X" : |1 37 X; — | <e).
(a) Does Pr{X" € A"} —> 1?
(b) Does Pr{X" € A" N B"} — 17
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3.12  Monotonic convergence of the empirical distribution.

3.13

Let p, denote the empirical probability mass function correspond-
ing to Xy, X2, ..., X, i.i.d. ~ p(x), x € X. Specifically,

NN R
pn(x)—ngl(x,—n

is the proportion of times that X; = x in the first n samples, where
I is the indicator function.

(a) Show for X binary that

ED(pa || p) = ED(pn || ).

Thus, the expected relative entropy “distance” from the empir-
ical distribution to the true distribution decreases with sample
size. (Hint: Write po, = %ﬁ,, + % p,, and use the convexity
of D))

(b) Show for an arbitrary discrete X that

ED(pp |l p) = ED(pp—1 |l p).

(Hint: Write p, as the average of n empirical mass functions
with each of the n samples deleted in turn.)

Calculation of typical set. To clarify the notion of a typical set

A and the smallest set of high probability B{", we will calculate

the set for a simple example. Consider a sequence of i.i.d. binary

random variables, X1, X», ..., X,, where the probability that X; =

1 is 0.6 (and therefore the probability that X; = 0 is 0.4).

(a) Calculate H(X).

(b) With n =25 and € = 0.1, which sequences fall in the typi-
cal set A"? What is the probability of the typical set? How
many elements are there in the typical set? (This involves com-
putation of a table of probabilities for sequences with k 1’s,
0 <k <25, and finding those sequences that are in the typi-
cal set.)

(¢) How many elements are there in the smallest set that has prob-
ability 0.9?

(d) How many elements are there in the intersection of the sets in
parts (b) and (c)? What is the probability of this intersection?
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n n k n—k 1 n
k (k) (k)p (I—=p) - log p(x")
0 1 0.000000 1.321928
1 25 0.000000 1.298530
2 300 0.000000 1.275131
3 2300 0.000001 1.251733
4 12650 0.000007 1.228334
5 53130 0.000054 1.204936
6 177100 0.000227 1.181537
7 480700 0.001205 1.158139
8 1081575 0.003121 1.134740
9 2042975 0.013169 1.111342
10 3268760 0.021222 1.087943
11 4457400 0.077801 1.064545
12 5200300 0.075967 1.041146
13 5200300 0.267718 1.017748
14 4457400 0.146507 0.994349
15 3268760 0.575383 0.970951
16 2042975 0.151086 0.947552
17 1081575 0.846448 0.924154
18 480700 0.079986 0.900755
19 177100 0.970638 0.877357
20 53130 0.019891 0.853958
21 12650 0.997633 0.830560
22 2300 0.001937 0.807161
23 300 0.999950 0.783763
24 25 0.000047 0.760364
25 1 0.000003 0.736966
HISTORICAL NOTES

The asymptotic equipartition property (AEP) was first stated by Shan-
non in his original 1948 paper [472], where he proved the result for
i.i.d. processes and stated the result for stationary ergodic processes.
McMillan [384] and Breiman [74] proved the AEP for ergodic finite
alphabet sources. The result is now referred to as the AEP or the Shan-
non—McMillan—Breiman theorem. Chung [101] extended the theorem to
the case of countable alphabets and Moy [392], Perez [417], and Kieffer
[312] proved the £; convergence when {X;} is continuous valued and
ergodic. Barron [34] and Orey [402] proved almost sure convergence for
real-valued ergodic processes; a simple sandwich argument (Algoet and
Cover [20]) will be used in Section 16.8 to prove the general AEP.
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I CHAPTER 4

ENTROPY RATES
OF A STOCHASTIC PROCESS

The asymptotic equipartition property in Chapter 3 establishes that
nH (X) bits suffice on the average to describe n independent and iden-
tically distributed random variables. But what if the random variables
are dependent? In particular, what if the random variables form a sta-
tionary process? We will show, just as in the i.i.d. case, that the entropy
H(Xy, X3, ..., X,) grows (asymptotically) linearly with n at a rate H(X),
which we will call the entropy rate of the process. The interpretation of
H(X) as the best achievable data compression will await the analysis in
Chapter 5.

4.1 MARKOY CHAINS

A stochastic process {X;} is an indexed sequence of random variables.
In general, there can be an arbitrary dependence among the random vari-
ables. The process is characterized by the joint probability mass functions
Pr{i(Xy, Xo, ..., Xp) = (x1, X2, ..., X))} = p(x1, X2, ..o, Xp), (X1, X2, ..,
xppedforn=1,2,....

Definition A stochastic process is said to be stationary if the joint
distribution of any subset of the sequence of random variables is invariant
with respect to shifts in the time index; that is,
Pr{iXy =x;, Xo = x2,..., X, = x,}
=Pr{X1y =x1. Xopy =22, ... Xppy = x} 41)

for every n and every shift / and for all x;, x2, ..., x, € X.

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
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A simple example of a stochastic process with dependence is one in
which each random variable depends only on the one preceding it and
is conditionally independent of all the other preceding random variables.
Such a process is said to be Markov.

Definition A discrete stochastic process X, X»,...is said to be a
Markov chain or a Markov process if forn =1,2,...,

Pr(Xn+1 = xn+l|Xn =Xy, Xp—1 = Xp—1, ..., X1 = x1)

=Pr (Xn+l = Xn+1 | Xy = Xxn) (42)

for all xy, x2, ..., Xy, Xy € X
In this case, the joint probability mass function of the random variables
can be written as

p(x1,x2, ..., X)) = p(xp) plalx)) p(xslx2) - - - p(xp|xn—1). (4.3)

Definition The Markov chain is said to be time invariant if the con-
ditional probability p(x,+1|x,) does not depend on n; that is, for n =
1,2,...,

Pr{X,.1 =b|X, =a)=Pr{Xo =b|Xi=a} foralla,be X. (44)

We will assume that the Markov chain is time invariant unless otherwise
stated.

If {X;} is a Markov chain, X, is called the state at time n. A time-
invariant Markov chain is characterized by its initial state and a probability
transition matrix P = [P;;], i, j € {1,2,...,m}, where P;; = Pr{X, 4 =
X, =i).

If it is possible to go with positive probability from any state of the
Markov chain to any other state in a finite number of steps, the Markov
chain is said to be irreducible. If the largest common factor of the lengths
of different paths from a state to itself is 1, the Markov chain is said to
aperiodic.

If the probability mass function of the random variable at time n is
p(xy), the probability mass function at time n + 1 is

PGns) = Y p) Py 4.5)

Xn

A distribution on the states such that the distribution at time n + 1 is the
same as the distribution at time n is called a stationary distribution. The



4.2 ENTROPY RATE 75

where p; = P(X; = 1) is not constant but a function of i, chosen
carefully so that the limit in (4.10) does not exist. For example, let

{ 0.5 if 2k < loglogi <2k + 1,
Pi =

4.1
0 if2k+1<loglogi <2k+2 (4.13)

fork=0,1,2,....

Then there are arbitrarily long stretches where H(X;) = 1, followed
by exponentially longer segments where H (X;) = 0. Hence, the run-
ning average of the H(X;) will oscillate between 0 and 1 and will
not have a limit. Thus, H(X) is not defined for this process.

We can also define a related quantity for entropy rate:

H'(X) = lim H(X,| X1, Xn—2,..., X1) (4.14)
n—o00

when the limit exists.

The two quantities H (X) and H'(X) correspond to two different notions
of entropy rate. The first is the per symbol entropy of the » random vari-
ables, and the second is the conditional entropy of the last random variable
given the past. We now prove the important result that for stationary pro-
cesses both limits exist and are equal.

Theorem 4.2.1  For a stationary stochastic process, the limits in (4.10)
and (4.14) exist and are equal:

H(X) = H'(X). (4.15)
We first prove that lim H(X,|X,—1, ..., X1) exists.

Theorem 4.2.2  For a stationary stochastic process, H(X,| X -1, ...,
X ) is nonincreasing in n and has a limit H'(X).

Proof

H(X, 1| X1, X2, .., Xp) = H( X1 X, oo, X2) (4.16)
:H(XH|XI’!—|1-"5X1)’ (4'17)

where the inequality follows from the fact that conditioning reduces en-
tropy and the equality follows from the stationarity of the process. Since
H(X,|X,—1,..., X1) is a decreasing sequence of nonnegative numbers,
it has a limit, H'(X). O
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We now use the following simple result from analysis.

Theorem 4.2.3 (Cesdro mean) Ifa, — a and b, = %Z?=1 a;, then
b, — a.

Proof: (Informal outline). Since most of the terms in the sequence {a;}
are eventually close to a, then b,, which is the average of the first n terms,
is also eventually close to a.

Formal Proof: Let € > 0. Since a, — a, there exists a number N (¢)
such that |a, — a| < € for all n = N(¢). Hence,

by — a| = Z(a, —a) (4.18)
1 n
=~ l@—a) (4.19)
=1
N(e)
-1 Z o —al + 2 (4.20)
N(e)
< —Zm, —al+e (4.21)

for all n = N(e). Since the first term goes to 0 as n — 00, we can make
|b, — a| < 2e by taking n large enough. Hence, b, — a as n — oco. [

Proof of Theorem 4.2.1: By the chain rule,

H(Xy, X5, ..., X,)

n

] n
=~ ) HXilXi,.... X0, (4.22)

that is, the entropy rate is the time average of the conditional entropies.
But we know that the conditional entropies tend to a limit H’. Hence, by
Theorem 4.2.3, their running average has a limit, which is equal to the
limit H' of the terms. Thus, by Theorem 4.2.2,

H(X, X>, ..., X,
H(X) = lim (X1, Xo )
n

— H'(X). 0 (4.23)

=lim H(X,|X,—1, ..., X1)
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The significance of the entropy rate of a stochastic process arises from
the AEP for a stationary ergodic process. We prove the general AEP in
Section 16.8, where we show that for any stationary ergodic process,

|
- log p(Xy, X2...., Xy) = H(X) (4.24)

with probability 1. Using this, the theorems of Chapter 3 can easily be
extended to a general stationary ergodic process. We can define a typical
set in the same way as we did for the i.i.d. case in Chapter 3. By the
same arguments, we can show that the typical set has a probability close
to 1 and that there are about 2" typical sequences of length n, each
with probability about 27"#(*) We can therefore represent the typical
sequences of length n using approximately nH (X) bits. This shows the
significance of the entropy rate as the average description length for a
stationary ergodic process.

The entropy rate is well defined for all stationary processes. The entropy
rate is particularly easy to calculate for Markov chains.

Markov Chains. For a stationary Markov chain, the entropy rate is
given by

H(X) = H'(X) =1lim H(X,|Xy—1, ..., X1) = lim H (X, | X, 1)
= H(X>|Xy), (4.25)

where the conditional entropy is calculated using the given stationary
distribution. Recall that the stationary distribution & is the solution of the
equations

wi =y wiPy forall j. (4.26)
i

We express the conditional entropy explicitly in the following theorem.

Theorem 4.2.4 Let {X;} be a stationary Markov chain with station-
ary distribution  and transition matrix P. Let X| ~ . Then the entropy
rate is

H(X)=—) uiPjlogP;. (4.27)

ij

Proof: H(X) = H(X2|X1) = > ; i (Z; —PijIOgPij)- O
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Example 4.2.1 (Two-state Markov chain) The entropy rate of the two-
state Markov chain in Figure 4.1 is

H(X)=H(X2|X1)=$H(0)+$H(ﬁ)» (4.28)

Remark 1If the Markov chain is irreducible and aperiodic, it has a unique
stationary distribution on the states, and any initial distribution tends to
the stationary distribution as n — oo. In this case, even though the initial
distribution is not the stationary distribution, the entropy rate, which is
defined in terms of long-term behavior, is H (X)), as defined in (4.25) and
(4.27).

4.3 EXAMPLE: ENTROPY RATE OF A RANDOM WALK
ON A WEIGHTED GRAPH

As an example of a stochastic process, let us consider a random walk on
a connected graph (Figure 4.2). Consider a graph with m nodes labeled
{1,2,...,m}, with weight W;; > 0 on the edge joining node / to node
J- (The graph is assumed to be undirected, so that W;; = W;;. We set
W;; = 0 if there is no edge joining nodes i and j.)

A particle walks randomly from node to node in this graph. The ran-
dom walk {X,}, X, €{1,2,...,m}, is a sequence of vertices of the
graph. Given X, = i, the next vertex j is chosen from among the nodes
connected to node i with a probability proportional to the weight of the
edge connecting i to j. Thus, Pi; = W;;/ >, Wir.

5

FIGURE 4.2. Random walk on a graph.
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In this case, the stationary distribution has a surprisingly simple form,
which we will guess and verify. The stationary distribution for this Markov
chain assigns probability to node i proportional to the total weight of the
edges emanating from node 7. Let

Wi =YW, (4.29)
J

be the total weight of edges emanating from node 7, and let

W= "W (4.30)
i,jij=i
be the sum of the weights of all the edges. Then }_, W; = 2W.
We now guess that the stationary distribution is

Wi

= 3w (4.31)

i

We verify that this is the stationary distribution by checking that u P = p.
Here

Wi Wi

(P = —L 4.32
2t =2 oW -
—ZLW-- (4.33)

S eaaw Y '

Wi

=L 4.34
W (4.34)
_— (4.35)

Thus, the stationary probability of state i is proportional to the weight of
edges emanating from node i. This stationary distribution has an inter-
esting property of locality: It depends only on the total weight and the
weight of edges connected to the node and hence does not change if the
weights in some other part of the graph are changed while keeping the
total weight constant. We can now calculate the entropy rate as

H(X) = H(X2[Xy) (4.36)
= —Z,uiZP,-j lOg Pfj (437)
i J
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= D(pxn+)lg(xat1))
+ D(p(xp|xn+ ) lq (xnlXp41))-

Since both p and ¢ are derived from the Markov chain, the con-
ditional probability mass functions p(x,y1|x,) and g(x,+1]x,) are
both equal to r(x,,41|x,), and hence D(p(x,+1]|x,)|lg (xy+1]x,)) = 0.
Now using the nonnegativity of D(p(x,|x,+1)|lg(x;|xn+1)) (Corol-
lary to Theorem 2.6.3), we have

D(p(xn)llg(x2)) = D(p(xn41)llq(Xn41)) (4.44)

or

D(pnllpy) = Dl 1) (4.45)

Consequently, the distance between the probability mass functions
is decreasing with time n for any Markov chain.

An example of one interpretation of the preceding inequality is
to suppose that the tax system for the redistribution of wealth is
the same in Canada and in England. Then if p, and ) represent
the distributions of wealth among people in the two countries, this
inequality shows that the relative entropy distance between the two
distributions decreases with time. The wealth distributions in Canada
and England become more similar.

. Relative entropy D(u,||jt) between a distribution j, on the states at

time n and a stationary distribution u decreases with n. In (4.45),
W, is any distribution on the states at time n. If we let p), be any
stationary distribution p, the distribution p), 41 at the next time is
also equal to . Hence,

D(pnllp) = D(pptrllp), (4.46)

which implies that any state distribution gets closer and closer to
each stationary distribution as time passes. The sequence D(u,||/t)
is a monotonically nonincreasing nonnegative sequence and must
therefore have a limit. The limit is zero if the stationary distribution
is unique, but this is more difficult to prove.

. Entropy increases if the stationary distribution is uniform. In gen-

eral, the fact that the relative entropy decreases does not imply that
the entropy increases. A simple counterexample is provided by any
Markov chain with a nonuniform stationary distribution. If we start
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this Markov chain from the uniform distribution, which already is
the maximum entropy distribution, the distribution will tend to the
stationary distribution, which has a lower entropy than the uniform.
Here, the entropy decreases with time.
If, however, the stationary distribution is the uniform distribution,
we can express the relative entropy as

D(pnllp) = log [X] — H(py) = log | X] — H(X,,). (4.47)

In this case the monotonic decrease in relative entropy implies a
monotonic increase in entropy. This is the explanation that ties in
most closely with statistical thermodynamics, where all the micro-
states are equally likely. We now characterize processes having a
uniform stationary distribution.

Definition A probability transition matrix [P;;], Pjj =Pr{X,;; =
J1X, =i}, is called doubly stochastic if

orj=1,  j=12... (4.48)
i

and
Spy=1, i=1,2,.... (4.49)
b

Remark The uniform distribution is a stationary distribution of P if
and only if the probability transition matrix is doubly stochastic (see
Problem 4.1).

4. The conditional entropy H(X,|X1) increases with n for a station-
ary Markov process. If the Markov process is stationary, H(X,) is
constant. So the entropy is nonincreasing. However, we will prove
that H(X,|X) increases with n. Thus, the conditional uncertainty
of the future increases. We give two alternative proofs of this result.
First, we use the properties of entropy,

H(X,|X,) = H(X,| X, X2) (conditioning reduces entropy)
(4.50)

= H(X,|X>) (by Markovity) 4.51)
= H(X,-1|X1) (by stationarity). (4.52)
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Alternatively, by an application of the data-processing inequality to
the Markov chain X; — X,_; — X,,, we have

[(X 1 X)) = 1(X5 Xy). (4.53)
Expanding the mutual informations in terms of entropies, we have
H(Xp-1) — H(X,—11X1) = H(X,) — H(X,[X)). (4.54)

By stationarity, H(X,_1) = H(X,), and hence we have
H(Xy11X1) = H(X,| X1). (4.55)

[These techniques can also be used to show that H(Xo|X,) is
increasing in n for any Markov chain.]

5. Shuffles increase entropy. If T is a shuffle (permutation) of a deck
of cards and X is the initial (random) position of the cards in the
deck, and if the choice of the shuffle T is independent of X, then

H(TX) > H(X), (4.56)

where T X is the permutation of the deck induced by the shuffle 7
on the initial permutation X. Problem 4.3 outlines a proof.

4.5 FUNCTIONS OF MARKOYV CHAINS

Here is an example that can be very difficult if done the wrong
way. It illustrates the power of the techniques developed so far. Let
Xy, Xa2,..., Xy, ...be a stationary Markov chain, and let ¥; = ¢(X;) be
a process each term of which is a function of the corresponding state
in the Markov chain. What is the entropy rate H()}))? Such functions of
Markov chains occur often in practice. In many situations, one has only
partial information about the state of the system. It would simplify matters
greatly if Yy, Yo, ..., Y, also formed a Markov chain, but in many cases,
this is not true. Since the Markov chain is stationary, so is Yy, Y2, ..., ¥,
and the entropy rate is well defined. However, if we wish to compute
H()), we might compute H(Y,|Y,_i,...,Y)) for each n and find the
limit. Since the convergence can be arbitrarily slow, we will never know
how close we are to the limit. (We can’t look at the change between the
values at n and n 4 1, since this difference may be small even when we
are far away from the limit—consider, for example, > %.)
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It would be useful computationally to have upper and lower bounds con-
verging to the limit from above and below. We can halt the computation
when the difference between upper and lower bounds is small, and we
will then have a good estimate of the limit.

We already know that H(Y,|Y,—i,...,Y|) converges monoton-
ically to H()) from above. For a lower bound, we will use
H(Y,|Yy—1,..., Y1, X1). This is a neat trick based on the idea that X
contains as much information about Y, as Y, Yo, Y_1,....

Lemma 4.5.1

HY, Y1, ..., Y2, X1) = HQ). (4.57)

Proof: We have fork=1,2,...,

(a
HYolYoors o Yo, XOE H@ Y0, Y, Y X)) (4.58)
b
= H(YHIYH—11 veey YlsXI: XO: X—l5 cey X—k)
(4.59)

@ HY, Y1, ..., Y1, X, Xo, X2, o0

X_ Yo, ...Y 0 (4.60)
)
< HYYuets oo, Y1, You oo, Yop) 4.61)
c
E H Vi1Vt - V1), (4.62)

where (a) follows from that fact that ¥, is a function of X, and (b) follows
from the Markovity of X, (c) follows from the fact that ¥; is a function
of X;, (d) follows from the fact that conditioning reduces entropy, and (e)
follows by stationarity. Since the inequality is true for all &, it is true in
the limit. Thus,

HY Yo, Y1, Xy) < im H Vosirt Yok, -0 11) (4.63)

= H(Q). O (4.64)

The next lemma shows that the interval between the upper and the
lower bounds decreases in length.

Lemma 4.5.2

H Yooty Y1) — HYu|Yoois ..., Y1, X1) — 0. (4.65)
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Proof: The interval length can be rewritten as
HYy|Yy—1, ..., Y1) = HY| Yy, ... Y1, X))
=1(X; YY1, ..., Y1), (4.66)
By the properties of mutual information,
I(X; Y, Y,,....Y,) < H(X)), (4.67)

and I(X; Yy, Ya,...,Y,) increases with n. Thus, lim I (Xy; Yy, Yo, ...,
Y,) exists and

lim 1(X;Y), Y, ..., Y,) < H(X,). (4.68)

n—o0

By the chain rule,

HX) = lim I(X;: Y1 V... V) (4.69)
n—0o0
=ngn3021<xl; YilYict ..o Y1) (4.70)
=
e s}
=D IXuYilYio, ... Y. (4.71)
i=l

Since this infinite sum is finite and the terms are nonnegative, the terms
must tend to 0; that is,

limI(Xl;Yn|Yn,1,...,Y1):0, (472)
which proves the lemma. |
Combining Lemmas 4.5.1 and 4.5.2, we have the following theorem.

Theorem 4.5.1 IfX,, X,. ..., X, form a stationary Markov chain, and
Yi = ¢(X;), then

HY Y1, .... Y. X)) = HQ) = HY Y-, ..., Y1) (4.73)
and
IimHY,|Y,—1,....Y1. X)) =HQ)=limHY,|Y,_1,..., Y. (4.74)

In general, we could also consider the case where Y; is a stochastic
function (as opposed to a deterministic function) of X;. Consider a Markov
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In other words, the present has a conditional entropy given the past
equal to the conditional entropy given the future. This is true even
though it is quite easy to concoct stationary random processes for
which the flow into the future looks quite different from the flow
into the past. That is, one can determine the direction of time by
looking at a sample function of the process. Nonetheless, given
the present state, the conditional uncertainty of the next symbol in
the future is equal to the conditional uncertainty of the previous
symbol in the past.

Shuffles increase entropy. Argue that for any distribution on shuf-
fles T and any distribution on card positions X that

H(TX)> H(TX|T) (4.82)
= H(T'TX|T) (4.83)
= H(X|T) (4.84)
= H(X) (4.85)

if X and T are independent.

Second law of thermodynamics. Let X1, X2, X3, ...be a station-
ary first-order Markov chain. In Section 4.4 it was shown that
H(X,| X)) > H(X,_|X;) for n=2,3,.... Thus, conditional
uncertainty about the future grows with time. This is true although
the unconditional uncertainty H(X,) remains constant. However,
show by example that H(X,|X| = x;) does not necessarily grow
with n for every x;.

Entropy of a random tree. Consider the following method of gen-
erating a random tree with n nodes. First expand the root node:

N

Then expand one of the two terminal nodes at random:

At time k, choose one of the k — 1 terminal nodes according to a
uniform distribution and expand it. Continue until # terminal nodes
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have been generated. Thus, a sequence leading to a five-node tree
might look like this:

Surprisingly, the following method of generating random trees
yields the same probability distribution on trees with n termi-
nal nodes. First choose an integer N; uniformly distributed on
{1,2,...,n — 1}. We then have the picture

N4| n-— N1

Then choose an integer N, uniformly distributed over

{1,2,..., Ny — 1}, and independently choose another integer N3
uniformly over {1,2, ..., (n — Nj) — 1}. The picture is now
N2 N1 - NE N3 n-— N1 - N3

Continue the process until no further subdivision can be made.
(The equivalence of these two tree generation schemes follows, for
example, from Polya’s urn model.)

Now let T;, denote a random n-node tree generated as described. The
probability distribution on such trees seems difficult to describe, but
we can find the entropy of this distribution in recursive form.

First some examples. For n = 2, we have only one tree. Thus,
H(T5) = 0. For n = 3, we have two equally probable trees:

N A
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Thus, H(T3) = log 2. For n = 4, we have five possible trees, with
probablhtles 3 %, %, % g

Now for the recurrence relation. Let N;(7,) denote the number of
terminal nodes of 7, in the right half of the tree. Justify each of

the steps in the following:

(a)

H(T,) = HN,, T,,) (4.86)
® (N + H(T, Ny (4.87)
9 log(n — 1) + H(T,|Ny) (4.88)

n—1

() 1
= log(n — 1) + — ; (H(T) + H(T,-))  (4.89)
n—1

© 2
= log(n — )+ — Z_: H(T}) (4.90)

=log(n — 1) + —ZHk (4.91)

(f) Use this to show that

(n—1H, =nH, |+ (n—1)logn —1)— (n — 2)log(n — 2)
(4.92)

or

(4.93)

H, H,_
n n—1
for appropriately defined ¢,,. Since »_ ¢, = ¢ < 00, you have proved

that %H (T,,) converges to a constant. Thus, the expected number of
bits necessary to describe the random tree 7, grows linearly with n.

Monotonicity of entropy per element. For a stationary stochastic
process Xy, X, ..., X,;, show that

(a)
H(X{, X5,...,.X H(X, X5,....X,_
(X1, Xa, n)S (X1, X> n—1) 4.94)
n n—1
®) H(X, X X,
Do 2 S H(Xp Xt ...y X1). (4.95)

n
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Entropy rates of Markov chains

(a) Find the entropy rate of the two-state Markov chain with tran-
sition matrix

P:[IPOI Po1 ]
o 1—pio

(b) What values of pg, pijo maximize the entropy rate?
(c) Find the entropy rate of the two-state Markov chain with tran-

sition matrix
| 1=p P
P_[ ) 0].

(d) Find the maximum value of the entropy rate of the Markov
chain of part (¢). We expect that the maximizing value of p
should be less than ]5, since the 0 state permits more informa-
tion to be generated than the 1 state.

(e) Let N(r) be the number of allowable state sequences of length ¢
for the Markov chain of part (¢). Find N(¢) and calculate

1
Hy = lim =log N(1).
t—oo |

[Hint: Find a linear recurrence that expresses N(f) in terms
of N(t — 1) and N(t — 2). Why is Hy an upper bound on the
entropy rate of the Markov chain? Compare Hy with the max-
imum entropy found in part (d).]

Maximum entropy process. A discrete memoryless source has the
alphabet {1, 2}, where the symbol 1 has duration | and the sym-
bol 2 has duration 2. The probabilities of 1 and 2 are p; and p»,
respectively. Find the value of p; that maximizes the source entropy
per unit time H(X) = % What is the maximum value H(AX)?

Initial conditions. Show, for a Markov chain, that
H(Xo|X,) = H(Xo|X,-1).
Thus, initial conditions X become more difficult to recover as the

future X,, unfolds.

Pairwise independence. Let X, X»,..., X,—1 be iid. random
variables taking values in {0, 1}, with Pr{X; = 1} = % et X, =1
if Z::]l X; is odd and X, = 0 otherwise. Let n > 3.



