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Preface

This is a pedagogical book. It aims to introduce Noether’s theorem to
students who do not understand it already.

When as an undergraduate student I first met the elegant connections
between symmetries and conservation laws through Lagrangian mechanics,
I changed my major to physics and never looked back. In due time I learned
how those connections in mechanics are special cases of a deeply profound
theorem published by Emmy Noether in 1918. Noether’s theorem as a work
of mathematical physics is also a work of poetic beauty.

The creative act, wrote Jacob Bronowski, occurs twice. The first occurs
in the mind of the original creator or discoverer. The second occurs in the
mind of the appreciator, who re-creates the discovery afresh and sees its
significance:

The poem or the discovery exists in two moments of vision: the
moment of appreciation as much as that of creation; for the
appreciator must see the movement, wake to the echo which was
started in the creation of the work . ..In the moment of appreci-
ation we live again the moment when the creator saw and held
the hidden likeness. ... When a theory is at once fresh and con-
vincing, we do not merely nod over someone else’s work. We
re-enact the creative act, and we ourselves make the discovery
again. [Bronowski (1956) 19]

As noted above, this book is written especially for physics students
to whom Noether’s theorem and its related topics are new. The reader
I have in mind is a junior or senior undergraduate physics major, or a
beginning physics graduate student. Well do I remember being one of those
students myself. Those memories include the frustration of trying to read a
manuscript loaded with jargon that assumed a fluency I was still struggling
to master. At that point in one’s career, details that are incidental trifles
to experts can become major sticking points for novices (see the following
list of questions for examples). If some passages herein seem pedantic or
repetitious to experts, 1 offer to them my apologies. But the offending

xi
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passages are here because they address questions that were sticking points
in my mind when I was a novice, and/or were questions raised by my
students. Once fluency is approached, it’s easy to forget the struggles. I
have tried to remember them.

The Noether theorem—or, as some would say, the two Noether
theorems—studied here [Noether (1918); Noether & Tavel (1971)] was for
Emmy Noether a special case of her expertise in the abstract algebra of
Lie groups and the study of invariants. In 1915 Albert Einstein unveiled
his new general theory of relativity, and the mathematicians at Goéttingen,
notably David Hilbert and Felix Klein, studied it with gusto. They encoun-
tered an apparent problem in reconciling energy conservation with the new
theory and asked Emmy Noether for her help. Her theorem, which we cel-
ebrate here, was the result. It resolved the problem of energy conservation
in general relativity through the concept that later became known as local
gauge invariance (the “second theorem”), and along the way the “first the-
orem” gave unified insight into the conservation laws of mechanics and
electrodynamics.

After publishing the 1918 paper Emmy Noether went on to become a
founder of modern abstract algebra. Graduate students in mathematics are
familiar with, for example, Noetherian rings. While abstract algebra in the
language of ascending chain conditions and unique factorization domains
deserves deep and genuine respect, physics students are more at home with
Newton’s laws and Maxwell’s equations, Lorentz transformations, and de
Broglie waves, all expressed in the mathematics of analysis. Fortunately for
those of us coming to the conversation from a physics background, Emmy
Noether’s wonderful theorem can be approached and appreciated in the
language of calculus and vector spaces. As a beautiful organizing princi-
ple of post-introductory physics, Noether’s theorem deserves to be widely
known among all physics students, novices and senior physicists alike.

As mentioned, of special interest to me are connections between physics
concepts. Noether’s theorem stands bright and clear like a magnificent
summit in an impressive mountain range of ideas. But the peaks and valleys
around a prominent peak are part of the landscape too. Likewise, in these
pages we explore topics that run alongside Noether’s theorem, interesting
for their own sake and which, I think, can be more deeply appreciated with
Noether’s theorem in the background.

This second edition presents the opportunity to delve into the distinc-
tion between Noether’s “two” theorems (the second theorem extends the
first); to add a few more exercises, references, and technical details; to cor-
rect errors in the first edition; and to offer a more vivid picture of Emmy
Noether’s life and influence. This edition, like the first one, is offered as an
expression of appreciation. Thank you for joining me in this adventure of
making Emmy Noether one of our intellectual companions.
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Questions

PRIMARY QUESTIONS

What is a functional?

What is “symmetry”? What is “invariance”? What are “conservation
laws”?

How are symmetry, invariance, and conservation laws related?

What are Lagrangians and Hamiltonians? Which is more fundamental?

What are generalized coordinates and their velocities?

What are “canonically conjugate” variables?

What are continuous symmetries? What are discrete symmetries?

Who was Noether of Noether’s theorem?

What is the difference between Noether’s “first” and “second” theorems?

AUXILIARY QUESTIONS

Where does Hamilton’s principle come from?

Are Hamilton’s principle and Fermat’s principle related?

What does traditional notation such as “6¢” mean?

What is the distinction between “stationary” and “extremal” functionals?

Why is a classical mechanics Lagrangian kinetic minus potential energy?

Why do some vector components carry superscripts and others have
subscripts?

What are tensors?

What is “gauge invariance”? Why distinguish global from local gauge
invariance?

What are internal symmetries?

What is “minimal coupling”? What are “covariant derivatives”?

What is the “Jacobian” of a transformation?

What are Legendre transformations and what are they good for?

What is “phase space”? What is it good for?

Why are complex variables used to describe wave functions?

Why do complex scalar field Lagrangian densities lack the % of real scalar
fields?

XV



xvi QUESTIONS

Why does Noether’s theorem consider infinitesimal transformations?

What are “unitarity” and “Hermitian” operators? Why do we need them?

What are “equations of continuity”? How do they describe conservation
locally?

What are “proper” and “improper” conservation laws?

What is a group? What does SU(N) mean and what is it for?

What is the role of Hamilton-Jacobi theory?



Part 1

WHEN FUNCTIONALS
ARE EXTREMAL
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Chapter 1

Symmetry

To define the idea of symmetry is certainly not simple. I shall not try to
make an all-encompassing or precise definition, against which a contra-
diction can quickly be brought. ... The idea is still alive and growing. We
don’t know all that the concept implies. I like best the idea of the seven-
teenth century philosopher Leibniz. ... For Leibniz, symmetry is related to
the indiscernibilily of differences. Once you walk into the hall of o Palla-
dian building, you can’t quite remember whether you turned left or right.
—Philip Morrison, “On Broken Symmetries,” in Judith Wechsler, ed., On
Aesthetics in Seience, 1981

1.1 Symmetry, Invariances,
and Conservation Laws

The conservation of energy, linear momentum, angular momentum, and
electric charge are among the most fundamental principles of physics. Have
you ever wondered why nature cherishes these quantities so much that
she conserves them? Asking “why” in this context may be a bottomless
question. But we can connect these conservation laws to deeper princi-
ples through the elegant theorem published by Emmy Noether in 1918.}
Noether’s theorem relates a huge class of conservation laws to symmetries
of space and time and “internal” variables.

Let’s see how one of these familiar conservation laws could be connected
to a symmetry, using for now only pre-Noether concepts encountered in
an introductory physics course. Consider, for example, the conservation of

IThe original: Noether (1918); Mort Tavel’s translation: Noether & Tavel (1971); a
translation also appears in Kosmann-Schwarzbach (2010).
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linear momentum. Let a particle of mass m move in one dimension along
an z-axis. Newton’s second law says

dp
F=— 1.1
g7 (1.1)
where F denotes the net force, ¢ the time, and p = mdz/dt the momen-
tum. For the momentum to be conserved—to not change with time—the
net force on the particle must vanish. What does this have to do with
symmetry?

Let the particle’s interactions with the world be expressed through some
potential energy function U(x), whose negative gradient equals the force.
Write Newton’s second law as the differential equation

U  d
W (1.2)
dr  dt
and approximate the left-hand side as —AU/Az. When the particle goes
from x to x 4 € then eq. (1.2) may be written

_(U(w+s)—U(w)) _dp (1.3)

€ Codt’

To have dp/dt = 0 as € — 0, we must have U(z + &) — U(x) ~ £°, where
s > 1. For then, as the particle moves from one location to another, the
change in U goes to zero faster than € as € — 0, and the particle’s momen-
tum shows no measurable change. A tangible example you may recall from
your introductory physics course may be a glider moving smoothly over a
horizontal air track: “here” is identical to “over there.” Evidently, the con-
servation of linear momentum follows from the system being unchanged by
a spatial translation.

To say it another way, it means that if you do want the particle’s
momentum to change, a mere translation through space won’t do it; space,
itself, is homogeneous. So translational “sameness” signifies a symmetry of
space. If you want the momentum to change then you have to make the
space over there different from space here, for example by having the glider
move against a spring.

Notice that our momentum example forms an “if-then” statement. It
does not claim that the particle’s environment is translationally symmetric;
indeed, whenever a particle’s momentum has been changed, the symmetry of
space is spoiled, or “broken,” at least for one spatial dimension. For instance,
the Earth’s gravitational field breaks the symmetry between the vertical and
horizontal dimensions.

How can “symmetry” be defined in a way that makes it a quantitative
concept? What is symmetry? For the kind of answer we need here, let
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A

A

Figure 1.1: A cylinder with axis of symmetry AA. When rotated about this
axis, it looks the same before and after the rotation. That’s symmetry.

us look at a cylinder. I invite your attention to the cylinder’s axis AA in
Figure 1.1. After you rotate the cylinder about this axis, it looks the same
as it did before. Unless you paint a dot on the cylinder, or scratch a mark
on its surface to break the symmetry, you cannot tell that the cylinder
has been rotated. Rotating it and not being able to tell it’s been rotated
captures the essence of what we mean by “symmetry.” To make symmetry
quantitative, we need to carry out some operation, or transformation, and
see if we can detect a difference. If the difference is too small to detect
within some infinitesimal tolerance, then we say the system is “invariant
under the transformation.”

A clockwise rotation of the cylinder by 90° is equivalent, from an
observer’s perspective, to moving one’s location 90° counterclockwise. Thus
a transformation can also be a change of reference frame, from an old coor-
dinate system to a new one. If a quantity survives such transformations
unchanged, that quantity is said to be invariant. The appearance of the
cylinder is invariant under rotation about the AA axis. The existence of
invariance reveals an underlying symmetry: the cylinder appears unchanged
under the rotation because it is symmetric about the axis of rotation.

“Conservation” as in “conservation of energy” is not the same as “invari-
ant.” They are related-—and the exploration of that relation forms the
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substance of our subject—Dbut they are not synonymous. The momentum
or energy of a system of particles may be conserved but not necessarily
invariant. For example, imagine one billiard ball approaching another. In
the reference frame of the billiard table, prior to the collision the cue
ball moves and the eight ball sits at rest, and the momentum of the system
is nonzero. But in the center-of-mass reference frame, the system’s total
momentum sums to zero because the cue ball and eight ball approach one
another with opposite momentum. In both frames, the collision is analyzed
using conservation of momentum within each frame. The table frame sees
nonzero momentum, but in the center-of~-mass frame sees zero momentum.
In this example, momentum is conserved within in each frame, but is not
invariant befween them.

“Invariant” means that a quantity’s numerical value is not altered by a
coordinate transformation. “Conserved,” in contrast, means that within a
given coordinate system the quantity does not change throughout a process.
“Invariance” compares a quantity between reference frames. “Conserva-
tion” compares the quantity before and after a process within a reference
frame. Noether’s theorem relates conservation to invariance, and thus to
symmetry.

Coordinate systems or reference frames are not part of nature. They are
maps that we introduce into the solution of a problem for our convenience.
Therefore, the content of an equation that is supposed to express a truth
about nature must transcend the choice of this or that reference frame.
One says the equation must be written “covariantly,” or the expression is
“covariant.” In the preceding example of billiard balls, in a given frame
the momentum of the two balls adds up to the same total before and
after the collision. In the billiard table frame using unprimed vectors, one
writes the conservation of momentum as the vector sum before collision
equals the vector sum after collision:

[pcue + pS]bﬁfOT'E = [pcue + p8]ﬂfiﬁ"" (14)

In the center-of-mass frame using primes on the vectors, the same physics
content is expressed as

[pl::ue + pfs]before = [Pf:ue + p:g]aftET'- (1.5)

Never mind that before the collision the table frame measures ps = 0
and the center-of-mass frame measures pg # 0; the equation expressing
conservation of momentum

el

before after
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contains the same content whatever the reference frame; the relationship
it describes holds in either frame. The equation is written covariantly. The
quantities in the equation transform under a change of coordinates by the
same rules as the coordinates themselves.

We will see that conservation of energy, conservation of linear momen-
tum, and conservation of angular momentum are related to invariance
under time translations, space translations, and rotations, respectively.
These invariances signify underlying spacetime symmetries: the homogeni-
ety of time, the homogeniety of space, and the isotropy of space. The con-
servation of electric charge emerges from a more abstract symmetry called
“gauge invariance.” We can go farther: the conservation of more esoteric
“charges,” such as quark color charge or weak isospin, involve invariances
that hold under transformations among so-called internal degrees of free-
dom. In the first part of this book we consider spacetime symmetries only.
Internal degrees of freedom are considered later.

You will have noticed that I have not said what are the quantities whose
invariance leads to conservation laws. These quantities are called “func-
tionals.” In the functional we have a powerful concept that puts almost all
of physics into a common language. Everything wonderful that I am going
to relate comes through these functionals.

I have organized this book into four parts. The remainder of Part I
(chapters 2 and 3) introduces functionals. As a mathematical machine, by
definition a functional T" takes a function as input and produces a real
number as output. That sounds like the task of a definite integral! While
a functional as an abstract concept need not be a definite integral, all the
functionals considered in this book are expressed as definite integrals. If
you pick an input function z(t), stuff it into the input slot of a functional
I'( ) and turn the crank, you get a real number I'(x). But with a different
input function w(t) you get a different output number I'(w). Suppose you
want to find the function that produces a maximum or minimum value for
I". One says the functional is to be made an extremal, or, as some say, made
stationary.? As chapter 3 describes, the function that makes I' an extremum
is the solution to a differential equation called the Euler-Lagrange equation.

Part IT (chapters 4 and 5) studies the conditions for invariance of the
functional under transformations of the independent and/or the dependent
variables. When we change t to some new t' and z to some new 2/, so that
x(t) — z/(t'), then ['(z(¢')) may or may not be the same number as I'(z(t)).
We find that I" meets our formal definition of invariance if and only if a
fundamental invariance identity is satisfied.® The plot lines of “extremal”

2The distinction between “extremal” and “stationary” is discussed in section 5.3.

3The version of the invariance identity we present here is due to Rund [Rund (1972)]
and Trautman [Trautman (1967)], who streamlined the Noether theorem proof and
notation.
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and “invariance” converge in Noether’s theorem (the “first” theorem), as
shown in chapter 5. In chapter 5 we also turn the problem around and see
how to find transformations that leave a given functional invariant.

Chapter 6 begins Part III by enlarging our program to fields, functions
of space and time. There we see how charge conservation comes from global
gauge invariance. Chapter 7 imposes local gauge invariance on fields, and
we see how far we can push local gauge invariance using Noether’s first
theorem. As an introduction to an important application of these ideas,
we also examine in chapter 7 how local gauge invariance, when applied to
“internal” degrees of freedom or generalized “charges,” becomes a dynam-
ical principle that leads to an understanding of fundamental forces as the
exchange of “gauge bosons.”

Chapter 8 extends the program of locally variable (or gauge) transfor-
mations to the functional’s dependent and independent variables, leading
beyond Noether’s first theorem to the second theorem. The second theo-
rem contains the first as a special case, provides constraints on differential
operators, and expresses conservation laws for such systems in terms of
so-called covariant derivatives. In clarifying conservation law issues for
the coupled matter-field systems of relativistic gravitation, Emmy Noether
helped David Hilbert, Felix Klein, and Albert Einstein put the finishing
touches on the general theory of relativity in 1915.

Part IV (chapters 9 and 10) considers other applications of invariance
that are not part of Noether’s theorem proper, but that share its vocab-
ulary of functionals, transformations, invariances, and conservation laws.
Chapter 9 reexamines invariance and conservation in the language of phase
space. Whereas Noether’s theorem produces conservation laws given equa-
tions of motion and an invariance, Hamilton-Jacobi theory uses equations
of motion and conservation laws and produces transformations. Through
Hamilton-Jacobi theory, the possibilities offered by an indefinite integral
version of the functional are developed. From deep within classical mechan-
ics they suggestively point the way to quantum mechanics, as developed in
chapter 10.

Because of the central role of conservation laws, one could argue that
Noether’s Theorem offers a strategic unifying principle for most if not all
of physics. Although I never had the honor of meeting her personally, I
would be remiss if I did not introduce you to Emmy Noether.

1.2 Meet Emmy Noether

“She was not clay, pressed by the artistic hands of God into a harmo-
nious form, but rather a chunk of human primary rock into which he had
blown his creative breath of life.”—Hermann Weyl, memorial address for
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Emmy Noether, April 26, 1935 in Auguste Dick, Emmy Noether, 1882-
1935, translated by H. 1. Biocher 1981, 112-152

In the judgment of the most competent living mathematicians, Fraulein
Noether was the most significant creative mathematical genius thus far pro-
duced since the higher education of women began. In the realm of algebra,
in which the most gifted mathematicians have been busy for centuries, she
discovered methods which have proved of enormous importance in the devel-
opment of the present-day younger generation of mathematicians.
—Albert Einstein, letter to the New York Times, May 5, 1935 in Alice
Calaprice, The Quotable Einstein, 1996

Amalie Emmy Noether was horn on March 23, 1882, the first child of
Jewish parents Max (1844-1921) and Amalie Ida Kauffman Noether (1852
1915).* Emmy’s mother came from a highly educated family that included
university scholars in law and history. Emmy’s father was descended from
iron wholesalers. The first in his line to earn a PhD, Max became a distin-
guished mathematician, earning his doctorate from the University of Hei-
delberg, and qualified there in 1870 as a Privatdozent.” In 1875 Max moved
to the University of Elrangen, where Felix Klein (1849-1925)6 had in 1872
launched the Erlanger Programm, which treated geometry as the study of
properties of a space that are invariant under a group of transformations.
For example, in Euclidean geometry, lengths and angles are unchanged
under rotations. This outlook offered a unified approach to classifying the
non-Euclidean geometries that had proliferated by the late nineteenth cen-
tury, pointed to the possibility of new geometries defined from diverse
transformation groups [Burton (2011) 602-603], and presumably created
the environment that nurtured Emmy’s mathematical interests, in which
invariance theory played a prominent role. Klein’s FErlanger Programm
brought world prominence to the mathematics department at Erlangen.
Max Noether served there the rest of his life. In 1886 Klein accepted a chair
at the University of Gottingen, and he brought David Hilbert (1862-1943)
to Géttingen in 1895. That move would have effects on Emmy Noether 20
years later, and on readers of this book over a century later.

From 1889 to 1896 Emmy attended the Stéddtischen Hoheren
Téchterschule in Erlangen, where she studied languages and piano. She was
fond of dancing. As a student she originally planned to teach French and

4During Max Noether's generation the family name’s spelling was changed from
Nother to Noether. Emmy had three younger brothers, Alfred (1883-1918), Fritz (1884—
1941), and Gustav Robert (1889-1928) [Brewer & Smith (1982)].

5An unsalaried university lecturer with the right to teach independently and advise
research students. Lecturers received fees from students rather than a university salary.

6Klein is perhaps best known among students for the “Klein bottle.”
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English, and in 1890 passed the Bavarian State Examination, qualifying her
to teach these languages—in schools for women. But her interests had turned
increasingly to the eloquent language of mathematics.

This interest was evidently encouraged by her father and his math-
ematician colleagues, notably Paul Gordan (1837-1912)." As Hermann
Weyl described in his 1935 memorial address, Emmy developed a close
“mathematical kinship” with her father:

Clebsch has introduced Riemann’s ideas into the geometric
theory of algebraic curves and [Max| Noether became, after
Clebsch had passed away young, his executor in this matter:
he succeeded in erecting the whole structure of algebraic geom-
etry of curves on the basis of the so-called Noether residual
theorem. . ..

[Max] Noether’s residual theorem was later [in the 1920s] fitted
by Emmy into her general theory of ideals in arbitrary rings.
This scientific kinship of father and daughter—who became in
a certain sense his successor in algebra, but stands beside him
independent in her fundamental attitude and in her problems—
is something extremely beautiful and gratifying. [Dick (1981);
Brewer & Smith (1982); James (2002)]

When Gordan passed away in 1912, Max and Emmy Noether wrote his
obituary for Mathematische Annalen.

After completing grammar school, Emmy wanted to attend university
to study mathematics. In the culture of that time and place, women were
not allowed to matriculate into German universities,® although they could
enroll in courses with the professor’s permission. As late as 1898, the Aca-
demic Senate at the University of Erlangen declared that to admit women
as students “would overthrow all academic order.” However, in 1900 the
spunky Emmy got permission to attend lectures at Erlangen, one of two
voung women among 986 students during her first semester. There Emmy
attended lectures until 1902, and in July 1903 she passed the mature exam-
inations, necessary (but not sufficient) for matriculation into university.

That fall she registered at the University of Géttingen,” where she
attended lectures by distinguished mathematicians who to this day
have name recognition among physics students. These included Karl

"This is the same Gordan of the beloved Clebsch-Gordan coefficients, which grew
out of the study of Lie groups and find application to the quantum addition of angular
momentum. Rudolf F. A. Clebsch (1833-1872) was a pioneer in invariant theory, and at
Giessen collaborated with Paul Gordan.

8Women were allowed to enroll in universities in 1861 in France, 1879 in England,
and 1885 in Italy. [Brewer & Smith (1982)]

9Evidently Emmy was only allowed to audit university classes during this time.
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Figure 1.2: Emmy Noether (1882-1935). This photo was taken sometime
before she entered Géttingen University. (Science Photo Library)

Schwarzschild (1873-1916), Hermann Minkowski (1864-1909), Felix Klein,
and David Hilbert.!® After she had been one semester at Géttingen, Erlan-
gen University relented in their policy against women and allowed female
students to matriculate there and take examinations with the same rights
as male students. Emmy returned home to Erlangen and entered the uni-
versity as a degree-earning student in October 1904. She listed mathematics
as her program of study. Academic order was not overthrown.

At Erlangen, Paul Gordan became Emmy’s PhD advisor. Emmy was
Gordan’s only doctoral student throughout his distinguished career. She
completed the PhD in 1907. Dr. Noether’s dissertation was titled On
Complete Systems of Invariants for Ternary Biquadratic Forms.

In his 1935 memorial tribute to Emmy Noether, Hermann Weyl divided
her career into three epochs. Epoch 1, 1908-1919, was a time of colla-
boration with eminent senior mathematicians. The Noether’s theorem
celebrated in this book was a product of this epoch. In the second epoch,
1920-1926, Emmy Noether became an eminent mathematician in her own
right, one whom later generations would call the “mother of abstract alge-
bra” [Tent (2008)], developing the general theory of ideals and Noetherian
rings [Moore (1967) 189-196]. By the time of the third epoch, 1927-1935,

10The Schwarzschild of the Schwarzschild metric in general relativity, the Minkowski
of Minkowskian spacetime; most physics majors first hear of Hilbert in the context of
“Hilbert space” in quantum mechanics.
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Noether was recognized as a leader of the “Noetherian school” of algebraists
and continued developing noncommunative algebras such as hypercomplex
numbers. During that epoch she also found herself a political refugee.

The Noether theorem discussed in these pages was published in 1918
and thus belongs to the first epoch of Emmy Noether’s career, the time of
collaboration with top mathematicians such as Paul Gordan, Felix Klein,
and David Hilbert. The early part of that era saw her hard at work, as
Gordan’s doctoral student, on the theory of invariants of binary and higher-
order forms. A binary form, for example, is a second-order polynomial
p(z,y) in two variables z and y of the form

plx,y) = ax® + bry + ey (1.7

If a, b, and ¢ are constants from a specified set of numbers, p(z,y) is an
“algebraic form.” If these constant coefficients are replaced by functions
that include derivatives of z and y, p(z,y) is a “differential form.” A
large question in the study of quadratic and higher-order forms asks what
quantities remain invariant under a change of variables.!! In her disser-
tation, Noether calculated and tabulated 331 invariants among “ternary
biquadratic forms” [Brewer & Smith (1982)].

Between 1908 and 1915 Dr. Noether worked without salary at the Erlan-
gen Mathematical Institute. She carried out her own research, attended
mathematics conferences, was elected to an Italian mathematical soci-
ety, and as her father’s health declined delivered lectures for him as
needed. When Ernst Fischer (1875-1959) joined the Erlangen mathemat-
ics faculty after Gordan’s retirement, Fischer and Noether collaborated
on research. Gordan’s methods had been algorithmic and computational—
finding invariants by cranking through the possibilities. In contrast, Fischer
brought Hilbert’s abstract algebra approach to mathematics, along the lines
of Hilbert’s 1888 paper on basis theory [Byers (1999) 5], methods quickly
taken up by Emmy Noether.'? In 1919 Noether’s curriculum vitae credits
Fischer—whose specialty was also invariance theory—as influencing her to
more abstract ways of mathematical thinking, as she mastered approaches
closer to Hilbert’s.

Noether became so adept at Hilbert’s methods of invariance theory that
in April 1915, shortly after her mother died, she moved to Gottingen at
the invitation of Hilbert and Klien. Her biographers remark that “already,
Emmy Noether was recognized for the extreme generality and abstractness

" One can see a natural application to differential equations and conservation laws,
by setting the p(x,y) of eq. (1.7) equal to zero.

2Upon reading one of Hilbert’s proofs of a finite basis for specific invariants, Gordan
allegedly remarked “Das ist nicht Mathematik; das ist Theologie.” It’s not certain that
Gordan actually said this, or if he did, whether it was in jest, a form of praise, or a crit-
icism [Brewer & Smith (1982)].
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of approach which would eventually be seen as her most distinguishing
characteristic” [Brewer & Smith (1982) 13].

At Gottingen, women at that time were still not allowed to hold lectur-
ing positions. When Hilbert argued for Noether as a lecturer, prominent
nonmathematics members of the faculty senate objected: “What will our
soldiers think when they return to the university and find that they are
expected to learn at the feet of a woman?” Hilbert famously responded
“Meine Herren, I do not see that the sex of the candidate is an argument
against her admission as a Privatdozent. After all, the senate is not a
bathhouse!” David Hilbert did not win the argument that day. But deter-
mined to keep Emmy Noether at Géttingen, he improvised. Lectures would
be announced under his name, but delivered by Friulein Noether |[Reid
(1972) 143].

At the end of June and the beginning of July 1915, Albert Einstein spent
about a week in Gottingen delivering six lectures on his not-quite-finished
general theory of relativity. Noether wrote to Fischer back at Erlangen,
“invariant theory is trump here; ... Hilbert is planning to lecture next week
on his Einsteinian differential invariants, and to understand that, the
Gottingen people must certainly know something!” [Brewer & Smith (1982)
12]. By “invariant theory,” Noether meant differential invariants, in con-
trast to algebraic invariants. In 1935 Weyl recalled [Kosmann-Schwarzbach

(2010) 77),

Hilbert at that time was over head and ears in the general the-
ory of relativity, and for Klein, too, the theory of relativity
and its connections with his old ideas of the Erlangen pro-
gram'® brought the last flareup of his mathematical interests
and mathematical production.

Even after Einstein unveiled the finished general theory of relativity
in November 1915, a problem persisted. Hilbert and Klein encountered a
puzzle with energy conservation in Einstein’s theory.!* With her invariant-
theoretic knowledge of differential forms, Noether was able to help them.
In an exchange of letters, Hilbert wrote to Klein, “Emmy Noether, whose
help I sought in clarifying questions concerning my energy law” and Klein
wrote to Hilbert, “you know that Fraiilein Noether continues to advise me
in my work” [Pais (1982) 276]. Noether resolved the problem about energy
conservation in general relativity, and along the way proved the theorems
we study in these pages. The result was the Noether’s theorem we celebrate

13Since general relativity was by this time treating gravitation as the curvature of
spacetime, one can see how general relativity as geometry in a four-dimensional pseudo-
Riemannian metric space would be attractive to the authors of the Erlanger programm.
“Pseudo-Riemannian” means the metric is not positive-definite.

14See chapter 8.
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here, published in 1918 as Invariant Variation Problems [Noether (1918);
Noether & Tavel (1971); Kosmann-Schwarzbach (2010)], writing:

Hilbert enunciates his assertion to the effect that the failure of
proper laws of conservation'® of energy is a characteristic feature
of the “general theory of relativity.” In order for this assertion
to hold good literally, therefore, the term “general relativity”
should be taken in a broader sense than usual, and extended also
to the foregoing groups depending on N arbitrary functions.

In other words, general relativity is a theory of coupled systems exhibiting
local gauge invariance.
Hermann Weyl summarized,

For two of the most significant sides of the general theory of
relativity ... she gave at that time the genuine and universal
mathematical formulation. [Brewer & Smith (1982) 13; Dick
(1981)]

Albert Einstein was one of the first to appreciate Noether’'s theo-
rem, describing it in a letter to Hilbert as “penetrating mathematical
thinking” [Pais (1982)].

Meanwhile, due to the continuing prejudice against women being profes-
sors, Hilbert’s repeated attempts to gain Noether a permanent appointment
were frustrated. In a letter to Hilbert, dated May 24, 1918, Einstein wrote,
“It would not have done the Old Guard at Gottingen any harm, had
they picked up a thing or two from her. She certainly knows what she is
doing” [Calaprice (1996)]. In a letter to Felix Klein dated December 27 of
that same year, Einstein objected again to Dr. Noether not being allowed
to lecture officially because she happened to be female: “On receiving the
new work from Fraulein Noether, I again find it a great injustice that she
cannot lecture officially. I would be very much in favor of taking energetic
steps in the ministry [to overturn this rule].”

On May 21, 1919, Dr. Noether submitted an application for Habilata-
tion, the right to teach at the university as a Privadozent. As part of the
application she presented a colloquium, and submitted her curriculum vitae
and publications. Besides citing her list of papers on abstract algebra and
invariants, in her closing paragraph she adds:

Finally, there are two works on differential invariants and vari-
ation problems. These resulted from my assistance to Klein
and Hilbert in their work on the Einsteinian general theory

5By “proper laws” (Hilbert’s term) he meant conservation laws that could be cleanly
expressed by an equation of continuity; see section 6.4.
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of relativity. ... The second of these, Invariant Variation Prob-
lems, which is my Habilitation paper, treats arbitrary continu-
ous Lie groups, finite or infinite, and draws conclusions from a
special case of invariance relative to such a group. These general
results contain as special cases some known results concerning
proper intergrals from mechanics, stability theorems, and cer-
tain dependencies among field equations arising in the theory
of relativity, while, on the other hand, the converses of these
theorems are also given. [Brewer & Smith (1982) 15-16]

As aresult of some slight liberalization of policies following World War I,
the university granted Dr. Noether the right to lecture under her own name
in 1919. In 1922 she was finally named an “unofficial associate professor,”
a purely honorary position. A subsequent teaching appointment in abstract
algebra provided her with a modest salary. She remained at Gottingen for
the next decade, except for visiting professorships, where she was warmly
received, at Moscow in 1928-1929 and Frankfurt in the summer of 1930. By
1931 she was an associate professor at Gottingen [Brewer & Smith (1982) 75].

The second and third epochs of Emmy Noether’s career lie outside the
scope of this book. But her work during those years wrote new chapters in
abstract algebra that made her name famous among mathematicians every-
where. Those contributions include the origination in 1920 of the left ideals
and right ideals, followed by Noetherian rings with their “ascending chain
condition” in 1921. Weyl wrote that “she changed the face of algebra by
this work.” Her influence extended well beyond her students. When math-
ematician B. L. Van der Waerden spent a year at Géttingen studying with
her, he returned to Amsterdam inspired, and wrote a two-volume trea-
tise, Moderne Algebra, of which Garrett Birkhoff wrote decades later with
the benefit of historical perspective,

both the axiomatic approach and much of the content of “mod-
ern” algebra dates back to before 1914. However, even in 1929,
its concepts and methods were still considered to have marginal
interest compared with those of analysis. . .. By exhibiting their
mathematical and philosophical unity, and by showing their
power as developed by Emmy Noether and her younger col-
leagues, ... Van der Warden made “modern algebra” suddenly
seem central in mathematics. [Brewer & Smith (1982) 19]

During the 1927-1935 epoch Dr. Noether’s major publications included
ideal theory of hypercomplex number systems and their applications to
group representations [Brewer & Smith (1982) 146] and noncommuncative
algebras.
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Noether was a coeditor of the collected mathematical papers of Richard
Dedekind (1831-1916), edited the correspondence of Dedekind and Georg
Cantor (1845-1918), and did some editing for Mathematische Annalen
[Dick (1981) 42]. At Gottingen she had an eager group of loyal students,
and many of their mathematics discussions took place in the welcoming
quarters of Emmy’s modest apartment. She was “so amazingly lively!”
recalled one of her students. Another remembered, “she lived in close com-
munion with her pupils; she loved them, and took an interest in their
personal affairs.” The mathematician and philosopher Norbert Wiener
(1894-1964)'¢ recalled encountering Emmy Noether and a group of her
students on a train, “probably the best woman mathematician there
has ever been... looking like an energetic and very near-sighted wash-
erswoman . .. and her many students flocked around her like a clutch of
ducklings about a kind, motherly hen” [Brewer & Smith (1982) 40]. She was
blessed with seemingly boundless energy. In her lectures she talked loudly,
with large gestures, and frequently thought her way through new ideas
while in front of the class—which could make her difficult to follow for lis-
teners not used to it—but her students adored her. In middle age, with her
round spectacles and ample lap, she looked like she could have been your
favorite auntie—which she was to the children of her brothers. She was not
sentimental, but expressed her affection in an almost rough, jolly way [Dick
(1981) 46]. She was always generous in sharing ideas with her students, and
in talks and publications gave them ample credit for their contributions.

The dark clouds of arrogant intolerance that gathered over Fascist
Europe in the 1930s did not spare Emmy Noether. With the appointment
of Adolf Hitler as chancellor of Germany in January 1933, swiftly fol-
lowed by brutal consolidation of Nazi control of German institutions, Dr.
Noether, like other Jewish professors in German universities, was abruptly
dismissed. Herman Weyl recalled,

A stormy time of struggle like this one we spent in Gottingen in
the summer of 1933 draws people closely together; thus I have a
particularly vivid recollection of these months. Emmy Noether—
her courage, her frankness, her unconcern about her own fate, her
conciliatory spirit—was in the midst of all the hatred and mean-
ness, despair and sorrow surrounding us, a moral solace. ... Her
heart knew no malice.

With the assistance of the Rockefeller Foundation’s Emergency Com-
mittee to Aid Displaced German Scholars, in 1933 Bryn Mawr College in
Pennsylvania offered Dr. Noether a faculty position. There she was treated

16 Among his many accomplishments, Wiener was the founder of cybernetics, the
study of feedback mechanisms.
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Figure 1.3: Emmy Noether, “probably the best woman mathematician there
has ever been.” (Bryn Mawr College)

with the respect she had always deserved, but which had too often been
denied her before. The president of Bryn Mawr College, Marion Park,
wrote to a friend in November 1933, “I am venturing to ask you whether
by any lucky chance you can come down to Bryn Mawr in December and
see Dr. Noether in action!” In 1934 President Park reported to the Rocke-
feller Foundation that the newly created Emmy Noether Fellowship would
be awarded to distinguished students. In a letter of January 1935, Norbert
Wiener wrote,

Miss Noether is a great personality; the greatest woman math-
ematician who has ever lived; and the greatest woman scientist
of any sort now living, and a scholar at least on the plane of
Madame Curie. Leaving all questions of sex aside, she is one
of the ten or twelve leading mathematicians of the present gen-
eration in the entire world and has founded what is certain to
be the most important close-knit group of mathematicians in
Germany —the Modern School of Algebraists. ... In all the cases
of German refugees, whether in this country or elsewhere, that
of Miss Noether is without doubt the first to be considered.
[Brewer & Smith (1982) 33-34]

In March 1935, the newly formed Institute for Advanced Study in
nearby Princeton, New Jersey, offered Dr. Noether a stipend to visit the
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institute and conduct a weekly seminar. One wonders what might have
developed in unified field theory had she and Albert Einstein, who was
newly installed there, been able to collaborate. ..

Alas! following complications from surgery to remove a tumor on April
10, 1935, in which her initial recovery seemed to be going fine, Emmy
Noether went into a coma. She passed from this life on April 14, at the
age of 57. Over the next few weeks, tributes to her appeared in several
languages. At the Bryn Mawr memorial service where Hermann Weyl spoke
with such eloquence on April 26, 1935, he summarized her personality
as “warm as a loaf of bread”[Dick (1981)]. Emmy Noether’s ashes were
interred on the campus of Bryn Mawr College, in an honored place, under
the cloister walkway of the Martha Carey Thomas Library.!”

With Emmy Noether’s premature death, besides the personal loss that
befell her friends and extended family, and the loss to mathematics and
physics, one also mourns her loss to the culture of science. She was and still
is an icon for women in the sciences, a model of integrity for not allowing
injustice to turn a victim towards bitterness, and an inspiring intellectual
companion for anyone who appreciates a life of the mind.'®

Emmy Noether’s achievements live beyond her physical presence. She
left a great legacy to mathematics, as in her studies of invariants, abstract
algebra (notably the theory of rings and ideals), hypercomplex numbers,
and applications of group theory to combinatorial topology [Brewer & Smith
(1982) 22], to name a few of her important contributions. To mathematical
physics, she also left a splendid legacy through her powerful theorem cele-
brated in this book. She advised a dozen doctoral students, authored over 40
publications,'? and inspired the “Noether school” of algebraists. Today the
Emmy Noether Gymnasium in Berlin and the Emmy Noether Gymnasium
in Erlangen honor her memory. In 1980 the Association for Women in Math-
ematics established the annual Emmy Noether Lecture, to “honor women
who have made fundamental and sustained contributions to the mathemat-
ical sciences.” From a place of honor among the mathematical sciences,
Emmy Noether’s theorem of 1918 forms a central organizing principle for
the great range of physics.

I"Martha Carey Thomas (1857-1935) was a first dean and second president of Bryn
Mawr College. She was an active suffragist, and set a tone of excellence through her
vision, tenacity, and independent spirit. When Thomas was denied admission to Ameri-
can universities because she happened to be female, she earned her PhD in linguistics at
the University of Ziirich. She and Emmy Noether must have been kindred spirits, and
it is fitting that their ashes share the same hollowed ground.

18For a list of numerous sources on Noether’s theorem (first and second), including
biographical and historical resources, see Neuenschwander (2014b).

19GSee Brewer & Smith (1982) for a list of Noether’s publications and descriptions of
her doctoral students and their accomplishments; see Dick (1981) for a publications list
and the dissertation titles of Noether’s 13 doctoral students.
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Questions for Reflection and Discussion

Q 1l.a. In the argument that leads from translational invariance to the
conservation of linear momentum, why was it necessary that the force be
derivable from a potential energy function?

Q 1.b. List all the invariants you can think of for the following settings:
a. Newtonian mechanics, with its Galilean transformation between inertial
frames;
b. Special relativity, for inertial frames related by a Lorentz transformation;
c. Classical mechanics, for the transformation from an inertial frame to a
rotating frame.

Q1l.c. A quantity may be conserved but not invariant. Can a quantity
be invariant but not conserved?

Q 1.d. Show that if space is isotropic about two points then it is also
homogeneous.

Q 1.e. Obtain a translation of Emmy Noether’s 1918 paper (or the 1918
original, in German!) [Noether (1918); Noether & Tavel (1971); Kosmann-
Schwarzbach (2010)]. As you progress through this text, consult Noether’s
paper and notice the similarities and differences between her approach and
the approach followed here.

Q1.f. If conservation laws follow from symmetries, what symmetry
accounts for the conservation of electric charge?

Q1.g. In this book we celebrate symmetry. However, we realize that lack
of symmetry, or “symmetry breaking,” is also essential to life as we know it.
a. Describe instances where symmetry breaking makes life possible and/or
interesting. For specific instances to consider, contemplate asymmetry in
architecture; machine design; face recognition; chemical reactions that
depend on “handedness” of some molecules; traffic dynamics; and art.

b. Does the second law of thermodynamics have anything to say about the
invariance (or lack thereof) of a system’s evolution in time?

Exercises

1.1. Show how to express Newton’s second law, F = dp/dt, in terms of
the change in
a. mechanical energy, and
b. angular momentum.
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¢. In each case identify the criteria for the corresponding conservation law,
and suggest for it an underlying symmetry of space or time.

1.2. An example from special relativity (see appendix B) illustrates the
distinct roles of invariance and conservation in solving a problem. A proton
of mass m moves with momentum p and kinetic energy K through the lab
frame and collides with another proton initially at rest. Find in this frame
the minimum value of K necessary for the production of a new proton and
antiproton pair,

p+p—3p+p, (1.8)

where p denotes an antiproton. Hints: use the invariance of E? — (pc)? =
(mc?)? between the laboratory and the center-of-mass frames (¢ = speed
of light), and the covariance of expressions for energy and momentum
conservation.



Chapter 2

Functionals

Variable quantities called functionals play an important role in many prob-
lems arising in analysis, mechanics, geometry, etc. By a functional, we
mean a correspondence which assigns a definite (real) number to each func-
tion (or curve) belonging to some class. —I. M. Gelfand and S. V. Fomin,
Calculus of Variations, translated by Richard A. Silverman, 1963

2.1 Single-Integral Functionals

At the foundation of Noether’s theorem stand mathematical objects called
functionals. To invoke Noether’s (first) theorem, we make two distinct
demands on a functional: (1) that it be an extremal (or stationary), and
(2) that it be invariant under a continuous transformation. Before going
there, let’s get acquainted with these functionials.

Generically, a functional is a mapping from a well-defined set of func-
tions to the real numbers (Figure 2.1). A functional is like a vending
machine. Into the input slot you insert a function selected from a set of
allowed possibilities. The machine clanks and grinds, and out pops a real
number as the output. Definite integrals map a function to a real num-
ber, and the functionals of interest in this book are expressed as definite
integrals. A few examples provide illustrations.

Example (Distance Functional): T would offend tradition and good
sense to not include a standard illustrative example, the “distance func-
tional.” In the zy plane, a function y = y(x) describes a path. The distance
on the path from point (z,y) = (a,y(a)) to point (z,y) = (b,y(b)) is found

21
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I'(x)

1 1 1 1 | 1 | | | | 1 ’
Reals

Figure 2.1: Definition of a functional: a mapping from a set of functions
{x(t)} to the set of real numbers.

by summing up little increments of length ds. With dx? denoting (dz)?,
we have

b
distance = f ds
a
b
:/ Vdr? + dy? (2.1)

b
:f \1+y'? dz,

where 3" denotes dy/dz, which we assume exists on the interval [a, b]. This
requirement defines the set of all permissible functions {y(x)}. The shortest
path constrained to a surface, that connects two points on that surface, is
called the geodesic.

Example (another Distance Functional): The distance traveled on
a journey from Baltimore to Erlangen depends on the path taken. To spec-
ify a path one could chart the trajectory in terms of longitude as a function
of latitude. For a journey over the surface of the Earth, in spherical coor-
dinates (1,0, ¢) the distance traveled may be computed from the definite
integral
Erlangen
distance =f ds (2.2
Baltimore

where

ds® = dr? + r*(d8? + sin® dp?). (2.3)
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At constant radius R from the Earth’s center, the distance is given by

Erlangen
distance = R \/ 14 ¢2sin? 6 df (2.4)

Baltimore

and ¢’ = dp/df. If the trajectory is expressed in terms of longitude as
a given function of latitude, ¢ = (), then we can evaluate the integral
and find the distance along that path between the two points on the globe.
A sensible airline will find the path that makes the distance traveled a
minimum, the geodesic.

Example (Fermat’s Principle): A light ray passes through a medium
of refractive index n. The light’s speed through the medium is v = ds/dt =
¢/n, where ¢ denotes the speed of light in vacuum. Let the ray move in an
xy plane. The refractive index may vary with position so that n = n(x,y).
When the light goes from a fixed initial point a to a fixed final point b, the
elapsed time is

20
At = / dt. (2.5)

t(a)

The time increment may be written dt = ds/v = n(z,y)ds/c:

1 x(b)
At == / n(a,y)V/1+y? da. (2.6)

€ Ja(a)

For any given path y = y(z), one does the integral and computes the
elapsed time. Fermat’s principle of geometrical optics postulates that the
ray’s actual trajectory between fixed points will be the one for which At is
a minimum.’

You may notice in functionals that treat one spatial variable as a func-
tion of another, as with curves in the zy plane, the integral may be rewritten
in terms of a parameter ¢. This ¢ could be elapsed time from a point of
departure, arc length along a curve, and so on. In the first distance func-
tional example, suppose a parameterization r — z(t) and y — y(t) is
introduced. The particle sets off from (x,y) = (a,y(a)) at time t(a) and
follows some curve y = y(x) to arrive at (b,y(b)) at time #(h). Denoting
& = dx/dt, it follows that dx = @dt and similarly for dy. Now the functional
may be written parameterically in terms of ¢ as

(b)
distance = / V2 + g2 dt. (2.7)
)

t(a

IThe “minimum” was stated by Fermat and continues in most introductory optics
treatments; see the comment by Jenkins and White in section 5.3.
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In the distance functional, the integrand had changed from +/1 + g2
integrated over z, to /&? + 92 integrated over {. Same information, differ-
ent parametrization.

The same procedure can be done with the Fermat’s principle functional:?

I
At = — / n(x,y)\/dz? + dy?
c a
1 [t®
= - / n(z(t),y(t)) Va2 + g2 dt.

€ Ji(a)

(2.8)

A system may have more than one dependent variable; for example, in
the blue space that birds fly through, a bird’s location may be expressed by
three spatial coordinates, which together form the components of a position
vector. Let the vector components be denoted z*, where p = 1,2,3 in
ordinary three-dimensional space; in special and general relativity, p = 0,
1,2,3 for the four dimensions of spacetime.? Denote the functional as T,
and let its integrand L be a function of the independent variable ¢, the
dependent variables z#(t), and their first derivatives with respect to t. For
example, in three-dimensional space, where the coordinates of a particle in
motion depend upon a parameter ¢ such as time, I' takes the form

r= /bL(t,:c“,x'”)dt (2.9)

where ## = dz* /dt.

Example (Hamilton’s Principle): In mechanics, the functional of
cardinal importance is the time integral of the difference between a system’s
kinetic and potential energies:

r= /b(K — U)dt. (2.10)

a

For a single particle, in classical mechanics the kinetic energy is given by
K = im(i* 4+ 9% + %), or in terms of so-called generalized coordinates g*,

2Note that in parametric representation of the Fermat’s principle functional, the
coefficient of dt is nv/c = 1. This often occurs in parametric representations, where the
integrand is a function, but it’s numercial value is a constant. This is not unusual: for
an example in elementary mechanics, the conservation of energy can be written 1 =
(mw?)/2E + U(z)/E, even though v and z are variables.

3See appendixes A and B for a discussion of coordinates with upper and lower indices.
In Euclidean spaces the distinction between x# and x, makes no difference, but the
distinction becomes important in special and general relativity, and in the geometries of
curved spaces.
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K= %mgm,q"“tj’”, where the metric tensor components g, (see appendix A)
turn coordinate displacements into distances? and repeated indices are
summed. For example, in spherical coordinates,

K=1lm (-fz + 7262 + 12 (sin? 9)9‘92) , (2.11)

so that the nonzero g, are g, = 1, ggg = r2, Gpp = r?sin? 6. Through the
Ju the kinetic energy may be a function of the coordinates themselves, in
addition to being a function of coordinate velocities. The potential energy
is a function of the coordinates and possibly the time, U = U(t, ¢*). Given
a trajectory that specifies a particle’s coordinates as functions of time,
q"(t), one evaluates I' for that trajectory. According to Hamilton’s princi-
ple, a particle’s actual trajectory between fixed times is one for which I’
is a minimum.® More specifically, consider a projectile falling, without air
resistance, under the control of a uniform gravitational field directed ver-
tically down, the direction opposite the +z axis. Therefore the potential
energy is mgz. The trajectory followed, according to Hamilton’s principle,
is precisely the path for which this integral is a minimum:

b
I'= / (3m(E® + g% + %) — mgz) dt. (2.12)

Example (Special Relativity and Free Fall in Gravity-Free Space-
time): No matter which reference frame measures proper time between any
two events,® all inertial observers can use their reference frame’s time and
space measurements (dt, dzr, dy, dz) to compute the proper time” increment
dr with the aid of the invariant spacetime interval, according to

Adr? = Adt* — da? — dy? — da?. (2.13)

One way of stating the postulates of special relativity asserts a relativis-
tic analog to Fermat’s principle: Of all world lines through spacetime that

“In Buclidean space mapped with Cartesian coordinates, Guv = O, elements of
the unit matrix, or Kronecker delta. If you are not familiar with tensors yet, for now it
suffices to think of a two-index tensor as a matrix. However, under coordinate transfor-
mations there are additional requirements put on tensors that do not necessarily apply
to matrices; see appendix A.

5Some authors say that the trajectory actually followed is the one for which I is
extremal, others say stationary. See section 5.3.

5The distinction between two places and two events should be noted.

7As a particle’s world line takes it from spacetime event a to event b, the proper
time is the “wristwatch time” recorded by the particle itself; in other words, the time
between the two events as measured in the reference frame where they occur at the same
place. See Taylor & Wheeler (2000).



